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The presence of topological defects in apolar chiral liquid crystals cause orientational distortions,
leading to non-uniform strain. This non-uniform strain generates an electric polarization response
due to the flexoelectric effect, which induces an internal electric field. Associated to this electric field
is an electrostatic self-energy, which has a back-reaction on the director field. Calculation of this
internal electric field and its resulting back-reaction on the director field is complicated. We propose a
method to do such, adapting a method recently developed to study the magnetostatic self-interaction
effect on skyrmions in chiral ferromagnets. Bloch skyrmions in chiral magnets are solenoidal and are
unaffected by the magnetostatic self-interaction. However, Bloch skyrmions in liquid crystals yield
non-solenoidal flexoelectric polarization and, thus, are affected by the electrostatic self-interaction.
Additionally, as the flexoelectric coefficients are increased in strength, a transition from a hopfion
to a skyrmion is observed in three-dimensional confined systems.

I. INTRODUCTION

Liquid crystals are unique states of soft matter that ex-
hibit properties between those of conventional liquids and
solid crystals. They are characterized by the long-range
order of their molecular orientations, described by the di-
rector field, allowing for fascinating physical phenomena
and applications. The director field encodes spatial vari-
ations of the local average molecular alignment direction
of the constituent chiral molecules. By anchoring the liq-
uid crystal at solid boundaries, the director can easily be
distorted, giving rise to a myriad of topological defects in
the liquid crystal [1]. This homeotropic anchoring intro-
duces geometric frustration to the system [2], where the
boundary conditions are incompatible with the favored
cholesteric twist. It is because of this geometric frustra-
tion that topological defects form. Among the multitude
of topological defects that can emerge in liquid crystals,
skyrmions and hopfions have gained significant interest
recently.

Skyrmions were first studied in condensed matter sys-
tems, in the context of chiral magnets [3, 4]. In those
systems, skyrmions are topological spin defects in the
magnetization and behave like magnetic quasi-particles.
They were later predicted to exist in chiral liquid crystals
[5] and nematic liquid crystals [6], where the skyrmions
in these systems are defects in the director field that also
exhibit particle-like properties. In addition to skyrmions,
the emergence of hopfions in condensed matter systems
has gathered great interest [7–10]. Unlike a skyrmion,
which can be viewed as a localized vortex-like state with
a defined core [3], a hopfion can be interpreted as a
twisted skyrmion string, forming a closed loop in real
space [11]. They have also been realized experimentally
in liquid crystal systems [12, 13].

While skyrmions in chiral magnets and chiral liquid
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crystals are similar in nature, they have distinct manifes-
tations and mechanisms of formation. In chiral magnets,
skyrmions are formed due to the competition between
exchange interactions and Dzyaloshinskii–Moriya inter-
actions, which arise from the lack of inversion symmetry
in the crystal lattice. So, skyrmions in chiral magnets are
driven primarily by magnetic interactions, whereas those
in liquid crystals arise from molecular orientational order.
Essentially, the difference between the two physical sys-
tems is spin orientations versus molecular orientations.

Both skyrmions in chiral magnets and in chiral liq-
uid crystals share a common topological nature char-
acterized by a topological homotopy invariant, ensuring
stability against perturbations. While their manifesta-
tion is unique in both systems, the fundamental stabi-
lization mechanism responsible for skyrmion formation
is the same in both systems. This relationship between
skyrmions in chiral magnets and chiral liquid crystals was
shown by Leonov et al. [14].

In magnetic systems, the magnetization induces an in-
ternal magnetic field known as the stray, or demagne-
tizing, field [15], which acts to reduce the total mag-
netic moment. Associated to this internal demagnetizing
field is a magnetostatic self-energy, generated by dipolar
self-interactions of the magnetization. Determining the
stray field and its back-reaction on the magnetization
is a difficult task [16] and it can lead to the stabiliza-
tion/destabilization of topological defect structures [17].

We study the analogue problem, that is, depolarization
in liquid crystals. The emergence of topological defects
in liquid crystals results in orientational distortions of the
director field, creating non-uniform strain in the system.
In response to this, an electric polarization is induced,
generating an internal electric depolarizing field, similar
to the piezoelectric effect [18]. Akin to the stray field en-
ergy, there is an electrostatic self-energy corresponding
to the depolarizing field [19]. Including this electrostatic
self-interaction makes the problem non-local. The author
recently developed a method to include the demagneti-
zation field and compute its back-reaction in chiral ferro-
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magnets [17]. Such methods were also developed recently
in the context of knotted string solitons in an extended
version of the standard model of particle physics [20], and
the back-reaction of the Coulomb force in an extension of
the Skyrme model [21]. Our aim is to adapt these meth-
ods developed originally in models of particle physics and
condensed matter systems to soft matter systems.

II. THE CHIRAL LIQUID CRYSTAL MODEL

The system that we wish to model is an apolar chiral
liquid crystal, described by a director field n(x) ∈ RP 2

[22, 23]. Let us define the thin disk Ωd
R of radius R and

thickness d by

Ωd
R =

{
(x, y, z) ∈ R3 : |(x, y)| < R, |z| ≤ d

2

}
. (1)

We will restrict our system to the confined geometry

Ω ≡ lim
R→∞

Ωd
R =

{
(x, y, z) ∈ R3 : |z| ≤ d

2

}
, (2)

where d is the cell gap under an external electric field
with homeotropic anchoring [24]. Let us first begin by
considering a non-chiral, apolar nematic liquid crystal.
In the simplest approximation with isotropic elasticity,
the Frank–Oseen energy for such a liquid crystal takes
the simple harmonic form

FFO =
1

2
K

∫
R3

d3x|∇n|2. (3)

Director configurations which minimize this energy are
solutions of the Laplace equation ∆n = 0. Metastable
inhomogeneous solutions of this were found by Belavin
and Polyakov in the context of isotropic ferromagnets
[25].

More insight can be gained by considering the elastic
modes. We can decompose the director gradient tensor
∇n into four normal modes (B, T, S,∆), these are dis-
tinct irreps of the rotation group. The director gradient
tensor can then be expressed in terms of these normal
modes as [26]

∂inj = −niBj +
1

2
Tϵijknk +

1

2
S(δij − ninj) + ∆ij . (4)

In liquid crystal physics terminology, the standard bend
vector is

B = −(n ·∇)n = n× (∇× n), (5)

the standard pseudoscalar twist is

T = n · (∇× n), (6)

and the standard splay vector is [27]

S = Sn, S = ∇ · n. (7)

The last normal mode is the traceless symmetric tensor
∆, known as the biaxial splay [26]. It is a symmetric
traceless tensor such that ∆n = 0. Let q be the positive
eigenvalue of ∆ and n1, n2 be the eigenvectors orthogo-
nal to n. Then the biaxial splay can be given by [28]

∆ = q(n1 ⊗ n1 − n2 ⊗ n2). (8)

Inserting the normal mode decomposition (4) into the
Frank–Oseen energy (3) yields

FFO =
1

2
K

∫
R3

d3x

{
1

2
|S|2 + 1

2
T 2 + |B|2 +Tr(∆2)

}
.

(9)
It is clear that all four modes cost elastic free energy.
In particular, the energy cost of splay, twist and bend
deformations are equivalent.

Let us now consider a liquid crystal composed of chi-
ral molecules, with different elastic deformation costs, in
the confined geometry (2). Then the chirality of these
molecules is characterized by some pseudoscalar q0 that
couples to the twist T . The associated Frank–Oseen free
energy, neglecting the energy cost due to saddle-splay,
can be expressed as [29, 30]

FFO =

∫
Ω

d3x

{
1

2
K1|S|2 +

1

2
K2(T + q0)

2 +
1

2
K3|B|2

}
=

∫
Ω

d3x

{
K1

2
(∇ · n)2 + K2

2

[
n · (∇× n) +

2π

p

]2
+
K3

2
[n× (∇× n)]

2

}
, (10)

where q0 = 2π/p is the cholesteric twist and p is the
cholesteric pitch with a defined length at which the di-
rector twists by 2π. The cholesteric phase is character-
ized by the presence of enantiomorphy (q0 ̸= 0), and is
distinguishable from the nematic phase (q0 = 0). The
Frank elastic constants K1, K2, and K3 determine the
energy cost of splay, twist, and bend deformations, re-
spectively. Skyrmion solutions in nematic liquid crystal
(q0 = 0) were first theorized in [6].

Chiral liquid crystals are dielectric materials that re-
spond to external electric fields. This generates a corre-
sponding coupled electric energy of the form [13, 31]

Eelec = −ϵ0∆ϵ

2
(Eext · n)2 (11)

where Eext is the external electric field, ϵ0 is the vac-
uum permittivity and ∆ϵ is the dielectric anisotropy.
We will only consider the applied electric field orthog-
onal to topological defects in the (x, y)-plane, that is
Eext = (0, 0, Ez).

In experimental realizations, liquid crystals are placed
between parallel plates with a potential difference. This
imposes boundary conditions orthogonal to the plates on
the liquid crystal director field. In particular, this can
impose strong homeotropic anchoring conditions [2]

n(x, y, z = ±d/2) = ez = (0, 0, 1). (12)
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This can be accounted for in two dimensional systems
by including the Rapini–Papoular homeotropic surface
anchoring potential [32, 33]

Eanch = −1

2
W0n

2
z, (13)

where W0 is the effective surface anchoring strength
which favors director alignment in the z-direction, that is
n = ±ez = (0, 0,±1) director configurations. This term
acts to mimic homeotropic anchoring conditions at the
cell surfaces of a three-dimensional system.

The Frank–Oseen free energy we are interested in, in-
cluding the electric energy and homeotropic anchoring,
is given by the energy functional

FFO =

∫
Ω

d3x

{
K1

2
(∇ · n)2 + K2

2
[n · (∇× n)]

2

+
K3

2
[n×∇× n]

2
+K2q0 [n · (∇× n)] + V (n)

}
,

(14)

where the potential is V (n) = Eelec in three dimensions
and V (n) = Eelec + Eanch in two dimensions. While this
model does account for an external applied electric field,
it does not include the electrostatic self-interaction en-
ergy arising from the flexoelectric effect. We will now
show how to do this.

III. FLEXOELECTRIC POLARIZATION

When liquid crystals possess macroscopic electric po-
larization Pf (where Pf is spontaneous or induced by
some external, non-electric field related, factors), then
they induce a linear-in-field energy contribution [34].
One such source of macroscopic electric polarization gen-
eration is related to orientational distortions in liquid
crystals. The case we consider here is molecules with
permanent dipole moments. This leads to piezoelectric
effects and generates a dipolar piezoelectric-like polariza-
tion. However, piezoelectricity is due to uniform strain,
whereas this polarization is caused by the mechanical cur-
vature, or flexion, of the director field n, and is called
flexoelectric [22]. If we fix the splay and induce polar-
ization, this generates an additional energy contribution
given by

FS =
1

2
K1 |n(∇ · n)− c1P|2 + 1

2
µ|P|2. (15)

Varying this with respect to the polarization yields [35]

δFS

δP
= 0 ⇒ P =

(
c1K1

c21K1 + µ

)
(∇ · n)n. (16)

Similarly, we can do the same thing for fixed-bend in-
duced polarization, which generates a polarization

P =

(
c3K3

c23K3 + µ

)
[n× (∇× n)]. (17)

A formal theory of these flexoelectric effects was devel-
oped by Meyer [18]. This can be expressed as [19, 36]

Pf = e1 [(∇ · n)n] + e3 [n× (∇× n)] , (18)

where e1 and e3 are, respectively, the piezoelectric con-
stants for the splay and bend of the molecules [37]. These
coefficients are material dependent and can be measured
directly via the electric current produced by the peri-
odic mechanical flexing of the liquid crystals bounding
surfaces [38].

The flexoelectric polarization produces internal sources
of electric fields [18], i.e. it induces an electric dipole mo-
ment p, where p = Pf . In fact, it generates a continuous
electric dipole moment distribution Pf : Ω → R3, where
Ω ⊆ R3 is the confined geometry (2). The electric po-
tential φ : R3 → R associated to this continuous dipole
distribution, at a point x ∈ R3, is given by

φ(x) =
1

4πϵ0

∫
Ω

d3y

{
Pf (y) · (x− y)

|x− y|3

}
, (19)

where ϵ0 is the permittivity of free space. The corre-
sponding induced electric field E : R3 → R3 is the gradi-
ent of this electric potential,

E(x) = −∇xφ(x)

= − 1

4πϵ0

∫
Ω

d3y
1

|x− y|3
{Pf (y)

−3
Pf (y) · (x− y)

|x− y|2
(x− y)

}
. (20)

Let us note that the Green’s function for the Laplacian
∆ = −∇2 on R3 is

G(x,y) =
1

4π|x− y|
, ∆xG(x,y) = δ(x− y). (21)

Then, using the identity

∇x

(
1

|x− y|

)
= − x− y

|x− y|3
, (22)

we can express the electric potential φ in terms of the
Green’s function

φ(x) = − 1

ϵ0

∫
Ω

d3y {Pf (y) ·∇xG(x,y)} . (23)

Now, noting that the gradient and Laplacian commute
on R3, the Laplacian of the electric potential is

∆xφ(x) = − 1

ϵ0

∫
Ω

d3yPf (y) ·∇x∆xG(x,y)

= − 1

ϵ0

∫
Ω

d3yPf (y) ·∇xδ(x− y)

=
1

ϵ0

∫
Ω

d3yPf (y) ·∇yδ(x− y)

= − 1

ϵ0

∫
Ω

d3y∇y ·Pf (y)δ(x− y)

= − 1

ϵ0
∇x ·Pf (x) (24)



4

Therefore, we see that the electric potential φ satisfies
Poisson’s equation for electrostatics [39, 40]

∆φ = −∇2φ = − 1

ϵ0
∇ ·Pf . (25)

Using the definition of the electric potential, we see that
Gauss’ law is

∇ ·E =
ρ

ϵ0
, ρ = −∇ ·Pf (26)

where ρ is the electric charge density. The electric field
induced by the dipole distribution Pf coincides, there-
fore, with the electric field induced by the charge distri-
bution −(∇ ·Pf ). Hence, we may think of −(∇ ·Pf ) as
an electric charge density. Furthermore, we can write

∇ · (ϵ0E+Pf ) = ∇ ·D = 0, (27)

where D is the electric displacement field. Hence, there
is no space charge.

Suppose we have a pair of electric dipole moments P(1)
f

and P
(2)
f . Their interaction energy is

Eint = −P
(1)
f ·E(2) = −P

(2)
f ·E(1), (28)

where E(2) is the electric field induced by the polarization
P

(2)
f at the position of P(1)

f , and vice versa. Therefore,
the flexoelectric energy coincides with the energy of a
continuous dipole density distribution, which is [41, 42]

Fflexo = −1

2

∫
Ω

d3xE(x) ·Pf (x), (29)

where E is the induced electric field (20). We will later
want to compute the variation of the flexoelectric energy
with respect to the director field n. For this reason, it
proves more useful to express the flexoelectric energy in
terms of the scalar electric potential φ,

Fflexo =
1

2

∫
Ω

d3xPf ·∇φ

= − 1

2

∫
Ω

d3x (∇ ·Pf )φ+
1

2

∫
∂Ω

ds · (φPf )

=
ϵ0
2

∫
R3

d3xφ∆φ+
1

2

∫
∂Ω

ds · (φPf ) , (30)

by the Divergence Theorem. We will restrict ourselves
to situations where the boundary conditions ensure the
boundary term vanishes. In this case, the flexoelectric
energy Fflexo coincides with the electrostatic self-energy
of the charge distribution −(∇ ·Pf ). To see this, we use
the general identity φ∆φ = ∇φ·∇φ−∇·(φ∇φ) and the
divergence theorem to express the flexoelectric energy as

Fflexo =
ϵ0
2

∫
R3

d3x |∇φ|2 =
ϵ0
2

∫
R3

d3x |E|2. (31)

We now detail the two cases of interest. The first is
the flexoelectric self-interaction energy of a translation
invariant skyrmion in a chiral liquid crystal, and the sec-
ond is a hopfion in the confined geometry (2).

A. Translation invariant skyrmion system

We impose the translation invariance to be along the
z-direction, such that the director field n is independent
of z and, therefore, so is the polarization Pf . We assume
that there is a energetically preferential orientation for
the director n = ez due to some intrinsic anisotropy or
an external applied electric field. Note that we could have
equally have chosen n = −ez as the energy is invariant
under the transformation n 7→ −n. That is, the directors
n and −n describe the same physical state, with energy
F [n] = F [−n]. We assume that our polarization field has
compact support such that there exists R0 > 0 whereby
n(x, y) = ez and, whence, Pf (x, y) = 0 for all r :=
|(x, y)| ≥ R0.

The total electrostatic self-energy must either vanish or
diverge as the polarization field Pf is translation invari-
ant. However, if we consider the energy per unit length
in the z-direction, then this may be finite. This coincides
with the energy of the thick disk Ω1

R = {x : x2 + y2 ≤
R2, |z| ≤ 1/2} in the limit R → ∞ [17]. In this case, the
flux of the boundary term φPf through the disk wall van-
ishes since the polarization Pf vanishes on the boundary.
Furthermore, the flux through the top and bottom of the
disk cancel out due to the translation invariance of φPf .
Thus, the electrostatic self-energy of the translation in-
variant system is

Fflexo =
ϵ0
2

∫
R2

d2xφ∆φ, (32)

where ∆ = −∂2
1 − ∂2

2 is the usual flat Laplacian on R2,
and the electric scalar potential φ satisfies

∂2φ

∂x2
+

∂2φ

∂y2
=

1

ϵ0

(
∂P1

∂x
+

∂P2

∂y

)
. (33)

Consider the asmyptotic r → ∞ behavior of the elec-
tric potential φ : R2 → R. Any solution of the Poisson
equation ∆φ = ρ/ϵ0 on the plane has a multipolar ex-
pansion

φ = − q

2πϵ0
log r +O(r−1), (34)

where q =
∫
R2 d2x ρ is the total charge. Such functions

are generally logarithmically unbounded. However, let
us define BR(y) to be the ball of radius R centered at a
point y in R2, that is

BR(y) =
{
x ∈ R2 : |x− y| < R

}
. (35)

Then the total charge electric charge in the system must
vanish,

q =

∫
R2

d2x ρ = lim
R→∞

∮
∂BR(0)

ds ·Pf = 0, (36)

by the divergence theorem, since the flexoelectric polar-
ization has compact support. Therefore, we can conclude
that φ has (at least) a 1/r localization.
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B. Hopfion system

We now consider the three dimensional case with the
strong homeotropic anchoring (12). This leads to the cell
boundary condition for the polarization,

Pf (r, z = ±d/2) = e1(∂znz)ez − e3∂zn. (37)

That is, we compute the energy of a thin disk Ωd
R =

{x : r2 = x2 + y2 ≤ R2, |z| ≤ d/2} in the limit R →
∞. As in the translation invariant case, the director,
and hence the polarization, has compact support in the
(x, y)-plane for fixed cell height values z. So, the director
field tends to a constant on the disk boundary, that is
n(r → ∞, z) = ez. This means that the self-induced
flexoelectric polarization identically vanishes on the disk
boundary Pf (r → ∞, z) = 0. Therefore, we must have
that the electric scalar potential also vanishes on the disk
boundary, φ(r → ∞, z) = 0. In order to compute the
electric potential φ : R3 → R, we need to extend beyond
the cell boundary. This leads to the interior/exterior
interface problem{

∆φ = − 1
ϵ0
∇ ·Pf inΩ,

∆φ = 0 inR3/Ω.
(38)

In three dimensions, we have the multipole expansion

φ = − q

4πϵ0r
+O(r−2). (39)

and the regularity condition φ(r, |z| → ∞) → 0.

IV. EVADING THE HOBART–DERRICK
THEOREM

A. Rescaling the flexoelectric energy

The flexoelectric energy is intrinsically non-local. How-
ever, we have shown how to overcome this problem by
introducing a scalar electric potential, associated to the
self-induced polarization. Now, we want to understand
how the flexoelectric self-energy transforms under a co-
ordinate rescaling, to see the role it plays in evading the
Hobart–Derrick theorem. Recall that the energy of a chi-
ral liquid crystal including the electrostatic self-energy is
given by the flexoelectric Frank–Oseen (FFO) energy,

FFFO =FFO + Fflexo

=

∫
Ω

d3x

{
K1

2
(∇ · n)2 + K2

2
[n · (∇× n)]

2

+
K3

2
(n×∇× n)2 +K2q0 [n · (∇× n)]

+V (n) +
1

2
Pf ·∇φ

}
, (40)

subject to the constraint

∆φ = − 1

ϵ0
∇ ·Pf , Pf = e1 [(∇ · n)n] + e3(n×∇×n).

(41)
The numerical method developed to study the effect of
dipole-dipole interactions on skyrmions in chiral mag-
nets can be used to address this constrained minimization
problem [17].

First of all, we choose to renormalize energy and length
scales such that the energy is dimensionless. This will
also make numerical simulations more palatable. Let us
consider an energy and length rescaling with E = E0Ê
and x = L0x̂. We choose to set our length and energy
scales as

L0 =
1

q0

K1

K2
, E0 =

1

q0

K2
1

K2
. (42)

Then the rescaled energy is

F̂FFO =

∫
Ω

d3x

{
1

2
(∇ · n)2 + 1

2

K2

K1
[n · (∇× n)]

2

+
1

2

K3

K1
(n×∇× n)2 + [n · (∇× n)]

+
1

q20

K1

K2
2

V (n)

}
+ F̂flexo, (43)

where we still need to determine the dimensionless flex-
oelectric energy F̂flexo.

Let us consider the rescaling of the electric potential
φ = λφ̂, where λ has the units [λ] = NmC−1. We find
that the rescaled flexoelectric energy is

F̂flexo =
1ϵ0
2E0

∫
Ω

λ2φ̂
1

L2
0

∆x̂φ̂L
3
0 d3x̂

=
1

2

L0λ
2ϵ0

E0

∫
Ω

φ̂∆x̂φ̂ d3x̂. (44)

It will be convenient to express the polarization Pf in
terms of a rescaled polarization P, where

Pf =
e1
L0

P, P = (∇x̂ · n)n+
e3
e1

[n× (∇x̂ × n)]. (45)

Then the rescaled Poisson equation can be given in the
form

∆x̂φ̂ = − e1
ϵ0λ

∇x̂ ·P. (46)

Furthermore, let us introduce the dimensionless vacuum
electric permittivity

ϵ =
L0λ

2ϵ0
E0

=

(
e1
ϵ0λ

)−1

. (47)

It can be seen that the necessary magnetic potential
rescaling is given by λ = K1/e1 and, hence, the dimen-
sionless vacuum electric permittivity is found to be

ϵ =
K1ϵ0
e21

. (48)
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Therefore, the rescaled flexoelectric energy is determined
to be

F̂flexo =
ϵ

2

∫
Ω

φ̂∆x̂φ̂ d3x̂, ∆x̂φ̂ = −1

ϵ
∇x̂ ·P. (49)

B. Scale invariance of the flexoelectric energy in
two dimensions

We now focus on the situation at hand: transla-
tion invariant configurations in the ez direction. Recall
that we are considering the finite energy of a thick slab
Ω = R2 × [0, 1]. Under the energy and length rescal-
ings (42), the thick slab gets mapped to Ω′ = R2 × [0, t],
where t = L−1

0 is the rescaled slab thickness. We then
consider the energy per unit length F/t of this system,
which is defined by the two-dimensional adimensional en-
ergy functional

FFFO =

∫
R2

d2x

{
1

2
(∇ · n)2 + 1

2

K2

K1
[n · (∇× n)]

2

+
1

2

K3

K1
(n×∇× n)2 + [n · (∇× n)]

+
1

q20

K1

K2
2

V (n) +
ϵ

2
φ∆φ

}
, (50)

where the electric potential satisfies the dimensionless
Poisson equation

∆φ = −1

ϵ
∇·P, P = (∇·n)n+e3

e1
[n× (∇× n)] . (51)

A necessary requirement for topological solitons to
exist in a field theory is the successful evasion of the
Hobart–Derrick theorem [43]. The Hobart–Derrick theo-
rem is a non-existence theorem that states if the energy
functional F [n] is not stationary against spatial rescal-
ing, then n cannot be a solution of the field equations.
So, let us consider a coordinate rescaling x 7→ x′ = µx,
for some positive scaling parameter µ ∈ R>0. Then the
director field necessarily rescales as nµ = n(µx). Obvi-
ously, the gradient transforms as ∇ 7→ ∇′ = 1

µ∇ under
the coordinate rescaling. To determine how the electric
potential φ transforms under the coordinate rescaling, we
first consider how the polarization P transforms, which
is

Pµ = (µ∇′ · nµ)nµ +
e3
e1

(nµ × µ∇′ × nµ)

=µ (∇′ · n(µx))n(µx) + µ
e3
e1

(n(µx)×∇′ × n(µx))

=µP(µx). (52)

Now, consider the Poisson equation (51), which has the
scaling behavior

∆′φµ = − 1

µϵ
∇′ ·Pµ = −1

ϵ
∇′ ·P(µx) = ∆′φ(µx). (53)

It is clear to see that the electric scalar potential scaling
behavior is φµ(x) = φ(µx). Therefore, under the coor-
dinate rescaling x 7→ x′ = µx, the dimensionless energy
functional becomes

FFFO(µ) =

∫
R2

d2x′
{
1

2
(∇′ · n)2 + 1

2

K2

K1
[n · (∇′ × n)]

2

+
1

2

K3

K1
(n×∇′ × n)2 +

1

µ
[n · (∇′ × n)]

+
1

µ2

1

q20

K1

K2
2

V (n) +
1

2
P ·∇′φ

}
=F2 +

1

µ
F1 +

1

µ2
F0 + Fflexo. (54)

For skyrmions to exist in this model, we require the en-
ergy to be stable against spatial rescalings, which yields
the Derrick scaling constraint

dFFFO

dµ

∣∣∣∣
µ=1

= −(F1 + 2F0) = 0. (55)

While the potential energy F0 is positive semi-definite,
the first order (in spatial derivatives) term F1 can be
negative, and thus provide stability. Hence, the Hobart–
Derrick non-existence theorem can be evaded.

We note that the flexoelectric self-energy is scale invari-
ant in two dimensions and is thus unable to provide sta-
bility against spatial rescalings. Whereas, in comparison
with chiral ferromagnets, the magnetostatic self-energy
there can stabilize skyrmions as it behaves like a poten-
tial under coordinate rescalings [17].

V. VARIATION OF THE FLEXOELECTRIC
ENERGY

So far, we have shown how to include the electrostatic
self-energy and compute the electric scalar potential φ
by solving Poisson’s equation (51) for fixed director field
configuration n. Additionally, we have determined that
the flexoelectric energy is conformally invariant in two
dimensions. However, we need to compute the back-
reaction of the self-induced electric field E on the director
field n. To do this, we need to calculate the first varia-
tion of the flexoelectric energy Fflexo(n) with respect to
the director field n.

A. Two-dimensional system

Let nt be a smooth variation of n = n0 through fields
of compact support and define δn = ∂tnt|t=0. Denote
by φt the associated unique solution of (51) with source
− 1

ϵ∇ ·Pt decaying to 0 at infinity, and φ̇ = ∂tφt|t=0. It
is important to note that, while δn has compact support,
neither φ = φ0 nor φ̇ do: as argued above, they are 1/r
localized. Following [17], the variation of Fflexo induced
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by nt is

d
dt

∣∣∣∣
t=0

Fflexo(nt) =
ϵ

2

∫
R2

d2x (φ̇∆φ+ φ∆φ̇) . (56)

Let us consider the term∫
R2

d2x φ̇∆φ = −
∫
R2

d2x φ̇(∇ ·∇φ)

=

∫
R2

d2x ⟨∇φ,∇φ̇⟩ −
∫
R2

d2x∇ · (φ̇∇φ)

=

∫
R2

d2xφ∆φ̇+

∫
R2

d2x∇ · (φ∇φ̇− φ̇∇φ)

=

∫
R2

d2xφ∆φ̇

−
∮
∂B∞(0)

ds · (φ∇φ̇− φ̇∇φ) . (57)

So, the variation of the electrostatic self-energy is found
to be given by

d
dt

∣∣∣∣
t=0

Fflexo(nt) = ϵ

∫
Ω

d3xφ∆φ̇

− ϵ

2

∮
∂B∞(0)

ds · (φ∇φ̇− φ̇∇φ) .

(58)

The surface term vanishes

Ḟ surf
flexo = − ϵ

2

∮
∂B∞(0)

ds · (φ∇φ̇− φ̇∇φ)

= lim
R→∞

ϵ

2

∫
∂BR(0)

(φ̇ ⋆ dφ− φ ⋆ dφ̇)

= lim
R→∞

ϵR

2

∫ 2π

0

(φ̇φr − φφ̇r)dθ

=0, (59)

since φ, φ̇ = O(r−1) and φr, φ̇r = O(r−2). Varying the
Poisson equation (51) with respect to t, we deduce that

∆φ̇ = −1

ϵ
∇ ·

(
d
dt

∣∣∣∣
t=0

P(nt)

)
, (60)

where the variation in the flexoelectric polarization is

d
dt

∣∣∣∣
t=0

P(nt) =
e3
e1

[δn× (∇× n) + n× (∇× δn)]

+ (∇ · δn)n+ (∇ · n)δn. (61)

Then, the variation of the flexoelectric energy is

d
dt

∣∣∣∣
t=0

Fflexo(nt) = −
∫
R2

d2xφ∇ ·
(

d
dt

∣∣∣∣
t=0

P(nt)

)
=

∫
R2

d2x∇φ ·
(

d
dt

∣∣∣∣
t=0

P(nt)

)
=

∫
R2

d2x (gradn Fflexo) · δn, (62)

where the corresponding gradient is

gradn Fflexo =
e3
e1

[((∇× n)×∇φ) + (∇× (∇φ× n))]

−∇(∇φ · n) + (∇ · n)∇φ. (63)

To arrive at this, we have used the divergence theorem
and the vector calculus identities

(∇φ·n)(∇·δn) = ∇·[(∇φ · n)δn]−∇(∇φ·n)·δn (64)

and

(∇φ× n) · (∇× δn) = [∇× (∇φ× n)] · δn
−∇ · [(∇φ× n)× δn] . (65)

B. Three-dimensional system

We can easily extend the analysis in the previous sec-
tion to the three-dimensional confined geometry (2). The
variation is found to be

d
dt

∣∣∣∣
t=0

Fflexo(nt) =

∫
Ω

d3x∇φ · Ṗ−
∮
∂Ω

ds · (φṖ)

− ϵ

2

∮
∂Ω

ds · (φ∇φ̇− φ̇∇φ) . (66)

We can treat this as a thick disk in the limit where the
radius of the disk tends to infinity. Then, using the same
argument as in the two-dimensional case, the surface con-
tribution term must vanish on the curved part of the disk
in the infinite radius limit. We will only consider systems
in which this boundary term vanishes, such as the case of
hopfions (87) in the confined geometry (2). In this case,
we have the symmetries φ(r, z = +d/2) = φ(r, z = −d/2)
and P(r, z = +d/2) = P(r, z = −d/2), such that the
boundary terms vanish identically. Therefore, the varia-
tion of the flexoelectric energy is determined to be

d
dt

∣∣∣∣
t=0

Fflexo(nt) =

∫
Ω

d3x (gradn Fflexo) · δn. (67)

VI. RELATION TO CHIRAL MAGNETS

The stability of two-dimensional skyrmions in chiral
liquid crystals arises from the same mechanism responsi-
ble for the existence of skyrmions in chiral ferromagnetic
systems [14]. This is due to the chiral interactions im-
posed by the handedness of the system. Consider the
one-constant approximation where the bend, splay and
twist constants are all equal (Ki = K). This corresponds
to an apolar, chiral liquid crystal [23]. For such liquid
crystals in an applied electric field Eext = (0, 0, Ez), the
free-energy in the one-constant approximation can be re-
duced to the following expression

FFFO =

∫
R2

d2x

{
1

2
(∇n)2 + [n · (∇× n)] +

1

q20

1

K
V (n)

+
ϵ

2
φ∆φ

}
, (68)
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where we have used the identity [15]

(∇n)
2
= (∇ · n)2 + [n · (∇× n)]

2
+ [n× (∇× n)]

2

+∇ · [(n ·∇)n− (∇ · n)n] (69)

which holds for any unit vector n. This is the energy
density of a chiral ferromagnet in the absence of an ex-
ternal magnetic field with the Dzyaloshinskii–Moriya in-
teraction (DMI) arising from the Dresselhaus spin-orbit
coupling (SOC). The dielectric anisotropy energy in liq-
uid crystals plays the same role as uniaxial anisotropy in
chiral magnets.

VII. NUMERICAL METHOD

Our interests lie in computing the self-induced flexo-
electric polarization of topological solitons in the above
systems. For simplicity, we will use the one constant
approximation from here on out. We will now detail
our method for obtaining solitons in the three dimen-
sional system, but the method reduces easily to the two-
dimensional translation invariant case. Topological soli-
tons in this model are minimizers of the adimensional
flexoelectric Frank–Oseen free energy

FFFO =

∫
Ω

d3x

{
1

2
(∇n)2 + [n · (∇× n)] +

1

q20

1

K
V (n)

+
1

2
P ·∇φ

}
, (70)

where the electric scalar potential φ is subject to the
constraint {

∆φ = − 1
ϵ∇ ·P inΩ,

∆φ = 0 inR3/Ω.
(71)

The adimensional polarization is

P = (∇ · n)n+
e3
e1

[n× (∇× n)] . (72)

We develop a method to find director fields n ∈ RP 2

that simultaneously minimize the flexoelectric Frank–
Oseen energy (70) and solve the electric potential con-
straint (71). This method is implemented for NVIDIA
CUDA architecture and is adapted from a similar non-
local method developed to determine skyrmion crystals
stabilized by ω-mesons [44, 45].

The inclusion of the flexoelectric polarization self-
interaction introduces non-locality into the minimization
problem. Now, the above arrested Newton flow method
assumed that Poisson’s equation was already satisfied
during each iteration of the algorithm. We now need to
ensure that it indeed is. That is, during every iteration of
the arrested Newton flow algorithm, the electric poten-
tial φ must solve Poisson’s equation ∆φ = 1

ϵρ with the

source ρ = −(∇ · P). This can be approached by refor-
mulating the problem as an unconstrained optimization
problem: minimize the functional

F (φ) =
1

2

∫
R3

d3x |dφ|2 + 1

ϵ

∫
Ω

d3xφ (∇ ·P) (73)

with respect to φ, where the director field n is fixed and,
thus, the divergence of the polarization P is also fixed,
with

∇ ·P =
e3
e1

{
(∇× n)2 − n · [∇(∇ · n)] + n · ∇2n

+(∇ · n)2 + n · [∇(∇ · n)]
}
. (74)

We will use a non-linear conjugate gradient method
with a line search strategy to solve this unconstrained
problem. The conjugate stepsize is determined using the
Fletcher–Reeves method.

To summarize, the full numerical algorithm is imple-
mented as follows:

1. Perform a step of the arrested Newton flow method
for the director field n using a 4th order Runge-
Kutta method.

2. Solve Poisson’s equation for the electric potential
φ using nonlinear conjugate gradient descent with
the Fletcher–Reeves method.

3. Compute the total energy of the configuration
(ni, φi) and compare to the energy of the previ-
ous configuration (ni−1, φi−1). If the energy has
increased, arrest the flow.

4. Check the convergence criteria: ∥Edis(n)∥∞ < ε.
If the convergence criteria has been satisfied, then
stop the algorithm.

5. Repeat the process (return to step 1).

VIII. LIQUID CRYSTAL SKYRMIONS

In our model, liquid crystal skyrmions are smooth
maps n : R2 → RP 2 that minimize the flexoelectric
Frank–Oseen energy (70), and are subject to the vacuum
boundary condition n(r → ∞) = ez. This boundary
condition compactifies the domain R2 ∪ {∞} ∼= S2, such
that skyrmions belong to the homotopy group π2(RP 2) =
π2(S

2) = Z. That is, skyrmions have an associated
integer-valued topological degree, given explicitly by

QSk =
1

4π
ϵijk

∫
R2

d2x

(
ni

∂nj

∂x

∂nk

∂y

)
. (75)

Numerical relaxation of the flexoelectric Frank–Oseen
energy (70) is carried out using the arrested Newton flow
and non-linear conjugate gradient descent methods for
the director field n : R2 → S2 and electric potential
φ : R2 → R, respectively. We impose vacuum boundary
conditions, n → ez and φ → 0, as r → ∞.
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A. Twist favored Bloch skyrmions

In the one constant approximation, the chiral liquid
crystal model becomes equivalent to that of a chiral fer-
romagnetic model with the Dresselhaus DMI term, fa-
voring Bloch modulations. The Bloch skyrmion ansatz
is given by

nBloch(r, θ) = sin f(r)eθ + cos f(r)ez, (76)

where f : R → R is a monotonically decreasing radial
profile function with boundary conditions f(0) = π and
f(∞) = 0. Within this ansatz, the flexoelectric polariza-
tion is determined to be be purely radial

PBloch =
e3
e1

1

r
sin2 f(r)er. (77)

While the Bloch ansatz (76) is solenoidal, its associated
polarization is not,

∇ ·PBloch =
e3
e1

1

r

df
dr

sin 2f(r) ̸= 0. (78)

Bloch skyrmions in chiral magnets are solenoidal and
are unaffected by the magnetostatic self-interaction.
However, Bloch skyrmions in liquid crystals yield non-
solenoidal flexoelectric polarization and thus are affected
by the electrostatic self-interaction. This can be seen in
Fig. 1a.

B. Splay and bend favored Néel skyrmions

What happens if we now consider liquid crystals which
prefer splay and bend, opposed to twist. Let us remain in
the one constant approximation. Then the Frank–Oseen
free energy takes the form

F =
K

2

∫
Ω

d3x
{
(S+ S0)

2 + T 2 + (B+B0)
2
}

=
K

2

∫
Ω

d3x
{
(∇ · n)2 + 2S0 · n(∇ · n) + [n · (∇× n)]2

+[n× (∇× n)]2 − 2B0 · [(n ·∇)n] + const.
}
.

(79)

If we choose S0 = B0 = q0ez, then the model reduces
to that of the chiral magnet with the DMI term arising
from the Rashba SOC. That is, the free energy becomes

F =

∫
Ω

d3x

{
K

2
(∇n)2 +Kq0[nz(∇ · n)− n ·∇nz]

+V (n)} , (80)

where we have included the potential term and used the
identity (69) again. The factor of q0 was chosen for con-
venience as we can pick the same energy and length scales
as the twist favored model. It also allows us to compare

splay-bend favored Néel skyrmions with the twist favored
Bloch skyrmions.

Let us now include the electrostatic self-energy, and
employ the same length L0 = 1/q0 and energy E0 = K/q0
scales as before. Then, in the translation invariant case,
the normalized free energy of this splay-bend favored liq-
uid crystal model becomes

F =

∫
R2

d2x

{
1

2
(∇n)2 + [nz(∇ · n)− n ·∇nz]

+
1

q20

1

K
V (n) +

ϵ

2
φ∆φ

}
. (81)

It is well-known that the Rashba DMI term prefers Néel
hedgehog skyrmions, given by the ansatz

nNéel(r, θ) = sin f(r)er + cos f(r)ez. (82)

The self-induced polarization, coming from the Néel
ansatz (82), is

PNéel =

[
1

r
sin2 f(r) +

(
1− e3

e1

)
1

2
sin 2f(r)

df
dr

]
er

+

[
1

2r
sin 2f(r) +

(
cos2 f(r) +

e3
e1

sin2 f(r)

)
df
dr

]
ez.

(83)

Unlike the Bloch polarization, the Néel polarization picks
up an out-of-plane component. The divergence of this po-
larization is also non-zero. We note that if the flexoelec-
tric coefficients are equal, e1 = e3, then the divergence of
the polarization for both Bloch and Néel ansätze are the
same,

∇ ·PBloch = ∇ ·PNéel =
1

r

df
dr

sin 2f(r). (84)

So, they will generate the same electrostatic potential
and, thus, they will be energy degenerate for equal flexo-
electric coefficients. For unequal flexoelectric coefficients,
e1 ̸= e3, the associated self-induced polarizations yield
different electric scalar potentials and, hence, distinct
skyrmions. This can be seen in Fig. 1b.

IX. LIQUID CRYSTAL HOPFIONS

A hopfion can be interpreted as a twisted skyrmion
string, forming a closed loop in real space. Cross-
sectional views (top panel of Fig. 2a) show the skyrmion
twisting as it winds around the hopfion core, changing
from an in-plane skyrmion (QSk = −1) to an out-of-plane
antiskyrmion (QSk = +1). A cross-section view through
the center of the disk (z = 0) gives a different perspective
of the hopfion, showing the structure of Bloch skyrmio-
nium (QSk = 0), or a 2π-vortex [46] (bottom panel of
Fig. 2a).

Hopfions comprise inter-linked closed-loop preimages
of constant n(x, y, z) [7]. The linking of closed-loop
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(a) Twist favored Bloch skyrmion

(b) Splay-bend favored Néel Bloch skyrmion

FIG. 1: Flexoelectric polarization effect on a skyrmion in a liquid crystal in the one constant approximation. A
twist favored Bloch skyrmion is shown in (a), and a splay-bend favored Néel skyrmion in (b). In each subfigure is

the director n(x, y) and the flexoelectric potential φ(x, y) is shown alongside the electric field vector E = −∇φ. Also
shown in is the associated self-induced electric charge density ρ = −∇ ·Pf . It can be seen that the Bloch skyrmion
has a core of negative charge, surrounded by an outer ring of positive charge. Whereas, the Néel skyrmions has a
neutral core surrounded by an internal negatively charged ring and a positively charged outer ring. For material

properties, we use the elastic coefficient K = 10pN and the cholesteric pitch is chosen to be p = 7µm. The
flexoelectric coefficients are chosen to be e1 = 2 pCm−1 and e3 = 4 pCm−1, with an applied electric field of strength

Ez = 1V/µm and dielectric anisotropy ∆ϵ = 3.7.

preimages of anti-podal points in S2/Z2
∼= RP 2 defines

a homotopy invariant. This homotopy invariant is the
Hopf index QHopf ∈ π3(RP 2) = π3(S

2) = Z, associated
to the fibration Z2 → S2 → RP 2. The Hopf index of a
given vector field F can be computed by constructing a
gauge potential A, such that F = ∇×A and [47]

Fi =
1

8π2
ϵijkn · (∂jn× ∂kn). (85)

Then the Hopf index is given by [48]

QHopf = −
∫
Ω

d3xF ·A. (86)

We will consider a hopfion with Hopf index QHopf = 1,
defined by the ansatz [49]

nHopf =


4Σr(Θ cos θ−(Λ−1) sin θ)

(1+Λ)2

4Σr(Θ sin θ+(Λ−1) cos θ)
(1+Λ)2

1− 8Σ2r2

(1+Λ)2

 , (87)

where we have introduced the three functions [11]

Θ(z) = tan
(πz

d

)
, (88a)

Σ(r, z) =
1

d

[
1 +

(
2z

d

)2
]
sec

(πr
2d

)
, (88b)

Λ(r, z) =Σ2r2 +
Θ2

4
. (88c)

Using the hopfion ansatz (87) as an initial configura-
tion for our numerical minimization algorithm, the re-
laxed director solution is plotted in Fig. 2a. Consider the
closed-loop preimages of n = (1, 0, 0) and n = (−1, 0, 0)
by letting us construct two isosurface tubes, each corre-
sponding to closed-loop preimages about n = (±1, 0, 0).
Such a construction is shown in Fig. 3a. By considering
the preimages of n = (±1, 0, 0), it is clear to see they do
indeed only link once.

In our simulations we use a grid with lattice points
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(a) Hopfion (e1 = e3 = 4 pCm−1) (b) Skyrmion (e1 = e3 = 8 pCm−1)

FIG. 2: Flexoelectric polarization effect on a hopfion in a liquid crystal in the one constant approximation
Ki = K = 10pN. Shown is the relaxed director field n(x, y, z) solution of the flexoelectric Frank–Oseen energy (70),

starting from the hopfion ansatz (87) as an initial configuration. Plots of the director field n are shown for (a) a
hopfion and (b) a skyrmion. The distance between the cell plates is taken to be d = 7µm, with an applied voltage of
U = 2V . This gives an applied electric field strength of Ez = U/d = 0.29V/µm and we set the dielectric anisotropy
to be ∆ϵ = 4.8. The cholesteric pitch p is taken to be the same length as the distance between the cell plates, p = d.
We set the flexoelectric coefficients to be equal e1 = e3. There is a phase transition from a hopfion to a skyrmion as

the flexoelectric coefficients are increased from ei = 4pCm−1 to ei = 8pCm−1.

nx = ny = 128 and nz = 192 to model R3. This corre-
sponds to a discretised model of the disk Ω with lattice
points 128× 128× 64. We add a layer of vacuum above
and below the disk, with the same thickness as the disk,
d. Different vacuum layer thicknesses were tried but a

vacuum layer with thickness of O(d) was sufficiently ac-
curate. For the electric scalar potential φ : R3 → R, we
employ a central finite difference method throughout R3.
However, for the director field n : Ω → RP 2, we use a
central finite difference method in the bulk of the disk Ω
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(a) Hopfion (e1 = e3 = 4 pCm−1) (b) Skyrmion (e1 = e3 = 8 pCm−1)

FIG. 3: Isosurface plots of the director field: the top row is the field n3 = 0 and the bottom row is the linking of the
field n1 = ±0.9. The hopfion is shown in (a) and the skyrmion in (b). The parameter set is detailed in Figure 2. As

the flexoelectric coefficients are increased from ei = 4pCm−1 to ei = 8pCm−1, the hopfion transitions to a
skyrmion. It is clear to see from the bottom row that the knots become unlinked.

and a backward/forward finite difference method on the
disk boundary ∂Ω.

The resulting electrostatic properties of the minimal
energy QHopf = 1 hopfion, associated to the flexoelectric
Frank–Oseen energy (70), are plotted in Fig. 4 for the
hopfion. We use similar material properties as in the two-
dimensional skyrmion case. This is carried out within the
one constant approximation with K = 10pN. We set the
distance between the cell plates to be d = 7µm, with

an applied potential difference of U = 2V between the
plates. This generates an electric field of strength Ez =
U/d = 0.29V/µm and the dielectric anisotropy constant
is chosen to be ∆ϵ = 4.8. The flexoelectric constants
are set to be equal with e1 = e3 = 4 pCm−1. We set
our box size for R3 to be lx = ly = lz = 3d and choose
the cholesteric pitch to be p/d = 1. Hence, the lattice
spacing is ∆lx = ∆ly = 0.165µm and ∆lz = 0.110µm.

The electric scalar potential φ : R3 → R and the elec-
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tric charge density ρ : R3 → R are shown in Fig. 4.
The left column shows a cross-section view on the xy-
plane at the center of the disk Ω. (In our numerical
simulations this corresponds to z = 3d/2.) This view
shows the skyrmionium structure and it is clear to see
that both the electric potential and charge density (in
this cross-section of the hopfion) behave similar to the
two-dimensional skyrmion. A cross-section view on the
xz-plane at y = 3d/2 is displayed in the right column of
Fig. 4, showing the axial symmetry of the electric poten-
tial and charge density.

As the flexoelectric coefficient strength is increased
from ei = 4 pCm−1 to ei = 8 pCm−1, the hopfion col-
lapses and transitions to a skyrmion state. This skyrmion
terminates at point defects due to the boundary condi-
tions enforced by the strong homeotropic anchoring (12)
[7], and can be seen in Fig. 2b. It is clear from Fig. 3b
that the knotted preimages of n = ±e1 become unlinked.
The resulting electric scalar potential and electric charge
density for the skyrmion are plotted in Fig. 5.

X. CONCLUSION

In this paper we have studied the back-reaction of the
self-induced flexoelectric polarization on topological de-
fects in chiral liquid crystals. Due to flexoelectricity,
topological defects induce spatially-varying strain into
the liquid crystal, which generates an internal polariza-
tion (18). From the polarization emerges an electric field
(20) with an associated electrostatic self-energy (29). We
show how to compute this self-energy and its correspond-
ing back-reaction on the director field by introducing
the electric scalar potential (19) and solving the Poisson
equation (25).

The problem we have investigated here is the analogue
problem of demagnetization in chiral magnetic systems.

While the two physical systems are similar, the mani-
festation of topological defects in each system is unique.
Further, the electrostatic self-interaction behaves differ-
ently in both systems. In chiral magnets, the electro-
static scalar potential depends on the divergence of the
order parameter, whereas it depends on the divergence of
the polarization induced by the order parameter in chi-
ral liquid crystals. We showed that, in two-dimensional
chiral liquid crystal systems, the electrostatic self-energy
is conformally invariant. However, in two-dimensional
chiral magnetic systems, the demagnetizing self-energy
behaves like a potential and can provide scale stability
to magnetic skyrmions and aid in evading the Hobart–
Derrick Theorem. Finally, magnetic Bloch skyrmions
are unaffected by the electrostatic self-interaction due to
the Bloch ansatz being solenoidal. Although the Bloch
skyrmion is solenoidal, its self-induced polarization is
not. Therefore, liquid crystal Bloch skyrmions are af-
fected by the electrostatic self-interaction.

In addition, we have derived a liquid crystal model
that favors splay and bend deformations, and related it
to a chiral magnetic system with a DMI term coming
from Rashba SOC. A comparison of the effect of the elec-
trostatic self-interaction on skyrmions in the two liquid
crystals models was detailed. In particular, for unequal
flexoelectric coefficients the two skyrmion types yield dis-
tinct electric scalar potentials and are not degenerate in
energy. We also showed that increasing the strength of
the flexoelectric coefficients can destabilize hopfions into
skyrmions in three-dimensional confined systems.
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