In this paper, we investigate the nonlinear stabilitY and transition
threshold for the 3D Boussinesq system in Sobolev space under the high Reynolds
number and small thermal diffusion in
$\mathbb{T}\times\mathbb{R}\times\mathbb{T} $. It is proved that if the initial
velocity $v_{\rm in}$ and the initial temperature $ \theta_{\rm in} $ satisfy $
\|v_{\rm in}-(y,0,0)\|_{H^{2}}\leq \varepsilon\nu, \|\theta_{\rm
in}\|_{H^{2}}\leq \varepsilon\nu^{2} $, respectively for some $ \varepsilon>0 $
independent of the Reynolds number or thermal diffusion, then the solutions of
3D Boussinesq system are global in time.
Este artículo explora los viajes en el tiempo y sus implicaciones.
Download PDF: