
Fitting Tree Metrics and Ultrametrics in Data Streams

Amir Carmel∗ Debarati Das† Evangelos Kipouridis ‡ Evangelos Pipis§

Abstract

Fitting distances to tree metrics and ultrametrics are two widely used methods in hierarchical clus-
tering, primarily explored within the context of numerical taxonomy. Formally, given a positive distance
function D :

`

V
2

˘

Ñ Rą0, the goal is to find a tree (or an ultrametric) T including all elements of set V ,
such that the difference between the distances among vertices in T and those specified by D is minimized.
Numerical taxonomy was first introduced by Sneath and Sokal [Nature 1962], and since then it has been
studied extensively in both biology and computer science.

In this paper, we initiate the study of ultrametric and tree metric fitting problems in the semi-
streaming model, where the distances between pairs of elements from V (with |V | “ n), defined by the
function D, can arrive in an arbitrary order. We study these problems under various distance norms;
namely the ℓ0 objective, which aims to minimize the number of modified entries in D to fit a tree-metric
or an ultrametric; the ℓ1 objective, which seeks to minimize the total sum of distance errors across all
pairs of points in V ; and the ℓ8 objective, which focuses on minimizing the maximum error incurred by
any entries in D.

• Our first result addresses the ℓ0 objective. We provide a single-pass polynomial-time Õpnq-space
Op1q approximation algorithm for ultrametrics and prove that no single-pass exact algorithm exists,
even with exponential time.

• Next, we show that the algorithm for ℓ0 implies an Op∆{δq approximation for the ℓ1 objective, where
∆ is the maximum, and δ is the minimum absolute difference between distances in the input. This
bound matches the best-known approximation for the RAM model using a combinatorial algorithm
when ∆{δ “ Opnq.

• For the ℓ8 objective, we provide a complete characterization of the ultrametric fitting problem.
First, we present a single-pass polynomial-time Õpnq-space 2-approximation algorithm and show
that no better than 2-approximation is possible, even with exponential time. Furthermore, we
show that with an additional pass, it is possible to achieve a polynomial-time exact algorithm for
ultrametrics.

• Finally, we extend all these results to tree metrics by using only one additional pass through the
stream and without asymptotically increasing the approximation factor.

∗Pennsylvania State University, United States. Part of this work was done while the author was affiliated at Weizmann
Institute of Science, Israel. amir6423@gmail.com

†Pennsylvania State University, United States. debaratix710@gmail.com
‡Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany. kipouridis@mpi-inf.mpg.de
§National Technical University of Athens, Greece, and Max Planck Institute for Informatics, Saarland Informatics Campus,

Saarbrücken, Germany. evpipis@gmail.com
Funding: This work is supported by NSF grant 2337832.

1

ar
X

iv
:2

50
4.

17
77

6v
1

 [
cs

.D
S]

 2
4

A
pr

 2
02

5

1 Introduction

Hierarchical clustering is a method of cluster analysis that builds a hierarchy of clusters by starting with each
data point as its own cluster and successively merging the two closest clusters until all points are merged
into a single cluster or a stopping criterion is met. This method involves creating a dendrogram, a tree-like
diagram, that records the sequence of merges or splits, allowing for easy visualization and interpretation of
the hierarchical structure. Hierarchical clustering uses various distance metrics (e.g., Euclidean, Manhattan,
cosine) and linkage criteria (e.g., single, complete, average, Ward’s method), providing flexibility to tailor
the analysis to specific data characteristics and clustering goals. It is versatile across different types of data,
including numerical, categorical, and binary data, and has become the preferred method for analyzing gene
expression data [D’h05] and constructing phylogenetic trees [AC11, KLNHM17]. Consequently, hierarchical
clustering plays a significant role in both theory and practice across various domains, such as image processing
to group similar regions within images [LC05], social network analysis to identify communities within a
network [BBA75], and business and marketing to segment customers based on behavior, preferences, or
purchasing patterns [KSVK20].

Tree metrics and ultrametrics are fundamental measures used in hierarchical clustering, where the dis-
tance between any two points is defined by the cost of the unique path connecting them in a tree-like
structure. Formally, given a distance function D :

`

V
2

˘

Ñ Rą0, the goal is to find a tree T with positive
edge weights, encompassing all elements of set V as vertices. This tree T should best match the distances
specified by D. In the case of ultrametrics, the tree must be rooted, and all elements of V must appear as
leaf nodes at the same depth.

The task of fitting distances with tree metrics and ultrametrics, often referred to as the numerical tax-
onomy problem, has been a subject of interest since the 1960s [CSE67, SS62, SS63]. One of the pioneering
works in this area was presented by Cavalli-Sforza and Edwards in 1967 [CSE67]. Different formulations of
the optimal fit for a given distance function D lead to various objectives, such as minimizing the number of
disagreements (using the ℓ0 norm of the error vector), minimizing the sum of differences (using the ℓ1 norm),
and minimizing the maximum error (using the ℓ8 norm).

Deploying hierarchical clustering (HC) algorithms faces significant challenges due to scalability issues,
particularly with the rise of data-intensive applications and evolving datasets. As data volumes continue to
grow, there is an urgent need for efficient algorithms tailored for large-scale models such as streaming, local
algorithms, MPC, and dynamic models, given the large input sizes relative to available resources. In this work
we study hierarchical clustering, focusing on tree metrics and ultrametrics in the semi-streaming model. The
model supports incremental updates, keeping the information about the clusters current without the need to
reprocess the entire dataset. This adaptability makes hierarchical clustering highly valuable for applications
such as network monitoring and social media analysis, where real-time insights are essential [RGP08, LLM14,
LL09].

A recent result [ACL`22] studied hierarchical clustering (HC) in the graph streaming model, providing a
polynomial-time, single-pass Õpnq space algorithm that achieves an Op

?
log nq approximation for HC. When

space is more limited, specifically n1´op1q, the authors show that no algorithm can estimate the value of the
optimal hierarchical tree within an oplog n log log nq factor, even with poly log n passes over the input and
exponential time.

A special case of the ultrametric fitting problem is where the tree depth is two, known as the Correlation
Clustering problem. In this problem given a complete graph G “ pV,Eq with edges labeled either similar
(0) or dissimilar (1), the objective is to partition the vertices V into clusters to minimize the disagreements.
After a decade of extensive research on correlation clustering in the semi-streaming setting [CDK14, ACG`21,
CLM`21, AW22, BCMT22, CLMP22, BCMT23, CLP`24], a recent breakthrough in [CLP`24] introduces
a single-pass algorithm that achieves a 1.847 approximation using Õpnq space. This directly improves
upon two independent works [CKL`24, MC23], both presenting single-pass algorithms achieving a p3 ` εq-
approximation using Opn{εq space.

However, our understanding of streaming algorithms for larger depths, particularly within the context
of ultrametrics and tree metrics, is very limited. The challenge arises from the fact that, unlike correlation
clustering, which deals with only two distinct input distances, this problem may involve up to n2 different
distances, especially in a highly noisy input. Although the optimal output tree can be defined using at
most n of these n2 distances, identifying these n distances is non-trivial. As a result, in the worst case, it

1

may be necessary to store all observed input distances, which would require quadratic space if done naively.
Additionally, the hierarchical nature of clusters at various tree depths introduces inherent dependencies
among clusters at different levels. This complexity makes it highly challenging to adapt the ideas used in
streaming algorithms for correlation clustering to ultrametrics and tree metrics. In this paper, we offer the
first theoretical guarantees by providing several algorithmic results for fitting distances using ultrametrics
and tree metrics in the semi-streaming setting under various distance norms.

1.1 Other Related Works

Ultrametrics and Tree metrics. The numerical taxonomy problem, which involves fitting distances
with tree metrics and ultrametrics, was first introduced by Cavalli-Sforza and Edwards in 1967 [CSE67].
Day demonstrated that this problem is NP-hard for both ℓ1 and ℓ2 norms in the context of tree metrics and
ultrametrics [Day87]. Moreover, these problems are APX-hard [CGW05], as inferred from the APX-hardness
of Correlation Clustering, which rules out the possibility of a polynomial-time approximation scheme. On the
algorithmic side, Harp, Kannan, and McGregor [HKM05] developed an Opmintn, k log nu1{pq approximation
for the ℓp objective in the ultrametric fitting problem, where k is the number of distinct distances in the
input. Ailon and Charikar [AC11] improved this to an Oppplog nqplog log nqq1{pq approximation, which they
extended to the tree metric using a reduction from Agarwala [ABF`99]. A recent breakthrough in [CDK`21]
presented the first constant-factor approximation for the ℓ1 objective for both ultrametric and tree metric.

The ℓ0 objective was first investigated in [CFLDM22], which developed a novel constant-factor ap-
proximation algorithm. Charikar and Gao [CG24] improved the approximation guarantee to 5. For the
weighted ultrametric violation distance, where the weights satisfy the triangle inequality, they provided an
OpmintL, log nuq approximation, with L being the number of distinct values in the input. Kipouridis [Kip23]
further extended these results to tree metrics.

Research into the ℓ8 numerical taxonomy began in the early 1990s. It was discovered by several authors
that the ℓ8 case of the ultrametric fitting problem is solvable in polynomial time (in fact linear time in the
input) and it is the only case with that property, whereas the problem of ℓ8 tree fitting is APX-hard [Kři88,
CF00, FKW93, ABF`99, War92]. Since then, the ℓ8 Best-Fit Ultrametrics/Tree-Metrics problems were
extensively studied from both mathematical and computational perspectives [CF00, BL17, Ber20, Ard05,
DHH`05, MWZ99, CKL20, CDL21].

Correlation Clustering. The classic correlation clustering problem, introduced by Bansal, Blum, and
Chawla [BBC02], can be visualized as a special case of ultrametrics where the tree’s depth is bounded by two.
Correlation clustering serves as a fundamental building block for constructing ultrametrics and tree metrics.
Despite being APX-hard [CGW05], extensive research [BBC02, CGW05, CMSY15, CLN22, CLLN23] has
aimed at finding efficient approximation algorithms, with the latest being a 1.437-approximation [CCL`24].
Correlation clustering also boasts a rich body of literature and has been extensively studied across various
models designed for large datasets, including streaming [ACG`21, AW22, BCMT22, CLN22], MPC [CLM`21],
MapReduce [CDK14], and dynamic models [BDH`19, BCC`24, DMM24].

Metric Violation Distance. Another counterpart of the ultrametric violation distance problem is the
metric violation distance problem, which requires embedding an arbitrary distance matrix into a metric space
while minimizing the ℓ0 objective. While only a hardness of approximation of 2 is known, [GJ17, FRB18,
GGR`20] provided algorithms with an approximation ratio of OpOPT 1{3q. An exponential improvement
in the approximation guarantee to Oplog nq was achieved in [CFLDM22]. The maximization version of
this problem is also well-motivated by its application in designing metric filtration schemes for analyzing
chromosome structures, as studied in [DPS`13].

1.2 Our Contributions

In this work, we examine the problem of fitting tree metrics and ultrametrics in the semi-streaming model,
focusing on the ℓ0 and ℓ8 objectives. Note that storing the tree alone requires Ωpnq word space. Since we
are working within the semi-streaming model, where Õpnq space is permitted, this is a natural consideration.
Our results apply to the most general semi-streaming settings where the entries of the input distance matrix,

2

of size n2, arrive one by one in some arbitrary order, possibly adversarially. Notably, all our algorithms
require either one or two passes over the data while achieving constant factor approximations in polynomial
time. Before discussing the key contributions of this work, we provide a formal definition of the problem.
Problem: ℓp Best-Fit Ultrametrics/Tree-Metrics

Input: A set V and a distance matrix D :
`

V
2

˘

Ñ Rą0.

Desired Output: An ultrametric (resp. tree metric) T that spans V and fits D in the sense of minimizing:

}T ´ D}p “
p

d

ÿ

uvPpV
2q

|T puvq ´ Dpuvq|p

For p “ 0, the aim is to minimize the total number of errors. In other words, each pair comes with
a request regarding their distance in the output tree, and our goal is to construct a tree that satisfies as
many of these requests as possible, minimizing the total number of pairs whose distances are altered. This
fundamental problem for ultrametrics, also known as the Ultrametric violation distance problem, was first
investigated in [CFLDM22], in which a novel constant-factor approximation algorithm in the RAM model
was developed. Charikar and Gao [CG24] further improved the approximation guarantee to 5.

We present for this problem a single-pass algorithm, in the semi-streaming setting, that provides a
constant approximation and succeeds with high probability. We remark that straightforwardly adapting this
algorithm in the RAM model yields a near-linear time algorithm (rOpn2q, while the input size is Θpn2q),
improving over the best known Ωpn4q time from [CFLDM22]1.

Theorem 1. There exists a single pass polynomial time semi-streaming algorithm that w.h.p. Op1q-approximates
the ℓ0 Best-Fit Ultrametrics problem.

Following, we show that this result also implies an approximation for the ℓ1 objective.

Corollary 2. Let δ (resp. ∆) be the smallest (resp. largest) absolute difference between distinct distances
in D, for an ℓ1 Best-Fit Ultrametrics instance. There exists a single pass polynomial time semi-streaming
algorithm that w.h.p Op∆{δq-approximates the ℓ1 Best-Fit Ultrametrics problem.

Proof. Let T0 (resp. T1) be an ultrametric minimizing }T0 ´ D}0 (resp. }T1 ´ D}1), and T be the output
from Theorem 1 (thus }T ´ D}0 “ Op}T0 ´ D}0q.

It holds that }T1 ´ D}1 ě }T1 ´ D}0δ, as in the ℓ1 objective we pay at least δ for each pair having a
disagreement. Similarly }T ´D}1 ď }T ´D}0∆ “ Op}T0 ´D}0∆q “ Op}T1 ´D}0∆q, by definition of T0.

It is interesting to note that for the ℓ1 objective, most recent approximation algorithms in the offline
setting are not combinatorial, making it a significant challenge to adapt them to the semi-streaming model.
The best known combinatorial approximation for ℓ1 Best-Fit Ultrametrics and Tree-Metrics is Op∆{δq,
when ∆{δ “ Opnq [AC11, HKM05], achieved through the so-called pivoting algorithm 2. Unfortunately,
this algorithm is very challenging to adapt to a single-pass semi-streaming setting as it generalizes the
PIVOT-based algorithm of Correlation Clustering, which, despite extensive research, has not been adapted
to semi-streaming settings with only a single pass without significant modifications [BCMT22, BCMT23,
CKL`24, MC23]. Surprisingly, our Op∆{δq approximation for the ℓ1 objective is derived directly from the
algorithm for the ℓ0 objective, eliminating the need to explicitly use this pivoting approach.

Further, we contrast Theorem 1 by ruling out the possibility of a single-round exact algorithm, even
with sub-quadratic space and exponential time. For this, we provide a new lower bound result for the
correlation clustering problem, showing that any single-pass streaming algorithm with sub-quadratic space
cannot output the optimal clustering nor can maintain its cost.

Theorem 3. Any randomized single pass streaming algorithm that with probability greater than 2
3 either

solves the correlation clustering problem or maintains the cost of an optimal correlation clustering solution
requires Ωpn2q bits.

1In [CFLDM22] the exact running time of the algorithm has not been analyzed, but there exist inputs where it must perform
Ωpn2q repetitions of a flat-clustering algorithm that takes Ωpn2q time per repetition.

2The authors of [AC11] claim the approximation is proportional to the number of distinct distances. That is because of a
simplification they make in the paper, that the distances are all consecutive positive integers starting from 1. For an example
showing the Op∆{δq analysis is tight, take V “ tu1, u2, u3u and Dpuvq ą ∆, Dpuwq “ Dpuvq ´ δ,Dpvwq “ Dpuvq ´ ∆. With
probability 1{3 we pick u as the pivot, and pay ∆, while the optimum solution only pays δ.

3

We then extend this result to ℓp Best-Fit Ultrametrics problems for p P t0, 1u, using the fact that
correlation clustering is a special case of these problems (see e.g. [AC11]).

Corollary 4. For p P t0, 1u, any randomized single pass streaming algorithm that with probability greater
than 2

3 either solves ℓp Best-Fit Ultrametrics or just outputs the error of an optimal ultrametric solution
requires Ωpn2q bits.

Next, we consider the ℓ8 objective, where the goal is to minimize the maximum error. In Section 4 we
provide a complete characterization of ℓ8 Best-Fit Ultrametrics in the semi-streaming model. We give a
single pass algorithm with 2-approximation factor to this problem.

Theorem 5. There exists a single pass polynomial time semi-streaming algorithm that 2-approximates the
ℓ8 Best-Fit Ultrametrics problem.

We contrast Theorem 5 by showing that this is the best approximation factor achievable using a single
pass, even with sub-quadratic space and exponential time.

Theorem 6. Any randomized one-pass streaming algorithm for ℓ8 Best-Fit Ultrametrics with an approxi-
mation factor strictly less than 2 and a success probability greater than 2

3 requires Ωpn2q bits of space.

Moreover, we demonstrate that allowing two passes is sufficient for an exact solution. Therefore, we
provide optimal tradeoffs between the number of passes and the approximation factor in all scenarios.

Theorem 7. There exists a two-pass polynomial time semi-streaming algorithm that computes an exact
solution to the ℓ8 Best-Fit Ultrametrics problem.

In Section 5 we show that all aforementioned algorithms can be extended to tree metrics. This is achieved
by providing reductions to the corresponding ultrametrics problems, requiring only one additional pass over
the stream. The reductions used for the ℓ0 and ℓ8 objectives differ significantly from each other.

Theorem 8. There exists a two-pass polynomial time semi-streaming algorithm that w.h.p Op1q-approximates
the ℓ0 Best-Fit Tree-Metrics problem.

Using the same arguments as in Corollary 2, we obtain an analogous result for the ℓ1 objective.

Corollary 9. Let δ (resp. ∆) be the smallest (resp. largest) absolute difference between distinct distances in
D, for an ℓ1 Best-Fit Tree-Metrics instance. There exists a two-pass pass polynomial time semi-streaming
algorithm that w.h.p Op∆{δq-approximates ℓ1 Best-Fit Tree-Metrics problem.

Theorem 10. There exists a two-pass polynomial time semi-streaming algorithm that 6-approximates the
ℓ8 Best-Fit Tree-Metrics problem.

1.3 Technique Overview

We provide a technical overview of the most technically novel contribution of our work, namely the results
regarding the ℓ0 Best-Fit Ultrametrics algorithm in the semi-streaming model (more details in Section 3).

1.3.1 Why previous ℓ0 approaches cannot be adapted

In general, it is difficult to ensure a hierarchical structure while providing non-trivial approximation guaran-
tees. In Hierarchical Clustering research, such results usually rely on one of two standard approaches, namely
the top-down (divisive) approach, and the bottom-up (agglomerative) approach. In fact, with the exception
of [CDK`21], results for ℓp Best-Fit Ultrametrics (p ă 8) [HKM05, AC11, CDK`21, CFLDM22, CG24] all
rely on the divisive approach.

Non-divisive approaches. The only relevant result applying a non-divisive approach is that of [CDK`21],
which crucially relies on a large LP. Unfortunately, it is not known how to solve such an LP in streaming.

4

Divisive approaches. A divisive algorithm starts with the root node (containing the whole V), computes
its children (subsets V 1 at height h) based on some division strategy, and recurses on its children. Different
division strategies have been employed, with the most prominent ones using the solution to an LP, or
attempting to satisfy a particular (usually randomly chosen) element called the pivot, or solving some flat
clustering problem. In what follows, we discuss why existing division strategies do not work in our case.

Correlation Clustering. Perhaps the most straightforward approach is to solve a (flat) clustering prob-
lem; for each pair of vertices u, v P V 1, we ideally want them together if h ą Dpuvq, and apart otherwise.
This corresponds to the Correlation Clustering problem, which returns a clustering violating as few of our
preferences as possible. Unfortunately, this approach does not work for ℓ0 Best-Fit Ultrametrics, as certain
choices that appear good locally (on a particular height h) may be catastrophic globally.

The first result for ℓ0 Best-Fit Ultrametrics. The authors of [CFLDM22] overcame the shortcom-
ings of Correlation Clustering as a division strategy by solving a particular flavor of it, called Agreement
Correlation Clustering. This guaranteed further structural properties3 that could be leveraged to provide
Op1q approximation for ℓ0 Best-Fit Ultrametrics. However this approach is too strong to guarrantee in
streaming, since one can recover adjacency information with black-box calls to an Agreement Correlation
Clustering subroutine. This of course requires Θpn2q bits of memory, while in streaming we only have rOpnq.

Other results for ℓ0 Best-Fit Ultrametrics.The other results for ℓ0 Best-Fit Ultrametrics are pivot-
based and do not work in our case. Indeed, one of them [CG24] is based on a large LP for which no streaming
solution is known, while the other one [CFLDM22] is combinatorial but with approximation factor Ωplog nq.

1.3.2 Our techniques

ℓ0 Best-Fit Ultrametrics. Our streaming algorithm is a divisive algorithm. In the divisive framework,
each level of the tree is defined by a distinct distance from the input, which allows each level to be visualized
as an instance of the correlation clustering problem. In this instance, two vertices are connected if their
distance is at most the threshold associated with that level; otherwise, they are not connected. Following
this, different layers of the ultrametric tree are built by repeatedly applying a division strategy in a top-down
fashion. Here, we highlight the techniques we develop to design a semi-streaming algorithm that uses only
a single pass and computes an Op1q approximation for the ℓ0 Best-Fit Ultrametrics problem.

Distances Summary. The first fundamental challenge is identifying which distances should be pre-
served in the constructed ultrametric, given that the input may contain Ωpn2q distinct distances. A divisive
algorithm may need to perform its division strategy on every level defined by such a distance (of course,
sometimes it may decide not to divide anything); however, in the semi-streaming setting, we cannot even
afford to store all these distances. Instead, we work with a compressed set of distances that effectively
captures all important information. More formally, we focus on distances d for which there exists at least
one vertex u such that the number of vertices with distance less than d from u is significantly smaller than
the number of vertices with distance at most d from u. Using this notion, we demonstrate that it is sufficient
to consider only a near-linear number of distances to achieve a good approximation.

Agreement Sketches.A key component in many (flat) clustering algorithms (including the first algo-
rithm for Correlation Clustering [BBC02], which inspired many others, such as [CLM`21, AW22, CFLDM22,
BCC`24]) involves comparing the set of neighbors of two vertices. While our division strategy also builds
on such comparisons, both the hierarchical nature and streaming constraints of our setting present unique
challenges. In Correlation Clustering each vertex has only a single set of neighbors, however, in our hierar-
chical setting, each layer of the tree is associated with a different distance threshold, producing different sets
of neighbors for a vertex. In the worst case, there can be Opnq such sets, and building a sketch for each can
require up to quadratic space.

To address this, we build a new sketch for a node only when its set of neighbors changes significantly.
The intuition here is that if the neighborhood of a node has not changed substantially, then a precomputed
sketch for a nearby neighborhood will suffice. However, implementing this in a semi-streaming setting, where
distances between pairs can arrive in any arbitrary order, is challenging. Since we cannot store the distances
to all other nodes from a given node simultaneously, identifying significant changes in a node’s neighborhood

3Informally, when we solve Agreement Correlation Clustering we obtain a clustering C with all its clusters being dense and
the property that there exists a near-optimal clustering C1 such that every cluster of C1 is a subset of some cluster in C.

5

becomes difficult. To manage this, we develop a new technique that combines random sampling with a
pruning strategy, ensuring that the overall space required to store all the sketches is Õpnq.

In this approach, we build each sketch by randomly sampling nodes. Assuming the neighborhood size has
dropped substantially, we expect the correct sketch to reach a certain size. Notably, the set of neighbors of
a node only shrinks as the distance decreases. Thus, for a specific weight threshold, if the sample (or sketch)
size grows considerably, this indicates that the neighborhood has not changed much, so we disregard that
weight threshold and delete the corresponding sample from the sketch. Specifically, for each node, we build
and store sketches when the neighborhood size shrinks by a constant factor. Following this, we consider at
most log n different sizes, and storing the sketch for all sizes takes only polylogarithmic space for a node.
Therefore, the total space required to store the sketches for all the nodes is bounded by Õpnq. Moreover, the
sketches ensure that for each node u and each weight w, there exists a weight w1 such that the neighboring
nodes of u at w and w1 differ very little, and we have built a sketch corresponding to the neighboring set at
weight w1.

Across-Levels Correlations. In divisive algorithms, while building a new level of the ultrametric tree,
the recursions performed depend on the divisions computed at previous recursion levels. In this sense, the
divisive framework can be viewed as an adaptive adversary for the division strategy we need to perform.
This is not an issue when deterministic division strategies are used (e.g. as in [CFLDM22]), but it becomes
particularly problematic in our case, where we are forced to use random sketches because of the issue with
the Ωpn2q distinct distances.

The challenge here arises from the fact that for a given vertex we do not build a new sketch for each level of
the tree. Instead, we only construct a sketch when the set of neighbors changes substantially. Consequently,
multiple levels of the tree must reuse the same sketch, which increases the correlation among clusters at
different levels. This makes it difficult to ensure concentration bounds when limiting the overall error.

To address this, our approach aims to “limit” the dependencies by ensuring our algorithm has only a
logarithmic recursion depth (as opposed to the Ωpn2q recursion depth in straightforward divisive approaches).
This allows us to afford independent randomness by using a new sketch for each recursion depth. To reduce
the recursion depth, we make the following observation: if the correlation clustering subroutine identifies a
large cluster (e.g., containing a 0.99 fraction of the vertices), we can detect this cluster without explicitly
applying the correlation clustering algorithm (thus omitting the requirement of using a sketch). This is
because all vertices within this cluster have large degrees, while those outside have very small degrees.
Therefore, it suffices to identify the vertices with small degrees and remove them to generate the new
cluster. It is important to note that the degree calculation must consider the entire graph, not just the
subgraph induced by the current cluster being considered. Otherwise, intra-recursion dependencies could be
introduced, and thus the logarithmic recursion depth guarantee may not suffice.

Within-Level Correlations. Correlation issues do not only occur vertically (across levels), but also
horizontally (within the same level), as most algorithms for correlation clustering compute a cluster, and
then recurse on the rest of the elements. However in our case, such an adaptive construction may lead to
the possibility of reusing sketches, making it difficult to ensure concentration.

We overcome these issues in several ways. First, we use these sketches to compute the agreement among
vertices (i.e., computing the similarity between the set of neighbors of each pair of vertices) before we
start constructing any clusters. Finally we propose an algorithm that is relying solely on our agreement
sketches and is decomposed into independent events, thus only requiring us to consult the sketches of each
layer only once. By using the agreements precomputation and our proposed clustering algorithm we ensure
concentration while limiting the error for all clusters within a level.

S-Structural Clustering. Finally, as argued in Section 1.3.1, we need a division strategy that is different
from the existing Agreement Correlation Clustering of [CFLDM22]. That is because it can be proven that
solving Agreement Correlation Clustering on arbitrary subgraphs requires Ωpn2q bits of memory.

Instead, we introduce S-Structural Clustering, which is inspired by Agreement Correlation Clustering.
The key distinction is that now we require a clustering of S to satisfy the structural properties, while also
considering edges with only one endpoint in S. This distinction is exactly what allows us to generalize our
proposed algorithm to solve S-Structural Clustering by relying solely on the global neighborhoods of its
vertices. Interestingly, the resulting time complexity of our general algorithm only depends on the size of
the subgraph, as we compress all the necessary global information through our sketches. Finally, we remark

6

that both the construction of the sketches (Section 3.1) and the introduction of the S-Structural Clustering
(Section 3.2.2) are two novel contributions of our work and could be of independent interest.

ℓ0 Best-Fit Tree-Metrics. In [Kip23] it is shown how to reduce ℓ0 Best-Fit Tree-Metrics to ℓ0 Best-Fit
Ultrametrics. In this approach, however, one needs to create n different instances of ℓ0 Best-Fit Ultrametrics,
which is not feasible in the semi-streaming model. In this work, we show that randomly solving a logarithmic
number of these n different instances suffices.

Our initial approach requires 3 passes over the stream. One for a preprocessing step implicitly construct-
ing the ℓ0 Best-Fit Ultrametrics instances, one to solve these instances (and post-process them to extract
trees that solve the original problem), and a final one to figure which one of the logarithmically many trees
we need to output (the one with the smallest cost is picked).

We further improve the number of passes to 2, by eliminating the need for the final pass. To do that, we
note that there are many trees with “tiny” cost related to the input; let A be the set containing these trees.
By triangle inequality, all trees in A have “small” cost related to each other. If we create a graph with the
trees as nodes, and an edge between two nodes when the cost relative to each other is small, we then show
that with high probability this graph contains a big clique. Finally, we show that any node (corresponding
to a tree) from a big clique is a good enough approximation to the original input, even if it is not in A.

ℓ8 Results. Regarding ℓ8 Best-Fit Ultrametrics, we show that the existing exact algorithm [FKW93]
can be straightforwardly adapted to a 2-pass semi-streaming algorithm. Naturally, as the problem has been
solved exactly, no research has focused on approximation algorithms. In this work we show that the solution
to a related problem (ℓ8 Min-Decrement Ultrametrics) 2-approximates ℓ8 Best-Fit Ultrametrics. Then we
adapt the exact solution for ℓ8 Min-Decrement Ultrametrics [FKW93] to obtain a single pass semi-streaming
algorithm.

We also show that no single-pass semi-streaming algorithm can give a better-than-2 approximation, for
otherwise we could compress any graph in rOpnq space. Together, these results completely characterize ℓ8

Best-Fit Ultrametrics in the semi-streaming setting, regarding the optimal number of passes and the optimal
approximation factor.

For ℓ8 Best-Fit Tree-Metrics, there exists a reduction to Ultrametrics [ABF`99], blowing up the approx-
imation by a factor 3. Adapting it in the semi-streaming requires one additional pass through the stream.
Using it with our 2-approximation for ℓ8 Best-Fit Ultrametrics (rather than with the exact algorithm, as
done in [ABF`99]), we need 2 passes (instead of 3).

2 Preliminaries

We start by presenting useful notations we employ throughout the text. We use uv to denote an unordered
pair tu, vu. We use the term distance matrix to refer to a function from

`

V
2

˘

to the non-negative reals. Let
D be a distance matrix. For easiness of notation, we use wmax “ maxuv Dpuvq. We slightly abuse notation

and say that for any u P V , Dpuuq “ 0. For p ě 1, }D}p “ p

b

ř

uvPpV
2q |Dpuvq|p is the ℓp norm of D. We

extend the notation for p “ 0. In this case, }D}0 denotes the number of pairs uv such that Dpuvq ‰ 0. We
even say }D}0 is the ℓ0 norm of D, despite ℓ0 not being a norm.

If T is a tree and u, v are two nodes in T , then we write T puvq to denote the distance between u and v in
T . An ultrametric is a metric pV,Dq with the property that Dpuvq ď maxtDpuwq, Dpvwqu for all u, v, w P V .
It holds that pV,Dq is an ultrametric iff there exists a rooted tree T spanning V such that all elements of V
are in the leaves of T , the depth of all leaves is the same, and Dpuvq “ T puvq for all u, v P V . We call trees
with these properties ultrametric trees.

In the semi-streaming model, the input is again a distance matrix D on a vertex set V . Let n “ |V |.

Our algorithm has rOpnq available space, and the entries of D arrive one-by-one, in an arbitrary order, as
pairs of the form puv,Dpuvqq. For simplicity, we use the standard assumption that each distance Dpuvq fits
in Oplog nq bits of memory.

We let Ew be the set of pairs uv such that Dpuvq ď w. We define Nwpuq, the set of neighbors of u at
level w, to be the vertices v such that uv P Ew (including u itself), and the degree of u at level w to be

7

dwpuq “ |Nwpuq|. We even write Npuq and dpuq (instead of Nwpuq and dwpuq) when Ew is clear from the
context. Given an ultrametric tree T , a cluster at level w is a maximal set of leaves such that every pairwise
distance in T is at most w. It is straightforward that a cluster at level w corresponds to the set of leaves
descending from a node of T at height w{2. Abusing notation, and only when it is clear from the context,
we refer to this node as a cluster at level w as well.

Regarding ℓ0, it is sufficient to focus on ultrametrics where the distances between nodes are also entries
in D. That is because if an ultrametric T does not have this property, we can create an ultrametric T 1 with
this property such that }T 1 ´ D}0 ď }T ´ D}0 (folklore). To do this, simply modify every distance d in T
to the smallest entry in D that is at least as large as d (if no such entry in D exists, then we modify d to be
the maximum entry in D).

3 ℓ0 Ultrametrics

In this section, we show how to Op1q-approximate ℓ0 Best-Fit Ultrametrics with a single pass in the semi-
streaming model. Formally we show the following.

Theorem 1. There exists a single pass polynomial time semi-streaming algorithm that w.h.p. Op1q-approximates
the ℓ0 Best-Fit Ultrametrics problem.

Our algorithm consists of two main phases. In the streaming phase, we construct efficient sketches that
capture the essential information of the input matrix D. That is, we store a compressed representation of
D, denoted as rD, which, unlike D, has a reduced size of rOpnq rather than Opn2q values (hereafter called

weights). Yet, we will show in Section 3.1 that for every weight w P D and every u P V , a weight w̃ P rD is
stored, such that Nwpuq and Nw̃puq are roughly the same. This guarantee enables us to approximate both
the size of a neighborhood and the size of the intersection for two different neighborhoods.

The second step is a post-stream process that carefully utilizes the precomputed sketches while addressing
the adaptivity challenges discussed in Section 1.3.2. In Section 3.2 we show how to compute the S-Structural
Clustering subroutine, which we will use as our division strategy. In Section 3.3 we present our main
algorithm, which uses this subroutine and the distances summary as black-boxes to construct the ultrametric
tree. Finally, in Section 3.4, we establish the necessity of approximation in the streaming setting by proving
that computing an optimal solution requires Ωpn2q bits of memory.

3.1 Construction of Sketches

This section outlines the process for constructing sketches that enable our algorithm’s implementation. For
now we consider large neighborhoods of size Ωplog4 nq. While a similar approach was used in [CLM`21]4, for
the problem of correlation clustering, the challenge here is different. Unlike correlation clustering, where each
vertex has only a single set of neighbors, each layer of the tree in our context is associated with a different
distance threshold. Thus each varying threshold can produce a different set of neighbors for a vertex. In the
worst case, there can be n such sets, and building a sketch for each changing set of neighbors for each vertex
can require up to quadratic space (or even cubic, if implemented naively).

We denote the weight of an edge e “ uv by wpeq “ Dpuvq. Each sketch is constructed for a specific vertex
with a predetermined size chosen from the set S “ tn, n

p1`ζq
, n

p1`ζq2
, . . . , log4 nu, where ζ is a small constant

parameter to be adjusted. Each sketch will encapsulate a neighborhood of the vertex of size roughly s, and
allow us to compare the common intersection of two different neighborhoods. Let wv

s be the largest weight
for which s

1`ζ ă |Nwv
s
pvq| ď s. We call size s relevant for vertex v if such wv

s exists.

To obtain the sketches, for each s1 P S, we start by generating a random subset Rs1 Ď rns by sampling
each vertex from V independently with probability log2 n{s1, prior to processing the stream. For each vertex
v, each relevant size s, and each s1 satisfying 1

2s ď s1 ď s, we define a sketch Sv
s,s1 . Every sketch consists of

4In [CLM`21], the authors claim polylogarithmic size sketches for each vertex. However, we are unable to verify this.

Specifically, the random set is constructed by selecting each vertex with probability min
!

a logn
βj

, 1
)

, where a is a constant.

Since j is at most O
´

logn
β

¯

, the probability of selecting a vertex is at least mintΩpaq, 1u, which is a constant. Thus, each

random set is of size Ωpnq. Therefore, for a vertex v with |Npvq| “ Ωpnq, the sketch size will be of size Ωpnq.

8

(i) an estimate of the parameter wv
s , denoted by w̃v

s , and (ii) an (almost) random sample of v ˆ Nw̃v
s
pvq of

size Oplog2 nq, along with the weight of each sampled edge. To achieve this, we store a collection of edges
Cv

1 , . . . , C
v
ℓ Ď v ˆNw̃v

s
pvq, where all edges in Cv

i have the same weight wv
i , which we also store alongside Cv

i ,
and let Cv

ℓ be the collection corresponding to the largest weight. Furthermore, we ensure that the overall
size of all collections

ř

iPrℓs |Cv
i | is Oplog3 nq bits.

The purpose of incorporating two size parameters, s and s1 into the sketch is to enable comparisons of
neighborhoods that have slightly different, but relatively close, sizes. Yet, for simplicity, the reader may
assume s “ s1 for the following construction and claims. We now describe the process of constructing a
specific sketch Sv

s,s1 given the input stream:

1. Initialize counter “ 0, wm “ 0.

2. If e is not incident on v, continue to the next edge.

3. Else, if wm ‰ 0 and wpeq ě wm, continue to the next edge.

4. Else if u R Rs1 , where e “ pu, vq, continue to the next edge.

5. Otherwise proceed as follows:

(a) If there is a collection of edges Cv
i with an associated weight of wpeq, add the edge e to Cv

i .
Otherwise, create a new collection Cv

i containing the edge e alongside wpeq.

(b) Increase counter by 1.

(c) If counter ą p1 `
ζ
2 q s

s1 log
2 n, delete Cv

ℓ the collection with the largest weight associated with it,
set wm “ wv

ℓ and counter “ counter ´ |Cv
ℓ |.

After processing all the edges, output Sv
s,s1 “

Ť

iPrℓspC
v
i ˆ twv

i uq, furthermore if s “ s1 we let w̃v
s “

maxiPrℓs w
v
i and call it a governing weight of the sketches parametrized by v and s. Namely, w̃v

s is the weight
associated with the neighborhood a sketch parametrized by v and s is encapsulating. The next claim shows
that this sketches can be stored in semi-streaming settings.

Claim 11. The sketches Sv
s,s1 , where v P V and s P S, can be constructed and stored in Opn log4 nq bits.

Proof. First, note that the total space required to store all Rs1 , where s1 P S, is Opn log3 nq bits. Next, each
sketch Sv

s,s1 stores at most Oplog2 nq edges, thus requires Oplog3 nq bits. Since we build Oplog nq different

sketches for each vertex, the overall space required is Opn log4 nq.

The next claim demonstrates that for every wv
s there is a sketch with governing weight w̃v

s such that
ˇ

ˇNw̃v
s
pvq

ˇ

ˇ is a good approximation to
ˇ

ˇNwv
s
pvq

ˇ

ˇ.

Claim 12. With high probability, for each vertex v and each relevant size s P S, we have p1 ´ ζq
ˇ

ˇNwv
s
pvq

ˇ

ˇ ď
ˇ

ˇNw̃v
s
pvq

ˇ

ˇ ď p1 ` ζq2
ˇ

ˇNwv
s
pvq

ˇ

ˇ.

Proof. First, we consider the case where w̃v
s ď wv

s , that is, Nw̃v
s
pvq Ď Nwv

s
pvq. We prove that with high

probability, |Nwv
s
pvqzNw̃v

s
pvq| ď ζ|Nwv

s
pvq|.

Otherwise, if |Nwv
s
pvqzNw̃v

s
pvq| ą ζ|Nwv

s
pvq|, we claim that at least one of the following two bad events

must occur. We define the first bad event as B1, where no edge is sampled from pv ˆNwv
s
pvqqzpv ˆNw̃v

s
pvqq.

We define the second bad event as B2, where more than p1 `
ζ
2 q log2 n edges are sampled from v ˆ Nwv

s
pvq.

If neither of these bad events occurs, then at least one edge e is sampled from pv ˆ Nwv
s
pvqqzpv ˆ Nw̃v

s
pvqq,

where w̃v
s ă wpeq ď wv

s , and the associated collection of wpeq is not deleted. Consequently, e should survive,
contradicting the claim that w̃v

s is the maximum weight of an edge that is sampled and not deleted. Since
s is relevant and s

1`ζ ď
ˇ

ˇNwv
s
pvq

ˇ

ˇ ď s, both events B1 and B2 occurs with probability at most 1{n10 using
Chernoff bound.

Next, we consider the case where w̃v
s ą wv

s , and thus Nwv
s
pvq Ă Nw̃v

s
pvq. We prove that with high

probability, |Nw̃v
s
pvq| ď p1 ` ζq2|Nwv

s
pvq|.

Otherwise, if
ˇ

ˇNw̃v
s
pvq

ˇ

ˇ ą p1`ζq2
ˇ

ˇNwv
s
pvq

ˇ

ˇ, we claim that the following bad event B must occur. We define

B as the event where at most p1 `
ζ
2 q log2 n edges are sampled from v ˆ Nw̃v

s
pvq. If more than p1 `

ζ
2 q log2 n

9

edges are sampled from v ˆ Nw̃v
s
pvq, then w̃v

s cannot be obtained. According to Chernoff bound, since
ˇ

ˇNw̃v
s
pvq

ˇ

ˇ ą p1` ζq2
ˇ

ˇNwv
s
pvq

ˇ

ˇ ą p1` ζqs, B occurs with probability at most 1{n10. Therefore, the probability

that
ˇ

ˇNw̃v
s
pvq

ˇ

ˇ ą p1 ` ζq2
ˇ

ˇNwv
s
pvq

ˇ

ˇ is at most 1{n10.
As there are n different choices for v, and Oplog nq choices for s, the claim holds for all wv

s w.h.p.

We now extend this result for every weight w, and show how to obtain a sketch that is a good approxi-
mation to Nwpvq.

Claim 13. For each vertex v and each weight w with |Nwpvq| ě log4 n, we can report a sketch associated

with size s and governing weight w̃v
s , such that with high probability,

|Nw̃v
s

pvq|
1`5ζ ď |Nwpvq| ď

|Nw̃v
s

pvq|

1´ζ

Proof. Let w̃v
` (resp. w̃v

´) be the immediate governing weights above (resp. below) w within all the sketches
of v. We count the number of sampled edges in the sketch associated with the weight w̃v

` of weight greater

than w. If there are less than 4ζ log2 n such edges then we report this sketch, and otherwise we report the
sketch associated with the weight w̃v

´.

If there are less than 4ζ log2 n edges with weight greater than w in the sketch, then using Chernoff bound
w.h.p we have

ˇ

ˇNw̃v
s
pvq

ˇ

ˇ ď p1 ` 5ζq |Nv
wpvq|.

However, if
ˇ

ˇ

ˇ
Nw̃v

`
pvq

ˇ

ˇ

ˇ
ą p1 ` 5ζq |Nv

wpvq|, that is,
ˇ

ˇ

ˇ
Nw̃v

`
pvq

ˇ

ˇ

ˇ
´ |Nv

wpvq| ą 5ζ |Nv
wpvq|, then using Chernoff

bound we deduce that w.h.p we report the sketch associated with w̃v
´. We now prove that this sketch

is a good approximation. Let s P S be such that s
1`ζ ă |Nv

wpvq| ď s. By definition, s is relevant for

v, and
|Nwv

s
pvq|

1`ζ ă |Nv
wpvq| ď |Nwv

s
pvq|. Following Claim 12, there exists a sketch pw̃v

s ,Sv
s q, such that

w.h.p. p1 ´ ζq
ˇ

ˇNwv
s
pvq

ˇ

ˇ ď
ˇ

ˇNw̃v
s
pvq

ˇ

ˇ ď p1 ` ζq2
ˇ

ˇNwv
s
pvq

ˇ

ˇ. Thus, w.h.p. there exist a sketch w̃v
s such that,

|Nw̃v
s

pvq|

p1`ζq3
ď |Nwpvq| ď

|Nw̃v
s

pvq|

1´ζ . Since

ˇ

ˇ

ˇ
Nw̃v

`
pvq

ˇ

ˇ

ˇ

1`5ζ ą |Nv
wpvq|, it must hold that |Nwpvq| ď

|Nw̃v
´

pvq|

1´ζ . Overall, the

reported governing weight satisfies w.h.p,
|Nw̃v

s
pvq|

1`5ζ ď |Nwpvq| ď
|Nw̃v

s
pvq|

1´ζ .

We conclude this section by providing another data structure for storing the nearest 2 log4 n neighbors
for each vertex v, denoted by Nclosepvq. This will allow us to compare neighborhoods of small size. The
implementation of Nclosepvq is done using a priority queue with predefined and fixed size 2 log4 n. We add
every edge incident to v to the priority queue Nclosepvq together with the associated edge. This leads to the
following claim.

Claim 14. For each vertex v, Nclosepvq can be stored in Oplog5 nq bits, and it contains the nearest 2 log4 n
neighbors of v.

In this section, we have outlined the construction of sketches with a total space of Õpnq, showing that
for each vertex v and weight w, we can report a sketch associated with governing weight w̃v

s that with high
probability is a random sample of a neighborhood Nw̃v

s
pvq that is roughly of the same size as Nwpvq. In the

next section, we will demonstrate how these sketches can be utilized to estimate the size of the symmetric
difference in a way that supports the algorithm’s requirements, justifying the need for maintaining several
sketches for each choice of v and s.

3.2 Structural Clustering

In this section, we introduce an algorithm that requires a single pass over the input stream to solve S-
Structural Clustering. This extends the notion of Agreement Correlation Clustering from [CFLDM22], to
which we refer as V -Structural Clustering. Our semi-streaming algorithm hinges on the key idea that clusters
should be formed from vertices that share almost similar neighborhoods. We emphasize that our algorithm
is also applicable in the standard RAM (non-streaming) setting and runs in near-linear rOp|S|2q time, for
S Ď V , improving the Ωp|V |3q time algorithm previously known for V -Structural Clustering.

We begin our presentation in Section 3.2.1 with an algorithm solving V -Structural Clustering, designed
to be adapted in the semi-streaming model. Then, in Section 3.2.2 we show how our proposed algorithm
could also be extended to compute S-Structural Clustering, which is our division strategy for constructing

10

ultrametrics in Section 3.3. Finally, in Section 3.2.3 we show how to actually implement these algorithms in
the semi-streaming model, by utilizing our sketches outlined in Section 3.1.

3.2.1 Algorithm for V-Structural Clustering (Agreement Correlation Clustering)

We begin by solving the Structural Clustering problem for the entire vertex set V . Our graph is pV,E “ EW q

for some weight W . First we present the definitions of agreement and heavy vertices as in [CLM`21]. The
parameters β and ϵ that appear in the following definitions are sufficiently small constants. Furthermore we
denote by △ the symmetric difference between two sets, that is, A△B “ AzB Y BzA.

Definition 3.1 (agreement). Two vertices u, v are in β-agreement iff |Npuq△Npvq| ă βmaxtdpuq, dpvqu,
which means that u, v share most of their neighbors. Apuq is the set of vertices in β-agreement with u.

Definition 3.2 (heavy). We say that a vertex u is ϵ-heavy if |NpuqzApuq| ă ϵdpuq, which means that most
of its neighbors are in agreement with u. Denote by Hpuq the ϵ-heaviness indicator of vertex u.

Computing the β-agreement set Apuq of a vertex and its ϵ-heaviness indicator Hpuq is a crucial part of the
algorithm. Normally, both can be computed exactly by applying the definitions, even using a deterministic
algorithm. However, in the semi-streaming model, we can only approximate Apuq and Hpuq with high
probability. In Section 3.2.3 we show that, using the sketches outlined in Section 3.1, we can achieve a
sufficient approximation that allows us to solve the Structural Clustering for V with high probability.

We allow the following relaxations. Let Apvq be a set containing all vertices that are in 0.8 agreement
with v and no vertices that are not in β agreement with v. Similarly let A3pvq be a set containing all vertices
that are in 2.4β-agreement with v and no vertices that are not in 3β-agreement with v. And finally let Hpvq

be a method that returns true if v is ϵ-heavy and false if v is not 1.2ϵ-heavy.
With these tools and definitions at our disposal, we can introduce Algorithm 1. It is important to note

that this algorithm is executed, using the sketches alone, post stream process. Given the respective sketches,
the time complexity of the algorithm is rOp|V |2q.

Algorithm 1 V -Structural-Clustering

1: for v P V do
2: if Hpvq and v is not already included in an existing cluster then
3: Create a new cluster A3pvq

4: Create singleton clusters for all remaining vertices.

We next show that Algorithm 1 is guaranteed to return a set of disjoint clusters that satisfy the required
structural properties. We are referring to the special properties of V -Structural Clustering, which are
expressed in terms of the definitions of important and everywhere dense groups as in [CFLDM22].

Definition 3.3 (important group). Given a correlation clustering instance, we say that a group of vertices
C is important if for any vertex u P C, u is adjacent to at least p1 ´ ϵq fraction of the vertices in C and has
at most ϵ fraction of its neighbors outside of C.

Definition 3.4 (everywhere dense). Given a correlation clustering instance, we say that a group of vertices
C is everywhere dense if for any vertex u P C, u is adjacent to at least 2

3 |C| vertices of C.

Lemma 15 formally outlines the supplementary properties required for a correlation clustering algorithm
to qualify as structural, demonstrated in the context of Algorithm 1.

Lemma 15 (structural properties). Suppose β “ 5ϵp1 ` ϵq for a small enough parameter ϵ ď 1{95. Let C
be the set of clusters returned by Algorithm 1. Then, for any important group of vertices C 1 Ď V , there is
a cluster C P C such that C 1 Ď C, and C does not intersect any other important groups of vertices disjoint
from C 1. Moreover, every cluster C P C is everywhere dense.

In order to prove Lemma 15, we require the following claims. The next fact follows immediately from
the definition of agreement and will be utilized in the subsequent proofs of the claims (cf. [CLM`21]).

11

Fact 16. If u, v are in iβ-agreement, for some 1 ď i ă 1
β , then

p1 ´ iβqdpuq ď dpvq ď
dpvq

1 ´ iβ

Claim 17. Suppose p1´3β ´1.2ϵqp1´3βq ą 1
2 . Assume u1, u2 are two vertices for which Hpu1q and Hpu2q

both return true. If u2 is not part of A3pu1q, then the sets A3pu1q and A3pu2q are disjoint.

Proof. Let v be a vertex common in both A3pu1q and A3pu2q. Since u1 is 1.2ϵ-heavy and in 3β-agreement
with v, we have that v has at least p1´3β´1.2ϵqdpu1q neighbors that are in β-agreement with u1. Similarly,
v has p1´ 3β ´ 1.2ϵqdpu2q neighbors that are in β-agreement with u2. Using Fact 16, both are non-less than
p1 ´ 3β ´ 1.2ϵqp1 ´ 3βqdpvq and by assumption this is greater than 1

2dpvq. Consequently, there is a vertex w
in β-agreement with both u1 and u2.

Now, by the triangle inequality we get that u2 is contained in A3pu1q:

|Npu1q△Npu2q| ă |Npu1q△Npwq| ` |Npwq△Npu2q|

ă βmaxtdpu1q, dpwqu ` βmaxtdpwq, dpu2qu ď 2.4βmaxtdpu1q, dpu2qu

Where the last inequality follows from Fact 16 and that β ď 1
6 .

Claim 18. Suppose 1.2ϵ ď 1{3 ´ 6β. Every cluster C returned by Algorithm 1 is everywhere dense.

Proof. Consider the cluster C “ A3phq created from the 1.2ϵ-heavy vertex h. We know that every u P C is
in 3β-agreement with h. Also by Definition 3.2 of heavy vertices, h has at most 1.2ϵ fraction of its neighbors
outside C, hence:

|Nphq X Npuq X C| ě |Nphq X Npuq| ´ |NphqzC| ě p1 ´ 3β ´ 1.2ϵqdphq

This implies:
dpu,Cq ě |Nphq X Npuq X C| ě p1 ´ 3β ´ 1.2ϵqdphq (1)

Next, we show dphq is an upper bound for the size of the component |C|. To this end, consider the set
of vertices B “ Nphq X C and the set of edges E between B and CzB. Every vertex u P CzB outside of
B is adjacent to at least |B X Npuq| ě p1 ´ 3β ´ 1.2ϵqdphq vertices inside of B and thus |E| ě |CzB| p1 ´

3β ´ 1.2ϵqdphq. Moreover, every vertex u P B inside of B is adjacent to at most 3βmaxpdphq, dpuqq ď

3βdphq{p1 ´ 3βq vertices outside of B, as deduced from Fact 16. It follows that |E| ď |B| 3βdphq{p1 ´ 3βq.
By combining both inequalities we get:

|CzB| ď
3β

p1 ´ 3βqp1 ´ 3β ´ 1.2ϵq
|B| ă

3β

1 ´ 6β ´ 1.2ϵ
dphq

Now, by adding up |CzB| with |B| we obtain an upper bound on |C| in terms of dphq.

|C| “ |CzB| ` |B| ă
3β

1 ´ 6β ´ 1.2ϵ
dphq ` dphq “

1 ´ 3β ´ 1.2ϵ

1 ´ 6β ´ 1.2ϵ
dphq

Together with Equation 1, we achieve the desired result.

dpu,Cq ě p1 ´ 3β ´ 1.2ϵqdphq ą p1 ´ 6β ´ 1.2ϵq|C| ě
2

3
|C|

Claim 19. Suppose 0.8β ě 2ϵ 2´ϵ
1´ϵ . Let the pair of vertices u, v belong to the same important group, then

u, v are in 0.8β-agreement.

12

Proof. Suppose u, v belong to the same important group C. Through the properties of important groups,
we get that, (i) both u, v are adjacent to at least p1´ ϵq|C| vertices of C, and thus disagree on at most 2ϵ|C|

vertices inside of C. (ii) u, v are adjacent to at most ϵdpuq, ϵdpvq vertices not in C, respectively. In total
they disagree on at most:

|Npuq△Npvq| ď 2ϵ|C| ` ϵpdpuq ` dpvqq ď
2ϵ

1 ´ ϵ
maxtdpuq, dpvqu ` 2ϵmaxtdpuq, dpvqu

ď 2ϵ
2 ´ ϵ

1 ´ ϵ
maxtdpuq, dpvqu ď 0.8βmaxtdpuq, dpvqu

Where the second inequality follows from Definition 3.3, a vertex in an important group has a degree that
is at least p1 ´ ϵq fraction of C, that is, for any u P C, dpuq ě p1 ´ ϵq|C|.

Claim 20. Suppose 2ϵ ď 1 ´ 3β. Let u, v belong to two disjoint important groups, then u, v are not in
3β-agreement.

Proof. Say that u, v belong to two disjoint important groups Cu, Cv, respectively. Then by Definition 3.3, u
has at least p1 ´ ϵq fraction of his neighbors in Cu, whereas v has at most ϵ fraction of his neighbors in Cu,
which means that u, v disagree on at least p1 ´ ϵqdpuq ´ ϵdpvq neighbors inside Cu. Similarly, u, v disagree
on at least p1 ´ ϵqdpvq ´ ϵdpuq neighbors inside Cv. Overall, the difference in their neighborhoods is:

|Npuq△Npvq| ě p1 ´ 2ϵqpdpuq ` dpvqq ą p1 ´ 2ϵqmaxtdpuq, dpvqu

The claim now follows directly from the Definition 3.1 together with the assumption that 1 ´ 2ϵ ě 3β.

We are finally ready to prove Lemma 15.

Proof. Following Claim 17 and Claim 18 the clusters returned by the algorithm are disjoint and everywhere
dense. Next, we show the properties related to important groups. First, let u be a vertex in some important
group C, then u has at least a 1 ´ ϵ fraction of its neighbors within C, and according to Claim 19, it is in
0.8β-agreement with all vertices in C. Thus, every vertex that belongs to an important group is ϵ-heavy,
which also implies that any such vertex is part of a non-singleton cluster.

Now, assume u, v belong to the same important group C, and that u belongs to a cluster A3phq created
in step 3 of the algorithm, we will show that C Ď A3phq. Because u, v are in 0.8β-agreement, u also belongs
to the set A3pvq. However, the intersection of A3phq and A3pvq at vertex u implies, based on Claim 17, that
vertex v necessarily belongs to the cluster A3phq.

It remains to prove that if u and v belong to disjoint important groups, they cannot be part of the same
cluster. Suppose, contrarily, that both u and v belongs to A3phq. Note that u is ϵ-heavy as it belongs to
some important group. As such, since u in A3phq, the sets A3puq and A3phq are not disjoint (as both contains
u). According to Claim 17, as both u, h are ϵ-heavy, h must also be in A3puq. Similarly, h belongs to A3pvq

as well. Thus, A3puq and A3pvq intersect at h. However, by Claim 17, this intersection implies that u and v
must be in 3β-agreement, contradicting Claim 20.

3.2.2 S-Structural Clustering

So far we have provided an algorithm for V -Structural Clustering. However, what we really need for ℓ0 Best-
Fit Ultrametrics is the more general problem of S-Structural Clustering as defined in Lemma 21. Note that
it is different from Agreement Correlation Clustering on the induced subgraph GrSs, because S-Structural
Clustering also considers edges with only one endpoint in S.

Lemma 21. Suppose β “ 5ϵp1` ϵq for a small enough parameter ϵ ď 1{95. For every S Ď V we can output
a set of clusters C. This clustering ensures that for every important group of vertices C 1 Ď S, there is a
cluster C P C such that C 1 Ď C, and C does not intersect any other important groups of vertices contained
in SzC 1. Moreover, every cluster C P C is everywhere dense.

In the rest of this section we provide a construction of S-Structural Clustering by reducing the problem
to V -Structural Clustering. We start by generalizing the definitions 3.1 and 3.2 presented earlier:

13

Definition 3.5 (subset agreement). We say that two vertices u, v P S are in β-agreement inside S if
|Npuq△Npvq|`2

ˇ

ˇNpuq X Npvq X S
ˇ

ˇ ă βmaxtdpuq, dpvqu, which means that u, v share most of their neighbors
inside S. Denote by ASpuq the set of vertices that are in β-agreement with u inside S.

Definition 3.6 (subset heavy). We say that a vertex u P S is ϵ-heavy inside S if |NpuqzASpuq| ă ϵdpuq,
which means that most of its neighbors are in agreement with u inside S. Denote by HSpuq the ϵ-heaviness
indicator of vertex u inside S.

Note that definitions 3.5 and 3.6 are more general than definitions 3.1 and 3.2, since we can derive the
latter ones by substituting S “ V . The extra term 2

ˇ

ˇNpuq X Npvq X S
ˇ

ˇ has an intuitive meaning that will
become clear later during the reduction. Similarly to the previous section we need to approximate the new
sets ASpuq, A3

Spuq and HSpuq, which we do in Section 3.2.3.
We finally prove Lemma 21 by reducing S-Structural Clustering, for a set S in the correlation clustering

instance G, to V -Structural Clustering, in a specially constructed instance GS . The instance GS can be seen
as a transformation of G that preserves all internal edges within S and replaces all external neighbors v P S
of internal vertices u P S with dummy vertices, ensuring that our subset-specific definitions of agreement
3.5 and heaviness 3.6 applied to G correspond exactly to the original definitions 3.1 and 3.2 applied to
GS . Therefore, to produce the desired S-Structural Clustering, it suffices to run Algorithm 1 on S using
ASpuq, A3

Spuq, HSpuq as the parameters. The full proof is presented below.

Proof. Denote by CS the clustering of S returned by Algorithm 1 when executed over the vertex set S using
ASpuq, A3

Spuq, Hpuq as parameters. These parameters refer to the S-subset agreement sets 3.5 and S-subset
heaviness indicator 3.6 calculated for each vertex u P S given our correlation clustering instance G. Also
denote by GS a new correlation clustering instance that contains all the vertices in S and some additional
dummy vertices. Given the subset S, the instance GS can be seen as a transformation of G with the following
steps. First insert all the edges of G with internal endpoints u, v P S to GS . Second, consider all the edges
of G with an internal endpoint u P S and an external endpoint v P S. If u has any neighbor other than v in
the instance G (that is dpuq ą 2), then create a dummy vertex uv and insert the edge with endpoints u, uv

to GS .
Next we need to notice that ASpuq, which is a β-agreement set for G inside S according to Definition

3.5, is also a β-agreement set for GS according to Definition 3.1. By definition ASpuq is calculated for every
internal vertex u P S of GS . For the sake of clarity we also define ASpuq “ tuu for every dummy vertex u P S
of GS . Indeed consider any dummy vertex uv P S of GS , which is only adjacent to its internal vertex u P S, by
construction of GS . Since u has at least some neighbor other than uv, then uv is not in β-agreement with u by
Definition 3.1. But uv is not in β-agreement with any other vertex w ‰ u since u can be their only common
neighbor (NSpuvq “ tuv, uu). It now suffices to show that any pair of (non singleton) internal vertices u, v P S
of GS is in β-agreement according to Definition 3.1 if and only if u, v P S of G are in β-agreement inside
S according to Definition 3.5. But this is true since, by construction of GS , the degrees dpuq, dpvq in G are
equal to the degrees dSpuq, dSpvq in GS and that |NSpuq△NSpvq| “ |Npuq△Npvq| ` 2|Npuq X Npvq X S|.

Now we will prove that CS along with the singleton vertices uv P S of instance GS constitute a V -
Structural Clustering for GS , that is a clustering satisfying the structural properties of Lemma 15. Using the
same argument as with ASpuq, we see that A3

Spuq is a 3β-agreement set of GSpuq and using the definitions
3.2 and 3.6 we see that HSpuq is an ϵ-heaviness indicator of GS . Just for the sake of clarity we also
define A3

Spuq “ tuu and HSpuq “ false for every dummy vertex u P S of GS . Given that the parameters
ASpuq, A3

Spuq, HSpuq are some proper agreement sets 3.1 and heaviness indicators 3.2 for the instance GS ,
then running Algorithm 1 in the entire vertex set of GS produces a V -Structural Clustering for GS . But
during the execution of the Algorithm 1, every dummy vertex uv P S of GS will be eventually ignored.
Indeed the algorithm will never iterate through uv as Hpuvq “ false and the algorithm will never include uv

in a non trivial cluster as there is no set uv P A3
Spwq. So it would be equivalent to first iterate through S to

create clusters CS and later iterate through S to create the remaining singleton clusters.
Finally we are ready to prove that CS is the required S-Structural Clustering of G, that is a clustering

of S satisfying the structural properties of Lemma 21. We start by observing that that a group of vertices
C 1 Ď S is important in G if and only if it is important in GS . By construction of GS any (non singleton)
internal vertex u P S has the same total degree dpuq “ dSpuq and set of internal neighbors Npuq “ NSpuq in
both graphs G,GS . And since C 1 Ď S, every vertex u P C 1 is adjacent to the same fraction of the vertices in

14

|C 1| and the same fraction of its neighbors outside of C 1 in both graphs G,GS , which proves the equivalence
of Definition 3.3 in the two graphs. Now we know that every important group of vertices C 1 Ď S of G is also
important in GS and subsequently from Lemma 15 there is a cluster C P CS such that C 1 Ď C. Also, cluster
C does not intersect any other important groups of vertices of G contained in SzC 1, since otherwise it would
intersect with the respective disjoint important groups of vertices of GS , which would contradict Lemma 15.
Lastly, any cluster C P CS is everywhere dense in both G and GS , since C Ď S has the exact same internal
edges by construction of GS .

3.2.3 Computing Agreements

Building on the algorithm from Section 3.2.2, we now describe its adaptation to the semi-streaming model.
Since this algorithm only requires computing approximations to β-agreements in S and heaviness queries,
we need to prove the following lemma:

Lemma 22. The following statements hold with high probability:

1. For a given γ P tβ, 3βu and every u, v P S, we can output ‘yes’ if |Npuq△Npvq|`2
ˇ

ˇNpuq X Npvq X S
ˇ

ˇ ă

0.8γmaxtdpuq, dpvqu and ‘no’ if |Npuq△Npvq| `
ˇ

ˇNpuq X Npvq X S
ˇ

ˇ ě γmaxtdpuq, dpvqu.

2. For every u P S, we can output ‘yes’ if |NpuqzASpuq| ă ϵdpuq and ‘no’ if |NpuqzASpuq| ą 1.2ϵdpuq.

Before proving the lemma we state the following corollary which is a direct consequence of Claim 13.

Corollary 23. With high probability, for each vertex v and each weight w, there exists w̃v
s , such that

ˇ

ˇNwpvq△Nw̃v
s
pvq

ˇ

ˇ ď 5ζ |Nwpvq|.

Proof. If Nwpvq Ď Nw̃v
s
pvq, then by Claim 13,

ˇ

ˇNwpvq△Nw̃v
s
pvq

ˇ

ˇ ď
ˇ

ˇNw̃v
s
zNwpvq

ˇ

ˇ ď 5ζ |Nwpvq|. Else,
ˇ

ˇNwpvq△Nw̃v
s
pvq

ˇ

ˇ ď
ˇ

ˇNwpvqzNw̃v
s

ˇ

ˇ ď ζ |Nwpvq|.

Proof. We are now ready to prove Lemma 22. For the first item, let dpvq ě dpuq and consider the 3 possible
cases: (i) dpuq, dpvq ď 2 log4 n, (ii) dpuq ď log4 n and dpvq ą 2 log4 n, and, (iii) dpuq, dpvq ě log4 n.

In the first case case the entire neighborhoods of u and v are known and the query can be computed

precisely. Whereas in the second case, |Npuq△Npvq| ě dpvq ´ dpuq ě
dpvq

2 , this implies that, u, v cannot
satisfy the conditions required for a ‘yes’ instance, and we report ‘no’. Consequently, we remain with the
third case which will require the sketching scheme outlined in Section 3.1.

Let su and sv be the sizes reported by Claim 13 for u, and v respectively. Then, we have that w.h.p,
sv

1`5ζ ď dpvq ď sv
1´ζ , and similarly for dpuq. Thus:

|Npuq△Npvq| ě dpvq ´ dpuq “ dpvq
`

1 ´
dpuq

dpvq

˘

ě dpvq
`

1 ´
p1 ` 5ζqsu
p1 ´ ζqsv

˘

Consequently, if 1 ´
p1`5ζqsu
p1´ζqsv

ą 0.8γ, then |Npuq△Npvq| ą 0.8γdpvq, and u, v cannot satisfy the conditions

required for a ‘yes’ instance in this lemma, and thus we report ‘no’.
Else, it is the case that su

sv
ě p1´0.8γq

1´ζ
1`5ζ ą 1

2 , where the last inequality follows by selecting sufficiently
small values for γ and ζ.

Note that, |Npuq△Npvq| “ dpuq ` dpvq ´ 2 |Npuq X Npvq|, hence:

|Npuq△Npvq| ` 2
ˇ

ˇNpuq X Npvq X S
ˇ

ˇ “ dpuq ` dpvq ´ 2 |Npuq X Npvq X S| (2)

Using su, sv we can approximate dpuq, dpvq, respectively, and obtain:

su
1 ` 5ζ

`
sv

1 ` 5ζ
´ 2 |Npuq X Npvq X S|

ď |Npuq△Npvq| ` 2
ˇ

ˇNpuq X Npvq X S
ˇ

ˇ

ď
su

1 ´ ζ
`

sv
1 ´ ζ

´ 2 |Npuq X Npvq X S|

(3)

15

Thus, to estimate |Npuq△Npvq| ` 2
ˇ

ˇNpuq X Npvq X S
ˇ

ˇ, it is enough to estimate |Npuq X Npvq X S|.
W.l.o.g. assume su ě sv. We will consider the sketches Sv

sv,sv and Su
su,sv (otherwise, consider the sketches

Sv
sv,su and Su

su,su). Using Corollary 23, Npuq and Nw̃u
su

puq disagree on at most 5ζdpuq elements where
5ζdpuq ď 5ζdpvq ď 5ζ sv

1´ζ , and similarly for Npvq and Nw̃v
sv

pvq. Let M “ Nw̃v
sv

pvq X Nw̃u
su

puq, then:

|Npuq X Npvq X S| ´ 10ζ
sv

1 ´ ζ
ď |M X S| ď |Npuq X Npvq X S| ` 10ζ

sv
1 ´ ζ

(4)

Define a random variable XS
u,v “

ˇ

ˇN v
sv X N u

sv X S
ˇ

ˇ. Recall that these sketches are constructed using the

random set Rsv Ď V , where each vertex of V is sampled independently at random with probability log2 n
sv

.
By linearity of expectation we have:

ErXS
u,vs “

log2 n

sv
|M X S|

We apply Chernoff bound to obtain w.h.p p1 ´ ζq sv
log2 n

XS
u,v ă |M X S| ă p1 ` ζq sv

log2 n
XS

u,v.

Combining both Equation 3 and Equation 4 with the bounds on |M X S|, we get:

2
sv

1 ` 5ζ
´

20ζ

1 ´ ζ
sv ´ 2p1 ` ζq

sv

log2 n
XS

u,v

ď |Npuq△Npvq| ` 2
ˇ

ˇNpuq X Npvq X S
ˇ

ˇ

ď p2 ` 5ζq
sv

1 ´ ζ
`

20ζ

1 ´ ζ
sv ´ 2p1 ´ ζq

sv

log2 n
XS

u,v

(5)

Observe that by Equation 5, for some constant k, we can also write:

ˇ

ˇ

ˇ

ˇ

p|Npuq△Npvq| ` 2
ˇ

ˇNpuq X Npvq X S
ˇ

ˇq ´ p2sv ´ 2
sv

log2 n
XS

u,vq

ˇ

ˇ

ˇ

ˇ

ď kζsv

The lemma now follows by selecting small enough parameter ζ relative to γ, namely, ζ ă 1
10kγ. Based

on this, we report ’yes’ if 2sv ´ 2 sv
log2 n

XS
u,v ď 0.9γsv, and ’no’ otherwise.

For the second item, if dpuq ď 2 log4 n the entire neighborhood is known and the query can be computed
precisely. Else, let N u

su be the vertices defining the edges incident on u in sketch Su
su,su and define the random

variable Yu “ |N u
su X S X ASpuq|.

Observe that, |NpuqzASpuq| “ |Npuq| ´ |Npuq X S X ASpuq|, and we can write:

su
1 ` 5ζ

´ |Npuq X S X ASpuq| ď |NpuqzASpuq| ď
su

1 ´ ζ
´ |Npuq X S X ASpuq| (6)

Similarly to the first part of the lemma we estimate |Npuq X S X ASpuq|. Using Corollary 23 we have:

ˇ

ˇ

ˇ
Nw̃u

su
puq X S X ASpuq

ˇ

ˇ

ˇ
´ 5ζ

su
1 ´ ζ

ď |Npuq X S X ASpuq| ď

ˇ

ˇ

ˇ
Nw̃u

su
puq X S X ASpuq

ˇ

ˇ

ˇ
` 5ζ

su
1 ´ ζ

(7)

Note that, N u
su contains a random sample of Nw̃u

su
puq, where each vertex is sampled with probability

log2 n

su
. Thus, by linearity of expectation, the expected value of Yu is

ˇ

ˇ

ˇ
Nw̃u

su
puqXSXASpuq

ˇ

ˇ

ˇ

su
log2 n. Using Chernoff

bound, we obtain w.h.p that:

p1 ´ ζq
su

log2 n
Yu ă

ˇ

ˇ

ˇ
Nw̃u

su
X S X ASpuq

ˇ

ˇ

ˇ
ă p1 ` ζq

su

log2 n
Yu (8)

We then report ‘yes’ if su ´ su
log2 n

Yu ď 1.1ϵsu, and ’no’ otherwise. We conclude that:

ˇ

ˇ

ˇ

ˇ

|NpuqzASpuq| ´ psu ´
su

log2 n
Yuq

ˇ

ˇ

ˇ

ˇ

ď kζsu

For some constant k. The lemma now follows by selecting small enough parameter ζ relative to ϵ, namely,
ζ ă 1

10k ϵ.

16

We can now establish S-Structural Clustering in the semi-streaming model:

Theorem 24. Suppose β “ 5ϵp1 ` ϵq for a small enough parameter ϵ ď 1{95. Given access to the sketches
of all vertices in S, and w.h.p., for every S Ď V we can output a set of clusters C. This clustering ensures
that for every important group of vertices C 1 Ď S, there is a cluster C P C such that C 1 Ď C, and C does
not intersect any other important groups of vertices contained in SzC 1. Moreover, every cluster C P C is
everywhere dense.

Proof. The algorithm outlined in Section 3.2.2 only requires the computation of polynomially many approx-
imations to β-agreements in S and queries of heaviness in S; these can be computed with high probability
using Lemma 22. Note that this only requires access to the sketches of vertices in S. The theorem now
follows from Lemma 21.

3.3 Main Algorithm

To run our main algorithm it suffices to obtain access to certain black-boxes established in the previous
sections. Ideally, we would like to have access to a summary of the input distances, to estimations of
neighborhood sizes, and to be able to repeatedly compute S-Structural Clustering for instances given by
an adaptive adversary. We show that even though we cannot generally guarantee the last requirement, it
suffices to guarantee it for a particular (technical) type of adaptive adversary (see Lemma 36).

We first need the following definitions. For a weight w P D, let pw be the smallest weight in rD such
that pw ą w. Similarly, for any w we let qw be the largest value in rD smaller than w. We say that rD is a

compressed set if for w R rD, rD has the property that dwpuq ď p1 ` δqd
qwpuq for all u. Finally let Čdwpuq be a

function with Čdwpuq P rp1 ´ λqdwpuq, p1 ` λqdwpuqs for a sufficiently small constant λ.
Our algorithm (see Algorithm 2 for the pseudocode) is a divisive algorithm running S-Structural Clus-

tering at each level to divide a cluster. However, it then performs a different division strategy for the largest
cluster. This different strategy for the largest cluster allows us to guarantee that each vertex only partic-
ipates in a logarithmic number of S-Structural Clustering computations, and is only possible if the size of
the largest cluster has not dropped by a constant factor.

More formally, our algorithm takes as argument a set S (initially the whole V) and a distance w (initially
the maximum distance). First, it creates a tree-node A at distance w{2 from the leaves, whose leaves-
descendants are all the vertices in S. Then it uses an S-Structural Clustering subroutine, and for each
cluster C 1 with size at most 0.99|S| it recurses on pC 1, qwq. The roots of the trees created from each of these
recursions then become children of A.

Subsequently, for the largest cluster C we perform the following postprocessing: Let w1 Ð qw and w2 Ð |w1.

• If there are at most 0.99|S| vertices u in S with large estimated degree Čdw2 puq (larger than 0.66|S|),
then we recurse on pC,w1q; the root of the tree created from this recursion becomes a child of A.

• Otherwise, we let R contain the vertices u whose estimated degree Čdw2 puq is small (less than 0.65|S|),
and recurse on pR,w1q. The root of the tree created from this recursion (let us call it A1) becomes a
child of A, and then we update A Ð A1. Finally, we repeat the postprocessing again (but this time on
CzR (instead of R) at level qw (instead of w)).

The idea of the postprocessing is that nodes whose degree drops significantly cannot be in a huge cluster
without a big cost. The challenging part is showing that keeping the rest of the nodes in C is sufficient.

In the rest of this section we provide the proof of our main result (Theorem 1) along with its required
lemmas. We remind the reader that even though (for simplicity) Algorithm 2 explicitly stores the output
distance between every pair of vertices, we cannot afford to do that in the semi-streaming model. That is
why, in the proof of Theorem 1, we show how we can implicitly represent all these distances by storing a
tree. From this point on, we let T “ ℓ0pV,wmaxq be the output of Algorithm 2.

We first provide two results: T is a valid ultrametric, and the depth of the recursion of Algorithm 2
is Oplog nq. Informally, the latter is crucial in order to limit the dependencies across different recursive
calls, which in turn allows us to treat different recursive calls as independent from each other. Of course
the components of the algorithm guaranteeing the Oplog nq recursion depth also make the analysis of the
algorithm different.

17

Algorithm 2 ℓ0pS,wq

1: Mark S at level w as a core cluster
2: if |S| ď 1 then return

3: obtain C “ tC1, . . . , Cku using an S-Structural Clustering subroutine on pV,E
qwq

4: for all u, v in different clusters of C do T puvq Ð w

5: for all C 1 P C with |C 1| ď 0.99|S| do ℓ0pC 1, qwq

6: if DC P C with |C| ą 0.99|S| then

7: w1 Ð qw, w2 Ð |w1

8: while |C| ą 0.99|S| and |tu P C | Čdw2 puq ą 0.66|S|u| ą 0.99|S| do

9: R Ð tu P C | Čdw2 puq ă 0.65|S|u

10: for all u P R, v P CzR do
11: T puvq Ð w1

12: ℓ0pR,w1q

13: C Ð CzR,w1 Ð |w1, w2 Ð |w2

14: ℓ0pC,w1q

Lemma 25. T “ ℓ0pV,wmaxq is a valid ultrametric.

Proof. We inductively prove that for any three vertices u1, u2, u3, the strong triangle inequality (character-
izing ultrametrics) T pu1u2q ď maxtT pu1u3q, T pu2u3qu is satisfied. It trivially follows if |S| “ 1.

Otherwise, for any three vertices u1, u2, u3, if not all 3 of them are in the same cluster of C, then by
Line 4 at least two pairs have distance w in T . The other pair cannot get distance larger than w, thus the
strong triangle inequality is satisfied.

If all 3 of them are in a cluster of C with size at most 0.99|S|, then our claim holds inductively, when we
recurse in Line 5.

If all 3 of them are in the unique cluster of C with size greater than 0.99|S|, then either all 3 of them
stay in C by the end of the while-loop (and thus inductively our claim holds when recursing in Line 14), or
there is a first time when one of them (say u1) is in R. Now:

• If at the same time all of them are in R, inductively our claim holds when we recurse in Line 12.

• Else, if one more (say u2) is in R, then T pu1u3q “ T pu2u3q “ w1, and T pu1u2q can be at most w1,
therefore the strong triangle inequality is satisfied.

• Otherwise T pu1u2q “ T pu1u3q “ w1, and T pu2u3q can be at most w1, therefore the strong triangle
inequality is satisfied.

To analyze the approximation factor of our algorithm, we first define a tree OPT 1 that is an Op1q approx-
imation of an optimal tree OPT , but has more structure. We then show that T is an Op1q approximation
of OPT 1, and therefore an Op1q approximation of OPT as well.

Lemma 26. In Algorithm 2, for any given u P V we have that the number of recursive calls ℓ0pS,wq with
u P S are Oplog nq.

Proof. If we recurse in Line 5, or in Line 14 after having |C| ď 0.99|S|, the size of the vertex-set S drops by
a constant factor.

If we recurse in Line 14 while |C| ą 0.99|S|, then it holds that |tu P C | Čdw2 puq ą 0.66|S|u| ď 0.99|S|.
When in the next recursion call we run S-Structural Clustering, we have that for any cluster C and any
vertex u it holds d

|w1 puq ě 2
3 |C|, or equivalently |C| ď 1.5d

|w1 puq. Now if C only contains vertices v with
Čdw2 pvq ą 0.66|S|, we get |C| ď 0.99|S|. Otherwise it contains a vertex u with Čdw2 puq ď 0.66|S|, which
implies d

|w1 puq ď 0.66|S|{p1 ´ λq, and thus |C| ď 0.99|S|{p1 ´ λq, which is less than 0.9999|S| for sufficiently

18

small λ. In all cases, the size of C drops by a constant factor, and therefore all subsequent recursive calls
are called with a vertex-set which is a constant factor smaller than S.

If we recurse in Line 12, it holds that the size of R is at most 0.01|S|, as R only contains vertices u with
Čdw2 puq ă 0.65|S| ă 0.66|S|.

In all cases, after at most 2 recursive calls, the size of the vertex-set argument drops by a constant factor,
and thus the claim follows.

Obtaining OPT 1 Let us now describe how to obtain OPT 1, given OPT . To make the exposition easier,
we define some intermediary trees that are also constant factor approximations to OPT .

We first use the transformation from [CFLDM22] on OPT , to acquire OPT 1
1. We write OPT 1

1 “ fpOPT q

to denote this transformation. It works as follows: We first set OPT 1
1 “ OPT , and proceed top-down. If a

cluster C has way too many missing internal edges (|tuv|u, v P C,Dpuvq ě wu| ą
ϵ2|C|

2

12.5), or way too many

outgoing edges (|tuv|u P C, v R C,Dpuvq ă wu| ą
ϵ2|C|

2

12.5) we set OPT 1puvq “ w for all u, v P C. Viewing
OPT 1

1 as a tree, this corresponds to replacing the subtree rooted at C with a star, effectively separating all
vertices in C into singletons in all lower levels. Then we again proceed top-down; as long as there exists a
vertex u in a non-singleton cluster C at level w, with more than an ϵ fraction of its neighbors outside C,
or less than p1 ´ ϵq of its neighbors inside C, we set the distance of u to w. Viewing OPT 1

1 as a tree, this
corresponds to removing u from all lower level clusters, effectively making it a singleton in all lower levels.

From the construction of OPT 1 we get the following properties:

Lemma 27. Given an ultrametric U , let U 1 “ fpUq. It holds that:

• }U 1 ´ D}0 “ Op}U ´ D}0q.

• every cluster in U 1 is either an important cluster in its respective level or a singleton.

• if U 1pu1v1q “ w for any u1, v1, then there exist u, v such that Upuvq “ w.

Proof. The first two claims follow from Lemma 3.3 of [CFLDM22], and the third claim follows directly by
the construction of U 1.

We then create OPT 1
2, which only has distances that are in rD, by modifying OPT 1

1. If OPT 1
1puvq R rD,

we set OPT 1
2puvq “ {OPT 1

1puvq. Otherwise, we set OPT 1
2puvq “ OPT 1

1puvq. We say we destroy a cluster
in an ultrametric tree by connecting its children to its parent and then removing said cluster (note that
destroying a cluster in an ultrametric tree preserves the ultrametric property). Viewing OPT 1

2 as a tree, our

transformation corresponds to destroying all clusters at levels that are not in rD, one by one. Finally, we
apply the transformation of Lemma 27 again, to get OPT 1 “ fpOPT 1

2q. Given the tree view of OPT 1, it is
straightforward to verify that it is indeed an ultrametric, as OPT is also an ultrametric.

We now establish structural properties of OPT 1. Recall that a cluster C Ď V is important by Defini-
tion 3.3 if each vertex u P C is adjacent to at least p1 ´ ϵq fraction of vertices in C while having at most ϵ
fraction of its neighbors outside C. This definition leads naturally to the following lemma:

Lemma 28. Let C be an important cluster, and u be a vertex in C. Then p1 ´ ϵq|C| ď dpuq ď |C|{p1 ´ ϵq.
Equivalently, for any u P C we have p1 ´ ϵqdpuq ď |C| ď dpuq{p1 ´ ϵq.

Proof. Directly by the definition of an important cluster 3.3, u is connected with p1 ´ ϵq|C| vertices in C,
therefore p1 ´ ϵq|C| ď dpuq. On the other hand, u can be connected with all vertices in C, and only an ϵ
fraction of its edges can be out of C. Therefore dpuq ď |C| ` ϵdpuq, which means dpuq ď |C|{p1 ´ ϵq.

We then prove the following properties:

Lemma 29. For any uv we have that both OPT 1
2puvq, OPT 1puvq P rD.

Proof. OPT 1
2puvq P rD follows directly by construction of OPT 1

2. OPT 1 is obtained by modifying OPT 1
2

without introducing any distances not in OPT 1
2.

Lemma 30. Every non-singleton cluster in OPT 1
1, OPT 1 at level w is an important cluster of pV,Ewq. Every

non-singleton cluster in OPT 1
2 at level w is a subset of some important cluster of pV,Ewq.

19

Proof. Every non-singleton cluster in OPT 1
1 or in OPT 1 is an important cluster (not just a subset of one),

directly by [CFLDM22] (Lemma 3.3, using ϵ instead of ϵ{8).
As OPT 1

2 is only splitting clusters of OPT 1
1, the claim follows.

It holds that all described trees are Op1q approximations of OPT .

Lemma 31. }OPT 1 ´ D}0 “ Op}OPT ´ D}0q.

Proof. By Lemma 27, it suffices to show that }OPT 1
2 ´ D}0 “ Op}OPT 1

1 ´ D}0q.

Let C at level w be a cluster of OPT 1
1 that we modify in OPT 1

2 (therefore w R rD, by construction).
We first prove that there are no two non-singleton clusters C1, C2 at level qw in OPT 1

1 such that C1 Ď

C,C2 Ď C. Assume for the sake of contradiction that there exist such C1, C2, and w.l.o.g. |C1| ď |C2|. By
Lemma 30 we have that C1, C2, C are all important clusters in their respective levels. For any u P C1 we have
d

qwpuq ď |C1|{p1´ϵq, by Lemma 28. As u P C, again by Lemma 28 we have dwpuq ě p1´ϵq|C| ě 2p1´ϵq|C1|.

But as w R rD, we have that dwpuq ď p1 ` δqd
qwpuq. But then it should be d

qwpuq ě 2p1 ´ ϵq|C1|{p1 ` δq and
at the same time d

qwpuq ď |C1|{p1 ´ ϵq, which is a contradiction for sufficiently small δ, ϵ.
Therefore, the only difference between OPT 1

1, OPT 1
2 is that certain nodes become singletons at some

consecutive levels w1 ą . . . ą wk R rD of OPT 1
2 (for which |w1 “ . . . “ |wk), while they were already singletons

at level |w1 in OPT 1
1. Thus, for pairs including any such vertex u, the cost of OPT 1

2 is increased by at most

the number of outgoing edges of u in these levels, that is by x “ |
Ťk

i“1 Nwi
puq|. But as w1 ą . . . ą wk, we

have Nw1
puq Ě . . . Ě Nwk

puq, therefore x “ dw1
puq “ Opd

|w1
puqq (due to w1 R rD). However u was already

a singleton at level |w1 of OPT 1
1, and thus OPT 1

1 was paying d
|w1

puq for pairs including u. This proves our
claim.

We now prove some structural properties of T related to OPT 1. Informally:

• For every cluster C of OPT 1, there exists a cluster CT of T at the same level.

• No cluster CT of T contains two non-singleton clusters of OPT 1 of the same level.

• Every cluster of T is dense inside.

Lemma 32. Let C be a cluster of OPT 1. Then there exists a cluster C 1 Ě C of T at the same level.

Proof. Let OPT 1
sub be a subtree of OPT 1, whose root corresponds to a cluster A Ď V and is at level w. We

prove an even stronger statement, namely that if we run Algorithm 2 with parameters pS,wq and obtain
Tsub, where S Ě A, then for any cluster C of OPT 1

sub there exists a cluster C 1 Ě C of Tsub at the same level.
This immediately implies the lemma, by setting OPT 1

sub “ OPT 1 and Tsub “ T by running Algorithm 2
with parameters pV,wmaxq.

The claim immediately follows if |C| “ 1. It also follows for the topmost cluster of OPT 1
sub, as it

corresponds to A while the root of Tsub at the same level corresponds to S Ě A.
Now assume C is a cluster of OPT 1

sub, and let Cp be its parent cluster. Inductively, Cp is a subset of
some cluster C 1

p of Tsub at the same level.
If C 1

p is a core cluster, then C is a subset of an important cluster by Lemma 30. As we obtain the children
of C 1

p by C 1
p-Structural Clustering, we obtain a cluster C 1 containing the important cluster.

If C 1
p is not a core cluster, we find a set R Ď C 1

p, create cluster C 1
pzR in Tsub at level w, and recurse on R

at level pw. Notice that, by Line 9, R only contains vertices u with Čdw2 puq ă 0.65|S| (where S is such that
0.99|S| ă |C 1

p| ď |S|), and there are at most 0.01|S| such vertices (Line 8). Therefore 0.98|S| ă |C 1
pzR| ď |S|.

If u P R, then dwpuq ă 1`λ
1´λ0.65|S| ă 0.653|S| for sufficiently small λ. Similarly, at least 0.99|S| vertices

in C 1
p have degree larger than 0.657|S| at level w (Line 8).
Now if |C| ą 0.01|S|, then it contains some vertex with degree larger than 0.657|S| at level w; as C is an

important cluster (Lemma 30), all vertices inside it have degree above 0.653|S| (Lemma 28), and therefore
completely lies in C 1

pzR. If |C| ď 0.01|S|, then again by Lemma 28 it can only contain vertices with degree at
most 0.02|S|, therefore only contains vertices in R; as we recurse on R, we inductively prove our claim.

Lemma 33. Let C be a non-singleton cluster of OPT 1 at level w. Then any u P C has dwpuq ą 0.6|C|.

20

Proof. If C is obtained by S-Structural Clustering, it directly follows that u has dwpuq ą 2|C|{3 ą 0.6|C|.

Otherwise, C is obtained by removing all vertices with Čdwpuq ă 0.65|S| from its parent cluster Cp, for which

we have Cp Ď S for some vertex-set S. But then all vertices in C have Čdwpuq ě 0.65|S|, which means
dwpuq ě 1´λ

1`λ0.65|S| ě 1´λ
1`λ0.65|C|, which implies our claim for sufficiently small λ.

Lemma 34. Let C1, C2 be non-singleton clusters of OPT 1 at level w. There is no cluster C 1 of T at level
w such that C 1 Ě C1 Y C2.

Proof. Assume for the sake of contradiction that this is not true, and that w.l.o.g. |C1| ď |C2|. By Lemma 33
any vertex in C1 has degree at least 0.6|C| at level w. But by Lemma 28 it has degree at most |C1|{p1´ ϵq ď

0.5|C|{p1 ´ ϵq, which is a contradiction for sufficiently small ϵ.

We are now ready to prove that T is a constant factor approximation of OPT .

Lemma 35. }T ´ D}0 “ Op}OPT ´ D}0q.

Proof. By Lemma 31, it suffices to show that }T ´D}0 “ Op}OPT 1 ´D}0q. Let E be the pairs uv for which
OPT 1puvq “ Dpuvq ‰ T puvq. For all other pairs T pays at most as much as OPT 1. In turn, it suffices to
show |E| “ Op}OPT 1 ´ D}0q.

Let uv P E. By Lemma 32, there exists a top level such that u, v are in the same cluster C in T but
not in OPT 1. By OPT 1puvq “ Dpuvq ‰ T puvq we have that at this level u and v do not share an edge. By
Lemma 34, one of the two nodes is a singleton in OPT 1. Let epuq be the degree of u at the topmost level
for which u is a singleton in OPT 1 but not in T (epuq “ 0 if no such level exists), and cpuq be the cluster of
T containing u in this level (cpuq “ H if no such level exists). By the above discussion, |E| ď

ř

uPV |cpuq|.
Notice that when u is a singleton in OPT 1 but not in T (as u is in a non-singleton cluster C 1 of T at that

level), then u has degree at least 0.6|C 1|, by Lemma 33. Therefore }OPT 1 ´ D}0 “ Ωp
ř

uPV |cpuq|q, which
proves our claim.

Lemma 36. Assume that within a single pass in the semi-streaming model, we can:

• store a compressed set rD of size rOpnq,

• store information of size rOpnq that allows us to compute a Čdwpuq, for any vertex u and weight w P rD.

• store information of size rOpnq that allows us to compute Si-Structural Clustering for k instances
tpV,Ew1

q, S1u, . . . tpV,Ewk
q, Sku. Instance tpV,Ewi

q, Siu is only revealed after we compute Sj-Structural
Clustering for every instance tpV,Ew1

q, Sju with j ă i and may in fact depend on all these instances

and the Sj-Structural Clusterings we output. Further, it holds that wi P rD for all i, and each vertex
u P V is contained in Oplog nq of all Si.

Then we can Op1q-approximate ℓ0 Best-Fit Ultrametrics in a single pass in the semi-streaming model.

Proof. We simply run Algorithm 2.
Instead of explicitly storing the distances between every pair of vertices, we build a tree that induces

these distances, in a top-down fashion. At any given point, each leaf in the tree is associated with a subset of
V , such that these subsets form a partition of V . Initially we have a single node (the root) at height wmax,
associated with V . When we have |S| “ 1, we simply create a leaf (corresponding to the unique node in S)
at level 0.

In Line 4, we simply create C many children for the current node, each one corresponding to a different
C P C, and recurse in all but the largest one, in case its size is larger than 0.99|S|. We only run S-Structural

Clustering when w P rD, and by Lemma 26 each vertex u is only contained in Oplog nq Si-Structural Clus-
tering computations; therefore by assumption of the lemma, we can perform these Si-Structural Clustering
computations.

Similarly, in the while loop we have an active node (initially it is the unique cluster C with |C| ą 0.99|S|)
at some level w. Then we decide a set R using the assumptions of our lemma, recurse on R to create more
children of our active node, and also create one more child associated with CzR at level qw. Then we set the
active node to be equal to the node corresponding to CzR, and continue the execution.

21

It directly follows that the distances set in the algorithm are exactly the distances induced by our tree,
and that the total space usage is rOpnq.

We now prove our main theorem.

Theorem 1. There exists a single pass polynomial time semi-streaming algorithm that w.h.p. Op1q-approximates
the ℓ0 Best-Fit Ultrametrics problem.

Proof. It suffices to guarantee that with high probability we can store the information required by Lemma 36.
Our algorithm stores sketches for each vertex, as described in Section 3.1, in a single pass. In fact, it stores
c log n independent instances of these sketches, for a sufficiently large c. This requires rOpnq space.

To compute Si-Structural Clustering for k instances tpV,Ew1
q, S1u, . . . tpV,Ewk

q, Sku such that wi P rD
and each vertex u P V is present in Oplog nq of all Si, we employ Theorem 24. In particular, using only
the sketches of vertices in S, we can compute S-Structural Clustering with high probability. As we store
c log n independent sketches for each vertex, we can use different sketches for each computation. Note that
we cannot reuse our sketches, due to the dependencies across the instances and the clusterings we output.

We now show how to compute Čdwpuq (which approximates dwpuq), for any vertex u P V and weight w P D

(this is stronger than w P rD required by Lemma 36). If dwpuq ă 2 log4 n, then we can exactly compute it,
as we explicitly store the 2log4n nearest neighbors of u. Otherwise, by Claim 13, we can report a sketch

associated with size s and weight w̃u
s , such that with high probability,

dw̃u
s

puq

1`5ζ ď dwpuq ď
dw̃u

s
puq

1´ζ . Therefore,

for sufficiently small ζ, we have a sufficient approximation of dwpuq.

Finally, we obtain rD by using all the weights stored in memory; it follows its size is rOpnq. To show that
rD is a compressed set with high probability, assume for the sake of contradiction that there exists a w R rD
and a vertex u such that dwpuq ą p1 ` δqd

qwpuq. But as we proved in the previous paragraph, we have a

weight w1 P rD such that dwpuq ď
dw1 puq

1´ζ . For ζ sufficiently smaller than δ, this implies that w1 ą w. For

these to hold simultaneously, it must be that in the obtained sketch we only have vertices v with Dpuvq ď qw
or Dpuvq ą w.

It suffices to show that there exist νdw1 puq vertices v P Nw1 puq with Dpuvq P p qw,ws, for a sufficiently small
constant ν. This is because, if this is true, then with high probability we sample at least one such vertex.
On one hand, we have that at most 5ζdw1 puq vertices with distance above w. On the other hand he have
at least δd

qwpuq vertices with distance above qw. If δ qw ą 6ζdw1 puq, then we have at least ζdww
1puq vertices

with distance in p qw,ws. Otherwise we have qw ď 6ζdw1 puq{δ, meaning there are at least p1´5ζ ´6ζdw1 puq{δq

vertices with distance in p qw,ws, for sufficiently small ζ.

3.4 Lower bounds

Lower bounds for the problem of correlation clustering in data streams were thoroughly examined in [ACG`21].
In this section, we add additional natural results on top of this work.

The main lower bounds proved in [ACG`21] were to the problem of testing if a given graph can be parti-
tion to clusters with optimal cost of 0, under various edge weighting schemes. This observation leads directly
to a similar computational limitation for algorithms that merely verify whether a matrix is ultrametric.

Theorem 37. Any randomized k-pass streaming algorithm that tests whether an input matrix is an ultra-
metric with probability greater than 2

3 requires Ωpn
k q bits.

Proof. Follows directly from Theorem 15 in [ACG`21].

The subsequent theorems have implications for the problem of correlation clustering in streaming settings.
We show that any algorithm addressing the correlation clustering problem, whether aiming to produce the
optimal clustering or merely to report the optimal score, requires the use of Ωpn2q bits. This requirement
holds true even if the algorithm is permitted unbounded running time over the input. This results then
naturally translate to the ultrametric construction framework.

Proposition 38. Any randomized one-pass streaming algorithm that solves the correlation clustering problem
with probability greater than 2

3 requires Ωpn2q bits.

22

Proof. To prove the theorem we show a reduction to the index problem, where Alice is given a random

string x P t0, 1upn
2q and Bob is given a random index pi, jq P

`

n
2

˘

and they need to output xi,j using a
one-way protocol from Alice to Bob. This problem is known to require Ωpn2q bits of communication even
for randomized protocols [Abl96].

Consider a protocol for the index problem where Alice exploits a one-pass algorithm for the correlation
clustering problem and stream the edges, where the positive edges are tpu, vq | xuv “ 1u. After the vector x
has been processed by Alice, Alice sends the content of the memory of the streaming algorithm to Bob.

Bob stream two artificial cliques C1, C2 of size 2n each, together with the ` edges connecting i to C1

and j to C2, i.e. all edges pi, c1q, pj, c2q for c1 P C1 and c2 P C2. Furthermore, Bob stream ´ edges between
C1, C2 and the remaining vertices in the graph; that is, pc, kq for c P C1 YC2 and k P rnszti, ju. Finally, Bob

stream exactly p2n`1q
2

´1
2 ` edges between C1 and C2 and set the remaining edges to ´ edges.

Now, xi,j “ 1 if and only if more than half of the edges between C1 Y tiu and C2 Y tju are positive. It
means an exact solution would have the cluster C1 Y C2 Y ti, ju. That is, only if i and j are end up in the
same cluster in the correlation clustering solution.

As we will see in the following theorem, the space constraints remains also in the setting where the
algorithm simply opt to report the cost of the clustering.

Proposition 39. Any randomized one-pass streaming algorithm that maintains the cost of an optimal cor-
relation clustering solution with probability greater than 2

3 requires Ωpn2q bits.

Proof. We again use a reduction from the index problem in a similar fashion, however we change the way
Bob treats Alice’s message.

Bob first duplicate Alice’s message and stream different information to each message.
For the first message, Bob create 2 artificial cliques Ci, Cj of size n and connect them solely to i, j,

respectively. Consequently, Bob obtains the cost of the optimal clustering. Due to the size of Ci, Cj , in any
optimal clustering i, j are in their newly added cliques.

For the second message, Bob create a single artificial clique Ci,j of size 2n and connect it to both i, j.
Again, due to the size of Ci,j any optimal clustering contains i, j in a cluster including Ci,j . The cost is
changed from the first message depending on whether i is connected to j, namely, The cost will decrease by
1 if and only if i and j are connected. Hence, by subtracting the cost of the first message from the cost of
the second message Bob gets an indicator stating if xi,j “ 1 w.h.p.

We conclude these results in the following theorem:

Theorem 3. Any randomized single pass streaming algorithm that with probability greater than 2
3 either

solves the correlation clustering problem or maintains the cost of an optimal correlation clustering solution
requires Ωpn2q bits.

Fitting an ultrametric to a similarity matrix that contain just two specific values for under the ℓ0 or ℓ1
norms is exactly the correlation clustering problem (cf. [AC11]). It follows that the above bounds also holds
for fitting ultrametric for both ℓ0 and ℓ1.

Corollary 4. For p P t0, 1u, any randomized single pass streaming algorithm that with probability greater
than 2

3 either solves ℓp Best-Fit Ultrametrics or just outputs the error of an optimal ultrametric solution
requires Ωpn2q bits.

4 ℓ8 Ultrametrics

In this section we provide a complete characterization of ℓ8 Best-Fit Ultrametrics in the semi-streaming
model. We show that in a single round, this problem cannot be approximated with an approximation factor
strictly smaller than 2, while a factor 2-approximation algorithm in a single round does exist. Finally, we
show that in two rounds we can obtain an exact solution.

The lower bound result is derived from a reduction to the index problem in communication complexity.
For the algorithmic results, we employ a reduction to the ℓ8 Min-Decrement problem, where we are only
allowed to decrement the entries in the input matrix.

23

4.1 ℓ8 Ultrametrics lower bound

Theorem 6. Any randomized one-pass streaming algorithm for ℓ8 Best-Fit Ultrametrics with an approxi-
mation factor strictly less than 2 and a success probability greater than 2

3 requires Ωpn2q bits of space.

Proof. To prove the theorem, we show a reduction to the index problem, where Alice is given a random

string x P t0, 1upn
2q and Bob is given a random index pi, jq P

`

tnu

2

˘

and they need to output xi,j using a
one-way protocol from Alice to Bob. This problem is known to require Ωpn2q bits of communication even
for randomized protocols [Abl96].

Assuming such an algorithm to ℓ8 Best-Fit Ultrametrics, Alice streams the matrix D where Dpa, bq “

xa,b ` 1 for every pa, bq P
`

tnu

2

˘

.
Bob, equipped with the index pi, jq, streams Dpn ` 1, iq “ Dpn ` 1, jq “ 0 and Dpn ` 1, kq “ 1.5 for

k P rnszti, ju, and obtains the output.
Now, in the case that xi,j “ 0, consider the matrix Ō with Ōpn ` 1, iq “ Ōpn ` 1, jq “ Ōpi, jq “ 0.5 and

Ōpa, bq “ 1.5 for all other indices. It is easy to verify that this is an ultrametric and that ∥D ´ Ō∥8 “ 0.5,
so OPT ď 0.5.

However, in the case that xi,j “ 1 we will show that OPT “ 1. Consider the matrix Ō with Ōpn`1, iq “

Ōpn ` 1, jq “ Ōpi, jq “ 1 and Ōpa, bq “ 1.5 for all other indices. Similarly to the previous case, this is an
ultrametric and ∥D ´ Ō∥8 “ 1, so OPT ď 1. Let O be some optimal solution, thus Dpa, bq ´ OPT ď

Opa, bq ď Dpa, bq `OPT for every pa, bq P
`

tnu

2

˘

. Combining this with the ultrametric property of O, we get:

2 ´ OPT “ Dpi, jq ´ OPT ď Opi, jq ď maxtOpn ` 1, iq, Opn ` 1, jqu

ď maxtDpn ` 1, iq ` OPT, Dpn ` 1, jq ` OPTu ď OPT,

Consequently OPT “ 1. It follows that any randomized one-pass algorithm for ℓ8 Best-Fit Ultrametrics
that claims an approximation factor strictly less than 2 would be capable of distinguishing between the two
cases and correctly retrieving xi,j with good probability.

4.2 ℓ8 Ultrametrics algorithms

To solve ℓ8 Best-Fit Ultrametrics we will apply a reduction to the ℓ8 Min-Decrement Ultrametrics problem.
In this variant, it is only allowed to decrement the entries in the input matrix. We will show that an optimal
solution to this variant is 2-approximation to the best fit.

Lemma 40. An optimal solution to the ℓ8 Min-Decrement Ultrametrics problem is at most 2 approximation
to ℓ8 Best-Fit Ultrametrics.

Proof. Let O denote an optimal solution to ℓ8 Best-Fit Ultrametrics given the input matrix D, where the
optimal fitting cost ∥O ´ D∥8 is denoted by c. Consequently, we have D ě O ´ c, now set Ōpi, jq “

maxt0, Opi, jq ´ cu, it follows that Ō ď D.
Note that Ō is also an ultrametric, for every i, j, k:

Ōpi, jq “ maxt0, Opi, jq ´ cu ď maxt0,maxtOpi, kq, Opk, jqu ´ cu

“ maxtmaxt0, Opi, kq ´ cu,maxt0, Opk, jq ´ cuu “ maxtŌpi, kq, Ōpk, jqu

Additionally, Ō is a 2-approximation of O:

∥D ´ Ō∥8 “ ∥D ´ maxt0, O ´ cu∥8 “ ∥D ` mint0,´O ` cu∥8

“ ∥mintD,D ´ O ` cu∥8 “ max
i,j

tmintDpi, jq, Dpi, jq ´ Opi, jq ` cuu

ď max
i,j

Dpi, jq ´ Opi, jq ` c ď 2c

24

Next, we will show that the ℓ8 Min-Decrement Ultrametrics can be derived from the Minimum Spanning
Tree (MST). Similar ideas were used in Theorem 3.3 in [ABF`99].

Given an input matrix D, let T be an MST of D. T naturally yields an ultrametric by defining the
distance between any two vertices i and j as the weight of the heaviest edge on the unique path connecting
them, denoted henceforth by T pi, jq. This construction inherently satisfies the ultrametric property, as the
tree structure ensures that there is exactly one path between any pair of vertices, thereby maintaining the
ultrametric property.

Moreover, if the edge pi, jq of weight Dpi, jq is in T , then clearly T pi, jq “ Dpi, jq. If not, the edge forms
a cycle with the edges of T . Given that T is an MST, it follows that T pi, jq ď Dpi, jq. Therefore, T is indeed
a minimum decrement ultrametric of D.

Furthermore, every minimum decrement ultrametric has values smaller or equal to the values of T . To
see this let Ō be an optimal minimum decrement ultrametric. For any edge pi, jq, if pi, jq belongs to T then
T pi, jq “ Dpi, jq and since Ō ď D it follows that Ōpi, jq ď T pi, jq. Else, let P be the path from i to j in T . Due
to the ultrametric property, Ōpi, jq ď maxpk,lqPP Ōpk, lq ď maxpk,lqPP Dpk, lq “ maxpk,lqPP T pk, lq “ T pi, jq.

Therefore, the minimum spanning tree provides an optimal solution to the minimum decrement problem.
As noted in [FKM`05], the minimum spanning tree can be constructed in a single pass with Oplog nq time
per edge under the semi-streaming model. We conclude this result in the following lemma:

Lemma 41. An optimal solution to the ℓ8 Min-Decrement Ultrametrics fitting problem can be constructed
in a single pass over the stream with Oplog nq time per edge.

As proved in Proposition 6, this construction achieves the best possible approximation within a single
pass over the stream. The next theorem is now an immediate consequence of Lemma 40 and Lemma 41.

Theorem 5. There exists a single pass polynomial time semi-streaming algorithm that 2-approximates the
ℓ8 Best-Fit Ultrametrics problem.

We proceed to demonstrate that a second pass over the stream, while necessary, is also sufficient to
achieve the optimal solution to ℓ8 Best-Fit Ultrametrics.

The implementation goes by first applying Theorem 5 to produce an ultrametric T . Then, in a second
pass over the stream, simply compute the error of T on the input D, denoted by c̄, and return T 1 “ T ` c̄

2 .
The error of T 1 is c̄

2 , as 0 ď D ´ T ď c̄ it follows that ´ c̄
2 ď D ´ T ´ c̄

2 ď c̄
2 .

According to Lemma 40, c̄ is at most twice the optimal cost. That is, the ultrametric T 1 “ T ` c̄
2

achieves the optimal cost precisely. It also follows that the MST obtained from Theorem 5 provides precisely
a 2-approximation of the optimal ultrametric and at the same time has the topology of the optimal solution.
This now fully concludes the ℓ8 Best-Fit Ultrametrics problem in the streaming settings.

Theorem 7. There exists a two-pass polynomial time semi-streaming algorithm that computes an exact
solution to the ℓ8 Best-Fit Ultrametrics problem.

5 ℓ0 and ℓ8 Tree Metrics

The problem of ℓp Best-Fit Tree-Metrics is typically addressed through reduction to an ℓp Best-Fit Ultramet-
rics instance, introducing a constant multiplicative approximation factor. This reduction, first introduced
for the ℓ8 norm, generalizes to every ℓp with p ě 1 [ABF`99]. More recently, Kipouridis showed how to
adapt this reduction to the ℓ0 case as well [Kip23].

In this section we show how this methodology can be extended to the semi-streaming model. We will
show that with just an additional pass over the input stream it is possible to construct the best fit tree
metric. In what follows we will focus on ℓ0 and ℓ8, aligning with the algorithms proposed in this paper.
However, this method can be generalized for any ℓp norm with p ě 1.

The reduction strategy involves selecting a pivot element a, for which let Ca denote the centroid metric
defined by Capi, jq “ 2maxkPrns Dpa, kq ´ pDpa, iq ` Dpa, jqq. Using the best fit ultrametric algorithm we
then obtain an ultrametric Ua of D ` Ca and an a-restricted tree of D by setting T a “ Ua ´ Ca. Where
A is denoted an a-restricted metric of B if, Apa, kq “ Bpa, kq for every k P rns (in this context A,B are
symmetric matrices). We will see that T a is a constant approximation to the best fit tree metric.

25

Note that if all the values Dpaq :“ pDpa, kqqkPrns are stored in memory, it is possible to adjust the input
distance matrix D as the stream is processed and ultimately compute T a in a single pass. Consequently, the
first pass is utilized for storing Dpaq for some predefined a, and the second pass computes the a-restricted
tree metric T a as outlined above.

Using this idea we will show how to solve the problem of tree metric fitting for both ℓ0 and ℓ8.

5.1 ℓ8 Best-Fit Tree Metrics

In the case of ℓ8, any arbitrary selection of a pivot a will provide with a constant approximation factor. Let
Ũa denote the 2-approximation ultrametric of D ` Ca obtained by the algorithm outlined in Theorem 5.
Recall that this is a minimum decrement ultrametric.

We show the following lemma, similar ideas were also utilized in [ABF`99].

Lemma 42. For every element a, T a “ Ũa ´ Ca is a 2-approximation a-restricted tree metric.

Proof. Let ma “ maxkPrns Dpa, kq. To see that T a is a-restricted we will show that for every i, Ũapa, iq “

2ma, it is then easy to verify that for every i P rns, T apa, iq “ pŨa ´ Caqpa, iq “ Dpa, iq. First note that,
pD ` Caqpa, iq “ 2ma. Then, since Ũa is an MST of D ` Ca, we have Ũapa, iq “ 2ma.

To show that T a is a tree metric we will use the following claim as in [ABF`99].

Claim 43. For every a P rns, T is a tree metric if and only if T ` Ca is an ultrametric.

From Claim 43 it immediately follows that T a is a tree metric. It is left to show that T a is a 2-
approximation to any optimal a-restricted tree metric of D, denoted TOPT .

∥TOPT ´ D∥8 “ ∥pTOPT ` Caq ´ pD ` Caq∥8

ě ∥UOPT ´ pD ` Caq∥8 (by Claim 43, for some optimal ultrametric UOPT)

ě
1

2
∥Ũa ´ pD ` Caq∥8 “

1

2
∥T a ´ M∥8

Overall, ∥T a ´ M∥8 ď 2∥TOPT ´ D∥8.

Using Lemma 3.4 in [ABF`99], an optimal a-restricted tree metric is 3-approximation of the optimal tree
metric. Thus, as a consequence of Lemma 42, for any selection of pivot a, the output is a 6-approximation
tree metric to the optimal tree metric. We summarize this in the following theorem:

Theorem 10. There exists a two-pass polynomial time semi-streaming algorithm that 6-approximates the
ℓ8 Best-Fit Tree-Metrics problem.

5.2 ℓ0 Best-Fit Tree Metrics

While in the ℓ8 case every selection of a pivot would result in a 6 approximation, this does not hold for ℓ0;
yet, Kipouridis proved the existence of a P rns which achieves a 3-approximation. Kipouridis then executed
n reductions, that included best ultrametric fit, to obtain the desired approximation tree metric.

Lemma 44 (Theorem 3 in [Kip23]). A factor ρ ě 1 approximation for ℓ0 Fitting Ultrametrics implies a
factor 6ρ approximation for ℓ0 Fitting Tree Metrics.

Since we cannot store every Dpaq in memory we will have to suggest a different scheme. We will show in
the following lemma that for a randomly selected a P rns, obtaining an optimal a-restricted tree is a constant
approximation to the optimal best fit tree.

Lemma 45. If a is randomly selected then with probability ě 3
4 the resulting tree metric is at most 12

approximation to the ℓ0 Best-Fit Tree-Metrics.

26

Proof. Let T denote an optimal best fitting tree metric to D under ℓ0. We have that, OPT “ ∥D ´ T∥0 “
1
2

ř

iPrns∥Dpiq ´ T piq∥0. Fix i P rns, we will transform T to an i-restricted tree, and denote this as T {i, note
that this is not necessarily an optimal i-restricted tree on D. The transformation works by moving every
j either toward or away from i until each j is at distance Dpi, jq. This transformation is also described in
Lemma 3.4 in [ABF`99] and Theorem 3 in [Kip23].

We next show that T {i is a good approximation of T . Observe that by moving j, only distances from/to
j may be modified, thus at most n errors may be introduced. Moreover, j is moved only if Dpi, jq ‰ T pi, jq,
so the number of errors introduced by this transformation is at most n∥Dpiq ´ T piq∥0.

Summing over all i we get that:
ÿ

iPrns

∥T {i ´ D∥0 ď
ÿ

iPrns

OPT ` n∥Dpiq ´ T piq∥0

ď n ¨ OPT ` n
ÿ

iPrns

∥Dpiq ´ T piq∥0 ď n ¨ OPT ` n ¨ 2OPT “ 3n ¨ OPT

So by randomly selecting a P rns (with uniform distribution), the expected cost of an optimal a-restricted
tree metric is at most 3OPT . Then, through Markov’s inequality, the probability that ∥T {a ´D∥0 ą 12OPT
is less than 1

4 .

In order to further improve the algorithm and obtain a high probability success rate, we sample not one
but t “ lnn pivots, P “ ta1, ..., atu, and obtain t trees tT a1 , ..., T atu, each is at most 12 approximation to
the optimal fit with probability at least 3

4 following Lemma 45. Let OPT be the minimum value such that

the graph GOPT over the vertex set P , with edges pai, ajq where ∥T ai ´ T aj∥0 ď 24OPT , has a clique of
size at least 1

2n. Finally, we arbitrarily select some pivot ai in that clique and return T ai .

Note that by definition, if a ă b then Ga Ď Gb. Hence, we can find OPT by carrying a binary search in
the range of possible values of OPT , i.e. OPT P r0, n2s. Since t is logarithmic in n, this entire process can
be carried in semi-streaming settings.

Claim 46. With high probability, any pivot selected from the outlined clique in GOPT corresponds to at most
36 approximation of T .

Proof. Consider GOPT and let P 1 denote the set of all vertices in P that correspond to a 12 approximation
of T . We first show that |P 1| ě t

2 w.h.p.
For every ai, aj P P 1, ∥T ai ´ T aj∥0 ď ∥T ai ´ T∥0 ` ∥T aj ´ T∥0 ď 24OPT . It follows that there is an

edge between every two vertices in P 1.
Write X “

řt
i“1 Xi where Xi is the indicator that ai P P 1, and let µ “ ErXs. Following Lemma 45,

µ ě 3
4 t.

Using Chernoff bound it holds that:

PrX ď p1 ´ δqµs ď expp
´δ2µ

2
q “ p

1

t
q3δ

2
{8

Let δ “ 1
3 and obtain that w.h.p there is a clique in GOPT of size at least 1

2 t.

Recall that, if a ă b then Ga Ď Gb, that is, w.h.p, OPT ď OPT . The probability that one of the
vertices of the clique is at most 12 approximation of T is at least 1 ´ p1 ´ 3

4 qt{2 “ 1 ´ p1
2 qt. By selecting

any pivot ai in that clique with a corresponding tree T ai we have that w.h.p we report an ai-restricted tree
that is at most 36 approximation to T . Since w.h.p there exist T aj that is a 12 approximation to T , also,
∥T ai ´ T aj∥0 ď 24OPT ď 24OPT . It Follows that:

∥T ai ´ T∥0 ď ∥T ai ´ T aj∥0 ` ∥T aj ´ T∥0 ď 24OPT ` 12OPT ď 36OPT

Together with Lemma 44 we obtain the theorem:

Theorem 8. There exists a two-pass polynomial time semi-streaming algorithm that w.h.p Op1q-approximates
the ℓ0 Best-Fit Tree-Metrics problem.

27

References

[ABF`99] Richa Agarwala, Vineet Bafna, Martin Farach, Mike Paterson, and Mikkel Thorup. On the
approximability of numerical taxonomy (fitting distances by tree metrics). SIAM J. Comput.,
28(3):1073–1085, 1999. Announced at SODA 1996.

[Abl96] Farid Ablayev. Lower bounds for one-way probabilistic communication complexity and their
application to space complexity. Theoretical Computer Science, 157(2):139–159, 1996.

[AC11] Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny.
SIAM J. Comput., 40(5):1275–1291, 2011. Announced at FOCS 2005.

[ACG`21] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. Algorithmica, 83:1980–2017, 2021.

[ACL`22] Sepehr Assadi, Vaggos Chatziafratis, Jakub Lacki, Vahab Mirrokni, and Chen Wang. Hierar-
chical clustering in graph streams: Single-pass algorithms and space lower bounds. In Po-Ling
Loh and Maxim Raginsky, editors, Conference on Learning Theory, 2-5 July 2022, London,
UK, volume 178 of Proceedings of Machine Learning Research, pages 4643–4702. PMLR, 2022.

[Ard05] Federico Ardila. Subdominant matroid ultrametrics. Annals of Combinatorics, 8:379–389,
2005.

[AW22] Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering
via sparse-dense decompositions. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[BBA75] Ronald L Breiger, Scott A Boorman, and Phipps Arabie. An algorithm for clustering relational
data with applications to social network analysis and comparison with multidimensional scal-
ing. Journal of Mathematical Psychology, 12(3):328–383, 1975. doi:10.1016/0022-2496(75)
90028-0.

[BBC02] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In 43rd Symposium
on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC,
Canada, Proceedings, page 238. IEEE Computer Society, 2002.

[BCC`24] Soheil Behnezhad, Moses Charikar, Vincent Cohen-Addad, Alma Ghafari, and Weiyun Ma.
Fully dynamic correlation clustering: Breaking 3-approximation. CoRR, abs/2404.06797, 2024.

[BCMT22] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate
correlation clustering in constant rounds. In 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages
720–731. IEEE, 2022.

[BCMT23] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming algo-
rithms for correlation clustering. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceed-
ings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 819–849. SIAM, 2023.

[BDH`19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Mary-
land, USA, November 9-12, 2019, pages 382–405. IEEE Computer Society, 2019.

[Ber20] Daniel Irving Bernstein. L-infinity optimization to bergman fans of matroids with an application
to phylogenetics. SIAM Journal on Discrete Mathematics, 34(1):701–720, 2020.

28

https://doi.org/10.1016/0022-2496(75)90028-0
https://doi.org/10.1016/0022-2496(75)90028-0

[BL17] Daniel Irving Bernstein and Colby Long. L-infinity optimization to linear spaces and phyloge-
netic trees. SIAM Journal on Discrete Mathematics, 31(2):875–889, 2017.

[CCL`24] Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl.
Understanding the cluster linear program for correlation clustering. In Bojan Mohar, Igor
Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1605–
1616. ACM, 2024.

[CDK14] Flavio Chierichetti, Nilesh N. Dalvi, and Ravi Kumar. Correlation clustering in mapreduce. In
The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 641–650. ACM, 2014.

[CDK`21] Vincent Cohen-Addad, Debarati Das, Evangelos Kipouridis, Nikos Parotsidis, and Mikkel Tho-
rup. Fitting distances by tree metrics minimizing the total error within a constant factor. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022, pages 468–479. IEEE, 2021.

[CDL21] Vincent Cohen-Addad, Rémi De Joannis De Verclos, and Guillaume Lagarde. Improving ul-
trametrics embeddings through coresets. In Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 2060–2068. PMLR, 2021.

[CF00] Victor Chepoi and Bernard Fichet. ℓ8-approximation via subdominants. Journal of mathe-
matical psychology, 44(4):600–616, 2000.

[CFLDM22] Vincent Cohen-Addad, Chenglin Fan, Euiwoong Lee, and Arnaud De Mesmay. Fitting metrics
and ultrametrics with minimum disagreements. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 301–311. IEEE, 2022.

[CG24] Moses Charikar and Ruiquan Gao. Improved approximations for ultrametric violation distance.
In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 1704–1737. SIAM,
2024.

[CGW05] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. J. Comput. Syst. Sci., 71(3):360–383, 2005. Announced at FOCS 2003.

[CKL20] Vincent Cohen-Addad, Karthik C. S., and Guillaume Lagarde. On efficient low distortion ultra-
metric embedding. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 2078–2088. PMLR, 2020.

[CKL`24] Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A (3 + ε)-
approximate correlation clustering algorithm in dynamic streams. In Proceedings of the 2024
ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January
7-10, 2024, pages 2861–2880. SIAM, 2024.

[CLLN23] Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated
rounding error via preclustering: A 1.73-approximation for correlation clustering. In 64th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA,
USA, November 6-9, 2023, pages 1082–1104. IEEE, 2023.

[CLM`21] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovi’c, Ashkan Norouzi-Fard, Nikos Parot-
sidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In Inter-
national Conference on Machine Learning, pages 2069–2078. PMLR, 2021.

29

[CLMP22] Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online and
consistent correlation clustering. In International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pages 4157–4179. PMLR, 2022.

[CLN22] Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with
sherali-adams. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 651–661. IEEE, 2022.

[CLP`24] Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan,
and Hanwen Zhang. Combinatorial correlation clustering. In Proceedings of the 56th Annual
ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28,
2024, pages 1617–1628. ACM, 2024.

[CMSY15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlationclustering on complete and complete k-partite
graphs. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 219–228. ACM, 2015.

[CSE67] L. L. Cavalli-Sforza and A. W. F. Edwards. Phylogenetic analysis models and estimation
procedures. The American Journal of Human Genetics, 19:233–257, 1967.

[Day87] William H.E. Day. Computational complexity of inferring phylogenies from dissimilarity ma-
trices. In Bulletin of Mathematical Biology, volume 49(4), page 461–467, 1987.

[D’h05] Patrik D’haeseleer. How does gene expression clustering work? Nature Biotechnology,
23:1499–1501, 2005.

[DHH`05] Andreas Dress, Barbara Holland, Katharina T Huber, Jack H Koolen, Vincent Moulton, and
Jan Weyer-Menkhoff. δ additive and δ ultra-additive maps, gromov’s trees, and the farris
transform. Discrete Applied Mathematics, 146(1):51–73, 2005.

[DMM24] Mina Dalirrooyfard, Konstantin Makarychev, and Slobodan Mitrovic. Pruned pivot: Cor-
relation clustering algorithm for dynamic, parallel, and local computation models. CoRR,
abs/2402.15668, 2024.

[DPS`13] Geet Duggal, Rob Patro, Emre Sefer, Hao Wang, Darya Filippova, Samir Khuller, , and Carl
Kingsford. Resolving spatial inconsistencies in chromosome conformation measurements. Al-
gorithms for Molecular Biology, 8(1):1–10, 2013.

[FKM`05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–216,
2005.

[FKW93] Martin Farach, Sampath Kannan, and Tandy Warnow. A robust model for finding optimal
evolutionary trees. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, pages 137–145, 1993.

[FRB18] Chenglin Fan, Benjamin Raichel, and Gregory Van Buskirk. Metric violation distance: Hard-
ness and approximation. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 196–209. SIAM, 2018.

[GGR`20] Anna C. Gilbert, Albert Gu, Christopher Ré, Atri Rudra, and Mary Wootters. Sparse recovery
for orthogonal polynomial transforms. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 58:1–58:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

30

[GJ17] Anna C. Gilbert and Lalit Jain. If it ain’t broke, don’t fix it: Sparse metric repair. In
55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017,
Monticello, IL, USA, October 3-6, 2017, pages 612–619. IEEE, 2017.

[HKM05] Boulos Harb, Sampath Kannan, and Andrew McGregor. Approximating the best-fit tree under
lp norms. In APPROX-RANDOM, pages 123–133, 2005.

[Kip23] Evangelos Kipouridis. Fitting tree metrics with minimum disagreements. In 31st Annual Euro-
pean Symposium on Algorithms (ESA 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2023.

[KLNHM17] Patrick K. Kimes, Yufeng Liu, David Neil Hayes, and James Stephen Marron. Statistical
significance for hierarchical clustering. Biometrics, 73(3):811–821, 2017. doi:10.1111/biom.

12647.

[Kři88] Mirko Křivánek. The complexity of ultrametric partitions on graphs. Information processing
letters, 27(5):265–270, 1988.

[KSVK20] Bipul Kumar, Arun Sharma, Sanket Vatavwala, and Prashant Kumar. Digital mediation in
business-to-business marketing: A bibliometric analysis. Industrial Marketing Management,
85:126–140, 2020.

[LC05] Sanghoon Lee and M.M. Crawford. Unsupervised multistage image classification using hierar-
chical clustering with a bayesian similarity measure. IEEE Transactions on Image Processing,
14(3):312–320, 2005.

[LL09] Sebastian Lühr and Mihai Lazarescu. Incremental clustering of dynamic data streams using
connectivity based representative points. Data & knowledge engineering, 68(1):1–27, 2009.

[LLM14] Pei Lee, Laks VS Lakshmanan, and Evangelos E Milios. Incremental cluster evolution tracking
from highly dynamic network data. In 2014 IEEE 30th International Conference on Data
Engineering, pages 3–14. IEEE, 2014.

[MC23] Konstantin Makarychev and Sayak Chakrabarty. Single-pass pivot algorithm for correlation
clustering. keep it simple! In Advances in Neural Information Processing Systems, volume 36,
pages 6412–6421, 2023.

[MWZ99] Bin Ma, Lusheng Wang, and Louxin Zhang. Fitting distances by tree metrics with increment
error. Journal of combinatorial optimization, 3:213–225, 1999.

[RGP08] Pedro Pereira Rodrigues, Joao Gama, and Joao Pedroso. Hierarchical clustering of time-series
data streams. IEEE transactions on knowledge and data engineering, 20(5):615–627, 2008.

[SS62] Peter H.A. Sneath and Robert R. Sokal. Numerical taxonomy. Nature, 193(4818):855–860,
1962.

[SS63] Peter H.A. Sneath and Robert R. Sokal. Numerical taxonomy. the principles and practice of
numerical classification. Freeman, 1963.

[War92] Harold Todd Wareham. On the computational complexity of inferring evolutionary trees. PhD
thesis, Memorial University of Newfoundland, 1992.

31

https://doi.org/10.1111/biom.12647
https://doi.org/10.1111/biom.12647

	Introduction
	Other Related Works
	Our Contributions
	Technique Overview
	Why previous l-0 approaches cannot be adapted
	Our techniques

	Preliminaries
	l-0 Ultrametrics
	Construction of Sketches
	Structural Clustering
	Algorithm for V-Structural Clustering (Agreement Correlation Clustering)
	S-Structural Clustering
	Computing Agreements

	Main Algorithm
	Lower bounds

	l-inf Ultrametrics
	l-inf Ultrametrics lower bound
	l-inf Ultrametrics algorithms

	l-0 and l-inf Tree Metrics
	l-infty Best-Fit Tree Metrics
	l-0 Best-Fit Tree Metrics

