
ar
X

iv
:2

50
4.

17
61

4v
1

 [
cs

.G
R

]
 2

4
A

pr
 2

02
5

Bolt: Clothing Virtual Characters at Scale
JONATHAN LEAF, NVIDIA, USA
DAVID SEBASTIAN MINOR, NVIDIA, Canada
GILLES DAVIET, NVIDIA, France
NUTTAPONG CHENTANEZ, NVIDIA, Thailand
GREG KLAR, NVIDIA, New Zealand
ED QUIGLEY, NVIDIA, USA

Fig. 1. We present Bolt, an automated method for assembling, refitting, draping, and rigging outfits from a source character to many new characters. On the
left is a source character and three garments, each with their corresponding sewing pattern, that fit to its body. Using our method we automatically transfer
the 3D garments, adjust the 2D sewing pattern, untangle and drape the outfit on the new character body, and rig the garments for animation. Our method
works for a wide range of target body shapes and sizes

Clothing virtual characters is a time-consuming and often manual process.
Outfits can be composed of multiple garments, and each garment must be
fitted to the unique shape of a character. Since characters can vary widely
in size and shape, fitting outfits to many characters is a combinatorially
large problem. We present Bolt, a system designed to take outfits originally
authored on a source body and fit them to new body shapes via a three stage
transfer, drape, and rig process. First, our new garment transfer method
transforms each garment’s 3D mesh positions to the new character, then
optimizes the garment’s 2D sewing pattern while maintaining key features
of the original seams and boundaries. Second, our system simulates the
transferred garments to progressively drape and untangle each garment in
the outfit. Finally, the garments are rigged to the new character. This entire

Authors’ addresses: Jonathan Leaf, NVIDIA, USA; David Sebastian Minor, NVIDIA,
Canada; Gilles Daviet, NVIDIA, France; Nuttapong Chentanez, NVIDIA, Thailand; Greg
Klar, NVIDIA, New Zealand; Ed Quigley, NVIDIA, USA.

process is automatic, making it feasible to clothe characters at scale with no
human intervention. Clothed characters are then ready for immediate use
in applications such as gaming, animation, synthetic generation, and more.

CCS Concepts: • Computing methodologies→ Physical simulation;
Collision detection.

Additional Key Words and Phrases: cloth, simulation, draping, fitting, gar-
ments, sewing pattern, panel, pattern pieces, optimization, rigging, character,
scale, digital human, outfit, untangling, transfer, proxy

HTTPS://ORCID.ORG/0009-0004-5822-5074
HTTPS://ORCID.ORG/0000-0003-3154-7423
HTTPS://ORCID.ORG/0000-0002-4569-5956
https://orcid.org/0009-0004-5822-5074
https://orcid.org/0000-0003-3154-7423
https://orcid.org/0000-0002-4569-5956
https://orcid.org/0000-0002-4569-5956
https://arxiv.org/abs/2504.17614v1

2 • Leaf et al.

1 INTRODUCTION
Many industries and applications rely heavily on clothed virtual
characters, including video games, animated films, virtual and aug-
mented reality applications, social media, fashion, e-commerce,
medicine, industrial applications, and more.
Some applications require large numbers of diverse characters,

such as crowds in a video game. Deep learning applications also
need lots of high quality training data, but collecting comprehen-
sive images of real world scenarios with clothed humans can be
prohibitively costly, difficult, or impossible to collect. For example,
computer vision algorithms for autonomous vehicles need to ob-
serve a significant number of diverse humans in their dataset to
reliably detect the presence of a pedestrian. Some cases are chal-
lenging to collect safely, such as children playing near a street or in
a garage, but having them represented in the data is crucial for reli-
ably detecting children near an autonomous vehicle. The difficulty
of capturing cases like this motivates the synthetic generation of
clothed virtual characters who can take the place of real humans in
these training sets.

For designing clothed digital humans, sewing pattern-based dig-
ital content creation (DCC) tools have emerged as the industry’s
standard for creating realistic and high-quality 3D garments1. The
sewing pattern creation process, which is akin to traditional tai-
loring methods, involves the creation of individual pattern pieces
(2D panels) that are then stitched together to form a complete gar-
ment. The process begins with the creation of a 2D sewing pattern
with stitching and fine details, which is then transformed onto a 3D
model and draped by simulating the cloth on the character’s body
mesh.
Sewing pattern garment design allows for a high degree of cus-

tomization and precision. However, generating large numbers of
clothed characters with DCC tools is a time-consuming challenge
even for expert users. The more complex the outfit, the larger the
number of garments that must be prepared, assembled, simulated,
and adjusted to the character to attain a desirable look. Preparing
each garment requires either manually drafting, sewing, simulating
and adjusting the garment’s pattern from scratch, or by refitting an
existing garment that has been fit to a previous character to this
new character’s body type. Finally, once a new outfit has been fitted
to the character, skinning weights must be painted on the clothing
either manually, or using external tools.

The large numbers of character body shapes and outfit combina-
tions creates a combinatorial explosion in the number of possible
characters that can be generated. Our tool is designed to specifi-
cally address this challenge by making the refitting and draping of
any outfit onto any new character automatic. For applications that
need lots of diverse characters, our approach can save significant
amounts of artist time.
Our contributions are as follows:
(1) A novel garment transfer algorithm that transfers the 3D

cloth mesh positions from a source character to a target
character and then optimizes the 2D sewing pattern to resize
and adjust the pattern while preserving style and seams.

1https://marvelousdesigner.com, https://clo3d.com, https://optitex.com, and
https://browzwear.com

(2) An end-to-end pipeline that assembles, refits, drapes, and
rigs a multi-garment outfit onto a new character automati-
cally.

2 RELATED WORK
Sewing Pattern Creation. Recent works have focused on developing
improved solutions for creating garments along with their corre-
sponding 2D patterns. Korosteleva and Lee [2022] learn patterns
and garments from point clouds. Korosteleva and Sorkine-Hornung
[2023] defines a programmatic method for constructing garments, a
modular approach that provides high-level primitives. Pietroni et al.
[2022] establish how to create pattern pieces from a 3D garment
mesh. He et al. [2024] demonstrate a text-to-garment system using
a GPT-based architecture. Each of these approaches can reduce gar-
ment creation time, though the issues of refitting and draping will
still remain, making the data produced from these methods suitable
inputs to our system.

Cloth Simulation. To drape garments onto a character, we rely on
cloth simulation. Cloth simulation has been adding physically plau-
sible dynamic motion to cloth models since the seminal work of
Terzopoulos et al. [1987]. Baraff andWitkin [1998] introduce implicit
integration which improves stability. Many works have followed
since then, such as new methods for collisions [Bridson et al. 2002;
Provot 1997] and bending strain [Gingold et al. 2004b] to name a
few.
Many approaches like XPBD [Macklin et al. 2016], Projective

Dynamics [Bouaziz et al. 2014], and others [Liu et al. 2017; Tang et al.
2018; Zeller 2005] demonstrate improved performance over prior
methods. More recent work reformulates implicit time integration
as an energy function [Gast and Schroeder 2015; Martin et al. 2011;
Wang and Yang 2016] to be minimized. Additionally, Kim [2020] re-
represents classic anisotropic material models within a FEM context.

Garment Refitting. Garment retargeting is an area that has been
widely studied, primarily through the lens of capture and virtual
try-on [Lee and Jung 2009]. Many works rely on parametric body
models [Pons-Moll et al. 2017], while others attempt to learn corre-
spondences for the garment-body interface [Naik et al. 2024].

Shi et al. [2021] learn garment transfer from data, specifically from
simulation pairs of source and target bodies. Wang [2018] precisely
optimizes sewing patterns, but only over a narrow range of differing
body shapes. Grigorev et al. [2024] relies on the SMPL-X body shape
system for handling cloth refitting, by modifying garment nodal
positions using the same shape vectors as for the body.
de Goes et al. [2020] demonstrate an iterative relax and rebind

method for transferring a 3D garment mesh from one body to an-
other. Brouet et al. [2012] uses geometric constraints to transfer a
garment and the corresponding pattern, but this method does not
include a physically-based drape of the fabric. Chen et al. [2024]
uses differentiable simulation to jointly optimize a garment’s 2D
panels using control cages and 3D positions using differentiable
simulation. This combines the objectives of transfer and draping
into a single step, and is demonstrated on single-garment outfits.

Our approach refits the 3D positions of a garment, then optimizes
the 2D pattern positions based on the transfer. The result of our

Bolt: Clothing Virtual Characters at Scale • 3

cloth refitting process is a simulation ready mesh to be used for
draping.

Untangling Cloth. The ability to untangle interpenetrating garment
layers is critical for assembling outfits of multiple garments.

Historically, cloth untangling has focused primarily on untangling
self-intersections. Baraff et al. [2003], Wicke et al. [2006], Ye et al.
[2017] solve this problem by solving garment self-interpenetration
globally. Volino and Magnenat-Thalmann [2006] opt for a more local
approach, which is faster but comes with no global guarantees.

Industry tools like Marvelous Designer rely on interactive layer-
based simulation to untangle garments. Users can specify layer-
numbers, and the simulation will order the layers in the collision
handling process.
Recent research has focused on untangling multiple garments.

Assuming each garment is assumed to have a unique layer number,
the objective is to have the garments untangle themselves in the user
specified ordering. Buffet et al. [2019] use implicit field operators to
untangle multi-layered garments configurations. Lee et al. [2023]
use neural networks for untangle layers of clothing. Grigorev et al.
[2024] use graph neural networks to resolve collisions between
layers.

Our approach takes a sequential approach to solve this problem,
inspired by practitioners in the VFX community. We simulate each
garment one at a time, progressively draping them on the body.
Other recent works like [Li et al. 2024] also rely on sequentially
resolving collisions between layers.

3 OVERVIEW
With Bolt, we process an outfit composed of one or more garments
in three primary steps.
• Garment transfer: We transfer a garment from a source

character to a target character, adjusting both the 3D posi-
tions and the 2D sewing pattern of the garment, which we
use as the rest state of the garment for simulation.

• Progressive draping: We simulate each garment, layer by
layer, to untangle and drape each garment.

• Rig transfer: We transfer the skinning weights from the
character’s body rig to the corresponding garments.

See Figure 2 for a visual representation of our pipeline.
We develop our system as an offline automated pipeline, priori-

tizing flexibility, robustness, and scalability over performance. We
wrote the entire pipeline using Nvidia’s Python Warp [Macklin
2022].

4 GARMENT TRANSFER
As the first step, we transfer garments from a source character to a
target character. We do this in two parts: 3D Mesh Transfer, then
2D Sewing Pattern Optimization.

4.1 3D Mesh Transfer
We transfer 3D mesh positions from the source body to the target
body. Our algorithm extrapolates a 3D displacement field around
the body from a source to a target mesh. We take inspiration from
fluid dynamics to create the following physically inspired method.

• Define a sparse regular grid in a narrow band around the
body mesh.

• Define displacement boundary conditions on the mesh sur-
face.

• Solve for a viscous, weakly compressible flow in the 3D
space around the body:
– Viscosity allows diffusion of the displacement away

from the surface.
– Unilateral incompressibilitymoves garments away from

areas where pinching might occur, such as under the
armpits.

Formulation. We start with the inertialess incompressible viscous
fluid equations, inspired by Stokes’ equation. Let 𝑢 be the mesh
displacement and 𝑢𝑏𝑜𝑑𝑦 be the target body displacement from the
source. We define the domain Ω as the outside of the body mesh.
Let 𝛿Ω𝑏 be the body surface, i.e. the domain boundary on which
we enforce the displacement boundary conditions. The problem we
need to solve is

−𝜈𝐷 (𝑢) + ∇𝑝 = 0
−∇ · 𝑢 = 0
𝑢 = 𝑢𝑏𝑜𝑑𝑦 on 𝛿Ω𝑏

where 𝜈 is the viscosity, 𝑝 is pressure, and 𝐷 (𝑢) = 1
2

(
∇𝑢 + (∇𝑢)𝑇

)
,

the symmetric part of the gradient of 𝑢.
We do not want or need pure incompressibility, as different body

weight classes will introduce compressing/stretching regions. We
instead replace the incompressibility constraint with an elastic term

−∇ · 𝑢 − 𝛾𝑝 = 0 (1)

where 𝛾 is a compliance term set to 0.01.
The previous formulation uses a linear approximation of the vol-

ume change (∇·𝑢 = 𝑇𝑟 (∇𝑢)), which does not behave satisfyingly for
large displacements. Moreover, we do not want to penalize stretch-
ing, just compression (to move out cloth from zones like shrinking
arm pits). We switch to a nonlinear elasticity formulation:

−min (0, det (∇𝑢 + 𝐼) − 1) − 𝛾𝑝 = 0 (2)

The solve is now a fixed-point iterations loop, where the linearized
formulation is still used for each iteration but with an additional
bias term accounting for the nonlinear part.

Implementation. To avoid having to generate a mesh, we use a non-
conforming formulation. We define a dense regular grid around the
body, and mark all cells within a given distance of the body as active.
The solve will be done on this sparse subset of the regular grid.

This unfortunately means that the grid nodes do not match the
body vertices, so we cannot enforce the boundary condition directly.
We instead switch to a weak formulation,∫

𝛿Ω𝑔

𝑢, 𝑣 =

∫
𝛿Ω𝑔

𝑢𝑏𝑜𝑑𝑦 (Π (𝑥)) · 𝑣, (3)

where Π(𝑥) denotes the projection of the integration point 𝑥 onto
the body mesh. In practice, we integrate over all "boundary cells"
𝛿Ω𝑔 , i.e. grid cells which intersect the body, and generate quadrature
points over those cells. Then for each quadrature point, we com-
pute the closest point on the surface mesh. If it is inside the mesh,

4 • Leaf et al.

Fig. 2. Overview of the Bolt pipeline using an example character. In this example, we assemble a 3-layer outfit from a source character’s body and garments,
and target character’s body. In the garment transfer step, we fit each garment to the target character separately. In the progressive draping step, we simulate
the outfit layers one at a time on the character to drape and untangle the clothing. Finally, we rig garments by transferring the skinning weights from the
target body rig to the garments and finish the character.

we enforce the displacement at that point to equal the prescribed
displacement of the closest point on the surface. If it is outside the
mesh, we project the quadrature point onto the surface and enforce
displacement equality there.

As this technique is not guaranteed to generate fully compatible
conditions, we do not use a hard constraint to enforce the displace-
ment boundary condition, but a compliant penalty instead. This
means that at the end of the solve, the cloth may end up inside the
target body because the body has not moved as much as it should
have. To work around this, at each "outer iteration" we displace not
only the cloth, but the body surface mesh as well. We then compare
the displaced body mesh to the target mesh; if we had conforming
boundary conditions they should match exactly, but with our formu-
lation there will be a discrepancy. If the gap is too big, we restart the
transfer process from the displaced body mesh to the target mesh,
and repeat this outer loop until the delta is small enough.

We compute the various terms usingWarp’s FEM library [Macklin
2022]. At each inner iteration, we get a linear system of the form[

𝐴 𝐵𝑇

𝐵 𝐶

] (
Δ𝑢
Δ𝑝

)
=

(
𝑓

𝑘

)
(4)

with𝐴 as the matrix corresponding to the viscosity and boundary
conditions bilinear forms, 𝐵 corresponding to the divergence form,

and 𝐶 to the elastic compliance. 𝑓 corresponds to the prescribed
boundary displacement linear form, and 𝑘 contains the current
nonlinear elasticy bias term. As 𝐶 is diagonal, we can compute the
Schur complement of the system, 𝐴 + 𝐵𝑇𝐶−1𝐵, and solve for the
displacement Δ𝑢 using the Conjugate Gradient method.

4.2 Sewing Pattern Optimization
We now adjust the 2D sewing pattern based on the already solved
for 3D displacements of the garment. This process optimizes the
position of the panel 2 vertices with the following considerations:
• Adjust the sewing pattern piece sizes to accommodate for

the increase or decrease in the target body.
• Adjust the sewing pattern positions to minimize the amount

of stretch.
• Minimize changes to the boundary of the sewing pattern

pieces (i.e. make sure the edges remain smooth).
• Maintain the edge lengths of seams as much as possible on

each incident pattern piece.
Our approach to this is inspired by Pietroni et al. [2022], which

generates 2D sewing patterns based on a 3D cloth mesh. The method
assigns orthonormal tangent vectors to each triangle on a 3D cloth

2Note that we use the terms "panel" and "sewing pattern piece" interchangeably.

Bolt: Clothing Virtual Characters at Scale • 5

mesh representing the warp and weft directions of the weave, which
are computed using cross-fields. It also "binds" these vectors to the
triangle vertex positions so the tangent vectors can deform with the
triangle.
For any 2D panel layout assigned to a 3D cloth mesh, we can

compute the corresponding warp/weft tangent vectors for each
triangle in that layout using this binding information. The goal is to
minimize the distortion of each triangle as it goes from the 3D pose
to the 2D layout, so the method defines an energy that penalizes
deviation from orthonormality for all of the triangle tangents, then
finds the 2D layout that minimizes that energy using an optimization
method.

We take a similar approach when reshaping our existing 2D panel
layout for the target body, although our use case is slightly different.

4.2.1 Defining 3D tangent vectors. We already have enough infor-
mation to calculate the ground truth warp/weft tangent vectors on
the 2D sewing pattern for the original character, as they are just
unit vectors in the x and y directions respectively. We can transfer
these vectors onto the original 3D source pose for a given triangle
like so:

• Find the two edge vectors of the triangle, 𝒆0 = 𝒗1 − 𝒗0, 𝒆1 =
𝒗2 − 𝒗0

• Stack these column vectors side by side into a 2x2 matrix
and find its inverse 𝑴

• Use this matrix to bind the tangent vectors to the triangle,
and transfer the unit x,y vectors into 3D by finding the 3 by
2 edge matrix of the 3D triangle and right multiplying by
𝑴 .

Note that if we optimize for orthonormality in the way that we
outlined above we will recover the original 2D panel layout, as the
tangent vectors are all orthonormal in this configuration. To resize
the sewing pattern to fit the clothes on the target character, we need
to transfer the vectors onto the target character and make some
modifications.

4.2.2 Tangent vectors on the target body. We transfer the tangent
vectors onto the deformed garment for the target character using
the previously computed binding information. If we just optimize
for orthonormality again, we will recover the original 2D panel
layout without resizing it to the target character, as the information
about the target shape is encoded in how the tangent vectors are
bound to the triangles.

Typically the 3D tangent vectors won’t be orthonormal, as among
other things, the transfer between the source character and the
target character will scale and stretch the triangles somewhat. We
can make them orthonormal again by concatenating them into a
3 by 2 matrix 𝑭 , finding the polar decomposition 𝑭 = 𝑹𝑺 and just
use the columns of 𝑹. We can then recompute the bindings of these
orthogonalized tangent vectors and optimize for a 2D panel layout.
We can bind a 3D tangent vector 𝒗 to the edge frame by solving
the following minimization problem, where 𝑬 is the 3 by 2 matrix
containing the triangle edge vectors as columns and 𝒃 is a 2 element
vector of bind weights. We solve the problem using a pseudo inverse:

argmin
𝒃
|𝑬𝒃 − 𝒗 |2 =

(
𝑬𝑇 𝑬

)−1
𝑬𝑇 𝒗

Using this approach, the optimization will resize the sewing pat-
tern to fit the target character. The fact that each 3D triangle has
orthonormal tangent vectors means that its optimal shape in the
2D layout is just a rotated version of its shape in 3D, so the opti-
mization will try and select a 2D layout that matches all the 3D
triangle shapes as closely as possible. When simulated, this will lead
to a loose fitting outfit, as the optimization is trying to avoid all
stretching in the 2D->3D map.
This is not necessarily the desired outcome, since the cloth is

often stretched tight over the body in the source pose and there
is already strain on the triangles. To get a better fit on the target
character’s body, our method needs to transfer this strain over to the
tangent vectors in the target pose. To do this, we do the following:

• Find the 3D tangent vectors on the source character using
the method in the previous section.

• Find the polar decomposition of each triangle’s tangent
frame, 𝑭 𝑟𝑒 𝑓 = 𝑹𝑟𝑒 𝑓 𝑺𝑟𝑒 𝑓 . Even though this is the source char-
acter, each triangle may be stretched relative to its shape in
the 2D layout if the clothes are tight fitting, and this stretch
information is contained in 𝑺𝑟𝑒 𝑓 , which we save for later.

• Find the 3D tangent vectors on the target character in the
same way.

• Find the polar decomposition of each target triangle’s tan-
gent frame, 𝑭 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑹𝑡𝑎𝑟𝑔𝑒𝑡 𝑺𝑡𝑎𝑟𝑔𝑒𝑡

• Swap the stretch information in this tangent frame with
the stretch information in the source pose by building the
tangent frame 𝑭 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑹𝑡𝑎𝑟𝑔𝑒𝑡 𝑺𝑟𝑒 𝑓

Rebinding these tangent frames to the triangles and optimizing
for a 2D layout preserves the original fit when simulated.

4.2.3 Optimization. We use a simpler triangle deformation energy
than Pietroni et al. [2022], who have a quadratic term per triangle
forcing the y component of the warp tangent to a target value, a
similar term for the x component of the weft and then an As Rigid
As Possible [Sorkine and Alexa 2007] term to encourage rigidity. In-
stead we use an energy that forces the tangent frames to an identity
matrix. This energy is translationally invariant, yielding an under-
determined problem. To address this, we add a quadratic penalty
term, constraining vertices to their original 2D positions:

𝐸 =
1
2

∑︁
𝑡

𝐴𝑡 |𝑭 𝑡 − 𝑰 |2 +
1
2
𝜖
∑︁
𝑣

|𝒑𝑣 − 𝒑0𝑣 |2, (5)

Here, the 𝑡 index runs over all the triangles, 𝐴𝑡 is the area of
triangle t, and similarly 𝑣 runs over all vertices and 𝜖 is a small value,
typically 10−8. The symbols 𝒑𝑣 and 𝒑0𝑣 refer to the 2D positions
of the 𝑣 th vertex in the pose we’re optimizing and the rest pose
respectively. We can concatenate these into a 2N component vector
𝒙 , and write the energy as a quadratic expression using sparse
matrices, as the tangents, 𝑭 𝑡 , are linear functions of the 2D vertex
positions.

6 • Leaf et al.

4.2.4 Edges and Seams. Minimizing this energy gives reasonable
results, but often leaves untidy edges, whose lengths may not match
if they’re sewn to other edges at seams. To improve this, we add
some extra energy terms that try to force the edges to have the
same direction and curvature as they did in the original pattern,
while allowing them to scale. For this, we consider the vectors
from a vertex 𝑖 on the edge to its two neighbors, call them 𝒛0𝑖 and
𝒛1𝑖 and find a scale factor 𝑆𝑖 that brings their values in the original
configuration, 𝑧𝑟0𝑖 and 𝑧

𝑟
1𝑖 , as close to their current values as possible,

ie:

𝑆𝑖 = argmin
𝑆

(
|𝒛0𝑖 − 𝑆𝒛𝑟0𝑖 |

2 + |𝒛1𝑖 − 𝑆𝒛𝑟1𝑖 |
2
)

We then define an energy based on this scaling of the rest pose
like so, where 𝐿𝑖 is half the sum of the lengths of vertex 𝑖’s two edge
vectors in the rest pose:

𝑊𝑖 =
1
2
𝐿𝑖

(
|𝒛0𝑖 − 𝑆𝑖𝒛𝑟0𝑖 |

2 + |𝒛1𝑖 − 𝑆𝑖𝒛𝑟1𝑖 |
2
)

(6)

By ensuring that the vertex neighborhood along the edge is a
scaled version of the neighborhood in the original pose, we can pre-
serve the straightness and direction of the edges while still allowing
them to change size.
These new energy terms are no longer quadratic, so we need a

different optimization method that can handle more complicated
energies. For this we use ADMM [Overby et al. 2017]. We formulate
the minimization as follows:

argmin
𝒙,𝒛

𝐸 (𝒙) +
∑︁
𝑖

𝑔𝑖 (𝒛𝑖)

𝑠 .𝑡 .𝒛𝑖 = 𝑫𝑖𝒙

Where 𝐸 (𝒙) is the energy from equation 5 and 𝑔𝑖 (𝒛𝑖) are the
edge energy terms in equation 6. The constraints ensure that the 𝒛𝑖
vectors are the vertex neighbor vectors mentioned above. Following
[Overby et al. 2017], we can optimize this objective by iterating the
following optimizations:

𝒙𝑛+1 = argmin
𝒙

[
𝐸 (𝒙) + 1

2

∑︁
𝑖

𝑤𝑖

��𝑫𝑖𝒙 − 𝒛𝑛,𝑖 − 𝒖𝑛,𝑖
��2]

𝒛𝑛+1,𝑖 = argmin
𝒛

[
𝑊𝑖 (𝒛) +

1
2

∑︁
𝑖

𝑤𝑖

��𝑫𝑖𝒙𝑛+1 − 𝒛 − 𝒖𝑛,𝑖
��2]

𝒖𝑛+1,𝑖 = 𝒖𝑛,𝑖 + 𝑫𝑖𝒙𝑛+1 − 𝒛𝑛+1
The first optimization can be performed by solving a linear system

and the optimizations for 𝒛𝑖 have straightforward solutions and can
be performed in parallel.
This approach gives cleaner results, although it still allows two

edges which are sewn together to vary in length. To fix this remain-
ing issue we tie the scale factors together for the neighborhoods of
vertices which have been sewn together.

4.2.5 Final tidy up. By optimizing this energy we achieve good
sewing pattern outlines as shown in Figure 3. However, the internal
vertices can be noisy, particularly if the cloth is crumpled in the

(a) source (b) Target

Fig. 3. The original sewing pattern adjusted for the size of the target char-
acter.

(a) source (b) Target

Fig. 4. The blouse originally fitted to the source character, and transferred
onto the target character using our garment transfer method.

transfer pose. We do a final pass to clean this up by pinning all
vertices involved in seams and borders and minimizing a Dirichlet
energy over the remaining vertices, where the resulting Laplacian
matrix is computed on the original cloth pattern. This smooths the
triangle deformations out and gives them similar shapes to their
original ones.

5 PROGRESSIVE DRAPER
The progressive draper untangles and simulates an outfit on the
target character. The draper runs a simulation once per layer of
clothing to achieve this result. See Algorithm 1 for the steps we take
to progressively drape each layer of clothing, and Figure 5 for an
example of the draping process on an outfit with four layers.

5.1 Unified Collision Signed Distance Functions
A crucial challenge we face for collision detection is to develop a
signed distance function (SDF) for spatial inside/outside queries of
a static garment or mesh collider. Common SDF algorithms cannot
provide an accurate value range on meshes with open holes, as
garment meshes lack topological water-tightness. To address this
issue, we employ the generalized winding number method to deter-
mine the inside/outside region around the garment. Jacobson et al.
[2013] demonstrated that generalized winding numbers robustly
determine inside/outside fields, even when meshes contain holes
and artifacts. We set the winding number sampling threshold to
0.25. This threshold effectively "seals" the holes in garments created
from arms, legs, torsos, and other body parts.

Bolt: Clothing Virtual Characters at Scale • 7

Algorithm 1: Progressive Draper Algorithm
Input: Garment meshes 𝐺 , Layer numbers 𝐿, collider
meshes 𝐶 ;

Output: Garment meshes 𝐺 ′ ;
𝐺𝑠 = SortByLayer (𝐺, 𝐿)
𝑠𝑡𝑜𝑡𝑎𝑙 ← ∅ ;
foreach 𝑐 ∈ 𝐶 do

𝑠 ← SDF (𝑐);
𝑠𝑡𝑜𝑡𝑎𝑙 ← SDFUnion (𝑠𝑡𝑜𝑡𝑎𝑙 , 𝑠);

end
𝐺𝑝𝑟𝑒𝑣 ← ∅ ;
foreach 𝑔 ∈ 𝐺𝑠 do

𝑠𝑡𝑜𝑡𝑎𝑙 ← SDFUnion
(
𝑠𝑡𝑜𝑡𝑎𝑙 , SDF

(
𝐺𝑝𝑟𝑒𝑣

))
;

𝑔′ ← Simulate (𝑔, 𝑠𝑡𝑜𝑡𝑎𝑙);
𝐺𝑝𝑟𝑒𝑣 ← 𝐺𝑝𝑟𝑒𝑣 ∪ 𝑔′

end

Fig. 5. The progressive draper iteratively simulates each layer to untangle
the clothing. Previous layers are frozen, and their geometry is combined
into the collider SDF to ensure the next layer successfully pushes it out of
the previous layer.

We create a single collision SDF for collision detection between
the garment simulation and the underlying collision geometry, i.e.
the body and lower garment layers (if any). We take the union of
all Signed Distance Functions (SDFs) of each lower garment layer
and the body. We combine the SDFs by taking the minimum and
adding a small offset 𝜖𝑠𝑑 𝑓 to slightly expand the field. See the blue
meshes in Figure 5 for a visual example of the SDFs created at each
per-layer simulation.

5.2 Cloth Simulator
We use a panel-based cloth simulator to resolve collisions and drape
the garment over the character in a physically plausible manner.

5.2.1 Seams Handling. We represent each seam as a list of vertex
pairs within the overall mesh. Some vertices may participate in
multiple seams, for example at the corners of the sleeve pattern
pieces of a t-shirt. Therefore, we precompute a list of “seam groups”:
the set of vertices that are all attached together via seam lines.
Artists may sew some panels at a position offset from another

panel, such as a pocket attached to the chest of a t-shirt panel. We
store a "seam offset" based on the initial condition of sewn vertices

imported into the tool and enforce these seam offsets throughout
the entire simulation. Most offsets will be zero for sewing pattern
pieces that attach along manifold edges. To enforce the seam group
constraints after a position step, we first find the seam group’s
new center by computing the average position and velocity of the
seam group. We then update each vertex position to be offset from
the group’s center and update each vertex velocity as the group’s
velocity.

5.2.2 Intrinsic Energies. We use anisotropic constitutive models for
stretch and bending, to capture the features of real fabrics. Industry
tools such asMarvelous Designermeasure physical stretch and bend-
ing parameters in multiple directions: weft, warp, and shear. These
parameters and their relationship to each other create emergent
material behaviors [Marvelous Designer 2023]. To accommodate
this for stretch, we use the energy described by Kim [2020].
We take inspiration from Gingold et al. [2004a] for our bending

energy. We derive the bending energy𝜓𝑏𝑒𝑛𝑑 from the triangle-level
shape operator, expressed in the coordinate system of the warp and
weft directions. Let 𝑆 be the 2x2 curvature matrix, where 𝑆0,0 is the
curvature in the warp direction, 𝑆1,1 is the curvature in the weft
direction. Let 𝑆𝑟 be the rest curvature. We define bending stiffnesses
𝑘 per panel in each direction: warp, weft, and shear.

𝜓𝑏𝑒𝑛𝑑 = 1/2
(
(𝑘𝑤𝑎𝑟𝑝 (𝑆0,0 − 𝑆𝑟0,0)

2 + 𝑘𝑤𝑒𝑓 𝑡 (𝑆1,1 − 𝑆𝑟1,1)
2+

𝑘𝑠ℎ𝑒𝑎𝑟 (𝑆1,0 − 𝑆𝑟1,0)
2)
) (7)

We use a spring-based seam bending energy inspired by [Brid-
son et al. 2002]. We measure the angle between two triangles and
compare it to the rest angle to produce a spring force along with an
elastic response and damping term.

5.2.3 Collisions. To efficiently detect collisions between cloth tri-
angles, we leverage a BVH to find nearby triangles. For any contact
pair, we verify that the involved triangles are not topologically ad-
jacent, and are not connected via a seam vertex. Using this method,
we avoid spurious collisions across sewn pattern pieces.

For collision response, we apply impulses between the closest
points between two colliding triangles. We interpolate impulses
into the triangle faces as described by Bridson et al. [2002]. Each
impulse is made up of an elastic portion, a damping portion, and a
coulomb friction portion. For collision between the cloth triangles
and all the clothing layers below and the body, we utilize the SDFs as
described in Section 5.1. We detect the collisions between triangles’
vertices and the union signed distance field and apply impulses to
the colliding vertices. The collision normal is simply the gradient of
the SDF.

Typical parameters used in the simulation for collision are avail-
able in Table 1. Since initial garment configurations frequently start
off in heavily interpenetrated states, we globally damp velocities
by 90% at each step of the simulation to reduce the likelihood of a
large energy in the initial interpenetrated configuration.

6 AUTOMATIC SEMANTIC PROXY GENERATION
We develop amethod to automatically filter out panels based on type,
to produce a simulation-ready proxy mesh. Using this approach, we

8 • Leaf et al.

Parameter Value

Collision Force Coefficient 2500000
Collision Damping Coefficient 25
Coulomb Friction Coefficient 25
𝜖𝑠𝑑 𝑓 0.2

Table 1. Simulation Parameters

Fig. 6. Initial garment (left) and generated proxy mesh (right).

can address the simulator’s struggle to drape certain garments with
complex construction, such as thin decorative pieces like pockets
or straps. For instance, a high visibility vest may have reflective
straps that are tightly constrained to follow the garment’s surface.
Improper tuning of the thickness parameter for this material can
cause significant collision forces between the strap and its attached
surface, without adding significant value to the simulation result.We
consistently label each panel in our dataset with semantic meaning,
to make panel filtering simple. We show the proxy mesh of a high
visibility vest generated using our method in Figure 6. Note that
this approach requires us to make the following assumptions:
• We assume that all vertices of a removed panel piece have a

nearby part of the proxy mesh.
• We assume the proxy mesh does not undergo significant

rotation. Since we use world space offsets, we are not robust
to rotations of the garment.

We use these generated proxy meshes during garment transfer
and the progressive draper step. Note that for the collisions of the
draper to be correct on each layer, we use the detailed mesh of the
lower layers as part of the collision surface. This ensures we include
the thickness of pockets/straps in subsequent layer simulations.

7 RIG TRANSFER
As the final step to prepare a character’s outfit for animation, we
transfer the skinning weights of the character’s rig from the body
to the cloth.
We initially tried a straightforward approach by searching for

the closest point between a cloth vertex and the body surface, then
propagating the skinning weights from the body to the cloth. While
this approach may work in some simple cases, it was not capable of
handling situations where cloth layers can get arbitrarily close or
even inverted, since it may associate the cloth piece with the wrong

(a) Transfer by positions (b) Transfer by normals

Fig. 7. Cross-section of garment layers and their associated body surface
locations for skinning weights transfer based on different strategies. Using
garment normals helps each face find the correct body location to inherit
skinning weights from.

Fig. 8. A single outfit fit onto characters of different body types.

body part (Fig. 7a). We observe these problem cases happen most
often in tightly pinched areas, such as the armpit of the character.
To ensure a more robust rig transfer, we use the cloth’s normals to
find the best points on the body mesh to transfer skinning weights
from (Fig. 7b). We compare these two approaches in Figure 7.
We apply normal smoothing to improve the smoothness of the

skinning weights assigned to each cloth vertex. We also constrain
skinning weights to be identical across seam lines, which ensures
continuity across seam boundaries. Finally, we use proximal trans-
fers as a fall-back strategy if the normal based search path does not
find a body vertex to use for skinning weights association. With
all of these strategies together, we create more robust animated
character rigs.

8 RESULTS
Using our pipeline, we can assemble, fit, drape, and rig a wide range
of outfits onto new characters. As shown in Figure 8, we can fit a
single outfit onto multiple characters of widely varying body shapes.

We designed the pipeline as an offline process. We measured per-
formance of the two slowest steps of the pipeline, garment transfer
and draping, on a wide range of outfits using an NVIDIA RTX 5000
Ada Generation Laptop GPU. These metrics show the scalability
of Bolt for generating large character sets compared to manually
transferring outfits.

Figure 9 shows the transfer time for a wide range of outfits fit to a
single obese class-1 male character. The total transfer time depends
on the number of garments, the convergence rate of the conjugate
gradient solver, and the number of source bodies involved in the

Bolt: Clothing Virtual Characters at Scale • 9

Fig. 9. Box plot of transfer times for different outfits fit to a single obese
male character, organized by number of layers in each outfit.

Fig. 10. Histogram of average simulation times per frame across 55 different
garments. Since the draper simulation only simulates one garment at a time,
an outfit’s total simulation time is the sum of the N layers involved in the
outfit. All garments are simulated for only 6 frames.

transfer. If two garments are fit to two different source bodies, say a
skirt fit to a female source character and a button-up shirt fit to a
male source character, the total transfer time includes the time to
transfer both garments from their respective source bodies to the
target body.
Figure 10 shows the average draping time per frame for a range

of garments. The total time to assemble an outfit will depend on
the combination of garments, and their individual simulation times.
For our results, we run each garment for 6 frames of the simula-
tion. Across our dataset of garments, the average frame time is 4.8
seconds.

Fig. 11. Box plot of draping times across a collection of outfits fit to the
obese class 1 individual, sorted by number of layers in the outfit.

Fig. 12. Multiple outfits on the same character. In this visualization each
panel is assigned a different random color.

Figure 11 shows the draping simulation time for an outfit collec-
tion fit to an obese male character. We observe that the progressive
draper step is the main performance bottleneck of the system, since
we simulate each layer separately. We demonstrate successful fits on
large characters of up to 4 layers, as previously shown in Figure 5.
For our 4-layer outfits, the slowest completes in 112 seconds. Figure
12 shows a subset of outfits on a single class one obese character.
See Table 2, and Table 3 for examples showing different characters
wearing a variety of outfits.

Note that these performance numbers do not include file I/O,
rigging, or any of the transfer initialization and simulation initial-
ization processes. We ran an experiment to generate 220 characters,
and observed an average wall-clock time of approximately 6 minutes
per character (run on a cloud instance with an A40 GPU). Using
cloud resources, and with a budget of 64 A40 GPUs, we were able to

10 • Leaf et al.

generate all 220 in under 30 minutes. We have used our system to
produce characters in practical applications. At the time of writing,
we have generated and published just over 100 characters for demos
or public releases. As part of our submission video, we show images
of nearly 1000 characters we generated using this tool.

9 CONCLUSION
We have demonstrated a tool for the automatic assembly, fitting,
draping, and rigging of many garments onto many characters. Using
this system, we can assemble garments into new outfits, and fit
them onto new characters in a scalable way. As the demand for
large numbers of digital humans continues to grow, our approach
can help keep up with that demand.

9.1 Limitations
In the garment transfer step, we assume a per-vertex correspon-
dence between the source body and target body. To support general
character refitting, we would need a spatial correspondence map
between any two characters. We derive all of our characters from
a single parametric model, which ensures they all share the same
topology and are compatible in our pipeline.
In the progressive draping step, we cannot propagate informa-

tion from later simulation layers back to earlier layers. For example,
with a collared shirt on layer 0 and a sweater on layer 1, we can-
not achieve a look where the collar is above the sweater since the
sweater’s simulation will see the final “frozen” dress shirt positions
as a collision surface. To address this issue, we would need to un-
tangle all garments simultaneously as part of the same simulation,
and/or carefully break down the garment sewing pattern pieces into
"sub-layers" that could interleave with one another. For example,
we could put the body of the shirt on layer 0, the sweater on layer 1,
and the collar of the shirt onto layer 2, as long as we add constraints
to ensure the collar remains connected to its counterpart pattern
piece on layer 0.
Our cloth simulator cannot be used in full scale animations be-

cause our seam handling approach does not allow for seam group
rotations. The simulator also does not have a robust self-collision
untangling method, so if the cloth starts off in a tangled state, due
to an artifact introduced in an earlier stage of the pipeline, the sim-
ulator will not fix the tangling artifact, and it will persist even after
the draping stage.
Our system may introduce artifacts for characters with extreme

body shape differences. For example, if a class 3 obese character’s
body has a region that causes the surface to fold back onto itself,
the transfer process will place the cloth close to the surface of the
body mesh, essentially “pinching” the fabric underneath the body
region. Once the cloth starts off in a pinched configuration, it rarely
succeeds in pulling the cloth out from the pinched section in a way
that is nicely untangled.

9.2 Future Work
In addition to addressing the limitations mentioned previously, we
would like to investigate other approaches to improve the robustness
of our pipeline. We would like to investigate untangling approaches
that can resolve self-collisions, especially in tight/pinched areas, to

help the system recover from poor garment initialization or issues
during garment transfer.
Our garment transfer method resizes the garment solely on the

character’s differences in geometry. Sometimes this approach can
make garments too form-fitting on larger characters, and place
extra material in ways that modify the original style or design.
Additionally, we are inspired by the traditional tailoring process
where a tailor takes specific measurements of the body for fitting a
suit. We would like to investigate using similar measurements to
achieve smarter garment refitting.

ACKNOWLEDGMENTS
We thank Nvidia for supporting this project and in particular Vanni
Brighella, Miguel Guerrero, Adeline Aubame, and Qiao Wang for
help with creating the input assets and software support. We also
thank Michael Honke for proof-reading our paper, and Ken Museth,
Simon Yuen, and Miles Macklin for helpful discussions and feedback.

REFERENCES
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings

of the 25th annual conference on Computer graphics and interactive techniques. 43–54.
David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling cloth. ACM Trans-

actions on Graphics (TOG) 22, 3 (2003), 862–870.
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.

Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans-
actions on Graphics (TOG) 33, 4 (2014), 1–11.

Robert Bridson, Ronald Fedkiw, and JohnAnderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (2002).

Remi Brouet, Alla Sheffer, Laurence Boissieux, and Marie-Paule Cani. 2012. Design
preserving garment transfer. ACM Transactions on Graphics 31, 4 (2012), Article–No.

Thomas Buffet, Damien Rohmer, Loic Barthe, Laurence Boissieux, and Marie-Paule
Cani. 2019. Implicit untangling: A robust solution for modeling layered clothing.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–12.

Hsiao-yu Chen, Egor Larionov, Ladislav Kavan, Gene Lin, Doug Roble, Olga Sorkine-
Hornung, and Tuur Stuyck. 2024. Dress Anyone: Automatic Physically-Based
Garment Pattern Refitting. arXiv preprint arXiv:2405.19148 (2024).

Fernando de Goes, Donald Fong, and Meredith O’Malley. 2020. Garment refitting for
digital characters. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Talks. 1–2.

T. F. Gast and C. Schroeder. 2015. Optimization integrator for large time steps. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Copenhagen, Denmark) (SCA ’14). Eurographics Association, Goslar, DEU, 31–40.

Yotam Gingold, Adrian Secord, Jefferson Y. Han, and Eitan Grinspun. 2004a. A Discrete
Model for Inelastic Deformation of Thin Shells. https://cims.nyu.edu/gcl/papers/
secord2004sds.pdf. (2004). Accessed: 2023-11-27.

Yotam Gingold, Adrian Secord, Jefferson Y Han, Eitan Grinspun, and Denis Zorin.
2004b. A discrete model for inelastic deformation of thin shells. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. Citeseer.

Artur Grigorev, Giorgio Becherini, Michael Black, Otmar Hilliges, and Bernhard
Thomaszewski. 2024. ContourCraft: Learning to Resolve Intersections in Neural
Multi-Garment Simulations. In ACM SIGGRAPH 2024 Conference Papers. 1–10.

Kai He, Kaixin Yao, Qixuan Zhang, Jingyi Yu, Lingjie Liu, and Lan Xu. 2024. DressCode:
Autoregressively Sewing and Generating Garments from Text Guidance. ACM
Transactions on Graphics (TOG) 43, 4 (2024), 1–13.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine. 2013. Robust Inside-Outside Segmen-
tation using Generalized Winding Numbers. ACM Trans. Graph. 32, 4 (2013).

Theodore Kim. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. ACM
SIGGRAPH / Eurographics Symposium on Computer Animation 39, 8 (2020).

Maria Korosteleva and Sung-Hee Lee. 2022. NeuralTailor: Reconstructing Sewing
Pattern Structures from 3D Point Clouds of Garments. ACM Trans. Graph. 41, 4
(2022), 16 pages. https://doi.org/10.1145/3528223.3530179

Maria Korosteleva and Olga Sorkine-Hornung. 2023. GarmentCode: Programming
Parametric Sewing Patterns. ACM Transaction on Graphics 42, 6 (2023), 16 pages.
https://doi.org/10.1145/3618351 SIGGRAPH ASIA 2023 issue.

Dohae Lee, Hyun Kang, and In-Kwon Lee. 2023. ClothCombo: Modeling Inter-Cloth
Interaction for Draping Multi-Layered Clothes. ACM Transactions on Graphics (TOG)
42, 6 (2023), 1–13.

Yu Lee and Moon-Ryul Jung. 2009. Retargeting Motion of Clothing to New Characters..
In GRAPP. 280–285.

https://cims.nyu.edu/gcl/papers/secord2004sds.pdf
https://cims.nyu.edu/gcl/papers/secord2004sds.pdf
https://doi.org/10.1145/3528223.3530179
https://doi.org/10.1145/3618351

Bolt: Clothing Virtual Characters at Scale • 11

Ren Li, Benoît Guillard, and Pascal Fua. 2024. ISP: multi-layered garment draping
with implicit sewing patterns. In Proceedings of the 37th International Conference on
Neural Information Processing Systems (New Orleans, LA, USA) (NIPS ’23). Curran
Associates Inc., Red Hook, NY, USA, Article 1751, 26 pages.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. Acm Transactions on Graphics (TOG)
36, 3 (2017), 1–16.

Miles Macklin. 2022. Warp: A High-performance Python Framework for GPU Simu-
lation and Graphics. https://github.com/nvidia/warp. NVIDIA GPU Technology
Conference (GTC).

Miles Macklin, Matthias Muller, and Nuttapong Chentanez. 2016. Xpbd: Position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM SIGGRAPH 2011 papers. 1–8.

Marvelous Designer. 2023. FABRIC PHYSICAL PROPERTIES: Adjust Stretch-Weft/Warp,
Shear. https://support.marvelousdesigner.com/hc/en-us/articles/360037396031-
FABRIC-PHYSICAL-PROPERTIES-Adjust-Stretch-Weft-Warp-Shear. Accessed:
2023-11-27.

Shanthika Naik, Kunwar Singh, Astitva Srivastava, Dhawal Sirikonda, Amit Raj, Varun
Jampani, and Avinash Sharma. 2024. Dress-Me-Up: A Dataset & Method for Self-
Supervised 3D Garment Retargeting. arXiv preprint arXiv:2401.03108 (2024).

Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM Projective
Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE
Trans. Vis. Comput. Graph. 23, 10 (2017), 2222–2234. http://dblp.uni-trier.de/db/
journals/tvcg/tvcg23.html#OverbyBLN17

Nico Pietroni, Corentin Dumery, Raphael Guenot-Falque, Mark Liu, Teresa Vidal-Calleja,
and Olga Sorkine-Hornung. 2022. Computational Pattern Making from 3D Garment
Models. arXiv:2202.10272 [cs.GR]

Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. 2017. ClothCap:
Seamless 4D clothing capture and retargeting. ACM Transactions on Graphics (ToG)
36, 4 (2017), 1–15.

Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated
to design garments. In Computer Animation and Simulation’97: Proceedings of the
Eurographics Workshop in Budapest, Hungary, September 2–3, 1997. Springer, 177–
189.

Min Shi, Yukun Wei, Lan Chen, Dengming Zhu, Tianlu Mao, and Zhaoqi Wang. 2021.
Learning a shared deformation space for efficient design-preserving garment transfer.
Graphical Models 115 (2021), 101106.

Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Geome-
try Processing, Alexander Belyaev and Michael Garland (Eds.). The Eurographics
Association. https://doi.org/10.2312/SGP/SGP07/109-116

Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018.
I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation.
ACM Transaction on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (November 2018),
204:1–10.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’87). Association for Computing Machinery,
New York, NY, USA, 205–214. https://doi.org/10.1145/37401.37427

Pascal Volino and Nadia Magnenat-Thalmann. 2006. Resolving surface collisions
through intersection contour minimization. ACM Transactions on Graphics (TOG)
25, 3 (2006), 1154–1159.

HuaminWang. 2018. Rule-free sewing pattern adjustment with precision and efficiency.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–13.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the
GPU. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1–10.

Martin Wicke, Hermes Lanker, and Markus Gross. 2006. Untangling cloth with bound-
aries. In Proc. of Vision, Modeling, and Visualization, Vol. 349. 356.

Juntao Ye, Guanghui Ma, Liguo Jiang, Lan Chen, Jituo Li, Gang Xiong, Xiaopeng Zhang,
andMin Tang. 2017. A unified cloth untangling framework through discrete collision
detection. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 217–228.

Cyril Zeller. 2005. Cloth simulation on the gpu. In ACM SIGGRAPH 2005 Sketches.
39–es.

https://github.com/nvidia/warp
https://support.marvelousdesigner.com/hc/en-us/articles/360037396031-FABRIC-PHYSICAL-PROPERTIES-Adjust-Stretch-Weft-Warp-Shear
https://support.marvelousdesigner.com/hc/en-us/articles/360037396031-FABRIC-PHYSICAL-PROPERTIES-Adjust-Stretch-Weft-Warp-Shear
http://dblp.uni-trier.de/db/journals/tvcg/tvcg23.html#OverbyBLN17
http://dblp.uni-trier.de/db/journals/tvcg/tvcg23.html#OverbyBLN17
https://arxiv.org/abs/2202.10272
https://doi.org/10.2312/SGP/SGP07/109-116
https://doi.org/10.1145/37401.37427

12 • Leaf et al.

Table 2. We demonstrate the end result of refitting and draping outfits composed of diverse garments onto a variety of male characters using the Bolt pipeline.

Bolt: Clothing Virtual Characters at Scale • 13

Table 3. A variety of outfits composed of different garments are refitted and draped onto a range of female characters using Bolt.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Garment Transfer
	4.1 3D Mesh Transfer
	4.2 Sewing Pattern Optimization

	5 Progressive Draper
	5.1 Unified Collision Signed Distance Functions
	5.2 Cloth Simulator

	6 Automatic Semantic Proxy Generation
	7 Rig Transfer
	8 Results
	9 Conclusion
	9.1 Limitations
	9.2 Future Work

	Acknowledgments
	References

