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1 Introduction

Feynman integrals are central quantities in Quantum Field Theory, as they are essential build-

ing blocks for computing scattering amplitudes which are one of the bridges between theory

and experiment [1]. Integrals of similar type have also appeared in the description of the scat-

tering of compact objects in classical General Relativity in the so-called post-Minkowskian

expansion [2–4]. It is therefore necessary to develop sophisticated techniques which help us

compute this type of integrals, in particular, by understanding their mathematical structure

and underlying geometrical information. It turns out that at the core of all these integrals are

classes of special functions related to complex manifolds where the simplest is the Riemann

sphere where multiple polylogarithms (MPLs) [5–10] appear. However, diagrams needed for

cutting-edge computations give rise to special functions beyond the ones that live on the Rie-

mann sphere. These functions beyond MPLs are associated to periods of different geometries.

The first example being the massive sunrise diagram in even dimensions which can be asso-

ciated to an elliptic curve (which is isomorphic to a torus) [11–15]. Recent progress has been

made to go beyond the torus, on the one hand by studying Feynman integrals associated to

higher genus Riemann surfaces [16, 17] and their function space [18–20]. On the other hand

by studying Feynman integrals associated to higher dimensional Calabi-Yau manifolds [21–23]

and their function space [24, 25].

Feynman integrals typically diverge and need to be regulated. The most commonly used

regularisation scheme is dimensional regularisation [26, 27], where the integrals are computed

in D = D0 − 2ǫ dimensions. They can then be expanded around ǫ = 0. An extremely pow-

erful technique to compute the integrals is through the differential equations (DEs) [28–30],

which are derived using integration-by-parts (IBPs) identities [31, 32] among Feynman inte-

grals. This method is extremely convenient because we are not interested in the solution for

generic values of ǫ, but rather as a Laurent series in ǫ. Moreover, in the last decade, it has

been observed that it is often possible to find bases of Feynman integrals whose differential

equations take a specific form, often referred to as canonical form [33]. The dependence on ǫ

can then be factorised out of the differential equation system, which also makes the analytic

properties of their solutions close to ǫ = 0 completely manifest: each order in the Laurent

series can be expressed as Chen iterated integrals [34] over the differential forms appearing in

the connection. However, a completely general approach to finding canonical bases, even in

the polylogarithmic case is not yet fully understood. Moreover, starting at two-loops, finding

the canonical basis will involve a gauge transformation dependent on period functions of ge-

ometries beyond the Riemann sphere.

In recent years, substantial effort has been dedicated to extend the definition of canonical

differential equations to Feynman integrals beyond polylogarithms, and much progress has

been made, in particular in the elliptic and one-parameter Calabi-Yau cases [35–44]. In par-

ticular, ref. [44] provides an ansatz to bring equal mass banana integrals, with underlying

single-scale Calabi-Yau geometry, at any loop order, into ǫ-factorised form. Moreover, very

recently in ref. [45], a generalisation of the method of ref. [35] has been developed for generic
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integrals with an underlying Calabi-Yau geometry (and beyond), providing explicit calcu-

lations for cutting edge Calabi-Yau one-scale integrals. The applicability of this algorithm

has been explicitly demonstrated for many state-of-the-art problems containing integrals of

elliptic type [35, 46–50] and for their generalisation to Calabi-Yau varieties [45, 48, 49, 51–53]

and higher-genus surfaces [17].

In this paper, we propose a generalisation of the method introduced in ref. [44], to multi-scale

Calabi-Yau integrals. In the preparation of this work, we have realised that our generalisa-

tion coincides with the method from refs. [35, 45], applied to multi-scale Calabi-Yau Feynman

integrals. In fact, this is the first application of refs. [35, 45] to this class of integrals. To

support our claim, we derive locally at the MUM-point, for the first time, a canonical differ-

ential equation for banana integrals with unequal mass.

This paper is organised as follows. In section 2 we set our conventions and review the in-

struments that will be needed for the procedure we propose. Following this, in section 3,

we present our procedure for multi-variate Feynman integrals with underlying Calabi-Yau

geometry. In section 4, we recompute a canonical form for the unequal mass sunrise inte-

gral using the method presented before. Finally, in section 5, we apply our construction

to compute a canonical form for integrals with underlying multi-variate Calabi-Yau geome-

try, namely, the three-loop banana with two unequal masses (two-parameters K3) and the

four-loop banana with two unequal masses (two-parameters CY 3-fold). Additionally, we

include two appendices in which we prove the validity of our procedure for the elliptic and

Calabi-Yau two-fold case. The main quantitative results will be compiled in the ancillary files

sunrise.nb, banana 3 1.nb, banana 2 2.nb and banana 4 1.nb.

2 Definitions and Review

2.1 Feynman integrals and their differential equations

Let us consider L-loop scalar Feynman integrals with e external legs. We work in the frame-

work of dimensional regularisation where we pick (unless specified otherwise) the dimension

to be D = 2 − 2ǫ, since our examples are two-point functions. In this framework ǫ tracks

the UV and IR behaviour of the integral. A given Feynman integral can be expressed by the

formula:

Iν1,ν2,...,νr({pi · pj,m2
i }

︸ ︷︷ ︸
z

; ǫ) = eLγEǫ
∫




L∏

j=1

dDlj

iπD/2




1

Dν1
1 D

ν2
2 . . . Dνr

r
, (2.1)

where γE is the Euler-Mascheroni constant, the exponents of the propagators νj are integers

and the propagators Dj are defined through:

Dj =

(
L∑

k=1

αjklk +

e−1∑

k=1

βjkpk

)2

−m2
j , (2.2)

where αjkβjk can be chosen to lie in {0,±1}. Any integral of the form (2.1) can be reduced

to a finite linear combination of master integrals (MIs) which has fixed νj . Every integral
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belongs to a sector, defined as the set of integrals from the family that share exactly the

same propagators, i.e., Iν1,...,νr and Iν′1,...,ν′r belong to the same sector if θ(νi) = θ(ν ′i), for all

1 ≤ i ≤ r, where θ denotes the Heaviside step function, θ(x) = 1 if x > 0 and θ(x) = 0

otherwise. Determining these MIs and their associated differential equation can be achieved

through the Laporta algorithm, where different software implementations are available [54–

58]. This leads to a system of linear first-order differential equations for the vector of MIs I

that can be shown to be [28, 30, 33, 59, 60]:

dI(z; ǫ) = A(z; ǫ) · I (z; ǫ) , (2.3)

where A is a matrix of rational one-forms. To be able to solve for I, we aim to find a gauge

transformation U:

M = U · I ,
Ã = U ·A ·U−1 + dU ·U−1 , (2.4)

such that the differential equation is ǫ-factorised:

dM (z; ǫ) = ǫÃ (z) ·M (z; ǫ) . (2.5)

Once this is achieved, one can solve for M:

M (z; ǫ) = Pexp
(

ǫ

∫
z

z0

Ã(z′)

)

M(z0; ǫ) , (2.6)

obtaining a Laurent series by expanding the path-ordered exponential, that can be easily

truncated at the desired order. Note that unless specified otherwise the entries of Ã are

closed one-forms. This will lead to iterated integrals over algebraic one-forms.

2.2 Feynman integrals and their geometry

Of special interest in this paper will be the so-called maximal cuts, which correspond to

integrals where all propagators are on-shell. As pointed out in ref. [45], in a single maximal

cut there can be more geometries, and the correct framework to use is the mixed Hodge

structure (MHS). Let us briefly review this.

Mixed Hodge structure: First, since we want to evaluate the master integrals in

D = D0 − 2ǫ, we need to make a good choice for D0. It turns out that analysing the integrand

in Baikov representation often reveals which is the right integer dimension D0 to choose. It

may be possible to identify more than one geometry from a given maximal cut. For example,

the family of ice-cone integrals with equal masses hides two different Calabi-Yau varieties in

the same maximal cut [61].

Let us now focus on only one of the geometries in the maximal cut and let us assume that

it describes an l-dimensional manifold. Each geometry on the maximal cut gives rise to a

set of (independent) differential l-forms, which generate (a subspace of) the lth cohomology
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group H l(X,Q). From algebraic geometry [62, 63] we know that the cohomology of an

algebraic variety always carries a mixed Hodge structure (MHS). This roughly means that

the lth cohomology group H l(X,Q) of an algebraic variety is always equipped with two

filtrations. There is an increasing filtration called the weight filtration,

0 =W−1 ⊆W0 ⊆W1 ⊆ . . . W2l = H l(X,Q) , (2.7)

and a decreasing filtration on the complexification called the Hodge filtration

0 ⊆ . . . ⊆ F p ⊆ F p−1 ⊆ . . . ⊆ F 1 ⊆ F 0 = H l(X,C) . (2.8)

The graded pieces Wk/Wk−1 naturally carry a pure Hodge structure of weight k induced

by the Hodge filtration. The pure Hodge structures can be seen as the MHS carried by

the cohomology of projective smooth varieties, in which case the MHS is concentrated in

weight l : 0 =Wl−1 ⊂Wl = H l(X,Q).

It was argued in ref. [45], that the MHS captures precisely how to find a good starting basis.

In particular, the weight filtration captures the fact that some forms may have simple poles.

This is because the weight-graded pieces tell us how the cohomology of X contains pieces

coming from ‘simpler’ varieties. We refer the reader to ref. [45] for a more in-depth review

and explanation.

Some examples: In all the examples we consider, we find that the maximal cut only

features one geometry. In cases where there are more than one geometry, we expect the

differential equation to split into different sub-blocks, provided that we choose a good starting

basis as predicted by the MHS. Equivalently as putting the propagators on-shell, a maximal

cut of a Feynman integral is obtained by evaluating the integrand in Baikov representation

on a contour that encircles all the propagator poles. The integration contour varies according

to the geometry of the Feynman integral considered. For instance, at one loop we encounter

complex curves of genus zero, namely Riemann spheres. In this case, maximal cuts, in the

appropriate integer dimension, evaluate to algebraic functions and the differential one-forms

obtained in the differential equation are the so-called dlog-forms, which after integration

evaluate to multiple polylogarithms (MPLs) [5–10].

Starting from two-loops, we encounter more involved geometries [12–15, 64–67], the simplest

example of which appears in the sunrise graph with equal non-zero masses. When computing

the maximal cut of this integral in D0 = 2, we get

MaxCut(I)

∣
∣
∣
∣
D=2

∼
∫

dz
√

P4(z)
, (2.9)

where P4(z) is a polynomial of degree four and therefore has four different roots. The poly-

nomial P4(z) defines the zero-locus of a (complex) elliptic curve, thus two independent cycles

can be chosen as integration contours around/across branch cuts and we get two independent

functions, which correspond to the periods of the elliptic curve [11–15]. Since complex elliptic
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curves are isomorphic to complex tori, the standard geometric coordinates for a Feynman

integral with n moduli, are τ, z1, ..., zn−1, where τ is the modular parameter defined as the

ratio of the two periods and z1, ..., zn−1 are additional marked points (one of them can be

fixed using translation symmetry). In that case, differential one-forms can be written in the

following form:

ωmodular
k = 2πifk(τ)dτ , (2.10a)

ωKronecker
k = (2πi)2−k

[

g(k−1)(z, τ) dz + (k − 1) g(k)(z, τ)
dτ

2πi

]

, (2.10b)

where fk(τ) is a modular form of weight k for some congruence subgroup and g(k)(z, τ) are

the coefficients of the expansion of the Kronecker function. A similar analysis applies when

the degree of the polynomial under the square root in the maximal cut is three [68, 69].

Two ways to go beyond elliptic curves have appeared within the framework of Feynman

integrals. One is given by curves associated to Riemann surfaces of higher genus [17, 70]. The

other corresponds to higher-dimensional manifolds, in particular Calabi-Yau manifolds [21,

22, 71–74]. The simplest example where one observes this geometry are the so-called L-loop

banana integrals for L ≥ 2 [75] (the sunrise integral at L = 2 has an underlying geometry

of a one-dimensional Calabi-Yau manifold which in turn is a torus). We will review their

ǫ-factorisation in section 2.6.

To summarise, we have seen that Feynman integrals are related to different geometries and

that one way to study these geometries and their associated one-forms amounts to studying

the maximal cut of the integral. Moreover, as we will see in section 2.3, the maximal cut can

be shown to solve a homogeneous higher-order Picard-Fuchs (PF) equation, that translates

into a coupled block of the differential equation matrix. Hence, finding the transformation to

a canonical basis for maximal cuts is an important step for finding the canonical basis of the

full Feynman integral family.

2.3 Picard-Fuchs operators

It is possible to rewrite the system of first order differential equations (2.3) into a system of

inhomogeneous higher-order differential equations, which will take the form:

L(k)(z, ǫ) Iν1,...,νr(z; ǫ) = Rν1,...,νr(z; ǫ) , (2.11)

where k is the order of the differential operator and the inhomogeneity Rν1,...,νr(z; ǫ) contains

master integrals from lower sectors. Hence, the differential equation for the maximal cut is

determined by setting Rν1,...,νr(z; ǫ) to zero. Differential equations of Feynman integrals are

expected to have only regular singularities i.e. Eq. (2.11) is a Fuchsian differential equation.

The differential operator L(k)(z, ǫ) is referred as the Picard-Fuchs operator and takes the form

L(k)(z, ǫ) =
∑

i1,...,in≥0

ak,i1,...,in(z; ǫ)∂
i1
z1 ...∂

in
zn , (2.12)
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where k = Max{i1 + i2 + · · · + in} and ak,i1,...,in(z; ǫ) are polynomials in z and ǫ. The PF

operator splits into two parts: L(k)(z, ǫ) = L
(k)
0 (z)+L

(k)
ǫ (z, ǫ),1 where L

(k)
0 contains the O(ǫ0)

part of the operator and therefore annihilates the maximal cuts at ǫ = 0.

Let us briefly review some strategies to solve the homogeneous equation L
(k)
0 f(z) = 0, where

we follow ref. [73]. Starting from a one-parameter PF operator, we write:

L
(k)
0 = qk(z) ∂

k
z + qk−1(z) ∂

k−1
z + ...+ q0(z) , qk(z) 6= 0 , (2.13)

where qi(z) are polynomials and we assume that the qi(z) do not have any common zero. The

leading coefficient qk(z) =: Disc(L
(k)
0 ) is called the discriminant. It is convenient to also write

the operator in an equivalent form

L
(k)
0 = q̃k(z) θ

k + q̃k−1(z) θ
k−1 + ...+ q̃0(z) , q̃k(z) 6= 0 , (2.14)

where q̃i(z) are polynomials and θ = θz := z∂z are the Euler operators. Let pi(z) := qi(z)/qk(z)

for 0 < i < k. The differential equation has an ordinary point at z = z0, if the coefficient

functions pi(z) are analytic in a neighbourhood of z0 for all 0 < i < k. A point z0 is called a

regular singular point if (z − z0)
k−ipi(z) are analytic in a neighbourhood of z0. An irregular

singular point is neither an ordinary nor a regular singular point. We can find all the singular

points z0 6= ∞ looking at the zeroes of the discriminant and for the point at infinity z0 = ∞,

one introduces the variable t = 1/z and proceeds with the same analysis around t = 0. A dif-

ferential equation without irregular singular points is called a Fuchsian differential equation.

This equation has k independent solutions and we can obtain a basis using Frobenius method.

For every point z ∈ C, we can construct k linearly independent local solutions. Each of them

is given in terms of power series which converge up to the nearest singularity. These local

solutions can be analytically continued to multivalued global solutions over the whole param-

eter space. Unless stated otherwise we will always be looking for the solution around z0 = 0.2

The method starts by solving the indicial equation

q̃k(0)α
k + q̃k−1(0)α

k−1 + ...+ q̃0(0)α = 0 , (2.15)

which we solve for α and its solutions are called the indicials or local exponents at z0 = 0.

For what follows, we are particularly interested in the solutions around a special point where

all the indicials are equal3. This point is called point of maximal unipotent monodromy

(MUM-point) and the basis of solutions can be chosen to be a tower of logarithmic solutions,

starting from a power series-type solution ψ0, also called holomorphic solution, a single log-

arithmic solution ψ1, a double logarithmic solution ψ2 until we reach logk−1(z); we call the

1From now we leave the z and ǫ dependence of the operators implicit.
2For solutions away from zero, we can perform the following substitutions: if z0 6= ∞, then z → z′ = z− z0

and if z0 = ∞, then z → z′ = 1/z
3For simplicity, to show how our method works, we compute the differential equation for our three-loop and

four-loop examples explicitly only expanding around the MUM-point. We comment later on how to proceed

around a different point.
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basis ψ0(z), ψ1(z), ..., ψk−1(z) the Frobenius basis.

Let us now turn to the multi-parameter Picard-Fuchs operator. The first difference is that

we have a set of differential operators D = {L(k1)
1 , ..., L

(ks)
s } and the solutions have to be

annihilated simultaneously by all elements in D:

Sol(D) := {f(z)|L(ki)
i f(z) = 0 for all operators L

(ki)
i ∈ D} . (2.16)

The set D generates a left-ideal of differential operators. If L
(ki)
i ∈ D and f ∈ Sol(D),

then L̂L
(ki)
i f(z) = 0 for any differential operator L̂. We can also generalise the method of

Frobenius to the multi-variate case. Around singular points the solutions look like:

(
r∏

i+1

zαi

i

)
∑

j1,...,jr≥0
k1,...,kr≥0

aj1,...,jr,k1,...,kr log
j1(z1) · · · logjr(zr) zk11 · · · zkrr , (2.17)

where aj1,...,jr,k1,...,kr are polynomials in z and ǫ. This local basis can be analytically continued

to a global solution. This is, however, a harder problem. We are able to write our first example

(the unequal masses sunrise integral) using closed solutions. The three- and four-loop banana

integrals with two unequal masses will, however, be ǫ-factorised using local solutions only and

we leave a solution in terms of known functions for future work with some recent progress in

that direction in ref. [24].

In the rest of the paper we will consider the following Picard-Fuchs operators:

L(k) =L
(k)
0 + L(k−1)

ǫ (2.18)

=

|i|=k
∑

i1,..,ir=0

q
(0)
i1,..,ir

(z) ∂i1z1 ...∂
ir
zr + ǫ

|i|=k−1
∑

i1,..,ir=0

q
(1)
i1,..,ir

(z) ∂i1z1 ...∂
ir
zr

+ ǫ2
|i|=k−2
∑

i1,..,ir=0

q
(2)
i1,..,ir

(z) ∂i1z1 ...∂
ir
zr + . . . + ǫkq

(k)
0 (z) ,

with at least one non-vanishing term q
(0)
i1,...,ik

. Note that the first term corresponds to L
(k)
0 .

This generalises the operators considered in some parts of ref. [45] to several variables. Also

note that, on the maximal cut, this implies

L
(k)
0 I1 = −L(k−1)

ǫ I1 , (2.19)

i.e., we can trade the O(ǫ0) part of the PF, with the lower order ǫ-dependent PF.

Calabi-Yau differential operators: Since in the following, we will consider Feynman

integrals with underlying Calabi-Yau geometry, it is relevant to review a subset of the Picard-

Fuchs operators, the so-called Calabi-Yau differential operators. A thorough description of

Calabi-Yau operators will be left to the literature [73, 76] and we will just review the most

relevant properties.
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A (l + 1)th-order Calabi-Yau operator L
(l+1)
0 has a MUM-point, which for our purpose we

assume to be located at z = 0. At the MUM-point, the Frobenius basis ψi for i = 0, 1, . . . , l,

gives a basis of solutions to the operator L
(l+1)
0 . It reads

ψi = zr
i∑

j=0

1

j!
logj(z)Si−j(z) , (2.20)

where r is the local exponent or indicial of our solutions and Si(z) =
∑∞

j=0 σi,jz
j are local

holomorphic series which are normalised by σi,0 = δi0. At the MUM-point, the Frobenius

basis ψi for i = 0, 1, . . . , l, exhibits the full logarithmic tower up to logl(z). From the first two

solutions, we can construct4

t(z) =
ψ1

ψ0
= log(z) + . . . , q(z) = et = z + . . . , (2.21)

which generalises the τ parameter of an elliptic curve and gives a local (at the MUM-point),

canonical variable on the moduli space of Calabi-Yau varieties. The dots denote local analytic

terms in z. The inverse of this map is also known as the mirror map

z(q) = q + . . . . (2.22)

We can define recursively the Nj operators of ref. [76]

N0 = 1 , Nj+1 = x
∂

∂x

1

Nj(ψ
(l)
j )

Nj , (2.23)

and the structure series

αj =
1

Nj(ψj)
. (2.24)

This lets us define the Y -invariants as

Yj =
α1

αj
, (2.25)

which enjoy the symmetry

Yj = Yl−j . (2.26)

Note that by definition we have Y1 = Yl−1 = 1. The structure series αi and the Y -invariants

are local analytic series in z around the MUM-point. Finally, we can use the Y -invariants to

write the Calabi-Yau operator L
(l−1)
0 in a factorised form

L
(l−1)
0 = β(q)

[

θ2q
1

Y2(q)
θq

1

Y3(q)
θq . . . θq

1

Y3(q)
θq

1

Y2(q)
θ2q

]
1

ψ0(q)
, (2.27)

also known as the local normal form. We have expressed the operator through the variable q

using the mirror map z(q) given in Eq. (2.22). The function β(q) is necessary for a proper

normalisation of the operator, and we have used the logarithmic derivative (sometimes called

Euler operator) θq = q∂q = ∂τ .

4In the rest of this work, we ignore factors of 2πi for simplicity.
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2.4 Hodge filtration & Griffiths transversality

Let us review the instruments needed to study the (co)homology of Calabi-Yau manifolds,

where we closely follow ref. [73]. Calabi-Yau l-folds Ml are complex l-dimensional Kähler

manifolds. They are equipped with a Kähler form ω of Hodge-type (1, 1) that resides in the

cohomology groupH1,1(Ml,C). The extra condition of being Calabi-Yau implies the existence

of a non-trivial holomorphic (l, 0)-form Ω spanning H l,0(Ml,C).

For each point z0, the fibreM
z0
l over it enjoys a Hodge decomposition of its middle dimensional

cohomology:

H l(Ml,C) =
⊕

p+q=l

Hp,q(Ml) with Hp,q(Ml) = Hq,p(Ml). (2.28)

The so-called Hodge numbers hp,q give the dimension of Hp,q(Ml) and can be organised into

the Hodge diamond:

hl,l

hl,l−1 hl−1,l

. .
. ...

. . .

hl,0 . . . . . . h0,l

. . .
... . .

.

h1,0 h0,1

h0,0

. (2.29)

For instance, when considering a Calabi-Yau one-fold, (which is isomorphic to an elliptic

curve) we find the holomorphic (1, 0)-form Ω = dx/y and its Hodge diamond reads:

1

1 1

1

. (2.30)

We can now define the periods of a Calabi-Yau manifold as pairings between the middle

homology and middle cohomology. The maximal cuts, at ǫ = 0, of Feynman integrals

with a single Calabi-Yau geometry are periods and the dimension of the middle cohomol-

ogy |h| =∑l
k=0 h

l−k,k corresponds to the number of master integrals on the maximal cut in

integer dimension D = D0 for some judicious choice of D0. In particular we choose an integral

topological basis Γi, for 1 ≤ i ≤ |h| in the middle homology Hl(Ml,Z), such that the periods

are given by

Πij =

∫

Γi

Γ̂j , (2.31)

with Γ̂j some basis of H l(Ml,C).

As an example, let us look at an elliptic curve E in Legendre form:

E : y2 = x (x− 1) (x− z) . (2.32)
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One may choose a symplectic basis such as the usual A-cycle and B-cycle

S1
a, S

1
b ∈ H1(E ,Z) , (2.33)

with S1
a ∩ S1

b = −S1
b ∩ S1

a and S1
a ∩ S1

a = S1
b ∩ S1

b = 0 in integral homology. Then

Π11(z) =

∫

S1
a

dx

y
= 2

∫ 1

0

dx

y
, (2.34a)

Π12(z) =

∫

S1
b

dx

y
= 2

∫ z

1

dx

y
, (2.34b)

can be evaluated in terms of complete elliptic integral of first kind K(k) and K(1 − k) for

1 ≤ z ≤ ∞ through: (

Π11(z)

Π12(z)

)

= 4

(

1 i

0 −i

)

·
(

K(z)

K(1− z)

)

, (2.35)

with the definition:

K(k) =

∫ 1

0

dt
√

(1− t2)(1− k2t2)
. (2.36)

Introducing τ = Π12(z)/Π11(z) and using it as the complex modulus, we can express the

periods of the elliptic curve as modular forms of weight one in τ .

An important property of Calabi-Yau manifolds is that when varying around a point z0, the

holomorphic one-form Ω(z0 + δ) gets admixtures of forms of other types. We leave a more

comprehensive discussion to the literature, for example ref. [77] and focus on the consequences

that matter to us. The main idea we will need is the Griffiths transversality property of the

derivative:

∂kzΩ(z) ∈ Hl,0 ⊕Hl−1,1 ⊕ · · · ⊕ Hl−|k|,|k| , (2.37)

where ∂kz := ∂k1z1 ...∂
kr
zr and |k| =∑hn−1,1

i=1 ki and z controls the moduli space of the Calabi-Yau

manifold Ml. Note that just by taking derivatives of Ω one does not obtain the form Ω̄ we

expect from the Hodge decomposition in Eq. (2.28). Through Hypercohomology theory one

can show that the cohomology spanned by the meromorphic differentials obtained by differ-

entiating (as in Eq. (2.37)) is cohomologically equivalent to the Hodge cohomology [78, 79],

this motivates the introduction of the Hodge bundles Hp,q.

Hence, for the Calabi-Yau manifolds that have appeared in the Feynman integrals literature,

to span the middle cohomology Hl(Ml,C) one can just take a basis of derivatives of the holo-

morphic l-form Ω.5 This will prove very useful when looking for a good starting basis for

Feynman integrals with Calabi-Yau geometry. Note that all differentials but Ω are meromor-

phic. As an example, let us return to the elliptic curves from Eq. (2.32). The derivative with

5Note that this is not always the case: for Calabi-Yau l-folds with l ≥ 4, taking derivatives of the holo-

morphic form is not always enough to span the full middle cohomology, i.e., manifolds with Hodge num-

bers (1, 1, h, 1, 1) with h > 1. The examples we consider are at most Calabi-Yau three-folds so we do not

encounter this problem.
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respect to z of Ω = dx/y, can be written, up to exact terms, as a linear combination of dx/y

and xdx/y, where the latter is a differential of second kind. Pairing this differential of second

kind with the cycles (2.33) will yield the complete elliptic integrals of second kind E(k2) and

E(1− k2) for 1 ≤ z ≤ ∞ through:

(

Π21(z)

Π22(z)

)

= 4

(

−1 i

0 −i

)

·
(

E(z) −K(z)

E(1− z)

)

, (2.38)

with the definition:

E(k) =

∫ 1

0

dt(1− k2t2)
√

(1− t2)(1− k2t2)
. (2.39)

Equation (2.37) also implies that there are relations between derivatives. These relations form

the Picard-Fuchs differential ideal L
(i)
0 that annihilate the periods: L

(i)
0 Πj(z) = 0. Returning

to our elliptic example (2.32), we have Ω(z) ∈ H(1,0), ∂zΩ(z) ∈ H(0,1)⊕H(1,0), which therefore

implies:

∂2zΩ(z) ∈ H(1,0) ⊕H(0,1) , (2.40)

which means that ∂2zΩ(z) can be written as a linear combination of Ω(z) and ∂zΩ(z). Hence

the same is true for the periods: ∂2zΠ1j(z) can be written as a linear combination of Π1j(z)

and ∂zΠ1j(z). Explicitly, we find:

∂2

∂z2
Π11(z) =

1− 2z

(z − 1)z

∂

∂z
Π11(z) +

1

4z(1 − z)
Π11(z) , (2.41)

which can be derived by using the Griffiths-Dwork reduction [80–84] for the elliptic inte-

grals K(k2) and K(1− k2) and use the translations from Eqs. (2.35) and (2.38).

Quadratic relations: Periods (which correspond to maximal cuts) undergo quadratic re-

lations [85, 86]. In particular, for periods of Calabi-Yau manifolds we find:

Π(z)TΣ∂kzΠ(z) =

∫

Ml

Ω ∧ ∂kzΩ(z) =

{

0 for 0 ≤ r < l,

Ck(z) for |k| = l,
(2.42)

where Σ is called the intersection matrix and Ck(z) are rational functions in z sometimes

called the l-point Yukawa couplings. This follows from Eq. (2.37) as to get a non vanishing

integral over Ml, an ω
l,l-form is needed. But since Ω ∈ Hl,0, we need ∂kzΠ(z) ∈ H0,l ⊕ . . . ,

which is only realised for |k| = l. These relations will be useful in simplifying the differential

equation matrix.

Frobenius algebra: A Frobenius algebra is a graded vector space A = ⊕A(i), i ≥ 0 with a

symmetric non-degenerate bilinear form η and a cubic form (also called three-point Yukawa

coupling),

C(i,j,k) : A(i) ⊗A(j) ⊗A(k) → C , (2.43)
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where the upper indices are such that

i+ j + k = l , (2.44)

with l the dimension of the manifold6. Among the defining properties of the three-point

coupling is the symmetry under any permutation of the indices: C
(i,j,k)
a,b,c = C

σ(i,j,k)
σ(a,b,c).

The Frobenius structure is determined by the Picard-Fuchs ideal combined with Griffiths

transversality in Eq. (2.37), which means that these are the only needed inputs to compute the

three-point coupling. These are the couplings that will later appear in the generic differential

equation (3.22) and their computation is necessary to write a basis for master integrals that

satisfy an ǫ-factorised differential equation. Since our examples have an underlying geometry

being a l-dimensional Calabi-Yau manifold (with l = 1, 2, 3), we explicitly compute them

for these dimensions. Note that for l = 1, 2 the couplings do not appear in the differential

equation with respect to the moduli τa. For higher dimensional examples, we refer to ref. [87].

Yukawa couplings for a Calabi-Yau three-fold: Let us explicitly show how this struc-

ture arises for a Calabi-Yau three-fold with hodge numbers:

h(3,0) = h(0,3) = 1 , h(2,1) = h(1,2) = ĥ , (2.45)

which implies that we can find 2ĥ+ 2 independent periods

ψ(z) = (ψ0, ψ
(1)
1 , . . . , ψ

(ĥ)
1 , ψ

(1)
2 , . . . , ψ

(ĥ)
2 , ψ3) , (2.46)

where the subscript determines the logarithmic power of the period in the Frobenius basis.

These periods have been chosen by requiring the intersection matrix Σ to be antidiagonal

Σ =

(

0 1ĥ×ĥ

−1ĥ×ĥ 0

)

. (2.47)

After defining the complex structure moduli as usual:

τa =
ψ
(a)
1 (z)

ψ0(z)
, a = 1, ..., ĥ , (2.48)

we can use the Griffiths transversality conditions (2.42) to define the Yukawa three-couplings:

ψ(z)

ψ0(z)
·Σ · ∂

∂τa

∂

∂τb

∂

∂τc

ψ(z)

ψ0(z)
= Ca,b,c(z) . (2.49)

Let us now connect with the notation commonly used in the string theory literature (e.g.

section 2.5.5 of ref. [88]) by defining the pre-potential F :

F =
1

2

(
ψ3

ψ0
+ τa

ψ
(a)
2

ψ0

)

, (2.50)

6Our examples have manifolds with dimension of at most three (i = j = k = 1), this is why we drop the

upper indices, except in paragraph 3.4 where they are needed.
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which we can connect through Eq. (2.42) to the periods in Eq. (2.46) by:

∂

∂τa
F =

ψ
(a)
2

ψ0
. (2.51)

It also follows that the Yukawa three-couplings can be expressed as

Ca,b,c =
∂

∂τa

∂

∂τb

∂

∂τc
F . (2.52)

With this new notation, let us now write a basis for the cohomology:

Ω̂0 = α0 + τa αa −
∂

∂τa
F βa −

(

2F − τa
∂

∂τa
F
)

β0 , (2.53a)

ξ̂a = αa −
∂

∂τa
∂

∂τ b
F βb −

(
∂

∂τa
F − τ b

∂

∂τa
∂

∂τ b
F
)

β0 , (2.53b)

ξ̂a = −βa + τa β0 , (2.53c)

Ω̂0 = β0 , (2.53d)

where αI and βI , with I = 0, ..., ĥ, span a symplectic basis for the cohomology. Notice that

this basis is built by starting with the sum of the periods (2.46) normalised by the holomorphic

period ψ0:

Ω̂0 =
1

ψ0

(

ψ0 α0 +

ĥ∑

a=1

ψ
(a)
1 αa +

ĥ∑

a=1

ψ
(a)
2 βa + ψ3 β

0

)

. (2.54)

The other elements ξ̂a, ξ̂
a and Ω̂0 complete Ω̂0 to a basis in H3(M,C) and are chosen such

that the following differential equation holds:

∂

∂τa








Ω̂0

ξ̂b
ξ̂b

Ω̂0








=








0 δca 0 0

0 0 Ca,b,c 0

0 0 0 δba
0 0 0 0








·








Ω̂0

ξ̂c
ξ̂c

Ω̂0







. (2.55)

This structure will be of relevance to us in section 3.3, when setting up the basis of MIs for an

integral with underlying Calabi-Yau three-fold geometry and in section 5.2 when computing

an explicit example of this type.

2.5 Abelian differentials of first, second and third kind

Here we review abelian differentials of first, second and third kind. In refs. [17, 35, 45] it has

been pointed out that the master integrals of an elliptic sector can be interpreted as elliptic

integrals of the first, second and third kind. We will use this understanding to interpret the

decoupling master integrals we refer to in section 3.

Consider a compact Riemann surface X as a complex manifold of dimension one. On X we
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can have zero-forms (scalar functions f(z, z̄)), one-forms (differentials), which locally look

like

ω = ωz(z, z̄)dz + ωz̄(z, z̄)dz̄ , (2.56)

and two-forms given by their wedge product. For applications to Feynman integrals we are

mostly interested in closed one-forms (dω=0), as the ǫ-factorised differential equation matrix

we want to construct will be a matrix of closed one-forms.

A differential η is called holomorphic (meromorphic) if, in a local coordinate z, it has the

form h(z) dz where h(z) is an holomorphic (meromorphic) function.

From the Riemann-Roch theorem we know that the dimension of the vector space of holo-

morphic differentials on X is equal to the genus. So, for integrals with an underlying elliptic

geometry we have only one holomorphic differential.

We can now organise these differentials into three types:

• Holomorphic differentials are called Abelian differentials of the first kind.

• Meromorphic differentials with vanishing residues are called Abelian differentials of the

second kind.

• Meromorphic differentials with non-vanishing residues are called Abelian differentials

of the third kind.

Example: an elliptic curve: Let us come back to our example of the Legendre curve:

E : y2 = x(x− 1)(x − z) , (2.57)

where we pick the root ordering 1 < z <∞. Topologically this corresponds to two Riemann

spheres connected by two branch cuts, which we can choose to go from 0 to 1 and from z to ∞.

If we allow differentials of the third kind, with non-vanishing residue at a marked point c, this

corresponds to a puncture on each of the Riemann spheres at the marked point c. Explicitly

one gets the following forms of first, second and third kind:






dx

y
: differential of the first kind,

xdx

y
: differential of the second kind,

dx

y(x− c)
: differential of the third kind,

(2.58)

for c 6= {0, 1, z,∞}. With these three differential forms we expect there to be three cycles.

Two of these cycles correspond to the standard cycles around and across the branch cuts from

Eq. (2.33) which are identified with the A- and B-cycles of the torus. The remaining cycle can

be taken to be a contour around the puncture at x = c. Pairing the differentials of the first

and second kind with the cycle S1
a from Eq. (2.33) will lead to the complete elliptic integrals

of the first and second kind K(k) and E(k) according to Eqs. (2.35) and (2.38), respectively.
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If we pair this cycle to differential of the third kind, we will find a complete elliptic integrals

of the third kind:

Π(a, k) =

∫ 1

0

dt
√

(1− t2)(1 − k2t2)

1

(1− at2)
, (2.59)

where a encodes the singularity c. The marked point c on the elliptic curve E gets mapped

to a point on the torus via Abel’s map A [68]:

A(z, c) = 2

∫ c

0

dx

y
= 4F

(

arcsin

√
c

z
, z

)

, (2.60)

where the second equality holds for 0 ≤ arcsin
√

c
z ≤ π

2 and we introduce the incomplete

integral of first kind:

F (φ, k) =

∫ sin(φ)

0

dt
√

(1− t2)(1− k2t2)
. (2.61)

Having now defined complete integrals of the first, second and third kind, we can show that

they follow a coupled differential equation:

∂

∂k






K(k)

E(k)

Π(a, k)




 =






− 1
2k − 1

2(k−1) +
1
2k 0

− 1
2k

1
2k 0

0 1
2(a−1)(k−1) −

1
2(a−1)(k−a) − 1

2(k−a)




 ·






K(k)

E(k)

Π(a, k)




 , (2.62)

where we observe a 2×2 block that couples the elliptic integrals of first and second kind. The

integral of third kind has a homogeneous term and additionally couples back to integrals of

the first and second kind.

Extension to higher-dimensional Calabi-Yau manifolds It is possible to extend the

definition of the differentials of the first and second kind to manifolds beyond Riemann sur-

faces, however, it goes beyond the scope of this article, so we leave this discussion to the

literature [78]. Let us mention that the generalisation of the third kind integrals to higher

dimensional geometries is not very well understood and it is topic of on-going research [89].

So, to find an appropriate analogue of integrals of the third kind but in a Calabi-Yau block

we will rather use Griffiths transversality from Eq. (2.37) and properties of the differential

operators, as we will explain later in section 3.

2.6 ǫ-factorising L-loop banana integrals of equal mass

We end this review section by summarising the results of ref. [44]. Note that, for this case, it

has been shown in ref. [45] that the methods from ref. [44] and ref. [35] are equivalent. This

allows us to lay the ground for generalising to multi-variate Calabi-Yau Feynman integrals.

The integrals studied in ref. [44] are the so-called banana integrals, which are defined by

Iν1,...,νL,νL+1
(p2,m2; ǫ) = eLγEǫ

∫ L∏

j=1

(

dDlj

iπD/2
1

(l2j +m2)νj

)

1

((
∑L

i=1 li − p)2 −m2)νL+1
,

(2.63)
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where D denotes the number of space-time dimensions, ǫ the dimensional regularisation pa-

rameter, γE the Euler-Mascheroni constant and ν =
∑L+1

j=1 νj. We consider these integrals

in the natural dimension for two-point functions, which is D = 2 − 2ǫ and as kinematical

variable we choose x = −m2

p2
. As we have reviewed in section 2.4, a good basis for master

k1

k2

kl

∑
i ki − p

p p

Figure 1. The l-loop banana graph.

integrals in D = 2 is the derivative basis, that for a L−loop Banana integral takes the form:

IMC =











I1,1,...,1,1
∂xI1,1,...,1,1
∂2xI1,1,...,1,1

...

∂L−1
x I1,1,...,1,1











. (2.64)

However, an IBP analysis in D = 2 − 2ǫ reveals that another master integral is needed, a

tadpole I1,1,...,1,0, that vanishes on the maximal cut. Defining

I = (I1,1,...,1,0, IMC)
T , (2.65)

we can now set up a differential equation

dI = A(ǫ, x) · I , (2.66)

which is ǫ-factorised after having found the appropriate gauge transformation U such that

M = U · I with

dM = ǫ Ã(x) ·M. (2.67)

For L ≥ 2, the gauge transformation U will introduce periods of a Calabi-Yau (L − 1)-fold

into Ã.

Extracting the geometry from the differential equation: From Eq. (2.66) we can

extract the following inhomogeneous differential equation:

L(L)I1,...,1,1 = (−1)L
(L + 1)!

xL−1
∏

a∈S(L)(1 + ax)
ǫLI1,...,1,0 , (2.68)

with L(L) a PF operator of degree L and

S(L) =

{{
(2k)2|k ∈ {1, . . . , (L + 1)/2}

}
, L odd ,

{
(2k − 1)2|k ∈ {1, . . . , (L + 2)/2}

}
, L even .

(2.69)
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To find the type of transcendental functions needed to describe the integral, we consider

the maximal cut of the integral at ǫ = 0, since it solves the homogeneous differential equa-

tions. The differential equation for the maximal cut corresponds to the homogeneous part of

Eq. (2.68) at ǫ = 0:

L
(L)
0 I1,...,1,1 = 0 , (2.70)

where we defined L
(L)
0 = limǫ→0 L

(L) as in paragraph 2.3. It is possible to show that L
(L)
0 is

a Calabi-Yau differential operator (see paragraph 2.3), hence, the L solutions ψk

L
(L)
0 ψk = 0 , 0 ≤ k ≤ L− 1, (2.71)

are periods of a Calabi-Yau (L− 1)-fold as in Eq. (2.31).

Making an ansatz to ǫ-factorise the differential equation: In ref. [44] it was shown

that the ǫ-factorising gauge transformation for the L-loop equal mass banana integrals is

captured by a set of master integrals M = U · I of the following form:

M0 =
ǫL

ψ0
I1,...,1 ,

Mk =
1

Yk




1

ǫ

∂

∂τ
Mk−1 −

k−1∑

j=0

F(k−1),jMj



 , 1 ≤ k ≤ L− 1 , (2.72)

where the functions Fi,j are independent of ǫ and can be determined by a set of differential

equations (c.f. section 4.1 of ref. [44]). When all Fi,j are set to zero, the diagonal entries of

the connection are already in ǫ-form and the only entries which are not yet ǫ-factorised are

on the strictly lower triangular part of the connection.

Comparison with the method of refs. [35, 45]: As explained in ref. [45], the two

methods of refs. [35, 44, 45] in this case are equivalent, let us briefly recapitulate why. Let us

look at the ansatz in Eq. (2.72) before the ǫ-rescaling and adding the auxiliary functions Fij :

M0 =
1

ψ0
I1,...,1 ,

Mk =
1

Yk

∂

∂τ
Mk−1 , 1 ≤ k ≤ L− 1 . (2.73)

The period matrix (or Wronskian) WL of the maximal cut at ǫ = 0 of this system is given by

WL =













1 τ ψ2

ψ0
. . .

ψL−1

ψ0

0 1 ∂τ

(
ψ2

ψ0

)

. . . ∂τ

(
ψL−1

ψ0

)

0 0 1
Y2
∂2τ

(
ψ2

ψ0

)

. . . 1
Y2
∂2τ

(
ψL−1

ψ0

)

...
...

...
...

...

0 0 ∂τ
1
Y2

· · · 1
Y2
∂2τ

(
ψ2

ψ0

)

. . . ∂τ
1
Y2

· · · 1
Y2
∂2τ

(
ψL−1

ψ0

)













. (2.74)
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By direct computation it is possible to check that WL satisfies the following unipotent differ-

ential equation:

∂τ WL(τ) = NL(τ)WL(τ) , (2.75)

where NL is the nilpotent matrix:
















0 1 0 . . .

0 Y2(τ) 0 . . .

. . . 0 Y3(τ) 0 . . .

. . . 0
. . . 0 . . .

. . . 0 Y2(τ) 0

. . . 0 1

. . . 0
















. (2.76)

Hence we observe that, taking the derivative with respect to τ corrected by the appropriate Yi
prefactors, effectively corresponds to multiply the differential equation matrix by the inverse

of the semi-simple part of the Wronskian, which is the first rotation from the method of

refs. [35, 45]. The second rotation amounts to fixing the ǫ powers: in refs. [35, 45], each

integral that is acted on by k derivatives gets rescaled by 1
ǫk
. This corresponds to the same ǫ-

rescaling as in Eq. (2.72). The final rotation introduces additional functions, that are defined

such that the final differential equation is in ǫ-form. This corresponds to the functions Fi,j in

the ansatz from Eq. (2.72), showing that the two methods are equivalent.

3 Algorithm to construct a canonical basis

Now that we have reviewed the methods from refs. [35, 44, 45], commented on the Griffiths

transversality conditions in section 2.4, and discussed the structure of differentials of the first,

second and third kind in section 2.5, we are ready to propose our generalisation to several

scales. To this end, we will be focusing on diagonal blocks of the differential equation matrix,

where a single geometry is identified. This proposed basis will be aimed at Feynman integrals

with underlying multi-variate Calabi-Yau geometry, for which we will also be presenting some

examples in sections 4 and 5. To show that we are in fact doing the same transformations as

in refs. [35, 45], we will use the results presented in section 3 of ref. [87], where the authors

have explicitly computed the splitting of the period matrix in semi-simple and unipotent part

from periods defined on elliptic curves to Calabi-Yau four-folds.

Setting up the problem: First of all, we need to identify the geometry of the block we

are looking at. This can either be done with a Baikov analysis, or finding the periods of

the Picard-Fuchs operator. For cases like the banana integrals in two dimensions, the corner

integral (I1,...,1) evaluates to periods of a Calabi-Yau manifold on its maximal cut in D = 2

dimensions. This is, however, not always the case and one may have to shift dimensions or

take linear combinations of the available master integrals to make the underlying geometry
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manifest.

Once we have found the polynomial y2 = Pn(z1, ..., zn) defining the geometry, we then call I1
the integral whose maximal cut is a integral of a holomorphic form in a judicious choice of

integer dimension D0:
7

MaxCut I1

∣
∣
∣
∣
D=D0

=

∫
dz1...dzn

y
. (3.1)

From the (hyper)cohomology arguments reviewed in section 2.4 (with the highlighted restric-

tions), we also know how many derivatives to take to have a basis that spans the middle

cohomology in D = D0. In summary, the first step amounts to identify the master integrals

which can be built from taking derivatives. For example, in Eq. (2.65) we identify all except

the first master integral (which corresponds to a separate sector), as the first and second kind

differentials, obtained by taking derivatives of a single integral.

However, when the number of master integrals is greater than the dimension of the coho-

mology, we need to interpret the extra master integrals differently from the first or second

kind integral. If no separate geometry in the sector is identified, we look for integrals that

decouple from the rest of the sector at ǫ = 0 (as the integrals of the third kind in Eq. (2.62)).

We will refer to these as decoupling master integrals. At ǫ = 0, they can be treated as a

block decoupled from the master integrals built from derivatives. In particular, we want their

differential equation to read

∂

∂zi
Idecj =

(

q
(0)
(zi)

I1 +

dim(z)
∑

k=1

q
(0)
k (zi)

∂

∂zk
I1 + ǫ

(
q
(1)
(zi)

I1 + q
(1) dec
(zi)

Idecj

)
)

, (3.2)

where zi are variables from which we can write a Calabi-Yau PF operator for I1 which has

a MUM-point at zi → 0.8 Note in particular that there are no derivative terms ∂kziI1 with

k ≥ 2. For Feynman integrals with an underlying elliptic curve, this corresponds to a non-

vanishing residue around a simple pole that is not one of the roots of the zero locus of the

maximal-cut geometry as described in section 2.5. For instance, Eq. (2.62) has two master

integrals corresponding to the first and second kind differentials which saturate the middle

cohomology as evidenced by the Hodge diamond in Eq. (2.30), and the last master integral

must be a differential of the third kind, since we want it to decouple. However, even in elliptic

examples, see, for example, section 4.4 in ref. [35], not all the decoupling integrals have been

chosen such that their maximal cut is an integral of a differential form of the third kind

when ǫ = 0. Nevertheless, in that case, the differential equation takes the form of Eq. (3.2).

Hence, when the integrand analysis is too involved, or finding independent candidates of the

third kind is too complicated, we choose master integrals whose differential equation satisfy

Eq. (3.2). However, this is not the most generic form, for example in section 7.2.2 in ref. [45],

the decoupling master integral satisfies a more generic differential equation. This is because,

7For higher genus curves we have g holomorphic differential forms. In the Calabi-Yau case there is only

one holomorphic differential.
8For elliptics we have only one zi because there is only one canonical variable τ .
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unlike integrals of the third kind, this integral has a double pole. In that case, we see that we

need more functions than the ones that we use in our examples. Therefore the bases proposed

in this paper is valid for decoupling integrals whose differential equation takes the form of

Eq. (3.2). If such a candidate cannot be found, we follow the indications given in ref. [35, 45].

Some comments on the basis of MIs: The basis we propose has, for the examples we

computed, given a canonical form which displays:9

• An ǫ-factorisation of the differential equation dM = ǫ Ã ·M .

• A connection Ã with poles of at most order one at the MUM-point.

As explained in ref. [45], such a construction of an ǫ-factorised basis is performed locally,

close to a regular singular point of maximum unipotent monodromy (the MUM-point). The

basis obtained close to one point can then be used globally, upon a suitable redefinition of the

periods. Close to each point, one in general has to redefine the holomorphic solution ψ0 since,

the solution that is holomorphic close to a regular singular point, will not be holomorphic

when analytically continued to other points. Moreover, one must make sure that the periods

used close to a different point are consistent with the Picard-Fuchs operators. We leave to

the literature [45, 46, 48, 49, 51, 52] how to proceed when the analysis close to more than one

MUM-point is needed.

Starting from a good basis: Let us start by considering a sector to ǫ-factorise, for which

we assume it to have an underlying geometry of a Calabi-Yau l-fold with middle cohomology

Hodge numbers hl,0, hl−1,1, . . . , h0,l. At ǫ = 0 it can be shown that one possible solution to

the system evaluates to a holomorphic period at the MUM-point I1 = ψ0. Summing up the

previous two paragraphs, for such a sector we can assume the following starting basis:

I = ( I1, I2, . . . , In−1, In
︸ ︷︷ ︸

first, second kind integrals

, Idecn+1, . . . , I
dec
n+m

︸ ︷︷ ︸

decoupling integrals

) (3.3)

where for IA = (I1, . . . , In) is the derivative block and thus I2, . . . , In can be expressed as

derivatives of I1. The integrals IB = (Idecn+1, . . . , I
dec
n+m) in turn, are the decoupling master

integrals. The differential equation at ǫ = 0 takes the form:

d

(

IA
IB

)

=

(

A 0

B 0

)

·
(

IA
IB

)

(3.4)

and we additionally require the differential equation for IB to take the form in Eq. (3.2).

Now let us concretely show how this works for l = 1, 2, 3 and then propose a generalisation

for l > 3.

9So far there is no clear consensus on a definition of canonical differential equation beyond MPLs. In

ref. [45], a definition was proposed, which includes the independence of the forms in addition to our defining

properties. Checking the independence of the forms goes beyond the scope of this paper.
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3.1 l = 1, elliptic Feynman integrals

The Hodge numbers for an elliptic curve are

h1,0 = 1 , h0,1 = 1 , (3.5)

which, by virtue of Eq. (2.37), allows for two master integrals in a derivative basis. Any

master integrals in the maximal cut beyond those two are then chosen as decoupling master

integrals in the fashion of Eq. (3.4). Hence, the basis for such a Feynman integral reads10

M0 =
I1
ψ0

, (3.6a)

Mj = Idecj + Fj,0M0 , j = 1, ...,m (3.6b)

Mm+1 =
1

ǫ

∂

∂τ
M0 +

m∑

j=0

F(m+1),jMj , (3.6c)

where τ = ψ1

ψ0
and the functions Fi,j are fixed by requiring that the terms not proportional to

ǫ vanish. Since the elliptic case, treated as above, effectively behaves as a one variable case

(because we need to take only one derivative), Eqs. (3.6) is equivalent to refs. [35, 45] for the

same reasons as in paragraph 2.6.

For the elliptic Feynman integrals we have worked out two bases, that we have called demo-

cratic and decoupling approaches. The basis in Eqs. (3.6) corresponds to the decoupling

approach. We will not write in full generality the basis for the democratic approach, which

in spirit is different from refs. [35, 45], as we observed that it is a good basis only for elliptic

integrals. We refer the reader to section 4.1, where we show how this works in a specific ex-

ample. In appendix A we show the proof for the validity of both the approaches in a specific

case of two parameters and one decoupling integral11 and in section 4 we show that for the

unequal mass sunrise these two bases are related by a constant rotation.

Punctured surfaces: As discussed in section 2.5 for elliptic curves, we can identify dif-

ferentials of the third kind as coming from punctures on the surface. If the dimension of

the phase space (which includes all masses and external momenta associated to the sector)

is less or equal then the number of moduli of the Calabi-Yau manifold: dim z ≤ hl−1,1, the

punctures can be understood as being constant at any one point in the space of moduli. If

instead we find dim z > hl−1,1, one can interpret the punctures as being free parameters to

which the extra parameters of the phase space are mapped to. Concretely, we encounter this

in section 4 when recomputing the unequal sunrise diagram whose underlying geometry is a

torus with three punctures.

10In this section we omit an overall ǫ-rescaling for clarity. In examples it might be needed to preserve uniform

transcendental weight.
11The generalisation is straightforward. Since for K3 manifold we give the proof in full generality, here we

decided to write it for an hands-on example for better clarity.
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3.2 l = 2, K3 Feynman integrals

The hodge numbers for a K3 surface are

h2,0 = 1 , h1,1 = 20 , h0,2 = 1 , (3.7)

however, if we have dim(z) ≤ 20 variables, we can define h̃ = h̃1,1 = dim(z), as there are 20−h̃
vanishing entries in the period vector, hence h̃ is the number of different moduli τj =

ψ
(j)
1
ψ0

we

can define from the mirror map. The size of the derivative basis will therefore depend on the

number of variables h̃ and we find that there are:

n = h2,0 + h̃+ h0,2 = 2 + dim(z) (3.8)

master integrals which can be written in a derivative basis. Any m master integrals beyond

this number is, if possible, once more taken to be decoupled master integrals in the fashion

of IB in Eq. (3.4). Hence, the new basis reads:

M0 =
I1
ψ0

, (3.9a)

Ma =
1

ǫ

∂

∂τa
M0 + Fa,0M0 , (3.9b)

Mj = Idecj + Fj,0M0 , (3.9c)

Mn+m−1 =
1

ǫ

∂

∂τα
Mβ +

n+m−2∑

k=0

F(n+m−1),kMk , (3.9d)

where

1 ≤ a ≤ h̃ , h̃ < j ≤ m+ h̃ , (3.10)

and α, β take a single value in the range α, β = 1, ..., h̃ with the additional requirement

∂

∂τα
Mβ 6= 0 for ǫ = 0 . (3.11)

Note that not all the choices are allowed; this depends on the intersection matrix: a general

intersection matrix for the periods of a K3 surface with a MUM-point reads





0 0 1

0 Σ 0

1 0 0




 , (3.12)

where Σ is a symmetric h̃× h̃ matrix with entries Σij ∈ Z. Hence, we can use the quadratic

relations ψTΣψ = 0 , to write the double logarithmic period ψ2 in terms of the others. If we

now normalise by the holomorphic period, as we do to write the basis in Eq. (3.9), we get

ψ2

ψ0
=

1

2ψ2
0

h̃∑

i,j=1

Σij ψ
(i)
1 ψ

(j)
1 =

1

2

h̃∑

i,j=1

Σij τ
(i)τ (j) , (3.13)
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so the derivative ∂τα in Eq. (3.11) has to act on Mβ ∼ ∂τβ
ψ2

ψ0
, such that ∂τα∂τβ

ψ2

ψ0
6= 0 which

depends on the intersection matrix as some products of τ (i)τ (j) in Eq. (3.13) can vanish due

to the specific coefficients in Σij. This leads to a differential equation on the maximal cut

(where we take the formal limit Fi,j → 0 in Eq. (3.9) and don’t consider the terms multiplied

by non-positive powers of ǫ in the strictly lower diagonal part of the matrix) which reads

1

ǫ

∂

∂τa






M0

Mb

Mn+m−1




 =






0 δa,c 0

0 0 Σ̃a,b
0 0 0




 ·






M0

Mc

Mn+m−1




 , for a, b, c = 1, . . . , h̃ , (3.14)

where Σ̃a,b depends on Σa,b in Eq. (3.12) and can be written as

Σ̃ =
Σ

Σα,β +Σβ,α
, (3.15)

and therefore depends on the choice of α and β we made to define Mn+m−1 in Eq. (3.9).

Away from the limit ǫ → 0, the functions Fi,j in Eq. (3.9) are needed to put the whole

differential equation into ǫ-form. We refer to appendix B for a constructive derivation of the

full form. Completing the picture of Eq. (3.14) we find that for the full differential equation

in the derivative block will read:

∂

∂τa






M0

Mb

Mn+m−1




 = ǫ






−Fa,0 δa,c 0

∗ ∗ Σ̃a,b
∗ ∗ ∗




 ·






M0

Mc

Mn+m−1




 , (3.16)

where the entries denoted by ∗ depend on the starting PF operator and the functions Fi,j
are fixed by requiring that the terms not proportional to ǫ vanish. For more details we again

refer to appendix B.

The differential equation (3.14) coincides with the differential equation for the unipotent

part of the period matrix from section 3.1 in ref. [87], showing that effectively taking τa
derivatives amounts to multiplying the differential equation matrix by the inverse of the

semi-simple part of the Wronskian. The ǫ-rescaling is done similarly as in the one variable

case, hence, as reviewed in paragraph 2.6, corresponds to the ǫ-rescaling from refs. [35, 45].

Finally, the auxiliary functions Fi,j are required to cancel the terms not proportional to ǫ, as

in refs. [35, 45].

– 24 –



3.3 l = 3, Calabi-Yau three-fold Feynman integrals

The Hodge numbers for a generic Calabi-Yau 3-fold are

h3,0 = 1 , h2,1 = dim(z) , h1,2 = dim(z) , h0,3 = 1 . (3.17)

Hence, the dimension of the block built from Eq. (2.37) has size (2h2,1 + 2)× (2h2,1 + 2).

Carrying out the IBP reduction, the maximal cut sector may contain n+m master integrals

where we identify the first n = 2h2,1 + 2 master integrals in the derivative block which span

the cohomology of the Calabi-Yau three-fold and m master integrals, if possible, chosen such

that they satisfy a decoupling differential equation in the fashion of Eq. (3.4). We use the

following basis to ǫ-factorise the block:

M0 =
I1
ψ0

, (3.18a)

Ma =
1

ǫ

∂

∂τa
M0 + Fa,0M0 , (3.18b)

Mh2,1+b =
1

ǫ

h2,1∑

k,l=1

Yb,k,l
∂

∂τk
Ml +

(
h2,1∑

k,l=1

Yb,k,l
)
h2,1∑

p=0

F(h2,1+b),pMp , (3.18c)

Mj = Idecj + Fj,0M0 , (3.18d)

Mn+m−1 =
1

ǫ

∂

∂τα
Mh2,1+β +

n+m−2∑

k=0

F(n+m−1),kMk , (3.18e)

where the indices a, b and j cycle through the n+m master integrals with the ranges

1 ≤ a ≤ h2,1 and 1 ≤ b ≤ h2,1 and n < j ≤ n+m, (3.19)

and the functions Fi,j are fixed by requiring that the terms not proportional to ǫ vanish. The

rational functions Yi,j,k can be determined through the Yukawa three-couplings defined in

Eq. (2.42). In particular they follow from solving for Mh2,1+b the set of equations

{
h2,1∑

b=1

(

Cb,c,dMh2,1+b −
h2,1∑

k=0

F(h2,1+b),kMk

)

=
1

ǫ

∂

∂τc
Md ,

c = {1, . . . , h2,1}
d = {1, . . . , h2,1}

}

. (3.20)

Note that Eq. (3.20) only spans h2,1 independent equations and that several Yi,j,k from

Eq. (3.18c) can vanish. When taking the formal limit Fi,j → 0 and only considering the n×n
derivative block of the maximal cut without the terms multiplied by non-positive powers

of ǫ in the strictly lower triangular part of the matrix, we recover the following differential

equation from the basis in Eq. (3.18):

1

ǫ

∂

∂τa








M0

Mb

Mh2,1+c

Mn+m−1








=








0 δa,d 0 0

0 0 Ca,b,e 0

0 0 0 δa,c
0 0 0 0








·








M0

Md

Mh2,1+e

Mn+m−1







. (3.21)
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The structure of this differential equation is once more derived from the the Griffiths transver-

sality conditions from Eq. (2.42). This corresponds to the structure we reviewed in Eq. (2.55).

The differential equation (3.21) coincides with the differential equation for the unipotent part

of the period matrix from section 3.2 in ref. [87], showing that effectively taking τa derivatives,

corrected by the appropriate cubic coupling Ca,b,c, amounts to multiplying the differential

equation matrix by the inverse of the semi-simple part of the Wronskian. The ǫ-rescaling is

done similarly as in the one variable case, hence, as reviewed in paragraph 2.6, corresponds to

the ǫ-rescaling from refs. [35, 45]. Finally, the auxiliary functions Fi,j are required to cancel

the terms not proportional to ǫ, as in refs. [35, 45].

3.4 l > 3, Calabi-Yau l-fold Feynman integrals

For higher dimensional manifold we generalise the basis following the same procedure, such

that, in the appropriate integer dimension, the differential equation reads

1

ǫ

∂

∂τa
















M0

Mi1

Mi2
...

Mil−3

Mil−2

Mn+m−1
















=
















0 δa,j1 0 0 . . . 0 0

0 0 C
(1,1)
a,i1,j2

0 . . . 0 0

0 0 0 C
(1,2)
a,i2,j3

. . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . C
(1,l−2)
a,il−3,jl−2

0

0 0 0 0 . . . 0 δa,jl−2

0 0 0 0 . . . 0 0
















·
















M0

Mj1

Mj2
...

Mjl−3

Mjl−2

Mn+m−1
















, (3.22)

for a = 1, ..., hl−1,1, that is again the differential equation satisfied by the unipotent part

of the period matrix. The Yukawa three-couplings C
(1,p)
i,j,k have now different upper indices,

because the dimension of the manifold is greater than three as mentioned in Eq. (2.44). They

can be determined as detailed in ref. [87], in which the computations are explicitly carried

out up to l = 6. This procedure will put the derivative part of the differential equation into

ǫ-form up to a strictly lower triangular part which in turn is dealt with the functions Fi,j . If

there are more master integrals in the sector, and if it is possible to choose them such that

they satisfy a differential equation in the fashion of Eq. (3.4), we proceed as in the previous

cases.

4 Recomputing the sunrise with unequal masses

The sunrise diagram with unequal masses has first been analytically put into ǫ-form in ref. [90]

with the introduction of elliptic integrals in the gauge transformation. We will show that the

approach presented in section 3 leads to a canonical basis which only differs by a constant

gauge transformation from the results of ref. [90]. Let us review the basics and introduce our

conventions. We consider the two-loop unequal mass sunrise family:

Iν1,ν2,...,ν5(p
2,m2

1,m
2
2,m

2
3; ǫ) = e2γEǫ

∫
dDl1

iπ
D
2

dDl2

iπ
D
2

1

Dν1
1 D

ν2
2 . . . Dν5

5

, (4.1)
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with the denominators Dj :

D1 = l21 −m2
1 , D2 = l22 −m2

2 , D3 = (l1 + l2 − p)2 −m2
3 ,

D4 = (l1 − p)2 , D5 = (l2 − p)2 . (4.2)

We set the dimensionless kinematic variables xi
12:

x1 =
m2

1

p2
, x2 =

m2
2

p2
, x3 =

m2
3

p2
. (4.3)

Elliptic integrals through the gauge transformation: The ǫ-factorisation will be

achieved through a gauge transformation as reviewed in section 2.1. This gauge transfor-

mation will introduce the periods ψ0, ψ1
13:

ψ0 =
4K(k)

c4
, ψ1 =

4iK(1 − k)

c4
, (4.4)

with

k2 =
16
√
x1x2x3

x21 − 2(x2 + x3 + 1)x1 + x22 + (x3 − 1)2 − 2x2(x3 + 1) + 8
√
x1x2x3

,

c4 =
√

x21 − 2x1(x2 + x3 + 1) + 8
√
x1x2x3 + x22 − 2x2(x3 + 1) + (x3 − 1)2 . (4.5)

The elliptic integral of the first kind has been defined in Eq. (2.36). Additionally some

incomplete integrals of the first kind will be introduced through Abel’s map A with the

definition for F in Eq. (2.61):

A(uj) =
4F

(
arcsin

(√
uj
)
, k
)

c4
. (4.6)

Through these definitions we can now map the kinematic variables x1, x2 and x3 to the

moduli space M1,3 of a punctured torus which is defined by the ratio of periods τ and three

punctures z1, z2 and z3 where translation invariance requires z1 + z2 + z3 = 1:

τ =
ψ1

ψ0
, z1 =

A(u1)

ψ0
, z2 =

A(u2)

ψ0
, (4.7)

with

u1 =
(1 +

√
x1)

2 − (
√
x2 −

√
x3)

2

(
√
x2 +

√
x3)2 − (

√
x2 −

√
x3)2

, u2 =
(1 +

√
x2)

2 − (
√
x1 −

√
x3)

2

(
√
x1 +

√
x3)2 − (1−√

x3)2
. (4.8)

12Note that when treating elliptic examples we denote kinematic variables with x as opposed to z to avoid

a notational conflict since the canonical variables on the torus include the punctures zi.
13In ref. [90] the periods are denoted ψ1 and ψ2 instead of ψ0 and ψ1.
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The differential equation: Running an IBP algorithm (e.g. ref. [54]) we find the following

master integrals:

I =















I1,1,0,0,0
I1,0,1,0,0
I0,1,1,0,0
I1,1,1,0,0
I2,1,1,0,0
I1,2,1,0,0
I1,1,2,0,0















, (4.9)

satisfying the differential equation:

dI = A(x1, x2, x3, ǫ) · I , (4.10)

where A is a matrix where each entry is a rational function in x1, x2, x3 and the dimensional

regularisation parameter ǫ.

As mentioned in section 3.1, to ǫ-factorise this differential equation we have found two dif-

ferent approaches. We start by presenting the democratic approach and follow it up with the

decoupling approach.

4.1 The democratic approach

We can start from the set of master integrals given by the IBP reduction algorithm where we

identify a maximal-cut sector with four entries and three different sub-sectors each of them

corresponding to a tadpole:

I = (I1,1,0,0,0, I1,0,1,0,0, I0,1,1,0,0
︸ ︷︷ ︸

tadpoles

, I1,1,1,0,0, I2,1,1,0,0, I1,2,1,0,0, I1,1,2,0,0
︸ ︷︷ ︸

maximal cut

)T . (4.11)

For this choice of basis, the derivatives with respect to the different kinematic parameters are

on equal footing. We introduce derivatives with respect of to the moduli-space M1,3 to put

the 4× 4 maximal cut block into ǫ-form. The basis reads:

Mdem
0 = ǫ2I1,1,0,0,0 ,

Mdem
1 = ǫ2I1,0,1,0,0 ,

Mdem
2 = ǫ2I0,1,1,0,0 ,

Mdem
3 = ǫ2

I1,1,1,0,0
ψ0

,

Mdem
4 =

1

ǫ

∂

∂z1
Mdem

3 + F dem
4,3 Mdem

3 ,

Mdem
5 =

1

ǫ

∂

∂z2
Mdem

3 + F dem
5,3 Mdem

3 ,

Mdem
6 =

1

ǫ

∂

∂τ
Mdem

3 + F dem
6,3 Mdem

3 , (4.12)
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where the derivatives with respect to τ , z1 and z2 can be determined through the Jacobian J:





dx1
dx2
dx3




 =






J1,1 J1,2 J1,3

J2,1 J2,2 J2,3

J3,1 J3,2 J3,3




 ·






dτ

dz1
dz2




 . (4.13)

Explicit formulas for F dem
5,4 , F dem

6,4 and F dem
7,4 as well as the resulting connection matrix Ã,

close to the MUM-point x = 0, can be found in the ancillary file sunrise.nb. We call this

democratic approach because we take derivatives not only with respect to τ but also with

respect to punctures, placing all the moduli on equal footing. With this basis the differential

equation is in canonical form. We give all results in terms of elliptic functions and the functions

F dem
i,j are determined leveraging the modular properties of the functions (see section 5.2 of

ref. [91] or section 3.1 of ref. [92]).

4.2 The decoupling approach

Alternatively, it is possible to start from a different basis of MIs which is still rational in x1,

x2, x3 and ǫ (in other words, an IBP algorithm can also find this starting basis):

Idec = (I1,1,0,0,0, I1,0,1,0,0, I0,1,1,0,0
︸ ︷︷ ︸

tadpoles

, I1,1,1,0,0, I2,1,1,0,0, I1,1,1,−1,0, I1,1,1,0,−1
︸ ︷︷ ︸

maximal cut

)T . (4.14)

We observe that, with this choice of starting master integrals, the differential equation

for I1,1,1,0,0 and I2,1,1,0,0 at ǫ = 0 does not depend on I1,1,1,−1,0 and I1,1,1,0,−1. This cor-

responds to the structure of differential equations for elliptic integrals of the first, second and

third kind reviewed in section 2.5. The maximal cut therefore organises itself into a 2 × 2

minimally coupled elliptic sector and two 1× 1 sectors which only couple back to the elliptic

sector. This is why we call this alternative choice, the decoupling approach. Following the

method outlined in section 3 we split the maximal cut into two parts, first a two-dimensional

part which is expressed through differentials of the first and second kind (at ǫ = 0), where

we normalise by the holomorphic period and use a derivative, to generate the differential of

second kind. Secondly a two-dimensional part which is expressed through differentials of the

third kind (at ǫ = 0) I1,1,1,−1,0 and I1,1,1,0,−1. The full basis then reads:

Mdec
0 = ǫ2I1,1,0,0,0 ,

Mdec
1 = ǫ2I1,0,1,0,0 ,

Mdec
2 = ǫ2I0,1,1,0,0 ,

Mdec
3 = ǫ2

I1,1,1,0,0
ψ0

,

Mdec
4 = ǫ2I1,1,1,−1,0 + F dec

4,3 M
dec
3 ,

Mdec
5 = ǫ2I1,1,1,0,−1 + F dec

5,3 M
dec
3 ,

Mdec
6 =

J1,1

ǫ

∂

∂x1
Mdec

3 +

5∑

j=0

F dec
6,j M

dec
j , (4.15)
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where

J1,1 =

(
∂τ

∂x1

)−1

. (4.16)

Note that J1,1∂x1 6= ∂τ since

∂

∂τ
= J1,1

∂

∂x1
+ J2,1

∂

∂x2
+ J3,1

∂

∂x3
. (4.17)

Instead J1,1∂x1 can be interpreted as a τ derivative when x2 and x3 are held constant.

Similarly we have J1,1 6= J1,1 but we can relate J1,1 to the entries of the Jacobian J of

Eq. (4.13) through:

J1,1 =
J1,1J2,3J3,2 + J1,2J2,1J3,3 + J1,3J2,2J3,1 − J1,1J2,2J3,3 − J1,2J2,3J3,1 − J1,3J2,1J3,2

J1,3J3,2 − J2,2J3,3
.

(4.18)

The terms F dec
i,j which we have collected in ancilliary file sunrise.nb will nevertheless in-

troduce the entries of the Jacobian Ji,j of Eq. (4.13). We therefore interpret that, the first

step of the algorithm (which ǫ-factorises the diagonal terms) solely introduce τ by holding x2
and x3 constant. Then, the second step (which ǫ-factorises the remaining off-diagonal part

by introducing the functions Fi,j) will in turn introduce the punctures z1 and z2. With this

basis the differential equation is in canonical form, close to the MUM-point at x = 0. Note

that we give all results in terms of elliptic functions and the functions F dec
i,j are determined

leveraging the modular properties of the functions (see section 5.2 of ref. [91] or section 3.1

of ref. [92]).

4.3 Comparing the results

We have shown how to get two canonical forms for the unequal masses sunrise by two methods

that combine the ideas reviewed in section 3.1. It turns out that both gauge transformations

are related by a constant rotation:

Mdem = Udem · I ,
Mdec = Udec · I , (4.19)

with

Udem =















1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

−i −i −i 0 2i i 0

−i −i −i 0 i 2i 0

0 0 0 0 0 0 1















·Udec , (4.20)

showing that, effectively, we get only one canonical form.

Note that when comparing with the gauge transformation UBMW of ref. [90], we again find a
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constant rotation which relates it to our results:

Udem =
















0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1
π

0

0

0

0

1
2

1
2

0

0

0

0

0

−1
2

1
2

0

0

0

0

2i

0

0

0

0

0

0















·UBMW . (4.21)

This shows that our method finds, up to a constant rotation, the same differential equation

matrix, which in ref. [90] is expressed as Kronecker forms recalled in Eq. (2.10b).

5 Computing new integrals

In this section we apply the approach presented in section 3 to integrals that, to the best

of our knowledge, have not been computed before. In particular, we will get a canonical

differential equation for two three-loop banana integrals with two unequal masses and one

four-loop banana integral with two unequal masses.

5.1 Banana three-loop with two internal unequal masses

We begin by applying the algorithm from section 3, in particular from section 3.2, to get a

canonical form for the differential equation of a three-loop integral with an underlying K3

geometry (a Calabi-Yau 2-fold). We consider the three-loop banana family defined as:

Iν1,ν2,...,ν9(p
2,m2

j1 , . . . ,m
2
j4 ; ǫ) = e3γEǫ

∫
dDl1

iπ
D
2

dDl2

iπ
D
2

dDl3

iπ
D
2

1

Dν1
1 D

ν2
2 . . . Dν9

9

, (5.1)

with the denominators Dj :

D1 = l21 −m2
j1 , D2 = l22 −m2

j2 , D3 = l23 −m2
j3 , D4 = (l1 + l2 + l3 − p)2 −m2

j4 ,

D5 = (l1 − p)2 , D6 = (l2 − p)2 , D7 = (l3 − p)2 , D8 = (l1 − l2)
2 , D9 = (l1 − l3)

2 . (5.2)

In the case with two unequal masses, there are two possible mass configurations, namely

the 3-1 configuration where we set:

mj1 = mj3 = mj4 = m1 , mj2 = m2 , (5.3)

and the 2-2 configuration where we set:

mj1 = mj2 = m1 , mj3 = mj4 = m2 . (5.4)

In the following, we will work with the dimensionless kinematic parameters:

z1 =
m2

1

p2
, z2 =

m2
2

p2
. (5.5)
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The Hodge diamond for a K3 manifold is

1

0 0

1 20 1

0 0

1

, (5.6)

however, since our manifold depends only on dim(z) = 2 moduli (z = (z1, z2)), there

are 20− 2 = 18 vanishing entries in the period vector. Hence we define

ψ(z) = (ψ0(z), ψ
(1)
1 (z), ψ

(2)
1 (z), ψ2(z))

T , (5.7)

where ψ0(z) denotes the only period that is holomorphic at the MUM-point and therefore

allows for a Frobenius expansion with no logarithms.14 The periods ψ
1
= (ψ

(1)
1 , ψ

(2)
1 )T on the

other hand are the dim(z)(=2) periods that diverge with a single logarithmic power when

approaching the MUM-point. Consequently, ψ2 is the period which has a double-logarithmic

expansion close to the MUM-point. From the Griffiths transversality conditions in Eq. (2.42)

we also find that there is a quadratic relation which relates these periods and we are able to

eliminate ψ2 in the fashion of Eq. (3.13). We therefore will henceforth only consider ψ0, ψ
(1)
1

and ψ
(2)
1 as independent periods.

5.1.1 The 3-1 configuration

We begin with the 3-1 configuration, in which we set the masses to the values m1 and m2

according to Eq. (5.3). Running an IBP algorithm and massaging the starting basis into the

form of Eq. (3.3) yields:

I3-1 =















I1,0,1,1,0,0,0,0,0
I0,1,1,1,0,0,0,0,0
I1,1,1,1,0,0,0,0,0
I2,1,1,1,0,0,0,0,0
I1,2,1,1,0,0,0,0,0
I3,1,1,1,0,0,0,0,0
I1,1,1,1,−1,0,0,0,0















, (5.8)

where the master integral I1,1,1,1,−1,0,0,0,0 decouples from the maximal cut in the same fash-

ion as the last two master integrals in section 4.2. We therefore are left with a minimally

coupled 4 × 4 sector with the master integrals I1,1,1,1,0,0,0,0,0, I2,1,1,1,0,0,0,0,0, I1,2,1,1,0,0,0,0,0

14We will from now on leave the dependence on z implicit.
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and I3,1,1,1,0,0,0,0,0. By setting ǫ to zero we can read off two coupled PF operators of the form:

0 =
( ∂3

∂z31
+ q

(0)
1,1(z1,z1,z1)

∂2

∂z21
+ q

(0)
1(z1,z1,z1)

∂

∂z1
+ q

(0)
2(z1,z1,z1)

∂

∂z2
+ q

(0)
(z1,z1,z1)

)

I1,1,1,1,0,0,0,0,0,

0 =
( ∂3

∂z2∂z
2
1

+ q
(0)
1,1(z2,z1,z1)

∂2

∂z21
+ q

(0)
1(z2,z1,z1)

∂

∂z1
+ q

(0)
2(z2,z1,z1)

∂

∂z2
+ q

(0)
(z2,z1,z1)

)

I1,1,1,1,0,0,0,0,0.

(5.9)

where q
(0)
i are rational functions in z1 and z2. We can construct three independent solutions in

a Frobenius basis close to the MUM-point (z1, z2) = (0, 0) for ψ0, ψ
(1)
1 and ψ

(2)
1 where explicit

expressions can be found in banana 3 1.nb. This basis satisfies the quadratic relations

ψT · Σ3-1 · ψ = 0 , (5.10)

with the intersection pairing

Σ3-1 =








0 0 0 1

0 −6 −3 0

0 −3 0 0

1 0 0 0







. (5.11)

We can then define two independent moduli:

τ1 =
ψ
(1)
1

ψ0
, τ2 =

ψ
(2)
1

ψ0
, (5.12)

and can construct a change of variables through the Jacobian J:

(

dz1
dz2

)

=

(

J1,1 J1,2

J2,1 J2,2

)

·
(

dτ1
dτ2

)

. (5.13)

Having defined the variables τ1 and τ2 we are now ready to write the basis proposed in

section 3:

M3-1
0 = ǫ3 I1,0,1,1,0,0,0,0,0 ,

M3-1
1 = ǫ3 I0,1,1,1,0,0,0,0,0 ,

M3-1
2 = ǫ3

I1,1,1,1,0,0,0,0,0
ψ0

,

M3-1
3 =

1

ǫ

∂

∂τ1
M3-1

2 + F 3-1
3,2M

3-1
2 ,

M3-1
4 =

1

ǫ

∂

∂τ2
M3-1

2 + F 3-1
4,2M

3-1
2 ,

M3-1
5 = ǫ3 I1,1,1,1,−1,0,0,0,0 + F 3-1

5,2M
3-1
2 ,

M3-1
6 =

1

ǫ

∂

∂τ1
M3-1

3 +
5∑

j=0

F 3-1
6,j M

3-1
j , (5.14)
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where the functions F 3-1
i,j are made up of algebraic functions multiplied by powers of the holo-

morphic period ψ0 and (iterated) integrals of the same kind of functions. This basis brings

the differential equation in canonical form, close to the MUM-point. We once again give ex-

plicit (expanded in series around the MUM-point) results in the ancillary file banana 3 1.nb.

Moreover, we have checked that we get at most simple poles in each of the variables at the

MUM-point. Note that the expansions of the functions F 3-1
i,j have integer coefficients, as

we observed in banana integrals with equal masses [44] and other integrals with underlying

single-scale Calabi-Yau geometry [45].

5.1.2 The 2-2 configuration

Let us now consider the 2-2 configuration, in which we set the masses to the values m1 andm2

according to Eq. (5.4). Running an IBP algorithm and massaging the starting basis into the

form of Eq. (3.3) yields:

I2-2 =

















I1,0,1,1,0,0,0,0,0
I0,1,1,1,0,0,0,0,0
I1,1,1,1,0,0,0,0,0
I2,1,1,1,0,0,0,0,0
I1,2,1,1,0,0,0,0,0
I3,1,1,1,0,0,0,0,0
I1,1,1,1,−1,0,0,0,0

I1,1,1,1,0,0,0,−1,0

















, (5.15)

where the master integrals I1,1,1,1,−1,0,0,0,0 and I1,1,1,1,0,0,0,−1,0 decouple from the maximal

cut in the same fashion as the last two master integrals in section 4.2. Just as in the 3-1

configuration we are left with a minimally coupled 4 × 4 sector with the master integrals

I1,1,1,1,0,0,0,0,0, I2,1,1,1,0,0,0,0,0, I1,2,1,1,0,0,0,0,0 and I3,1,1,1,0,0,0,0,0. Two coupled PF operators of

the form in Eq. (5.9) yield three independent solutions ψ0, ψ
(1)
1 and ψ

(2)
1 , where we express

ψ2 in terms of the other periods by virtue of the quadratic relations in Eq. (3.13). Explicit

expansions can be found in the ancillary file banana 2 2.nb. This basis satisfies the quadratic

relations

ψT · Σ2-2 · ψ = 0 , (5.16)

with the intersection pairing

Σ2-2 =








0 0 0 1

0 −2 −4 0

0 −4 −2 0

1 0 0 0







. (5.17)

We can then define two independent moduli:

τ1 =
ψ
(1)
1

ψ0
, τ2 =

ψ
(2)
1

ψ0
, (5.18)
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and we can determine a change of variables through the Jacobian J:

(

dz1
dz2

)

=

(

J1,1 J1,2

J2,1 J2,2

)

·
(

dτ1
dτ2

)

. (5.19)

Having defined the variables τ1 and τ2 we are now ready to set up the basis as proposed in

section 3:

M2-2
0 = ǫ3I1,0,1,1,0,0,0,0,0 ,

M2-2
1 = ǫ3I0,1,1,1,0,0,0,0,0 ,

M2-2
2 = ǫ3

I1,1,1,1,0,0,0,0,0
ψ0

,

M2-2
3 =

1

ǫ

∂

∂τ1
M2-2

2 + F 2-2
3,2M

2-2
2 ,

M2-2
4 =

1

ǫ

∂

∂τ2
M2-2

2 + F 2-2
4,2M

2-2
2 ,

M2-2
5 = ǫ3I1,1,1,1,−1,0,0,0,0 + F 2-2

5,2M
2-2
2 ,

M2-2
6 = ǫ3I1,1,1,1,0,0,0,−1,0 + F 2-2

6,2M
2-2
2 ,

M2-2
7 =

1

ǫ

∂

∂τ1
M2-2

3 +

6∑

j=0

F 2-2
7,j M

2-2
j , (5.20)

where, as before, the new functions F 2-2
i,j are a combination of algebraic functions multiplied

by powers of the holomorphic period ψ0 and (iterated) integrals of the same kind of func-

tions. This basis brings the differential equation in canonical form, close to the MUM-point.

We present explicit expressions (expanded in series around the MUM-point) for F 2-2
i,j in the

ancillary file banana 2 2. Note that, here as well, the expansions of the functions F 2-2
i,j have

integer coefficients.

5.2 Banana four-loop with two internal unequal masses

In this section, we apply the algorithm from section 3, in particular from section 3.3, to

get a canonical form for the differential equation of a four-loop integral with an underlying

Calabi-Yau three-fold geometry. We consider the four-loop banana family:

Iν1,ν2,...,ν9(p
2,m2

j1 , . . . ,m
2
j4 ,m

2
j5 ; ǫ) = e4γEǫ

∫
dDl1

iπ
D
2

dDl2

iπ
D
2

dDl3

iπ
D
2

dDl4

iπ
D
2

1

Dν1
1 D

ν2
2 . . . Dν14

14

, (5.21)

with the denominators Dj :

D1 = l21 −m2
j1 , D2 = l22 −m2

j2 , D3 = l23 −m2
j3 , D4 = l24 −m2

j4 ,

D5 = (l1 + l2 + l3 + l4 − p)2 −m2
j5 , D6 = (l1 − p)2 , D7 = (l2 − p)2 ,

D8 = (l3 − p)2 , D9 = (l4 − p)2 , D10 = (l1 − l2)
2 , D11 = (l1 − l3)

2 ,

D12 = (l1 − l4)
2 , D13 = (l2 − l3)

2 , D14 = (l2 − l4)
2 . (5.22)
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In the case with two unequal masses, there are two possible mass configurations, namely the

4-1 configuration where we set:

mj1 = mj2 = mj3 = mj4 = m1 , mj5 = m2 , (5.23)

and the 3-2 configuration where we set:

mj1 = mj2 = mj3 = m1 , mj4 = mj5 = m2 . (5.24)

We will only analyse the 4-1 configuration, we expect similar results for the 3-2 configuration.

In the following, we will work with the dimensionless kinematic parameters:

z1 =
m2

1

p2
, z2 =

m2
2

p2
. (5.25)

From the differential equation that we generate with Kira 2.0 [57], we find nine master

integrals among which we find two tadpoles:

I1,1,1,1,0,0,0,0,0,0,0,0,0,0 , I1,1,1,0,1,0,0,0,0,0,0,0,0,0 , (5.26)

and one decoupling master integral:

I1,1,1,1,1,−1,0,0,0,0,0,0,0,0 . (5.27)

The remaining six master integrals form a system of coupled differential equations for the

master integral I1,1,1,1,1,0,0,0,0,0,0,0,0,0 which have (on the maximal cut) operators of PF type

for which we find, at ǫ = 0, six independent solutions:

ψ(z) =
(
ψ0(z), ψ

(1)
1 (z), ψ

(2)
1 (z), ψ

(2)
2 (z), ψ

(1)
2 (z), ψ3(z)

)T
, (5.28)

that satisfy the quadratic equations ψT ·Σ4-1 ·ψ = 0, with Σ4-1 antidiagonal as in Eq. (2.47).15

The periods expanded around the MUM-point are available in the ancillary file banana 4 1.nb.

The notation is motivated as follows: since the point (z1, z2) = (0, 0) is a MUM-point, we find

a Frobenius basis which has one holomorphic period ψ0, two single log periods ψ
(1)
1 , ψ

(2)
1 , two

double log periods ψ
(1)
2 , ψ

(2)
2 and one triple log period ψ3. This corresponds to the structure

of a Calabi-Yau threefold with the following Hodge numbers for its middle cohomology:

h(0,3) = h(3,0) = 1 , h(2,1) = h(1,2) = 2 . (5.29)

Therefore the maximal cut of the master integral of interest I1,1,1,1,1,0,0,0,0,0,0,0,0,0, in D = 2,

takes the form:

MaxCut I1,1,1,1,1,0,0,0,0,0,0,0,0,0 =

{

δj,1 ψ0 + δj,2 ψ
(1)
1 + δj,3 ψ

(2)
1 + δj,4 ψ

(1)
2

+ δj,5 ψ
(2)
2 + δj,6 ψ3 +

∑

k≥1

ǫkf
(j)
k ; j = {1, 2, 3, 4, 5, 6}

}

,

(5.30)

15We will from now on leave the dependence on z implicit.
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where the functions f
(j)
k are rational in the kinematic variables z. This corresponds to the

integral of the first kind differential in the limit ǫ = 0 along the independent contours.

After defining the complex structure moduli as usual:

τ1 =
ψ
(1)
1

ψ0
, τ2 =

ψ
(2)
1

ψ0
, (5.31)

we use Eq. (2.49) to define the Yukawa three-couplings. Since the derivatives in Eq. (2.49)

commute, we find that there are four possible couplings: C1,1,1, C1,1,2, C1,2,2 and C2,2,2.

Additionally, when unpacking Eq. (2.49), one finds the following simpler equations for the

couplings:

∂

∂τi

∂

∂τj

ψ
(k)
2

ψ0
= Ci,j,k ,

∂

∂τi

∂

∂τj

ψ3

ψ0
= τ1Ci,j,1 + τ2 Ci,j,2 . (5.32)

Through these expressions we can now introduce the pre-potential F , as in Eq. (2.50), which

is related to the normalised periods as follows:

ψ
(j)
2

ψ0
=

∂

∂τj
F ,

ψ3

ψ0
= 2F − τ1

∂

∂τ1
F − τ2

∂

∂τ2
F , (5.33)

and has the property:
∂

∂τi

∂

∂τj

∂

∂τk
F = Ci,j,k . (5.34)

With this compact notation, we can now define the master integral M4-1
2 which normalises

Eq. (5.30) by the holomorphic period ψ0 and express it as:

M4-1
2 =

I1,1,1,1,1,0,0,0,0,0,0,0,0,0
ψ0

=

{

δj,1 + δj,2τ1 + δj,3τ2 + δj,4
∂

∂τ1
F + δj,5

∂

∂τ2
F

+ δj,6

(

2F − τ1
∂

∂τ1
F − τ2

∂

∂τ2
F
)

+
∑

k≥1

ǫk
f
(j)
k

ψ0
; j = {1, 2, 3, 4, 5, 6}

}

. (5.35)

The other five master integrals can be defined as proposed in section 3.3.

Alternatively, we can notice that if we want to find the differential equation of Eq. (3.21),

apart from M4-1
2 , 1

ǫ ∂τ1M
4-1
2 and 1

ǫ∂τ2M
4-1
2 , we need to look for master integrals which are

non-vanishing when ǫ = 0, but whose derivative ∂τ1 and ∂τ2 either vanish or are proportional

to a constant in this limit (after the appropriate ǫ-rescaling). We find that the following

master integrals have this property:

∂

∂τ1

(

Y1
∂

∂τ1

∂

∂τ1
− Y2

∂

∂τ2

∂

∂τ1

)

M4-1
2

︸ ︷︷ ︸

first candidate

=

{

δj,6 +O(ǫ) , j = {1, 2, 3, 4, 5, 6}
}

, (5.36)
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and

∂

∂τ2

(

Y3
∂

∂τ1

∂

∂τ2
− Y4

∂

∂τ2

∂

∂τ2

)

M4-1
2

︸ ︷︷ ︸

second candidate

=

{

δj,6 +O(ǫ) , j = {1, 2, 3, 4, 5, 6}
}

, (5.37)

where we introduce the following rational functions Yj of the Yukawa three-couplings (which

can be derived using Eq. (3.20)):

Y1 =
C1,2,2

C1,1,1C1,2,2−C2
1,1,2

, Y2 =
C1,1,2

C1,1,1C1,2,2−C2
1,1,2

,

Y3 =
C1,2,2

C2
1,2,2−C1,1,2C2,2,2

, Y4 =
C1,1,2

C2
1,2,2−C1,1,2C2,2,2

.

This choice of these two master integrals coincides with what we get by using the basis from

section 3.3. We can choose to define M4-1
8 to be either of Eqs. (5.36) and (5.37). Choosing

M4-1
8 =(5.36), we have constructed a canonical basis as in section 3.3. When considering the

maximal cut at ǫ = 0 the differential equation takes the form of Eq. (3.21):

∂

∂τj












M4-1
2

M4-1
3

M4-1
4

M4-1
5

M4-1
6

M4-1
8












=












0 δj,1 δj,2 0 0 0

0 0 0 C1,1,j C1,2,j 0

0 0 0 C1,2,j C2,2,j 0

0 0 0 0 0 δj,1
0 0 0 0 0 δj,2
0 0 0 0 0 0












·












M4-1
2

M4-1
3

M4-1
4

M4-1
5

M4-1
6

M4-1
8












. (5.38)

where the master integrals come from the following basis:

M4-1
0 = ǫ4 I1,1,1,1,0,0,0,0,0,0,0,0,0,0 ,

M4-1
1 = ǫ4 I1,1,1,0,1,0,0,0,0,0,0,0,0,0 ,

M4-1
2 = ǫ4

I1,1,1,1,1,0,0,0,0,0,0,0,0,0
ψ0

,

M4-1
3 =

1

ǫ

∂

∂τ1
M4-1

2 + F 4-1
3,2M

4-1
2 ,

M4-1
4 =

1

ǫ

∂

∂τ2
M4-1

3 + F 4-1
4,2M

4-1
2 ,

M4-1
5 =

1

ǫ

(

Y1
∂

∂τ1
− Y2

∂

∂τ2

)

M4-1
3 + (Y1 − Y2)

4∑

j=2

F 4-1
5,j M

4-1
j ,

M4-1
6 =

1

ǫ

(

Y3
∂

∂τ1
− Y4

∂

∂τ2

)

M4-1
4 + (Y3 − Y4)

4∑

j=2

F 4-1
6,j M

4-1
j ,

M4-1
7 = ǫ4 I1,1,1,1,1,−1,0,0,0,0,0,0,0,0 + F 4-1

7,2M
4-1
2 ,

M4-1
8 =

1

ǫ

∂

∂τ1
M4-1

5 +

7∑

j=0

F 4-1
8,j M

4-1
j . (5.39)
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The integralsM4-1
0 ,M4-1

1 correspond to tadpoles andM4-1
7 corresponds to a decoupling master

integral. The derivative structure of Eq. (5.38) is preserved but we introduce the additional

functions F 4-1
i,j to ǫ-factorise the strictly lower triangular part of the matrix in the fashion of

section 3.3. With the additional functions, the differential equation is in canonical form, close

to the MUM-point. We once more display all results in the ancillary file banana 4 1.nb.

Note that all the functions Fi,j are holomorphic and have integer coefficients when expanded

at the MUM-point (z1, z2) = (0, 0).

6 Conclusion

In this paper, we have presented a way to construct bases of master integrals which bring the

differential equations of multi-scale Feynman integrals with an underlying Calabi-Yau geom-

etry into canonical form. This is a multi-scale generalisation of ref. [44], and it corresponds

to the first application of the method introduced in refs. [35, 45] to multi-scale Calabi-Yau

Feynman integrals. We have applied this construction to the already well-studied unequal

masses sunrise integral and have found the same result as ref. [90] up to a constant gauge

transformation.

We have shown that we can apply this method to new integrals, such as three-loop integrals

and a four-loop integral, all dependent on two scales. Remarkably, we find that for the exam-

ples we have computed, the basis we propose yields a closed connection with at most simple

poles in each of the variables. We believe that a basis of this form can be used for any block

which can be rewritten as a PF system annihilating the periods of Calabi-Yau manifolds. The

study of decoupling integrals might need to be appropriately modified when the decoupling

integrals have poles of order two or higher [45].

One key take-away is that a thorough understanding of the geometry associated to the studied

sector is needed to build a sensible basis. We expect that for more complicated integrals, a

single sector may be able to mix different geometries and we believe that, choosing a basis

of master integrals according to the mixed Hodge structure, may help to disentangle into

sub-blocks the differential equation, displaying the properties we observe in banana integrals.

While some recent progress has been made into understanding the differential forms associ-

ated to the three-loop banana integrals in canonical form [24, 25], further investigations need

to be made, in particular for higher dimensional Calabi-Yau manifolds. Knowing closed forms

for the periods could also help us understand when the coupled differential equations for the

additional functions Fi,j can be solved.

As banana integrals have a simple structure, they were a good playground to understand

Feynman integrals with underlying multi-scale Calabi-Yau geometry, it would now be natural

to probe more complicated graphs with such geometries.
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A Democratic and decoupling approach for elliptic Feynman integrals

Here we argue why the two bases proposed in section 3.1 work. The difference of these

approaches lies in the choice of starting master integrals and consequently on the Picard-

Fuchs operators which annihilate the maximal cut. Hence the properties of PF operators

are essential, from which we construct the bases. We will give an explicit derivation for the

sunrise integral with two unequal masses.

A.1 Democratic approach

We start by choosing the following master integrals:

I =






I1,1,1,0,0
∂x1I1,1,1,0,0
∂x2I1,1,1,0,0




 , (A.1)

where the propagators are as defined in Eq. (4.2), with m2
3 = m2

2. I1,1,1,0,0 is such that the

integrand of its maximal cut for ǫ = 0 is a differential of the first kind. We can compute three

Picard-Fuchs operators that annihilate the master integral I1,1,1,0,0. They have the following

form (recall that we define x1 =
m2

1
s and x2 =

m2
2
s , which in practice leads to setting s = 1)

L
(2)
(x1,x1)

=
∂2

∂x21
+ q

(0)
1 (x1,x1)

∂

∂x1
+ q

(0)
2 (x1,x1)

∂

∂x2
+ q

(0)
(x1,x2)
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+ ǫ

(

q
(1)
1 (x1,x1)

∂

∂x1
+ q

(1)
2 (x1,x1)

∂

∂x2
+ q

(1)
(x1,x1)

)

+ ǫ2 q
(2)
(x1,x1)

,

L
(2)
(x2,x2)

=
∂2

∂x22
+ q

(0)
1 (x2,x2)

∂

∂x1
+ q

(0)
2 (x2,x2)

∂

∂x2
+ q

(0)
(x2,x2)

+ ǫ

(

q
(1)
1 (x2,x2)

∂

∂x1
+ q

(1)
2 (x2,x2)

∂

∂x2
+ q

(1)
(x2,x2)

)

+ ǫ2 q
(2)
(x2,x2)

,

L
(2)
(x1,x2)

=
∂2

∂x1∂x2
+ q

(0)
1 (x1,x2)

∂

∂x1
+ q

(0)
2 (x1,x2)

∂

∂x2
+ q

(0)
(x1,x2)

+ ǫ

(

q
(1)
1 (x1,x2)

∂

∂x1
+ q

(1)
2 (x1,x2)

∂

∂x2
+ q

(1)
(x1,x2)

)

+ ǫ2 q
(2)
(x1,x2)

. (A.2)

We can split all the differential operators as

L
(2)
(xi,xj)

= L
(2)
0 (xi,xj)

+ L
(1)
ǫ (xi,xj)

, (A.3)

where L
(2)
0 (xi,xj)

is the ǫ0 part and L
(1)
ǫ (xi,xj)

contains all powers of ǫ. While L
(2)
0 (xi,xj)

is a

differential operator of the same order as L
(2)
(xi,xj)

, the operator L
(1)
ǫ (xi,xj)

is of one order less

(in this particular case it is of first order).

Let us now focus on L
(2)
0 (xi,xj)

. The system of differential equations







L
(2)
0 (x1,x1)

ψ = 0 ,

L
(2)
0 (x2,x2)

ψ = 0 ,

L
(2)
0 (x1,x2)

ψ = 0 ,

(A.4)

has three independent solutions that we denote by ψ0, ψ1, φ. Since we are working with

a Calabi-Yau one-fold (an elliptic curve), we are able to find solutions written in a closed

form. Note that for other geometries this is not always possible, in which case we expand the

solution at a convenient point using the method of Frobenius. The canonical variables on the

moduli space of punctured tori M1,2 are:

τ =
ψ1

ψ0
, z1 =

φ

ψ0
, (A.5)

where the map from x1, x2 to τ is the mirror map and the map from x1, x2 to z1 is Abel ’s

map from Eq. (2.60). It turns out that, with this choice of variables, the differential operator

greatly simplify:

L̃
(2)
0 (τ,τ) =

∂2

∂τ2
1

ψ0
, (A.6)

L̃
(2)
0 (z1,z1)

=
∂2

∂z21

1

ψ0
, (A.7)

L̃
(2)
0 (τ,z1)

=
∂2

∂τ∂z1

1

ψ0
. (A.8)
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These, to us, are the most natural generalisations of the Calabi-Yau operators from Eq. (2.27)

for multi-parameter periods. We can now define our new master integrals in the following

way

M0 =
I1,1,1,0,0
ψ0

, (A.9)

M1 =
1

ǫ

∂

∂τ
M0 + F1,0M0 , (A.10)

M2 =
1

ǫ

∂

∂z1
M0 + F2,0M0 , (A.11)

We now want to check that this new basis leads to an ǫ-factorised differential equation:

∂

∂τ






M0

M1

M2




 = ǫ Ãτ ·






M0

M1

M2




 ,

∂

∂z1






M0

M1

M2




 = ǫ Ãz1 ·






M0

M1

M2




 . (A.12)

The basis in Eqs. (A.9), (A.10) and (A.11) straightforwardly implies:

∂

∂τ
M0 = ǫ(M1 − F1,0M0) , (A.13)

∂

∂z1
M0 = ǫ(M2 − F2,0M0) , (A.14)

which make the first row of Eq. (A.12) ǫ-factorised. For row two and three we need to go

back to handling PF operators, on the maximal cut we have

L̃(2)I1,1,1,0,0 = 0 , (A.15)

which leads to

L̃
(2)
0 I1,1,1,0,0 + L̃(1)

ǫ I1,1,1,0,0 = 0 . (A.16)

Plugging in the operators from Eqs. (A.6), (A.7) and (A.8) we find

∂2

∂τ2
M0 = −L̃(1)

ǫ (τ,τ)I1,1,1,0,0 , (A.17)

∂2

∂z21
M0 = −L̃(1)

ǫ (z1,z1)
I1,1,1,0,0 , (A.18)

∂2

∂τ∂z1
M0 = −L̃(1)

ǫ (τ,z1)
I1,1,1,0,0 . (A.19)

Therefore any second derivative acting on M0 can be expressed in terms of first and zero

derivative terms at higher orders in ǫ. Let us now explicitly apply this to the term ∂τM1 and

check whether this term is ǫ-factorised.

∂

∂τ
M1 =

∂

∂τ

(
1

ǫ

∂

∂τ
M0 + F1,0M0

)
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=
1

ǫ

∂2

∂τ2
M0 +

(
∂

∂τ
F1,0

)

M0 + F1,0

(
∂

∂τ
M0

)

= −1

ǫ
L̃
(1)
ǫ (τ,τ)I1,1,1,0,0 +

(
∂

∂τ
F1,0

)

M0 + ǫ F1,0(M1 − F1,0M0) , (A.20)

with

L̃
(1)
ǫ (τ,τ) = ǫ

(

q̃
(1)
1 (τ,τ)

∂

∂τ

1

ψ0
+ q̃

(1)
2 (τ,τ)

∂

∂z1

1

ψ0
+ q̃

(1)
(τ,τ)

1

ψ0

)

+ ǫ2 q̃
(2)
(τ,τ)

1

ψ0
, (A.21)

where we can compute the term

1

ǫ
L̃
(1)
ǫ (τ,τ)I1,1,1,0,0 = ǫ

(

q̃
(1)
1 (τ,τ)

(
M1 − F1,0M0

)
+ q̃

(1)
2 (τ,τ)

(
M2 − F2,0M0

)
+ q̃

(2)
(τ,τ)M0

)

+ q̃
(1)
(τ,τ)M0 .

(A.22)

We can now put together Eqs. (A.20) and (A.22) and find:

∂

∂τ
M1 =

(
∂

∂τ
F1,0

)

M0 − q̃
(1)
(τ,τ)M0 + ǫ (. . . ) (A.23)

and therefore by requiring:
∂

∂τ
F1,0 = q̃

(1)
(τ,τ) , (A.24)

we ǫ-factorise this specific term. By doing the same exercise for ∂z1M1, ∂τM2 and ∂z1M2 we

can fully fix F1,0 and F2,0 and find an ǫ-factorised differential equation. The only difference

with respect to a one parameter case is that each function Fi,j is defined through one differ-

ential equation, while here there are more because we have to take different derivatives. For

the examples that we have checked the coupled differential equations are solvable. We leave

for future work understanding more general conditions.

A.2 Decoupling approach

We start by choosing the following master integrals:

I =






I1,1,1,0,0
∂x1I1,1,1,0,0
I1,1,1,−1,0




 , (A.25)

where the propagators are as defined in Eq. (4.2), with m2
3 = m2

2. We define the new master

integrals as:

M0 =
I1,1,1,0,0
ψ0

, (A.26)

M1 = I1,1,1,−1,0 + F1,0M0 , (A.27)

M2 =
1

ǫ
J1,1

∂

∂x1
M0 + F2,0M0 + F2,1M1 , (A.28)
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where J1,1 = ∂x1
∂τ is the first entry of the full Jacobian and τ is defined in Eq. (A.5). The

decoupling approach resembles the one variable case in the first step. The idea is, in a first step

to consider x2 as constant, in this way we find that we no longer have the moving puncture

on the torus z1 of the democratic approach. Instead the master integral M1 can be seen as

decoupled in the fashion of a differential of third kind satisfying Eq. (3.2). The choice of

master integrals reflects also on the Picard-Fuchs operators: in the democratic approach the

Picard-Fuchs operators annihilate ψ0, ψ1 and φ, which can be used to fully characterise the

moduli space M1,2 through Eq. (A.5), leading to a 3× 3 fully coupled block and generalises

to a (n + 1) × (n + 1) coupled block for the moduli space M1,n. In the decoupling approach

we are considering here, we have a block of size 2× 2 characterised by only two solutions, the

two periods ψ0 and ψ1, mimicking the one variable case. This means that with the choice of

starting basis of Eq. (A.25), leads to a set of Picard-Fuchs operators which only annihilate

the periods ψ0 and ψ1.

Having mentioned the differences with respect to the previous approach, we now need to show

how the differential equation ǫ-factorises:

∂

∂x1






M0

M1

M2




 = ǫ Ãx1 ·






M0

M1

M2




 ,

∂

∂x2






M0

M1

M2




 = ǫ Ãx2 ·






M0

M1

M2




 . (A.29)

Derivative w.r.t. x1: Let us start by computing ∂x1M. We straightforwardly obtain that

for M0 we have:
∂

∂x1
M0 =

ǫ

J1,1

(
M2 − F2,0M0 − F2,1M1

)
(A.30)

and we see that ∂x1M0 is ǫ-factorised. ForM2 we proceed in the same way as in the democratic

approach, noticing that the following differential operator:

J1,1
∂

∂x1
J1,1

∂

∂x1

1

ψ0
, (A.31)

is an elliptic Picard-Fuchs operator, as it annihilates the periods ψ0 and ψ1. One can simply

recycle the computation from Eq. (A.20). The choice for the decoupling master integrals, M1

comes from the idea introduced in [35] where the authors lie out that in order to choose an

independent candidate we can look at the ǫ = 0 limit of maximal cut of the integral. Since

I1,1,1,0,0 and ∂x1I1,1,1,0,0 don’t have residues (as they are integrals of differentials of the first

and second kind respectively), we can identify I1,1,1,−1,0 as an integral over a differential of the

third kind. The maximal cut at ǫ = 0 of I1,1,1,−1,0 reveals a non-vanishing residue. Moreover,

we want to see the elliptic block in the differential equation matrix decouple at ǫ = 0, so we

choose I1,1,1,−1,0 such that its differential equation reads as in Eq. (3.2):

∂

∂x1
I1,1,1,−1,0 = ǫ q

(1) dec
(x1)

I1,1,1,−1,0 +

(

q
(0)
(x1)

+ ǫ q
(1)
(x1)

+ q
(0)
1 (x1)

∂

∂x1

)

I1,1,1,0,0 , (A.32)

∂

∂x2
I1,1,1,−1,0 = ǫ q

(1) dec
(x2)

I1,1,1,−1,0 +

(

q
(0)
(x2)

+ ǫ q
(1)
(x2)

+ q
(0)
1 (x2)

∂

∂x1

)

I1,1,1,0,0 , (A.33)
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so that at ǫ = 0, the master integral I1,1,1,−1,0 doesn’t couple to itself. So computing the x1
derivative of M1 we get

∂

∂x1
M1 =

∂

∂x1
I1,1,1,−1,0 +

(
∂

∂x1
F1,0

)

M0 + F1,0

(
∂

∂x1
M0

)

=

(

q
(0)
(x1)

ψ0 + q
(0)
1 (x1)

∂

∂x1
ψ0 +

∂

∂x1
F1,0

)

M0 (A.34)

+ ǫ

{
1

J1,1

(

q
(0)
1 (x1)

ψ0 + F1,0

)(

M2 − F2,0M0 − F2,1M1

)

+ q
(1) dec
(x1)

(

M1 − F1,0M0

)

+ q
(1)
(x1)

ψ0M0

)}

,

which leads to an ǫ-form if we require:

∂

∂x1
F1,0 = −q(0)(x1)

ψ0 − q
(0)
1 (x1)

∂

∂x1
ψ0 . (A.35)

Derivative w.r.t. x2: Let us now look at ∂x2M. Let us start from the differential operator

∂

∂z1

1

ψ0
, (A.36)

where we use definition of Eq. (A.5) for z1. This operator annihilates the periods ψ0 and ψ1

but not φ (which was have interpreted as a puncture on the torus as z1 =
φ
ψ0

). Therefore Eq.

(A.36) is a Picard-Fuchs operator for the 2× 2 elliptic block:

(
∂

∂z1

1

ψ0
+ ǫ q

(1)
(z1)

)

I1,1,1,0,0 = 0 (A.37)

which by using the entries of the jacobian ∂z1 = J2,1∂x1 + J2,2∂x2 we find

(

J2,1
∂

∂x1

1

ψ0
+ J2,2

∂

∂x2

1

ψ0
+ ǫ q

(1)
(z1)

)

I1,1,1,0,0 = 0 , (A.38)

which we can reorganise into

∂

∂x2
M0 = −ǫ

q
(1)
(z1)

J2,2
I1,1,1,0,0 −

J2,1

J2,2

∂

∂x1
M0

= ǫ

{

−
q
(1)
(z1)

ψ0

J2,2
M0 −

J2,1

J2,2J1,1
(M2 − F2,0M0 − F2,1M1)

}

, (A.39)

and is therefore ǫ-factorised.

Next, let us check whether ∂x2M1 is ǫ-factorised. By recalling Eq. (A.33) and carrying out a

calculation analogous to Eq. (A.34) we find that the term is ǫ-factorised by requiring:

∂

∂x2
F1,0 = −q(0)(x2)

ψ0 − q
(0)
1 (x2)

∂

∂x1
ψ0 . (A.40)
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Let us now look at the last master integralM2. This master integral is for the same arguments

as for M0 annihilated by the following PF operator:

∂

∂z1
J1,1

∂

∂x1

1

ψ0
= J2,1

∂

∂x1
J1,1

∂

∂x1

1

ψ0
+ J2,2

∂

∂x2
J1,1

∂

∂x1

1

ψ0
. (A.41)

We can now follow the same steps as for ∂x2M0 to find that ∂x2M2 is ǫ-factorised and we have

shown that
∂

∂x1
Mdx1 +

∂

∂x2
Mdx2 = ǫ Ã ·M . (A.42)

A.3 Extensions to more variables

Both democratic and decoupling approaches can be used for any Feynman integral with un-

derlying elliptic geometry, as we did not use any specific properties of a specific diagram

except for its Picard-Fuchs operators. We want to stress that, in the democratic approach,

it is essential to choose a starting master integral basis such that all periods ψ0, ψ1, φ (which

includes φ which is later identified with a marked point) are annihilated by the set of differ-

ential operators in Eq. (A.2). Thus generalisations to more variables will have to mirror this

behaviour: we need to find a set of PF operators which also annihilate the φn marked points.

In the decoupling approach, we need to choose a starting integral basis that can be rewritten

into higher-order differential equations with a PF operator of the form of Eq. (A.31), that

annihilates only the periods ψ0 and ψ1. In addition in this approach we will get PF operators

of the form of Eq. (A.36) (with several of them when we increase the number of variables).

Note that the integrals that are annihilated by the operators of Eqs. (A.2), (A.31) and (A.36)

are integrals whose maximal cuts for ǫ = 0 is an integral of the first kind.

B Explicit proof for K3 Feynman integrals

Here we show how we get an ǫ-form for our basis presented in section 3.2. First we notice that

Eq. (3.14), but also Eqs. (3.21) and (3.22), straightforwardly generalise the single variable

differential equation of Calabi-Yau systems to the multi-variable case since in the one variable

case it reads [45]:















0 1 0 . . .

0 Y2(τ) 0 . . .

. . . 0 Y3(τ) 0 . . .

. . . 0
. . . 0 . . .

. . . 0 Y2(τ) 0

. . . 0 1

. . . 0
















, (B.1)

which for a K3 specialises to 




0 1 0

0 0 1

0 0 0




 . (B.2)
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We will now go through the details of how this choice gives an ǫ-factorised matrix. The

argument is slightly different from the case l = 1 in appendix A, as we do not find any

punctures but can instead define canonical variables through the mirror map. The derivation

we shall provide now for l = 2 can however easily be uplifted to l > 2. We begin by considering

the starting basis IA which takes the form:

IA =











I1
∂z1I1
...

∂z
h̃
I1

∂zα∂zβI1











, (B.3)

where α and β are a set of fixed integers which depends on the integral we consider, as

explained in section 3.2. From the connection A we can now read off a system of PF operators

of degrees two L(2) and three L(3) which decompose into an ǫ independent part L
(i)
0 and an ǫ

dependent part of lower degree L
(i−1)
ǫ . In particular, for a single operator of degree three we

have16:

L(3)(z) = L
(3)
0 (z) + L(2)

ǫ (z) , (B.4)

with:

L
(3)
0 (za,zb,zc)

=
∂

∂za

∂

∂zb

∂

∂zc
+

h̃∑

i1,i2=1

q
(0)
i1,i2 (za,zb,zc)

∂

∂zi1

∂

∂zi2
+

h̃∑

i=1

q
(0)
i (za,zb,zc)

∂

∂zi
+ q

(0)
(za,zb,zc)

,

(B.5)

L
(2)
ǫ (za,zb,zc)

=

h̃∑

i1,i2=1

ǫ q
(1)
i1,i2 (za,zb,zc)

∂

∂zi1

∂

∂zi2
+

h̃∑

i=1

(

ǫ q
(1)
i (za,zb,zc)

+ ǫ2 q
(2)
i (za,zb,zc)

)
∂

∂zi
(B.6)

+ ǫ q
(1)
(za,zb,zc)

+ ǫ2 q
(2)
(za,zb,zc)

+ ǫ3 q
(3)
(za,zb,zc)

(B.7)

and analogously for degree two. By changing from the kinematic variables z to the moduli

τi =
ψ
(i)
1

ψ0
, (B.8)

and introducing a normalisation by the holomorphic period ψ0, we trivialise the operators

L̃
(3)
0 and L̃

(2)
0 :

L̃
(3)
0 (τa,τb,τc)

=
∂

∂τa

∂

∂τb

∂

∂τc

1

ψ0
, (B.9)

L̃
(2)
0 (τa,τb)

=
∂

∂τa

∂

∂τb

1

ψ0
. (B.10)

16Note that we always normalise the PF operators and the last subscript denotes the leading derivative

term.
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This implies that together with Eq. (2.19) we are now able to trade derivative terms in τi
with lower derivative terms at higher orders in ǫ as:

∂

∂τa

∂

∂τb

∂

∂τc

I1
ψ0

= −L̃(2)
ǫ (τa,τb,τc)

I1 , (B.11)

and
∂

∂τa

∂

∂τb

I1
ψ0

= −L̃(1)
ǫ (τa,τb)

I1 . (B.12)

With these results let us now go through Eq. (3.16) and check if everything is ǫ-factorised.

By rewriting the integrals in Eq. (3.9) we get

∂

∂τa
M0 = ǫ (Ma − Fa,0M0) , (B.13)

which immediately implies that the first block in the differential equation is in ǫ-form. Let us

now analyse the second block ∂τa Mb, where a, b = 1, ..., h̃. At ǫ = 0, we have two possibilities,

either ∂τa Mb=0, which implies ∂τa∂τb
I1
ψ0

= 0 at ǫ = 0, or ∂τa Mb = kMn+m−1, with k ∈ Q at

ǫ = 0. The configuration of a and b which gives either of these possibilities will depend on

the intersection matrix Σ as we saw in the main section 3.2. We now consider these two cases

separately. For the first case, we can begin by plugging in the definition for Mb to find:

∂

∂τa
Mb =

∂

∂τa

(
1

ǫ

∂

∂τb
M0 + Fb,0M0

)

=
1

ǫ

∂

∂τa

∂

∂τb
M0 +

(
∂

∂τa
Fb,0

)

M0 + Fb,0

(
∂

∂τa
M0

)

=
1

ǫ

∂

∂τa

∂

∂τb
M0 +

(
∂

∂τa
Fb,0

)

M0 + ǫ

(

Fb,0Ma − Fa,0Fb,0M0

)

, (B.14)

where we can now plug in the relevant operator, as we are considering PF operators of the

form of Eq. (2.18) and can, by virtue of Eq. (2.19), express the first term in the last line

through
∂

∂τa

∂

∂τb
M0 = L̃

(2)
0 (τa,τb)

I1 = −L̃(1)
ǫ (τa,τb)

I1 . (B.15)

The PF operator L̃ǫ evaluates to:

L̃
(1)
ǫ (τa,τb)

I1 =

(

ǫ

h̃∑

i=1

q̃
(1)
i (τa,τb)

∂

∂τi
+ ǫ q̃

(1)
(τa,τb)

+ ǫ2 q̃
(2)
(τa,τb)

)
I1
ψ0

= ǫ q̃
(1)
(τa,τb)

M0 + ǫ2 q̃
(2)
(τa,τb)

M0 + ǫ2
h̃∑

i=1

q̃
(1)
i (τa,τb)

(Mi − Fi,0M0) , (B.16)

and it therefore follows that, to cancel the O(ǫ0) terms in Eq. (B.14) we need to require:

q̃
(1)
(τa,τb)

− ∂

∂τa
Fb,0 = 0 , (B.17)
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which gives a condition for Fb,0. Note that more conditions may be needed to fully fix Fb,0.

Let us now consider the other case ∂τa Mb = kMn+m−1 at ǫ = 0. This can be rewritten as

∂

∂τa

∂

∂τb
M0 = k

∂

∂τα

∂

∂τβ
M0 , (B.18)

where α, β are fixed integers as in the last line in Eq. (3.9). Since we are considering only

PF operators as in Eq. (2.18), we can then write for ǫ 6= 0

∂

∂τa

∂

∂τb
M0 = k

∂

∂τα

∂

∂τβ
M0 + L̃

(1)
1(τa,τb)

, (B.19)

hence we get an ǫ-form following the same steps as before:

∂

∂τa
Mb = ǫ

(

Mn+m−1 −
h̃∑

k=0

F(n+m−1),kMk

)

. (B.20)

Next, one can do the same exercise for ∂τaMn+m−1 which take the form:

∂

∂τa
Mn+m−1 =

1

ǫ2
∂

∂τa

∂

∂τ1

∂

∂τh̃
M0 +

1

ǫ

∂

∂τa

∂

∂τ1

(

Fh̃,0M0

)

+

n+m−2∑

k=0

∂

∂τa

(

F(n+m−1),kMk

)

(B.21)

where after having done the algebra and plugging in the relevant PF operators of higher

order in ǫ as in Eqs. (B.11) and (B.12), we find some conditions for the functions Fi,j which

eliminate the terms proportional to ǫ−1 and ǫ0 from Eq. (B.21) and the only surviving term

will be proportional to ǫ.

Lastly we need to check how the decoupling integrals Mj ǫ-factorise. As they are decoupling

integrals, their starting differential equation is:

∂

∂za
Idecj = ǫ q

(1) dec
(za)

Idecj +

(

q
(0)
(za)

+
h̃∑

b=1

q
(0)
b (za)

∂

∂zb
+ ǫ q

(1)
(za)

)

I1

= q
(0)
(za)

ψ0M0 +

h̃∑

b=1

q
(0)
b (za)

(
∂

∂zb
ψ0

)

M0

+ ǫ

(

q
(1) dec
(za)

Mj − q
(1) dec
(za)

Fj,0M0 + q
(1) dec
(za)

ψ0M0 +

h̃∑

b=1

q
(0)
b (za)

ψ0(Mb − Fb,0M0)

)

,

(B.22)

where in the second line we substituted in I1 =M0ψ0 and ∂zbM0 = ǫ (Mb−Fb,0M0). We now

act with a τa derivative on Mj to find:
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∂

∂τa
Mj =

∂

∂τa
Idecj +

(
∂

∂τa
Fj,0

)

M0 + Fj,0

(
∂

∂τa
M0

)

=
h̃∑

c=1

(
∂zc
∂τa

)(

q
(0)
(zc)

ψ0M0 +
h̃∑

b=1

q
(0)
b (zc)

(
∂ψ0

∂zb

)

M0

)

+

(
∂

∂τa
Fj,0

)

M0

+ ǫ

{ h̃∑

c=1

(
∂zc
∂τa

)(

q
(1) dec
(zc)

Mj − q
(1) dec
(zc)

Fj,0M0 + q
(1) dec
(zb)

ψ0M0

)

+ Fj,0
(
Ma − Fa,0M0

)
+

h̃∑

c=1

(
∂zc
∂τa

) h̃∑

b=1

q
(0)
b (zc)

ψ0

(
Mb − Fb,0M0

)
}

, (B.23)

which will be ǫ-factorised if we require:

∂

∂τa
Fj,0 = −

h̃∑

c=1

(
∂zc
∂τa

)(

q
(0)
(zc)

ψ0 +

h̃∑

b=1

q
(0)
b (zc)

(
∂ψ0

∂zc

))

. (B.24)

Thus, we have shown that the differential equation corresponding to the basis of Eq. (3.9)

is in ǫ-form in the upper triangular block and that the strictly lower triangular part can be

brought to ǫ-form by introducing auxiliary functions Fi,j, which are fixed through differential

equations. We did, however not manage to show that these differential equations always allow

for a solution, but they are solvable in all examples we have computed.
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