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Abstract

Modern edge devices, such as cameras, drones, and Internet-of-Things nodes, rely on deep learning to
enable a wide range of intelligent applications, including object recognition, environment perception,
and autonomous navigation. However, deploying deep learning models directly on the often resource-
constrained edge devices demands significant memory footprints and computational power for real-time
inference using traditional digital computing architectures. In this paper, we present WISE, a novel com-
puting architecture for wireless edge networks designed to overcome energy constraints in deep learning
inference. WISE achieves this goal through two key innovations: disaggregated model access via wireless
broadcasting and in-physics computation of general complex-valued matrix-vector multiplications directly
at radio frequency. Using a software-defined radio platform with wirelessly broadcast model weights over
the air, we demonstrate that WISE achieves 95.7% image classification accuracy with ultra-low opera-
tion power of 6.0 fJ/MAC per client, corresponding to a computation efficiency of 165.8TOPS/W. This
approach enables energy-efficient deep learning inference on wirelessly connected edge devices, achieving
more than two orders of magnitude improvement in efficiency compared to traditional digital computing.

Introduction

Deep learning (DL) has revolutionized modern computing, enabling breakthroughs across a wide range of
applications, including the Internet-of-Things (IoT), computer vision, and large language models (LLMs) [1–
5]. As models now scale to billions of parameters [5, 6], the primary energy efficiency bottleneck is no longer
just the raw computation efficiency, but also the energy cost of data movement between the local memory and
processing units [7]. Moreover, retrieving DL model weights on demand from the cloud requires significant
wireless bandwidth, while offloading DL inference to the cloud introduces potential privacy concerns [8]. At
the same time, the theoretical lower bound for irreversible computation is set by Landauer’s principle at
2.9 zeptojoules (zJ) per bit operation [9–11] at room temperature. In comparison, modern digital computing
application-specific integrated circuits (ASICs) operate at energy efficiency in the picojoule range [7]. Bridging
this gap calls for fundamentally different computing paradigms, including in-physics computing architectures
that perform computing using continuous quantities (e.g., waves) with minimum data movement.

Recent works have explored a variety of in-physics computing approaches to overcome the memory wall,
leveraging integrated photonic and optical waveguides [11–20], memristor-based crossbars with analog weight
storage [21–26], and reconfigurable metasurfaces [27–31]. While these approaches have demonstrated promis-
ing energy efficiency gains [11, 19, 25], they often require specialized photonic or electronic hardware, limiting
their scalability and practicality for large-scale deployments. In contrast, radio-frequency (RF) systems [32]
present a compelling alternative by enabling wireless broadcast of model weights to edge devices, especially
given that modern edge devices rely on wireless connectivity (e.g., cellular or wireless local area networks)
for control signaling, data transfer, and Internet access.
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Fig. 1 The WISE architecture enables disaggregated model access and energy-efficient deep learning (DL) to
multiple clients in wireless edge networks. a, A central radio broadcasts frequency-encoded model weights, W, onto a
radio-frequency (RF) signal at the carrier frequency Fw, which is precoded to V to mitigate the distortion introduced during
propagation over the wireless channel, H. b, Each client equipped with a WISE-R encodes the inference request x at the
carrier frequency Fx, and performs local DL inference for y at the carrier frequency Fy , where the matrix-vector multiplications
(MVM), or essentially the fully connected (FC) layers, are realized using a passive frequency mixer. c, Illustration of the in-
physic MVM computation during frequency down-conversion with frequency-encoded W, x, and y.

In this work, we present WISE (WIreless Smart Edge networks), the first edge computing architecture
designed for disaggregated and energy-efficient DL via in-physics computing directly at RF (Fig. 1). In
WISE, a central radio broadcasts RF signals that encode model weights (W) and leverages the shared
wireless channel to provide simultaneous, disaggregated model access to multiple edge clients (Fig. 1a). Each
edge client, equipped with a WISE radio (WISE-R), performs inference on local data (x) upon receiving
the broadcast RF signals and obtains the matrix-vector multiplication (MVM) result, y = W · x, as part
of the DL inference (Fig. 1b). Both model weights and inference requests are frequency-encoded and I/Q
modulated to an RF carrier, and in-physics MVM computation is realized using a passive frequency mixer
(Fig. 1c). For example, a drone can execute object detection and image classification tasks on its captured
images without the need to store the DL model locally. Our analysis shows that this computing paradigm, in
the ideal case, achieves an energy efficiency approaching the thermodynamic limit (TDL) of analog hardware
as the problem size scales, even exceeding the Landauer bound [9] for irreversible digital computation.

To enable ultra-low-power inference, each client requires minimum active hardware–primarily for
analog-to-digital conversion (ADC) and lightweight digital signal processing–while offloading the most com-
putationally intensive MVMs to the analog domain. This is achieved by exploiting RF electronics, such as
mixers, that inherently perform signal multiplication and are widely used in modern edge devices. In addi-
tion, the encoding of both model weights and inference requests is optimized for spectral efficiency, drawing
inspiration from modern wireless communication systems employing orthogonal frequency-division multi-
plexing (OFDM) and I/Q (de)modulation. A channel estimation and calibration process is integrated to
mitigate signal distortions during wireless transmission.
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We evaluate the energy efficiency of WISE for general inner-product (IP) computation and DL model
inference tasks. Experimental results on a software-defined radio (SDR) platform with over-the-air trans-
missions demonstrate that WISE achieves an energy efficiency of 6.0 fJ/MAC, measured as energy per
multiply-and-accumulate (MAC) operation, for 95.7% classification accuracy on the MNIST dataset [33].
This corresponds to a computation efficiency of 165.8 TOPS/W (Tera MAC operations per second per Watt).
The energy efficiency can be further improved to 4.6 fJ/MAC (216.4 TOPS/W) with a slightly reduced clas-
sification accuracy of 90%. These represent a two to three orders of magnitude improvement compared to
state-of-the-art digital computing ASICs operating at 1 pJ/MAC [7]. Detailed analysis and comprehensive
experiments show that WISE has the potential to transform the landscape of wireless edge networks with
embedded intelligence and to offer enhanced energy efficiency in a myriad of real-world applications.

Results

Central Radio and WISE-R

In WISE, a central radio wirelessly broadcasts model weights to a set of clients for local inference. The
complex-valued model parameters and inference requests are encoded in the frequency domain of two RF
waveforms via I/Q modulation. These signals are subsequently passed into an RF “computing” mixer,
which naturally performs the time-domain multiplication (or frequency-domain convolution) of the two
input waveforms during frequency mixing. The resulting output signal carries the desired analog computing
results. Essentially, WISE effectively realizes the computation of complex-valued fully-connected (FC) layers,
represented by y = W · x, with x ∈ CN , y ∈ CM , and W ∈ CM×N , directly in the analog domain.

Fig. 2a shows the experimental setup of WISE’s implementation with three edge clients using an SDR
platform (see details in Supplementary Section 12). Specifically in Fig. 2b, the central radio encodes the DL
model weights in the l-th layer W(l) onto a complex-valued waveform w(l)(t) with bandwidth B, which is then

I/Q modulated to a time-domain waveform r
(l)
w (t) = Re

{
w(l)(t) · ej2πFwt

}
at frequency Fw for broadcasting.

As shown in Fig. 2c, each WISE-R consists of three main components: a transmitter (TX), which encodes
the input to the l-th layer x(l) onto a complex-valued waveform x(l)(t), which is then I/Q modulated to

r
(l)
x (t) = Re

{
x(l)(t) · ej2πFxt

}
at Fx; a passive frequency mixer as the analog MVM (or IP) engine for

computing r
(l)
y (t) = r

(l)
w (t) · r(l)x (t); and a receiver (RX), which I/Q demodulates, filters, and samples the

mixed signal r
(l)
y (t) at Fy using the minimal required sampling rate, and decodes the output of the l-th layer,

y(l) = W(l) · x(l). Note that when the computing mixer is used for frequency down-conversion, the carrier

frequencies satisfy Fy = Fx − Fw, and a spectrum example of r
(l)
x (t), r

(l)
w (t) and r

(l)
y (t) is shown in Fig. 2d.

An activation function involving the absolute value function and a Zadoff-Chu (ZC) phase sequence [34] is
then applied to y(l) to generate the input to the next layer, x(l+1) = σ(y(l)) = |y(l)| ·ϕzc. The use of ϕzc

converts the real absolute values into complex, which ensures that the power of x(l+1)(t) is evenly distributed
across frequency. See Supplementary Section 15 for a detailed workflow example with a three-layer DL
model, and Supplementary Section 16 for the single-layer linear regression model without this ZC-phased
activation function in digital. WISE also accounts for signal distortion caused by the wireless channel by
incorporating channel state information (CSI), H, into the encoding of W at the central radio, as detailed
in Methods section and Supplementary Section 9. Fig. 2e illustrates an example of the WISE’s in-physics
computation on the DL-based image classification task (MNIST) on the three clients, respectively. Note
that the CSI precoding can also be applied on x on each client (see Supplementary Sections 10 and 13), or
eliminated for a wired channel (see Supplementary Sections 8 and 17).

General IP Computation and Scalability

We benchmark WISE’s analog computing performance for the complex-valued IP of two length-N vectors,
c = ⟨a,b⟩ =

∑N
n=1 an · bn, where bn denotes the complex conjugate of bn. Compared to MVM, x is replaced

by a produced by the client, and W is replaced by b broadcast by the central radio. This IP computation
involves N complex-valued MACs, equivalent to 4N real-valued MACs. In particular, the amplitude and
phase of an and bn are drawn from independent uniform distributions U [0, 1] and U [0, 2π], respectively. N
subcarriers (excluding padded zero-subcarriers) are placed in the frequency domain when generating x(t)
and w(t), and a single subcarrier is captured after the LPF on the y(t) (Fig. 3a–b).

3



Ethernet Ethernet

Mixer leakage
@0.915GHz and 

1.2GHz

0 0.3 0.6 0.9 1.2 1.5
–80

0
–20
–40
–60

Frequency (GHz)

PS
D

 (
dB

m
/H

z)

Wired

Mixer output, 
y @285 MHz

0 0.3 0.6 0.9 1.2 1.5
–80

0
–20
–40
–60

Frequency (GHz)

PS
D

 (
dB

m
/H

z)

Wired

Inference request 
x @1.2GHz

da

from 
RX ANT

b

3x Clients 
with WISE-R

Central 
radio

Shared wireless 
channel

USRP X310 SDR

x

W

y

USRP X310 SDR

to TX 
ANT

V

Mini-Circuits 
ZEM-4300+

c

Pre-trained 
model, W

Wireless

0 0.3 0.6 0.9 1.2 1.5
–80

0
–20
–40
–60

Frequency (GHz)

PS
D

 (
dB

m
/H

z)

Model weights
W @0.915GHz

Wireless signals in 
the environment

SNR = 25 dB
e

Digital Computing Client 1 Client 2 Client 3

Fig. 2 WISE’s workflow with one central radio and multiple clients. a, Experimental setup for WISE using a
software-defined radio (SDR) platform: b, A central radio simultaneously provides disaggregated deep learning (DL) model
access to three edge clients, each equipped with a WISE-R. c, On each client, the computing mixer performs general matrix-
vector multiplications (MVMs) in-physics using the wirelessly received model weights (W) and local inference request (x). d,
The model weights W is modulated at Fw = 0.915GHz over a wireless channel, and the inference request x is modulated at
Fx = 1.2GHz; after down-conversion, the MVM result y is located at 0.285GHz. e, WISE achieves classification accuracies
of 97.1%–97.4% across the three clients on the MNIST dataset using the LeNet-300-100 model, which is comparable to the
accuracy of 98.1% achieved by traditional digital computing but with significantly improved energy efficiency.

Fig. 3c shows the experimental IP computing accuracy, measured by the root mean squared error
(RMSE) of the IP obtained by in-physics computing (ĉ) compared to the ground truth (c), with a normal-
ization factor of 1/

√
N and under varying SNR values (see detailed definition in Supplementary Section 13).

The normalization ensures consistent distributions of the IP results across different problem sizes (N).
WISE achieves an RMSE of 0.055 at 25 dB SNR with N = 4, 096, equivalent to a computing accuracy of
− log2(RMSE/2) ≈ 5 bit [35, 36], sufficient for various ML inference tasks [37, 38]. Simulation results demon-
strate slopes of 6.7 dB/bit computing accuracy for 4,096-point and 32,768-point IP. A similar trend is observed
from the experiments in the low SNR regime (SNR < 25 dB). In the high SNR regime (SNR > 25 dB),
the computing accuracy is no longer limited by the thermal noise but by the imperfect channel estima-
tion and computing mixer that inherently operates using on-off switching instead of performing the ideal
multiplication.
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Fig. 3 Benchmarking general complex-valued inner-product (IP) computation: computing accuracy and energy

efficiency. a, Complex-valued IP computation of two length-N vectors, c = ⟨a,b⟩ =
∑N

n=1 an ·bn, where a and b are frequency
encoded onto N (4,096) subcarriers across a bandwidth of B (25MHz). b, Decoding of the IP result, c, after the in-physics IP
computation, low-pass filtering, and sampling using an analog-to-digital converter (ADC). c, IP computing accuracy achieved
by WISE as a function of the signal-to-noise ratio (SNR) for N = 4, 096 and N = 32, 768. d, Energy efficiency of WISE, emvm

(J/MAC), required to achieve RMSE < 0.0625 (equivalent to 5-bit computing accuracy [35, 36]) as a function of the IP size, N .

Fig. 3d plots the energy efficiency of a WISE-R to achieve RMSE < 0.0625 (i.e., 5-bit computing accuracy)
for IP across varying values of N . For N = 4, 096, WISE-R achieves an energy efficiency of 2.4 fJ/MAC
(421.9 TOPS/W) in experiments. As the IP dimension increases, the energy consumption of I/Q sampling
and digital FFT is amortized, leading to energy efficiency asymptotically approaching e1 for the waveform
generation and I/Q (de)modulation. Experimental results further validate this trend, demonstrating an
energy efficiency of 1.4 fJ/MAC (699.3 TOPS/W) with N = 32, 768, nearly three orders of magnitude lower
than the state-of-the-art ASICs operating at 1 pJ/MAC [7, 39, 40]. In simulations with ideal hardware,
etdl required for achieving 5-bit computing accuracy is projected to be 28.7 zJ/MAC (34.8 ExaOPS/W),
surpassing the Landauer limit [9] for MAC computation with 5-bit accuracy.
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AudioMNIST dataset (d). b/e, Experimental classification accuracy achieved by WISE on the MNIST (b) and AudioMNIST
(e) datasets over different energy efficiency (J/MAC), and the corresponding energy consumption per inference. c/f, Confusion
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ML for Image/Audio Classification

We deploy WISE for two DL inference tasks, where the central radio wirelessly broadcasts model weights
to three clients equipped with WISE-R: image classification on the MNIST dataset [33], and audio signal
classification on the AudioMNIST dataset [41]. Both tasks employ a complex-valued model following LeNet-
300-100 [33] with three FC layers. The complex-valued model exploits the absolute function combined with
a pre-defined Zadoff-Chu phase sequence as the activation function after each of the first two FC layers;
for the last layer, only the absolute function is applied before the output layer. The models are trained on
an NVIDIA A100 GPU using cross-entropy loss; during the training process, the models with the highest
testing accuracy by digital computing are recorded and used.

Each WISE-R performs local inference upon receiving the three-layer model broadcast by the central
radio. Each FC layer is formulated as an MVM, which is naturally realized during down-conversion as
x(l)(t) and w(l)(t) pass through the computing mixer. The mixer output is subsequently low-pass filtered,
digitized, and decoded before applying the activation function. In the experiment, the MVMs corresponding
to individual FC layers are divided into smaller MVMs with M ′ = 6, α = 0.33, and β = 0.25. This process
is repeated for each layer, and the final classification results are obtained from the output y(3).

For the MNIST dataset, the images are gray-scaled with dimensions of 28×28 pixels, which are flattened
into x(1) ∈ C784 as inputs to the DL model. The three-layer FC model has an architecture of 784–300–100–10
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following LeNet-300-100 [33] (Fig. 4a), consisting of 0.27 million complex-valued parameters and requiring
1.06 million real-valued MACs. By digital computing, the classification accuracy of the pre-trained three-
layer FC model is 98.1% across a testing set of 10,000 images. Fig. 4b shows the averaged classification
accuracy across three clients by WISE’s in-physics computing at varying different SNR levels. To achieve 90%
classification accuracy, the experimental energy efficiency is 4.6 fJ/MAC (216.5 TOPS/W) at 11.8 dB SNR,
with a breakdown of 0.5 fJ/MAC, 1.0 fJ/MAC, and 3.1 fJ/MAC for e1, e2, and e3, respectively. Simulations
validate this trend, demonstrating an energy efficiency of 4.2 fJ/MAC (236.1 TOPS/W) for achieving 90%
classification accuracy. Fig. 4c shows the detailed confusion matrices across three clients at 15 dB and 25 dB
SNR, with experimental classification accuracies of 78.2% and 95.7%, respectively.

AudioMNIST is a dataset of audio signals containing spoken digits from ‘0’ to ‘9’. Each audio clip is
converted into a spectrogram using the short-time Fourier transform (STFT), which is then concatenated
as a vector with Zadoff-Chu phases, x(1) ∈ C4,000. The pre-trained AudioMNIST model consists of 1.23
million complex-valued parameters across three FC layers, involving 4.92 million real-valued MACs (Fig. 4d).
Such a three-layer model achieves a digital computing accuracy of 99.2% on the AudioMNIST’s testing set
with 3,000 audio clips. As shown in Fig. 4e, an experimental classification accuracy of 90% requires the
experimental energy consumption of 1.1 fJ/MAC (885.0 TOPS/W), including the energy efficiency breakdown
of 0.2 fJ/MAC, 0.2 fJ/MAC, and 0.7 fJ/MAC for e1, e2, and e3, respectively. Simulations under this accuracy
level reveal an energy efficiency of 1.0 fJ/MAC (1.0 PetaOPS/W). The discrepancy between experimental and
simulation results in both DL tasks is mainly due to imperfect wireless channel estimation and calibration.
Fig. 4f shows the confusion matrices with 15 dB and 25 dB SNR. Under 25 dB SNR, the average experimental
accuracy across the three clients is 97.2%, with an energy efficiency of 2.8 fJ/MAC (359.7 TOPS/W).

Discussion

We presented WISE, a novel computing paradigm that enables disaggregated and energy-efficient DL infer-
ence simultaneously on multiple edge clients equipped with WISE-R. Leveraging wireless delivery of DL
models broadcast by a central radio, each WISE-R utilizes a (passive) frequency mixer to perform IP or
MVM computation directly at RF. Through comprehensive theoretical analysis and simulations, we show
that WISE achieves energy efficiency approaching the thermodynamic limit as the problem size N → +∞,
surpassing the Landauer bound of conventional digital computing. Extensive experiments demonstrate that
WISE achieves over 5-bit computing accuracy for IPs up to N = 32, 768. For DL tasks involving large-scale
MVMs, WISE achieves a classification accuracy of 95.7% and 97.2% using the MNIST and AudioMNIST
dataset, respectively, at energy efficiencies of 6.0 fJ/MAC and 2.8 fJ/MAC, corresponding to computation
efficiencies of 165.8 TOPS/W and 359.7 TOPS/W. This represents two to three orders of magnitude of
energy efficiency improvement compared to digital computing using state-of-the-art ASICs. WISE can also
be adapted to various MVM-based DL tasks, including convolutional neural networks [1, 14, 16, 33] and
transformers [6, 42].

Taking one step further, the energy efficiency of WISE can be further improved through an all-analog
architecture, where energy consumption is primarily attributed to analog waveform generation. Supplemen-
tary Section 16 demonstrates the effectiveness of a single-layer analog model, and multi-layer analog models
can be realized by integrating electronics that inherently perform non-linear activation functions based on
their physical properties, such as transistors or diodes [13, 17, 19, 36]. The gap between practical energy
efficiency and the theoretical limit can be further narrowed using advanced hardware and ASICs [43–45].
Beyond outdoor deployments constrained by limited spectrum, WISE is also applicable to indoor compute
clusters performing DL inference in a shielded environment, where directional antennas mounted on top of
server racks [46] can stream model weights to clients with increased bandwidth. Moreover, a central radio
equipped with large-scale antenna arrays [47] can accelerate DL inference for a single broadcast task or serve
multiple models to multiple clients, exploiting the spatial multiplexing gain of the wireless channel. The
physical separation between the central radio (hosting DL models) and edge clients (generating local infer-
ence requests) offers an additional privacy benefit by mitigating the risk of information leakage [8], where the
inherent “noisy” nature of the wireless channel can be harnessed for model weight precoding. By integrating
pervasive RF signals into the in-physics computing ecosystem, WISE unlocks large-scale DL deployment on
ubiquitous edge devices at orders of magnitude lower power consumption and complexity.
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Methods

Energy Efficiency

The energy consumption of WISE-R is minimized via the wireless broadcast of disaggregated model weights
from a central radio. The energy consumed by a WISE-R to perform an MVM consists of three parts: E1

for the generation of x(t) and I/Q modulation, E2 for the I/Q sampling of y from y(t) using two ADCs after
I/Q demodulation, and E3 for the digital FFT operation to decode y, i.e.,

Emvm = E1 + E2 + E3

= (1 + α)(1 + β) ·NM · η−1 · SNR · kBT0 + (1 + α) · 2M · eadc + (1 + α) · 2M log2 ((1 + α)M ′) · edig.
(1)

Here, kBT0 = −174 dBm/Hz is the thermal noise power spectrum density at room temperature of T0 = 300 K.
η ∈ (0, 1] is the overall loss of the WISE-R hardware including the energy efficiency of the TX, insertion
loss of the computing mixer, and noise floor of the RX. To ensure robust performance, α > 0 is the overhead
coefficient of the zero-subcarriers to overcome the LPF’s roll-off effect, and β is the overhead coefficient of
the cyclic prefix for a better timing synchronization tolerance (see Supplementary Section 12). SNR refers to
the signal-to-noise ratio (SNR) measured at the RX. Moreover, eadc is the energy consumed per sample by
an ADC, and edig is the energy consumed by an ASIC per real-valued MAC operation in digital computing.

Since each complex-valued MVM involves 4NM real-valued MACs, the energy efficiency of MVM
computation, emvm, measured by energy per real-valued MAC (J/MAC), is given by

emvm =
Emvm

4NM
= e1 + e2 + e3

=
(1 + α)(1 + β)

4
· η−1 · SNR · kBT0 +

1 + α

2N
· eadc +

1 + α

2N
· log2 ((1 + α)M ′) · edig. (2)

It can be seen that emvm significantly improves for large values of N since e2 and e3 scale as O (1/N), e.g.,
N = 11, 008 in emerging LLMs such as Llama-2-7b [6]. With M ′ = 1, equation (2) is reduced to eip for
IP computation (See Supplementary Sections 9 and 14). With ideal hardware (η = 1, α = β = 0), emvm

approaches its thermodynamic limit (TDL) as N → +∞,

etdl := lim
N→+∞

emvm = lim
N→+∞

eip = SNR · kBT0/4. (3)

We define the corresponding computation efficiency for each WISE-R as the reciprocal of energy per MAC,
(emvm)−1, measured by the number of (real-valued) MAC operations per second per Watt (OPS/W). See
Supplementary Sections 8–10 for more details on the energy efficiency and overhead analysis.

Computation Throughput

The disaggregated setup of WISE treats the shared wireless medium as a channel for the central radio to
deliver DL model parameters for energy-efficient inference at each client, which is different than conventional
communication systems for data delivery. Hereby, in the context of DL inference, we define the computation
throughput as the number of (real-valued) MAC operations per second (OPS). We define the computation
throughput of this channel over U clients as a function of B, N , and M . Consider the complex-valued MVM,
y = W · x, involving NM complex-valued MACs, or 4NM real-valued MACs. Waveforms x(t) and w(t)
corresponding to x and W last for a time duration of T = (1 + α)(1 + β) ·NM/B. This waveform time T
dominates the latency of the disaggregated computation process. Across U clients, a total number of U ·4NM
MACs can be completed within the waveform time T , corresponding to a computation throughput given by

Λ =
U · 4NM

T
=

4 · UB

(1 + α)(1 + β)
[OPS], (4)
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which scales as a function of the available bandwidth, B, and number of clients, U . More details can be
found in Supplementary Section 11.

Wireless Channel Calibration

In the wireless setting, the channel carrying DL model parameters in W exhibits propagating delay and
multi-path effect, therefore requiring a channel estimation and calibration process to guarantee accurate
delivery of the model parameters. The channel state information (CSI) from the central radio to a client
equipped with WISE-R can be represented by a complex matrix H = [Hm,n] ∈ CM×N , which has the same
dimension as W. Using a pre-defined signal, H can be estimated by minimum mean squared error (MMSE)
and nearest neighbor interpolation, as described in Supplementary Section 9. The estimated H is fed back
to the central radio, and this process is only performed once as long as the wireless environment does not
change significantly. To account for signal distortion introduced by the wireless channel, we apply a precoder
on W to generate the transmitted signal given by V = [Vm,n] ∈ CM×N , where Vm,n =

Wm,n

Hm,n
. This precoding

on the central radio, termed the W-precoding scheme, ensures that the signal received by the client contains
the desired frequency-encoded model weights, W, which can then be used for local inference.

For multiple clients located in proximity, the same estimated H can be applied to the model weight
broadcast to all clients, which does not require modification of the client behavior. One alternative scheme
that tolerates diverse CSI across clients with better computing accuracy is to precode x(t) on each client
using H estimated for individual clients. While this client-side precoding scheme incurs extra computing
overhead on the client side, it achieves improved computing accuracy. More details about the wireless channel
calibration and different precoding schemes can be found in Supplementary Sections 10 and 13.

MNIST and AudioMNIST Dataset Preparation

Each data sample in MNIST [33] is a gray-scaled image I ∈ [0, 255]28×28 representing a handwritten digit
from ‘0’ to ‘9’. Each image is first reshaped to a 784-point vector and then element-wisely modulated by a
784-point ZC phase sequence Φzc = [ϕzc[m]] ∈ C784 to generate x ∈ C784 [34], where

ϕzc[m] = −m(m + cf )

M
· π, where cf = M mod 2, ∀m = 0, 1, . . . ,M − 1. (5)

Each audio clip in AudioMNIST [41] is a real-valued waveform of English spoken digits from ‘0’ to ‘9’ by
60 people whose native languages are English, German, Chinese, and Spanish. Each waveform, sampled at
48 kHz, lasts for about 0.5 seconds. In our implementation, each waveform is first downsampled to 8 kHz,
and the middle 0.5 seconds is truncated to a 4,000-point vector. Then, we perform a short-time Fourier
transform (STFT) every 25 ms for 200 non-overlapped time windows to form a spectrogram. Note that we
only take the amplitudes of this spectrogram and drop the phase information. Each time window contains
20 samples, which are converted into 20 complex frequency bins by STFT. Finally, the 200 time windows
are concatenated into a vector, which is then modulated with the 4,000-point ZC phase sequence Φzc to
generate x ∈ C4,000.

Dataset and Complex Model Architecture

We consider FC layers in our DL model architecture for WISE that employ large-scale MVMs. The complex
nature of the RF signals enables FC layers with complex-valued input vector, x, output vector, y, and
trainable weight matrix, W. We employ an activation function σ(·) that applies an absolute value operation
followed by a phase adjustment using the ZC phase sequence. Specifically, for each FC layer except the last,
the activation function first computes the element-wise absolute value of y and then adds a phase based on
a M -point ZC sequence Φzc,

σm(ym) = |ym| · ejϕzc[m] = |ym| · e−j·
πm(m+cf )

M , where cf = M mod 2, ∀m = 0, 1, . . . ,M − 1. (6)

Hereby, the subscript on σm indicates the phase shift applied to each element of ym. The reason behind
selecting this activation function is twofold. First, it preserves the waveform power by maintaining the
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amplitude of each element in y. Second, the use of ZC phase sequence ensures that the power of the input
waveform x(t) to the subsequent FC layer is evenly distributed across the spectrum. For the last FC layer,
only the absolute function |ym| is applied, which converts the complex-valued y to a real-valued vector.

To train the model, we employ the cross-entropy loss on |y|, using Adam optimizer [48] with a learning
rate of 10−3 over 100 epochs. In the testing phase, the predicted class is given by the maximum |y| after the
absolute function. Among the 100 training epochs, we select the model with the highest testing accuracy. All
activation functions are computed digitally. When comparing WISE with conventional DL models performed
in digital computing, we exclude the energy consumption and latency of the activation functions as they
exist in both computing paradigms and are orthogonal to the MVM operations.

Implementation

To demonstrate the WISE framework, we develop a WISE-R prototype using a USRP X310 SDR and a Mini-
Circuits ZEM-4300+ frequency mixer [49], which function as the TX/RX and computing mixer, respectively.
Fig. 2 shows the experimental setup, where a central radio broadcasts model weights to three clients over a
25 MHz channel centered at 0.915 GHz, which is limited by the available unlicensed frequency spectrum in
the industrial, scientific, and medical (ISM) bands between 902–928 MHz [50]. (See Supplementary Section 17
for the wired experiments with larger bandwidth) The wireless link distance is ≈1 meter, limited by the LO
power required for the off-the-shelf diode ring-based mixer. This constraint can be relaxed to support larger
link distances using integrated analog computing circuits [45] or beamforming on an antenna array [47].
Each client streams the I/Q modulated waveform x(t) at a carrier frequency of 1.2 GHz to the mixer’s RF
port over an SMA cable. In the meanwhile, w(t) is received by the WISE-R’s antenna and then mixed
with the streamed x(t). The output downconverted waveform y(t) from 0.285 GHz is I/Q demodulated, low-
pass filtered, and sampled by two ADCs operating at a low sampling rate of 0.2 MHz. For the waveform
generation, we place zero padding subcarriers in the frequency domain to mitigate the roll-off effect at the
LPF edge, and cyclic prefix in the time domain to improve the timing synchronization tolerance.

We evaluate the energy efficiency of WISE given by equation (2), where the SNR values are varied by
adjusting the transmit power of x(t). The overall loss η = 1.48 × 10−4 is the combination of a TX efficiency
of 10% [51], insertion loss of the computing mixer (measured at 11.4 dB), and RX noise figure (measured at
16.9 dB). We also conduct simulations for WISE by plugging in the realistic hardware parameters above,
and the computing mixer performs analog multiplication. The simulations consider a frequency-flat wire-
less channel between the central radio and WISE-R with additive Gaussian white noise (AWGN). For both
experiments and simulations, we consider ADC energy consumption (eadc) of 1 pJ/sample [52], and dig-
ital computing efficiency using ASICs (edig) of 1 pJ/MAC [7, 39, 40]. See Supplementary Section 12 for
more details on the experimental setup and measurements. The TDL of WISE can be simulated based on
equation (3) assuming ideal WISE-R hardware with η = 1 and α = β = 0.
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Supplementary Information: Theory

1 Notation and Preliminaries

For a complex-valued matrix A ∈ CM×N , let A⊤, A, and A∗ denote its transpose, complex conjugate, and

conjugate transpose, respectively. For a square matrix A ∈ CN×N that is invertible, let A−1 denote the

inverse of A. Let IN be the N × N identity matrix. For two matrices A and B with the same dimension,

let A⊙B denote the element-wise multiplication (Hadamard product), and A⊘B denote the element-wise

division.

The discrete Fourier transform (DFT) converts a vector, x = [xn] ∈ CL, into another vector with equal

length, X = [Xk] = DFT(x) ∈ CL, where

Xk =

L−1∑

n=0

xn · e−j2π k
Ln, ∀k = 0, 1, . . . , L− 1. (S1)

The DFT operation can be written in the matrix form,

X =
√
L ·D · x, (S2)

where D ∈ CL×L is the L-point DFT matrix given by

D =
1√
L




1 1 1 . . . 1

1 d d2 . . . dL−1

1 d2 d4 . . . d2(L−1)

...
...

...
. . .

...

1 dL−1 d2(L−1) . . . d(L−1)2



, (S3)

where d = e−j2π/L. Note that the DFT matrix is a unitary matrix satisfying DD∗ = I, with D = D⊤ and

D−1 = D∗ = D. Symmetrically, the inverse DFT (IDFT) operation is given by x = IDFT(X), where

xn =
1

L

L−1∑

k=0

Xk · ej2π k
Ln, ∀n = 0, 1, . . . , L− 1. (S4)

The IDFT operation can also be written in the matrix form, given by

x =
1√
L

·D−1 ·X. (S5)

The DFT and IDFT operations in equations (S1) and (S4) can be accelerated by the fast Fourier transform

(FFT) algorithm. Specifically, given a vector length of L (assuming L is the power of 2), it takes L/2 · log2 L

complex-valued MACs to conduct DFT or IDFT, which is equivalent to 2L log2 L real-valued MACs.
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We define the circular shift matrix RL ∈ RL×L that, for an L-point vector, shifts all the elements one

position to the right and puts the last element to the first position,

RL =




0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



. (S6)

We can then denote a repeated shift operation applied m times by (RL)m. We drop the subscript L for

brevity when the matrix dimension and context are clear.

2 Digital-to-Analog and Analog-to-Digital Conversions

We use s(t) and s[n] to represent the continuous and discrete signal in the time domain, and S(f) and S[k]

to represent the continuous and discrete spectrum of the signal in the frequency domain. In this section, we

consider real-valued s(t) and s[n] with a single DAC and ADC, and extend the scenario to complex-valued

s(t) and s[n] with two DACs and ADCs for I/Q modulation in Supplementary Section 3.

In general, a DAC reconstructs the continuous waveform s(t) from s[n] by a per-sample duration of

Ts = 1/fs, or under a sampling rate of fs. Specifically, signal construction using a DAC can be modeled by

s(t) = DAC {s[n]} =

+∞∑

n=−∞
s[n] · hDAC

(
t

Ts
− n

)
, (S7)

where hDAC(·) is the reconstruction kernel of the DAC. Note that equation (S7) only constrains the values

with integer values of n. Hence, there are infinitely many reconstruction kernels from s[n] to s(t) that satisfy

such reconstructions. For example, sinc-interpolation limits the bandwidth of the reconstructed waveform

within [−fs/2,+fs/2], which is

ssinc(t) = DACsinc {s[n]} =
∑

n

s[n] · sinc

(
t

Ts
− n

)
, where sinc(x) =

sin(πx)

πx
. (S8)

In practice, a commonly used signal reconstruction for a DAC is zero-order hold (ZOH), given by

sZOH(t) = DACZOH {s[n]} =
∑

n

s[n] · Rect
(

t

Ts
− n− 1

2

)
, where Rect(x) =





1, −1
2 ≤ x ≤ +1

2 ,

0, otherwise.
(S9)

An ADC samples the continuous waveform s(t) and creates the discrete sequence s[n] given by

s[n] = ADC {s(t)} = s (nTs) , ∀n = 0, 1, 2, . . . . (S10)
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It can be proven that for any reconstruction kernel on DAC, as long as the DAC is synchronized with the

ADC, i.e., with the shared t, the original discrete sequence can be reconstructed:

s[n] ∝ ADC {DAC {s[n]}} . (S11)

For the DAC, we assume a normalized power constraint on the input sequence given by

|s[n]|2 ≤ 1, ∀n = 0, 1, 2, . . . , (S12)

and |s[n]|2 = 1 corresponds to the DAC’s peak output power, Pmax. The peak-to-average power ratio (PAPR)

of the sequence s = [s[n]] is given by

PAPR[s] =
maxn |s[n]|2
E[s2[n]]

, (S13)

where maxn |s[n]|2 and E[s2[n]] represent the peak instant and average power of s, respectively.

For the ADC, we consider the constraint on the input waveform |s(t)| that

|s(t)|2 ≤ 1, ∀t. (S14)

Similarly, the PAPR of the input waveform to the ADC s(t) is given by

PAPR[s(t)] =
maxt |s(t)|2

1
T

∫ T

0
|s(t)|2 dt

, (S15)

where maxt |s(t)|2 refers to the peak instant power of the waveform, and 1
T

∫ T

0
|s(t)|2 dt is the average power

of the received waveform over a time period of T .

3 I/Q Modulation and Demodulation

In wireless communication, I/Q modulation, as illustrated in Fig. S1, is a technique for efficient transmission

of information over radio frequencies, which modulates data onto a carrier signal by varying its in-phase (I)

and quadrature (Q) components. I/Q modulation enables complex modulation schemes by combining the I

and Q components and, therefore, achieves doubled spectral efficiency by modulating information in both

the amplitude and phase of the carrier signal. Consider an I/Q modulation system with a sampling rate of

fs (corresponding to the bandwidth B = fs) and a carrier frequency of F . The TX tasks input of a digital,

complex-valued I/Q sample sequence s[n]. The complex-valued baseband waveform with I and Q components,

denoted by I(t) and Q(t), can be respectively constructed from the real and imaginary components of s[n]

using two DACs. Plugging in equation (S7), we can formulate the waveform construction process as

s(t) = DAC {s[n]} = I(t) − jQ(t), where I(t) = DAC {Re {s[n]}} and Q(t) = −DAC {Im {s[n]}} . (S16)
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Fig. S1 The diagram of I/Q modulation and demodulation. a, The I/Q modulation converts the complex-valued
baseband I/Q sequence s into a real-valued waveform r(t) modulated at carrier frequency F . b, The I/Q demodulation converts
the received real-valued waveform r(t) back to the complex-valued baseband I/Q sequence s̃, which is proportional to the
original s.

Here, the DAC reconstruction kernel can either be sinc interpolation or ZOH. s(t) is then I/Q modulated to

carrier frequency F as shown in Fig. S1a, yielding the modulate signal r(t) given by

r(t) = I(t) · cos(2πFt) + Q(t) · sin(2πFt) = Re
{
s(t) · ej2πFt

}
. (S17)

After over-the-air transmission, the signal received by the RX, r̃(t), is I/Q demodulated to recover the

baseband waveform, s̃(t), using an LO operating at the same carrier frequency F and a low-pass filter (LPF)

with a cutoff frequency of B/2, as shown in Fig. S1b. This I/Q demodulation process can be written as

s̃(t) = LPF
{
r̃(t) · e−j2πFt

}
= Ĩ(t) − jQ̃(t), where Ĩ(t) = LPF {r̃(t) cos(2πFt)} and Q̃(t) = LPF {r̃(t) sin(2πFt)} .

(S18)

Finally, two ADCs operating at the same sampling rate fs convert the I and Q components of s̃(t) into the

discrete I/Q samples s̃[n], which is

s̃[n] = ADC {s̃(t)} , (S19)

from which the transmitted I/Q samples s̃[n] can be recovered.

4 Frequency Mixer as Analog Multiplier

A frequency mixer is a three-port electrical circuit that produces new signals at the sum and difference of the

input signal frequencies, which can be used for frequency up-conversion and down-conversion, respectively.

The three ports of a frequency mixer are labeled IF (intermediate frequency), RF (radio frequency), and

LO (local oscillator). The IF and RF ports can be used as input or output, whereas the LO port always

requires an input signal. Essentially, a frequency mixer performs an analog multiplication of the two input

waveforms. Without loss of generality, assume two input waveforms r1(t) and r2(t) are I/Q modulated to
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carrier frequencies at F1 and F2, respectively, given by

r1(t) = I1(t) cos(2πF1t) + Q1(t) sin(2πF1t) and r2(t) = I2(t) cos(2πF2t) + Q2(t) sin(2πF2t). (S20)

Let s1(t) = I1(t) − jQ1(t) and s2(t) = I2(t) − jQ2(t) denote the baseband I/Q waveforms corresponding to

r1(t) and r2(t), respectively. The analog multiplication of the two input waveforms r1(t) and r2(t) yields the

output waveform ro(t) at the new frequency Fo = F1 ± F2, given by

ro(t) ∝ r1(t) · r2(t) = [I1(t) cos(2πF1t) + Q1(t) sin(2πF1t)] · [I2(t) cos(2πF2t) + Q2(t) sin(2πF2t)]

∝ [I1(t)I2(t) −Q1(t)Q2(t)] · cos(2π(F1 + F2)t) + [I1(t)Q2(t) + Q1(t)I2(t)] · sin(2π(F1 + F2)t)

+ [I1(t)I2(t) + Q1(t)Q2(t)] · cos(2π(F1 − F2)t) + [−I1(t)Q2(t) + Q1(t)I2(t)] · sin(2π(F1 − F2)t)

= Re {s1(t)s2(t)} · cos(2π(F1 + F2)t) − Im {s1(t)s2(t)} · sin(2π(F1 + F2)t)

+ Re {s1(t)s2(t)} · cos(2π(F1 − F2)t) − Im {s1(t)s2(t)} · sin(2π(F1 − F2)t), (S21)

where s2(t) denotes the conjugate of s2(t). Note that the output waveform of the mixer ro(t) at frequency

Fo can also be written in the form of

ro(t) = Io(t) cos(2πFot) + Qo(t) sin(2πFot), (S22)

where so(t) = Io(t) − jQo(t) denotes the corresponding baseband waveform. When the mixer is used for

frequency up-conversion, the two input ports are IF and LO, the output port is RF, and their carrier

frequency satisfies Fo = F1 + F2. As long as the carrier frequencies are carefully selected without frequency

aliasing, the mismatched frequency component F1 − F2 will be filtered out by the LPF. Plugging this into

equation (S21) yields




Io(t) = LPF {ro(t) · cos(2π(F1 + F2)t)} ∝ Re {s1(t)s2(t)}
Qo(t) = LPF {ro(t) · sin(2π(F1 + F2)t)} ∝ −Im {s1(t)s2(t)}

⇒ so(t) = Io(t) − jQo(t) ∝ s1(t) · s2(t).

(S23)

When the mixer is used for frequency down-conversion, the RF and LO ports become the input ports for

r1(t) and r2(t), respectively, and the IF port becomes the output port for ro(t). In this case, Fo = F1 − F2,

and the frequency component F1 +F2 is filtered out by the LPF. Similarly, we can derive so(t) from equation

(S21) as




Io(t) = LPF {ro(t) · cos(2π(F1 − F2)t)} ∝ Re {s1(t) · s2(t)}
Qo(t) = LPF {ro(t) · sin(2π(F1 − F2)t)} ∝ −Im {s1(t) · s2(t)}

⇒ so(t) = Io(t) − jQo(t) ∝ s1(t) · s2(t).

(S24)

Compared to equation (S23), the only difference in the down-conversion case is the requirement for a conju-

gate operation on the waveform input to the LO port, s2(t). In practice, the LO signal supplied to the mixer

may exhibit a carrier frequency offset (CFO), ∆F , compared to the desired frequency of the target signal
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for up-conversion and down-conversion, this effect can be modeled as




so(t) ∝ s1(t) · s2(t) · ej∆Ft, where Fo = F1 + F2 + ∆F, for signal up-conversion,

so(t) ∝ s1(t) · s2(t) · ej∆Ft, where Fo = F1 − F2 + ∆F, for signal down-conversion.
(S25)

5 Orthogonal Frequency-Division Multiplexing (OFDM) System

OFDM is a technique of modulating data symbols onto multiple overlapping but orthogonal subcarriers

within a given bandwidth, which is widely used in modern communication systems, including Wi-Fi (e.g.,

IEEE 802.11n/ac/ax) and cellular (e.g., LTE/5G). Assuming that an OFDM system occupies a bandwidth of

[−B/2,+B/2] in the baseband. This bandwidth B is divided into L overlapping but orthogonal subcarriers

with a subcarrier spacing of ∆f = B/L. Without loss of generality, L is assumed to be an even number. In

the baseband, the k-th subcarrier is at frequency

fk =

(
k − L

2

)
· ∆f =

k − L/2

L
·B, ∀k = 0, . . . , L− 1. (S26)

Generally, the OFDM system is structured by OFDM symbols in the time domain. Within one OFDM

symbol, the time domain I/Q samples are converted to/from frequency domain data symbols using an L-

point DFT, so there are L I/Q samples per OFDM symbol in the time domain corresponding to the L

subcarriers in the frequency domain. Hereby, we denote the time domain I/Q samples of an OFDM symbol

as s = [s[n]] ∈ CL, and its frequency domain data symbols as S = [S[k]] ∈ CL. The data symbols can be

derived from the I/Q samples via an L-point DFT, i.e.,

S = RL/2 · DFT(s) =
√
L ·RL/2 ·D · s, (S27)

where RL/2 is the circular shift matrix that shifts the zero-frequency (DC) subcarrier symbol originally

indexed at k = 0 to the center of the spectrum at k = L/2. As a result, we have

S[k] =

L−1∑

n=0

s[n] · e−j2π
k−L/2

L n, ∀k = 0, . . . , L− 1. (S28)

Similarly, the time domain I/Q waveform can be derived from the circularly shifted frequency domain data

symbols using an L-point IDFT given by

s = IDFT(RL/2 · S) =
1√
L

·D−1 ·RL/2 · S, (S29)

where the recovered time domain I/Q samples s = [s[n]] ∈ CL is given by

s[n] =
1

L

L−1∑

k=0

S[k] · ej2π k−L/2
L n, ∀n = 0, . . . , L− 1. (S30)
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Based on the Nyquist-Shannon sampling theorem, the minimum sampling required for a system employing

I/Q modulation to (re)construct the signal without aliasing is fs = B. Under this sampling rate, an OFDM

symbol has a duration of T = L/fs = L/B.

On the TX side, we consider an ideal DAC reconstruction kernel for the OFDM system that substitutes

n by fs · t in equation (S30). Correspondingly, the length-L sequence of I/Q samples becomes a waveform

that lasts for a time duration of L/fs. In this case, the transmitted waveform can be written as

s(t) = DAC {s[n]} =

L−1∑

k=0

S[k] · ej2π k−L/2
T t, ∀t ∈ [0, T ). (S31)

This process can also be described using the Fourier series F(·), given by

s(t) = F(S) =

L/2−1∑

k=−L/2

S[k] · ej2π k
T t, ∀t ∈ [0, T ). (S32)

This baseband waveform is then modulated to carrier frequency F as r(t) = Re
{
s(t) · ej2πFt

}
.

On the RX side, the received waveform r̃(t) at carrier frequency F is I/Q demodulated to s̃(t), which is

then filtered by an LPF with a cutoff frequency of fs/2, and then sampled by two ADCs at the sampling

rate of fs to acquire the I/Q samples s̃ = [s̃[n]], i.e.,

s̃[n] = ADC {LPF {s̃(t)}} , n = 0, 1, . . . , L− 1. (S33)

The symbols S̃ can then be recovered by equation (S27).

During wireless transmissions, multipath propagation causes delayed copies of the transmitted signal to

arrive at the receiver, leading to potential inter-symbol interference (ISI). To mitigate this effect, a replica of

the ending I/Q samples in s is appended to the beginning of s as the cyclic prefix, ensuring that multipath

delays do not cause overlap between consecutive OFDM symbols. Assume that a cyclic prefix of ∆L I/Q

samples, extended OFDM symbol with cyclic prefix, s′ ∈ CL+∆L, can be written as

s′[n] =




s[L + n− ∆L], if n < ∆L,

s[n− ∆L], if n ≥ ∆L,
∀n = 0, 1, . . . , L + ∆L− 1. (S34)

Consider a timing delay of ∆n I/Q samples with ∆n ≤ ∆L, the received s̃ ∈ CL after removing the cyclic

prefix is

s̃[n] ∝




s[L + n− ∆L + ∆n], if n < ∆L− ∆n,

s[n− ∆L + ∆n], if n ≥ ∆L− ∆n,
∀n = 0, 1, . . . , L− 1. (S35)

This is equivalent to the original transmitted s with a circular shift of (∆L − ∆n) I/Q samples. According

to the DFT shifting theorem, it holds that

S̃[k] ∝ S[k] · e−j2π
(∆L−∆n)

L k, ∀k = 0, 1, . . . , L− 1. (S36)
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This means that the received S̃ is proportional to the desired S with a phase shift of 2π(∆L − ∆n)k/L.

Since the timing delay ∆n is a constant over OFDM symbols, it can be estimated using a reference OFDM

symbol and then used to calibrate the remaining OFDM symbols.

6 Hybrid Convolution Theorem

The convolution theorem [53] states that the multiplication of two time domain signals equals the convolution

of their frequency domain spectrums. Specifically, there are two representations of the convolution theorem

in the analog and digital domains: (i) in the analog domain, the multiplication of two continuous waveforms

corresponds to the linear convolution of their spectrums, and (ii) in the digital domain, the element-wise

multiplication of two discrete I/Q samples corresponds to the circular convolution. We consider a hybrid

convolution theorem of these two, which is built on the discrete I/Q samples while it corresponds to the

linear convolution in the frequency domain.

Consider an OFDM system with an FFT size of L and subcarrier spacing of ∆f . Let S1 = [S1[k]] ∈ CL

and S2 = S2[k] ∈ CL denote two frequency-domain OFDM symbols, whose time-domain waveforms are given

by s1(t) and s2(t), t ∈ [0, T ), where T = 1/∆f . According to equation (S31),

s1(t) = F(S1) =

L−1∑

k=0

S1[k] · ej2π k−L/2
T t, s2(t) = F(S2) =

L−1∑

k=0

S2[k] · ej2π k−L/2
T t, ∀t ∈ [0, T ). (S37)

Let ‘∗’ denote the linear convolution operation that maps CL ∗ CL → C2L−1. Specifically, the linear

convolution of two OFDM symbols, denoted by So = [So[k]] ∈ C2L−1, is given by

So = S1 ∗ S2, where So[k] =

min{L−1,k}∑

κ=max{0,k−L+1}

S1[κ] · S2[k − κ], ∀k = 0, 1, . . . , 2L− 2. (S38)

Note that the output symbol So has an extended length of (2L− 1) while maintaining the same subcarrier

spacing (∆f) and waveform time (T = 1/∆f). According to equation (S31), its time-domain waveform,

so(t), is given by

so(t) = F(So) =

2L−2∑

k=0

So[k] · ej2π k−(2L−1)/2
T t =

2L−2∑

k=0

(∑

κ

S1[κ] · S2[k − κ]

)
· ej2π k−(2L−1)/2

T t, ∀t ∈ [0, T ).

(S39)

Notice that in equation (S37), symbol S1[κ] is located at frequency κ−L/2
T , and symbol S2[k − κ] is located

at frequency k−κ−L/2
T . The multiplication of these two terms results in a symbol located at frequency k−L

T ,

which has a frequency shift of ∆f/2 compared to the symbol So[k] located at frequency k−(2L−1)/2
T in

equation (S39). Therefore, the following relationship between the time-domain waveforms holds,

so(t) = s1(t) · s2(t) · ej2π∆f
2 t = s1(t) · s2(t) · ejπ∆ft. (S40)
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In summary, the hybrid convolution theorem can be written as

s1(t) · s2(t) · ejπ∆f ·t = F
(
(S1 ∗ S2)

)
, where s1(t) = F(S1) and s2(t) = F(S2). (S41)

The bandwidth of S1 or S2 is given by B = L · ∆f ; as for So, the subcarrier spacing remains the same

while the FFT size becomes (2L − 1), so So occupies a bandwidth of (2L − 1) · ∆f . This means that to

capture the full spectral information of so(t), it is required that the ADC after I/Q demodulation operates

at a minimum sampling rate of

f ′
s = (2L− 1) · ∆f. (S42)

Recall from Supplementary Section 4 that a computing mixer performs analog multiplication of two

signals, similar to the form of the convolution theorem in equation (S41). Hence, we can configure the

computing mixer to calculate the convolution between two discrete signals. In the case of frequency up-

conversion (equation (S23)), the carrier frequency of the output signal, Fo, satisfies

Fo = F1 + F2 + ∆f/2, (S43)

which cancels the frequency shift term ejπ∆f ·t. In the case of frequency down-conversion (equation (S24)),

Fo satisfies

Fo = F1 − F2 + ∆f/2, (S44)

and an extra flipping on S2 is needed to incorporate the conjugated waveform s2(t) in equation (S24), given

by

S′
2[k] = S2[L− 1 − k], ∀k = 0, 1, . . . , L− 1. (S45)

7 In-Physics MVM Computation Based on Frequency-Encoded

OFDM Symbols

In this section, we present a subcarrier mapping algorithm that converts the linear convolution to the in-

physics MVM computation. Furthermore, the OFDM system, as discussed in Supplementary Section 5,

is employed to efficiently convert the time domain I/Q samples from/to the frequency domain subcarrier

symbols by IFFT/FFT. Without loss of generality, we consider the case where the computing mixer performs

signal up-conversion.

A. Subcarrier Mapping Algorithm

Consider the MVM between a complex-valued matrix W = [Wm,n] ∈ CM×N and a complex-valued vector

x = [xn] ∈ CN , and their MVM results is given by y = W · x = [ym] ∈ CM . Consider an OFDM

system with a subcarrier spacing of ∆f and an FFT size of L = NM , occupying a signal bandwidth of

B = L·∆f = NM ·∆f . We encode W and x into OFDM symbols Sw = [Sw[k]] ∈ CL and Sx = [Sx[k]] ∈ CL,
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respectively. This encoding process essentially maps elements of W and x onto different subcarriers of their

respective OFDM symbol. The encoding of W into Sw is given by

Sw[k] = Wm,n, ∀n = 0, . . . , N − 1, ∀m = 0, . . . ,M − 1, and ∀k = NM −m− nM − 1, (S46)

and the encoding of x into Sx is given by

Sx[k] =




xn, if k = n ·M, ∀n = 0, . . . , N − 1,

0, otherwise.
(S47)

According to the OFDM system, the I/Q waveforms corresponding to Sw and Sx can be derived by equations

(S29)–(S30). Specifically, let sw = [sw[n]] ∈ CL denote the I/Q waveform corresponding to W, which is

obtained by an L-point IDFT given by

sw[n] =
1

L

L−1∑

k=0

Sw[k] · ej2π k−L/2
L n =

1

NM

N∑

n=0

M∑

m=0

Wm,n · e−j2π
1+m+nM+NM/2

NM n, ∀n = 0, 1, . . . , L− 1. (S48)

Similarly, the I/Q waveform sx = [sx[n]] ∈ CL corresponding to x is given by

sx[n] =
1

L

L−1∑

k=0

Sx[k] · ej2π k−L/2
L n =

1

NM

N∑

n=0

xn · e−j2π
n+N/2

N n, ∀n = 0, 1, . . . , L− 1. (S49)

We assume ideal DACs following equation (S31) at the sampling rate of fs = L ·∆f , waveforms carrying W

and x have the same duration T given by

T =
1

∆f
=

L

B
=

NM

B
. (S50)

Specifically, the waveform w(t) carrying W is

w(t) = DAC {sw} = F(Sw) =
1

NM

N∑

n=0

M∑

m=0

Wm,n · e−j2π
1+m+nM+NM/2

T t, ∀t ∈ [0, T ), (S51)

and the waveform x(t) carrying x is

x(t) = DAC {sx} = F(Sx) =
1

NM

N∑

n=0

xn · e−j2π
n+N/2

T Mt, ∀t ∈ [0, T ). (S52)

Assume that waveforms carrying W, x, and y are I/Q modulated to carrier frequencies of Fw, Fx, Fy,

respectively. For analog computing using the computing mixer for frequency up-conversion (S43), it holds

that

Fy = Fx + Fw + ∆f/2 ⇒ y(t) = x(t) · w(t) · ejπ∆f ·t, ∀t ∈ [0, T ). (S53)
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The output waveform y(t) spans a frequency over (2L − 1) · ∆f . Therefore, the time-domain I/Q samples

sy = [sy[n]] ∈ C2L−1 can be captured by a pair of ADCs operating at the sampling rate of (2L− 1) · ∆f , or

a per-sample duration of T/(2L− 1),

sy[n] = ADC {y(t)} = y

(
n

2L− 1
· T
)
, ∀n = 0, 1, . . . , 2L− 2. (S54)

Finally, the frequency domain subcarrier symbols sy = [sy[k]] ∈ C2L−1 can be acquired by a (2L− 1)-point

DFT as

Sy[k] =

2L−2∑

n=0

sy[n] · e−j2π k
2L−1n, ∀k = 0, 1, . . . , 2L− 1. (S55)

According to the hybrid convolution theorem (S41) (see Supplementary Section 6), the output symbols

Sy = [Sy[k]] ∈ C2L−1 as the convolution between Sw and Sx, with “extended” frequency components is

given by

Sy = Sw ∗ Sx, where Sy[k] =

min{L−1,k}∑

κ=max{0,k−L+1}

Sw[κ] · Sx[k − κ], ∀k = 0, 1, . . . , 2L− 2. (S56)

Note that the output symbols carried by the middle M subcarriers indexed at Sy[NM −M, . . . , NM − 1]

satisfy

Sy[NM − 1 −m] =

NM−m∑

κ=0

Sx[κ] · Sw[NM − 1 −m− κ] =

N−1∑

n=0

Sx[nM ] · Sw[NM − 1 −m− nM ]

=

N−1∑

n=0

xn ·Wm,n = ym, ∀m = 0, 1, . . . ,M − 1. (S57)

This means that the desired output vector y = W · x is embedded in the spectrum of Sy. As a result,

the output waveform y(t) can then be I/Q demodulated and sampled using an ADC at a sampling rate of

f ′
s = (2L−1)∆f to acquire I/Q samples sy = [sy[n]] ∈ C2L−1 with no frequency aliasing. Finally, the output

symbol Sy = [Sy[k]] ∈ C2L−1 can be obtained by a (2L− 1)-point DFT,

Sy[k] =

2L−1∑

n=0

sy[n] · e−j2π
k−L′/2

L′ n, ∀k = 0, 1, . . . , 2L− 2, (S58)

from which the MVM result, y, can be extracted as

ym = Sy[NM − 1 −m], ∀m = 0, 1, . . . ,M − 1. (S59)

A similar analysis also holds in the case where the computing mixer performs frequency down-conversion

based on equation (S45) with Fy = Fx − Fw + ∆f/2.
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B. Energy Efficiency Analysis

We analyze the energy efficiency of this “vanilla” in-physics MVM computation on the OFDM system, i.e.,

energy consumed per MAC operation (emvm), and the computation efficiency, i.e., the number of MAC

operations per second per Watt (e−1
mvm). Specifically, there are three energy consumption components: (i)

E1 for the waveform generation of x(t) and I/Q (de)modulation, (ii) E2 for the I/Q sampling of waveform

y(t) using two ADCs after I/Q demodulation, and (iii) E3 for the digital computing based encoding (prior

to waveform generation) and decoding (after waveform reception). Note that we only include the energy on

the client while excluding that by the central radio broadcasting w(t).

We first derive E1 as follows. Let Px denote the transmit power of x(t) with a radio hardware efficiency of

ηradio. The total energy required for the client radio to generate the waveform carrying the inference request,

x, is given by

E1 = (ηradio)−1Px · T = (ηradio)−1Px · NM

B
. (S60)

Let ηmixer denote the efficiency of the computing mixer. The received signal power at the RX after the

in-physics computing process carried out by the computing mixer is given by

Py = ηmixer · Px. (S61)

At radio frequency, the thermal noise power spectrum density is given by kT0 = −174 dBm/Hz, where

k = 1.38× 10−23 J/K is the Boltzmann constant and T0 = 300 K is the room temperature. After the mixing,

the bandwidth of Sy is (2L− 1) · ∆f , so the total noise power over this bandwidth, Pnoise, is given by

Pn = (ηnf)
−1 · kBT0 · (2L− 1) · ∆f = (ηnf)

−1 · kBT0 · (2NM − 1) · ∆f ≈ (ηnf)
−1 · kBT0 · 2B, (S62)

where (ηnf)
−1 denotes the noise figure of the RX. Combining equations (S61) and (S62) yields

SNR =
Py

Pn
≈ ηmixer · Px

(ηnf)−1 · kBT0 · 2B
⇒ Px = 2(ηmixer · ηnf)−1 · SNR · kBT0 ·B. (S63)

Plugging in Px from equation (S60) and denote η = ηradio · ηmixer · ηnf as the overall hardware efficiency, we

have

E1 = 2NM · η−1 · SNR · kBT0. (S64)

E2 represents the energy consumption by the ADC, which is proportional to the number of captured I/Q

samples. Given a per-sample energy consumption of eadc (e.g., eadc = 1 pJ/sample [52]), the capturing of sy

consisting of (2L− 1) complex-valued I/Q samples incurs a total energy consumption of

E2 = (2NM − 1) · 2eadc ≈ 4NM · eadc. (S65)

Finally, the digital computing energy E3 is proportional to the number of real-valued MACs, where we

denote the energy consumption per real-valued MAC in the state-of-the-art ASICs as edig. This term includes
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Table S1 Comparison of energy consumption and energy efficiency complexity analysis between the vanilla in-physics
matrix-vector multiplication (MVM) computation and the three WISE schemes.

IFFT Enc.

𝒪 𝑀𝑁 log𝑀𝑁

𝒪 𝑁 log𝑁

–

𝒪 𝑁 log𝑁

E1

Vanilla Scheme

Basic Scheme

Scheme

W-Precoding

x-Precoding

𝒪 𝑀𝑁

E2

E3

𝒪 𝑀

FFT Dec.Precoding

–

–

–

𝒪 𝑁

𝒪 𝑀𝑁 log𝑀𝑁

𝒪 𝑀

𝒪 𝑀

𝒪 𝑀

Energy
per MVM*

(Emvm)

Energy per MAC*

𝒪 𝑀𝑁 log𝑀𝑁

𝒪 𝑁 log𝑁 +𝑀

𝒪 𝑀

𝒪 𝑁 log𝑁 +𝑀

𝒪 log𝑀𝑁

𝒪
log𝑁
𝑀

+
1
𝑁

𝒪
1
𝑁

𝒪
log𝑁
𝑀 +

1
𝑁

(<TDL)

* Excluding E1 or e1, which are lower than the thermodynamic limit (TDL)

𝒪 𝑀𝑁 𝒪 log𝑁

𝒪 log𝑁

𝒪
1
𝑁

𝒪 log𝑁

MVM (emvm) IP (eip)

the energy consumption associated with an L-point IFFT (encoding of Sx to sx, equation (S49)) and a

(2L− 1)-point FFT (decoding of sy to Sy, equation (S55)), i.e.,

E3 = [2L · log2 L + 2(2L− 1) · log2(2L− 1)] · edig
= [2NM · log2(NM) + 2(2NM − 1) · log2(2NM − 1)] · edig
≈ 6NM · log2(NM) · edig. (S66)

Putting equations (S64)–(S66) together, the total energy consumption Emvm is given by

Emvm = E1 + E2 + E3 = 2NM · η−1 · SNR · kBT0︸ ︷︷ ︸
E1

+ 4NM · eadc︸ ︷︷ ︸
E2

+ 6NM · log2(NM) · edig︸ ︷︷ ︸
E3

. (S67)

The corresponding energy efficiency, measured by energy per MAC, emvm, is

emvm =
Emvm

4NM
= e1 + e2 + e3 =

1

2
· η−1 · SNR · kBT0

︸ ︷︷ ︸
e1

+ eadc︸︷︷︸
e2

+
3

2
· log2(NM) · edig

︸ ︷︷ ︸
e3

. (S68)

It can be seen that emvm is dominated by the term e3 and scales as O(log(NM)) as the problem size grows.

Therefore, WISE incorporates several optimization strategies to significantly reduce the energy consump-

tion for in-physics MVM computation. As shown in Table S1, there are three schemes for WISE: (i) the

basic scheme without wireless channel precoding, designed for the wired case or when the CSI is not avail-

able; (ii) the W-precoding scheme, which precodes the W on the central radio without incurring additional

energy consumption on the clients while further reducing the energy consumption by time-encoding x; (iii)

the x-precoding scheme, which precodes x on the client that supports individual CSI for each client for higher

computing accuracy. The W-precoding scheme is evaluated in Section 2, and the detailed performance of

the other two schemes can be found in Supplementary Section 13.
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8 WISE’s Basic Scheme

We first present a basic scheme of WISE for a wired/cabled channel that significantly optimizes the energy

efficiency of the in-physics MVM described in Supplementary Section 7 via three techniques: (i) encoding

FFT size reduction, (ii) ADC sampling rate reduction, and (iii) MVM decomposition. We also introduce zero-

subcarrier padding and cyclic prefix to overcome two practical issues stemming from the three techniques.

A. Encoding FFT Size Reduction

The first technique reduces the FFT size from NM to N to save the number of real-valued MACs required

for encoding Sx into sx. Note from equation (S49) that the generated waveform sx is independent of the

output size, M , and is with a period of N samples, i.e.,

sx[n + N ] =
1

NM

N−1∑

n=0

xn · e−j2π
n+N/2

N (n+N)

=
1

NM

N−1∑

n=0

xn · e−j2π
n+N/2

N n = sx[n], ∀n = 0, 1, . . . , NM −N − 1. (S69)

Therefore, we only need to generate the first N I/Q samples in sx, which can then be repeated for M times

to obtain sx. The generation of the first N I/Q samples has a similar form as an N -point IDFT as

sx =
1

M
√
N

·
[
D−1 ·RN/2 · x, . . . ,D−1 ·RN/2 · x

]

︸ ︷︷ ︸
repeated M times

, (S70)

but requires only an N -point IFFT involving 2N log2 N real-valued MACs.

B. ADC Sampling Rate Reduction

An RX operating at the sampling rate of (2NM−1) ·∆f is required to capture a total number of (2NM−1)

I/Q samples of sy in order to recover the full spectral information of Sy. This process incurs significant

energy consumption on the waveform reception term e2 on ADC, and the digital computing term e3 for

FFT. Fortunately, in equation (S59), we notice that the output vector y can be demodulated from a set of

consecutive subcarriers located in the middle of the spectrum of Sy, indexed from (NM −M) to (NM − 1).

Let Sy↓ = [Sy↓[k]] ∈ CM , where Sy↓[k] = Sy[NM − M + k], ∀k = 0, 1, . . . ,M − 1, equation (S59) can be

written as

ym = Sy↓[M − 1 −m], ∀m = 0, 1, . . . ,M − 1. (S71)

These M subcarriers in Sy↓ only occupy a narrow bandwidth of B↓ = M ·∆f , which is a fraction 1/N of the

original signal bandwidth of W and x. Therefore, one can employ an LPF with a cutoff frequency of B↓/2

and an ADC with a sampling rate of as small as fs↓ = B↓ to capture the waveform y(t), which yields

sy↓ = [sy↓[n]] = ADC {LPF {y(t)}} , ∀t ∈ [0, T ), n = 0, 1, . . . ,M − 1. (S72)
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Fig. S2 The step-by-step waveform generation of WISE’s MVM computation. a, The original matrix-vector
multiplication (MVM), y = W · x, with input size N and output size M . b, Decomposition of the original MVM into small
MVMs along the output dimension using a reduced output size, M ′, which lowers the complexity of DFT-based decoding. c,
Zero-padding is applied to W and y, introducing all-zero rows that correspond to zero-subcarriers in the signal spectrum Sw

and Sy↓. d, The inserted zero-subcarriers in Sy↓ effectively mitigate the roll-off effect introduced by the low-pass filter (LPF).
e, In the time domain, a cyclic prefix is added prior to the signal to mitigate potential synchronization errors.

In this way, only M I/Q samples are captured, and the decoding of y from Sy↓ can be done using an M -point

FFT following equation (S55) as

Sy↓ =
√
M ·RM/2 ·D · sy↓, where Sy↓[k] =

M−1∑

n=0

sy[n] · e−j2π
k−M/2

M n, ∀k = 0, 1, . . . ,M − 1. (S73)

In this way, only M I/Q samples need to be captured by the ADC on the RX side, and the subsequent

decoding of y involves 2M log2 M real-valued MACs.

C. MVM Decomposition

Furthermore, we can decompose the large MVM y = W · x in the output dimension M into M/M ′ smaller

MVMs, y′ = W′ · x, as shown in Fig. S2a–b, with W′ ∈ CM ′×N and y′ ∈ CM ′
. Since each smaller MVM

requires only an M ′-point FFT for decoding that involves 2M ′ log2 M
′ MACs, the total number of MACs

required for all M/M ′ MVMs reduces to 2M log2 M
′. Note that the waveform time for a single decomposed

MVM is M ′N/B, and the total computation time for the original MVM remains M
M ′ · M ′N

B = MN
B , which

matches the waveform duration T of the original MVM computation without decomposition. Therefore,

this MVM decomposition incurs no additional overhead in waveform time, and ensures that the energy

consumption and computation throughput remain unchanged. This MVM decomposition also proportionally

reduces the number of subcarriers in both the TX channel of Sw and Sx, i.e., NM ′ subcarriers, and the RX

channel of Sy↓, i.e., M ′ subcarriers. As a result, the downsampling ratio from TX to RX remains N , and

given the same available bandwidth B, the TX and RX sampling rates remain unchanged.
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D. Zero-Subcarrier Padding

To mitigate the frequency aliasing effects, the ADC operating at a low sampling rate of M ′∆f relies on an

ideal LPF to filter out frequency components outside of [−M ′∆f/2,+M ′∆f/2]. An ideal LPF has a brick-

wall shape, corresponding to a flat frequency response across the passband, and “zero” frequency response

elsewhere. However, such a brick-wall LPF is not practical due to its non-casualty in the time domain;

rather, a practical LPF before ADC usually exhibits non-negligible roll-off effects around its cutoff frequency

at M ′∆f/2, i.e., there exists a transient frequency range around M ′∆f/2 where the frequency response

gradually drops to zero (see Supplementary Section 12 for the detailed measurements).

To overcome the LPF’s roll-off effect, zero subcarriers that carry no symbols are padded to the LPF’s

transient frequency. Consider a padded weight matrix W′′ ∈ C(M ′+2∆M)×N , where ∆M rows of 0’s are

padded to the top and bottom of the decomposed weight matrix W′, as shown in Fig. S2c. As a result, the

output vector becomes y′′ ∈ CM ′+2∆M with ∆M 0’s padded to the beginning and end of the vector. This

process can be written as

W ′′
m,n =




W ′

(m−∆M),n, if ∆M ≤ m < M ′ + ∆M,

0, otherwise,
and y′′m =




y′m−∆M , if ∆M ≤ m < M ′ + ∆M,

0, otherwise.

(S74)

Based on equation (S71), the received output signal spectrum after LPF and with padded zero subcarriers

Sy↓ satisfies

Sy↓[m] =




y′M ′−1−m+∆M , if ∆M ≤ m < M ′ + ∆M,

0, otherwise,
(S75)

which implies that the output spectrum Sy↓ has ∆M zero subcarriers on both edges, i.e., the transient

frequency range of a practical LPF, as shown in Fig. S2d. Let α = 2∆M/M ′ denote the overhead coefficient

associated with zero subcarrier padding, the number of subcarriers per decomposed MVM is (1 + α)NM ′

for Sx and Sw, and (1 + α)M ′ for Sy↓. In general, a larger value of α is required if the LPF exhibits a

larger transient frequency range, leading to a larger overhead on the waveform duration that is inversely

proportional to the subcarrier spacing, ∆f .

E. Cyclic Prefix

So far, we assume that the client’s DACs on the TX side and ADCs on the RX side are perfectly synchronized

when generating and capturing sx and sy↓. The assumption does not hold in practice, especially when the

RX employed an ADC operating at a reduced sampling rate with a downsampling ratio of N . Inspired by

OFDM-based wireless communication systems, we introduce a cyclic prefix to mitigate the potential delay

and timing offset between the DAC and ADC, as shown in Fig. S2e. Different from conventional OFDM-

based communication systems, the downsampling ratio of N means that every N I/Q sample in sx and sw

corresponds to a single I/Q sample in sy↓. To ensure an integer number of I/Q samples for the cyclic prefix

removal on sy↓, the cyclic prefix length on sx and sw must be a multiple of N . Hereby, we consider a cyclic

prefix length of ∆L ∈ N for sy↓, and thus the cyclic prefix length is N · ∆L on sx and sw. Then, the cyclic
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Fig. S3 The frequency-domain power spectral density comparison of Sx, Sw, Sy and Sy↓. a, The spectrum of Sx

and Sw occupies a signal bandwidth of NM ′ ·∆f . b, The spectrum of the computing mixer’s output signal, Sy , occupies a signal
bandwidth of (2NM ′ − 1) ·∆f , while the region of interest carrying information about Sy↓ is confined to a smaller bandwidth
of M ′ ·∆f . c, A zoomed-in view of the output signal spectrum, Sy , which contains Sy↓ in the center of the bandwidth.

prefix attachment from sx to s′x ∈ C(1+α)NM ′+N∆L can be written as

s′x[n]




sx[(1 + α)NM ′ + n−N∆L], if n < N∆L,

sx[n−N∆L], if n ≥ N∆L,
∀n = 0, 1, . . . , (1 + α)NM ′ + N∆L− 1. (S76)

Similarly, the cyclic prefix attachment from sw to s′w ∈ C(1+α)NM ′+N∆L can be written as

s′w[n] =




sw[(1 + α)NM ′ + n−N∆L], if n < N∆L,

sw[n−N∆L], if n ≥ N∆L,
∀n = 0, 1, . . . , (1 + α)NM ′ + N∆L− 1. (S77)

On the RX side, only the first (1 +α)M ′ I/Q samples need to be captured. Similarly, we define an overhead

coefficient β = ∆L/(M ′+2∆M) such that the length of sx and sw per decomposed MVM is (1+α)(1+β)NM ′,

and the length of sy↓ is (1 + α)(1 + β)M ′.

F. Energy Efficiency Analysis

Similar to the energy efficiency analysis in Supplementary Section 7, the energy consumption for the WISE

basic scheme contains three components: (i) E1 for the waveform generation of x(t) and I/Q (de)modulation,

(ii) E2 for the I/Q sampling of waveform y(t) using two ADCs operating at reduced sampling rate after I/Q

demodulation, and (iii) E3 for the digital computing based encoding and decoding.

First, the new waveform duration for each decomposed MVM including the overhead is (1 + α)(1 +

β)NM ′/B. Given the transmit power of Px, the total energy required for the client radio to generate the
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waveforms carrying the total number of M/M ′ inference requests is given by

E1 =
M

M ′ · (ηradio)−1Px · (1 + α)(1 + β) ·NM ′

B
= (ηradio)−1Px · (1 + α)(1 + β) ·NM

B
. (S78)

Different from Supplementary Section 7, the SNR in the WISE basic scheme is measured within the captured

narrowband of [−(1 +α)M ′∆f/2,+(1 +α)M ′∆f/2]. As illustrated in Fig. S3a–b, the original Sy spans over

a bandwidth of 2(1 + α)NM ′ · ∆f with the total power of ηmixer · Px, while the bandwidth of interest is

only the portion of (1 +α)M ′ ·∆f . Note that the power is not evenly distributed over the subcarriers in Sy;

each subcarrier Sy[k] is the sum of multiple products of x-W pairs, according to the convolution theorem.

Hereby, we assume all the products of the x-W pairs are independent and identically distributed (i.i.d.).

After the linear convolution based on equation (S38), the first M ′ elements on the output Sy (excluding

the αM ′ padded zero subcarriers) only have one such product, the second M ′ elements are the sum of two

of such products, and so on, until the middle M ′ elements, which is the sum of N of such products as the

captured Sy↓ or y. The second half of the subcarriers on Sy follows the same trend but with a reversed

symmetry compared to the first half of the subcarriers. According to the law of large numbers and the

central limit theorem together with N ≫ 1, elements of Sy follow Gaussian distributions, whose variance (or

power) is proportional to the number of products to be summed. Therefore, the power density spectrum of

Sy has a “triangle” shape, as shown in Fig. S3c. Moreover, the total power of the middle M ′ subcarriers of

interest, i.e., Sy↓, is 1/N of the power of Sy. Therefore, the received power Py within the narrowband can

be approximated by

Py ≈ 1

N
· ηmixer · Px. (S79)

On the other hand, the noise power only spans the narrow band of (1 + α)M ′∆f , so the noise power, Pn, is

given by

Pn = (ηnf)
−1 · kBT0 · (1 + α) ·M ′ · ∆f. (S80)

Combining equations (S79) and (S80), the relationship between Px and SNR is given by

SNR =
Py

Pn
=

N−1 · ηmixer · Px

(ηnf)−1 · kBT0 · (1 + α) ·M ′ · ∆f
=

ηmixer · ηnf · Px

kBT0 ·B
⇒ Px = (ηmixer · ηnf)−1 · SNR · kBT0 ·B.

(S81)

Plugging Px in equation (S78) yields

E1 = (1 + α)(1 + β) ·NM · η−1 · SNR · kBT0. (S82)

For each decomposed MVM, only (1 + α)M ′ I/Q samples in sy↓ need to be captured by a pair of ADCs

operating at a low sampling rate. Therefore, the total energy consumption E2 across all M/M ′ decomposed

MVMs is given by

E2 =
M

M ′ · (1 + α)M ′ · 2eadc = 2(1 + α) ·M · eadc. (S83)
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For the encoding energy part of E3, it reduces to an N -point IFFT for encoding following equation (S70),

including 2N log2(N) MACs, which needs to be performed only once and can be reused for all the decomposed

MVMs. In addition, the decoding energy part of E3 in equation (S73) consumes (1 + α)M ′-point FFT per

decomposed MVM. Therefore, E3 including both the encoding and decoding energy is given by

E3 =

(
2N · log2 N +

M

M ′ · 2(1 + α)M ′ log2((1 + α)M ′)

)
· edig = (2N · log2 N + 2(1 + α) ·M · log2((1 + α)M ′)) · edig.

(S84)

Putting equations (S82), (S83) and (S84) together, the total energy consumption Emvm is given by

Emvm = E1 + E2 + E3 = (1 + α)(1 + β) ·NM · η−1 · SNR · kBT0︸ ︷︷ ︸
E1

+ 2(1 + α) ·M · eadc︸ ︷︷ ︸
E2

+ (2N · log2 N + 2(1 + α) ·M · log2((1 + α)M ′)) · edig︸ ︷︷ ︸
E3

. (S85)

The corresponding energy efficiency, measured by energy per MAC, emvm, is

emvm =
Emvm

4NM
= e1 + e2 + e3 =

(1 + α)(1 + β)

4
· η−1 · SNR · kBT0

︸ ︷︷ ︸
e1

+
1 + α

2N
· eadc

︸ ︷︷ ︸
e2

+

(
1

2M
· log2 N +

1 + α

2N
· log2((1 + α)M ′)

)
· edig

︸ ︷︷ ︸
e3

. (S86)

From equation (S86), it can be seen that the energy efficiency term e1 is independent of the MVM

dimension, and the terms e2 and e3 respectively scale as O( 1
N ) and O( logN

M + 1
N ). As a result, as the

MVM dimensions increase, i.e., N → ∞ and M → ∞, emvm approaches e1, which is bottlenecked by the

thermal noise and hardware limit, thus achieving significantly enhanced energy efficiency compared to digital

computing. Moreover, under an ideal hardware with η = 1 and α = β = 0, we can derive WISE’s thermal

dynamic limit (TDL) as

etdl := lim
N→+∞,M→+∞

emvm = SNR · kT0/4. (S87)

This TDL can even exceed the energy efficiency for b-bit computation at the Landauer Limit, given by

eLandauer = b2 · ln 2 · kT0, when SNR/4 < b2 ln 2, or SNR < 2.77b2.

G. MVM Decomposition into IPs

According to equation (S86), while a decomposed MVM with a smaller value of M ′ reduces the energy

consumption term e3, it usually requires a large overhead, i.e., larger values of α and/or β. For the extreme

MVM decomposition case with M ′ = 1, the original MVM is decomposed into M IPs. We denote the total

energy consumption and energy efficiency under this extreme decomposition as E′
mvm and e′mvm, respectively.

Since the number of padded zero subcarriers must be a positive integer, we set the minimum ∆M = 1

that yields a frequency-domain overhead coefficient of α = 2. In this case, the decoding process in equation
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(S73) becomes a three-point FFT ((1 + α)M ′ = 3), where the IP result is carried by the middle subcarrier,

y0 = Sy↓[1]. This means the energy consumption term E3 given by equation (S84) does not hold. Instead,

the decoding process from sy↓ ∈ C3 to Sy↓[1] can be rewritten as

y0 = Sy↓[1] =

2∑

n=0

sy[n] · e−j2π
1−3/2

3 n = sy[0] + sy[1] · ej π
3 + sy[2] · ej 2π

3 , (S88)

which contains two complex-valued MACs or, equivalently, eight real-valued MACs. In addition, the

synchronization algorithm in Supplementary Section 12 ensures the sub-sample-level of timing synchro-

nization between the TX and RX sides, and the cyclic prefix with ∆L = 1 is sufficient, corresponding to

β = ∆L/(M ′ + 2∆M) = 1/3. By plugging α = 2 and β = 1/3 for other two terms E1 and E2, the energy

required for the MVM computation, E′
mvm, is given by

E′
mvm = 4NM · η−1 · SNR · kBT0︸ ︷︷ ︸

E1

+ 6M · eadc︸ ︷︷ ︸
E2

+ (2N · log2 N + 8M) · edig︸ ︷︷ ︸
E3

, (S89)

which corresponds to an energy efficiency of

e′mvm =
E′

mvm

4NM
= η−1 · SNR · kBT0︸ ︷︷ ︸

e1

+
3

2N
· eadc

︸ ︷︷ ︸
e2

+

(
1

2M
· log2 N +

2

N

)
· edig

︸ ︷︷ ︸
e3

. (S90)

In the special case with M = 1, the MVM is reduced to a standalone IP computation task given by

c = ⟨a,b⟩ =
∑N

n=1 an ·bn. The total energy consumption for a standalone IP, denoted by Eip, can be obtained

by plugging M = 1 into equation (S89), i.e.,

Eip = 4N · η−1 · SNR · kBT0︸ ︷︷ ︸
E1

+ 6 · eadc︸ ︷︷ ︸
E2

+ (2N · log2 N + 8) · edig︸ ︷︷ ︸
E3

. (S91)

The corresponding energy efficiency, denoted by eip, can then be derived by plugging M = 1 into equation

(S90), i.e.,

eip =
Eip

4N
= η−1 · SNR · kBT0︸ ︷︷ ︸

e1

+
3

2N
· eadc

︸ ︷︷ ︸
e2

+

(
1

2
· log2 N +

2

N

)
· edig

︸ ︷︷ ︸
e3

. (S92)

Note that since
(
1
2 · log2 N + 2

N

)
· edig > edig, eip is always higher than edig. This is because the IFFT-based

encoding requires 2N log2 N MACs, which is higher energy consumption than directly computing the IP

itself and cannot be amortized compared to the MVM task as M scales. Fortunately, this limitation can be

resolved in the W-precoding scheme, described in Supplementary Section 9.
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Fig. S4 The overview of the channel modeling and the two channel calibration schemes of WISE. a, The wireless
channel introduces signal distortion, leading to incorrect matrix-vector multiplication (MVM) results when the channel state
information (CSI), H, is uncalibrated. b, In the W-precoding scheme, model weights W are precoded into V at the central
radio to ensure that the correct model weights are received by the client after wireless transmission. c, In the x-precoding
scheme, each inference request x is precoded into v at the client to compensate for channel effects on the received signal.

9 WISE’s W-Precoding Scheme: Wireless Channel Calibration at

the Central Radio

The basic scheme of WISE, described in Supplementary Section 8, assumes that the w(t) carrying model

weights W is directly input into the computing mixer. However, WISE leverages the shared wireless medium

to broadcast model weights, where signals carrying model weights experience timing delay, multi-path effect,

and distortion as they propagate through the wireless channel from the central radio to each client, as
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illustrated in Fig. S4a. Therefore, channel state information (CSI) estimation and calibration are required to

ensure that the signals received by the clients carry the desired model weights, W, after wireless transmission.

In this section, we consider channel calibration at the central radio, termed the “W-precoding scheme”,

as shown in Fig. S4b, which precodes the model weights W into V = [Vm,n] ∈ CM×N before transmission to

the clients. This approach does not incur additional computational or energy costs for the client. Moreover,

multiple clients in close proximity sharing similar CSI can be served with the same precoded model weights.

The W-precoding scheme is derived from the basic scheme described in Supplementary Section 8. For brevity,

we use W and y to represent the decomposed weight matrix W′′ and padded output y′′ in Supplementary

Section 8, with M referring (1 + α)M ′. By eliminating the IFFT-based encoding on x, the W-precoding

scheme further improves the energy efficiency for in-physics MVM computation.

A. Wireless Channel Modeling

For the wireless channel from the central radio to the client, we define its wireless channel’s frequency response

h(f) ∈ C as a complex-valued function of the frequency f . As shown in Fig. S4a, for a general spectrum

STX, the frequency response on its k-th subcarrier at frequency (F + (k − L/2) · ∆f) can be acquired by

h(F + (k−L/2) ·∆f). Define the channel state information (CSI) as a vector Sh = [Sh[k]] ∈ CL of the same

dimension, which has Sh[k] = h(F + (k−L/2) ·∆f). Let ‘⊙’ and ‘⊘’ denote the element-wise multiplication

and division of two vectors with equal length, respectively. The impact of the wireless channel from STX to

SRX can be formulated as

SRX = STX ⊙ Sh, where SRX[k] = STX[k] · Sh[k] = STX[k] · h
(
F +

(
k − L

2

)
· ∆f

)
, ∀k = 0, 1, . . . , L.

(S93)

B. W-Precoding Scheme: Algorithm

Specifically for the MVM task, the FFT size is NM , so that we consider the CSI as Sh = [Sh[k]] ∈ CNM .

For this Sh, we define its corresponding CSI matrix, H = [Hm,n] ∈ CM×N , given by

Hm,n = Sh[MN − 1 −m− nM ], ∀n = 0, 1, . . . , N − 1, and m = 0, 1, . . . ,M − 1. (S94)

Based on equations (S46), (S93), and (S94), the MVM including the wireless channel impact can be written

as

y = W · x = (H⊙V) · x, with ym =

N−1∑

n=0

Hm,n · Vm,n · xn, ∀m = 0, 1, . . . ,M − 1. (S95)

To estimate the channel H, we randomize a set of V(i) and x(i); then we obtain the MVM results by (i)

simulating MVM with wireless channel effect following equation (S95), denoted as y(i), and (ii) the analog

computing by WISE without channel calibration, denoted as ŷ(i). Then, H can be estimated using the

minimum mean squared error (MMSE) method given by

H⋆ = arg min
H

∑

i

∣∣∣y(i) − ŷ(i)
∣∣∣
2

= arg min
H

∑

i

∣∣∣(H⊙V(i)) · x(i) − ŷ(i)
∣∣∣
2

. (S96)
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Due to the continuity nature of the channel response h(f), we only need to perform the MMSE optimization

in equation (S96) once with a large value of L (e.g., L = 300 for the 25 MHz channel used in our experiments)

for its H⋆. Then, the corresponding S⋆
h can be acquired by reversely conducting equation (S94), and the

general h(f) can be estimated by nearest neighbor-based interpolation on amplitude and linear interpolation

on phases, from which the Sh of other L and H of other N and M can be inferred. When there are multiple

users, we optimize H⋆ for each user and average them over users to parameterize the overall H⋆. With the

optimized H⋆, and the precoded weight matrix V is given by

V = W ⊘H⋆, where Vm,n =
Wm,n

H⋆
m,n

, ∀n = 0, 1, . . . , N − 1, and ∀m = 0, 1, . . . ,M − 1. (S97)

Note that the channel estimation process in equation (S96) can be preprocessed, whose cost can be averaged

down over an unlimited number of inference requests. Also, the precoding process in equation (S97) is per-

formed on the central radio, which does not impact the energy consumption or the computation throughput

of the client.

C. W-Precoding Scheme: Time Encoding for x

Note that in equation (S70), the N -point IFFT applied to x can be formulated as an MVM given by

(D−1 ·RN/2) ·x. Therefore, we can detach this IFFT process from x, and attach it as part of W. Specifically,

after the detachment, the new input vector x′ = [x′
n] ∈ CN is given by

x′ = (D−1 ·RN/2)
−1 · x, (S98)

whose corresponding I/Q waveform s′x = [s′x[n]] ∈ CNM can be generated by

s′x =
1

M
√
N

·
[
D−1 ·RN/2 · x′, . . . ,D−1 ·RN/2 · x′

]

︸ ︷︷ ︸
repeated M times

=
1

M
√
N

·
[
x, . . . ,x

]

︸ ︷︷ ︸
repeated M times

. (S99)

Therefore, s′x can be generated by repeating the original x, i.e., via direct time encoding, and involved no

MACs. On the other hand, the new W′ = [W ′
m,n] ∈ CM×N combined with the IFFT operation is given by

W′ = W · (D−1 ·RN/2). (S100)

Plugging this new W′ into the encoding process at the central radio, the corresponding I/Q waveform

sw = [sw[n]] ∈ CNM is given by

s′w[n] =
1

NM

N−1∑

n=0

M−1∑

m=0

W ′
m,n · e−j2π

1+m+nM+NM/2
NM n, where W ′

m,n =
1√
N

N−1∑

n′=0

Wm,n′ · ej2π n−N/2
N n′

, ∀n = 0, 1, . . . , L− 1.

(S101)

25



Overall, the weight matrix W is still frequency-encoded and, upon receiving the W-precoded model weights

from the central radio, the client performs local MVM computation given by

y = V′ ⊙H · x′

= (W′ ⊘H⋆) ⊙H · x′ =
[
W · (D−1 ·RN/2) ⊘H⋆

]
⊙H · x′ (W-precoding at the central radio)

=
[
W · (D−1 ·RN/2) ⊘H⋆

]
⊙H ·

[
(D−1 ·RN/2)

−1 · x
]

(time encoding of x at the client)

=
[
W · (D−1 ·RN/2)

]
⊘ (H⋆ ⊘H) ·

[
(D−1 ·RN/2)

−1 · x
]
≈ W · x (original MVM). (S102)

Note that the last approximation is due to the MMSE-based channel estimation, which corresponds to

H⋆ ≈ H, or H⋆ ⊘H being approximately an all-ones matrix.

D. W-Precoding Scheme: Energy Efficiency Analysis

Compared to the basic scheme described in Supplementary Section 8, the W-precoding scheme further

improves the energy efficiency by applying “IFFT-less” time encoding on the client. In particular, under this

scheme, the energy consumption term E3 becomes

E3 =
M

M ′ · 2(1 + α)M ′ log2((1 + α)M ′) · edig = 2(1 + α) ·M · log2((1 + α)M ′) · edig, (S103)

where the encoding energy of (2N log2 N · edig) in equation (S84) is eliminated. As a result, the total energy

consumption per MVM, Emvm, for the W-precoding scheme is given by

Emvm = E1 + E2 + E3 = (1 + α)(1 + β) ·NM · η−1 · SNR · kBT0︸ ︷︷ ︸
E1

+ 2(1 + α) ·M · eadc︸ ︷︷ ︸
E2

+ 2(1 + α) ·M · log2((1 + α)M ′) · edig︸ ︷︷ ︸
E3

. (S104)

The corresponding energy efficiency, emvm, is given by

emvm =
Emvm

4NM
= e1 + e2 + e3 =

(1 + α)(1 + β)

4
· η−1 · SNR · kBT0

︸ ︷︷ ︸
e1

+
1 + α

2N
· eadc

︸ ︷︷ ︸
e2

+
1 + α

2N
· log2((1 + α)M ′) · edig

︸ ︷︷ ︸
e3

.

(S105)

Note that equation (S105) indicates that the energy efficiency of this W-precoding scheme is independent of

the output size M , due to the elimination of the N -point IFFT for encoding. The corresponding TDL under

the W-precoding scheme is given by

etdl := lim
N→+∞

emvm = SNR · kT0/4. (S106)
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E. W-Precoding Scheme: MVM Decomposition into IPs

Similarly, the energy efficiency E′
mvm for the W-precoding scheme that decomposes the MVM into M IPs

can be rewritten from equation (S89) as

E′
mvm = 4NM · η−1 · SNR · kBT0︸ ︷︷ ︸

E1

+ 6M · eadc︸ ︷︷ ︸
E2

+ 8M · edig︸ ︷︷ ︸
E3

, (S107)

where the encoding energy consumption of
(
1
2 · log2 N

)
· edig is eliminated due to the time encoding of x.

Also, e′mvm can be derived from equation (S90), which is

e′mvm =
E′

mvm

4NM
= η−1 · SNR · kBT0︸ ︷︷ ︸

e1

+
3

2N
· eadc

︸ ︷︷ ︸
e2

+
2

N
· edig

︸ ︷︷ ︸
e3

. (S108)

Here, notice that the energy efficiency for W-precoding scheme is independent of M . Therefore, for a

standalone IP computation with M = 1, it holds that

eip = e′mvm = η−1 · SNR · kBT0︸ ︷︷ ︸
e1

+
3

2N
· eadc

︸ ︷︷ ︸
e2

+
2

N
· edig

︸ ︷︷ ︸
e3

. (S109)

Compared to the basic scheme, this W-precoding scheme achieves further enhanced energy efficiency for

standalone IP computations.

10 WISE’s x-Precoding Scheme: Wireless Channel Calibration at

the Client

One alternative channel calibration scheme is performed for each client by adjusting the input x, which

we term as the x-precoding scheme, as shown in Fig. S4c. This scheme allows each client to estimate and

apply its own CSI, especially when the users are away from each other and the CSIs are diverse among

clients. On the other hand, this scheme requires extra computation costs for clients, incurring higher energy

consumption. This scheme precodes x into v = [vn] ∈ CN .

A. x-Precoding Scheme: Algorithm

For the same CSI Sh as considered in Supplementary Section 9, we define the equivalent channel vector

h = [hn] ∈ CN . Due to the smoothness of the channel response h(f) and thus Sh, we let hn to approximate

the channel responses as

hn ≈ Sh[MN − 1 −m− nM ] = Hm,n, ∀n = 0, 1, . . . , N − 1, m = 0, 1, . . . ,M − 1. (S110)

This x-precoding scheme transmits the v in substitute of x, which compensates the channel impact on the

received W during the frequency mixing. Then, we can rewrite equation (S95) by this new equivalent channel
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vector h and a precoded v as

y = W · (h⊙ v) with ym =

N−1∑

n=0

Wm,n · hn · vn, ∀m = 0, 1, . . . ,M − 1. (S111)

To estimate the equivalent channel vector h, we randomize a series of v(i) and W(i), and generate their

corresponding y(i) and ŷ(i). Similarly, h can be optimized by the MMSE method given by

h⋆ = arg min
h

∑

i

∣∣∣y(i) − ŷ(i)
∣∣∣
2

= arg min
h

∑

i

∣∣∣W(i) · (h⊙ v(i)) − ŷ(i)
∣∣∣
2

. (S112)

Given the optimized h⋆, the precoded input v is given by

v = x⊘ h⋆ with vn =
xn

h⋆
n

, ∀n = 0, 1, . . . , N. (S113)

Essentially, the MVM computation of this x-precoding scheme can be summarized by

y = W ⊙H · v ≈ W · (h⊙ v)

= W · (h⊙ x⊘ h⋆) (x-precoding at the client)

= W · [(h⊘ h⋆) ⊙ x] ≈ W · x (original MVM). (S114)

Here, the last approximation is due to the MMSE-based channel estimation, which corresponds to h⋆ ≈ h,

or h⋆ ⊘ h being approximately an all-ones vector.

B. x-Precoding Scheme: Energy Efficiency Analysis

Compared to the basic scheme described in Supplementary Section 8, this x-precoding scheme maintains the

same energy consumption terms E1 and E2. On the other hand, the precoding is performed in the frequency

domain for x leveraging the IFFT-based encoding. Moreover, the precoding process based on equation (S113)

requires additional N complex-valued MACs (or 4N real-valued MACs). Hence, the energy consumption

term E3 for the x-precoding scheme is given by

E3 = (4N + 2N · log2 N + 2(1 + α) ·M · log2((1 + α)M ′)) · edig. (S115)

Then, the energy consumption per MVM under this x-precoding scheme is given by

Emvm = E1 + E2 + E3 = (1 + α)(1 + β) ·NM · η−1 · SNR · kBT0︸ ︷︷ ︸
E1

+ 2(1 + α) ·M · eadc︸ ︷︷ ︸
E2

+ (4N + 2N log2 N + 2(1 + α) ·M · log2((1 + α)M ′)) · edig︸ ︷︷ ︸
E3

. (S116)
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The corresponding energy efficiency is given by

emvm =
Emvm

4NM
= e1 + e2 + e3

=
(1 + α)(1 + β)

4
· η−1 · SNR · kBT0

︸ ︷︷ ︸
e1

+
1 + α

2N
· eadc

︸ ︷︷ ︸
e2

+

(
1

M
+

log2 N

2M
+

1 + α

2N
· log2((1 + α)M ′)

)
· edig

︸ ︷︷ ︸
e3

.

(S117)

Similar to the basic scheme, the TDL under this x-precoding scheme with N → ∞ and M → ∞ is given by

etdl := lim
N→+∞,M→+∞

emvm = SNR · kT0/4. (S118)

C. x-Precoding Scheme: MVM Decomposition into IPs

As for the IP-based MVM decomposition with M ′ = 1, we have the additional precoding energy consumption

of 4N · edig. Hence, equation (S89) can be rewritten as

E′
mvm = 4NM · η−1 · SNR · kBT0︸ ︷︷ ︸

E1

+ 6M · eadc︸ ︷︷ ︸
E2

+ (4N + 2N log2 N + 8M) · edig︸ ︷︷ ︸
E3

, (S119)

and equation (S90) can be rewritten as

e′mvm =
E′

mvm

4NM
= η−1 · SNR · kBT0︸ ︷︷ ︸

e1

+
3

2N
· eadc

︸ ︷︷ ︸
e2

+

(
1

M
+

log2 N

2M
+

2

N

)
· edig

︸ ︷︷ ︸
e3

. (S120)

The energy efficiency of the standalone IP computation, eip, can be obtained by plugging M = 1 in equation

(S120),

eip = η−1 · SNR · kBT0︸ ︷︷ ︸
e1

+
3

2N
· eadc

︸ ︷︷ ︸
e2

+

(
1 + log2 N +

2

N

)
· edig

︸ ︷︷ ︸
e3

. (S121)

Similar to equation (S92) for the based scheme of WISE, it can be seen that this x-precoding scheme is not

energy efficient for standalone IP computation.

11 Computation Throughput Analysis

In this section, we analyze WISE’s computation throughput, i.e., the number of real-valued MACs per unit

time. Without loss of generality, we consider the MVM y = W · x, where a single central radio wirelessly

broadcasts model weights W to U clients using an OFDM system with FFT size L = NM . Each client

performs local inference on x and generates y. In this case, a total number of 4NM real-valued MACs is

involved per client, and a total number of 4NM · U real-valued MACs across all U clients.

To achieve an MVM involving U · 4NM real-valued MACs, the latency is primarily determined by the

waveform duration for transmitting w(t) and x(t). The total waveform duration across all M/M ′ decomposed
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MVMs is

Tmvm =
M

M ′ ·
(1 + α)(1 + β) ·NM ′

B
=

(1 + α)(1 + β) ·NM

B
. (S122)

Thus, the computation throughput, denoted by Λ, is given by

Λ =
U · 4NM

Tmvm
=

4U ·B
(1 + α)(1 + β)

, (S123)

which applies to all three schemes of WISE, described in Supplementary Sections 8, 9, and 10. To conclude,

the computation throughput of WISE is proportional to the available bandwidth, B, and number of users U .

With wirelessly broadcast model weights, the computation throughout will be determined by the available

wireless bandwidth in the unlicensed (e.g., 25 MHz in the 915 MHz ISM band) or licensed bands.

30



Supplementary Information: Experiment

12 Experimental Setup

USRP X310
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ZEM-4300+
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Fig. S5 The software-defined radio testbed for WISE’s experimental implementation. a, Experimental setup for
WISE with model weights broadcast over a wireless channel to three clients, each employing a passive ZEM-4300+ frequency
mixer as the computing mixer for in-physics MVM computation. b, Experimental setup for WISE with model weights trans-
mitted over a wired channel to a single client.

Fig. S5a shows the detailed experiment setup of WISE, including the Tupavco TP514 Yagi directional

antenna, Mini-Circuits ZEM-4300+ [49] as the computing frequency mixer, and USRP X310 software-defined

radio (SDR) as the transceiver radio unit. One USRP X310 serves as the central radio that broadcasts w(t)

or v(t) (for the W-precoding scheme) over a wireless channel with a bandwidth of B = 25 MHz at the carrier

frequency of Fw = 0.915 GHz. Our wireless experiments are conducted in the unlicensed industrial, scientific,

and medical (ISM) band centered at 0.915 GHz, which has a limited bandwidth of only 26 MHz between

902–928 MHz [50]. For a client, one RX antenna receives the wirelessly broadcast model weights at the input

to the LO port of the computing mixer; and one USRP X310 generates x(t) or v(t) (for the x-precoding

scheme) at the carrier frequency of Fx = 1.2 GHz, which is streamed into the computing mixer’s RF port

via a cable and a total of 30 dB attenuator. The output signal of the computing mixer from the IF port,

y(t), at the carrier frequency of Fy = 0.285 MHz is streamed to the RX channel of a USRP X310, which is

configured with a low sampling rate of B↓ = max{25
N , 0.20}MHz. The wireless link distance is ≈1 m, which

is limited by the USRP X310’s TX power and the required LO input power to the computing mixer.

We also consider a wired setting of WISE with a single client, as shown in Fig. S5b, with the same carrier

frequency configuration of Fw, Fx, and Fy. In this case, the TX channel of the central radio directly streams

w(t) to the computing mixer’s LO port, where no precoding is used. A signal bandwidth of B = 100 MHz is

employed in this setup with the wired channel, which is limited by the DAC sampling rate of the USRP X310.

A. Tupavco TP514 Yagi Directional Antenna

In the wireless setup of WISE, we use the Tupavco TP514 Yagi directional antenna as the TX/RX antenna

to establish the wireless link between the central radio and each client. In general, a Yagi antenna con-

sists of multiple parallel resonant antenna elements, which focus the transmitted/received RF signal power

in a specific direction. The geometry of these antenna elements is determined by the target operating fre-

quency. As a fully passive component, a Yagi antenna offers a higher gain in the intended direction where

the RF signal is concentrated, while exhibiting lower gains in other directions when compared to an ideal
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Fig. S6 The detailed structure of the computing mixer, Mino-Circuits ZEM-4300+ [49]. a, The external and
internal view of the employed frequency mixer, ZEM-4300+. b, The schematic of a double-balanced diode mixer composed of a
four-diode-bridge, producing an output signal rIF(t) ∝ sgn(rLO(t)) · rRF(t). This mixing process approximates the time-domain
multiplication of two RF signals, rLO(t) and rRF(t).

isotropic antenna. Specifically, the Tupavco TP514 Yagi antenna is designed and optimized for dual fre-

quency bands:0.80–0.96 GHz and 1.7–2.5 GHz. This frequency range includes the ISM band at 0.915 GHz

utilized in our experiments. The antenna provides an antenna gain of 9 dB in the designated direction, and

has horizontal and vertical beamwidths of 65◦ and 55◦, respectively. It is connected to the transceiver radio,

a USRP X310 SDR, via an SMA cable.

B. Computing Frequency Mixer, ZEM-4300+

We exploit the passive double-balanced diode mixer, Mini-Circuits ZEM-4300+ [49], as the computing mixer

in the implementation of WISE, as shown in Fig. S6a. The typical schematic of a double-balanced diode mixer

is shown in Fig. S6b, whose core component is a four-diode bridge. When performing signal frequency down-

conversion, the LO and RF ports serve as the input ports, and the IF port is the output port. Essentially,

the waveform input to the LO port, rLO(t), controls which two diodes are on while the other two diodes

are off. The on/off status of this four-diode-bridge determines the current direction of the input waveform

rRF(t) at the RF port, and thus that of the output waveform rIF(t) on the IF port. Equivalently, this mixer

modulates an on-off switching pattern on rRF(t) based on rLO(t); the output waveform on the IF port rIF(t)

can thus be formulated as

rIF(t) ∝ sgn(rLO(t)) · rRF(t), where sgn(x) =





−1, if x < 0,

0, if x = 0,

+1, if x > 0.

(S124)

Such on-off switching can be treated as a low-resolution version of the ideal analog multiplication given

by equation (S21), where rLO(t) is quantized with an equivalent 1-bit resolution, i.e., “ON” or “OFF”.

Fortunately, the waveform rLO(t) is a narrowband signal modulated at a carrier frequency such that the

quantization noise after the mixing process is mostly distributed across other carrier frequencies, which can

be filtered out by an anti-aliasing filter. In our experiments, the residual noise still impacts the computing

accuracy of WISE. To mitigate this effect, a sourced analog multiplier, e.g., Gilbert cell [43, 44], can be
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Fig. S7 Experimental computing accuracy as a function of the input power level to the local oscillator (LO) port of the
computing mixer, benchmarked using inner-product (IP) computations across varying input sizes N = {256, 1024, 4096}. Based
on these results, we empirically select an LO power in the range of −3.00 dBm to −3.25 dBm, which yields optimal computing
accuracy.

used for better analog computing performance at the cost of extra energy consumption as it is an active

component.

Specifically, the ZEM-4300+ mixer supports an LO and RF frequency range of 0.3–4.3 GHz, where w(t) is

modulated to the LO at 0.915 GHz (within the ISM band) and x(t) is modulated to the RF at 1.2 GHz. The

mixer supports an IF frequency range of 0–1.0 GHz, which includes the frequency 0.285 GHz to which y(t)

modulated. Since the input waveform w(t) to the LO port spans a bandwidth of 25 MHz, different from the

typical usage of a frequency mixer, i.e., a single tone signal, the frequency mixer’s parameters (e.g., optimal

input LO power, insertion loss, etc.) might deviate from that on the datasheet.

We benchmark the optimal LO power for the target in-physics computing tasks, employing a setup with

wired transmissions of w(t) to a single client without the channel calibration process, as shown in Fig. S5b. We

consider the same inner-product (IP) computation as described in Results section with randomly generated

complex-valued vectors a and b over the IP dimensions of N ∈ {256, 1024, 4096}. We follow the same carrier

frequency configuration (0.915 GHz) and bandwidth (25 MHz) setup as described in Methods section, and

sweep the signal power of w(t) input to the LO port between [−10, 0] dBm with a step size of 0.2 dB. We

also consider three input power levels of {−63,−53,−43} dBm into the RF port (x(t)), which correspond

to three different SNR levels of SNR ∈ {15, 25, 35} dB. Fig. S7 plots the in-physics computing performance

measured by the computing accuracy as a function of the LO power. Overall, the computing accuracy is

slightly higher than that in Results section under the wired channel setting. Given the same power of x(t),

i.e., the same received SNR of y(t), the LO power of w(t) impacts the computing accuracy. Moreover, the

optimal LO power that achieves the best computing accuracy, or the lowest RMSE, reduces as the RF power

or SNR increases. For example, with an IP dimension of N = 4, 096, the optimal LO power is −4.0 dBm for

SNR = 35 dB, corresponding to an RMSE of 0.031 or ≈6-bit computing accuracy. On the other hand, the

optimal LO power is −0.4 dBm for SNR = 15 dB, corresponding to an RMSE of 0.058 or ≈5-bit computing

accuracy. This trend is plausible since a higher RF power input can compensate for the need for a higher LO

power input that activates the frequency mixer into the optimal power regime. To compromise across varying

SNR values, we empirically select the LO power in the range of [−3.25,−3.0] dBm in our experiments.

Then, we measure the frequency mixer’s insertion loss under the selected LO power, i.e., the power

discrepancy of the input power to the RF port and the output power from the IF port. Note that the output
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Fig. S8 A close view of the employed software-defined radio (SDR), USRP X310, in WISE’s implementation.
a–b, The USRP X310 software-defined radio (SDR) with two UBX-160 daughterboards, supporting two transmit (TX) and
two receive (RX) channels. c, Close-up view of the USRP X310’s internal components, including the digital-to-analog converter
(DAC), analog-to-digital converter (ADC), and local oscillator (LO).

power spans over a bandwidth of approximately 2B after the convolution, as discussed in Supplementary

Section 7. Under this setting, the measured insertion loss of the computing mixer is 11.4 dB, i.e., an efficiency

of ηmixer = 0.0724.

C. Tranceiver Radio Unit, USRP X310

We use USRP X310 equipped with a UBX-160 daughterboard as the basic transmitter/receiver radio unit,

as shown in Fig. S8. Specifically, USRP X310 is a high-performance SDR that supports a carrier frequency

of 10 MHz–6 GHz. It is equipped with a 16-bit DAC and a 14-bit ADC per channel, both of which support a

sampling rate of 0.196–200 MHz. Note that the TX and RX path includes an LPF as the anti-aliasing filter

in the baseband, whose cutoff frequency is default to half of the TX/RX sampling rate or 80 MHz, whichever

is smaller. We use a Python-based interface built on top of GNU Radio for radio configuration and data

streaming via a 10 Gbps SFP+ interface to a host server.

The TX channel has a gain setting range of 0–31.5 dB at a step size of 0.5 dB, corresponding to a maximum

transmitting power of Pmax ≈ +23 dBm with |s[n]| = 1, as discussed in Supplementary Section 2. In practice,

when transmitting v(t) on the central radio, we consider an average baseband I/Q waveform amplitude of√
E[s2v[n]] = 0.2, which corresponds to a peak-to-average power ratio (PAPR) of 14 dB without saturation

(see Supplementary Section 2). With the TX gain set to 31 dB, the average transmit power of the central

radio is ≈ 9 dBm. For the TX channel that generates x(t), the TX gain is set to 9 dB, and a total of 30 dB

attenuators are employed to reduce the transmit power. We sweep the baseband I/Q waveform amplitude

for different TX power/energy per MAC settings, whose upper bound is also
√
E[s2x[n]] = 0.2, corresponding

to a PAPR of 14 dB. Similarly, the RX channel has the same gain setting range of 0–31.5 dB at the step

of 0.5 dB. We configure the RX gain at 20 dB. Together with the frequency mixer, the RX noise figure is

measured at 16.9 dB, associated with an energy efficiency ηnf = 2.04 × 10−2.

D. Embedded Anti-Aliasing Filter

We directly use the embedded anti-aliasing filter in USRP X310 as the LPF in WISE, whose cutoff frequency

is set to half of the sampling rate, i.e., f0 = fs/2. To characterize the frequency response of this anti-aliasing

filter, we transmit a continuous-wave (CW) signal at the power of −30 dBm using the signal generator

function within the Keysight N9914B FieldFox Handheld RF Analyzer, and sweep its frequency f around

the carrier frequency of Fy =0.285 GHz, at which y(t) is received. Then, the amplitude of the frequency

34



Cutoff frequency

fs = 0.5 MHz

fs = 0.2 MHz
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Fig. S9 Measured normalized frequency response gain of the USRP X310’s internal low-pass filter (LPF) at varying sampling
rates, fs = {0.2, 0.5, 1.0}MHz, with cutoff frequencies of {0.1, 0.25, 0.5}MHz indicated by the dashed lines. A zero-subcarrier
padding coefficient of α > 0.11 is sufficient to mitigate the roll-off effect of the LPF under these conditions.

response of the anti-aliasing filter is calculated by the power of the received CW signal referred to the power

when the CW signal’s frequency is swept to exactly 0.285 GHz. Specifically, we consider three low sampling

rates employed by the USRP RX fs = {0.2, 0.5, 1.0}MHz, corresponding to the anti-aliasing filter’s cutoff

frequency as f0 = {0.1, 0.25, 0.5}MHz. The frequency of the CW tone, f , is swept with non-uniform step

sizes with smaller step sizes around the cutoff frequency of fs/2.

Fig. S9 shows the gain of the frequency response of the anti-aliasing filter as part of the USRP X310 SDR,

which is employed at the LPF for WISE. Specifically, the frequency-gain descending slope is proportional

to the cutoff frequency f0 or the ADC sampling rate fs. In particular, the gain drops to below −50 dB

on the stopband, which is sufficient enough to mitigate the frequency aliasing issue for an SNR of 30 dB

in our implementation. Also, the gain maintains over −0.3 dB at f = 0.9 · f0, which corresponds to the

zero-subcarrier padding overhead coefficient of α = 0.11. In our MVM implementation, we consider MVM

decomposition with M ′ = 6 and ∆M = 1, i.e., α = 0.33. This configuration ensures that the padded zero

subcarriers are sufficient to compensate for the edge effect of the anti-aliasing filter. In the extreme case of

IP computation with M ′ = 1, we still need ∆M = 1, which leads to a large overhead coefficient of α = 2.

E. Wireless Link Distance and Link Budget Analysis

In this section, we examine the wireless link distance between the central radio and client that supports in-

physics MVM computation via wireless broadcast of model weights, based on the optimized LO input power

and Fig. S7. The link budget equation for a wireless link is given by

PRX[dBm] = PTX[dBm] + GTX[dBi] + BFTX[dB] − LTX[dB] − Lprop[dB] + GRX[dBi] + BFRX[dB] − LRX[dB],

(S125)

where PTX (resp. PRX) denotes the TX (resp. RX) signal power, GTX (resp. GRX) denotes the TX (resp.

RX) antenna gain, BFTX (resp. BFRX) denotes the TX (resp. RX) beamforming gain if an antenna array

is employed for beamforming, LTX (resp. LRX) denotes the insertion loss on the TX )(resp. RX) due to

connectors and cables, etc., and Lprop is the path loss of the wireless link. In particular, we consider the free
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Fig. S10 The theoretical link distance analysis applying the free-space path loss model. a, The link distance
under varying TX power levels at the central radio, PTX, where the central radio is equipped with an antenna array supporting
TX beamforming, and each client is equipped with a signal antenna, and the antenna gain is GTX = GRX = 6dBi. b, The link
distance under varying RX power input levels at the LO port of the computing mixer, PRX, under the same setting as a.

space path loss [54] given by

Lprop[dB] = 10 · log10

(
4πdF

c

)2

= 20 · log10

(
4πdF

c

)
, (S126)

where d is the link distance between the TX and RX, F is the carrier frequency, and c is the speed of light.

Combining equations (S125) and (S126), the link distance, d, can be written as

d ≈ 10(PTX−PRX+GTX+BFTX−LTX+GRX+BFRX−LRX)/20 ·
( c

4πF

)
. (S127)

In our implementation, the USRP X310 supports an average transmit power of PTX = +9 dBm with

a PAPR of up to 14 dB, the Yagi antenna provides an antenna gain of GTX = GRX = 9 dBi with no

beamforming (BFTX = BFRX = 0 dB, and the insertion losses LTX = LRX ≈ 0 dB due to short cable

length and minimal connections. To feed the LO port with PRX = −3 dBm, the path loss Lprop should be

30 dB. Plugging in the carrier frequency of w(t) = 0.915 GHz, the wireless link distance is recommended to

be around 1 meter, as employed in our experiments. This wireless link is determined by the relatively high

input power at the computing mixer’s LO power required to drive the frequency mixer of our choice. Such

a high input power comes from the double-balanced diode architecture of this computing mixer.

To support wireless broadcast of model weight over larger wireless link distances, one can consider using a

computing mixer that requires a lower LO input power (i.e., smaller values of PRX). For example, RF mixers

integrating an internal LO amplifier (e.g., the PE4152 UltraCMOS quad MOSFET mixer from pSemi) or

analog multipliers based on integrated analog correlators [45] can relax the input power constraint on PRX.

Another approach is to employ antennas with a higher antenna gain (i.e., larger values of GTX and/or GRX),

or beamforming using an antenna array (i.e., larger values o BFTX and/or BFRX). Specifically, when referred

to a single antenna, a planar antenna array with Nant×Nant antenna elements with half-wavelength spacing

between adjacent elements can provide a maximum beamforming gain of

BFTX[dB] = BFRX[dB] = 10 log10

(
N2

ant

)
. (S128)
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For example, the Argos massive MIMO radio [47] employs a sub-7 GHz antenna array with Nant = 8, which

supports a beamforming gain BFTX of up to 18.06 dB on the central radio. We illustrate the theoretical

link distance in Fig. S10, where the central radio employs an antenna array supporting TX beamforming.

For example, as shown in Fig. S10a, an 8×8 antenna array, which is commonly employed in modern cellular

networks, can support a link distance of 100 meters with an improved TX power of PTX = +31.8 dBm.

F. Time and Frequency Synchronization

Generally, the central radio and each client are not naturally synchronized in the time or frequency domain.

Specifically, the client is not aware of the starting point of the transmitted waveform from the central radio,

and the LOs on both the central radio and clients may exhibit a carrier frequency offset (CFO), which can

lead to inter-subcarrier interference, especially when the subcarrier spacing ∆f is small. Therefore, we insert

preambles into x(t) and w(t), which can be used for time and frequency synchronization between the central

radio and each client.

Specifically, given a downsampling ratio N , the preamble as an I/Q sample sequence are defined by

sx,pre = [sx,pre[n]] ∈ C2NLpre and sw,pre = [sw,pre[n]] ∈ C2NLpre for the baseband I/Q waveforms corre-

sponding to x(t) and w(t), respectively, where Lpre is recommended to be a prime number. These two I/Q

waveforms are streamed to the DACs operating at a sampling rate of fs to generate the analog waveform

xpre(t) and wpre(t). These two preambles are composed of two identical sequences, each with NLpre I/Q

samples, each of which is generated with a constant amplitude A and randomized phases ϕx,n and ϕw,n for

sx,pre and sw,pre, respectively. Specifically, we consider a large amplitude A close to 1 to ensure a high out-

put power and SNR without saturation; the phases are uniformly distributed within [0, 2π] to ensure that

the signal power is evenly distributed across the frequency band. To sum up, the preamble generation can

be written as

sx,pre[n] = sx,pre[n + NLpre], sw,pre[n] = sw,pre[n + NLpre], ∀n = 0, 1, . . . , NLpre − 1. (S129)

sx,pre[n] = A · ejϕx,n , sw,pre[n] = A · ejϕw,n , ∀n = 0, 1, . . . , NLpre − 1, where ϕx,n, ϕw,n ∼ U [0, 2π]. (S130)

Based on equation (S53), the received waveform ypre(t) experiences a CFO, ∆F , between the TX and RX,

i.e.,

ypre(t) ∝ xpre(t) · wpre(t) · ej∆Ft. (S131)

After the downsampling ratio of N , we denote the I/Q waveform corresponding to ypre(t) as sy,pre =

[sy,pre[n]] ∈ C2Lpre . Assuming that the channel is stable within the transmission time of the preambles, the

received sy,pre will include two identical sequences given by

sy,pre[n] = sy,pre[n + Lpre] · ej∆F ·nN
fs , ∀n = 0, 1, . . . , Lpre − 1. (S132)

37



Therefore, the starting point of sy,pre can be detected by performing an auto-correlation with a copy of itself

delayed by Lpre I/Q samples [55, 56], i.e.,

Ry,pre =

∣∣∣
∑Lpre−1

n=0 sy,pre[n] · s̄y,pre[n + Lpre]
∣∣∣

∑Lpre−1
n=0 sy,pre[n] · s̄y,pre[n]

∈ [0, 1]. (S133)

In practice, we calculate the auto-correlation, Ry,pre, for a sliding window containing 2Lpre I/Q samples.

When the calculated Ry,pre exceeds a threshold on a given sliding window as a local minimum (e.g., 0.8),

a preamble sy,pre is considered to be detected, and the starting point of this sliding window is considered

as the preamble’s starting point. When the starting point of sy,pre is detected, we can infer the starting

point of the desired waveform y(t) accordingly. Generally, the starting point error of this auto-correlation-

based detection algorithm is determined by the sliding window step [55]. As long as we calculate Ry,pre for

the sliding windows at the step size of every I/Q sample, a sub-symbol timing offset error can be achieved.

Hence, one or two I/Q samples per OFDM symbol for the cyclic prefix is sufficient to ensure the desired

synchronization performance.

In addition, the CFO can be estimated by

∆̂F =
Angle

(∑Lpre−1
n=0 sy,pre[n] · s̄y,pre[n + Lpre]

)

2πNLpre/fs
. (S134)

To calibrate, we can either fine-tune the LO frequency Fy, or apply the estimated CFO on the I/Q sample

sequence sy in the digital domain [55, 56], i.e.,

s′y[n] = sy[n] · e−j∆̂F ·nN
fs . (S135)

To conclude, such a preamble-driven synchronization method allows a short cyclic prefix (e.g., ∆L = 1) and

a small subcarrier spacing ∆f for a large-scale of subcarrier assignment within the accessible bandwidth.

13 Channel Calibration Schemes

In this section, we evaluate and compare the performance of WISE across the three schemes: (i) the basic

scheme (Supplementary Section 8), (ii) the W-precoding scheme (Supplementary Section 9), and (iii) the

x-precoding scheme (Supplementary Section 10).

A. General MVM Computation

We first benchmark WISE’s three schemes for general complex-valued MVM computation, y = W · x. In

particular, the IP-based MVM decomposition is considered with randomized x and squared W (i.e., N = M),

where each element xn and Wm,n are independently randomized with uniformly distributed amplitudes

|x| , |W | ∼ U [0, 1] and uniformly distributed phases ∠xn, ∠Wm,n ∼ U [0, 2π]. As discussed in Supplementary

Section 10, the W-precoding scheme is independent of M , which means this MVM computation is equivalent

to the IP computation in Results section. This MVM computation is also suitable for the basic and x-

precoding schemes that do not comply with the standalone IP computations. Given the in-phyics MVM
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Fig. S11 Benchmark computing accuracy achieved by WISE’s difference schemes compared to simulations for matrix-vector
multiplication (MVM) decomposed into inner-products (IPs), with randomized W and x. Results are shown across varying
input/output size, N = M ∈ {27, 28, . . . , 215}, and SNR values.

computing result (ŷ) and ground truth (y), we define the RMSE [35, 36] as

RMSE =

√√√√E

[
1

M
·
M−1∑

m=0

|ŷm − ym|2
]
, (S136)

and the computing accuracy can be derived as − log2(RMSE/2) [bit].

Fig. S11 compares the experimental computing accuracy of the three schemes with simulation results

under perfect channel calibration and analog multiplication performed by an ideal computing mixer. The

comparison is performed under varying MVM dimensions, where N = M ∈ {27, 28, . . . , 215}. Overall, the

experimental results show that the three schemes require approximately 5 dB higher SNR than the simulations
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Fig. S12 The IP-based energy efficiency benchmarking of WISE’s basic, W-precoding, and x-precoding
schemes. a, The minimum energy per MAC required by the basic, W-precoding, and x-precoding schemes to achieve
RMSE < 0.125 (4-bit computing accuracy), with detailed breakdowns. In addition, the energy efficiency corresponding to
the thermodynamic limit (TDL) is simulated and compared to the Landauer limit. b, The minimum energy per MAC for
RMSE < 0.0625 (5-bit computing accuracy) of the W-precoding and x-precoding schemes. Note that the basic scheme cannot
achieve the 5-bit computing accuracy and is thus not shown.

to achieve the same computing accuracy. The experimental computing accuracy is limited in the high SNR

regime (e.g., >30 dB) due to the on-off switching behavior of the double-balanced diode mixer, as discussed

in Supplementary Section 12. Across all values of N , the W-precoding and x-precoding schemes achieve

higher computing accuracy than the basic scheme. For example, at 25 dB SNR, the RMSE of the W-

precoding scheme is 0.055/0.056 and RMSE of the x-precoding is 0.043/0.047 with N = 4, 096/32, 768,

corresponding to >5-bit computing accuracy. In contrast, the RMSE of the basic scheme is 0.109/0.118,

corresponding to ≈4-bit computing accuracy. This performance gap highlights the effectiveness of the wireless

channel calibration of the W-precoding and x-precoding schemes. In addition, at higher SNR levels, the x-

precoding scheme outperforms the W-precoding scheme, achieving an RMSE of 0.032/0.042 at 35 dB SNR
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with N = 4, 096/32, 768, equivalent to ≈6-bit computing accuracy. This is because the x-precoding scheme

supports CSI estimation and calibration for individual clients. Moreover, as N increases, the computing

accuracy achieved by all three schemes degrades, especially for the basic scheme. This degradation occurs

since a larger value of N results in reduced subcarrier spacing, ∆f , as more subcarriers are packed within

the same bandwidth, B. In this case, the impact of inter-subcarrier interference becomes more significant,

requiring finer frequency synchronization.

Next, we benchmark the energy efficiency of the three schemes across different input sizes, N , based

on the energy efficiency analysis for IP-based MVM decomposition given by (S90), (S108), and (S120),

respectively. The minimum energy per MAC required for the three schemes to achieve RMSE < 0.125

and RMSE < 0.0625 (4-bit and 5-bit computing accuracy, respectively) is shown in Fig. S12. Note that

the energy efficiency of the basic scheme to reach 5-bit computing accuracy is excluded since it cannot

achieve this computing accuracy across all considered SNR values. As summarized in Table S1, the energy

efficiency (emvm) of the basic and x-precoding schemes scales as O( 1
N logN) and the energy efficiency of

the W-precoding scheme scales O(1/N). With large values of N , emvm converges to the energy efficiency

corresponding to the waveform generation, e1. Specifically, with N = 4, 096, the W-precoding scheme has an

energy efficiency of 0.99 fJ/MAC and 2.37 fJ/MAC (1,014.20 TOPS/W and 422.14 TOPS/W) for achieving

RMSE < 0.125 (4-bit) and RMSE < 0.0625 (5-bit), respectively, while the energy efficiency for the x-precoding

scheme is 3.17 fJ/MAC and 3.96 fJ/MAC (315.44 TOPS/W and 252.26 TOPS/W). The energy saving of the

W-precoding scheme comes from the elimination of the FFT-based encoding and precoding for wireless

channel calibration, as discussed in Supplementary Section 9, and thus a lower digital computing cost from

e3 = 2.69 fJ/MAC for the x-precoding scheme to e3 = 0.49 fJ/MAC for the W-precoding scheme. On the

other hand, the extra energy for digital computing is averaged down as the N and/or M increases. For

example, at N = 32, 768, the energy efficiency becomes 0.21 fJ/MAC and 1.43 fJ/MAC (4,710.54 TOPS/W

and 697.01 TOPS/W) for the W-precoding scheme to reach RMSE < 0.125 (4-bit) and RMSE < 0.0625

(5-bit), respectively, which is 0.53 fJ/MAC and 1.29 fJ/MAC (1,888.44 TOPS/W and 774.47 TOPS/W) for

the x-precoding scheme. By assuming an ideal channel calibration and perfect hardware with no overhead,

we also simulate the TDL energy efficiency given by etdl in equations (S87), (S106), and (S118), following

the same forms over the three schemes. The TDL energy efficiency averaging across all input sizes, N , is

5.15 zJ/MAC and 30.15 zJ/MAC (194.17 EOPS/W and 33.17 EOPS/W) for the 4-bit and 5-bit computing

accuracy, which is 9.1× and 2.4× lower than the corresponding 4-bit and 5-bit Landauer limit of 45.9 zJ/MAC

and 71.8 zJ/MAC, respectively.

B. Image Classification on the MNIST Dataset

We implement WISE on a complex-valued model with three FC layers based on LeNet-300-100 [33] for hand-

written digit image classification on the MNIST dataset. Fig. S13a shows the energy efficiency of WISE on the

MNIST dataset. For the MNIST dataset, the maximum input size is N = 784, where the digital computing

energy efficiency term e3 dominates the total energy efficiency emvm. The energy efficiency required by the W-

precoding scheme to achieve a classification accuracy of 90% is 4.62 fJ/MAC (216.35 TOPS/W), which include

e1 = 0.47 fJ/MAC for waveform generation and I/Q (de)modulation with 18.3 dB SNR, e2 = 1.04 fJ/MAC

for I/Q sampling, and e3 = 3.11 fJ/MAC for decoding performed in digital computing. For the x-precoding

scheme, the energy efficiency to achieve 90% classification accuracy is 28.94 fJ/MAC (35.55 TOPS/W), with

a breakdown of e1 = 0.30 fJ/MAC (at 16.3 dB SNR), e2 = 1.04 fJ/MAC, and e3 = 27.60 fJ/MAC. Despite

the degraded energy efficiency of the x-precoding scheme, it is still significantly better than that of digital
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Fig. S13 The basic, W-precoding and x-precoding scheme comparison on the image classification task on the
MNIST dataset. a, Classification accuracy achieved by WISE’s three schemes and simulation, shown as a function of the
energy efficiency, emvm, with a detailed breakdown into e1, e2, and e3. The shaded area of e1 indicates the accuracy variance
across three clients under the same SNR. b, Confusion matrices of the basic scheme without channel calibration and the x-
precoding scheme with per-client channel calibration at 15 dB and 25 dB SNR.

computing using state-of-the-art ASICs at 1 pJ/MAC [7, 39, 40]. Note that the basic scheme, however, can

only achieve a classification accuracy of up to 81.9% on the MNIST dataset.

Detailed confusion matrices of the classification accuracy achieved by the basic and x-precoding schemes

at 15 dB and 25 dB are shown in Fig. S13b. Due to the lack of CSI estimation and calibration, the basic

scheme achieves the classification accuracy of only 50.7% and 79.7% under 15 dB and 25 dB SNR, respectively.

In contrast, with proper CSI estimation and calibration, the W-precoding scheme achieves a classification

accuracy of 78.2% and 95.7%, and the x-precoding scheme achieves a classification accuracy of 88.5% and

97.1% under the same SNR values. With an increased SNR of 29.3 dB, the x-precoding scheme achieves a

maximum classification accuracy of 97.4%, which is only 0.7% lower than the classification accuracy of 98.1%

based on digital computing.

C. Audio Signal Classification on the AudioMNIST Dataset

We also evaluate the performance of WISE on the AudioMNIST dataset [41] with spoken digits for audio sig-

nal classification, using a complex-valued model with three FC layers based on LeNet-300-100, with an input

size of N = 4, 000. Fig. S14a shows the energy efficiency of WISE achieved by the three schemes. Overall,

the energy efficiency of WISE is lower on the AudioMNIST dataset compared to that on the MNIST dataset

due to the large input size of N = 4, 000. Specifically, achieving an accuracy of 90% by the W-precoding

scheme requires a minimum SNR of 15.3 dB and an energy efficiency of 1.13 fJ/MAC (882.10 TOPS/W),

which includes e1 = 0.24 fJ/MAC, e2 = 0.22 fJ/MAC, and e3 = 0.67 fJ/MAC. Moreover, the x-precoding
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Fig. S14 The basic, W-precoding and x-precoding scheme comparison on the audio signal classification task
on the MNIST dataset. a, Classification accuracy achieved by WISE’s three schemes and simulation, shown as a function
of the energy efficiency with detailed breakdowns. The shaded area of e1 indicates the accuracy variance across three clients
under the same SNR. b, Confusion matrices of classification accuracy achieved by the basic scheme without channel calibration
and the x-precoding scheme with per-client channel calibration at 15 dB and 25 dB SNR.

scheme requires a minimum SNR of 15.3 dB and an energy efficiency of 25.42 fJ/MAC (33.34 TOPS/W),

which can be decomposed into e1 = 0.24 fJ/MAC, e2 = 0.22 fJ/MAC, and e3 = 24.96 fJ/MAC. Similarly, the

degraded energy efficiency of the x-precoding scheme results from the encoding and precoding performed in

digital computing, which dominates the total energy efficiency, given the problem size of the AudioMNIST

dataset. In this case, the x-precoding scheme achieves an energy efficiency gain of approximately 40× com-

pared to the 1 pJ/MAC energy efficiency by the state-of-the-art ASICs. Beyond, as the MVM scales up on

the future DL tasks, e.g., Llama-2-7b [6] with N = 11, 008, the energy efficiency of both the W-precoding

and x-precoding schemes can be further improved.

Detailed confusion matrices of the classification accuracy achieved by the basic and x-precoding schemes

at 15 dB and 25 dB are shown in Fig. S14b. It can be seen that the basic scheme achieves a classification

accuracy of 62.2% and 84.1% under 15 dB and 25 dB SNR, respectively, and is bounded by 86.3% with

further increased SNR values. On the other hand, the x-precoding scheme that exploits the per-client CSI

estimation and calibration archives a classification accuracy of 93.2% and 98.3% under 15 dB and 25 dB

SNR, outperforming the W-precoding scheme that achieves a classification accuracy of 90.1% and 97.2%.

Further, it achieves a maximum accuracy of 98.6%, only 0.6% lower compared to the classification accuracy

of 99.2% based on digital computing.
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Fig. S15 The DL inference performance on the MNIST and AudioMNIST by WISE’s W-precoding scheme
with IP-based MVM decomposition (M ′ = 1). a, Classification accuracy on the MNIST and AudioMNIST datasets as a
function of the energy efficiency with detailed breakdowns. The shaded area of e1 indicates the accuracy variance across three
clients under the same SNR. b, Confusion matrices of classification accuracy achieved by the W-precoding scheme at 15 dB
and 25 dB SNR.
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Fig. S16 Energy efficiency gain achieved by WISE’s W-precoding scheme across varying MVM decompositions, M ′ =
{1, 2, 6, 14}, compared to the baseline without MVM decomposition. The zero padding overhead is set to ∆M = 1 (α = 2

M′ ,

and the cyclic prefix overhead β is selected assuming a single I/Q sample ∆L = 1 as the cyclic prefix, i.e., β = 1
M′+2

.

14 MVM Decomposition into IPs

For the W-precoding scheme, we now consider the case where each MVM is decomposed into M IPs,

i.e., M ′ = 1, with minimal FFT size at the cost of a slightly higher overhead of α = 2 and β = 0.33,

as discussed in Supplementary Section 9. This IP-based MVM decomposition has a lower computation

throughput of Λ = 75 MOPS across three clients, and its energy consumption e′mvm is given by equation

(S108). Fig. S15a shows the confusion matrices on the MNIST dataset under SNR = 15/25 dB, whose

classification accuracies are 73.6%/90.4% for MNIST, lower than the performance with M ′ = 6 as WISE’s

default choice in Results section. This performance degradation comes from the potentially higher PAPR on
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x(t), w(t), and y(t), which incurs a relatively higher saturation level on the DACs/ADCs. Fig. S15b shows

the energy efficiency of this IP-based MVM decomposition. Specifically, to achieve a classification accuracy of

90% on MNIST, the energy efficiency is e′mvm = 7.64 fJ/MAC (130.85 TOP/W), including the breakdown of

e1 = 2.25 fJ/MAC for an SNR of 25.1 dB, e2 = 2.31 fJ/MAC, and e3 = 3.08 fJ/MAC. The same experiments

are repeated on the AudioMNIST. Fig. S15c shows the classification accuracy of 56.8% and 90.9% under the

SNR of 15 dB and 25 dB. The energy efficiency analysis is further shown in Fig. S15d, where a minimum

energy efficiency e′mvm = 3.41 fJ/MAC (293.17 TOPS/W) is needed to achieve a classification accuracy of

90%. This energy efficiency corresponds to e1 = 2.25 fJ/MAC, e2 = 0.50 fJ/MAC, and e3 = 0.67 fJ/MAC.

We further investigate the optimal value of M ′ for the MVM decomposition based on energy efficiency.

Specifically, the energy efficiency is simulated based on equations (S105) and (S108), which is normalized by

the energy efficiency without the MVM decomposition, as shown in Fig. S16. For the IP-based decomposition,

despite the smallest energy for the term e3, the overhead of α and β results in degraded energy efficiency

on the term e1, especially in the high SNR regime. As a result, for N = 4, 096, the energy efficiency gain

is 1.92×, 1.16×, and 0.41× to under an SNR value of 5 dB, 15 dB and 25 dB, respectively. We consider

three levels of MVM decompositions with M ′ = {2, 6, 14}, which correspond to the FFT sizes of {4, 8, 16}
after attaching the padded zero-subcarriers with ∆M = 1. Among these three decomposition levels, M ′ = 6

achieves the highest energy efficiency gain of 2.70×, 2.22×, and 1.27× for the three SNR levels for N = 4, 096.

This is due to a smaller overhead of α and β compared to M ′ = 2, and a smaller FFT size compared to

M ′ = 14. To conclude, we empirically select M ′ = 6 for the MVM decomposition used by the W-precoding

scheme, as described in Methods section. Similar conclusions can also be extended to the basic scheme and

the x-precoding scheme.

15 A Case Study of WISE on a Three-Layer DL Model

We show a detailed workflow of how WISE performs inference on an image of a handwritten digit ‘4’ in

MNIST on a 3-FC layer DL model, shown in Fig. S17. In particular, the 28×28-pixel image of digit ‘4’ is

formed as a 28×28 real-valued matrix, and is then flattened into a 784-element vector. This vector is then

modulated with a 784-point Zadoff-Chu (ZC) phase sequence Φzc as defined in Methods section, which yields

a 784-element complex-valued vector, x(1) ∈ C784, as the input to the first FC layer.

The first FC layer has an input size of N (1) = 784 and an output size of M (1) = 300. The MVM

decomposition technique described in Supplementary Section 8 first decomposes the entire MVM with W(1) ∈
C300×784 into 50 smaller MVMs, each of which has a smaller output size of M ′ = 6. We employ a zero-

subcarrier padding overhead of α = 0.33 with ∆M = 1, which extends the output dimension per decomposed

MVM to (1 + α)M ′ = 8. For each decomposed MVM, the time-encoded input sequence sx contains eight

duplicated x(1) in the time domain, with a total number of 6,272 I/Q samples. Finally, we employ a cyclic

prefix overhead coefficient of β = 0.25, which further appends two copies of x(1) to the front of sx. The

resulting I/Q waveform streamed to the DACs has 7,840 I/Q samples. With a DAC sampling rate of fs =

25 MHz, the generated waveform x(t) has a duration of 0.314 ms. The waveform x(t) is then I/Q modulated to

the carrier frequency of Fx = 1.2 GHz. Similarly, at the central radio, the model weights for each decomposed

MVM are encoded into I/Q waveform w(t), which is then I/Q modulated to the carrier frequency of Fw =

0.915 GHz. The model weights are then broadcast wirelessly to the client.

On the client side, x(t) is mixed with the received waveform w(t) and filtered by the LPF with a cutoff

frequency of f0 = 15.9 kHz, the output waveform LPF {y(t)} is sampled by two I/Q ADCs operating at
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Fig. S17 Example workflow of WISE: A complex-valued model with three FC layers processes an inference request to predict
the digit ‘4’ from a handwritten image. For each FC layer, we show the amplitudes of the time domain waveform x(t), w(t),
y(t) before/after the LPF, the sampled I/Q samples after ADC sy↓, of a single decomposed MVM.

31.9 kHz to obtain sy↓ ∈ C8, where the first 25% waveform is excluded as the cyclic prefix. Then, an 8-

point FFT is performed on sy↓ via digital computing, which yields the subcarrier symbols Sy↓ ∈ C8 of eight

complex-valued symbols. Finally, the middle six symbols in Sy↓ are considered as the output y′ ∈ C6 of
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Fig. S18 The DL inference performance on the MNIST and AudioMNIST by a fully analog linear regression
model, which skips the digital computing-based activation functions in the middle layers, and the W-precoding
scheme is applied a, The classification accuracy on MNIST under different energy efficiency emvm of the fully analog linear
regression model. The shadow area indicates the accuracy variance over the three users. b, Under 15/25 dB SNR, the confusion
matrices on the MNIST dataset by fully analog linear regression model. c–d, The energy efficiency analysis and the confusion
matrices on the AudioMNIST dataset, respectively.

the decomposed MVM; concatenating y from all M/M ′ = 50 decomposed MVMs yields the final output

of the first FC layer, y(1) ∈ C300. This output is passed through the activation function, σ300(·), including

the absolute function and phase modulation with a 300-point Zadoff-Chu sequence Φzc, which generates the

input to the second FC layer, x(2).

This process is repeated three times, one for each layer, to obtain the output of the last FC layer,

y(3) ∈ C10. The amplitude of the final output,
∣∣y(3)

∣∣ represents the probability of the input image being one

of the ten digits ‘0’ to ‘9’. In this example, the 5th element has the highest amplitude, corresponding to the

classification result of digit ‘4’.

16 A Fully Analog Linear Regression Model

We also consider a small linear regression model [57] with a single complex-valued FC layer. For the MNIST

and AudioMNIST datasets, only one FC layer of 784/4,000×10 complex-valued parameters transfers the

784/4,000-element input x into the 10-element output y for the likelihood of the input being one of the ten

digits. Since there is only one FC layer, no nonlinear activation function with absolute function and Zadoff-

Chu phase sequence is applied. The absolute function after the FC layer can be realized by directly measuring

the absolute power of each subcarrier in Sy↓. Therefore, this linear regression model only requires a single

transmission without digitally performing absolute functions. On the other hand, the one-time-FFT-based

decoding is still required to extract y from the time-domain waveform y(t), which can be done either in

digital computing or internally when being received by a spectrum analyzer. Similar to the LeNet-300-100

models, we train the linear regression model using the Adam optimizer [48] with a learning rate of 1.0×10−3

over 100 epochs and cross-entropy as the loss function.
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Fig. S19 General MVM computing accuracy achieved by WISE’s basic scheme compared to simulations over
a 100MHz wired channel. a, Computing accuracy across varying SNR levels with input sizes N = {4096, 32768}. b, Energy
efficiency required to achieve RMSE < 0.0625 (5-bit computing accuracy) across varying input sizes, N , with its breakdown.

Using digital computing, this linear regression model achieves a classification accuracy of 85.5% on the

MNIST dataset. Fig. S18a shows the energy efficiency of the linear regression model on the MNIST dataset.

Specifically, this linear regression model achieves a classification accuracy of 80% at energy efficiency of

emvm = 4.18 fJ/MAC (239.23 TOP/W), with a breakdown of e1 = 0.10 fJ/MAC, e2 = 1.02 fJ/MAC, and

e3 = 3.06 fJ/MAC. This linear regression model only involves 31,360 MACs, which corresponds to the total

energy consumption of 131.08 pJ per inference. Compared to the LeNet-300-100 model at a classification

accuracy of 80%, this linear regression model consumes 36.4× less energy per inference. As shown in Fig. S18b,

WISE achieves a classification accuracy of 82.9% and 85.1% under 15 dB and 25 dB, respectively. The

accuracy gap between digital computing and the in-physics computing of WISE of is only 0.4%, which is

smaller compared to that of the LeNet-300-100 model described in Results section. This is due to the shallow

model architecture, where errors introduced during the in-physics computing process do not accumulate

across layers.

On the AudioMNIST dataset, the classification accuracy of this linear regression model with full-precision

digital computing is 88.5%. Fig. S18c shows the energy efficiency of the in-physics computing by WISE

and the corresponding classification accuracy. To achieve 80% classification accuracy, the energy efficiency

of WISE is emvm = 1.12 fJ/MAC (892.86 TOPS/W), which includes e1 = 0.32 fJ/MAC, e2 = 0.22 fJ/MAC,

and e3 = 0.67 fJ/MAC. Given the total number of 160,000 MACs involved in the model, this energy efficiency

corresponds to an energy consumption of 179.35 pJ/MAC per inference, which is only 29.8× lower compared

to that of the LeNet-300-100 model at the same classification accuracy. Moreover, as shown in Fig. S18d,

the linear regression model achieves a classification accuracy of 75.1% and 87.7% at 15 dB and 25 dB SNR.

17 WISE over Wired Channels

To comply with the ISM band regulations, our wireless experiments are conducted using a bandwidth of

25 MHz, which limits the computation throughput Λ. On the other hand, a larger bandwidth B can propor-

tionally increase Λ without increasing the energy consumption emvm. In this section, we consider a wired
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Fig. S20 The DL-inference performance on the MNIST and AudioMNIST by the WISE’s basic scheme over a
100MHz wired channel. a, The energy efficiency analysis on the MNIST dataset. b, The confusion matrices on the MNIST
dataset of the wired channel. c–d, The energy efficiency analysis and the confusion matrices on the AudioMNIST dataset,
respectively.

channel as a substitute for the wireless transmission of w(t), where the central radio’s TX port is connected

to the computing mixer’s LO port using an SMA cable, as shown in Fig. S5b. Such a wired setting ensures

the flat channel response so that the precoding process can be skipped, while the time-encoded x to waive

the encoding energy can still be applied. On the other hand, only a single client is supported at a time. In

the wired experiment, we employ a bandwidth of as 100 MHz for w(t) and x(t), which is the maximum sam-

pling rate at which the USRP X310 can maintain stable data streaming. According to equation (S123), the

per-client computation throughtput is increased from 60 MOPS to 240 MOPS, due to the 4× increase in the

signal bandwidth.

Under the 100 MHz wired channel, we first showcase the performance of general MVM computation under

the same settings as described in Supplementary Section 13. As shown in Fig. S19a, this wired channel enables

slightly higher computing accuracy than the wireless WISE under higher SNRs. For example, under 30 dB

SNR, the basic scheme without channel calibration achieves an RMSE of 0.045 and 0.038 with N = 4, 096

and 32, 768. In addition, Fig. S19b shows the minimum energy efficiency required to achieve RMSE < 0.0625,

which is similar to the W-precoding scheme presented in Results section. For example, given N = 4, 096 and

N = 32, 768, the energy efficiency required for WISE is 3.07 fJ/MAC and 1.07 fJ/MAC (325.73 TOPS/W

and 934.58 TOPS/W), respectively.

On the MNIST dataset, Fig. S20a presents the energy efficiency achieved by WISE in the wired setup.

Note that the flat channel response of the wired setup reduces the gap between the simulation and experi-

mental results. To achieve 90% classification accuracy on the MNIST dataset, the energy efficiency of WISE

is emvm = 4.28 fJ/MAC (233.64 TOPS/W), with a breakdown of e1 = 0.13 fJ/MAC, e2 = 1.04 fJ/MAC, and

e3 = 3.11 fJ/MAC. As shown in Fig. S20b, at SNR values of 15 dB and 25 dB, the experimental classifi-

cation accuracy on MNIST is 91.3% and 96.2%, respectively, which closely matches the simulation results

of 93.8% and 97.7%. As for the AudioMNIST dataset, Fig. S20c shows that to achieve 90% classification
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accuracy, the energy efficiency of WISE is emvm = 1.01 fJ/MAC (985.61 TOPS/W), with a breakdown of

e1 = 0.12 fJ/MAC, e2 = 0.22 fJ/MAC, and e3 = 0.67 fJ/MAC. Moreover, in Fig. S20d, the experimental

classification accuracies are 96.8% and 97.4% under 15 dB and 25 dB SNR, respectively, compared to simula-

tion results of 90.8% and 98.2%. These results showcase the promising performance of WISE’s basic scheme

in the wired setup, demonstrating its scalability toward higher computation throughput.
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