For every group $\{\pm1\}\subseteq \Delta\subseteq (\mathbb Z/N\mathbb
Z)^\times$, there exists an intermediate modular curve $X_\Delta(N)$. In this
paper we determine all curves $X_\Delta(N)$ with infinitely many points of
degree $4$ over $\mathbb Q$. To do that, we developed a method to compute
possible degrees of rational morphisms from $X_\Delta(N)$ to an elliptic curve.
Cet article explore les excursions dans le temps et leurs implications.
Télécharger PDF:
2504.15937v1