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Abstract
The current landscape of balanced graph partitioning is divided into high-quality but expensive mul-
tilevel algorithms and cheaper approaches with linear running time, such as single-level algorithms
and streaming algorithms. We demonstrate how to achieve the best of both worlds with a linear
time multilevel algorithm. Multilevel algorithms construct a hierarchy of increasingly smaller graphs
by repeatedly contracting clusters of nodes. Our approach preserves their distinct advantage, allow-
ing refinement of the partition over multiple levels with increasing detail. At the same time, we use
edge sparsification to guarantee geometric size reduction between the levels and thus linear running
time.

We provide a proof of the linear running time as well as additional insights into the behavior of
multilevel algorithms, showing that graphs with low modularity are most likely to trigger worst-case
running time. We evaluate multiple approaches for edge sparsification and integrate our algorithm
into the state-of-the-art multilevel partitioner KaMinPar, maintaining its excellent parallel scalab-
ility. As demonstrated in detailed experiments, this results in a 1.49× average speedup (up to 4× for
some instances) with only 1% loss in solution quality. Moreover, our algorithm clearly outperforms
state-of-the-art single-level and streaming approaches.
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1 Introduction

Balanced graph partitioning aims to divide a graph into blocks of roughly equal size while
minimizing the number of edges cut by the partition. As this is a crucial subtask in many
applications [8, 14], it is of considerable interest to compute high-quality partitions within
a minimal amount of time. Unfortunately, this goal seems unattainable from the viewpoint
of complexity theory – even approximating balanced graph partitioning to a constant factor
is NP-hard [4]. Consequently, heuristic approaches are used in practice, covering a wide
spectrum of options along the running time versus quality trade-off.

In the high-quality category, the most successful approaches use the multilevel framework.
By repeatedly contracting clusters of nodes, multilevel algorithms first construct a hierarchy
of increasingly smaller graphs in the coarsening phase. On the smallest graph, more ex-
pensive heuristics can be used to find a good initial partition. Finally, the uncoarsening
phase undoes the contractions in reverse order while further improving the partition qual-
ity via local search algorithms (this is called refinement). Overall, multilevel partitioning
combines a good initial solution with iterative refinement on a series of summarized graph
representations with increasingly finer granularity. This has proven highly successful in
practice, consistently achieving better solution quality than alternative approaches on real-
world inputs [13, 26, 34]. However, due to lacking constraints on the size of the contracted
representations, current multilevel implementations have superlinear running time.

On the other hand, single-level algorithms that use only a fixed number of passes on
the input graph can run in linear time [50]. This is motivated by applications where the
partitioning time is a potential bottleneck. For example, graph partitioning is used in various
domains to efficiently distribute workloads across parallel machines [7, 11, 48]. This requires
the graph partitioning step to be less expensive than the downstream computation. Taking
this to the extreme, streaming approaches only consider a small part of the graph at once,
assigning nodes greedily while using only a minimal representation of the partition state [17,
21, 29]. However, the running time guarantees of single-level and streaming algorithms come
at the cost of inferior solution quality when compared to multilevel algorithms [6, 26, 53].

Contributions. In this work, we show that the described trade-off can be avoided by con-
structing a linear time multilevel algorithm. Our coarsening algorithm enforces that the
graph shrinks by a constant factor with every successive contraction step, using edge sparsi-
fication to reduce the number of edges if necessary. We prove that this guarantees O(n + m)
expected total work for n nodes and m edges, without any assumptions on the input graph.
Our analysis provides a framework to understand the running time behavior of a broad
class of existing multilevel algorithms. In addition, we demonstrate that graphs with low
modularity are most likely to trigger worst-case running time behavior, while graphs with
high modularity might already allow linear running time without using edge sparsification.

We integrate our approach into the KaMinPar shared-memory graph partitioner [28],
preserving its excellent scaling behavior while guaranteeing linear work. For instance classes
that approximate the worst case, our algorithm achieves practical speedups of up to 4×
(1.49× in the geometric mean) over a baseline KaMinPar configuration – which is the fastest
available shared-memory multilevel partitioner according to Ref. [26]. Despite this, the loss
in partition quality is only 1% on average. Our algorithm outperforms both the single-
level partitioner PuLP [50] and the state-of-the-art streaming partitioner CUTTANA [29],
achieving 24% and 66% smaller average cuts, respectively, as well as a faster running time.
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2 Preliminaries

Notation and Definitions. Let G = (V, E, c, ω) be an undirected graph with node weights
c : V → N>0, edge weights ω : E → N>0, n := |V |, and m := |E|. We extend c and ω to
sets, i.e., c(V ′ ⊆ V ) :=

∑
v∈V ′ c(v) and ω(E′ ⊆ E) :=

∑
e∈E′ ω(e). N(v) := {u | {u, v} ∈ E}

denotes the neighbors of v ∈ V and E(v) := {e | v ∈ e} denotes the edges incident to v. We
are looking for k blocks of nodes Π := {V1, . . . , Vk} that partition V , i.e., V1 ∪ · · · ∪ Vk = V

and Vi ∩ Vj = ∅ for i ̸= j. The balance constraint demands that ∀i ∈ {1, . . . , k}: c(Vi) ≤
Lmax := (1 + ε)⌈ c(V )

k ⌉ for some imbalance parameter ε > 0. The objective is to minimize
cut(Π) :=

∑
i<j ω(Eij) (weight of all cut edges), where Eij := {{u, v} ∈ E | u ∈ Vi, v ∈ Vj}.

A clustering C := {C1, . . . , Cb} is also a partition of V , where the number of blocks b is not
given in advance (there is also no balance constraint).

Multilevel Graph Partitioning. Virtually all high-quality, general-purpose graph partition-
ers are based on the multilevel paradigm, which consists of three phases. During coarsening,
the algorithms construct a hierarchy H = ⟨G =: G1, G2, . . . , Gℓ⟩ of successively coarser
representations of the input graph G. Coarse graphs are built by either computing node
clusterings or matchings and afterwards contracting them. A clustering C = {C1, . . . , Cb} is
contracted by replacing each cluster Ci with a coarse node ci with weight c(ci) = c(Ci). For
each pair of clusters Ci and Cj , there is a coarse edge e = {ci, cj} with weight ω(e) = ω(Eij)
if Eij ̸= ∅, where Eij is the set of all edges between clusters Ci and Cj . Once the number of
coarse nodes falls below a threshold (typically, kC for some tuning constant C), initial par-
titioning computes an initial solution of the coarsest graph Gℓ. Subsequently, contractions
are undone, projecting the current solution to finer graphs and refining it. The total running
time of a multilevel partitioner is the cumulative time for coarsening, initial partitioning,
and refinement across all levels of the hierarchy H.

3 Related Work

There has been a lot of research on graph partitioning, thus we refer the reader to surveys [8,
13] for a general overview and only focus on work closely related to our contributions here.
As described above, modern general-purpose, high-quality graph partitioners such as Mt-
Metis [36], Mt-KaHIP [3], Mt-KaHyPar [26], KaMinPar [28], and Jet [25] are mostly
based on the multilevel paradigm, which constructs a hierarchy of coarser graphs during the
coarsening phase.

Graph Coarsening. Early multilevel partitioners, like Chaco [30] and Metis [34], primar-
ily employed coarsening strategies based on contracting graph matchings. While effective
for mesh-like graphs due to high matching coverage (often 85-95% [33]), these strategies
struggle with graphs exhibiting irregular structures, such as scale-free networks. On these
graphs, small maximal matchings can result in much slower coarsening and potentially a lin-
ear number of levels. Subsequent developments addressed this limitation. Mt-Metis [37]
introduced 2-hop matchings, extending small maximal matchings by further pairing nodes
that have some degree of overlap in their neighborhoods until ≥ 75% of nodes are con-
tracted. This technique was subsequently also implemented by other partitioners [18, 25].
Alternative strategies focus on accelerating coarsening by grouping multiple nodes. These
include methods based on cluster contraction [43, 3, 26, 28] and pseudo-matchings where
nodes can match with multiple neighbors [1]. While enabling faster node reductions, they
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often constrain the weight of the clusters to ensure that finding a balanced initial partition
is feasible. This can be problematic on graphs with highly connected hubs (e.g., the center
of a star graph), potentially limiting the achievable coarsening ratio.

Graph Sparsification. Graph sparsification techniques aim to approximate a given graph
with a sparser one (called sparsifier), typically containing substantially fewer edges while pre-
serving specific structural properties important for downstream tasks. This allows handling
massive data sets where considering the full graph is computationally infeasible, as well as
speeding up a variety of algorithms on graphs or matrices [2, 9, 22]. For graph partitioning,
preserving cut properties (and thus approximately preserving the partition objective) is par-
ticularly relevant. An ε-cut sparsifier guarantees that every cut in the sparsifier has a weight
within a 1 ± ε factor of the original cut. Benczúr and Karger showed that such sparsifiers
with O(n log n/ε2) edges exist for any graph and gave near-linear time constructions [9].

There are several approaches to construct sparsifiers. Spielman and Srivastava [51] intro-
duced sparsification based on effective resistance, which often yields high-quality sparsifiers
and preserves spectral properties closely related to cuts. However, this method can be com-
putationally demanding. Alternatively, various heuristic sampling techniques exist, such
as uniform edge sampling, k-neighbor sampling, and Forest Fire sampling [38, 41], which
uses an analogy to a spreading wildfire. Chen et al. [16] provide a comparative study, sug-
gesting that Forest Fire sampling outperforms uniform sampling for preserving cut-related
properties.

KaMinPar. We integrate the techniques described in this paper into the KaMinPar [28]
framework. KaMinPar is a shared-memory parallel multilevel graph partitioner. Its
coarsening and uncoarsening phases are based on the size-constrained label propagation [43]
algorithm, which is parameterized by a maximum cluster size (resp. block weight) U . In
the coarsening resp. uncoarsening phase, each node is initially assigned to its own cluster
resp. to its corresponding block of the partition. The algorithm then proceeds in rounds.
In each round, the nodes are visited in some order. A node u is moved to the cluster resp.
block K that contains the most neighbors of u without violating the size constraint U , i.e.,
c(K) + c(u) ≤ U . The algorithm terminates once no nodes have been moved during a round
or a maximum number of rounds has been exceeded. The coarsening further implements a
2-hop clustering strategy [28], which reduces the number of coarse nodes further whenever
label propagation alone yields a node reduction factor less than 2. Since each round of size-
constrained label propagation runs in linear time, and there is only a constant number of
rounds, KaMinPar achieves linear time per hierarchy level for coarsening and uncoarsening.

The original paper [28] shows that KaMinPar achieves overall linear-time complexity
under two key assumptions: (i) a constant node reduction factor between hierarchy levels,
and (ii) bounded average degree for coarse graphs. While we will demonstrate in Theorem 1
that KaMinPar’s coarsening strategy satisfies assumption (i), the inability to guarantee
assumption (ii) results in a worst-case running time with an extra log(n) factor.

4 Linear Time Multilevel Graph Partitioning

Multilevel algorithms construct a hierarchy H = ⟨G =: G1, G2, . . . , Gℓ⟩ of successively
coarser representations of the input graph G. Each level of H is considered twice, during
coarsening (to construct the next level) and during refinement (to improve the current parti-
tion). Assuming linear time for the coarsening and refinement on each level (see Section 3),
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Figure 1 Illustration of Theorem 1, with examples of the different cluster types. Note that the
green cluster to the right is created by 2-hop clustering.

the total sequential running time is Θ(
∑ℓ

i=1 |Vi|+ |Ei|). Without additional constraints on
the number and size of the levels, the worst-case running time might be Θ(nm) or worse.

To obtain better guarantees, we need a geometric size reduction per level.1 As a first
step, we require that |Vi+1| ≤ γ|Vi| for some constant γ < 1 that is independent of G. If this
is the case, the coarsened graph has constant size after a logarithmic number of steps, which
already achieves a running time of O(n + m log n). Combined with a similar guarantee for
the number of edges, we get a linear total running time.

4.1 Reducing the Number of Nodes
As discussed in Section 3, the coarsening algorithms used in practice start by computing
either a matching or a clustering of adjacent nodes. Typically, a maximum allowed node
weight U is enforced for clusters. We use the term size-constrained label propagation to
refer to a broad class of coarsening algorithms that form clusters of adjacent nodes and
use a weight constraint. We require one essential property. In the resulting clustering,
a node v never forms a singleton cluster as long as there is any adjacent cluster K with
c(K) + c(v) ≤ U .

Due to the weight constraint, size-constrained label propagation by itself is not sufficient
for reducing the number of nodes (consider, e.g., a star graph). To solve this, partitioners
use 2-hop clustering as a second step, forming clusters of nodes that are not adjacent but
instead have a common neighbor cluster. In the following, we provide the first formal proof
that this guarantees a constant factor node reduction.

Consider a (non-isolated) node v in a singleton cluster S = {v}. Formally, we will
assume that the algorithm assigns a favorite cluster KS to S, out of the clusters adjacent
to S. The 2-hop clustering then merges any nodes with the same favorite cluster, as long as
this does not violate the weight constraint. Note that only considering favorite clusters is
more restrictive than general 2-hop clustering, but is already sufficient for our purpose.

▶ Theorem 1. The number of clusters obtained by size-constrained label propagation and
2-hop clustering with a maximal cluster weight U ≥ 2 c(V )

|V | is at most

|C| ≤ 1
2 |V |+

c(V )
U

on any graph without isolated nodes.

1 In general, any series with a sum of O(1) works – a geometric series is, however, the most straightfor-
ward.
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contract

Figure 2 Contracting the bolded edges leads to increased density on the coarse graph.

Proof. We divide the set of clusters C into multiple subsets (see Figure 1 for an illustration).
Ch is the set of heavy clusters with weight larger than 1

2 U . C1 is the set of singleton clusters
with weight at most 1

2 U and C2 is the set of clusters with multiple nodes and weight at most
1
2 U . Note that C = Ch ∪C1 ∪C2. Let r := 1

|C2|
∑

K∈C2
|K| be the average number of nodes

for clusters in C2. In combination, this results in the inequality |V | ≥ |Ch|+ |C1|+ r|C2|.
Each singleton cluster S ∈ C1 is only adjacent to clusters with weight larger than U−c(S),

and thus only clusters in Ch – otherwise, the node would have joined the lighter adjacent
cluster. Consider the favorite cluster KS ∈ Ch of S. Due to 2-hop coarsening, there is no
other cluster in C1 with the same favorite (otherwise, 2-hop clustering would have joined
them). Consequently, |C1| ≤ |Ch|. Moreover, c(S) + c(KS) > U gives, when summed over
all clusters and combined with the definition of Ch, the inequality c(V ) ≥

∑
K∈Ch

c(K) +∑
K∈C1

c(K) =
∑

K∈C1
(c(K)+c(KS))+

∑
K∈Ch\{K′

S
|K′∈C1} c(K) > U |C1|+ 1

2 U(|Ch|−|C1|).
Rearranged, this is |Ch|+ |C1| ≤ 2 c(V )

U .
Combining all inequalities, we get

|C| = |Ch|+ |C1|+ |C2|

≤ 1
r
|V |+ (1− 1

r
)|Ch|+ (1− 1

r
)|C1|

≤ 1
r
|V |+ 2(1− 1

r
)c(V )

U

≤ 1
2 |V |+

c(V )
U

For the final step, we use the observation that xa + (1− x)b ≤ 1
2 a + 1

2 b for b ≤ a and x ≤ 1
2 .

Since r ≥ 2 and U ≥ 2 c(V )
|V | , we can apply this with x = 1

r , a = |V | and b = 2 c(V )
U . ◀

Isolated nodes (i.e., nodes without a neighbor) are a special case as standard clustering
algorithms do not handle them. Therefore, they are omitted from Theorem 1. However, it is
trivial to either remove isolated nodes and reinsert them in the uncoarsening, or alternatively
cluster them with each other (we do the latter).

Note that the precondition U ≥ 2 c(V )
|V | is no limitation for the applicability of Theorem 1.

In practice, much larger values are used for U (in our case U = c(V )
160k , see Section 4.3).

However, the theorem does not include clustering approaches which limit the number of
nodes in a cluster (e.g., allowing only matchings). We note that in this case similar, but
weaker, bounds can be obtained with an analogous line of reasoning.

4.2 Reducing the Number of Edges via Sparsification
As discussed above, coarsening strategies with geometrical node reduction might still exhibit
superlinear total running time due to density increase on coarse graphs (e.g., Figure 2).
For a more general example, consider the coarsening hierarchy of a sparse Erdős-Rényi
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Algorithm 1 Graph Coarsening with Sparsification.

1 i← 1, Gi ← G // Input: graph G

2 while Gi not small enough do
3 G′

i+1 ← Coarsen(Gi)
4 m̂← min{τe · |E(Gi)|, τd · |E(Gi)|

|V (Gi)| · |V (G′
i+1)|}

5 if |E(G′
i+1)| > ρ · m̂ then Gi+1 ← Sparsify(G′

i+1, m̂)
6 else Gi+1 ← G′

i+1
7 i += 1
8 return ⟨G1, . . . , Gi⟩ // Output: hierarchy H = ⟨G1, . . . , Gi⟩

graph G0 = G(n0, c/n0) with n0 nodes and edge probability p0 := c/n0 for some constant
c. Assume that coarsening halves the number of nodes at each level by contracting pairs
of nodes, and that coarse graphs also behave like Erdős-Rényi graphs. In other words,
Gi = G(ni, pi) with ni = ni−1/2 and pi ≈ 1− (1−pi−1)4 for i > 0 (there is an edge between
two coarse nodes if any of the four potential edges between the corresponding nodes in Gi−1
existed). Note that ni = n0/2i and pi = 1 − (1 − p0)4i = 1 − (1 − c/n0)4i ≈ 1 − e−4i·c/n0 .
Let i = α log(n0), then pi ≈ 1− e−cn2α−1

0
n0→∞−−−−→ 0 for α < 1

2 , i.e., there are Θ(log n0) sparse
levels. On these,

E[mi+1]
E[mi]

= 1− (1− pi)4

pi

ni(ni − 2)/8
ni(ni − 1)/2

n0→∞−−−−→ 1− (1− pi)4

4pi
≈ 1− (1− 4pi)

4pi
= 1,

since ni = n0/2i ≥ n0/2α log n0 >
√

n0 →∞ and (1− pi)4 ≈ 1− 4pi for small pi. Thus, the
number of coarse edges remains relatively constant, leading to overall O(m0 log(n0)) time.

To achieve linear time, we therefore limit the number of edges through sparsification as
outlined in Algorithm 1. Let G′

i+1 = (Vi+1, E′
i+1) denote the current graph before sparsifica-

tion, obtained by contracting the previous graph Gi (line 3). We obtain Gi+1 = (Vi+1, Ei+1)
by sparsifying the edges of G′

i+1 so that the size of Ei+1 is bounded by a threshold m̂, defined
as

m̂ := min{τe · |Ei|, τd ·
|Ei|
|Vi|
· |Vi+1|}.

Here, τe is the edge threshold parameter, limiting the coarse edge count relative to the
current graph’s edge count, and τd is the density threshold parameter, likewise limiting
the average degree of the coarse graph. Since sparsification itself introduces computational
overhead, we only apply it if the potential edge reduction is significant. Specifically, we
trigger sparsification only if |E′

i+1| > m̂ and the target edge count m̂ represents a substantial
reduction from the current edge count |E′

i+1|, quantified by the condition |E′
i+1|/m̂ ≥ ρ,

where ρ ≥ 1 is a tunable constant (line 5). Once triggered, we use one of the following
sampling algorithms to reduce the edge count to m̂ (in expectation), before adding the
sparsified graph to the hierarchy (line 5). Since our goal is to achieve overall linear time, we
only consider linear time sparsification algorithms. Further, sparsification must be fast in
practice for speedups to be attainable.

Uniform Sampling. As a simple baseline, we consider uniform random sampling. Each edge
e ∈ E′

i+1 is selected independently with probability p := m̂/|E′
i+1|, resulting in expected m̂

edges. Note that this approach is oblivious to edge weights – although heavier edges have
larger influence on the partitioning objective and are thus likely more important.
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Weighted Threshold Sampling. To incorporate edge weights, we consider a weighted
threshold sampling strategy. First, we identify the weight threshold ωt := ω(et) corres-
ponding to the m̂-th heaviest edge et in G′

i+1. This can be done in expected time O(|E′
i+1|)

using the quickselect algorithm. Based on ωt, we partition E′
i+1 into three disjoint sets E

′<
i+1,

E
′=
i+1, and E

′>
i+1, for coarse edges with weight smaller than, equal to, or larger than ωt. Edges

in E
′<
i+1 are discarded, while edges in E

′>
i+1 are kept. To reach the target size m̂, we further

sample edges from E
′=
i+1 uniformly with probability p := m̂−|E

′>
i+1|

|E′=
i+1| .

(Weighted) Forest Fire Sampling. We further include a variation of threshold sampling
that uses Forest Fire [41] scores rather than edge weights, as this performed well as a cut-
preserving sparsifier in Ref. [16]. We include a brief description for self-containment. The
algorithm computes edge scores by simulating fires spreading through the graph via multiple
traversals starting from random nodes. When visiting a node u, the number of neighbors X

to be visited is drawn from a geometric distribution parameterized by a tunable parameter p.
Subsequently, X distinct unvisited neighbors of u are sampled, incrementing the burn scores
of the corresponding edges and spreading the fire to the sampled nodes. The algorithm stops
scheduling fires once the cumulative burn score exceeds ν|E| for some burn ratio ν > 0.

We also experiment with a weighted variation of the algorithm, called Weighted Forest
Fire (WFF), where the probability of sampling a certain neighbor is scaled with the weight
of the corresponding edge. For more details, we refer to Appendix A.

4.3 Putting it Together
Based on the discussed insights, we propose a linear time multilevel algorithm that builds
upon KaMinPar [28]. We leverage the existing clustering and refinement algorithms avail-
able in KaMinPar, whose running time is linear in the size of the current hierarchy level
(see Section 3). We introduce two necessary changes to achieve linear time for the overall
algorithm. Most importantly, we introduce edge sparsification as discussed in Section 4.2,
ensuring the number of edges shrinks geometrically. In addition, we replace the coarsening
and initial partitioning used by the default configuration of KaMinPar with a more tradi-
tional approach. This is because the default configuration is amenable to scenarios where
expensive bipartitioning happens on a relatively large graph, adding a Ω(n log n) term to
the running time in the worst-case. We refer to Appendix B for details.

Instead, we use size-constrained label propagation with subsequent recursive biparti-
tioning, following other state-of-the-art multilevel algorithms [3, 27, 43]. Similar to Mt-
KaHyPar [26], the cluster weight limit is U = c(V )

160k and we limit the node reduction per
coarsening step to at most 2.5×. As this is combined with 2-hop clustering, Theorem 1
guarantees a geometric shrink factor until a size of |Vi| = 320k is reached. The coarsening
terminates at 160k nodes or if the current shrink factor is too small, thereby resulting in
a graph with size O(k).2 The recursive bipartitioning then requires total time O(k log k),
which is linear under the extremely weak assumption that k log k ∈ O(n + m).

So far, we have argued from a sequential point of view. In the parallel setting, the
consequence is that our algorithm needs only linear work. With regards to scalability, the
sparsification algorithms described in Section 4.2 lend themselves to a rather straightforward
parallelization. Combined with the excellent scalability of the coarsening and refinement

2 Note that sparsification ensures O(k) edges – although this is not necessary for linear time.
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algorithms of KaMinPar [28] and the fact that initial partitioning is insignificant for the
total running time, we maintain the scalability of default KaMinPar while reducing the
required work.

5 Quantifying Worst-Case Instances

As discussed, we need edge sparsification to achieve linear time if coarsening does not shrink
the number of edges geometrically. However, it would be useful to understand for which
graphs sparsification is required and for which it is not – both for theoretical insights into
the structure of worst-case instances and to allow empirical estimates. Given a clustering
C of a graph G, we are thus interested in the number of edges of G′, where G′ is the graph
created by contracting C. If |E(G′)| ≈ |E(G)| for clusterings computed by the coarsening
algorithm, sparsification is required to further reduce the number of edges.

Intuitively, this is the case for graphs with low locality – edges might lead anywhere and
are thus hard to contain in small clusters. For many random graph models, this is rather easy
to decide. For example, sparse Erdős-Rényi graphs are highly non-local, thus necessitating
sparsification (see Section 4.2). On the other hand, for random geometric graphs (i.e., unit
disk graphs) coarsening algorithms reduce the number of edges very efficiently. However, to
classify real-world instances or more complex graph models, a general criterion is needed.

Classification via Modularity. We propose that the modularity of a graph allows to estimate
whether sparsification is necessary.3 Modularity was introduced by Newman and Girvan to
evaluate the quality of a clustering with regards to community structure [45], and modularity
based community detection algorithms are used in many applications [31, 54, 55]. Given
a clustering C = {V1, . . . , V|C|}, let eij := 1

2|E| |E(Vi, Vj)| denote the fraction of edges that
connect cluster i and cluster j (only counted in one direction). Further, let ai :=

∑
j eij

be the fraction of edges with one endpoint in cluster i. The modularity of the clustering is
then defined as QC :=

∑
i

(
eii − a2

i

)
, where QC ∈ [− 1

2 , 1]. The modularity Q ∈ [0, 1] of the
graph itself is the maximum modularity of all possible clusterings. As demonstrated in the
following, modularity is a good fit for our purpose.

▶ Lemma 2. For a given clustering, the total fraction of edges that connect nodes within
the same cluster is bounded by

QC ≤
∑

i

eii ≤ QC + αC

where α := maxi ai is the maximum fraction of edges with endpoints in the same cluster.

Proof. Since Q =
∑

i

(
eii − a2

i

)
, the left side of the inequality follows immediately. Further,∑

i eii = Q +
∑

i a2
i ≤ Q +

∑
i(maxj aj)ai = Q + maxi ai. Note that

∑
i ai = 1 since each

edge is connected to exactly two clusters. ◀

Lemma 2 provides a lower bound of 1 − QC − αC for the fraction of edges connecting
different clusters. Unfortunately, this does not correspond directly to the edges of G′ – if
multiple edges connect the same pair of clusters (we say that the edges are parallel), they
are combined into a single edge, thereby further reducing the number of remaining edges.

3 There are also multiple other locality metrics, but these are less useful. For example, the clustering
coefficient is based on the number of triangles. However, this does not result in any useful bounds.
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Figure 3 Remaining total edge weight (left) and number of edges (right) after one coarsening
step, compared to the modularity of the graph. The y-values are denoted as a fraction of the initial
value. Based on Lemma 2, we expect most points (i.e., graphs) to be in the upper right half.

The actual bound is thus 1−QC − αC − pC ≤ |E(G′)|, where pC is the number of parallel
edges.

Let us consider the case where the clusters are small, such as during the first steps
of multilevel coarsening. Then, 1 − Q is an approximate lower bound for the number of
edges. If clusters are small, any cluster is only incident to a small fraction of all edges
and edges are unlikely to be parallel, i.e., both αC and pC are small. Moreover, QC is
almost certainly smaller than Q as achieving maximum modularity often necessitates large
clusters [23]. Consequently, we expect that 1−Q ≲ 1−QC − αC − pC ≤ |E(G′)| if clusters
are small, making 1−Q an accurate bound.

Empirical Effect of Modularity. To verify whether 1−Q is a useful bound in practice, we
provide an empirical evaluation on a set of 71 large graphs which is used in multiple recent
works on graph partitioning [35, 42, 49]. Figure 3 shows computed modularity scores of
the graphs in relation to the fraction of edges that remains after one step of our multilevel
coarsening algorithm (see Section 4.1). Since computing the modularity of a graph is itself
NP-hard [12], we calculate approximate scores with the well-known Louvain algorithm [10],
using the implementation from NetworKit [5, 52].

With regards to the total edge weight of G′ (left, corresponds to inter-cluster edges
in G), 1 − Q is almost a strict lower bound. For most graphs, the fraction of remaining
weight is much larger than 1 − Q. The actual number of edges after combining parallel
edges (right) is often significantly smaller than the weight. However, 1−Q is still a mostly
accurate bound. Therefore, modularity is indeed useful to predict the coarsening behavior
of multilevel algorithms – graphs with low modularity are likely to be worst-case instances.

6 Experiments

Setup. We implemented the described sparsification algorithms within the KaMinPar [28]
framework and compiled it using gcc 14.2.0 with flags -O3 -mtune=native -march=native.
The code is parallelized using TBB [46]. We compare our algorithm against PuLP [50]
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(v1.1) and Cuttana [29] (commit ed0c182 in the official GitHub repository4), which are
linear time single-level resp. streaming algorithms. We use the default settings for PuLP
and configure Cuttana following the parameters described by the authors, i.e., K′

K = 4 096,
Dmax = 1 000 and max_qsize = 106. All experiments are performed on a machine equipped
with two 32-core Intel Xeon Gold 6530 processors (2.1 GHz) and 3 TB RAM running Rocky
Linux 9.4. We only use one of the two processors (i.e., 32 cores) to avoid NUMA effects.

Instances. We focus on graphs for which coarsening increases edge density substantially, as
sparsification is not triggered otherwise (thus leaving the algorithm unchanged). This hap-
pens on 17 out of 71 graphs used for benchmarking in Ref. [42] (mostly real-world k-mer and
social graphs, and graphs deduced from text recompression [32]). We further include 6 social
graphs from the Sparse Matrix Collection [19] and generate random graphs: Erdős-Rényi
graphs (using KaGen [24]), as well as Chung-Lu [44], Planted Partition, and R-MAT [15]
graphs (using NetworKit [5]). These graphs are inherently non-local, thus especially chal-
lenging for linear-time partitioning. Overall, the benchmark set comprises 39 graphs (listed
in Table 1) with 511 K to 1.8 G undirected edges. The graphs deduced from text recom-
pression feature node weights. All other graphs are unweighted. Tuning experiments are
performed on a subset containing 8 randomly drawn graphs spanning different types (bolded
in Table 1).

Methodology. We consider an instance as the combination of a graph and a number of
blocks k. We set the imbalance tolerance to ε = 3%, use k ∈ {3, 7, 8, 16, 37, 64} and perform
5 repetitions for each instance using different seeds. Results (running time, edge cut) are av-
eraged arithmetically per instance over these repetitions. When aggregating across multiple
instances, we use the geometric mean to ensure that each instance has equal influence.

Performance Profiles. To compare the edge cuts of different algorithms, we use perform-
ance profiles [20]. Let A be the set of all algorithms we want to compare, I the set of
instances, and cutA(I) the edge cut of algorithm A ∈ A on instance I ∈ I. For each
algorithm A, we plot the fraction of instances

PA(τ) := |{I ∈ I : cutA(I) ≤ τ ·minA′∈A cutA′(I)}|
|I|

on the y-axis and τ on the x-axis. Achieving higher fractions at lower τ -values is considered
better. In particular, PA(1) denotes the fraction of instances for which algorithm A performs
best, while PA(τ) for τ > 1 illustrates the robustness of the algorithm. For example, an
algorithm A with PA(1) = 0.49 but PA(1.01) = 1.0 (i.e., never more than 1% worse than
the best) might be preferable to an algorithm B with PB(1) = 0.51 that only achieves
PB(τ) = 1.0 at much larger τ (indicating much worse partitions on some inputs).

6.1 Parameter Study
We begin our evaluation by tuning the parameters introduced in Section 4.2. Recall that
these are the edge and density thresholds τe and τd, which control the number of coarse edges,
and the minimum reduction factor ρ, which controls whether sparsification is triggered on a
given hierarchy level. We use the tuning benchmark subset and k = 16 for this experiment.

4 https://github.com/cuttana/cuttana-partitioner
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Figure 4 Relative cut and running time of KaMinPar with weighted threshold sampling (T-
Weight), uniform sampling (UR), or threshold sampling via Weighted Forest Fire scores (T-WFF)
versus baseline (no sparsification) on the tuning benchmark set with k = 16.

The results are shown in Figure 4, where we plot geometric mean edge cuts and running
times relative to the KaMinPar baseline without sparsification for τe ∈ {1/4, 1/2, 1}, τd ∈
{1/2, 1, 2} and ρ ∈ {1, 2, 3, 4, 8} on the tuning set using k = 16 blocks. We observe similar
speedups of up to 1.63× for weighted threshold sampling (T-Weight) and uniform sampling
(UR). T-Weight achieves the highest speedup (1.63×) at τe = 1/2, τd = 1/2 and ρ = 3,
while UR achieves the same speedup at slightly different parameters (τe = 1/4, τd = 1 and
ρ = 2). With these parameters, edge cuts increase by 12.6% and 27.6% for T-Weight and
UR, respectively. Surprisingly, more aggressive sparsification (i.e., smaller τe, τd and ρ) does
not achieve larger speedups. This is likely due to several factors. First, the sparsification
process itself introduces computational overhead which can counteract potential speedups,
particularly when the size reduction is modest. Second, excessive sparsification degrades
partition quality considerably, thereby increasing the workload required for the refinement
algorithm to converge to a local optimum. Hence, moderate sparsification seems favorable.

Larger ρ seems beneficial for maintaining partition quality. At ρ = 4 (i.e., only sparsify
if reducing the number of edges by a factor of ≥ 4), both T-Weight and UR show similar
speedups as with smaller ρ and partition quality close to the baseline. We therefore pick
τe = τd = 1/2 and ρ = 4 for subsequent experiments, where T-Weight and UR achieve
speedups of 1.56× and 1.59×, while increasing edge cuts by 0.9% and 5.3%, respectively.

Lastly, we look at threshold sampling using Weighted Forest Fire (T-WFF) scores. For
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Figure 5 Partition quality (left) and speedup over baseline (no sparsification, right) of sparsific-
ation algorithms: weighted threshold sampling (T-Weight), uniform sampling (UR), and threshold
sampling via (Weighted) Forest Fire scores (T-(W)FF).
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Figure 6 Relative geometric mean number of edges per hierarchy level (levels 1-10), comparing
no sparsification against T-Weight (weighted threshold sampling) sparsification. Edge counts are
relative to the input graphs. The final value is propagated for hierarchies shorter than 10 levels.

T-WFF itself, we use p = 0.6 and ν = 0.5, since these parameters performed best during
preliminary experimentation. We observe the fastest running times using parameters that
do not trigger sparsification, suggesting that T-WFF does not provide practical speedups.
At τe = τd = 1/2 and ρ = 4, T-WFF is 2.62× slower while incurring a 1.0% increase in cut
size.

6.2 Effects of Sparsification

Next, we evaluate the proposed sparsification techniques on the full benchmark set. As can
be seen in Figure 5, T-Weight (geometric mean running time 1.43 s) and UR (1.40 s) achieve
similar speedups of 1.49× resp. 1.52× over the baseline (no sparsification, 2.13 s). T-Weight
achieves considerably better partition quality (increase in average edge cut by 1.5%) than
UR (increase by 5.5%). T-WFF outperforms T-FF, but is not competitive: its partition
quality is slightly worse (increase by 3.9%) while much slower (7.04 s). We thus focus on
T-Weight.

Looking at Figure 6, we can see that sparsification reduces the number of edges on
coarse graphs considerably. Without sparsification, the graphs on the first hierarchy levels
(i.e., after the first coarsening step) contain, on average, 75% of the edges of the input graphs,
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but only 39% of the nodes. With sparsification, the average edge count reduces to 28%.

As shown in Figure 7 (left), the speedup from T-Weight sparsification varies considerably
with graph class (defined in Table 1). Non-local graphs with extremely low modularity
(Erdős-Rényi, Planted Partition, R-MAT) show substantial gains (average speedup > 2×, up
to 4×), while real-world text recompression (≈ 1.43×) and social graphs (≈ 1.32×) exhibit
moderate speedups. K-mer graphs see negligible benefit. This variation correlates strongly
with the reduction in graph hierarchy size (number of edges across all hierarchy levels):
instances with greater reduction achieve faster relative running times (Figure 7, right). The
observed speedups stem primarily from reduced time in the coarsening and refinement phases,
see Figure 8. Without sparsification, these phases consume on average 55% (1.17 s) and 23%
(0.48 s) of the total partitioning time (2.13 s), respectively. Sparsification reduces these to
0.65 s and 0.32 s, respectively. This improvement comes at low cost, as the sparsification
step itself averages only 0.10 s out of 1.62 s when triggered (94% of the instances).
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Figure 9 Partition quality (left) and relative running time (right) on the reduced benchmark
set and all k values for KaMinPar without and with T-Weight sparsification, PuLP and Cuttana.
Speedups are plotted relative to KaMinPar without sparsification. Cuttana is omitted from the
speedup plot since it is ≥ 72× slower than all other algorithms.

6.3 Comparison against Competing Partitioners

Finally, we compare KaMinPar with T-Weight sparsification against alternative linear-
time partitioners: single-level PuLP [50] and streaming Cuttana [29]. We found that
Cuttana is rather slow and does not support node weights. Thus, we limit our benchmark
set to unweighted graphs with m ≤ 226 edges (18 out of 39 graphs).

As shown in Figure 9 (left), KaMinPar with T-Weight sparsification computes con-
siderably better partitions with average cuts 30% and 66% smaller than those of PuLP
and Cuttana, respectively. Compared to KaMinPar without sparsification, edge cuts are
slightly larger (cutting 1% more edges on average), but are still within a factor of 1.10 to
the best cut found on 88% of all instances (vs. 90% for non-sparsifying KaMinPar). In
contrast, PuLP and Cuttana compute edge cuts within factors 1.26 and 1.93 to the best
cuts found on only half of the instances, respectively. PuLP computes the best partitions for
21% of the instances, predominantly Erdős-Rényi and Planted Partition graphs. Cuttana
crashes on 39% of the instances (we exclude these instances in pairwise aggregates).

Through sparsification, the geometric mean running time of KaMinPar reduces from
0.48 s to 0.37 s. PuLP (0.63 s) is slower than non-sparsifying KaMinPar on average, but
proves faster on 53 (resp. 48 vs. sparsifying KaMinPar) and twice as fast on 23 (resp. 2)
out of 108 instances. Cuttana is 72× slower than PuLP (and thus the other algorithms),
although we note that comparing running times fairly is difficult since Cuttana interleaves
computation with graph I/O from SSD (I/O times are excluded for the other algorithms).

7 Conclusion

Current graph partitioning algorithms can be classified into high-quality but superlinear
multilevel algorithms, and cheaper linear time approaches such as single-level partitioning
and streaming partitioning. We demonstrate both in theory and in practice that it is pos-
sible to achieve the best of both worlds at once. Our linear time multilevel algorithm uses
edge sparsification to constrain the size of subsequent coarser levels, which provably guar-
antees linear work while maintaining scalability to many cores. We minimize quality loss
by choosing appropriate thresholds for triggering the sparsification step and, if triggered,
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removing the edges with lowest weight. As a result, our multilevel algorithm is faster than
state-of-the-art single-level and streaming approaches while consistently computing better
solutions – making multilevel the preferable choice even if extremely short running time is
required.
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A Weighted Forest Fire

Algorithm 2 Weighted Forest Fire: graph G = (V, E), burn ratio ν, probability p. The
only difference to the original Forest Fire [39] algorithm is highlighted blue.

1 S ← new Array() of size |E| // Scores
2 b← 0 // Number of burnt edges
3 while b ≤ ν|E| do in parallel
4 Q← new FIFO(); Q.push(random node from V ) // BFS queue
5 T ← new Set() // Visited nodes
6 while Q ̸= ∅ do
7 u← Q.pop()
8 while N(u) \ T ̸= ∅ do
9 Sample v from N(u) \ T with prob. ω({u, v})/

∑
v∈N(u)\T ω({u, v})

10 T.insert(v); Q.push(v)
11 S[{u, v}]

atomic
+= 1; b

atomic
+= 1

12 Break with prob. p

13 return S

Algorithm 2 shows a modified version of Forest Fire that incorporates edge weights into
the scoring process. Following the original algorithm, it computes edge scores by simulating
fires spreading through the graph via multiple traversals starting from random nodes (line 4).
When visiting a node u, the number of neighbors X to be visited is drawn from a geometric
distribution parameterized by a tunable parameter p. Subsequently, X distinct unvisited
neighbors of u are sampled, incrementing the burn scores of the corresponding edges and
spreading the fire to the sampled nodes. We incorporate edge weights by making this
sampling weight-dependent: the probability of selecting neighbor v of u is proportional to
the edge weight ω({u, v}) relative to the total edge weight between u and its unvisited
neighbors (line 9). Note that this modification (marked blue in Algorithm 2) is the only
difference to the normal Forest Fire algorithm. Each edge traversal increments the burn score
of the edge (line 11). The algorithm stops scheduling additional fires once the cumulative
burn score b exceeds ν|E| (line 3) for some tunable burn ratio ν > 0.

B Deep Multilevel Partitioning in the Worst Case

The default mode of KaMinPar uses a scheme known as deep multilevel partitioning for
coarsening and initial partitioning [28]. However, as discussed in the following, deep mul-
tilevel partitioning without additional modifications is unfit to achieve linear running time.
The problem is that expensive bipartitioning algorithms might be applied to relatively large
graphs due to a combination of two effects. First, the coarsening algorithm applies no size
constraints or early stopping during the clustering (except for the block weight). This can
result in a massive size reduction at each coarsening step. Second, the deep multilevel
scheme applies bipartitioning steps over multiple levels if the current level Gi is below a
size threshold – in this case, bipartitioning is applied to the next larger level Gi−1 (this is
motivated by scalability; refer to the original publication for technical details [28]). While
this is not a problem in itself, the fact that there is no bound on the size of Gi−1 means
that bipartitioning might be applied to a graph with Θ(n) nodes, possibly even to the input
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graph.5 Since bipartitioning is crucial for solution quality, it needs to include the more
expensive FM refinement algorithm in practice. FM refinement has Ω(n log n) running time,
thereby adding a Ω(n log n) term to the total running time in the worst case.

C Details on the Benchmark Sets

Table 1 The benchmark graphs with their number of nodes n and number of undirected edges
m. Graphs included in the tuning subset are bolded.

Graph n m Class Ref.
kmerV1r 214 004 392 232 704 832 Kmer [42, 19]
kmerA2a 170 372 459 179 941 739 Kmer [42, 19]
kmerP1a 138 896 082 148 465 346 Kmer [42, 19]
kmerU1a 64 678 340 66 393 629 Kmer [42, 19]
kmerV2a 53 500 237 57 076 126 Kmer [42, 19]
recompProteins1GB-9 14 537 567 74 308 567 Compression [42, 32]
recompProteins1GB-7 2 825 742 43 857 382 Compression [42, 32]
recompDNA1GB-9 3 233 125 25 285 086 Compression [42, 32]
recompSources1GB-9 2 792 175 12 188 301 Compression [42, 32]
recompSources1GB-7 898 704 7 272 363 Compression [42, 32]
comFriendster 65 608 366 1 806 067 135 Social [42, 40]
twitter2010 41 652 230 1 202 513 046 Social [42, 47]
socSinaweibo 58 655 849 261 321 033 Social [42, 47]
comOrkut 3 072 627 117 185 083 Social [42, 40]
comLJ 4 036 538 34 681 189 Social [42, 40]
socFlickr 1 715 255 15 555 041 Social [42, 47]
wikiTalk 2 394 385 4 659 565 Social [40]
comDBLP 317 080 1 049 866 Social [40]
coAuthorsDBLP 299 067 977 676 Social [40]
chungLuN27M30 134 217 728 600 116 012 ChungLu [5]
chungLuN22M30 4 194 304 19 842 651 ChungLu [5]
chungLuN22M25 4 194 304 12 220 794 ChungLu [5]
chungLuN17M25 131 072 511 265 ChungLu [5]
erN24M29 16 777 216 536 870 912 Erdős-Rényi [24]
erN23M28 8 388 608 268 435 456 Erdős-Rényi [24]
erN21M25 2 097 152 33 554 432 Erdős-Rényi [24]
erN21M24 2 097 152 16 777 216 Erdős-Rényi [24]
plantedN22K5M29 4 194 304 536 871 319 Planted [5]
plantedN18K5M26 262 144 67 114 407 Planted [5]
plantedN20K5M26 1 048 576 67 105 883 Planted [5]
plantedN22K7M25 4 194 304 33 560 609 Planted [5]
rmatN24M29-0.5-0.3-0.1 16 777 216 533 964 993 R-MAT [24]
rmatN25M28 27 089 643 268 415 704 R-MAT [42, 24]
rmatN24M28-0.5-0.3-0.1 16 777 216 267 658 930 R-MAT [24]
rmatN23M27-0.5-0.3-0.1 8 388 608 133 683 000 R-MAT [24]
baN22 4 194 304 8 388 529 Other [24]
kktPower 2 063 494 6 482 320 Other [19]
debrG18 1 048 576 2 097 149 Other [19]
debrG17 524 288 1 048 573 Other [19]

5 The original analysis uses simplified assumptions for coarsening [28], thereby sidestepping this problem.
However, in practice we observed notable slowdowns due to this effect.


