
On the Degree Automatability of Sum-of-Squares Proofs

Alex Bortolotti ∗ Monaldo Mastrolilli † Luis Felipe Vargas‡

Abstract

The Sum-of-Squares (SoS) hierarchy, also known as Lasserre hierarchy, has emerged as a
promising tool in optimization. However, it remains unclear whether fixed-degree SoS proofs
can be automated [O’Donnell (2017)]. Indeed, there are examples of polynomial systems with
bounded coefficients that admit low-degree SoS proofs, but these proofs necessarily involve
numbers with an exponential number of bits, implying that low-degree SoS proofs cannot always
be found efficiently.

A sufficient condition derived from the Nullstellensatz proof system [Raghavendra and Weitz
(2017)] identifies cases where bit complexity issues can be circumvented. One of the main
problems left open by Raghavendra and Weitz is proving any result for refutations, as their
condition applies only to polynomial systems with a large set of solutions.

In this work, we broaden the class of polynomial systems for which degree-d SoS proofs
can be automated. To achieve this, we develop a new criterion and we demonstrate how our
criterion applies to polynomial systems beyond the scope of Raghavendra and Weitz’s result. In
particular, we establish a separation for instances arising from Constraint Satisfaction Problems
(CSPs). Moreover, our result extends to refutations, establishing that polynomial-time refuta-
tion is possible for broad classes of polynomial time solvable constraint problems, highlighting
a first advancement in this area.
Keywords— Sum of squares, Polynomial calculus, Polynomial ideal membership, Polymor-
phisms, Gröbner basis theory, Constraint satisfaction problems, Proof complexity.

∗University of Applied Sciences and Arts of Southern Switzerland, IDSIA, Lugano, Switzerland. E-mail:
alex.bortolotti@supsi.ch.

†University of Applied Sciences and Arts of Southern Switzerland, IDSIA, Lugano, Switzerland. E-mail:
monaldo.mastrolilli@supsi.ch.

‡University of Applied Sciences and Arts of Southern Switzerland, IDSIA, Lugano, Switzerland. E-mail:
luis.vargas@supsi.ch.

1

ar
X

iv
:2

50
4.

17
75

6v
1

 [
cs

.C
C

]
 2

4
A

pr
 2

02
5

mailto:alex.bortolotti@supsi.ch
mailto:monaldo.mastrolilli@supsi.ch
mailto:luis.vargas@supsi.ch

Contents

1 Introduction 3
1.1 Our contributions . 6
1.2 Structure of the article . 11

2 Preliminaries 12

3 SoS epsilon criterion 15
3.1 SoS epsilon criterion . 15
3.2 Delta-spectrality . 18
3.3 SoS epsilon completeness . 19
3.4 Separation between Nsatz and SoS . 23
3.5 The semialgebraic case . 24

4 SoS and PC for polynomials over finite domains 26
4.1 Finite domains systems . 26
4.2 Approximate simulation of PC by SoS . 28
4.3 PC criterion . 31

5 Strong Separation for certain Constraint Satisfaction Problems 32
5.1 Related results . 32
5.2 Background and notation for CSP’s . 33

5.2.1 The ideal membership problem of a constraint language IMP(Gamma) 34
5.3 Polynomial Calculus and semilattice polymorphism 34
5.4 Polynomial Calculus and dual discriminator polymorphism 35

6 Proof of Theorem 5.5 36
6.1 Min/Max polymorphisms . 37

6.1.1 Min polymorphism . 37
6.2 Generalizing to finite domain semilattice . 40

6.2.1 Binary encoding . 40
6.2.2 Reducing CSP(Gamma) over a finite domain to the Boolean domain 41
6.2.3 Reducing IMPd(Gamma) over a finite domain to the Boolean domain 41
6.2.4 Mapping the Boolean PC proof back to finite domain 43

7 Proof of Theorem 5.6 45
7.1 Binary constraints . 46
7.2 Generating sets . 47

7.2.1 Derivation schemes . 48
7.2.2 Permutation constraints . 49
7.2.3 Complete and two-fan constraints . 51
7.2.4 Combining I(CPCp) and I(CF) . 52

8 Conclusions and research directions 53

A Refutation degree for Horn clauses 60

B Complexity of Polynomial Division 60

2

1 Introduction

Semidefinite programming (SDP) relaxations have been a powerful technique for approximation
algorithm design ever since the celebrated result of Goemans and Williamson [26]. With the aim to
construct stronger and stronger SDP relaxations, the Sum-of-Squares (SoS) hierarchy has emerged
as a systematic and versatile method for approximating many combinatorial optimization problems,
see e.g. [42, 51, 24, 43]. However, fundamental questions remain unanswered. For instance, it is
still unknown under what conditions SoS can be automated, meaning whether one can find a
degree-d SoS proof in time nO(d), provided it exists. O’Donnell [48] observed that the prevailing
belief regarding the automatability of SoS using ellipsoid algorithms is not entirely accurate. Issues
may arise when the only degree-d proofs contain exceedingly large coefficients, thereby hindering
the ellipsoid method from operating within polynomial time. In this paper, we establish novel
conditions that ensure SoS automatability.

Polynomial optimization. Polynomial optimization asks for minimizing a polynomial over a
given set of polynomial constraints. That is, given polynomials r, p1, . . . , pm ∈ R[x1, . . . , xn], the
task is to find (or approximate) the infimum of the following probth:

inf
x∈S

r(x), where S = {x ∈ Rn | p1(x) = · · · = pm(x) = 0}. (1)

Typically, S is defined by a set of equality constraints, in this case P = {p1, . . . , pm}, as well as a
set of inequality constraints, Q. For all applications considered here, however, it suffices to restrict
to the case where Q = ∅ and S is finite, enabling the modeling of various relevant combinatorial
problems. Nonetheless, we emphasize that our results readily extend to the semialgebraic setting,
where Q ≠ ∅. For further details, we refer to Section 3.5.

A common approach for solving (or approximating) a polynomial optimization problem is by
means of sums of squares of polynomials, as we now explain.

Definition 1.1 (SoS Proof System). Let P = {p1 = 0, . . . , pm = 0} be a set of polynomial
equations, and consider a polynomial r ∈ R[x1, . . . , xn]. An SoS proof of “r ≥ 0” (over S) from P
is an identity of the form r =

∑t0
i=1 s

2
i +

∑m
i=1 hipi, where si, hi ∈ R[x1, . . . , xn]. Moreover, we say

that the above SoS proof has degree at most d if deg(s2i) ≤ d, for all i ∈ [t0], and deg(hipi) ≤ d for
all i ∈ [s]. An SoS refutation of P is an SoS proof of “− 1 ≥ 0” from P.

The SoS hierarchy is based on the following observation: if there exists an SoS proof of
“r − θ ≥ 0” from P, then we have that minx∈S r(x) ≥ θ. Moreover, the supremum of the values θ
such that there is an SoS proof of “r − θ ≥ 0” from P of degree d, is called d-th SoS relaxation,
also known as the d-th Lasserre relaxation of problem (1) [42, 51]. It turns out that the d-th SoS
relaxation can be formulated as an SDP of size nO(d).

SoS relaxations have gained increasing popularity and success; yet, they remain a relatively
recent development. Fundamental questions about their properties and capabilities still lack defini-
tive answers. O’Donnell [48] posed the open problem of identifying meaningful conditions that
ensure that “small” SoS proofs can be found. We will consider systems P = {p1 = 0, . . . , pm = 0}
of polynomials and an “input” polynomial r of degree at most d, with the (mild) assumption that
the bit complexity needed to represent P and r is polynomial in n. Moreover, we assume that P
is explicitly Archimedean, i.e. there is N < 2poly(n

d) such that there exists a “small” SoS proof of
“N − x2i ≥ 0” from P for any variable xi. We restate O’Donnell’s question as follows: Consider
an explicitly Archimedean polynomial system P; under what conditions on P does the following
property hold?

3

(P) Assume there exists an SoS proof of “r ≥ 0” from P of degree 2d. Then, for every ε > 0, there
also exists an SoS proof of “r+ ε ≥ 0” from P with degree O(d) and coefficients bounded by

2poly(n
d,lg 1

ε
).

The assumption of explicitly Archimedeanity guarantees that if there exists an approximate
SoS proof of “r − θ ≥ 0”, then there exists an (exact) SoS proof of “r − θ + ε ≥ 0”, up to
any arbitrary precision ε. Moreover, explicit Archimedeanity implies that the SDP has no duality
gap [37]. Therefore, it is often assumed in literature since numerical methods for solving SDPs are
guaranteed to converge only when the duality gap is zero.

Nsatz criterion. Since O’Donnell [48] raised his question in 2017, very few papers have been pub-
lished that address this issue. An initial elegant solution to this question is provided by Raghavendra
and Weitz [57], which is based on the Nullstellensatz proof system [4], as we will now outline. For
additional results from the literature related to this problem, see Section 1.

We denote the vector space of polynomials for variables x1, . . . , xn up to degree d as R[x1, . . . , xn]d.
Moreover, we denote by I(S) = {p ∈ R[x1, . . . , xn] | p(x) = 0 ∀x ∈ S} the vanishing ideal generated
by S, and by Id(S) = I(S) ∩ R[x1, . . . , xn]d the d-truncated ideal.

Definition 1.2 (Nsatz Proof System). Consider a system of polynomial equations P = {p1 =
0, . . . , pm = 0}. A Nullstellensatz (Nsatz) proof of “p = 0” from P is a sequence of polynomials
(h1, . . . , hm) such that the polynomial identity p =

∑m
i=1 hipi holds. We say that the proof has

degree d if maxi{deg hipi} = d. We say that P is Nsatz d-complete over S if for every p ∈ Id(S),
the identity “p = 0” can be derived using a degree-O(d) Nsatz proof from P.

Next, we recall the criterion proposed by Raghavendra and Weitz for the algebraic setting 1.
Moreover, for the sake of clarity of the exposition, we present their result in the case S is finite.
We define the algebraic variety S as the set of common zeros of P = {p1 = 0, . . . , pm = 0}. We
first observe that this criterion necessitates a technical condition on the solution set S, referred
to as δ-spectrality, which we will outline below. Let vd represent the column vector whose entries
correspond to the elements of the standard monomial basis of R[x1, . . . , xn]d. For α ∈ Rn, vd(α)
denotes the vector of real numbers obtained by evaluating the entries of vd at α.

Definition 1.3. Let S be a finite algebraic variety. We say that S is δ-spectrally rich up to degree
d if every nonzero eigenvalue of the moment matrix 1

|S|
∑

α∈S vd(α)v
T
d (α) is at least δ.

This property holds for 1
δ = 2poly(n

d) in many natural instances, for example when S ⊆ {0, 1}n,
or more in general, when S ⊆ Dn for any finite domain D ⊆ Q (see Section 3.2 and [57]).

Theorem 1.4 (Nsatz criterion [57]). Let P be a system of polynomial equalities over n variables
with solution set S. Assume that

(1) S is δ-spectrally rich up to degree d.

(2) P is Nsatz d-complete over S.

Let r be a polynomial and assume there exists an SoS proof of “r ≥ 0” from P of degree d. Then,
there also exists an SoS proof of “r ≥ 0” from P with degree O(d) and with absolute values of the

coefficients bounded by 2poly(n
d,lg 1

δ
).

1We remark that their criterion is formulated for the semialgebraic setting, i.e. when there are also inequalities.

4

This criterion is applicable to various optimization problems, including Max-Clique, Match-
ing, and Max-CSP [57]. However, the Nsatz criterion is subject to significant limitations. First,
the criterion is sufficient but not necessary. Second, it is important to observe how the Nsatz
criterion (see condition (2) in Theorem 1.4) is influenced by the complexity of a well-known prob-
lem known as the Ideal Membership Problem (IMP). This problem involves determining whether
an input polynomial r belongs to the ideal generated by {p1, . . . , pm}. We denote the IMP where
the input polynomial r has degree at most d = O(1) as IMPd. The IMP was first studied by
Hilbert [32] and is a fundamental algorithmic problem with significant applications in solving poly-
nomial systems and polynomial identity testing (see, for example, [21]). In general, the IMP is
notoriously intractable, and the results of Mayr and Meyer demonstrate that it is EXPSPACE-
complete [46, 47]. It remains unclear under what conditions the IMP is tractable within the
Nsatz proof system, specifically regarding when condition (2) in Theorem 1.4 is satisfied. More
importantly, the limitations of the Nsatz proof system (see e.g. [24]) affect the applicability of
Theorem 1.4. In simpler terms, it is intuitive to suggest that if we could replace the Nsatz proof
system with a more powerful proof system, we would be able to broaden the applicability of the
criterion to new problems.

Finally, a key limitation—and one of the main open problems left by Raghavendra and Weitz
[57, 62]—is the inapplicability of the Nsatz criterion to SoS refutations.

For example the Nsatz criterion does not allow one to show that the following decision problem
can be solved in polynomial time.

Problem 1.5 (Degree-d Sum-of-Squares Refutation for CSP). Given a Constraint Satisfaction
Problem (CSP) with constraints ϕ1(x) = 0, . . . , ϕm(x) = 0 over a finite domain, decide whether:

• YES: There exists a degree-d sum-of-squares (SoS) proof of the infeasibility of the system,
i.e., a derivation of −1 ≥ 0 from the axioms ϕ1(x) = 0, . . . , ϕm(x) = 0 and the domain
constraints.

• NO: No such degree-d SoS proof exists.

Let us call this problem “SoS-CSP”. This is perhaps the most natural formulation of “the SoS
algorithm for CSPs”. It is quite striking that we still do not know whether there exists or not a
polynomial-time decider for SoS-CSP (even for certain restricted classes of problems).

References to the related literature

O’Donnell [48] raised the issue of SoS bit complexity in 2017, as discussed in Section 1. O’Donnell
also presented an example of a polynomial system with bounded coefficients that allows for a degree
2 SoS proof, which necessarily has doubly-exponential coefficients.

The aforementioned result (Theorem 1.4) by Raghavendra and Weitz [57] offered an initial
elegant, albeit partial, solution. Raghavendra and Weitz expanded O’Donnell’s work and presented
an example of a polynomial system containing the Boolean constraints and a polynomial that
admits degree 2 SoS proof, but for which any SoS proof of degree O(

√
n) must have coefficients

of doubly-exponential magnitude in n.
Interestingly, Hakoniemi [31] demonstrated that both SoS and Polynomial Calculus (PC) refu-

tations over Boolean variables encounter the same bit complexity issue. This finding also raises
significant concerns regarding the frequently asserted degree automatability of PC.

Furthermore, strategies in [6, 15, 13, 45] to address the problem of SoS bit complexity involve
replacing the original input polynomial constraints P with a new set of polynomials P(d) that
satisfies the Nsatz criterion, and generally depends on the SoS degree d. This set P(d) is computed

5

externally (by an algorithm specifically designed for this purpose 2), serving as the input for SoS in
place of P. For example, in the semilattice case, if P consists of m polynomials, the set P(d), used
in [15, 45], is generated by a specific algorithm and has a size of mO(d); that is, P(d) depends on d
and grows exponentially with the SoS degree d. This preprocessing step ensures that SoS retains
“low” bit complexity, but only if P is substituted with P(d). Essentially, the approach utilized in
[6, 15, 13, 45] is to apply the Nsatz criterion without enhancing or extending it, with the goal
of replacing the initial input polynomial system with a new one that is computed externally and
satisfies the Nsatz criterion. Our results demonstrate that all preprocessing steps employed in
[6, 15, 45] are unnecessary, as SoS achieves low bit complexity for any fixed d when P is provided
directly as input.

Recently, Gribling et al. [27] showed that, under specific algebraic and geometric conditions,
SoS relaxations can be computed in polynomial time. However, as they noted, their algebraic
conditions are more restrictive than d-completeness. Their geometric conditions apply to systems
of only inequality constraints with full dimensional feasibility set. Additionally, Palomba et al. [49]
showed that, under some mild conditions, sum-of-squares bounds for copositive programs can be
computed in polynomial time. These results also yielded insights into the bit complexity of SoS
proofs.

The quest of characterizing conditions for ensuring tractability of the SoS proof system fits
into the more general context of real algebraic geometry, and in particular of the so-called effective
Positivstellensatz, i.e., the study of the complexity for representing polynomials using rational sums
of squares. To this end, we mention Baldi et al. [1], who recently proved an exponential upper
bound on the coefficients’ bit complexity of sums of squares proofs in the general case of radical zero-
dimensional ideals when the equality constraints form a graded basis. Furthermore, as observed,
SoS feasibility can be reformulated as an SDP feasibility problem, which remains a well-known
open question. In this context, we highlight the work of Pataki and Touzov [53], who showed that
many SDP’s have feasible sets whose elements have large encoding size. Moreover, they initiated
the study of characterizing the conditions under which SDP feasibility sets with large encoding
sizes occur.

Several papers in the literature investigate the automatability of the SoS proof system in relation
to degree lower bounds. Specifically, various instances have been studied where a set of polynomial
equations P = {p1 = 0, . . . , pm = 0} and a polynomial q satisfy the condition that “ q ≥ 0 on S”,
but any SoS proof of this fact necessarily requires a high degree (see, e.g., [29, 38, 39, 40, 41, 55]).
Within the context of the Lasserre hierarchy, these examples correspond to polynomial optimization
problems for which many rounds of the hierarchy are needed to reach optimality.

In contrast, our focus is on a different aspect of automatability: we aim to understand under
what conditions a fixed-degree level of the Lasserre hierarchy can be computed in time polynomial
in the input size (up to a prescribed precision). This shifts the question from degree necessity to
degree tractability within a computational framework.

1.1 Our contributions

Our main contribution is to study and expand the class of polynomial systems for which finding
degree-d SoS proofs can be automated. To this end, we first introduce a new criterion based on
the Polynomial Calculus (PC) proof system which guarantees that property (P) holds, referred
to as the PC criterion. This criterion holds both for SoS refutations and for SoS proofs over
feasible systems over finite domains. Remarkably, as we will demonstrate, this criterion applies to

2In general such an algorithm cannot be simulated by SoS. We defer the interested reader to Section 5.1 for
details.

6

a broad class of instances arising from Constraint Satisfaction Problems (CSPs) where the Nsatz
criterion does not. Specifically, we will establish tractability results for broad class of SoS-CSP,
and, moreover, prove complete degree-d automatability beyond refutations for certain polynomial
systems arising from CSP(Γ). The proof of the PC criterion combines several results, including a
simulation of the PC proof system by the SoS proof system together with the development of a
different criterion based on the SoS proof system, called the SoSε criterion.

PC criterion

We begin by introducing polynomial systems over finite domains, i.e., systems where each variable is
restricted to assume values from a fixed set of k rational numbers ρ1, ρ2, . . . , ρk. Given a polynomial
system of equations P and a finite domain D = {ρ1, . . . , ρk}, we say that P is a polynomial system
over finite domain D if it includes the following domain polynomials:

Dk(xi) = (xi − ρ1)(xi − ρ2) · · · (xi − ρk) = 0 i ∈ [n]. (2)

These polynomials ensure that each variable x1, . . . , xn is constrained to take values from D. Note
that this formulation generalizes polynomial systems with Boolean variables, i.e., where the con-
straint x2i − xi = 0 enforces xi to be either 0 or 1.

Polynomial Calculus over R (PC/R), or in short Polynomial Calculus (PC), is a proof system
used in computational complexity and proof complexity to study the efficiency of algebraic reason-
ing. It operates over polynomials and is particularly useful in analyzing the complexity of solving
systems of polynomial equations. The goal is to derive the polynomial 1 (i.e., show inconsistency)
or to demonstrate that a certain polynomial is implied by the given system. Originally introduced
as a refutation system in [19], PC can be viewed as a degree-truncated version of Buchberger’s
algorithm [36, 21]. Essentially, PC is a dynamic version of the Nsatz proof system, employing
schematic inference rules to reason about polynomial equations. We emphasize that, for the re-
mainder of the paper, we will consider PC in the broader sense of polynomial derivation (so not
restricted to refutation) and with polynomials over the reals.

PC consists of the following derivation rules for polynomial equations (f = 0), (g = 0) ∈ P,
domain polynomial equations (Dk(xj) = 0), variable xj , and numbers a, b ∈ R

f = 0 Dk(xj) = 0

f = 0 g = 0

af + bg = 0

f = 0

xjf = 0
(3)

A PC derivation of “r = 0” from P is a sequence (r1 = 0, . . . , rL = 0) of polynomial equations
iteratively derived by using (3) with r = rL. The size of a derivation is the sum of the sizes of the
binary encoding of the polynomials in the derivation and the degree is the maximum degree of the
polynomials in the derivation. A PC refutation is a derivation of “1 = 0”.

Next, we present one of our main contributions, namely a framework for showing that Property
(P) holds for certain polynomial systems over finite domains.

Theorem 1.6 (PC criterion). Let P be a polynomial system over a finite domain D of k rational
values, let S be its variety. Let G2d be a 2d-truncated Gröbner basis of I(S) according to the grlex

order such that ∥G2d∥∞ ≤ 2poly(n
d). Assume that, for every g ∈ G2d, there exist a PC derivation of

g from P of size poly(nd) and degree O(d).
Let r be a polynomial and assume there exists an SoS proof of “r ≥ 0” from P of degree 2d.

Then, for every ε > 0, there exists an SoS proof of “r+ε ≥ 0” of degree O(d) such that the absolute

values of the coefficients of every polynomial appearing in the proof are bounded by 2poly(n
d,lg 1

ε
).

7

Moreover, suppose P is Nsatz d-complete over S. It follows that, for every g ∈ G2d, the identity
“g = 0” admits a degree-O(d) Nsatz proof from P. Further, PC is known to be strictly stronger
than Nsatz [19], thus implying that our criterion is also more powerful than the Nsatz criterion.
The separation between the Nsatz and the PC criteria is strict and it will be further discussed in
Section 1.1.

The proof of Theorem 1.6 combines multiple techniques, which we will present in greater detail
in Section 1.1. A key component of this proof is the development of a different criterion, the SoSε

criterion. As we will see, this criterion provides a more general framework that extends beyond finite
domains (see Example 3.19). Nevertheless, the strong connection between PC and Buchberger’s
algorithm makes the PC criterion an effective tool for many instances where the IMPd can be
efficiently solved [21].

Two main applications from CSPs.

In the following, we present our main two applications of Theorem 1.6. In both cases we focus
on restricted classes of Constraint Satisfaction Problems (CSPs), denoted as CSP(Γ), where con-
straints are limited to relations from a specified set Γ. These language restrictions have proven
effective for analyzing computational complexity classifications and other algorithmic properties
of CSPs, leading to recent breakthroughs in [11, 63, 64] (see, e.g., [3, 12, 18] and Section 5.2 for
further details and necessary background).

First main application: refutation for bounded width CSPs All known tractable Con-
straint Satisfaction Problems CSP(Γ) for a fixed constraint language Γ are solvable using two
fundamental algorithmic principles. The first relies on the few subpowers property (see e.g. [3]).
The second, local consistency checking, is the most widely known and natural approach for solving
CSPs [2, 3, 11].

We consider the class of constraint languages Γ for which CSP(Γ) has bounded width, meaning
that it can be solved by a local consistency checking algorithm (see e.g. [2, 3]). Identifying and
characterizing such languages is crucial for understanding the tractability of constraint satisfaction
problems [2, 3]. Note that for languages that rely on the few subpowers property in general SoS
requires high degree for refutation [3, 2, 28].

As a corollary of Theorem 1.6, we establish the polynomial-time feasibility of the SoS refutations
for the whole class SoS-CSP(Γ) problems (see Problem 1.5) for which CSP(Γ) has bounded width.

Corollary 1.7. For constraint languages Γ over finite domains for which CSP(Γ) has bounded
width, the SoS-CSP(Γ) Problem 1.5 can be solved in polynomial time for any fixed degree d.

Proof sketch. For refutations, Theorem 1.6 requires that there exists a PC derivation of “1 = 0”
from P of size poly(nd) and degree O(d). The claim follows by observing that the local consistency
algorithm can be simulated by a truncated Buchberger’s algorithm (that we call PC). Thus,
any information obtained by enforcing local consistency, and therefore, by definition, by deciding
any bounded width language, can be obtained by performing a truncated Buchberger’s algorithm
[36, 10].

Note that both the decision and search versions of Problem 1.5 with bounded width are solvable
in polynomial time for any fixed degree d, as a consequence of Theorem 1.6.

Further, we mention that in [60] it was obtained a similar result in the context of the Sherali-
Adams proof system. However, this result applies only to a fixed limited form of P, namely the
Boolean canonical linear program. As remarked in Section 1, our focus is on deriving SoS proofs

8

directly from P with variables over general finite domains without any preprocessing. To this end, in
Corollary 1.7, we demonstrate that for any system of equations P over a finite domain that defines
a bounded-width relation, finding SoS refutations directly derived from P can be automated.

Second main application: strong separations arising from CSPs As second application
of Theorem 1.6, we examine constraint languages (and polynomial equations) that are closed under
the semilattice and dual discriminator polymorphisms3 (see, e.g., [3] and Sections 5.3 and 5.4 for
the necessary background). Propositional formulas from HORN-SAT or 2-SAT can be easily
translated into system of polynomial equations that are semillatice or dual discriminator closed,
respectively. Moreover, these two classes extend HORN-SAT and 2-SAT formulas, respectively, to
general finite domain cases and have held a significant role in the theory of Constraint Satisfaction
Problems of the form CSP(Γ); see, e.g., [3, 12] and references therein.

Theorem 1.8. For a system P of polynomial equations over n variables that is closed under the
semilattice (or dual discriminator) polymorphism, then the PC criterion (Theorem 1.6) applies.

Note that these classes of problems are known to be bounded width (see e.g. [3]). Therefore, by
Corollary 1.7 the refutation Problem 1.5 can be solved in polynomial time. However, Theorem 1.8
establishes a significantly stronger result. Indeed, Theorem 1.8 indicates that any degree d SoS
proof of p ≥ 0, for any polynomial p, can be computed in nO(d) time with arbitrary precision (not
only degree-d SoS proofs for −1 ≥ 0, as required by refutation).

We emphasize that Buss and Pitassi [17] show that the Nsatz proof system necessitates a
degree Θ(log n) proof for the induction principle INDn, a polynomial inference rule that can be
formalized as a derivation in either HORN-SAT or 2-SAT formulae. As a result, if P is closed
under the semilattice (or dual discriminator) polymorphism, it cannot be Nsatz d-complete for
any d = o(log n). Thus, Theorem 1.6, Theorem 1.8 and [17] establish a clear separation between
the PC criterion and the Nsatz criterion.

Polynomial Calculus (PC) is a rule-based, dynamic extension of Nullstellensatz (see e.g. [24]).
Due to its dynamic nature, it can sometimes achieve a refutation of significantly lower degree
through cancellations than would be possible with the static Nullstellensatz system. A notable
example is the induction principle INDn mentioned above, which has degree 2 refutations in PC.
By contrast, its Nullstellensatz degree has been shown to be Θ(log n) [17].

We demonstrate that PC, in addition to solving refutation for the very special case of INDn

with low degree, also addresses the much more general Ideal Membership Problem IMPd in nO(d)

time for two families of problems that significantly generalize HORN-SAT and 2-SAT in multiple
respects and apply to all finite rational domains. This also demonstrates that PC is complete and
free from bit complexity issues for these problems (Hakoniemi recently raised concerns regarding
the bit complexity in PC [31], see also Section 8).

This result is not only intrinsically interesting but also closely aligned with the main goal of
this article. Indeed, the PC criterion demonstrates that solvability via Polynomial Calculus and
the bit complexity of Sum-of-Squares are deeply interconnected. Finally, we emphasize that it is
not implied by the recent result of Bulatov and Rafiey [15]; more details are given in Section 5.

The proof of this broad generalization is technically complex and lengthy, necessitating a dedi-
cated space with the necessary preliminaries. Therefore, we defer the full discussion—including a
detailed review, proof, the underlying intuition and the literature review—to Section 5.

3In the context of CSPs, a polymorphism is a special kind of function that helps us understand the structure of
the constraints. Specifically, it is a function that combines multiple solutions of a CSP in a way that still satisfies
the constraints. Polymorphisms are useful because they reveal patterns in the constraints, and studying them can
help determine how easy or hard a CSP is to solve. We refer to Definition 5.2 for a formal definition.

9

This paper aims to deepen our understanding of the bit complexity issue and to explore the
conditions under which it arises. For instance, we demonstrate that all preprocessing steps aimed at
replacing P with a new set P ′ to satisfy theNsatz criterion, as used in [15, 45, 7, 6] to circumvent the
bit complexity issues of SoS for semilattice and dual discriminator polymorphisms, are unnecessary.
Specifically, SoS, when applied directly to P as input, achieves low bit complexity for any fixed d
(refer to Section 5.1 for a more detailed discussion). This result appears to support and extend the
hypothesis that CNF formulas do not exhibit a bit complexity issue, an open question posed by
Hakoniemi [31] (see also Section 8).

SoS (approximately) simulates PC

As a main contribution, we address the existing knowledge gap regarding the relationship between
SoS and PC in the general finite domain setting. Our main result shows that SoS can simulate
PC derivations in this setting with an arbitrarily small error. Essentially, if PC can derive the
equation “p = 0”, then, for any arbitrary ε > 0, SoS can prove the statements “p + ε ≥ 0” and
“− p+ ε ≥ 0” with only a polynomial increase in size. While this result serves as a main technique
for proving the PC criterion, as outlined in Section 1.1, it is also valuable on its own, as we present
below. Our result builds upon and generalizes the simulation result of Berkholz [5] for Boolean
variables to the broader context of general finite domains.

Berkholz [5] related different approaches for proving the unsatisfiability of a system of real
polynomial equations. Over Boolean variables, he showed that SoS simulates PC refutations: any
PC refutation of degree d can be converted into an SoS refutation of degree 2d, with only a
polynomial increase in size.

In the non-Boolean setting, there are systems of equations that are easier to refute for PC than
for SoS [30]. Grigoriev and Vorobjov [30] show that the simulation of PC by SoS does not hold
in the non-Boolean case, namely when the Boolean axioms x2j − xj = 0 are omitted. For example,

the so-called telescopic system of equations, {yx1 = 1, x21 = x2, . . . , x
2
n−1 = xn, xn = 0}, has a

PC refutation of degree n, but it requires exponential refutation degree in SoS [30]. It is worth
noting that a similar (although much weaker than the one present in Lemma 1.9) generalization of
Berkholz’s result was considered in [59], when the variables take the values ±1, and in [52], for a
variation of PC endowed with a “radical rule” and a “sum-of-squares rule”.

Whether SoS could simulate PC in the general finite domain setting, where variables can take
values from any finite set, has remained an open question, despite known limitations in specific
non-Boolean cases.

In this work, we answer this open question and complement the results in [30, 5] by establishing
the following theorem. In summary, we first derive the following lemma.

Lemma 1.9. Let P be a system of polynomial equations over a finite domain D with |D| = k.
Assume that “r = 0” has a PC derivation of degree d and size S from P. Then “− r2 ≥ 0” has an
SoS proof of degree 2(d+ k − 1) with coefficients of size poly(k, S).

The overall structure of the proof partially mirrors that in [5], but with notable differences. In
particular, new ideas and techniques are introduced in the simulation of the multiplication rule of
PC.

Furthermore, note that the result holds for the particular case of refutations, i.e. when r = 1.
Indeed, if there exists a PC refutation of P, i.e., a derivation of 1 = 0, then Lemma 1.9 implies
that there exists an SoS refutation “− 1 ≥ 0” with only polynomial increasing.

Then, employing Lemma 1.9, we prove the following result.

10

Theorem 1.10. SoS approximates PC with degree linear in the domain size k over general finite
domains. That is, if there exists a PC derivation of “r = 0” with degree d and size S, then for
every ε > 0, we have SoS proofs of “r + ε ≥ 0” and “ − r + ε ≥ 0” with degree O(d + k) and

coefficients bounded by 2poly(k,S,lg
1
ε
).

Outline of the techniques for proving the PC criterion

Below we outline the main techniques that will be used in the proof of the PC criterion.

1. SoSε criterion (Section 3.1) We begin by introducing a general criterion, called the SoSε

criterion, which ensures that Property (P) is satisfied and, consequently, that SoS can be
automated. This criterion is a natural generalization of the Nsatz criterion [57] (see Theo-
rem 1.4), and serves as a foundational tool for presenting our main contributions. The key
distinction lies in the notion of approximate completeness: the SoSε criterion requires SoSε

completeness, a relaxed condition than the one required by Theorem 1.4, as discussed in Sec-
tion 3. Informally, a system P is SoSε complete if for every q ∈ Id(S) and every ε > 0, there
exist an SoS proof of the inequality “q + ε ≥ 0” using bounded coefficients (see Section 3.3
for the precise definition).

2. SoS approximability of polynomial systems(Section 3.3) As previously mentioned, the
main difference between the Nsatz and SoSε criteria lies in their respective notions of com-
pleteness. Therefore, a main challenge in applying the SoSε criterion is proving that a given
system P is SoSε complete. To this end, in Section 3.3 we present the notion of SoS-
approximation (≲) between polynomial systems defining the same zero set, which turns out
to be a powerful tool for showing SoSε completeness, and applying the SoSε criterion. The
key advantage of SoS-approximation is that it allows the inheritance of SoSε completeness
between systems: under mild conditions, if P is SoSε complete and P ≲ Q, then Q is also
SoSε complete.

3. SoS approximately simulates PC (Section 4.2) The final tool we use to establish the PC
criterion is the simulation of the PC derivation system by SoS. As previously emphasized,
this simulation, presented formally in Lemma 1.9 and Theorem 1.10, is one of the main
contributions of this work and can be appreciated independently. However, it also plays a
crucial role in proving another major result: the PC criterion (Theorem 1.6). The proof
strategy proceeds as follows. Under the theorem’s hypotheses, the truncated Gröbner basis
G is easily shown to be Nsatz-complete and hence SoSε complete. Using our simulation
results, we then establish the following chain of SoS-approximations:

G ≲ G2 ≲ P.

Finally, using the properties of SoS-approximability, we conclude that P is also SoSε com-
plete.

In the following sections, we explore these three concepts in more detail. Then, in Section 4.3,
we combine these techniques to prove the PC criterion (Theorem 1.6).

1.2 Structure of the article

In Section 3, we give a full exposition of the SoSε criterion. Subsequently, we develop several tools
to facilitate its application. In Section 4, we focus on the case of polynomial systems over finite

11

domains, where we establish a connection to the Polynomial Calculus (PC) proof system and derive
a weaker version of the SoSε, called the PC criterion. The latter will be used for the separation
in the radical ideal case. Sections 5 to 7 are devoted to construct a class of examples arising from
Constraint Satisfaction Problems, demonstrating a separation between our new criterion and the
Nsatz criterion. Section 5 begins with an overview of relevant background and related results,
followed by a description of our proof strategy and main results. In Sections 6 and 7, we present
the detailed proofs. Finally, in Section 8, we finish with concluding remarks and discuss potential
research directions.

2 Preliminaries

Consider a set of variables {x1, . . . , xn} and denote the vector space of polynomials in x up to a
fixed degree d = O(1) as R[x1, . . . , xn]d. We denote as vd being the column vector whose entries
are the elements of the usual monomial basis of R[x1, . . . , xn]d and, if α ∈ Rn, vd(α) is the vector
of reals whose entries are the entries of vd evaluated at α. It follows that for any polynomial
u(x) ∈ R[x1, . . . , xn]d, it holds that u(x) = uTvd for some u ∈ Rn. We will consider systems
P = {p1 = 0, . . . , pm = 0} of polynomial equations and an ”input” polynomial r of degree at most d,
with the (mild) assumption that the bit complexity needed to represent P and r is polynomial in n.
The string l representing polynomials r, p1, . . . , pm will be the input for our certification problems
and this last assumption allows us to reduce any complexity reasoning to n instead of the length
of l. We will sometimes refer to P as a set of constraints or axioms.

Next, we need to define the measures of norm and bit complexity for different objects. For the
first measure, consider a polynomial p =

∑
α cαx

α, we define ∥p∥∞ = maxα |cα|. Similarly, for a set
of polynomial we have ∥P∥∞ = maxp∈P ∥p∥∞. Throughout this paper, we will assume that the set

S of common zeros of P is finite and that ∥S∥ := maxα∈S ∥α∥ < 2poly(n
d). These assumptions are

very general and are met in many different contexts. For the second measure, consider a polynomial
p (or a polynomial system P). We define the bit complexity of p (or P) as the minimum length
of a bit-string representing p (or P) when the rational numbers are represented with their reduced
fractions written in binary (see e.g. [31]). As noted above, the bit complexity of P is assumed
polynomial in n.

Explicit Archimedeanity

We recall the notion of explicit Archimedeanity of polynomial systems. This property plays a
crucial role in the context of computations of SoS proofs [37, 43]. The Archimedean property in
algebraic optimization requires all variables to be bounded within some compact set. The explicitly
Archimedean condition strengthens this by demanding that boundedness of variables is efficiently
certifiable via SoS proofs. We give the following formal definition.

Definition 2.1 (Explicitly Archimedean System). A system of polynomials P is said to be explicitly
Archimedean if one of the following equivalent conditions holds.

• For every degree k polynomial p ∈ R[x1, . . . , xn], there exists 0 < Np ≤ 2poly(n
max{k,d},lg ∥p∥∞)

such that there exists a SoS proof of “Np−p ≥ 0” from P of degree O(k) and with coefficients

bounded by 2poly(n
max{k,d},lg ∥p∥∞).

• For every i ∈ [n] there exists 0 < Nxi ≤ 2poly(n
d) such that there exist SoS proofs “Nxi −xi ≥

0” and “Nxi + xi ≥ 0” from P of degree O(d) and with coefficients bounded by 2poly(n
d).

12

• For every i ∈ [n] there exists 0 < Nx2
i
≤ 2poly(n

d) such that there exist SoS proofs “Nx2
i
−x2i ≥

0” from P of degree O(d) and with coefficients bounded by 2poly(n
d).

The assumption of explicit Archimedeanity is met in numerous natural cases. This is the case
for Boolean systems, i.e. systems that contain the Boolean constraints x2i −xi = 0 for every variable,
where it suffices to set Nxi = 1 for i ∈ [n]. Furthermore, every system with variables constrained
over a finite domain D is explicitly Archimedean, as shown in Lemma 4.3.

Ideals and varieties

Let us recall here the notions of (polynomial) ideals, (algebraic) varieties and some of their prop-
erties (see e.g. [21]). Consider a set of polynomials P = {p1, . . . , pm} ⊆ R[x1, . . . , xn].

Definition 2.2. The algebraic variety generated by P is defined as

S := V (P) = {x ∈ Rn | pi(x) = 0, ∀i ∈ [m]}.

We also define the following two sets.

Definition 2.3.

⟨P⟩ := {q ∈ R[x1, . . . , xn] | q =
∑
i

hipi, hi ∈ R[x1, . . . , xn]},

I(S) := {q ∈ R[x1, . . . , xn] | q(α) = 0, ∀α ∈ S},

as the ideal generated by P, the former, and the (vanishing) ideal generated by set S, the latter.
We refer to a d-truncated ideal when we consider Id := I ∩R[x1, . . . , xn]d, where I ⊆ R[x1, . . . , xn]
is a polynomial ideal.

Definition 2.4. We say that an ideal I is radical if pm ∈ I for some m ∈ N implies p ∈ I.

Gröbner bases

We give here a very brief introduction on the notion of Gröbner basis. For a complete exposition,
we refer the reader to [21].

We first establish an order on the polynomial ring R[x1, . . . , xn]. Given a monomial xα =
xα1
1 . . . xαn

n , this can be unambiguously associated to the n-tuple α = (α1, . . . , αn) ∈ Nn.

Definition 2.5. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn and |α| =
∑n

i=1 αi, |β| =
∑n

i=1 βi.

(i) Lexicographic order (lex): We say α >lex β if, in the vector difference α − β ∈ Zn, the left
most nonzero entry is positive.

(ii) Graded lexicographic order (grlex): We say α >grlex β if |α| > |β|, or |α| = |β| and α >lex β.

Throughout this paper we will always assume that R[x1, . . . , xn] is ordered according to the
graded lexicographic order grlex.

One potential approach to solving the IMP is through polynomial division. The idea is that,
given a polynomial r and a set of polynomials P, if the remainder of the division of r by P is zero,
then r belongs to the ideal ⟨P⟩. However, it is well-known that polynomial division is generally not
well-defined. Specifically, the remainder resulting from the division of r by P can vary depending
on the order in which the polynomials in P are used for division.

To fix this issue, a special set of generators was introduced in [9].

13

Definition 2.6 (Gröbner Basis). Let G = {g1, . . . , gs} be a set of polynomials. Consider an ideal
I ⊆ R[x1, . . . , xn] such that I = ⟨g1, . . . , gs⟩, and consider r ∈ R[x1, . . . , xn]. We say that G is a
Gröbner basis of I if the following property holds

r ∈ I ⇐⇒ r|G = 0,

where r|G is the remainder of the polynomial division of r by G.

Moreover, we will be mainly interested in solving problems of the form IMPd, i.e. when r
has degree at most d. Because R[x1, . . . , xn] is ordered according to the grlex order, the only
polynomials in G that can divide r are those with degree d or lower. Consequently, we give the
following definition.

Definition 2.7. Let G be a Gröbner basis of an ideal in I ∈ R[x1, . . . , xn], the d-truncated Gröbner
basis Gd of I is defined as

Gd := G ∩ R[x1, . . . , xn]d. (4)

By the definition of Gröbner basis, we immediately conclude that IMPd can be solved when
the d-truncated Gröbner basis is available. Specifically, we have

r ∈ Id ⇐⇒ r|Gd
= 0.

Furthermore, if Gd can be calculated in polynomial time, then the IMPd can be solved in polynomial
time (see also Appendix B).

Polynomial Calculus over general finite domains

In this paper we consider PC over a general finite domain D, which is an immediate generalization
of the classical PC over the Boolean domain [19], i.e. when the Boolean constraints x2j − xj = 0
belong to the set of constraints. Let D = {ρ1, ρ2, . . . , ρk} be a finite domain. For every variable
xj where j ∈ [n], to enforce xj to assume values in D, we include the following univariate domain
polynomials in P

Dk(xj) = (xj − ρ1)(xj − ρ2) · · · (xj − ρk) j ∈ [n].

PC over a general finite domain is a proof system that consists of the following derivation rules for
polynomial equations (f = 0), (g = 0) ∈ P, domain polynomial equations (Dk(xj) = 0), variable
xj , and numbers a, b ∈ R

f = 0 Dk(xj) = 0

f = 0 g = 0

af + bg = 0

f = 0

xjf = 0
(5)

Definition 2.8. A PC derivation (or PC proof) of “r = 0” from P is a sequence (r1 = 0, . . . , rL =
0) of polynomial equations iteratively derived by using (5) with r = rL. The size of a derivation
is the sum of the sizes of the binary encoding of the polynomials in the derivation and the degree
is the maximum degree of the polynomials in the derivation. A PC refutation is a derivation of
“1 = 0”.

14

3 SoSε criterion

As outlined in Section 1, we will examine sufficient conditions on a polynomial system P for
ensuring that the following property holds.

(P) Assume there exists an SoS proof of “r ≥ 0” from P of degree 2d. Then, for every ε > 0, there
also exists an SoS proof of “r+ ε ≥ 0” from P with degree O(d) and coefficients bounded by

2poly(n
d,lg 1

ε
).

In this section we formulate the SoSε criterion, a set of sufficient conditions that guarantee
that property (P) holds (see Section 3.1, in particular Theorem 3.4). The SoSε criterion has two
requirements: δ-spectrality and SOSε-completeness. We then proceed to give general settings and
techniques to verify that the requirements are satisfied (see Section 3.2 and Section 3.3). Finally,
we discuss the separation between the Nsatz criterion and the SoS criterion (see Sections 3.4, 4.3
and 5).

3.1 SoSε criterion

Recall we are assuming that S is finite and that ∥S∥ < 2poly(n). The moment matrix is defined as
follows.

M =MS,d := Eα∈S [vd(α)v
T
d (α)] =

1

|S|
∑
α∈S

vd(α)v
T
d (α), (6)

where the expectation is over the uniform distribution over S. Note thatM is positive semidefinite,
i.e. it is a real symmetric matrix with nonnegative eigenvalues. Let λ1, λ2, . . . , λ(n+d

d) be the

eigenvalues of Ms,d with corresponding eigenvectors u1, . . . , u(n+d
d) forming an orthonormal basis

for R(
n+d
d). Let U be the matrix where the columns are the eigenvectors u1, . . . , u(n+d

d). Now, we

define

Π+ :=
∑

i s.t. λi>0

uiu
T
i , Π0 :=

∑
i s.t. λi=0

uiu
T
i . (7)

Then, we have
I = UTU and I = Π+ +Π0.

We have the following lemma.

Lemma 3.1. Let u be an eigenvector for the zero eigenvalue λ = 0 of M . Then, we have uTvd ∈
Id(S).

Proof. By the assumptions, we have

0 = uTMu = uT

(
1

|S|
∑
α∈S

vd(α)v
T
d (α)

)
u =

1

|S|
∑
α∈S

(uTvd(α))
2.

Since all terms on the right-hand side are nonnegative, all are equal to zero. That is, the polynomial
uTvd vanishes at all points in S.

Definition 3.2 (δ-spectrality and SoSε-completeness). Let P = {p1 = 0, . . . pm = 0} be polynomial
system with variety S = V (P), and let δ ∈ R>0.

15

1. We say that S is δ-spectrally rich up to degree d if every nonzero eigenvalue of M is at
least δ.

2. We say that P is SoSε-d-complete over S (or simply SoSε-complete) if, for every polynomial
in the 2d-truncated vanishing ideal q ∈ I2d(S) and every ε > 0, there exists an SoS proof
of “q + ε ≥ 0” of degree O(d) from P with absolute value of the coefficients bounded by

2poly(n
d, lg ∥q∥∞,lg 1

ε
).

Let r be a polynomial. Suppose that “r ≥ 0” admits an SoS proof Π from P. Although Π may,
in principle, have coefficients with magnitude of the order 22

n
(see [48, 57]), we show in the next

result that r can be decomposed as a sum-of-squares component plus an “ideal part” component,
both having bounded coefficients. In general, the ideal part does not necessarily take the form∑
hipi as in Definition 1.1. Nevertheless, this result allows us to reduce the discussion to focus

on the ideal part of the decomposition. The following lemma, essentially from Raghavendra and
Weitz [57], is presented here separately as we use it to extend their result.

Lemma 3.3. Consider the a polynomial system P = {p1 = 0, . . . , pm = 0} with finite variety

S = V (P) such that ∥S∥ ≤ 2poly(n
d). Assume that S is δ-spectrally rich up to degree d.

Let r be a polynomial nonnegative on S with coefficients bounded by 2poly(n
d). If there exists an

SoS proof of “r ≥ 0” from P with degree at most 2d

r =

t0∑
i=1

q2i +
m∑
i=1

hipi, (8)

for some si, hi ∈ R[x1, . . . , xn]. Then, we have

r =

t1∑
i=1

s2i + p, (9)

for some polynomials si of degree at most d, some p ∈ I2d(S) and with all the coefficients on the

right-hand side of (9) bounded by 2poly(n
d,lg 1

δ
).

Proof. First, we have that
t0∑
i=1

q2i = ⟨C,vdv
T
d ⟩, (10)

for some positive semidefinite matrix C.
Recall the matrices Π0 and Π+ from Equations (7). Observe that Π0vdv

T
d =

∑
λi=0(u

T
i vd)uiv

T
d .

With this in mind, we can decompose the matrix vdv
T
d into its projections as follows.

⟨C,vdv
T
d ⟩ = ⟨C, (Π0 +Π+)vdv

T
d (Π

0 +Π+)⟩

= ⟨C,Π+vdv
T
dΠ

+⟩+
∑
λi=0

ui
Tvd⟨C,Π+vdui

T + uiv
T
dΠ

+ + uiv
T
dΠ

0⟩

= ⟨Π+CΠ+,vdv
T
d ⟩+ P,

where we have set P :=
∑

λi=0 ui
Tvd⟨C,Π+vdui

T + uiv
T
dΠ

+ + uiv
T
dΠ

0⟩ ∈ I2d(S). The polynomial

⟨Π+CΠ+,vdv
T
d ⟩ is a sum of squares as the matrix C ′ := Π+CΠ+ is positive semidefinite. We write

16

∑t1
i=1 s

2
i = ⟨C ′,vdv

T
d ⟩. We now observe that the entries of C ′ are bounded, thus showing that the

coefficients of si are bounded. For this, take the expected value of both sides of (8) and note that

poly(∥r∥∞, ∥S∥) = Eα∈S [r(α)] = ⟨C ′,M⟩ = ⟨UTC ′U,Λ⟩ =
∑
i

uTi C
′uiλi

≥ tr(UTC ′U)δ,

where M = UTΛU is the spectral decomposition of M , Λ = diag(λ1, λ2, . . . , λ(n+d
d)) is the diagonal

matrix of eigenvalues ofM , and we used that the (i, j)-th element of UTC ′U is uTi C
′uj . In addition,

we have tr(UTC ′U) = ⟨UTC ′U, I⟩ = ⟨C ′, UTU⟩ = ⟨C ′, I⟩ = tr(C ′), where I is the identity matrix.
Thus

poly(∥r∥∞, ∥S∥) = Eα∈S [r(α)] ≥ tr(UTC ′U)δ = tr(C ′)δ.

It follows that we can give a polynomial upper bound to the size of C ′. Indeed, for every entry of
C ′, we have

|C ′
ij | ≤ tr(C ′) ≤ Eα∈S [r(α)]

δ
≤ 2poly(n

d)

δ
= 2poly(n

d,lg 1
δ
).

Finally, observe that we have

r =

t1∑
i=1

s2i + P +
m∑
i=1

hipi.

We define p := P +
∑m

i=1 hipi, and we observe that p ∈ I2d(S). We conclude that the coefficients

of p are bounded by 2poly(n
d,lg 1

δ
), since p = r −

∑t1
i=1 s

2
i .

Note that if P is Nsatz d-complete, then the identity p =
∑
hipi for the “ideal part” can be

computed efficiently by the Nsatz proof system, i.e. with degree at most O(d) and coefficients

bounded by 2poly(n
d,lg 1

δ
). This is the idea behind the Nsatz criterion. However, this is sufficient

but not a necessary condition (see [57] for a further discussion on the limitations of the Nsatz
criterion).

We next present a new criterion called SoSε criterion. In essence, the SoSε criterion requires
that any degree 2d polynomial from the ideal part can be SoS proven efficiently to be nonnegative
(up to an additive error ε). This replaces the requirement that there exists Nsatz proofs of the
the ideal part in the Nsatz criterion. Since SoS is stronger than Nsatz as a proof system, it
follows that the SoSε criterion extends and generalizes the Nsatz criterion. In the following, we
will provide natural examples of separation between the two criteria (see Section 3.4).

Theorem 3.4 (SoSε criterion). Consider a polynomial system P = {p1 = 0, . . . , pm = 0} with

finite variety S = V (P) such that ∥S∥ ≤ 2poly(n
d). Assume that (see Definition 3.2)

1) S is δ-spectrally rich up to degree d, and

2) P is SoSε-complete over S.

Let r be a polynomial. If “r ≥ 0” has a degree 2d SoS proof

r =

t0∑
i=1

σ2i +
m∑
i=1

hipi,

17

then, for every ε > 0, there exists an SoS proof of “r + ε ≥ 0” of degree O(d)

r + ε =

t∑
i=1

σ̃2i +

m∑
i=1

h̃ipi, (11)

such that the coefficients of every polynomial appearing in the proof are bounded by 2poly(n
d,lg 1

δ
,lg 1

ε
).

Proof. By Lemma 3.3, as S is δ-spectrally rich, we can rewrite the proof as

r =

t1∑
i=1

s2i + p,

where the coefficients of si, and p are bounded by 2poly(n
d,lg 1

δ
), and p ∈ I2d(S). Let ε > 0. Since P

is SoSε-complete over S, there exists a SoS proof of degree O(d)

p+ ε =

t2∑
i=1

s′2i +
m∑
i=1

h′ipi

with coefficients bounded by 2poly(n
d,lg 1

ε
). By combining these two proofs we obtain the desired

result.

Corollary 3.5. Suppose P satisfies the assumptions of the SoSε criterion with 1
δ = 2poly(n

d).
Assume, moreover, that P is explicitly Archimedean. If “r ≥ 0” has an SoS proof of degree 2d
from P, then “r + ε ≥ 0” has an SoS proof of degree O(d) from P that can be computed in time
poly(nd, lg 1

ε), up to any additive error ε.

3.2 δ-spectrality

The δ-spectrality (Definition 3.2) hypothesis in Theorem 3.4 is, to some extent, a mild hypothesis.
It is satisfied by many interesting instances where the variety S is discrete. For example, it is
satisfied by combinatorial problems having varieties contained in the Boolean hypercube {0, 1}n.
To see this, we first state a lemma for integer-valued matrices.

Lemma 3.6 ([57]). Let M ∈ SN×N be an integer matrix with |Mij | ≤ B for all i, j ∈ [N]. The
smallest non-zero eigenvalue of M is at least (BN)−N .

By observing that |S| · MS,d is a O(nd) × O(nd) integer-valued matrix, we immediately get
δ-spectrality over integer-valued varieties.

Corollary 3.7 ([57]). Let P be a polynomial system such that S ⊆ Zn such that ∥S∥ < 2poly(n
d).

Then S is δ-spectrally rich with 1
δ = 2poly(n

d).

Another wide class of polynomial problems for which δ-spectrality is easily satisfied are the poly-
nomial systems P with variables constrained over a finite domain D. Assuming D = {ρ1, . . . , ρk} ⊆
Q with constant k = O(1), these systems are described as containing the domain polynomials
(xi − ρ1)(xi − ρ2) · · · · · (xi − ρk) for each variables xi.

Corollary 3.8. Let P be a polynomial system with variables constrained over a finite domain
D ⊆ Q, i.e. S ⊆ Dn. Then S is δ-spectrally rich (up to degree d) for some 1

δ = 2poly(n
d)

Proof. Note that
Πk

i=1ρ
d
i · |S| ·MS,d

is an integer matrix with values bounded by 2poly(n
d). The result follows from Lemma 3.6.

18

3.3 SoSε-completeness

In this section we develop tools for showing that a polynomial system is SOSε-complete. We will
consider multiple polynomial systems Q preserving geometric and bit complexity properties of P,
namely

A1. Same zero set: S = V (P) = V (Q).

A2. Same degree order: deg(q) = O(d), ∀q ∈ Q, where d is the maximum degree of the polynomials
in P.

A3. Polynomial bit complexity: the bit complexity for representing Q is polynomial in n. Note
that this implies that the cardinality of Q is polynomially bounded, i.e. |Q| = poly(n), and

that all coefficients of the polynomials in Q are bounded by 2poly(n
d).

SoS-approximability. We define the relation of SoS-approximability between polynomial sys-
tems with the same zero set. This relation arises by considering SoS proofs of approximate objective
polynomials p+ ε. Therefore, it cannot be simulated by the Nsatz proof system. We will see that
SoS-approximability is a powerful tool for showing that a polynomial system P is SOSε-complete.

Definition 3.9 (SoS approximation). Let P = {p1 = 0, p2 = 0, . . . , pm = 0} and P ′ = {p′1 =
0, p′2 = 0, . . . , p′l = 0} be two polynomial systems such that V (P) = V (P ′). We say that P ′ SoS-
approximates P, and it is denoted by P ≲SoS P ′, if for every p ∈ P and every ε > 0 there exist
SoS proofs

“p+ ε ≥ 0” from P ′ and

“− p+ ε ≥ 0” from P ′ (12)

with degree O(d) and with coefficients bounded by 2poly(n
d,lg 1

ε
).

Next, we introduce a property that will prove valuable throughout the rest of this section.
Roughly speaking, we will show that, under the assumption of explicit Archimedeanity, if SoS can
(approximately) prove “p = 0” in a precise sense, then it can (approximately) prove the product
“gp ≥ 0” for any polynomial g.

Lemma 3.10. Let P be an explicitly Archimedean polynomial system. Let p ∈ R[x1, . . . , xn] be
a polynomial of degree (at most) 2d with coefficient norm bounded by 2poly(n

d). Assume that, for
every ε > 0, we have SoS proofs of degree 2d from P of

“p+ ε ≥ 0”, and of

“− p+ ε ≥ 0”,
(13)

with coefficients bounded by 2poly(n
d,lg 1

ε
). Then, for every ε > 0 and every g ∈ R[x1 . . . , xn] with

deg(g) = O(d) and ∥g∥∞ < 2poly(n
d), there exists an SoS proof from P of

“pg + ε ≥ 0”,

of degree O(d) with coefficients bounded by 2poly(n
d,lg 1

ε
).

19

Proof. Since P is explicitly Archimedean, there exists a number 0 < Ng2+1 < 2poly(n
d) such that

there exists a proof Π of

“Ng2+1 − (g2 + 1) ≥ 0” (14)

of degree O(d) and coefficients bounded by 2poly(n
d). Let ε > 0. We set ε′ := 2ε/Ng2+1. Observe

that the following identity holds:

pg +
ε′

2
(g2 + 1) = (p+ ε′)

(
g + 1

2

)2

+ (−p+ ε′)

(
g − 1

2

)2

. (15)

After combining the last identity with the proof Π in (14) (multiplied by ε′

2), we obtain

pg +
ε′

2
Ng2+1 =

ε′

2
Π + (p+ ε′)

(
g + 1

2

)2

+ (−p+ ε′)

(
g − 1

2

)2

. (16)

By hypothesis, there exist SoS proofs “p+ ε′ ≥ 0” and “− p+ ε′ ≥ 0” of degree 2d and coeffcients

bounded by 2poly(n
d,lg 1

ε′). By the definition of ε′ this is also bounded by 2poly(n
d,lg 1

ε
). Then, these

two proofs combined with Equation (16) give an SoS proof of “pg + ε ≥ 0” of degree O(d), with

coefficients bounded by 2poly(n
d,lg 1

ε
), as desired.

With the notions of SoS-approximability and Lemma 3.10 at hand, we begin by demonstrating
an interesting property of the relation ≲SoS.

Lemma 3.11 (Transitivity). Let P1,P2 and P3 be three systems of polynomials with zero set S.
Assume that P3 is explicitly Archimedean. If P1 ≲SoS P2 and P2 ≲SoS P3, then P1 ≲SoS P3.

Proof. Let P1 = {p1, . . . , pm1}, P2 = {q1, . . . , qm2} and let P3 = {r1, . . . , rm3} and ε > 0. For
showing that P1 ≲SoS P3, we have to show that there exists an SoS proof of “pi + ε ≥ 0”, and

“ − pi + ε ≥ 0” (for i ∈ [m1]) from P3 of degree O(d), with coefficients bounded by 2poly(n
d,lg 1

ε
).

We will show this for “p1 + ε ≥ 0”. The other polynomials are shown similarly. Since P1 ≲SoS P2,
there exists an SoS proof

p1 +
ε

2
=
∑
i

s2i +

m2∑
j=1

qjhj , (17)

of degree O(d), and coefficients bounded by 2poly(n
d,lg 1

ε
). Since P2 ≲SoS P3, for every ε′ > 0 and

j ∈ [m2], we have SoS proofs

“qj + ε′ ≥ 0” from P3 and

“− qj + ε′ ≥ 0” from P3
(18)

of degree O(d), and coefficients bounded by 2poly(n
d,lg 1

ε
). Then, by Lemma 3.10 we obtain that,

for all j ∈ [m2] and all hj of degree O(d), there exists an SoS proof “qjhj +
ε

2m2
≥ 0” from P3 of

degree O(d), and coefficients bounded by 2poly(n
d,lg

2m2
ε

). However, recall that by A3. we have that

m2 = poly(n) and thus the coefficients are bounded by 2poly(n
d,lg 1

ε
). By summing up these proofs

for all j ∈ [m2], we obtain an SoS proof of

“

m2∑
j=1

qjhj +
ε

2
≥ 0” from P3 (19)

20

of degree O(d), and coefficients bounded by 2poly(n
d,lg 1

ε
). Finally, we combine the proofs in (19)

and in (17) and obtain an SoS proof

“p1 + ε ≥ 0” from P3 (20)

of degree O(d), and coefficients bounded by 2poly(n
d,lg 1

ε
).

Next we present a few relevant examples for which it is possible to show SoS-approximability.
The first example focuses on the powers of polynomial systems. Namely, let P = {p1 = 0, . . . , pm =
0} be a polynomial system of equations. We define the α-power of P as the polynomial system
Pα = {pα1

1 = 0, pα2
2 = 0, . . . , pαm

m = 0}, where α is a multi-index α = (α1, α2, . . . , αm) ∈ Nm. The
next result shows that α-powers of a polynomial system approximate the set itself.

Proposition 3.12. Let α ∈ Nn, with |α| = O(d). Then, P ≲SoS Pα.

Proof. Let P = {p1 = 0, . . . , pm = 0} and ε > 0. We have to show that there exists an SoS proof of
“pi + ε ≥ 0” and of “− pi + ε ≥ 0” (for i ∈ [m]) from Pα of degree O(d), with coefficients bounded

by 2poly(n
d,lg 1

ε
). We start by showing this for “p1 + ε ≥ 0.

Let ℓ = ⌈lgα1⌉ so that 2ℓ > α1. Then there exists an SoS proof of “p1 + ε ≥ 0” from pα1
1 of

degree O(d) and coefficients bounded by 2poly(n
d,lg 1

ε
). Indeed,

p1 + ε =

(√
ε

ℓ
+

1

2
√

ε
ℓ

p1

)2

+

ℓ−1∑
i=1

(√
ε

ℓ
−

(
1

2
√

ε
ℓ

)ci

p2
i

1

)2

−

(
1

2
√

ε
ℓ

)2cℓ−1

p2
ℓ

1 ,

where

ci =

1 i = 0,

3 i = 1,

2ci−1 + 1 otherwise.

In the second example, we show that when the polynomials in a system of polynomials are
multiplied by positively shifted sums-of-squares, approximation is possible. More precisely, let
P = {p1 = 0, . . . , pm = 0} be a polynomial system. Let g ∈ R[x1, . . . , xn] be a polynomial of the
form

g =
t∑

i=1

q2i + c, (21)

for some constant c > 0. We consider the polynomial system P ′ = {gp1 = 0, . . . , pm = 0}. Clearly,
P and P ′ have the same variety. We also make the assumptions A2. and A3. for set P ′. We have
the following result.

Proposition 3.13. Let P and P ′ as defined above. Then, we have P ≲SoS P ′.

Proof. Define σ :=
∑t

i=1 q
2
i . Observe that the following identities hold:

p1 + ε =
1

4c2ε

[
(σp− 2εc)2 + cσp2 + (−σp+ 4εc)pg

]
,

−p1 + ε =
1

4c2ε

[
(σp+ 2εc)2 + cσp2 + (−σp− 4εc)pg

]
.

Therefore we have SoS proofs of “p1 + ε ≥ 0” and “ − p1 + ε ≥ 0” from P ′ of degree O(d) and

coefficients bounded by 2poly(n
d,lg 1

ε
). For i = 2, . . . ,m the polynomials pi+ε and −pi+ε are already

SoS proof from P ′.

21

Showing SOSε-completeness. The main consequence of the concept of SoS-approximability is
that it allows for the inheritance of SOSε-completeness among different polynomial systems.

Theorem 3.14. Let P1 and P2 be polynomials systems with zero set S. Assume that P1 is
SOSε-complete and that P2 is explicitly Archimedean. If P1 ≲SoS P2, then P2 is SOSε-complete.

Proof. Let P1 = {p1 = 0, · · · , pm1 = 0} and P2 = {q1 = 0, · · · , qm2 = 0} be the two polynomials
systems, let ε > 0 be a real number and consider p ∈ I2d(S). Since P1 is SOSε-complete, then there
exists an SoS proof

p+
ε

2
=

t∑
i=1

s2i +

m1∑
i=1

hipi (22)

of degree O(d) and coefficients bounded by 2poly(n
d,lg 1

ε
). Since P1 ≲SoS P2 we have, for all i ∈ [m1],

SoS proofs of

“pi +
ε

2m1
≥ 0” from P2 and of

“− pi +
ε

2m1
≥ 0” from P2

of degree O(d) and coefficients bounded by 2poly(n
d,lg

2m1
ε

). By Lemma 3.10, for all i ∈ [m1] there
exist an SoS proof of “pihi +

ε
2m1

≥ 0” from P2 of degree O(d) and coefficients bounded by

2poly(n
d,lg

2m1
ε

). However, recall that by A3. we have that m1 = poly(n) and thus the coefficients

are bounded by 2poly(n
d,lg 1

ε
). By summing up these proofs we obtain the SoS proof

“

m1∑
i=1

hipi +
ε

2
≥ 0” from P2 (23)

of degree O(d) and coefficients bounded by 2poly(n
d,lg 1

ε
). Finally, combining the proofs in (22) and

(23), we obtain an SoS proof of
“p+ ε ≥ 0” from P2

of degree O(d) and coefficients bounded by 2poly(n
d,lg 1

ε
).

Corollary 3.15. Let P1, . . . ,Pk be polynomial systems for some integer k = O(1). Assume that
P1 ≲SoS · · · ≲SoS Pk. If P1 is SoSε-complete and Pk is explicitly Archimedean, then Pk is SoSε-
complete.

It follows that the problem of showing that an explicitly Archimedean system P is SOSε-complete
can be reduced to identifying SoSε-complete polynomial systems Q such that Q ≲SoS P. Interest-
ingly, this can be achieved in various instances.

A broad class of such reductions arises from Gröbner basis theory. We recall that Gröbner bases
completely characterize polynomial ideals. Specifically, for polynomial rings ordered by the grlex
order, every polynomial in the 2d-truncated ideal q ∈ I2d has remainder 0 when reduced by the set
G2d of elements of degree at most 2d of a Gröbner basis G (see e.g. [21]). Therefore, we have the
following result.

Lemma 3.16. Let P be a polynomial system with S = V (P). Let G2d be a 2d-truncated Gröbner

basis of I(S) according to the grlex order. Assume that ∥G2d∥∞ ≤ 2poly(n
d). Then G2d is SoSε-

complete.

22

Proof. Let q ∈ I2d(S) and ε > 0. By assumption we have that

q =
∑
g∈G2d

hgg,

which is an SoS proof of “q ≥ 0” from G2d.
Moreover, all the polynomials hgg are quotients arising from the polynomial division q|G2d

.
Therefore, deg(hgg) ≤ 2d since R[x1, . . . , xn] is equipped with the grlex order and the coefficients

are bounded by 2poly(n
d) (see Appendix B).

Finally, we obtain a method for checking whether a system P is SOSε-complete.

Corollary 3.17. Let P be an explicitly Archimedean polynomial system and let G2d be a 2d-
truncated Gröbner basis of I(V (P)) according to the grlex order. Assume that ∥G2d∥∞ ≤ 2poly(n

d).
If there exists a multi-index α with |α| = O(d) such that Gα ≲SoS P, then P is SOSε-complete.

Proof. By Proposition 3.12 we have that G2d ≲SoS Gα
2d, therefore G2d ≲SoS Gα

2d ≲SoS P. The result
follows by Corollary 3.15, since P is explicitly Archimedean and since G2d is SOSε-complete by
Lemma 3.16.

Furthermore, the relation ≲SoS induces an order structure over the set of explicitly Archimedean
polynomials systems with the same variety.

Proposition 3.18. Consider the set

PS = {P |P is explicitly Archimedean with V (P) = S}.

Then ≲SoS is a preorder (i.e. a reflexive and transitive relation) of the set PS.

3.4 Separation between Nsatz and SoS criteria

We now highlight some differences distinguishing the two notions of completeness. We distinguish
between two fundamental cases: non-radical and radical ideals (see Definition 2.4).

Non-radical ideals. When the ideal generated by the input polynomials is not radical, the
Nsatz criterion is inherently weak and does not apply, as the d-completeness property cannot be
satisfied. In contrast, below we show that our criterion is more robust and it may be effective even
for non-radical ideals. In the following, we show a concrete example of an application of the SoSε

criterion for polynomial systems with non-radical ideals.

Example 3.19. Let P = {x21+x22+ . . .+x2n = 0}. We show first that P is explicitly Archimedean.
It suffices to show that P has bounded variables by Definition 2.1. Indeed, let i ∈ [n] and consider
a variable xi. We have that

1

4
− xi =

(
1

2
− xi

)2

+ x22 + · · ·+ x2n − (x21 + x22 + · · ·+ x2n),

1

4
+ xi =

(
1

2
+ xi

)2

+ x22 + · · ·+ x2n − (x21 + x22 + · · ·+ x2n).

Hence, P is explicitly Archimedean.
Observe now that V (P) = {(0, 0 . . . , 0)}. Therefore, the reduced Gröbner Basis for I(V (P)) is

given by G = {x1, x2, . . . , xn}. Next we observe that I(V (P)) is not radical. Indeed, that there are

23

no Nsatz proofs of polynomials xi (for every i ∈ [n]) from P since the polynomial h(x21 + · · ·+ x2n)
is the zero polynomial or it has degree at least 2, for every h ∈ R[x1, . . . , xn]. Hence the Nsatz
criterion cannot be applied to P. However, it is still possible to find SoS proofs of “− x2i ≥ 0” and
“x2i ≥ 0” from P. Thus, by definition, G2 = {x21, . . . , x2n} ≲SoS P. Also, by Proposition 3.12, we
have G ≲SoS G2 and by Lemma 3.16 we have that G is SOSε-complete. Thus by Corollary 3.15 we
have that P is SOSε-complete.

Lastly, we note that the moment matrix is

(MV(P),d)ij =

{
1 for (i, j) = (1, 1),

0 otherwise,

thus V (P) is 1-spectrally rich. Therefore, the SoSε criterion of Theorem 3.4 applies, i.e. for every
polynomial r with a degree 2d SoS proof from P, there exists also a proof of “r + ε ≥ 0” of degree
O(d) and coefficients bounded by 2poly(n

d,lg 1
ε
) for any additive error ε > 0.

Radical ideals. The previous separation example show advantages of the SoSε criterion over
the Nsatz criterion. But what happens in the case of radical ideals?

For problems with a finite domain, the ideal is radical, and it is well known that the Nsatz
proof system is complete for sufficiently large degrees. However, in general, a linear lower bound on
the degree O(n) is unavoidable, in the sense that there are instances of systems P and polynomials
r such that for proving that “r = 0” from P by the Nsatz proof system there is a lower bound Ω(n)
on the degree [16]. Thus, if the degree is bounded by a constant d, both the Nsatz and the SoS
proof systems are again incomplete, even though we are in a radical setting. We address whether a
separation can be established between the SoSε criterion and the Nsatz criterion in this context.
Specifically, we ask whether there exists a polynomial system P and a polynomial r such that any
Nsatz proof of “r = 0” from P necessarily has a degree that depends non-constantly on n, while,
for every additive error ε > 0, SoS proofs of “r+ ε ≥ 0” and “− r+ ε ≥ 0” from P can be achieved
with degree O(d) and coefficients bounded by 2poly(n

d). We affirmatively answer this question.
To do so, in Section 5 we will examine two natural families of problems, which have played

a crucial role in the theory of CSP(Γ). In these cases, the ideal is radical because the variables
take values from a finite domain. For these families, we show a strict separation between the two
criteria.

Role of ε in the criteria. We highlight that our criterion asks for an approximated proof of the
nonnegativity of the elements in the truncated ideal I2d(S). This seemingly subtle difference has a
significant impact on the application of the criterion. Indeed, Example 3.19 also shows that even if
for some q ∈ I2d(S) there is no SoS proof for “q ≥ 0”, there may be one for “q + ε ≥ 0” satisfying
the criterion conditions. This shows that not only replacing the proof system with stronger one
(Nsatz with SoS) plays a role, but also extending it to an approximate form. We further note that
allowing this approximation in the condition has an impact in the result of the criterion. Whereas
the Nsatz criterion shows the existence of an SoS proof of “r ≥ 0” with bounded coefficients,
the SoSε criterion guarantees the existence of a proof of “r + ε ≥ 0” with bounded coefficients.
However, following the discussion in the introduction, this second property is enough to guarantee
the polynomial-time computability (up to arbitrary precision) and essentially does not compromise
the quality of the computed solutions.

3.5 The semialgebraic case

We have seen the SoSε criterion in the algebraic case with finite S. As noted, this setting is
very general and covers a wide range of combinatorial problems. Moreover, all the separations we

24

present in this paper are in this case. Nonetheless, it is not hard to generalize the SoSε criterion
to the case where S is infinite and there are inequality constraints. Indeed, Raghavendra and
Weitz [57] originally formulated the Nsatz criterion in this more general setting. For completeness
of exposition, we proceed to formulate the SoSε criterion in its full generality. The proof in the
semialgebraic case, is similar, mutatis-mutandis, to the proof of the SoSε criterion (see Section 3.1).

We begin by defining the SoS proof system in this setting.

Definition 3.20. Let P = {p1 = 0, . . . , pm = 0} be a set of polynomial equality constraints and
Q = {q1 ≥ 0, . . . , qℓ ≥ 0} be a set of polynomial inequality constraints. Consider a polynomial
r ∈ R[x1, . . . , xn]. An SoS proof of “r ≥ 0” (over S) from (P,Q) is an identity of the form

r =

t0∑
i=1

s2i +
ℓ∑

i=1

 ti∑
j=1

λ2j

 qi +
m∑
i=1

hipi,

where si, λj , hi ∈ R[x1, . . . , xn]. Moreover, we say that the above SoS proof has degree at most d if
max{deg(s2i),deg(λ2jqi), deg(hipi)} ≤ d.

Next, we ”adjust” various definitions to the semialgebraic case.

Definition 3.21. Let P = {p1 = 0, . . . , pm = 0} be a set of polynomial equality constraints and
Q = {q1 ≥ 0, . . . , qℓ ≥ 0} be a set of polynomial inequality constraints. We define as

S = {x ∈ Rn | p1(x) = . . . = pm(x) = 0, q1(x), . . . , qℓ(x) ≥ 0}

as the feasibility set (or zero set) of (P,Q). Moreover, we recall that the moment matrix is defined
as M = MS,d = Eα∈S [vd(α)v

T
d (α)], where the expectation is taken over the uniform distribution

over S.

Lastly, we introduce a new notion to relates to the set of inequality constraints Q

Definition 3.22. We say that S is µ-robust for Q if for all q ∈ Q and all α ∈ S, it holds that
q(α) > µ.

We are ready to state the SoSε in the semialgebraic case.

Theorem 3.23 (SoSε criterion). Let P = {p1 = 0, . . . , pm = 0} be a set of polynomial equality
constraints and Q = {q1 ≥ 0, . . . , qℓ ≥ 0} be a set of polynomial inequality constraints, with

feasibility set S such that ∥S∥ ≤ 2poly(n
d). Assume that

1) S is δ-spectrally rich up to degree d,

2) P is SoSε-complete over S,

3) S is µ-robust for Q.

Let r be a polynomial. If “r ≥ 0” has a degree 2d SoS proof from (P,Q) then, for every ε > 0,
there exists an SoS proof of “r + ε ≥ 0” of degree O(d) from (P,Q) such that the coefficients of

every polynomial appearing in the proof are bounded by 2
poly(nd,lg 1

δ
,lg 1

µ
lg 1

ε
)
.

25

4 SoS and PC for polynomials over finite domains

This section provides a complete exposition of the main technical results concerning the automata-
bility of degree-d SoS proofs. It presents two primary results: the PC criterion, a sufficient
condition for automatability based on the PC proof system, and the approximate simulation of
PC by SoS over finite domains. The simulation result is used in the proof of the PC criterion and
may be of independent interest.

We begin by formally defining polynomial systems over finite domains. These are systems of
polynomials where variables are restricted to take values over finite sets. Following this, we present
Theorem 4.8, which states that SoS approximately simulates PC in this finite domain setting.
This result builds upon on Lemma 4.5; its relation to prior work and its role in proving the main
criterion are discussed. Finally, the section concludes with the presentation of the PC criterion
(Theorem 4.9).

4.1 Finite domains systems

Consider a system of real polynomial equations

F = {f1 = 0, . . . , fm = 0} (24)

over variables x1, . . . , xn. We consider the general case of polynomial equations over a finite domain
D of even size 2k, with k ∈ N, namely every variable can take a value from among 2k given rational
values ρ1, ρ2, . . . , ρ2k. If the domain has an odd number of (distinct) elements, repeat an element
so the resulting domain has an even number of (not distinct) elements. We define the univariate
rational domain polynomials D2k(xj) of degree 2k for each variable xj as follows:

D2k(xj) = (xj − ρ1)(xj − ρ2) · · · (xj − ρ2k) j ∈ [n], or equivalently, (25)

D2k(xj) = x2kj + α2k−1x
2k−1
j + · · ·+ α1xj + α0 j ∈ [n], (26)

where the correspondence between {α0, . . . , α2k−1} and {ρ1, . . . , ρ2k} is given by the well-known
Vieta’s formulas. To enforce finite domain variables, the axioms

D2k(xj) = 0 j ∈ [n], (27)

are included in the proof systems. Hence every variable xj can take 2k possible values which are
the roots of Eq. (27). We denote by D = {ρ1, ρ2, . . . , ρ2k} the set of domain values, i.e. D2k(v) = 0
if and only if v ∈ D, and we set

D = {D2k(xj) = 0 | j ∈ [n]}. (28)

For example, to enforce Boolean variables, the axioms x2j −xj = 0 are always included in the proof
systems and in this case D = {0, 1}.

In summary, we will consider polynomial systems of equations of the following form.

Definition 4.1. Let D be a finite domain. A polynomial system over a finite domain D is defined
as a set P of the form

P = F ∪ D = {f1 = 0, . . . , fm = 0} ∪ {D2k(xj) = 0 | j ∈ [n]}. (29)

26

Recall that we are considering rational values for ρ1, ρ2, . . . , ρ2k in (25). It follows that α2k−1, . . . ,
α0 are also rational. Let β be the the minimum number of bits needed to encode each of the numbers
α2k−1, . . . , α0, and the values ρ1, ρ2, . . . , ρ2k when the rational coefficients are represented with their
reduced fractions written in binary. The polynomial domain size is the bit length of the binary
encoding of D2k(x), namely O(kβ).

Now, we recall the following result claiming that every globally nonnegative univariate polyno-
mial has an SoS decomposition with well structured coefficients.

Lemma 4.2. [44, Section 4, Thm 23] Let p ∈ R[x] be a univariate polynomial of degree 2d with
rational coefficients, such that each of them can be encoded with τ bits. Assume that p(x) ≥ 0 for
all x ∈ R. Then, we have

p =
2d+3∑
i=1

aiq
2
i ,

for some nonnegative rational constants ai and some polynomials qi of degree d with rational coef-
ficients. All coefficients in this representation can be encoded with O(d3 + d2τ) bits.

The following result demonstrates that, for any polynomial system P over a finite domain D,
polynomial-size SoS proofs can be constructed to establish that the variables are bounded.

Lemma 4.3. There exists a positive rational number t > maxi∈[2k]{2, |ρi|} that can be encoded with
O(kβ) bits such that there exist SoS proofs of degree 2k

t− x =
2k+3∑
i=1

aiq
2
i −D2k(x), (30)

t+ x =
2k+3∑
i=1

ãiq̃
2
i −D2k(x), (31)

for some rational constants ai and some polynomials qi with rational coefficients. All coefficients
in this representations can be encoded with poly(k, β) bits.

Proof. We show only the existence of the first SoS proof, as the second follows with a similar
argument. We consider the polynomial p(x) := D2k(x) − x. We will find a lower bound for
minx∈R p(x). Let ρ := maxi∈[2k] |ρi| and let a := max{2, ρ}. Consider the function f(x) = x2k − x.

Observe that f is monotonically increasing for every x ≥ 1 and that f(a) = a2k − a ≥ ρ, thus
f(x) − ρ = x2k − (ρ + x) ≥ 0 for all x ≥ a. Moreover, D2k(ρ + x) ≥ x2k for all x ≥ a. Hence,
D2k(ρ + x) − (ρ + x) ≥ x2k − (ρ + x) ≥ 0 for all x ≥ a. On the other hand, since D2k has
even degree and positive leading coefficient, it follows immediately that for every y ≥ 0, we have
that D2k(−ρ − y) − (−ρ − y) ≥ 0. Therefore, p(x) can just take negative values in the interval
[−ρ, ρ + a] ⊆ [−2a, 2a]. Also, for x ∈ [−2a, 2a] we have that |x − ρi| < 3a for all i ∈ [2k]. Hence,
we have |D2k(x)| ≤ (3a)2k, and thus for x ∈ [−2a, 2a] we have that

p(x) = D2k(x)− x ≥ −((3a)2k + 2a) =: −t.

Observe that t can be encoded with O(kβ) bits.
Now, the polynomial D2k(x) − x + t is globally nonnegative. Also, it has rational coefficients

that can be encoded with O(kβ) bits. Then, by Lemma 4.2, we obtain that

D2k(x)− x+ t =

2k+3∑
i=1

aiq
2
i

for some constants ai and polynomials qi that can be encoded in O(k3 + k3β) bits.

27

The results of Lemma 4.3 and Definition 2.1 allow us to conclude that any polynomial system
over a finite domain is explicitly Archimedean.

Proposition 4.4. Let P be a polynomial system over a finite domain D. Then, P is explicitly
Archimedean.

4.2 Approximate simulation of PC by SoS

Berkholz [5] related different approaches for proving the unsatisfiability of a system of real poly-
nomial equations. Over Boolean variables, he showed that SoS simulates PC refutation: any PC
refutation of degree d can be converted into an SoS refutation of degree 2d, with only a polynomial
increase in size. In the non-Boolean setting, there are systems of equations that are easier to refute
for PC than for SoS [30]. Grigoriev and Vorobjov [30] show that the simulation of PC by SoS does
not hold in the non-Boolean case, namely when the Boolean axioms x2j − xj = 0 are omitted. For

example, the so-called telescopic system of equations, {yx1 = 1, x21 = x2, . . . , x
2
n−1 = xn, xn = 0},

has a PC refutation of degree n, but it requires exponential refutation degree in SoS [30]. However,
it is not known if SoS can simulate PC in the (non-Boolean) general domain setting, namely when
variables can take values from a general finite set of values. In this section, we address the existing
knowledge gap by extending Berkholz’s result to general domains. This complements the results
in [30, 5]. Recall that we are considering a polynomial systems of the form

F = {f1 = 0, . . . , fm = 0} ∪ D = {D2k(xj) = 0 | j ∈ [n]} (32)

over variables x1, . . . , xn. We prove the following Lemma 4.5, which is a generalization of ([5,
Lemma 1]). The overall structure of the proof partially follows from the one in [5] but with some
significant differences that will be emphasized below in the proof (see Case 4).

Lemma 4.5. Let (r1, r2, . . . rL) be a PC derivation from F ∪D of degree d and size S. Then, for
every H ≤ L there exists an SoS proof of −(rH)2 of degree 2(d+ k − 1) of the following form

m∑
i=1

(−aifi)fi +
n∑

j=1

qjD2k(xj) +

m1∑
j=1

cj(pj)
2 = −(rH)2, (33)

such that:

• m1 is constant bounded by O(k,H),

• ai, cj are nonnegative constants, and qj (for j ∈ [n]), pj (for j ∈ [m1]) are polynomials,

• all coefficients in the proof can be encoded with poly(k, β, S) bits.

Proof. The proof is by induction on H. We make a case analysis on the 4 derivation rules (5)
which, respectively, correspond to the following 4 cases. Assume the claim holds for all H < L and
we prove that an SoS proof of the form Eq. (33) exists for rL. Recall that d is the degree of the
PC proof.

Case 1: If rL is an axiom from F (see (29)), namely rL = fi for some i ∈ [m]. Then a SoS
proof of −(rL)

2 is obtained by setting ai = 1, and the other coefficients and polynomials equal to
zero. This SoS proof requires degree at most 2d.

Case 2: If rL = D2k(xj) for some j ∈ [n]. Then a SoS proof of −(rL)
2 is obtained by setting

qL = −D2k(xj), and all other coefficients and polynomials to zero. This SoS proof requires degree
at most 2d (note that the PC proof degree of this case is 2k ≤ d).

28

Case 3: If rL = a · rH1 + b · rH2 for some H1, H2 < L, where rH1 , rH2 are previously derived
polynomials and a, b ∈ R. This case and the corresponding analysis are the same as in [5]. We
report the proof for the sake of completeness. By assumption, we have an SoS proof of “−r2H1

≥ 0”
and of “−r2H2

≥ 0” as in (33) of degree 2(d + k − 1) and rational coefficients of the right bit size.
Let pL := arH1 − brH2 . Then, using the following identity

−r2L = p2L − 2a2rH1
2 − 2b2rH2

2,

we obtain the desired proof of “−r2L ≥ 0” of degree 2(d + k − 1) with coefficients of the claimed
size.

Case 4: If rL = xjrH for some H < L and j ∈ [n], where rH is a previously derived polynomial.
By the induction hypothesis, there is a SoS proof of −r2H of degree 2(d+ k − 1) of the form given
by (33). The goal is to transform this proof into a proof of “− (xjrH)2 ≥ 0”. Note that multiplying
everything by x2j does not work since this would increase the degree of the proof to 2(d+k−1)+2.
Instead we want to simulate the multiplication rule in PC by maintaining the total degree bounded
by 2(d+k− 1). Here is where our approach differs significantly from the one in [5], thus improving
and extending the result.

Let t be as in Lemma 4.3, we observe that it suffices to find an SoS proof of

“− (xj − t)2r2H ≥ 0 ” (34)

as in (33) (of degree 2(d+k− 1) with the claimed bit size). Indeed, by assumption we have a proof
of “− r2H ≥ 0” as in (33), and therefore we have a proof of

“− t2r2H ≥ 0 ” (35)

of degree 2(d + k − 1) with coefficients of size bit size poly(k, β, S). Additionally, by Lemma 4.3,
we have an SoS proof of

t− xj =
2k+3∑
i=1

aiq
2
i −D2k(xj) (36)

of degree 2k with coefficients of bit size poly(k, β). Then, by multiplying this proof by 2tr2H , we
obtain an SoS proof

2t2r2H − 2txjr
2
H =

2k+3∑
i=1

2tai(rHqi)
2 − 2tr2HD2k(xj) (37)

of degree 2(d + k − 1) with coefficients of bit size poly(k, β, S) (recall that rH has degree at most
d− 1, as xjrH was obtained in the PC derivation of degree d). Finally, summing up the proofs in
(34), (35) and (37) we obtain an SoS proof of “− x2jr

2
H ≥ 0” as desired.

The rest of the proof is devoted to finding an SoS proof of (34). For convenience of notation,
let us use x to denote xj and r to denote rH . It follows that our goal is to obtain a SoS proof of
“− ((x− t)r)2 ≥ 0” starting from one as given by (33) for “− r2 ≥ 0”.

Now, consider the following univariate polynomial

p := 4D2k(x)− (x− t)2.

29

We think of D2k(x) written as follows:

D2k(x) = 2(x− t+ t− ρ1)(x− t+ t− ρ2) · · · (x− t+ t− ρ2k). (38)

Recall that, for our choice of t, we have t ≥ max{2, |ρi|}. Now, we will lower bound the
minimum of the polynomial p over R. We prove that for x ≥ t + 1 (i.e., x − t ≥ 1) we have
p(x) ≥ 0. Notice that if x − t ≥ 1, then 4D2k(x) ≥ 4(x − t)2k since each factor in (38) is positive
and at least (x − t). Then, p(x) ≥ 4(x − t)2k − (x − t)2 = 4(x − t)2((x − t)2k−2 − 1) ≥ 0,
where the last inequality holds as x − t ≥ 1. Now, we show that p(x) ≥ 0 for x ≤ −3t. Let
x = −3t − a, for some a ≥ 0. Then, we have that x − ρi ≤ −2t − a for i ∈ [2k], and thus
4D2k(x) ≥ 4(2t+ a)2k = (4t+2a)2(2t+ a)2k−2 ≥ (4t+ a)2 = (x− t)2. This implies that p can take
negative values just in the interval x ∈ [−3t, t+1]. Also, for x ∈ [−3t, t+1], we have |x− ρi| ≤ 4t,
and thus we have

min
x∈R

p(x) ≥ −(4(4t)2k + 16t2) =: −C. (39)

It is easy to observe that C is rational and can be encoded with O(kβ) bits. Then, the univariate
polynomial 4D2k(x) − (x − t)2 + C is globally nonnegative. Therefore, by Lemma 4.2, it can be
written as

4D2k(x)− (x− t)2 + C =
2k+3∑
i=1

aip
2
i , (40)

where ai is a constant, pi (for i ∈ [2k + 3]) is a polynomial of degree k and each coefficients in the
representation can be encoded in poly(k, β). Now, we multiply Equation (40) by r2 and obtain

−r2(x− t)2 =
2k+3∑
i=1

ai(rpi)
2 − 4r2D2k(x)− Cr2. (41)

Since deg(r) ≤ d− 1, it follows that −4r2D2k(x) and all the terms in the sum have degree at most
2(d+ k− 1). On the other hand, by assumption, there is a proof of “−r2 ≥ 0” as in (33) of degree
2(d + k − 1) and coefficients of bit size poly(k, β, S). We substitute −Cr2 in (41) with this proof
multiplied by C (recall that C is a positive constant that can be encoded with O(kβ) bits). This
yields the desired proof with the claimed bit complexity.

Remark 4.6 (Finite domains of odd size). The result of Lemma 4.5 extends to domains with an
odd number of elements. Specifically, if the domain D has size |D| = |ρ1, ρ2, . . . , ρ2k−1| = 2k − 1,
the same conclusion follows. To show this, we employ the same proof strategy as used in Cases 1,
2, and 3. However, in Case 4, instead of the domain polynomials defined as

D2k−1(xi) = (xi − ρ1) · · · (xi − ρ2k−1),

one can consider a modified set of polynomials, denoted by D̃, where each polynomial is defined as

D̃2k−1(xi) = (xi − ρ1)
2(xi − ρ2) · · · (xi − ρ2k−1).

Here, one root is repeated to ensure an even degree for the polynomials in D̃. With this adjustment,
the same arguments apply, yielding an SoS proof from F ∪D∪ D̃, and hence from F ∪D, of degree
2(d+ k − 1).

30

Remark 4.7. In the previous result, we highlighted the dependence of the coefficients present in the
SoS proof on the parameter β. Recall that β corresponds to the number of bits needed to encode the
coefficients of the polynomials D2k(x) and its roots ρ1, . . . , ρ2k. This parameter can be eliminated
and implicitly linked to the size of the PC proof S. Specifically, it suffices to assume that the PC
proof begins by deriving all the polynomials D2k(xj) for j ∈ [n].

While Lemma 4.5 immediately establishes a simulation of PC by SoS as refutation systems,
it remains unclear whether SoS can also simulate PC as a derivation system. Specifically, the
existence of an SoS proof of “− r2 ≥ 0” does not immediately guarantee the existence of an SoS
proof of “± r ≥ 0”. Further, it is not hard to find polynomial systems for which the latter does not
hold. Consider the simple polynomial system {x2} from which it is trivial to derive “ − x2 ≥ 0”.
However, there are no SoS proofs of “± x ≥ 0” from such premise.

Interestingly, by the use of SoS approximability techniques developed in Section 3.3, we are able
to work around and resolve this issue. Provided that, given a statement derived by PC “r = 0”,
an (arbitrarily) small approximation ε of the statement is allowed, the simulation holds. That is,
there exist SoS proofs of “r + ε ≥ 0” and of “− r + ε ≥ 0”.

Theorem 4.8. SoS approximates PC with degree linear in the domain size k over general finite
domains. That is, if there exists a PC derivation of “r = 0” with degree d and size S, then for
every ε > 0, we have SoS proofs of “r + ε ≥ 0” and “ − r + ε ≥ 0” with degree O(d + k) and

coefficients bounded by 2poly(k,S,lg
1
ε
).

Proof. Assume there is a PC derivation of “r = 0” from P. Then the polynomial systems P, P∪{r}
and P ∪ {r2} have the same zero set. Moreover, by Lemma 4.5, it follows that P ∪ {r2} ≲SoS P.
Further, by Proposition 3.12, it follows that P ∪ {r} ≲SoS P ∪ {r2}. Thus, by the transitivity
of Lemma 3.11, we have that P ∪ {r} ≲SoS P, i.e. there exist SoS proofs of “r + ε ≥ 0” and

“− r + ε ≥ 0” from P of degree O(2(d+ k − 1)) and coefficients bounded by 2poly(k,S,lg
1
ε
).

4.3 PC criterion

In this section we show that, within the context of finite domains, Lemma 4.5 can be combined
with the SoSε criterion to formulate a new criterion, called PC criterion, based on the PC proof
system. While, in general, PC is weaker than SoS as a proof system, it naturally connects to the
theory of Gröbner basis, in particular to Buchberger’s algorithm for their computation (see [9]).
As we will see in Section 5, this connection enables the application of the PC criterion to certain
families of problems arising from CSPs, for which the Nsatz criterion is not satisfied.

Theorem 4.9 (PC criterion). Let P = {p1 = 0, . . . , pm = 0} polynomial system over a finite
domain D of 2k rational values, let S = V (P) be its variety and let r ∈ R[x1, . . . , xn] be a
polynomial nonnegative over S. Assume there exists an SoS proof of “r ≥ 0” from P of degree 2d

r =

t0∑
i=1

σ2i +
m∑
i=1

hipi.

Let G2d be a 2d-truncated Gröbner basis of I(S) according to the grlex order such that ∥G2d∥∞ ≤
2poly(n

d). Assume that, for every g ∈ G2d, there exist a PC derivation of g from P of size poly(nd)
and degree O(d). Then, for every ε > 0, the polynomial “r + ε ≥ 0” has a degree-O(d) SoS proof

r + ε =
t∑

i=1

σ̃2i +
m∑
i=1

h̃ipi,

31

where the coefficients of every polynomial appearing in the proof are bounded by 2poly(n
d,lg 1

ε
).

Proof. We divide the proof into two cases depending whether S is empty or not:

1. If S = ∅, then G2d = {1}, which corresponds to the case of refutations. By assumption,
there exist a PC derivation of “1 = 0” from P of size poly(nd) and degree O(d). Then, by
Lemma 4.5, we have a proof of “ − 1 ≥ 0” from P of degree O(d), and coefficients bounded

by 2poly(n
d), as desired.

2. If S ̸= ∅, then we apply Theorem 3.4 (SoSε criterion). First, by Corollary 3.8, S is δ-spectrally

rich up to degree d for some δ > 2−poly(nd). It remains to prove that P is SoSε-complete over
S. By assumption, there are PC derivations for all elements in G2d of size poly(nd). Then,
by Lemma 4.5, for all g ∈ G2d, we have an SoS proof of “− g2 ≥ 0” from P of degree O(d),

and coefficients bounded by 2poly(n
d). Clearly, we also have a proof of “g2 ≥ 0” of degree

O(d) and coefficients bounded by 2poly(n
d). Then, we have that G(2,...,2) ≲SoS P. Moreover,

by Proposition 4.4, P is explicitly Archimedean. Then, by Corollary 3.17, we obtain that P
is SOSε-complete, completing the proof.

5 Strong Separation for certain Constraint Satisfaction Problems

In what follows, we establish Theorem 1.8 by demonstrating and utilizing the ability of SoS to
approximate a dynamic proof system, such as PC (see Theorem 4.8). In light of Theorem 4.9, it
is sufficient to show that PC can solve in polynomial time IMPd(Γ) when Γ is a finite constraint
language closed under a semilattice polymorphism (see Theorem 5.5), and in the case it is closed
under a dual-discriminator polymorphism (see Theorem 5.6). The degree lower bound for Nsatz
given in [17], along with the results of this section, and Theorem 4.9 gives the claimed separation
among the SoSε and Nsatz criteria.

The structure of the following sections is outlined as follows. The literature review, along with
essential background and notation, is presented in Section 5.1 and Section 5.2, respectively. The
proofs of Theorem 5.5 and Theorem 5.6 are provided in Section 6 and Section 7, respectively.

5.1 Related results

In [45, 6], Mastrolilli and Bharathi initiated a systematic study of the IMPd tractability for combina-
torial ideals arising from Constraint Satisfaction Problems CSP(Γ) in which the type of constraints
is restricted to relations from a set Γ over the Boolean domain. Note that CSP(Γ) is just the special
case of not-IMP0(Γ) with r = 1. The main results of [45, 6] identified the borderline of tractability
of IMPd(Γ) for languages Γ over the Boolean domain. By using Gröbner bases techniques, they
expanded Schaefer’s dichotomy theorem [58] which classifies all CSPs of the form CSP(Γ) over the
Boolean domain to be either in P or NP-complete. Recently, Bulatov and Rafiey [15, 14] continued
this line of research by extending [45, 6] beyond Boolean domains in several ways.

With the aim of expanding the class of IMPd(Γ)s tractable by PC, we observe that some of the
algorithms that are considered in [15, 14, 45, 6] for solving the IMPd(Γ) are known to not being
simulable by PC and by SoS. For example, when Γ is closed under the minority polymorphism,
in [6] it is shown that the membership proof for IMPd(Γ) can be computed in nO(d) time for any
d ∈ N. Note that 3Lin(2) is a special case of this class of problems. However, linear (thereby, sharp)
lower bounds on degrees for SoS refutations are known [28] for 3Lin(2). It follows that bounded

32

degree SoS and PC over the reals cannot simulate the algorithm in [6]. The approach in [6] has
been generalized by [15] by showing that constructing a d-truncated Gröbner Basis for an ideal I is
reducible to solving χIMPd for the ideal I (see [15] for details). With this reduction at hand, they
designed a general algorithmic approach, inspired by the famous FGLM algorithm [23] and the
conversion algorithm in [6], to construct d-truncated Gröbner Basis for many combinatorial ideals,
in particular, combinatorial ideals arising from languages invariant under a semilattice, or the dual-
discriminator, or languages expressible as linear equations over GF (p). In light of the impossibility
result for the particular case of 3Lin(2) discussed earlier, the general approach presented by [15],
which also works for 3Lin(2), cannot in general be simulated by PC.

In Section 5, we complement the aforementioned impossibility result with some positive results.
More precisely, we show that PC is powerful enough to solve IMPd(Γ) when Γ is closed under a
semilattice polymorphism or the dual discriminator. As a result of the aforementioned considera-
tions, our approach differs fundamentally from the general methodology employed in [15] (see also
the discussion in Remark 6.1).

Furthermore, strategies in [6, 15, 13, 45] to address the problem of SoS bit complexity involve
replacing the original input polynomial constraints P (see Definition 1.1) with a new set of polyno-
mials P(d) that satisfies the Nsatz criterion, and generally depends on the SoS degree d. This set
P(d) is computed externally (by an algorithm specifically designed for this purpose), serving as the
input for SoS in place of P. For example, in the semilattice case, if P consists of m polynomials,
the set P(d), used in [15, 45], is generated by a specific algorithm and has a size of mO(d); that is,
P(d) depends on d and grows exponentially with the SoS degree d. This preprocessing step ensures
that SoS retains “low‘’ bit complexity, but only if P is substituted with P(d). Essentially, the
approach utilized in [6, 15, 13, 45] is to apply the Nsatz criterion without enhancing or extending
it, with the goal of replacing the initial input polynomial system with a new one that is computed
externally and satisfies the Nsatz criterion. Our results demonstrate that all preprocessing steps
employed in [6, 15, 45] are unnecessary, as SoS achieves low bit complexity for any fixed d when
P is provided directly as input.

5.2 Background and notation for CSP(Γ)

In this section we give the basic definitions and results that we will need later. We refer to [3, 12,
18, 45, 15] for more details.

Let D denote a finite set called the domain . By a k-ary relation R on a domain D we
mean a subset of the k-th cartesian power Dk; k is said to be the arity of the relation. We often
use relations and (affine) varieties interchangeably since both are subsets of Dk (we will not refer
to varieties from universal algebra in this paper). A constraint language Γ over D is a set
of relations over D. A constraint language is finite if it contains finitely many relations, and is
Boolean if it is over the two-element domain {0, 1}.

A constraint over a constraint language Γ is an expression of the form R(xi1 , . . . , xik) where
R is a relation of arity k contained in Γ, and xi1 , . . . , xik are variables that belong to the variable
set X. A constraint is satisfied by a mapping ϕ defined on the variables if (ϕ(xi1), . . . , ϕ(xik)) ∈ R.

Definition 5.1. The (nonuniform) Constraint Satisfaction Problem (CSP) associated with
language Γ over D is the problem CSP(Γ) in which: an instance is a triple C = (X,D,C) where
X = {x1, . . . , xn} is a set of n variables and C is a set of constraints over Γ with variables from X.
The goal is to decide whether or not there exists a solution, i.e. a mapping ϕ : X → D satisfying
all of the constraints. We will use Sol(C) ⊆ Dn to denote the set of solutions of C.

Moreover, we follow the algebraic approach to Schaefer’s dichotomy result [58] formulated by

33

Jeavons [33] where each class of CSPs that are polynomial time solvable is associated with a
polymorphism. Recall that a polymorphism of a constraint language Γ over a set D is a multi-ary
operation on D that can be viewed as a multidimensional symmetry of relations from Γ (see e.g. [3]).

Definition 5.2. An operation f : Dm → D is a polymorphism of a relation R ⊆ Dk if for any
choice ofm tuples (t11, . . . , t1k), . . . , (tm1, . . . , tmk) from R (allowing repetitions), it holds that the tu-
ple obtained from thesem tuples by applying f coordinate-wise, (f(t11, . . . , tm1), . . . , f(t1k, . . . , tmk)),
is in R. We also say that f preserves R, or that R is invariant or closed with respect to f . A
polymorphism of a constraint language Γ is an operation that is a polymorphism of every R ∈ Γ.
By Pol(Γ) we denote the set of all polymorphisms of Γ.

5.2.1 The ideal membership problem of a constraint language IMP (Γ)

The polynomial Ideal Membership Problem (IMP) is the following computational task. Let
Q[x1, . . . , xn] be the ring of polynomials over the field Q and indeterminates {x1, . . . , xn} ordered
according to the grlex order (see Section 2). Given f0, f1, . . . , fr ∈ Q[x1, . . . , xn] we want to decide
if f0 ∈ I = ⟨f1, . . . , fr⟩, where I is the ideal generated by F = {f1, . . . , fr}. If the ideal I corresponds
to a CSP instance we can be specific on its structure. Here, we explain how to construct an ideal
corresponding to a given CSP(Γ) instance C by following [45]. Constraints are in essence varieties
(see e.g. [61, 36]).

Definition 5.3. For any given CSP(Γ) instance C = (X,D,C), the combinatorial ideal

IC = ⟨fR1(XR1), . . . , fRℓ
(XRℓ

), fD(x1), . . . , fD(xn)⟩ (42)

is defined as the vanishing ideal of the set Sol(C) and it is constructed as follows.

• For every xi ∈ X the ideal IC contains a domain polynomial fD(xi) whose zeroes are precisely
the elements of the domain D.

• For every constraint Rj(XRj) ∈ C, where XRj is a tuple of variables from X, the ideal IC

contains a polynomial fRj (XRj) such that for XRj ∈ D
|XRj

|
it holds fRj (XRj) = 0 if and only

if Rj(XRj) is true.

See [45] for more details and properties.

Definition 5.4. The Ideal Membership Problem associated with language Γ is the problem
IMP(Γ) in which the input consists of a polynomial f ∈ Q[x1, . . . , xn] and a CSP(Γ) instance
C = (X,D,C) where D ⊂ Q. The goal is to decide whether f lies in the combinatorial ideal IC.
We use IMPd(Γ) to denote IMP(Γ) when the input polynomial f has degree at most d.

Ideal membership testing can be performed by means of Gröbner bases. Indeed, if we can
compute the d-truncated Gröbner basis Gd of IC in npoly(n

d) time, then we can solve IMPd(Γ) in
polynomial time (see Section 2).

As in the case of the CSP, polymorphisms of Γ are what determines the complexity of IMPd(Γ)
(see [45, 6, 15]).

5.3 Polynomial Calculus and semilattice polymorphism

We consider the complexity of IMPd(Γ) for constraint languages Γ closed under a semilattice
operation ψ (either meet or join). There are two kinds of semilattice operations (see e.g. [22]). A

34

join-semilattice, also known as an upper -semilattice, refers to a partially ordered set that possesses
a join (or least upper bound) for every nonempty finite subset. Conversely, a meet-semilattice, or
lower -semilattice, is a partially ordered set characterized by having ameet (or greatest lower bound)
for any nonempty finite subset. Algebraically, semilattices can be defined as pairs D = (D,ϕ),
where D is a domain and ϕ is the semilattice operation join or meet. Note that both operations
are associative, commutative and idempotent binary operations.

In the following, we show that standard PC is d-complete and efficient for constraint languages
that are closed under a semilattice polymorphism. Our result greatly simplifies known approaches
[15, 45] and unifies them into one simple PC-based algorithm. Further details explaining the
substantial differences with what is already known are given and discussed in Remark 6.1. Our
main technical result is as follows.

Theorem 5.5. Let Γ be a finite constraint language over a domain D. Consider an instance C of
CSP(Γ). If Γ is closed under a semilattice polymorphism, then O(d)-degree PC can compute in
nO(d) time the reduced d-truncated Gröbner basis Gd (in grlex order) of the combinatorial ideal IC,
for any degree d ∈ N and where n is the number of variables.

Proof. See Section 6.

Theorem 5.5 in conjunction with Theorem 4.9 implies Theorem 1.8 for semilattice structures.

5.4 Polynomial Calculus and dual discriminator polymorphism

We consider the complexity of IMPd(Γ) for constraint languages where the dual discriminator
operation is a polymorphism of Γ. The dual discriminator is a well-known majority operation [34, 3]
and is often used as a starting point in many CSP related classifications [3]. For a finite domain D,
a ternary operation f is called a majority operation if f(a, a, b) = f(a, b, a) = f(b, a, a) = a for all
a, b ∈ D. The dual discriminator ∇ on a domain D, is a majority operation such that ∇(a, b, c) = a
for pairwise distinct a, b, c ∈ D.

In [15] it is shown that IMPd(Γ) is solvable in polynomial time for any fixed d. The work in
[6] complements the result in [15] by proving that the full (as opposed to truncated) Gröbner basis
in graded lexicographic order can be computed in polynomial time and with bounded degree, thus
proving polynomial time efficiency for solving the general IMP(Γ) (see also Appendix B).

In the following, we again show the power of the PC by demonstrating that the ad hoc algorithm
presented in [6] is simulable by PC. This greatly simplifies previous algorithms [15, 6, 7] and
provides another family of problems for which the SoSε criterion is provably stronger than the
Nsatz criterion. Our main technical result is as follows.

Theorem 5.6. Let Γ be a finite constraint language over a domain D. Consider an instance C
of CSP(Γ). If Γ is closed under a dual discriminator polymorphism, then PC can compute in
nO(1) time the reduced Gröbner basis G (in grlex order) of the combinatorial ideal IC, where n is
the number of variables and |D| = O(1).

Proof. See Section 7.

Theorem 5.6, along with Theorem 4.9, implies Theorem 1.8 for dual discriminator structures.

35

6 Proof of Theorem 5.5

We consider the complexity of IMPd(Γ) for constraint languages Γ where Pol(Γ) (see Definition 5.2)
includes a semilattice operation ψ (either meet or join). There are two kinds of semilattice oper-
ations (see e.g. [22]). A join-semilattice, also known as an upper -semilattice, refers to a partially
ordered set that possesses a join (or least upper bound) for every nonempty finite subset. Con-
versely, a meet-semilattice, or lower -semilattice, is a partially ordered set characterized by having
a meet (or greatest lower bound) for any nonempty finite subset. Algebraically, semilattices can
be defined as pairs D = (D,ϕ), where D is a domain and ϕ is the semilattice operation join or
meet. Note that both operations are associative, commutative and idempotent binary operations.
In mathematics, the symbol for the join (meet) operation in a semilattice is often denoted by the
symbol ∨ (∧). Any such operation induces a partial order (⪯) (and its corresponding inverse or-
der) in which the result of the operation for any two elements represents the least upper bound (or
greatest lower bound) of those elements in relation to the established partial order.

The input to IMPd(Γ) consists of any given set of polynomials that defines the combinatorial
ideal IC (see Definition 5.3) corresponding to a semilattice closed language Γ:

fR1(XR1), . . . , fRℓ
(XRℓ

), fD(x1), . . . , fD(xn). (43)

We want to show that PC is capable of computing the d-truncated Gröbner basis (in grlex order)
in polynomial time for any fixed d.

Theorem 5.5 proof outline. Schematically, Theorem 5.5 is proven by the following arguments:

(i) First we prove Theorem 5.5 for the Boolean case, where the domain D = {0, 1}. That is,
we show that bounded-degree PC computes the d-truncated Gröbner basis for the Boolean
domain. The known [45] algorithm to efficiently compute the d-truncated Gröbner basis con-
sists of “guessing” the truncated Gröbner basis in polynomial time. Here, the main technical
difficulty is that this guessing “trick” is not immediately simulable in an efficient way by PC.
We show that the latter is possible. The algorithm in [45] essentially reduces the IMP for
a given polynomial f in the 2d-truncated Gröbner basis to the (contrapositive) problem of
checking whether “non-vanishing assignments” of variables for f belong to the variety. In this
work, we are able to PC-derive f by polynomially formulating “non-vanishing assignments”
into an infeasible system of Horn-type polynomials. We then combine algebraic and logical
reasoning, leading us to efficient PC refutations of the new system by means of simulation of
refutation proofs. By accurately using the PC ability for refutation, we can then retrieve a
PC derivation of f . This technique may be of independent interest.

(ii) We reduce the general case (with arbitrary finite domain D) to the Boolean case. The
reduction is achieved by encoding the domain D using strings over {0, 1}. The encoding
is given by a novel bijective map that preserves the semilattice structure. The strength of
our bijection is that it ensures a one-to-one correspondence between the solution spaces of
the original CSP over D and the reduced Boolean problem, which allows us to reduce the
(search version of) IMPd(Γ) to the (search version of) IMPO(d)(Γ

01), where Γ01 is a Boolean
constraint language derived from Γ. Crucially, the preservation of the semilattice structure
ensures that IMPO(d)(Γ

01) remains solvable in polynomial time by PC.

More details on the second point are given below.

36

1. Show that any instance C = (X,D,C) of CSP(Γ) is reducible to an instance C01 of CSP(Γ01),
where Γ01 is a finite constraint language over {0, 1} and so that there exists a ϕ ∈ Pol(Γ01)
that is a semilattice (Min or Max polymorphisms) (see Section 6.2.2). The idea is that we can
”encode” C in binary and that the encoding function is invertible (see Section 6.2.1).

2. Show IMPd(Γ) is reducible to IMP(|D|−1)d(Γ
01), where Γ01 is a constraint language over the

Boolean domain {0, 1} and there exists a semilattice ϕ ∈ Pol(Γ01) (Min or Max polymorphism)
(see Section 6.2.3). In addition, the reduction ensures that the varieties in the two different
domains are in one-to-one correspondence.

3. By Corollary 6.8, we can solve IMP(|D|−1)d(Γ
01) by bounded-degree PC.

4. Our reduction guarantees that we can recover a bounded-degree PC proof in the finite do-
main from the bounded-degree PC proof over the Boolean domain (see Section 6.2.4). More
precisely, we show how PC proofs of degree (|D| − 1)d in the Boolean domain translate into
the PC proofs of degree O(d) in the finite domain, thus proving Theorem 5.5.

Remark 6.1. We emphasize that a reduction to the Boolean domain case has also been used to
prove that the decision version of IMPd(Γ) is tractable for such constraint languages Γ (see [15, Th.
5.10] for more details). However the mapping used in [15] is by the means of pp-interpretability
(see [50]), and it is not guaranteed that one can recover proofs for the finite domain under this
reduction. In particular, the very first obstacle is given by the fact the mapping π in the definition
of pp-interpretability [15, Def. 3.12] is not guaranteed to be a bijection. In fact, this difficulty of
transforming the Boolean case proof to the finite general domain case led to the development of a
specific method [15, Th. 6.5] for the search version of the problem. Moreover, as previously noted at
the beginning of Section 5, it is far from evident that it can be simulated by PC. In the following, we
show that the standard bounded-degree PC approach is sufficient. This simplifies known approaches
and unifies them into one simple PC-based approach.

6.1 Min/Max polymorphisms

Two important classes of polymorphisms that played a fundamental role in the celebrated dichotomy
theorem by Schaefer [58] are the Min/Max polymorphisms. In fact, Min (Max) is a polymorphism of
the (dual) problemHorn-SAT [35]. A Boolean language Γ is invariant under semilattice operations
given by (component-wise) the Max operation (logical OR) or the Min operation (logical AND).
The semilattice polymorphism is a well-known generalization of Min/Max polymorphisms for the
general finite domain. In this section we show that PC is d-complete and efficient for polynomial
systems that are closed with respect to the Min polymorphism (a similar proof holds for Max).

In the remainder of this section we focus on system of polynomials C1, . . . , Cm that are Min
closed, namely each polynomial constraint Ci, along with domain polynomials, has solutions that
are closed with respect to the Min polymorphism. These polynomials are defined in Definition 5.3.

6.1.1 Min polymorphism

We will make use of the following definition from [45].

37

Definition 6.2. For a given set X = {x1, . . . , xn} of variables and for any set S ⊆ [n] possibly
empty, α ∈ {0,±1}, let a term be defined as 4

τ+(S)
def
= α

∏
i∈S

xi, *positive term*

τ−(S)
def
= α

∏
i∈S

(xi − 1). *negative term*

For S1, S2 ⊆ [n] and i ∈ [n], let a 2-terms polynomial be a polynomial that is the sum of two
terms or it is ±(x2i − xi). We say that a set G of polynomials is 2-terms structured if each
polynomial from G is a 2-terms polynomial.

We further distinguish between the following special 2-terms polynomials:

T + def
= {τ+(S1) + τ+(S2) | S1, S2 ⊆ [n]} ∪ {±(x2i − xi) | i ∈ [n]}, *positive 2-terms*

T − def
= {τ−(S1) + τ−(S2) | S1, S2 ⊆ [n]} ∪ {±(x2i − xi) | i ∈ [n]}. *negative 2-terms*

Remark 6.3. Γ is a finite language. It follows that each given polynomial constraint Ci (as defined
in Definition 5.3) has a constant number of feasible solutions. Therefore PC can efficiently derive
any polynomial vanishing over the solutions of Ci, and in particular it can derive any vanishing
2-term polynomial.

Lemma 6.4. If Min ∈ Pol(Γ) then PC can compute the truncated reduced Gröbner basis Gd in
nO(d) time (where n is the number of variables), for any degree d ∈ N.

Proof. We know from [45] that the reduced Gröbner basis G has a positive 2-term structure (see
Definition 6.2). 5 Let P,Q ⊆ [n]. Consider the following positive 2-term polynomial f :

f = p+ αq, where p =
∏
i∈P

xi, q =
∏
j∈Q

xj and α ∈ {0,±1}.

Assume α = −1. The other cases are similar. The claim follows by showing that if f belongs to Gd

then there is a degree-O(d) PC proof of f = 0 with nO(d) size.
Let Xf be the set of variables appearing in f . Consider a subset Y ⊆ Xf and a mapping

ϕ : Y → {0, 1}. We say that (Y, ϕ) is a non-vanishing partial assignment of f if there exists no
assignment of the variables in Xf \ Y that makes f equal to zero while ϕ(xi) is assigned to xi, for
i ∈ Y ; moreover, (Y, ϕ) is minimal with respect to set inclusion if by removing any variable xj from
Y there is an assignment of the variables in Xf \ (Y \ {xj}) that makes f equal to zero while ϕ(xi)
is assigned to xi for i ∈ Y \ {xj}.

A minimal non-vanishing partial assignment ψ of f implies that either p = 1 and q = 0, or
q = 1 and p = 0. In the former case, ψ : P ∪ {j} → {0, 1} such that ψ(xi) = 1 for every i ∈ P , and
ψ(xj) = 0 for some j ∈ Q is such an assignment. In the latter, ψ : Q ∪ {i} → {0, 1} is of the form
ψ(xj) = 1 for every j ∈ Q, and ψ(xi) = 0 for some i ∈ P is such an assignment.

The claim of Lemma 6.4 follows by Lemma 6.5 and Lemma 6.6.

Lemma 6.5. If f = p− q belongs to Gd then the following polynomials

pj = p(xj − 1) ∀j ∈ Q, qi = q(xi − 1) ∀i ∈ P (44)

belong to the combinatorial ideal IC and there is a O(d)-PC proof of this fact.
4The empty product has the value 1.
5Negative 2-term structure if Max ∈ Pol(Γ).

38

Proof. Note that if the instance C has no solution, i.e. V (IC) = ∅, then the claim is vacuously
true. If P = ∅ or Q = ∅ then again the claim is vacuously true. So in the following we will assume,
w.l.o.g., that V (IC), P and Q are not empty sets.

Since f = p − q belongs to Gd, it follows that the polynomials in (44) must vanish at every
solution from V (IC). In fact, if there was a solution s from V (IC) that would make at least one of
the polynomials in (44) nonzero, then f(s) ̸= 0 contradicting our hypothesis.

Now consider any minimal non-vanishing partial assignment ϕj : P ∪ {j} → {0, 1} such that

ϕj(xi) = 1 for i ∈ P , and ϕj(xj) = 0 for some j ∈ Q. (45)

Note that the argument works symmetrically if we exchange P with Q. If we set variables xj
according to ϕj(xk) for every k ∈ P ∪ {j}, then the set of feasible solutions becomes empty, since
every feasible solution makes f vanishing by assumption. It follows that there is no feasible solution
that satisfies (45). This new CSP instance, i.e., C augmented with the polynomials xi − 1 = 0 for
i ∈ P and xj = 0 for some j ∈ Q arising from Eq. (45), is unsatisfiable. In particular, pj
together with the assignments in Eq. (45) can be interpreted as an infeasible Horn formula. It
is well known that Horn clauses admit an efficient refutation by resolution, and thus a degree-d
PC refutation (see Appendix A and [24]). Suppose the refutation is given by the sequence of
polynomials (r1 = 0, . . . , rL = 0) of degree at most d where rL = 1. Multiplying each polynomial in
this sequence by pj , we can prove that the augmented system has a PC proof of pj of degree at most
2d. Interestingly, the same proof is also valid in the original system: if some rk is an assignment
corresponding to Eq. (45) i.e., rk = xk − ϕj(xk), then pjrk = (xk − ϕj(xk))pj . If k = i ∈ P then
pjrk = (xi − 1)pj which is a multiple of the domain polynomial (xi − 1)xi. If k = j ∈ Q then
pjrk = (xj)pj which is a multiple of the domain polynomial xj(xj − 1). A similar proof can be
obtained for qi and the claim follows.

Lemma 6.6. If f = p− q belongs to Gd, then f = 0 admits a degree-O(d) PC proof.

Proof. We first consider the case of f = p−q where gcd(p, q) = 1, that is, p and q have no variables
in common. Without loss of generality, we have

p = xi1xi2 · · ·xi|P | and q = xj1xj2 · · ·xj|Q| .

Let pjk = p(xjk − 1) ∀k ∈ [|Q|] and qik = q(xik − 1) ∀k ∈ [|P |]. Then,

−pj|Q| − pj|Q|−1
(xj|Q|)− pj|Q|−2

(xj|Q|−1
)(xj|Q|)− · · · − pj1(xj2) · · · (xj|Q|−1

)(xj|Q|) = p− pq.

Similarly,

qi|P | + qi|P |−1
(xi|P |) + qi|P |−2

(xi|P |−1
)(xi|P |) + · · ·+ qi1(xi2) · · · (xi|P |−1

)(xi|P |) = −q + pq.

Adding the two equations above, for particular polynomials hjk , hik we have

p− q =
∑

k∈[|Q|]

hjkpjk +
∑

k∈[|P |]

hikqik .

Note that, since deg(f) ≤ d, then |P |, |Q| ≤ d+1. Therefore, p−q admits a degree-O(d) PC proof.
On the other hand, suppose f = m(p − q) where gcd(p, q) = 1, and m is some multilinear

monomial (in the previous case, m = 1). Continuing the notations for p and q, the new minimal
non-vanishing partial assignments imply

pjk = mp(xjk − 1) ∀k ∈ [|Q|] and qik = mq(xik − 1) ∀k ∈ [|P |].

39

Then we have
m(p− q) =

∑
k∈[|Q|]

hjkpjk +
∑

k∈[|P |]

hikqik ,

which proves that m(p− q) admits a degree-O(d) PC proof.

By symmetric arguments we obtain the following.

Lemma 6.7. If Max ∈ Pol(Γ) then PC can calculate the reduced truncated basis Gröbner Gd in
nO(d) time (where n is the number of variables), for any degree d ∈ N.

Corollary 6.8. Let Γ be a finite constraint language over {0, 1} that is closed under a 2-element
semilattice operation polymorphism. Then PC can compute the reduced truncated Gröbner basis Gd

in nO(d) time (where n is the number of variables), for any degree d ∈ N.

6.2 Generalizing to finite domain semilattice

In the following, we generalize Corollary 6.8 to constraint languages over finite domains that are
closed under a semilattice polymorphism and obtain the proof of Theorem 5.5. We begin by
recalling the definition of semilattice operations. We then present the main arguments used to
prove Theorem 5.5, followed by their details.

6.2.1 Binary encoding

Let D = (D,ψ) be a semilattice, with ψ being a semilattice polymorphism (see Definition 5.2) of
the constraint language Γ. Then, it is known that D can be encoded in binary form in such a way
that it is a subalgebra of Bk for some k ∈ N, where B = ({0, 1}, ϕ) is a 2-element semilattice [50].
In the following we show how to encode the elements of D in binary in a proper form such that (i)
the just mentioned property [50] is satisfied, and (ii) it will allow us to recover proofs over the finite
domain D from the Boolean domain, a property that is not guaranteed by the approach considered
in [15]. The encoding µ is very “natural” and it is described in the proof of the following lemma.

Lemma 6.9. Let D = (D,ψ) be a finite semilattice where ψ is a meet-semilattice (join-semilattice)
operation. Then there is a mapping µ : D → {0, 1}(|D|−1) such that Min (Max) is a polymorphism
of the Boolean relation D01 = {µ(d1), . . . , µ(d|D|)} and µ : D → D01 is bijective.

Proof. Assume that D is a meet-semilattice. Note that every join-semilattice is a meet-semilattice
in the inverse order and vice versa, so the construction that we describe below can be easily adapted
for join-semilattice. Let D = {d1, . . . , d|D|}. Let us start by encoding every element di of D by using
|D| bits (bi1, . . . , bi|D|) such that the j-th bit bij is 1 if and only if dj ⪯ di (recall any semilattice
operation, meet or join, induces a partial order ⪯), and 0 otherwise. An easy argument will show
that we can remove one of the |D| bits of the proposed encoding and still retain the same properties.

We call he above binary encoding µ. It maps every element of D to one element from {0, 1}|D|.
Let D01 = {µ(d1), . . . , µ(d|D|)}. It is easy to observe that each element in D01 is mapped to from
at most one element of the domain, namely µ : D → D01 is a bijection. Now we observe that
the Boolean relation D01 = {µ(d1), . . . , µ(ds)} is closed under the (bitwise) and (or equivalently,
Min ∈ Pol(D01)). Indeed, let ϕ be the binary Min over the Boolean domain and consider µ(di1) =
(bi11, . . . , bi1|D|) and µ(di2) = (bi21, . . . , bi2|D|) for some i1, i2 ∈ [|D|]. By applying component-wise
the map ϕ to µ(di1) and µ(di2) we obtain a string (c1, . . . , c|D|). First note that there is some
ℓ ∈ |D| such that ck = bi1k = bi2k for all k ≤ ℓ and cℓ = 1, while ck = 0 for all ℓ < k ≤ |D|. Thus
(c1, . . . , c|D|) ∈ D01: indeed any string is in D01 if it is composed by a contiguous subsequence of

40

(bi11, . . . , bi1|D|) (or of (bi21, . . . , bi2|D|)) starting from bi11 (bi21) such that the last element of the
subsequence is a 1 followed by only zeros. Moreover, it is easy to see that (c1, . . . , c|D|) = µ(di1∧di2).

Finally, recall that a meet-semilattice is a partially ordered set characterized by having a greatest
lower bound GLB with respect to the induced partial order ⪯ (also simply called meet). By the
previous construction we see that the column headed by GLB contains only 1’s, since every other
element is greater than GLB. So a slightly more compact binary encoding is obtained by dropping
the bit biGLB for every i without any loss.

6.2.2 Reducing CSP(Γ) over a finite domain to the Boolean domain

By Lemma 6.9 we obtain the following.

Lemma 6.10. Let Γ be a constraint language over D that is closed with respect to a meet (join)
semilattice operation. Let Γ01 be the constraint language over {0, 1} that is obtained from Γ by
replacing the values from D appearing in the relations from Γ with their corresponding binary
encoding, as given by the mapping µ in Lemma 6.9. Then

• Min (Max) is a polymorphism of Γ01.

• Any given instance C = (X,D,C) of CSP(Γ) is polynomial time reducible to an instance
C01 = (Y, {0, 1}, C01) of CSP(Γ01). Moreover, the solution sets Sol(C) and Sol(C01) are in
one-to-one correspondence.

Proof. The claim that Min (Max) is a polymorphism of Γ01 is an immediate consequence of
Lemma 6.9. The claimed polynomial time reduction is obtained by the following construction.

1. For every variable xi ∈ X introduce (|D| − 1) new binary variables yi1, . . . , yi(|D|−1). Let
Yi = yi1, . . . , yi(|D|−1) and Y = {Y1, . . . , Yn}.

2. Replace the values from D appearing in the relations from Γ as described in Lemma 6.9. This
reduces the constraint language Γ to its corresponding binary encoded constraint language
Γ01. Indeed, any k-ary relation R on a domain D becomes a (|D| − 1)k relation R01 on
domain {0, 1}.

3. Replace every variable xi with Yi. Then every constraintR(x1, . . . , xk) reduces toR
01(Y1, . . . , Yk).

This maps any given instance C = (X,D,C) of CSP(Γ) to an instance C01 = (Y, {0, 1}, C01)
of CSP(Γ01), where C01 is essentially the binary encoding representation of C. The solution
sets Sol(C) and Sol(C01) are in one-to-one correspondence by construction.

6.2.3 Reducing IMPd(Γ) over a finite domain to the Boolean domain

In the reduction considered in Lemma 6.10 every variable xi ∈ X is mapped to (|D| − 1) new binary
variables yi1, . . . , yi(|D|−1). In the following we reduce IMPd(Γ) to IMP(|D|−1)d(Γ

01). This reduc-
tion, along with its corresponding “inversion” (see Section 6.2.4), will be used to prove Theorem 5.5,
as summarized in Section 6.

The interpolating polynomial P in the Boolean domain. By a straightforward gener-
alization of Lagrange interpolating polynomials (see e.g. [54], [25]), given |D| distinct values
µ(d1), . . . , µ(d|D|) ∈ {0, 1}(|D|−1) (see Lemma 6.9) and corresponding values d1, . . . , d|D|, there ex-
ists a polynomial P of degree at most |D|−1 that interpolates the data, i.e. P(µ(di)) = di for each
i = 1, . . . , |D|.

41

A reduction to the Boolean domain. As in the proof of Lemma 6.10, we want to map
every variable xi ∈ X to a tuple of (|D| − 1) new binary variables yi1, . . . , yi(|D|−1). Let Yi =
yi1, . . . , yi(|D|−1) and Y = {Y1, . . . , Yn}.
To guarantee that each tuple Yi assumes only values that correspond to valid encondings of elements
in D, we consider the following “low” degree polynomial:

T (y1, . . . , y(|D|−1)) =
∏

v1,...,v(|D|−1)∈D01

(1−
(|D|−1)∏
j=1

(1− vj + yj))).

Every T (Yi) has degree |D|(|D| − 1).
For any given CSP(Γ)-instance C = (X,D,C), the corresponding combinatorial ideal (see Defini-
tion 5.3)

F = {fR1(x1R1
. . . , xkR1

), . . . , fRℓ
(x1Rℓ

. . . , xkRℓ
), fD(x1), . . . , fD(xn)} (46)

IC = ⟨F⟩ (47)

is mapped to

F01 = {fR1(P(Y1R1
), . . . ,P(YkR1

)), . . . , fRℓ
(P(Y1Rℓ

) . . . ,P(YkRℓ
)),

T (Y1), . . . , T (Yn), y
2
1 − y1, . . . , y

2
n(|D|−1) − yn(|D|−1)} (48)

I01C = ⟨F01⟩. (49)

Note that

• The polynomial constraints {T (Yi) = 0 | ∀i ∈ [n]} (along with y2i − yi = 0) forces each tuple
Yi to take only the values from D01.

• The polynomial constraint fRj

(
P(Y1Rj

), . . . ,P(YkRj
)
)
= 0, for all j ∈ [ℓ], forces the tuples

YiRj
to take only the values whose corresponding value (according to µ, see Lemma 6.9) in

finite domain satisfy fR1(x1R1
. . . , xkR1

).

• Let u(x1, . . . , xn) and consider u01(P(Y1), . . . ,P(Yn)). Then

u(x) = 0 ⇐⇒ u01(Y) = 0 ⇐⇒ (P(Y1), . . . ,P(Yn)) ∈ V (IC) .

Thus V (IC) and V (IC01) are in one-to-one correspondence and u ∈ IC if and only if u01 ∈ I01C .

• If deg(u) = d, then deg(u01) ≤ (|D| − 1)d.

Note that the set of satisfying assignments Sol(C) corresponds to the variety V (IC) of IC , i.e.
Sol(C) = V (IC).

Corollary 6.11. IMPd(Γ) is polynomial time reducible to IMP(|D|−1)d(Γ
01), where Γ01 if a finite

constraint language over {0, 1} that is closed under a 2-element semilattice operation polymorphism,
and such that V (IC) and V (IC01) are in one-to-one correspondence.

42

6.2.4 Mapping the Boolean PC proof back to finite domain

Let |D| = O(1). By Lemma 6.4, we can solve IMP(|D|−1)d(Γ
01) by bounded-degree PC in nO(d)

time. In the following we show the existence of a polynomial time bounded-degree PC proof for
IMP(|D|−1)d(Γ

01) implies a polynomial time bounded-degree PC proof for IMPd(Γ), and hence the
proof of Theorem 5.5 follows.

To begin, we introduce the following terminology.

Definition 6.12. Let I ⊆ Q[x1, . . . , xn] be an ideal, and let f, g ∈ Q[x1, . . . , xn]. We say that f
and g are congruent modulo I, written f ∼= g mod I, if f − g ∈ I.

The interpolating polynomial Qj in finite domain. For any given value di ∈ D and j ∈
[(|D| − 1)], we need a polynomial functionQj(di) that returns the j-th bit of µ(di) = bi1, . . . , bi(|D|−1),
i.e. Qj(di) = bij . By Lagrange interpolating polynomials (see e.g. [54], [25]), given |D| distinct
values d1, . . . , d|D| ∈ D and corresponding values b1j , . . . , b|D|j , there exists a polynomial Qj of
degree |D| − 1 that interpolates the data, i.e. Qj(di) = bij for each j = 1, . . . , (|D| − 1).

Lemma 6.13. 1. x ∼= P(Q1(x), . . . ,Q(|D|−1)(x)) mod ⟨fD(x)⟩. 6

2. T (Q1(x),Q2(x), . . . ,Q(|D|−1)(x)) ∼= 0 mod ⟨fD(x)⟩.

3. Qj(x)
2 −Qj(x) ∼= 0 mod ⟨fD(x)⟩

Proof. First note that by definition of P and Qj , we have that P(Q1(x), . . . ,Q(|D|−1)(x)) is a
univariate polynomial in x that assumes the exact value of x every time x ∈ D. It follows that
P(Q1(x), . . . ,Q(|D|−1)(x)) = x + R(x), where R ∈ Q[x] and R(x) = 0 for every x ∈ D, i.e R(x) ∈
⟨fD(x)⟩.
For point 2. it suffices to observe that T (Q1(x),Q2(x), . . . ,Q(|D|−1)(x)) = 0 for all x ∈ D. For
point 3. it suffices to observe that Qj(x)

2 = Qj(x) for all x ∈ D.

Proof of Theorem 5.5. Assume that u(x1, . . . , xn) is a polynomial of degree d = O(1) such that
u(x1, . . . , xn) ∈ IC . We show that u(x1, . . . , xn) has a PC proof of degree O(d).

1. Reduce the problem to a Boolean problem by replacing variables xi with P(Yi), where Yi =
yi1, . . . , yi(|D|−1) are tuples of (|D| − 1) binary variables (see Section 6.2.3). Thus yij represents
the j-th bit of the binary representation of xi. Let us use u01 to denote the polynomial u
after the above variables replacement. By Corollary 6.8 and Corollary 6.11, we know that
u01(Y1, . . . , Yn) admits a bounded-degree PC proofs in the Boolean domain. This means
that there exists a PC derivation of u01 from F01 (see Eq. (48)), i.e. there is a sequence
(r011 = 0, . . . , r01L = 0) of polynomial equations sequencially derived by using (5) and starting
from from F01, with u01 = r01L .

2. Consider any polynomial r01ℓ ∈ (r011 , . . . , r
01
L), and replace each Boolean variable yij that

appears in r01ℓ with Qj(xi). Let rj denote the polynomial r01j after the just described re-

placement. We will call rj the corresponding polynomial of r01j in D. Note that
rj ∈ Q[x1, . . . , xn] and has degree O(d). Therefore we obtain the following sequence (r1 =
0, . . . , rL = 0) of polynomial equations, that represents the PC proofs in the Boolean domain,
but represented by using finite domain D variables.

6Recall ⟨fD(x)⟩ is the ideal generated by the domain polynomial fD(x) of x.

43

3. Let ID = ⟨fD(x1), . . . , fD(xn)⟩. We observe rL ∼= u mod ID by a simple application of
Lemma 6.13, i.e. there exists a polynomial R ∈ ID such that rL = u + R. Moreover, it is
immediate to see that deg(R) = O(d). The claim of Theorem 5.5 follows by proving the fol-
lowing lemma, which, in words, states the sequence (r1, . . . , rL) of corresponding polynomials
in D can be derived in bounded-degree PC and there exists a bounded-degree PC proof of u
from F that is equivalent to (r1, . . . , rL) mod ID.

Lemma 6.14. In the finite domain D setting, starting from F (see Eq. (46)), there exists a degree-
O(d) PC proof, namely a sequence S = (s1 = 0, . . . , sM = 0) of polynomial equations sequencially
derived by using (5), such that for each rk ∈ (r1, . . . , rL) there is sh ∈ S such that rk ∼= sh mod ID.

Proof. By induction on k = 1, . . . , L, we prove that statement holds for every rk with k ∈ [L]. We
will construct the sequence S = (s1, . . . , sM) with the desired properties. We start adding F (see
Eq. (46)) to S.

• Assume that r01k ∈ F01 (see Eq. (48)), then by a Lemma 6.13 we have that rk ∼= 0 mod ID.
Thus we do not to have to add anything to S.

• Assume r01k is derived by the third rule, i.e.

f01 = 0 g01 = 0

r01k = af01 + bg01 = 0
. (50)

Let f and g be the corresponding polynomials of f01 and g01 inD. By the induction hypothesis
there exist polynomials sf , sg ∈ S such that sf ∼= f mod ID and sg ∼= g mod ID. Thus we
add asf + bsg to S.

• Assume r01k is derived by the fourth rule, i.e.

f01 = 0

r01k = yijf01 = 0
.

Let f be the corresponding polynomial of f01. Then we have that

f = 0

Qj(xi)f = 0
,

where this is a derivation that actually requires O(1) derivations for any |D| = O(1).
By the induction hypothesis there exists sf ∈ S such that sf ∼= f mod ID. Thus we add
Qj(xi)sf to S for which we have that rk ∼= Qj(xi)sf mod ID.

By Lemma 6.14 there exists S = (s1, . . . , sM) such that for each rk ∈ (r1, . . . , rL) there is some
sh ∈ S such that rk ∼= sh mod Id. Then by simulating S with PC from F , we obtain a PC proof
of u from F with degree bounded by O(d).

44

7 Proof of Theorem 5.6

In this section, we focus on IMPd(Γ), where Γ is a language closed under the dual discriminator
polymorphism and show the proof of Theorem 5.6. The dual discriminator is a well-known majority
operation [34, 3] and is often used as a starting point in many CSP-related classifications [3]. For
a finite domain D, a ternary operation f is called a majority operation if f(a, a, b) = f(a, b, a) =
f(b, a, a) = a for all a, b ∈ D.

Definition 7.1. The dual discriminator on a domain D, denoted by ∇, is a majority operation
such that ∇(a, b, c) = a for pairwise distinct a, b, c ∈ D.

The input for IMPd(Γ) consists of any given set of polynomials that defines the combinatorial
ideal IC (see Definition 5.3) corresponding to a dual discriminator closed language:

fR1(XR1), . . . , fRℓ
(XRℓ

), fD(x1), . . . , fD(xn). (51)

We want to show that PC is capable of computing the full Gröbner basis (in grlex order) in
polynomial time.

We will assume that the solution set is non-empty, as the search version of IMP0(Γ) can be solved
by PC in polynomial time using “local-consistency” algorithms, valid for the dual-discriminator,
as shown in [36].

Theorem 5.6 proof structure. The central idea is to adapt the algorithms presented in [6, 8]
and [15] to design a PC algorithm that runs in polynomial time for any given domain D. The main
arguments are as follows.

(i) For any given instance of IMPd(Γ), consider the corresponding CSP(Γ) input instance C =
(X,D,C) (see Definition 5.4). It is known that any instance C = (X,D,C) of CSP(Γ) can be
reduced to an equivalent CSP(Γ) instance with only binary constraints (that is, constraints
with at most two variables in their scope). In this transformed instance, the constraints are
organized into three categories: permutation constraints, complete constraints, or two-fan
constraints. This restructuring aligns with the classification introduced in prior work (see
[20]). We derive binary constraints according to the CSP classification.

(ii) Consider the input combinatorial ideal IC associated with the given instance of IMPd(Γ) (see
Eq. (42)). The next phase consists in the decomposition of the combinatorial ideal IC into
a collection of simpler ideals. Each of these simpler ideals arises from the structured binary
constraints considered above. The advantage here is that these individual ideals have Gröbner
bases that can be derived efficiently through the PC algorithm.

(iii) Finally, we combine the Gröbner bases corresponding to the simpler ideals into a single
Gröbner basis for the entire combinatorial ideal IC . This approach allows us to efficiently
compute a solution to the original problem in polynomial time.

Schematically, Theorem 5.6 is proven by the following arguments:

1. In Section 7.1, by using the known result for CSPs mentioned in (i), IMPd(Γ) can be shown
to be equivalent to IMPd(Π), where Π is a binary constraint language. To achieve this, we
start from the given input polynomials (51) and derive bivariate polynomials describing the
mentioned binary constraints. The derivation can be done in polynomial time and entirely
within the framework of PC.

45

2. In Section 7.2.2, it is shown that a Gröbner basis for the combinatorial ideal generated by the
permutation constraints Iperm can be calculated in polynomial time by PC. In particular, we
define new constraints CPCi that arise from “chaining” together permutation constraints,
with the property that, if Xi and Xj are the variables in CPCi and CPCj respectively, then
Xi∩Xj = ∅. It follows that Iperm =

∑
i ICPCi , and a set of generators for each ICPCi is found.

3. In Section 7.2.3, similar to the permutation constraints case, a set of generators for the
combinatorial ideal ICF generated by the complete and two-fan constraints is found. In
particular, we find a Gröbner basis for ICF .

4. In Section 7.2.4, we construct generators for simpler ideals by combining those of ICPCp and
ICF . This combination preserve the structure that IC =

∑
p∈J CPCp + ICF . We will show

that a Gröbner basis for ICc can be computed with bounded degree in polynomial time.

We will show how to convert the ad-hoc algorithm in [6, 8] into a standard PC algorithm.
Moreover, techniques from [15] are implemented for the case of the complete and two-fan constraints.
This algorithm can be used to solve IMPd(Γ) in polynomial time and leads to Theorem 5.6.

We define the sets of constraints

CP = {Cij ∈ C |Cij is a permutation constraint}
CCF = {Cij ∈ C |Cij is a complete or a two-fan constraint}.

Note that that C = CP ∪ CCF . Therefore,

IC = ICP
+ ICCF

. (52)

The idea is to find a set of generators for each addenda in the sum on the RHS and the to combine
these polynomials together in a single Gröbner basis for IC . We recall that for having the identity
Eq. (52), by radicality, it is sufficient to have that

V (IC) = V (ICP
) ∩V (ICCF

) .

7.1 Binary constraints

Let Γ be a language over a finite domain D closed under the dual-discriminator polymorphism, i.e.
∇ ∈ Pol(Γ). Let C = (X,D,C) be an instance of CSP(Γ). In general, if a language Γ is closed
under a majority polymorphism µ, any instance of CSP (Γ) is equivalent to an instance that has
only binary constraints.

Consider a relation R with aritym and let J ⊆ [m] be a set of indices. We denoteX[J] = (xj)j∈J
the subset of variables with indices in J , and similarly we denote prJ(R) the projection of R to the
components with indices in J , i.e. the tuples (aj)j∈J such that there exists a n-tuple (b1, . . . , bn) ∈ R
with aj = bj for all j ∈ J .

Proposition 7.2 ([34]). Let R be a relation of arity m that is closed under a majority operation,
and let C be any constraint (X,R) constraining the variables in X with relation R. For any
problem P containing the constraint C, the problem P ′ obtained by replacing C with the set of
binary constraints

{((X[i], X[j]), pri,j(R)) | 1 ≤ i ≤ j ≤ m}

has exactly the same solutions as P.

46

Moreover, if the language Γ is closed under the dual-discriminator polymorphism, i.e. ∇ ∈
Pol(Γ), the binary constraints Cij are well-structured into three types.

Proposition 7.3. [20] Suppose ∇ ∈ Pol(Γ). Then each constraints Cij = ⟨(xi, xj), Rij)⟩ is one of
the following three types.

1. Permutation constraint: Rij = {(a, π(a)) | a ∈ Di} for some Di ⊆ D and some bijection
π : Di → Dj, where Dj ⊆ D.

2. Complete constraint: Rij = Di ×Dj for some Di, Dj ⊆ D.

3. Two-fan constraint: Rij = {({a}×Dj)∪(Di×{b})} for some Di, Dj ⊆ D and a ∈ Di, b ∈ Dj.

Remark 7.4. We emphasize here that given an instance of a CSP C = (X,D,C) whose language Γ
is dual-discriminator closed, we can derive bivariate polynomials describing the binary constraints
Cij in polynomial time entirely within the framework of PC.

Indeed, first we note that Γ is a finite constraint language. Let arity(R) denote the arity of R.
Then M := maxR∈Γ arity(R) = O(1), i.e. the maximum arity of a relation in Γ is constant.

Second, for any constraint we can easily find a set of generators for its combinatorial ideal. Let
T = RT (xi1 , . . . , xim) be a m-ary constraint from C. Let PT be a set of polynomials such that
Sol(T) = V

(
PT
)
and such that the domain polynomials are in PT for each variable appearing in

any of the polynomials. Then the combinatorial ideal of T is equal to the ideal generated by PT ,
i.e. IT = ⟨PT ⟩.

Third, since arity(RT) ≤M is bounded by a constant, it follows that the reduced Gröbner basis
of ⟨PT ⟩ can be calculated in constant time with respect to the number n of variables in X. Indeed,
finding the reduced Gröbner basis is in general an EXPSPACE-complete problem (see [47, 46])
but only with respect to the number of variables in PT , which however is bounded by M and so
independent from n.

Lastly, we observe that any set of polynomials describing a binary constraint can be derived from
the generators of the initial (non-binary) constraint. Indeed, by Proposition 7.2 we can describe
the solution set of T by using binary constraints Tij. Let PT ⊆ R[x1, . . . , xn] be a set of polynomial
generators such that Sol(T) = V

(
PT
)
⊆ Dm and similarly let PTij ⊆ R[xi, xj] such that Sol(Tij) =

V
(
PTij

)
⊆ D2. Note that the polynomial rings over which PT and PTij differ in the variables.

Moreover, if q ∈ ⟨PTij ⟩, then q = 0 over V
(
PTij

)
, but if we interpret q ∈ R[x1, . . . , xn], then also

q = 0 over V
(
PT
)
and therefore q ∈ ⟨PT ⟩. Thus, q can be derived by PC with bounded degree and

bounded coefficients from PT .
Note that if there are two constraints T 1 and T 2 that contain variables xi and xj in their scope,

then by Proposition 7.2 the initial CSP can be equivalently formulated with some binary constraint
Tij. By the same reasoning as in the previous case, a set of generators for PTij can be derived by
combining together polynomials in PT1

ij and PT2
ij , the restrictions to variables xi and xj of PT1 and

PT2 respectively.

In light of the above results and remarks, we can assume without loss of generality that all the
constraints in the CSP instance C are binary, and that the generators for the combinatorial ideal
IC are sets of polynomials Pij with the property Sol(Cij) = V (Pij). Furthermore, the points of
any bivariate variety V (Pij) arise from either a permutation, a complete or a two-fan constraint.

7.2 Generating sets

In this section, we walk through the proof sketched at the beginning of Section 7. We start by
presenting some derivations that can be efficiently made by PC. We will refer these derivations in

47

the subsequent sections. We then proceed to find generating sets for ideals arising from permutation
and from complete and two-fan constraints. Finally, we will combine these generators together and
find a Gröbner basis of IC .

7.2.1 Derivation schemes

We present and prove five derivation schemes that can be performed by Polynomial Calculus in
polynomial time. This subsection serves as a reference for later discussions and can be skipped at
a first read.

Throughout this section x will denote a variable and Df , Dg, Dh ⊆ D.

Lemma 7.5 (Derivation Scheme 1). Let h = Πa∈Dh
(x− a) and consider polynomials f = h(x−α)

and g = h(x− β) with α ̸= β. Then h can be PC-derived from f and g in polynomial time.

Proof.

f = 0 g = 0

f − g = (−α+ β)h = 0
⇒ (−α+ β)h = 0

h = 0
.

Lemma 7.6 (Derivation Scheme 2). Let f = Πa∈Df
(x−a) and g = Πb∈Dg(x−b) with Df ∩Dg ̸= ∅.

Then h = Πc∈Df∩Dg(x− c) can be PC-derived from f and g in polynomial time.

Proof. Recall the definition of symmetric difference ∆: given two sets A and B, then A∆B :=
(A ∪B) \ (A ∩B).

We prove by induction on the cardinality of the symmetric difference k = |Df∆Dg|. We can
assume without loss of generality that Df ⊈ Dg and Dg ⊈ Df as otherwise it suffices to set h := f
and Dh := Df , or h := g and Dh := Dg respectively. This also implies that k ≥ 2.

• Base Case (k=2). Follows from Derivation Scheme 1.

• Induction Step. Suppose the result holds for k ∈ N, we will prove it for k+1. Since Df ⊈ Dg

and Dg ⊈ Df , we can pick α ∈ Df \Dg and β ∈ Dg \Df . We first derive polynomials

f̃ = Πa∈(Df∪Dg)\{β}(x− a)

g̃ = Πb∈(Df∪Dg)\{α}(x− b).

By Derivation Scheme 1. we can also derive

h̃ = Πc∈Dh̃
(x− c) where Dh̃ = (Df ∪Dg) \ {α, β}.

If Dh̃ ⊆ Df ∩ Dg then it suffices to set h := h̃ and Dh := Dh̃. Otherwise, we have that Dh̃ ⊇
Df ∩Dg since α, β /∈ Df ∩Dg. Moreover, |Dh̃∆Df | < k+1 and thus, by the inductive hypothesis,
hf = Πa∈Df∩Dh̃

(x − a) can be derived. Similarly, |Dh̃∆Dg| < k + 1 and hg = Πa∈Dg∩Dh̃
(x − a)

can be derived. Now |(Df ∩ Dh̃) ∩ (Dg ∩ Dh̃)| < k + 1 and (Df ∩ Dh̃) ∩ (Dg ∩ Dh̃) = Df ∩ Dg.
Therefore, again by the inductive hypothesis, from polynomials hf and hg we can derive polynomial
h := Πc∈Df∩Dg(x− c).

Lemma 7.7 (Derivation Scheme 3). Let f = Πa∈Df
(x − a) and g = Πb∈Dg(x − b)(x2 + α) with

Df , Dg ⊆ D, Df ∩Dg ̸= ∅ and α ∈ R. Then h = Πc∈Df∩Dg(x− c) can be PC-derived from f and
g in polynomial time.

48

Proof. Assuming without loss of generality that Df ⊈ Dg, let β ∈ Df \Dg. Now derive polynomials

h1 = xΠa∈Df∪Dg(x− a),

h2 = (x2 + α)Πb∈(Df∪Dg)\{β}(x− b).

Thus
h2 − h1 = Πb∈(Df∪Dg)\{β}(x− b)[βx+ α],

from which we can derive polynomial

h̃ :=

(
x+

α

β

)
Πb∈(Df∪Dg)\{β}(x− b).

Applying Derivation Scheme 2. first with f and h̃ and then with g we obtain the result.

Corollary 7.8 (Derivation Scheme 4). Let f = Πa∈Df
(x− a) and g = Πb∈Dg(x− b)Πd∈Fg(x

2+βd)
with Df , Dg ⊆ D and some set of indices Fg, Df ∩Dg ̸= ∅ and βd ∈ R. Then h = Πc∈Df∩Dg(x− c)
can be PC-derived from f and g in polynomial time.

Lemma 7.9 (Derivation Scheme 5). Let σij : Di → Dj be a bijection with Di, Dj ⊆ D. Let f
be the Lagrange interpolating polynomial that simulates σji = σ−1

ij over Dj. Consider polynomials
p1 := xi − f(xj), p2 := xi − a and p3 = Πb∈Dj

(xj − b) for some a ∈ Di. Then h = xj − σij(a) can
be PC-derived from p1 and p2 in polynomial time.

Proof. Start with the derivation

p2 = 0 p1 = 0

p2 − p1 = f(xj)− a = 0

and observe that f(xj) has degree at most |Dj | − 1. By the Fundamental Theorem of Algebra,
the polynomial f(xj) − a has deg(f) ≤ |Dj | − 1 roots with multiplicity and σij(a) is a root since
f(σij(a)) = σji(σij(a)) = σ−1

ij (σij(a)) = a. On the other hand, σji is a bijection, therefore f(b) ̸= a
for every b ∈ Dj \ {σij(a)}. Thus

f(xj)− a = (xj − σij(a))Πb∈R(xj − b)

for some R ⊆ C such that R ∩ (Dj \ {σij(a)}) = ∅. While some roots might be complex, we have
that if a root b is complex also its conjugate b̄ is a root. Multiplying together xj − b and xj − b̄ we
get the degree 2 polynomial x2j + b2. Therefore we can rewrite

f(xj)− a = (xj − σij(a))Πb∈R∩R(xj − b)Πc∈S(x
2
j + βc)

for some S ⊆ N and βc ∈ R.
The results follows by applying Derivation Scheme 2. and Derivation Scheme 4. to f(xj) − a

and the domain polynomial p3.

7.2.2 Permutation constraints

Let Cij = Rij(xi, xj) ∈ CP be a permutation constraint where Rij = {(a, πij(a) | a ∈ Di} for
some Di, Dj ⊆ D and a bijection πij : Di → Dj . To the constraint Cij it corresponds the set of
polynomials {xj−f(xi), xi−g(xj),Πa∈Di(xi−a),Πb∈Dj

(xj−b)}, where f and g are the (Lagrange)

49

polynomials interpolating the points {(a, πij(a))}a∈Di and {(π−1
ij (b), b)}b∈Dj

respectively. Recall
Remark 7.4, thus all these polynomials can be derived by PC in polynomial time.

Next we use a construction similar to the one in [6, 8] to define larger constraints called chain
permutation constraints (CPCs) that combine multiple permutation constraints together. We main-
tain the notation. More precisely, it is possible to define constraints

CPCp := Rp(Xp = {xp1 , . . . , xpr})

such that the solutions to the constraints CP are also the solutions to the constraints CPC :=
{CPCp | p ∈ J} for some J ⊆ [n]. Moreover, the following property holds.

Lemma 7.10 ([6, 8]). Let CPCp = Rp(Xp) and CPCq = Rq(Xq) with p, q ∈ J be two CPCs. If
p ̸= q, then Xp ∩Xq = ∅.

However, we do not really need to calculate any CPC: it suffices for us to derive a set of
polynomials PCPCp such that V

(
PCPCp

)
= Sol(CPCp) for any p ∈ J . In order to do so, we define

PCPCp :=
⋃

i,j∈Jp

Pij

where Jp ⊆ [n] is a set of indices such that for any pair of indices there exists a chain of pairs
of indices ”connecting” them. More precisely, let i, j ∈ Jp, then there exist pairs

{l11, l12}, {l21, l22}, {l31, l32}, . . . , {lk1 , lk2} ⊆ Jp

for some k ∈ [n] such that i ∈ {l11, l12}, j ∈ {lk1 , lk2} and |{lw1 , lw2 } ∩ {lw+1
1 , lw+1

2 }| = 1 for any
w = 1, . . . , k − 1.

Let ICPCp be the combinatorial ideal associated with CPCp = Rp(Xp = {xp1 , . . . , xpr}). Let
Si = pri(Rp) ⊆ D be the i-th projection of relation Rp, i.e. the set of values xi can assume for each
valid solution in Rp. As a result of the construction of the CPCs, there exist bijections between
any pair of variables in Xp. We denote σij : Si → Sj any such bijection between two variables
xi, xj ∈ Xp.

Lemma 7.11. Let PCPCp be a generating set of ICPCp for some p ∈ J . If i, j ∈ Jp, then
there exist interpolating polynomials f and g simulating the bijections σij and σji respectively, i.e.
f(a) = σij(a) for all a ∈ Di and similarly for g. It follows that xj − f(xi), xi − g(xj) ∈ ⟨PCPCp⟩.
Furthermore, deg(f),deg(g) ≤ |D| − 1 and polynomials xj − f(xi) and xi − g(xj) can be derived by
PC in polynomial time.

Proof. Since i, j ∈ Jp, there exist pairs {l11, l12}, {l21, l22}, {l31, l32}, . . . , {lk1 , lk2} ⊆ Jp for some k ∈ [n]
such that i ∈ {l11, l12}, j ∈ {lk1 , lk2} and |{lw1 , lw2 } ∩ {lw+1

1 , lw+1
2 }| = 1 for any w = 1, . . . , k − 1. We

proceed by induction on k.
Base Case (k=1): in this case there exists a constraint Cij = Rij(xi, xj) ∈ CPCp with Rij =

{(a, πij(a))}a∈Di . The result follows by Remark 7.4, where f and g are the Lagrange polynomials
simulating permutation πij , and hence with degree deg(f),deg(g) ≤ |D| − 1.

Induction step: we assume that the statement holds for some k ∈ [n−1] and we will prove it for
k+1. By assumption, there exists the chain of pairs of indices {l11, l12}, {l21, l22}, . . . , {lk1 , lk2}, {l

k+1
1 , lk+1

2 }
such that xi is ”connected” to xj . Suppose l

k+1
2 = j, then without loss of generality either lk1 = lk+1

1

or lk2 = lk+1
1 . By the induction hypothesis, polynomials xi − f(xlk+1

1
) and xlk+1

1
− g(xi) are in

⟨PCPCp⟩, can be PC derived in polynomial time and deg(f), deg(g) ≤ |D| − 1. Moreover, by
the inductive hypothesis there also exist polynomials f ′(xj) and g

′(xlk+1
1

) such that xlk+1
1

− f ′(xj)

50

and xj − g′(xlk+1
1

) are in ⟨PCPCp⟩ with deg(f ′),deg(g′) ≤ |D| − 1 and can be derived within PC.

Now consider the polynomial xj − g′(g(xi)) and also consider polynomial xj − g̃(xi), where g̃ is
the Lagrange polynomial simulating σij . It follows that these two polynomials evaluate to 0 on
{(a, σij(a))}a∈Si . Therefore xj − g̃(xi) ∈ ⟨xj − g′(g(xi)),Πa∈Si(xi − a),Πb∈Sj

(xj − b)⟩ since the
generated ideal is radical. Moreover, the derivation can be simulated by PC in time and degree
both independent from n, as noted in Remark 7.4.

Remark 7.12. There are at most |D|! different bijections between variables in Xp, implying that
many variables are actually related by linear polynomials of the type xj − xk for some xj , xk ∈ Xp.
Indeed, consider variable xi ∈ Xp and consider all the bijections σil such that xl ∈ Xp. Suppose
there exist two variables xj , xk ∈ Xp such that σij = σik. Then xj = xk for all values in Sj = Sk.
It follows that σjk = σkj = id. Thus the Lagrange interpolating polynomials f and g are xj − xk
and xk − xj respectively.

From the above remark it follows that the number of variables which are not linearly related
is at most |D|! = O(1), while for the remaining variables linear polynomials can be derived from
PCPCp . Finding a Gröbner basis for ICPCp thus reduces to finding the Gröbner basis of an ideal
with at most |D|! variables. Indeed, consider the set

{xi − xj |xi > xj and σij is the identity function ∀xi, xj ∈ Xp}. (53)

Let Sp be the reduced Gröbner basis of Eq. (53). Note that it can be derived by PC with
bounded degree and bounded coefficients. Now define

Mp := {LM(s) | s ∈ Sp}.

Therefore, by radicality it follows

ICPCp = ⟨Tp⟩+ ⟨Dp⟩+ ⟨Sp⟩. (54)

where Tp is the set of interpolating polynomials for the bijections different from the identity
σij ̸= id, and Dp = {Πa∈Si(xi − a) |xi ∈ Xp \Mp} is the set of domain polynomials.

At this stage, finding a Gröbner basis for ICPCp would not be difficult, but we choose to defer
this step to Section 7.2.4. As we will see, we will update the sets Dp so that it is easy to find a
Gröbner basis for Tp ∪ Dp ∪ Sp ∪ G, where G is a set of generators arising from the complete and
two-fan constraints.

7.2.3 Complete and two-fan constraints

We consider the set of constraints CCF comprising of the complete and two-fan constraints. Let
G = ∅. We will add polynomials to G until it represents the constraints in CCF .

A constraint Cij = R(xi, xj) is complete whenever R = Di×Dj with Di, Dj ⊆ D. It is described
by a pair of partial domain polynomials defined as

Πa∈Di(xi − a), Πa∈Dj (xj − a).

For every complete constraint, we can derive such polynomial as seen in Remark 7.4 and add them
to G.

A constraint Cij = R(xi, xj) is two-fan if R = {({a} × Dj) ∪ (Di × {b})} with Di, Dj ⊆ D,
a ∈ Di and b ∈ Dj . A two-fan constraint is described by polynomials

(xi − a)(xj − b), Πc∈Di(xi − c), Πd∈Dj
(xj − d).

51

We also add those to G.
It might happen that there exists a variable xi for which two partial domain polynomials have

been added, say Πc∈Di1
(xi − c) and Πd∈Di2

(xi − d). In this case, we derive by Derivation Scheme
2. the polynomial Πc∈Di(xi − c) where Di = Di1 ∩Di2 and replace the two initial partial domain
polynomials in G with this new one. If for some variable xi no partial domain polynomial has been
added to G, we add to G the full domain polynomial Πa∈D(xi − a).

Lastly, we observe that we can consider the equivalent (2, 3)-consistent version C′ = (X,D,C ′)
of the initial CSP C = (X,D,C). We follow along the algorithm presented in [15]. However, we
expand on that result by presenting a PC simulation of the algorithm.

• Repeat until possible: consider three variables xi, xj , xk ∈ X and consider the set

Tij,k = {(a, b) ∈ Rij | ∄c ∈ D s.t (a, c) ∈ Rik ∧ (c, b) ∈ Rkj}

If Tij,k ̸= ∅ do the following. Let f and g be interpolating polynomials vanishing at Rik and
Rkj respectively, i.e. f(α, β) = 0 if and only if (α, β) ∈ Rik, and similarly we define g. Note
that deg(f), deg(g) = O(|D|2). Define h(xi, xj , xk) := f(xi, xk)g(xk, xj). Then, by definition,
h(a, b, c) ̸= 0 if (α, β) ∈ Tij,k and for all c ∈ D. It follows that, as done in Remark 7.4, we can
derive a bivariate polynomial h̃(xi, xj) such that h̃(a, b) = 0 if and only if (a, b) ∈ Rij \ Tij,k.
Add h̃ to G.

When the algorithm stops, we consider the CSP generated by the polynomials in G, i.e. for every
xi, xj ∈ X we consider the constraint C ′ = Vij(xi, xj), where Vij is the variety generated by the
polynomials in xi and xj . It turns out that C ′ is the (2, 3)-consistent version of C. Therefore, C ′

and C have the same solutions and ∇ is a polymorphism of C ′. Moreover, the following holds.

Lemma 7.13. [56, Lemma 4.1.5] Let G be defined as above. Then G is a Gröbner basis of ICF .

7.2.4 Combining ICPCp and ICF

Next, we want to combine the generators of ICPCp and ICF . For the moment we have

IC =
∑
p∈J

ICPCp + ICF =
∑
p∈J

(⟨Tp⟩+ ⟨Dp⟩+ ⟨Sp⟩) + ⟨G⟩. (55)

The remainder of this section completes the proof of Theorem 5.6.

Proof of Theorem 5.6. Consider a variable in Mp = {LM(s) | s ∈ Sp}. First we reduce to the case
where all the variables in G are in

⋃
p∈J Xp \Mp. Let f ∈ Sp and g ∈ G. Assume that LM(f) and

LM(g) contain the same variable xi. Therefore f = xi − xj for some xi ∈ Mp and xj ∈ Xp and
g = Πa∈Di(xi − a). Let b ∈ Di. It suffices to consider (xi − xj)Πa∈Di\{b}(xi − a) and g to obtain
g − f = (xj − b)Πa∈Di\{b}(xi − a). By iterating over Di, we derive g̃ = Πa∈Di(xj − a). We then
remove g from G and add g̃. Similarly, if g = (xi − a)(xk − b), we can derive g̃ = (xj − a)(xk − b)
and substitute it to g in G.

Next, let f ∈ Tp ∪ Dp and let g ∈ G. Assume that LM(f) and LM(g) contain xi ∈ Xp.
Case 1. Suppose g = Πa∈Di(xi − a). If g /∈ Dp, then derive g̃ = Πa∈Si∩Di(xi − a) using

Derivation Scheme 2. and replace the (partial) domain polynomials of xi in Dp and in G with g̃.
Moreover, all the variables in Xp are linked by bijections. So we must also derive updates for any
variable xj ∈ Xp \ {xi}, that is, we have to add polynomials Πb∈σij(Si∩Di)(xj − b) to Dp and G.
To do so, it suffices to iteratively consider the factors of polynomial g̃, i.e. polynomials xi − a for

52

some a ∈ Si ∩Di, then consider polynomial xi − f(xj) ∈ Tp, and polynomial Πb∈Sj
(xj − b) ∈ Dp.

Using Derivation Scheme 5., iterating over a ∈ Si ∩ Di, we update each factor of g̃ from xi − a
to xj − σij(a), thus ending up with Πb∈σij(Si∩Di)(xj − b) instead of g̃. We add these new partial
domain polynomials to Dp and G.

Case 2. Suppose g = (xi − a)(xj − b). If a /∈ Si, then from g and Πc∈Si(xi − c) we can
derive (

∑
c∈Si

c− |Si|a)(xj − b) and add it to Dp and G in place of the partial domain polynomials
corresponding to xj . The derivation follows from the observation that [(xi − a)(xj − b)] − [(xi −
c)(xj − b)] = (c− a)(xj − b).

Case 3. Suppose g = (xi−a)(xj−b), a ∈ Si and xj ∈ Xq with Xp ̸= Xq. Then using Derivation
Scheme 5. we add to G all the polynomials (xk − σik(a))(xl − σjl(b)), where xk ∈ Xp, xl ∈ Xq.

Case 4. Suppose g = (xi − a)(xj − b), a ∈ Si and xj /∈ ∪qXq. Then using Derivation Scheme
5. we add to G all the polynomials (xk − σik(a))(xj − b), where xk ∈ Xp.

We obtain again that

IC =
∑
p∈J

(⟨Tp⟩+ ⟨Dp⟩+ ⟨Sp⟩) + ⟨G⟩, (56)

where Dp and G might have been updated in multiple instances. However, Tp∪Dp∪Sp generates the
ideal generated by some CPCp and, similarly, G generates the ideal generated by a set of complete
and two-fan constraints CCF . We show next how to compute a Gröbner for IC .

First, we observe now that PC can simulate efficiently Buchberger’s algorithm to calculate the
Gröbner basis of the ideal ⟨Tp⟩+ ⟨Dp⟩+ ⟨Sp⟩ for any p ∈ J . Indeed, we recall the definitions of Tp,
Dp and Sp of Section 7.2.2 and observe that the number of variables in Tp is at most |D|!. On the
other hand, for any s ∈ Sp and t ∈ Tp∪Dp we have that LM(s) and LM(t) are coprime. Therefore,
the reduced Gröbner of ICPCp can be calculated in polynomial time, thus independent from n. We
denote the reduced Gröbner basis of ICPCp with Gp.

Second, by Lemma 7.13 we have again that G is a Gröbner basis for ICF .
Lastly, we have the following lemma.

Lemma 7.14. [6, 8] The set
(⋃

p Gp

)
∪G is a Gröbner basis for IC.

The result follows from the lemma above.

8 Conclusions and research directions

In this paper it is shown that for two classes of problems that generalize HORN-SAT and 2-SAT
a PC proof of degree d can be found in time nO(d), if it exists (see also [6] for related results).
This is obtained by first showing that a (truncated) Gröbner basis for the graded lexicographic
order can be computed by PC in polynomial time for any fixed d (and therefore with polynomial
bit complexity). By a simple polynomial division argument (see Appendix B), the latter implies
that for these two classes there are no bit-complexity issues. Furthermore, both HORN-SAT
and 2-SAT, along with their generalizations to finite domains—semilattice and dual-discriminator
closed languages, respectively—fit within the framework of bounded width languages [35]. As a
step towards understanding the boundary of tractability of the PC criterion, it would be interesting
to explore how PC can be applied to solve the IMPd(Γ) for bounded width languages. Moreover,
results regarding the tractability of the IMPd, even when using restricted form of algorithms such
as those encapsulated in the Polynomial Calculus proof system, would be valuable on their own
right.

53

Similar to SoS, it has often been stated that a PC refutation of degree d can be found in time
nO(d), if it exists. For PC over finite fields, this is already clear from the algorithm provided in
[19]. However, in the case of PC over reals or rationals, the search for proofs can potentially result
in bit complexity issues as recently shown by Hakoniemi in [31]. Indeed, in [31] it is shown that
there is a set of polynomial constraints Qn on Boolean variables that has both SoS and PC over
rationals refutations of degree 2, but for which any SoS or PC refutation over rationals must have
exponential bit-complexity. The author remarks that the constraints in Qn do not arise from any
CNF, and raise the open question to understand whether the two measures of bit-complexity and
monomial-size are polynomially equivalent for CNFs. Our PC criterion does not apply to other
CNF problems like 3Lin(2), where PC and SoS are known to be not complete for any fixed d.
Moreover, we remark that 3Lin(2) problems do not arise from bounded width languages [2]. As
an intermediate step for the open question raised in [31], it would be interesting to understand the
bit complexity of problems with these CNF constraints.

In this paper, we have made partial advancements in the understanding of the bit complexity of
SoS, an issue that has only recently garnered attention and remains in its early stages of research.
Since it was first raised 2017, progress has been relatively limited. In this section, we have offered
some insights that we hope will stimulate further exploration and enhance our understanding of
this fundamental problem.

References

[1] Lorenzo Baldi, Teresa Krick, and Bernard Mourrain. An effective positivstellensatz over the
rational numbers for finite semialgebraic sets, 2024. URL: https://arxiv.org/abs/2410.
04845, arXiv:2410.04845.

[2] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61(1), January 2014. doi:10.1145/2556646.

[3] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In
Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.

[4] Paul Beame, Russell Impagliazzo, Jan Kraj́ıcek, Toniann Pitassi, and Pavel Pudlák. Lower
bound on Hilbert’s Nullstellensatz and propositional proofs. In 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages
794–806, 1994.

[5] Christoph Berkholz. The Relation between Polynomial Calculus, Sherali-Adams, and Sum-of-
Squares Proofs. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoret-
ical Aspects of Computer Science (STACS 2018), volume 96 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 11:1–11:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2018.11.

[6] Arpitha P. Bharathi and Monaldo Mastrolilli. Ideal membership problem for boolean minority
and dual discriminator. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27,
2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 16:1–16:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.16.

54

https://arxiv.org/abs/2410.04845
https://arxiv.org/abs/2410.04845
https://arxiv.org/abs/2410.04845
https://doi.org/10.1145/2556646
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.4230/LIPIcs.STACS.2018.11
https://doi.org/10.4230/LIPIcs.MFCS.2021.16

[7] Arpitha P. Bharathi and Monaldo Mastrolilli. Ideal membership problem over 3-element csps
with dual discriminator polymorphism. SIAM J. Discret. Math., 36(3):1800–1822, 2022. doi:
10.1137/21M1397131.

[8] Arpitha P. Bharathi and Monaldo Mastrolilli. Ideal membership problem for boolean minority
and dual discriminator. SIAM Journal on Discrete Mathematics, 39(1):206–230, 2025. doi:

10.1137/23M1556010.

[9] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Institute, University of Innsbruck, Austria, 1965. English translation in J. of Symbolic Com-
putation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41,
Number 3-4, Pages 475–511, 2006.

[10] Andrei Bulatov. Personal communication, 2023.

[11] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs (best paper award). In 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 319–330, 2017.

[12] Andrei A. Bulatov. Constraint satisfaction problems: Complexity and algorithms. ACM
SIGLOG News, 5(4):4–24, November 2018. doi:10.1145/3292048.3292050.

[13] Andrei A. Bulatov and Akbar Rafiey. On the complexity of csp-based ideal membership
problems. CoRR, abs/2011.03700, 2020. URL: https://arxiv.org/abs/2011.03700, arXiv:
2011.03700.

[14] Andrei A. Bulatov and Akbar Rafiey. The ideal membership problem and abelian groups. In
Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual
Conference), volume 219 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.18.

[15] Andrei A. Bulatov and Akbar Rafiey. On the complexity of csp-based ideal membership
problems. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 436–449.
ACM, 2022. doi:10.1145/3519935.3520063.

[16] Samuel R Buss. Lower bounds on nullstellensatz proofs via designs. Proof complexity and
feasible arithmetics, 39:59–71, 1996.

[17] Samuel R. Buss and Toniann Pitassi. Good degree bounds on Nullstellensatz refutations of
the induction principle. J. Comput. Syst. Sci., 57(2):162–171, 1998.

[18] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1):2:1–
2:32, December 2009. doi:10.1145/1592451.1592453.

[19] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, 1996, pages 174–183, 1996.

55

https://doi.org/10.1137/21M1397131
https://doi.org/10.1137/21M1397131
https://doi.org/10.1137/23M1556010
https://doi.org/10.1137/23M1556010
https://doi.org/10.1145/3292048.3292050
https://arxiv.org/abs/2011.03700
https://arxiv.org/abs/2011.03700
https://arxiv.org/abs/2011.03700
https://doi.org/10.4230/LIPIcs.STACS.2022.18
https://doi.org/10.1145/3519935.3520063
https://doi.org/10.1145/1592451.1592453

[20] Martin C. Cooper, David A. Cohen, and Peter G. Jeavons. Characterising tractable constraints.
Artificial Intelligence, 65(2):347–361, 1994. doi:10.1016/0004-3702(94)90021-3.

[21] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra. Springer Publishing
Company, Incorporated, 4th edition, 2015.

[22] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2 edition, 2002.

[23] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Efficient Com-
putation of Zero-dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic
Computation, 16(4):329 – 344, 1993. doi:10.1006/jsco.1993.1051.

[24] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient algo-
rithm design. Foundations and Trends in Theoretical Computer Science, 14(1-2):1–221, 2019.
doi:10.1561/0400000086.

[25] Mariano Gasca and Thomas Sauer. Polynomial interpolation in several variables. Advances in
Computational Mathematics, 12(4):377–410, March 2000.

[26] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, nov 1995. doi:10.1145/227683.227684.

[27] Sander Gribling, Sven Polak, and Lucas Slot. A note on the computational complexity of the
moment-sos hierarchy for polynomial optimization. In Proceedings of the 2023 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’23, page 280–288, New York,
NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3597066.3597075.

[28] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1):613–622, 2001. doi:10.1016/S0304-3975(00)

00157-2.

[29] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semialgebraic
proofs. Moscow Mathematical Journal, 2(4):647–679, 2002.

[30] Dima Grigoriev and Nicolai N. Vorobjov Jr. Complexity of null-and positivstellensatz proofs.
Ann. Pure Appl. Log., 113(1-3):153–160, 2001. doi:10.1016/S0168-0072(01)00055-0.

[31] Tuomas Hakoniemi. Monomial size vs. bit-complexity in sums-of-squares and polynomial
calculus. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021,
Rome, Italy, June 29 - July 2, 2021, pages 1–7. IEEE, 2021. doi:10.1109/LICS52264.2021.
9470545.

[32] David Hilbert. Ueber die vollen invariantensysteme. Mathematische Annalen, 42:313–373,
1893. URL: http://eudml.org/doc/157652.

[33] Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1):185 – 204, 1998. doi:10.1016/S0304-3975(97)00230-2.

[34] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, July 1997. doi:10.1145/263867.263489.

56

https://doi.org/10.1016/0004-3702(94)90021-3
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1561/0400000086
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/3597066.3597075
https://doi.org/10.1016/S0304-3975(00)00157-2
https://doi.org/10.1016/S0304-3975(00)00157-2
https://doi.org/10.1016/S0168-0072(01)00055-0
https://doi.org/10.1109/LICS52264.2021.9470545
https://doi.org/10.1109/LICS52264.2021.9470545
http://eudml.org/doc/157652
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1145/263867.263489

[35] Peter G. Jeavons and Martin C. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79(2):327–339, 1995. doi:10.1016/0004-3702(95)00107-7.

[36] Christopher Jefferson, Peter Jeavons, Martin J. Green, and M. R. C. van Dongen. Rep-
resenting and solving finite-domain constraint problems using systems of polynomials. An-
nals of Mathematics and Artificial Intelligence, 67(3):359–382, Mar 2013. doi:10.1007/

s10472-013-9365-7.

[37] Cédric Josz and Didier Henrion. Strong duality in lasserre’s hierarchy for polynomial opti-
mization. Optimization Letters, 10(1):3–10, January 2016.

[38] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. On the hardest problem for-
mulations for the 0/1 lasserre hierarchy. Math. Oper. Res., 42(1):135–143, 2017. doi:

10.1287/MOOR.2016.0797.

[39] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. An unbounded sum-of-squares
hierarchy integrality gap for a polynomially solvable problem. Math. Program., 166(1–2):1–17,
November 2017. doi:10.1007/s10107-016-1102-7.

[40] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Tight sum-of-squares lower bounds
for binary polynomial optimization problems. ACM Trans. Comput. Theory, 16(1), March
2024. doi:10.1145/3626106.

[41] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Sum-of-squares hierarchy lower
bounds for symmetric formulations. Mathematical Programming, 182(1-2):369 – 397, 2020.
Cited by: 4. doi:10.1007/s10107-019-01398-9.

[42] Jean B. Lasserre. An explicit exact sdp relaxation for nonlinear 0-1 programs. In Karen Aardal
and Bert Gerards, editors, Integer Programming and Combinatorial Optimization, pages 293–
303, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[43] Monique Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials,
pages 157–270. Springer New York, New York, NY, 2009. doi:10.1007/978-0-387-09686-5_
7.

[44] Victor Magron, Mohab Safey El Din, and Markus Schweighofer. Algorithms for weighted
sum of squares decomposition of non-negative univariate polynomials. Journal of Symbolic
Computation, 93:200–220, 2019. doi:10.1016/j.jsc.2018.06.005.

[45] Monaldo Mastrolilli. The complexity of the ideal membership problem for constrained problems
over the boolean domain. ACM Trans. Algorithms, 17(4):32:1–32:29, 2021. doi:10.1145/

3449350.

[46] Ernst W. Mayr. Membership in polynomial ideals over q is exponential space complete. In
B. Monien and R. Cori, editors, STACS 89, pages 400–406, Berlin, Heidelberg, 1989. Springer
Berlin Heidelberg.

[47] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982. doi:

10.1016/0001-8708(82)90048-2.

57

https://doi.org/10.1016/0004-3702(95)00107-7
https://doi.org/10.1007/s10472-013-9365-7
https://doi.org/10.1007/s10472-013-9365-7
https://doi.org/10.1287/MOOR.2016.0797
https://doi.org/10.1287/MOOR.2016.0797
https://doi.org/10.1007/s10107-016-1102-7
https://doi.org/10.1145/3626106
https://doi.org/10.1007/s10107-019-01398-9
https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1016/j.jsc.2018.06.005
https://doi.org/10.1145/3449350
https://doi.org/10.1145/3449350
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/0001-8708(82)90048-2

[48] Ryan O’Donnell. SOS Is Not Obviously Automatizable, Even Approximately. In Christos H.
Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference (ITCS
2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1–
59:10, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:

10.4230/LIPIcs.ITCS.2017.59.

[49] Marilena Palomba, Lucas Slot, Luis Felipe Vargas, and Monaldo Mastrolilli. Computational
complexity of sum-of-squares bounds for copositive programs, 2025. URL: https://arxiv.
org/abs/2501.03698, arXiv:2501.03698.

[50] Dona Papert. Congruence Relations in Semi-Lattices. Journal of the London Mathematical
Society, s1-39(1):723–729, 01 1964. arXiv:https://academic.oup.com/jlms/article-pdf/
s1-39/1/723/2721805/s1-39-1-723.pdf, doi:10.1112/jlms/s1-39.1.723.

[51] Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathe-
matical Programming, 96(2):293–320, 2003.

[52] Fedor Part, Neil Thapen, and Iddo Tzameret. First-order reasoning and efficient semi-algebraic
proofs. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–13, 2021. doi:10.1109/LICS52264.2021.9470546.

[53] Gábor Pataki and Aleksandr Touzov. How do exponential size solutions arise in semidefinite
programming? SIAM Journal on Optimization, 34(1):977–1005, 2024.

[54] G.M. Phillips. Interpolation and Approximation by Polynomials. CMS Books in Mathematics.
Springer, 2003.

[55] Aaron Potechin. Sum of Squares Lower Bounds from Symmetry and a Good Story. In Avrim
Blum, editor, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019),
volume 124 of Leibniz International Proceedings in Informatics (LIPIcs), pages 61:1–61:20,
Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ITCS.2019.61.

[56] Akbar Rafiey. Constraint Satisfaction Problems and friends: Symmetries and algorithm design.
PhD thesis, August 2022. Publisher: Simon Fraser University. URL: https://summit.sfu.
ca/item/35622.

[57] Prasad Raghavendra and Benjamin Weitz. On the Bit Complexity of Sum-of-Squares Proofs.
In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th In-
ternational Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80
of Leibniz International Proceedings in Informatics (LIPIcs), pages 80:1–80:13, Dagstuhl, Ger-
many, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.
2017.80.

[58] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. ACM. doi:10.1145/800133.804350.

[59] Dmitry Sokolov. (Semi)algebraic proofs over ±1 variables. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 78–90. ACM, 2020. doi:10.1145/3357713.3384288.

58

https://doi.org/10.4230/LIPIcs.ITCS.2017.59
https://doi.org/10.4230/LIPIcs.ITCS.2017.59
https://arxiv.org/abs/2501.03698
https://arxiv.org/abs/2501.03698
https://arxiv.org/abs/2501.03698
https://arxiv.org/abs/https://academic.oup.com/jlms/article-pdf/s1-39/1/723/2721805/s1-39-1-723.pdf
https://arxiv.org/abs/https://academic.oup.com/jlms/article-pdf/s1-39/1/723/2721805/s1-39-1-723.pdf
https://doi.org/10.1112/jlms/s1-39.1.723
https://doi.org/10.1109/LICS52264.2021.9470546
https://doi.org/10.4230/LIPIcs.ITCS.2019.61
https://doi.org/10.4230/LIPIcs.ITCS.2019.61
https://summit.sfu.ca/item/35622
https://summit.sfu.ca/item/35622
https://doi.org/10.4230/LIPIcs.ICALP.2017.80
https://doi.org/10.4230/LIPIcs.ICALP.2017.80
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/3357713.3384288

[60] Johan Thapper and Stanislav Živnỳ. The limits of sdp relaxations for general-valued csps.
ACM Transactions on Computation Theory (TOCT), 10(3):1–22, 2018.

[61] Marc R.C. van Dongen. Constraints, Varieties, and Algorithms. PhD thesis, Department
of Computer Science, University College, Cork, Ireland, 2002. URL: http://csweb.ucc.ie/

~dongen/papers/UCC/02/thesis.pdf.

[62] Benjamin Weitz. Polynomial Proof Systems, Effective Derivations, and their Applications
in the Sum-of-Squares Hierarchy. PhD thesis, EECS Department, University of California,
Berkeley, May 2017.

[63] Dmitriy Zhuk. A proof of CSP dichotomy conjecture (best paper award). In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 331–342, 2017. doi:10.1109/FOCS.2017.38.

[64] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

59

http://csweb.ucc.ie/~dongen/papers/UCC/02/thesis.pdf
http://csweb.ucc.ie/~dongen/papers/UCC/02/thesis.pdf
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1145/3402029

A Refutation degree for Horn clauses

Consider the case all clauses are duals of Horn clauses (for simplicity, Horn clauses work out
identically), namely at most one variable is negated per clause. We encode these clauses as a set
of polynomial identities in a way that preserves their semantics over {0, 1}n assignments. Namely,
let C = C1 ∧ C2 ∧ . . . ∧ Cm be a dual Horn clause formula. We encode each clause Ci = ¬xi1 ∨
xi2 ∨ . . . ∨ xik by introducing a polynomial identity Pi : xi1(xi2 − 1) · · · (xik − 1) = 0. The set of
{0, 1} assignments that satisfy the newly introduced set of polynomial identities is exactly the set
of satisfying assignments to C.

The refutation by PC works as follows. Take all the variables that are already known to be
false, say set F . These variables belong to IC . Consider clause Ci and the corresponding polynomial
identity Pi : xi1(xi2−1) · · · (xik−1) = 0. If {xi2 , . . . , xik} ⊆ F then it is easy show that xi1 ∈ IC since
by using the aforementioned polynomial identity Pi we can express xi1 as polynomial combination
of the variables in {xi2 , . . . , xik}.7 So we have added a new variable to the set F of known false
variables. If the set of F covers an entire clause with no negated variables, then we can derive that
1 ∈ IC and we are done. If at some point, neither is true, by setting all remaining variables to 1 we
satisfy all the clauses. So if the Horn clauses were unsatisfiable we find a proof whose degree is at
most the degree of the polynomial identities encoding the clauses.

B Complexity of Polynomial Division

Consider the polynomial ring R[x1, . . . , xn] ordered according to the grlex order, with x1 > x2 >
· · · > xn. We will study the complexity of the standard division algorithm for multivariate polyno-
mials (see [21, Section 2]). In particular, we observe next that it is a polynomial time algorithm.

Lemma B.1. Let P = {p1, . . . , pm} be a set of polynomials in R[x1, . . . , xn] and consider a poly-
nomial f ∈ R[x1, . . . , xn]. Assume that f, p1, . . . , pm have degree at most d and bit complexity
polynomial in n. Then f can be written as

f = h1p1 + . . . hmpm + r,

with r, h1, . . . , hm having bit complexity polynomial in n.

Proof. We will refer to h1, . . . , hm as the quotients and to r as the remainder.
We start by observing that the algorithm runs at most in nO(d) iterations. Indeed, at every

iteration the polynomial f is divided by a polynomial from P. Thus, its remainder either has
smaller degree or the corresponding leading term is smaller with respect to the lex order. Then
f is updated to be the division’s remainder. It follows that the number of polynomial divisions is
bounded by nO(d).

Next we argue that the bit complexity of the remainder and of the quotients is polynomial in
n. Let b be the largest number of bits to encode (the coefficients of) a polynomial f, p1, . . . , pm.
Recall that, by assumption, b = nO(d). At every iteration of the algorithm, the bit complexity
of the quotients and of the remainder is increased by O(b) bits since a polynomial (quotient or
remainder) is updated by summing a term of bit complexity O(b).

From this lemma it follows immediately that the existence of a ”small” Gröbner basis implies
that the IMP can be solved efficiently.

7For example if P : x1(x2 − 1)(x3 − 1) = 0 and x2, x3 ∈ IC then by the polynomial identity P we have that
x1 = x1x2(1− x3) + x1x3, implying that x1 ∈ IC .

60

Corollary B.2. Let G2d = {g1, . . . , gs} be a 2d-truncated Gröbner basis of the polynomial ideal
I ⊆ R[x1, . . . , xn]. Consider a polynomial r of degree at most 2d. If the polynomials r, g1, . . . , gs
have bit complexity polynomial in n, then the (search version) of the IMP2d for r can be solved in
time polynomial in n.

Proof. We have that

r ∈ I ⇐⇒ r|G2d
= 0.

The result follows from Lemma B.1.

61

	Introduction
	Our contributions
	Structure of the article

	Preliminaries
	SoS epsilon criterion
	SoS epsilon criterion
	Delta-spectrality
	SoS epsilon completeness
	Separation between Nsatz and SoS
	The semialgebraic case

	SoS and PC for polynomials over finite domains
	Finite domains systems
	Approximate simulation of PC by SoS
	PC criterion

	Strong Separation for certain Constraint Satisfaction Problems
	Related results
	Background and notation for CSP's
	The ideal membership problem of a constraint language IMP(Gamma)

	Polynomial Calculus and semilattice polymorphism
	Polynomial Calculus and dual discriminator polymorphism

	Proof of th:semilattice
	Min/Max polymorphisms
	Min polymorphism

	Generalizing to finite domain semilattice
	Binary encoding
	Reducing CSP(Gamma) over a finite domain to the Boolean domain
	Reducing IMPd(Gamma) over a finite domain to the Boolean domain
	Mapping the Boolean PC proof back to finite domain

	Proof of th:dualdiscriminator
	Binary constraints
	Generating sets
	Derivation schemes
	Permutation constraints
	Complete and two-fan constraints
	Combining I(CPCp) and I(CF)

	Conclusions and research directions
	Refutation degree for Horn clauses
	Complexity of Polynomial Division

