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Abstract

Synthetic Electronic Health Record (EHR) time-series generation is crucial for
advancing clinical machine learning models, as it helps address data scarcity by
providing more training data. However, most existing approaches focus primarily
on replicating statistical distributions and temporal dependencies of real-world
data. We argue that fidelity to observed data alone does not guarantee better model
performance, as common patterns may dominate, limiting the representation of rare
but important conditions. This highlights the need for generate synthetic samples to
improve performance of specific clinical models to fulfill their target outcomes. To
address this, we propose TarDiff, a novel target-oriented diffusion framework that
integrates task-specific influence guidance into the synthetic data generation pro-
cess. Unlike conventional approaches that mimic training data distributions, TarDiff
optimizes synthetic samples by quantifying their expected contribution to improv-
ing downstream model performance through influence functions. Specifically,
we measure the reduction in task-specific loss induced by synthetic samples and
embed this influence gradient into the reverse diffusion process, thereby steering
the generation towards utility-optimized data. Evaluated on six publicly available
EHR datasets, TarDiff achieves state-of-the-art performance, outperforming ex-
isting methods by up to 20.4% in AUPRC and 18.4% in AUROC. Our results
demonstrate that TarDiff not only preserves temporal fidelity but also enhances
downstream model performance, offering a robust solution to data scarcity and
class imbalance in healthcare analytics.

1 Introduction

Healthcare is a cornerstone of societal well-being, especially as the world faces an aging population
and the rising burden of chronic diseases, placing increasing pressure on healthcare systems worldwide
[Liang et al., 2024]. Traditionally, medical diagnoses have relied on human expertise, but with
advancements in machine learning, Electronic Health Records (EHRs)—which digitally store a
patient’s medical history, including demographic attributes [Maweu et al., 2021, Li et al., 2023],
vital signs [Tseng et al., 2022], and lab measurements—have become invaluable for clinical research
[Kaushik et al., 2020, Schlegel et al., 2023]. EHR time series data, such as Electroencephalography
(EEG) for neurological analysis and Electrocardiography (ECG) for heart condition diagnosis, provide
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critical insights for medical decision-making. Leveraging these rich data sources, machine learning
models trained in a data-driven manner are then applied to various downstream tasks, including
disease diagnosis, prognosis prediction, and treatment planning [Shickel et al., 2017, Goldstein et al.,
2016, Li et al., 2024b, Nagar et al., 2024].

However, obtaining and utilizing EHR data remains a significant challenge due to medical-related
factors, such as strict privacy regulations, data incompleteness resulting from sensor failures, and
difficulties in accurate labeling. As a result, synthesizing EHR data has gained increasing attention.
Existing work has explored a wide range of methods including rule-based approaches and generative
models. Rule-based techniques—such as time warping, jittering, and interpolation[Wang et al., 2024,
Wen et al., 2020]—are favored for their simplicity and efficiency, yet they often fail to capture the
intricate temporal dependencies and pathological patterns present in clinical data. GANs [Schön et al.,
2023] and VAEs [Kingma, 2013] have been employed to generate high-fidelity signals, with notable
examples including TimeGANs [Yoon et al., 2019], TimeVAE [Desai et al., 2021], and TimeVQ-
VAE [Lee et al., 2023], which have demonstrated improved performance in various biohealthcare
applications. More recently, diffusion models [Ho et al., 2020, Song et al., 2020, Fan et al., 2024, Li
et al., 2025] have emerged as a promising alternative; methods such as TimeDiff [Tian et al., 2024],
DiffusionTS [Yuan and Qiao, 2024] and BioDiffusion [Li et al., 2024a] similarly seek to approximate
the underlying data distribution through iterative refinement, emphasizing the generation of realistic
time series data.

While these efforts have significantly advanced the field, they primarily focus on generating synthetic
data by mimicking the empirical distribution of training samples. We argue that this approach
inherently overlooks the effectiveness of the generated data for downstream medical tasks. For
instance, in rare disease diagnosis, where positive samples are scarce in real-world datasets, generating
synthetic data purely based on observed distributions may exacerbate biases in the downstream
model [Gupta et al., 2021], making it more inclined to diagnose common conditions while failing to
recognize rare diseases effectively. Consequently, such data generation strategies do not necessarily
enhance model performance in rare disease diagnosis and may even worsen the imbalance in predictive
accuracy [Huo et al., 2022]. Therefore, we propose that EHR data generation should not merely
replicate statistical patterns of training data but should instead be guided by its utility in training more
effective models to fulfill the targets of downstream tasks. This calls for an adaptive generation strategy
that actively optimizes synthetic data to enhance model learning for specific medical applications.

In this work, we investigate how to develop a model for generating EHR data that is specifically
tailored to enhance downstream model performance for target tasks. Recent advancements in diffusion
models have shown promising results in time series generation [Tian et al., 2024, Yuan and Qiao,
2024, Li et al., 2024a], with conditional diffusion models [Huang et al., 2025, Dhariwal and Nichol,
2021, Ho and Salimans, 2022] offering significant insights for this work. These models have the
ability to guide the generation process towards a predefined goal, which provides a compelling
direction for EHR generation. Therefore, an intuitive idea is to guide the diffusion process towards
generating data that benefits downstream tasks. However, one of the key challenges is how to
represent and quantify the impact of the generated data on the performance of downstream models
for specific tasks. To address this, we draw inspiration from influence functions[Koh and Liang,
2017, Anand et al., 2023, Cook, 1977], a robust statistics technique that measures the impact of a
single data point on an estimator, revealing how observations affect model parameters and predictions.
In machine learning, influence functions help understand model behavior, debug predictions, and
identify influential training points by tracing a model’s predictions back to its training data [Hou
et al., 2024].

Building upon this foundation, we propose a diffusion framework that integrates the influence of
synthetic samples as a form of guidance, with the goal of generating samples that yield the most
positive impact on specific clinical tasks. In our approach, the influence of a generated sample is
defined as the reduction in the task-specific loss on a guidance set drawn from the same distribution
as the downstream task when the sample is incorporated into the training data. By estimating the
influence of intermediate samples during the diffusion process, we leverage the gradient information
associated with the influence to steer the generation process toward producing data that are optimally
beneficial for downstream tasks. By incorporating this influence gradient into the reverse diffusion
process, our method actively guides the generation toward producing samples that are more likely to
improve performance of healthcare prediction tasks. Ultimately, the influence mechanism bridges the
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gap between data authenticity and clinical utility, ensuring that the generated time series are not only
realistic but also tailored to enhance specific healthcare tasks.

To summarize, this paper makes the following contributions: First, we introduce a novel influence
mechanism that quantifies the clinical utility of synthetic samples by measuring the expected reduction
in task-specific loss. Second, we propose TarDiff, an influence guided diffusion model that integrates
this mechanism into the reverse diffusion process, effectively steering generation toward samples that
enhance downstream model performance. Third, we validate our approach on multiple clinical tasks,
demonstrating that the synthetic medical time series produced by our method are not only realistic
but also yield significant improvements in clinical outcomes.

2 Preliminary

2.1 Diffusion Models

Denoising Diffusion Probabilistic Models The core idea behind DDPM[Ho et al., 2020] is the
modeling of a forward diffusion process, which progressively adds noise to the data, and a reverse
diffusion process, which denoises the data to ultimately generate realistic samples from noise. Let x0

represent a data sample drawn from the real data distribution pdata(x0). The forward diffusion process
introduces Gaussian noise to the data over T discrete time steps, transforming x0 into pure noise xT ,
which is assumed to follow a standard normal distribution, i.e., xT ∼ N (0, I). At each time step t,
the data xt is modeled as a noisy version of xt−1 via the conditional Gaussian distribution:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

(1)

βt denotes the noise schedule controlling the amount of noise added at each step, and ᾱt =
∏t

s=1(1−
βs) represents the cumulative noise factor. The forward diffusion process is Markovian, and the
joint distribution of the noisy data can be expressed as q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), where

x1:T = (x1, x2, ..., xT ) represents the sequence of noisy variables from x0 to xT .

The reverse diffusion process seeks to recover the original data x0 from the noise xT by learning
a generative model. Specifically, at each time step, the model predicts the mean of the reverse
distribution pθ(xt−1|xt), which is also assumed to be Gaussian:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(t)), (2)

where µθ(xt, t) and Σθ(t) represent the model-predicted mean and covariance, respectively, parame-
terized by θ.

The model is trained by minimizing the following loss function, leveraging the Markov property of
the diffusion process:

L(θ) = Eq

[
∥ϵ̂θ(xt, t)− ϵt∥2

]
, (3)

ϵ̂θ(xt, t) is the model’s prediction of the noise added at time step t, and ϵt is the actual noise introduced
during the forward diffusion process. This loss function encourages the model to accurately predict
the added noise, enabling it to reverse the diffusion process and recover the original data x0.

Conditional Diffusion In conditional diffusion[Ho and Salimans, 2022], the reverse process is
explicitly guided by an additional condition y(i.e.,class label). Specifically, the probability is modeled
as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, y, t),Σθ(t)), (4)

where the mean function µθ(xt, y, t) incorporates not only the current state xt and the time step t
but also the condition y, and Σθ(t) denotes the covariance at time t. This formulation enables the
model to generate samples that adhere to both the learned data distribution and the desired attributes
specified by y, thereby achieving controlled synthesis.

In the following, we adapt the conditional diffusion framework to time series generation. To make
this concrete, we first define the general time series generation problem.
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Classifier-Guided Diffusion. This approach[Dhariwal and Nichol, 2021] augments reverse dif-
fusion with signals from an classifier that estimates the conditional likelihood p(y | xt) at every
timestep t. The gradient ∇xt log p(y | xt) indicates the direction in sample space that most increases
the probability of label y; adding this vector therefore nudges the denoising trajectory toward regions
consistent with the desired condition.

Formally, the mean of the Gaussian transition in Eq. (4) is replaced by

µ̃θ(xt, y, t) = µθ(xt, y, t) + α∇xt
log p(y | xt), (5)

where the scalar α controls guidance strength. The resulting reverse kernel becomes

pθ(xt−1 | xt) = N
(
xt−1; µ̃θ(xt, y, t), Σθ(t)

)
. (6)

By favouring states that yield larger log p(y | xt), classifier guidance systematically steers the
generative process toward samples that satisfy the target label, compensating for mismatches in the
diffusion model’s original conditional distribution.

2.2 Task Formulation

Let X = {x1,x2, . . . ,xT } be a continuous time series of length T , where each observation xt ∈ Rd.
Suppose we have a dataset D0 = {X(i)}Ni=1, composed of N independent sequences drawn from an
unknown underlying distribution

pdata(X) = pdata
(
x1,x2, . . . ,xT

)
. (7)

Our goal is to learn a generative model pG(X) that approximates pdata(X), enabling us to sample
new sequences

X̂ = {x̂1, x̂2, . . . , x̂T } with X̂ ∼ pG(X). (8)

A common strategy is to minimize some divergence measure between pdata and pG,

min
pG

D
(
pdata(X)

∥∥ pG(X)
)
, (9)

where D(·∥·) could be the KL divergence. In practice, pG must capture both local dependencies
(e.g., between adjacent time steps) and global trends. Let S(X) denote relevant statistics (e.g.,
autocorrelation or cross-correlation). Then a suitable generative model should satisfy

EX̂∼pG

[
S(X̂)

]
≈ EX∼pdata

[
S(X)

]
, (10)

so that synthetic sequences reflect the essential temporal structures of real data.

For conditional diffusion models, the generative process can be guided by incorporating conditional
information y, such as class labels, as formulated in Equation (4). This conditioning mechanism
allows the model to generate time series that align with specific contexts or constraints while
preserving both local dependencies and global trends.

3 Methodology

In this section, we describe our TarDiff framework in detail. As can be seen from Figure 1, our
method builds upon a conditional diffusion model to generate useful synthetic data through explicitly
incorporating task-specific influence signals into the reverse diffusion process.

3.1 Influence Formulation

We consider a training dataset Dtrain = {(xi, yi)}ni=1 and a collection of downstream tasks T =
{T1, T2, . . . }. For any task T ∈ T , the task-specific parameters are obtained by minimising the
empirical loss on Dtrain:

ϕ∗
T = argmin

ϕ

∑
(xi,yi)∈Dtrain

ℓT
(
xi, yi;ϕ

)
. (11)
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Figure 1: Overview of the Influence Guidance Diffusion framework. In Stage 1, we construct
task-specific datasets from the original dataset Dtrain and train downstream models fTi In Stage
2, we compute each sample’s gradient-based influence for total influence G based on DTi and
fTi . In Stage 3, we leverage influence signals guide the reverse diffusion process with computing
∆LT (ẑ) = ∇ϕℓT (xt, yt;ϕ) ·G. All symbols are detailed in the legend on the right.

To mitigate limitations arising from insufficient or noisy training data, we generate a synthetic sample
ẑ = (x, y) and augment the original data, yielding D0 ∪ {ẑ}, where D0 :=Dtrain. Retraining on the
augmented set gives

ϕẑ
T = argmin

ϕ

∑
(xi,yi)∈D0∪{ẑ}

ℓT
(
xi, yi;ϕ

)
. (12)

For a samples (x′, y′), we define

Hϕ

(
x, y,x′, y′

)
= ℓT

(
x′, y′;ϕẑ

)
− ℓT

(
x′, y′;ϕ∗

T

)
, (13)

the change in downstream loss on (x′, y′) caused by adding (x, y) to the training set.3

Let P denote the underlying data-generating distribution that produces unseen i.i.d. samples at
evaluation time. We define the influence of ẑ on task T as the expected reduction in loss over this
distribution:

∆LT (ẑ) ≜ −E(x′,y′)∼P
[
Hϕ

(
x, y,x′, y′

)]
= −E(x′,y′)∼P

[
ℓT
(
x′, y′;ϕẑ

)
− ℓT

(
x′, y′;ϕ∗

T

)]
. (14)

Our goal is to synthesise the sample that maximises this influence:
ẑ∗ = argmax

ẑ
∆LT (ẑ), (15)

thereby ensuring that the generated data yields the greatest expected performance gain on unseen,
i.i.d. instances of the target task.

3.2 Influence Guidance Diffusion

While our pre-trained conditional diffusion model with parameters θ∗ is adept at generating realistic
medical time series dataset D0, its generation is driven solely by the learned data distribution
conditioned on y (e.g., the label), with the reverse diffusion process described by Equation (4). In
this standard setting, to generate a time series sample with a specific label, one simply samples from
Gaussian noise and iteratively denoises according to (4)—each step conditioned only on the time
step t and the label y—to yield data consistent with the designated label.

Section 2.1 reviewed how an auxiliary classifier steers the reverse kernel via the gradient∇xt
log p(y |

xt), yielding the modified mean µ̃θ(xt, y, t) = µθ(xt, y, t) + α∇xt
log p(y | xt).

Inspired by classifier guidance, we incorporate an additional control signal that measures the impact
of a synthetic sample on downstream performance. Let Dguide = {(x′

j , y
′
j)}

Ng

j=1 be a guidance set
drawn i.i.d. from the same data-generating distribution P introduced in Section 3.1.

3Throughout, ϕẑ depends on (x, y) as in Eq. (2), and ϕ∗
T is the original optimum in Eq. (1).
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Recalling the point-wise loss change Hϕ(·) defined in Eq. (13), the influence of a sample ẑ = (x, y)
on task T is estimated by

∆LT (ẑ) =
∑

(x′,y′)∈Dguide

Hϕ

(
x, y,x′, y′

)
. (16)

At each diffusion step t we treat ẑt = (xt, y) and replace the classifier-guidance term∇xt
log p(y | xt)

with the gradient of the influence estimate,∇xt
∆LT (ẑt). Note that the constant factor in Eq. (16) is

omitted, as it does not affect the direction of the gradient used for guidance.

Consequently, the reverse update becomes
µ̃θ(xt, y, t) = µθ(xt, y, t) + α∇xt

∆LT (ẑt), (17)
where α controls guidance strength.

By steering the denoising trajectory toward samples that exhibit higher ∆LT (ẑ), we ensure that the
generated medical time series data not only conform to the specified condition label but also actively
enhance downstream task performance across the guidance set. This approach mitigates spurious
correlations that can arise from purely label-conditioned diffusion, as the model explicitly seeks
synthetic samples that yield beneficial effects on a broad set of guidance set examples.

3.3 Estimates of Influence

In 3.1 and 3.2, we defined the concept of influence for synthesized samples and discussed how to
generate samples with the highest possible influence during the generation process. Building on this
foundation, the generation of task-specific medical time series requires evaluating the influence of a
generated sample on downstream tasks. The primary challenge is to efficiently quantify how synthetic
samples impact the model’s parameter updates, which are designed to minimize the task-specific loss
function ℓT .

A straightforward but computationally expensive approach would involve iteratively adding each
candidate synthetic sample ẑ to the training set, retraining the model from scratch, and measuring the
resultant performance change. Since this process requiresO(n) retraining steps, it leads to prohibitive
computational costs, particularly for large-scale datasets and complex models. Thus, optimizing for
both efficiency and accuracy in influence estimation is crucial to enable practical applications of this
method.

To circumvent the need for exhaustive retraining, a framework was proposed in [Charpiat et al., 2019,
Anand et al., 2023] that approximates the parameter shift δϕ induced by a synthetic sample ẑ via
gradient-based analysis, thereby significantly reducing computational overhead while maintaining
accuracy in influence estimation.

When estimating the impact of a single sample on model parameters, we build upon the classic
conclusion presented in [Charpiat et al., 2019]. As derived in [Charpiat et al., 2019], to change
the value of the model’s prediction on a sample x, denoted as fϕ(x), by a small quantity ε, The
parameters ϕ can be updated according to δϕ =

ε∇ϕfϕ(x)
∥∇ϕfϕ(x)∥2 . After this parameter update, the new

prediction at x, fϕ+δϕ(x)is given by:

fϕ+δϕ(x) = fϕ(x) +∇ϕfϕ(x) · δϕ+O(∥δϕ∥2)
= fϕ(x) + ε+O(ε2)

(18)

where O(∥δϕ∥2) denotes higher-order terms that are negligible for sufficiently small updates. This
foundational perspective allows us to analyze the impact of individual samples on model behavior
without necessitating full retraining. Furthermore, we can assess how such a parameter change affects
the model’s prediction on another sample x′:

fϕ+δϕ(x
′) = fϕ(x

′) +∇ϕfϕ(x
′) · δϕ+O(∥δϕ∥2)

= fϕ(x
′) + ε

∇ϕfϕ(x
′) · ∇ϕfϕ(x)

∥∇ϕfϕ(x)∥2
+O(∥δϕ∥2).

(19)

The term ε
∇ϕfϕ(x

′)·∇ϕfϕ(x)
∥∇ϕfϕ(x)∥2 quantifies the influence of the parameter update caused by x on the

model’s prediction at x′. Specifically, the numerator∇ϕfϕ(x
′) · ∇ϕfϕ(x) represents the alignment
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between the gradients of fϕ at x′ and x. A higher alignment indicates that changes in ϕ due to x will
have a more pronounced effect on the prediction at x′.

Influence on Performance. To extend this analysis to our setting, we replace the model’s prediction
fϕ(x) with a target loss function ℓT(x, y;ϕ), transitioning from analyzing the influence on predictions
to quantifying the influence on the overall optimization objective. Specifically, the influence of x on
the loss at another sample x′ can be expressed as:

ℓT(x
′, y′;ϕ+ δϕ) =ℓT(x

′, y′;ϕ) +O(ε2)

+ε
∇ϕℓT(x

′, y′;ϕ) · ∇ϕℓT(x, y;ϕ)

∥∇ϕℓT(x, y;ϕ)∥2
.

(20)

Replacing x with synthetic data ẑ = (x, y) and aggregating its influence across the guidance set
Dguide leads to:

∆LT (ẑ) =−
∑

(x′,y′)∈Dguide

Hϕ

(
x, y,x′, y′

)
=

∑
(x′,y′)∈Dguide

[ℓT (x
′, y′;ϕ)− ℓT (x

′, y′;ϕ+ δϕ)]

=−
∑

(x′,y′)∈Dguide

ε
∇ϕℓ(x

′, y′;ϕ) · ∇ϕℓ(ẑ;ϕ)

∥∇ϕℓ(ẑ;ϕ)∥2
.

(21)

Notice that we can denote the gradient accumulation of the guidance set Dguide by G, we can end up
with the following equation:

G = −
∑

(x′,y′)∈Dguide

ε
∇ϕℓ(x

′, y′;ϕ)

∥∇ϕℓ(ẑ;ϕ)∥2
(22)

∆LT (ẑ) = ∇ϕℓ(ẑ;ϕ) ·G (23)

Where ∆LT (ẑ) measures the positive impact of the synthetic sample ẑ on the target loss. Specifically,
a greater increase in ∆LT (ẑ) indicates that the model has better optimized its objective function, im-
plying improved generalization to unseen data. This improvement manifests as enhanced performance
metrics (e.g., accuracy, AUC, or F1-score) on downstream tasks. By generating synthetic samples that
maximize this influence—i.e., by maximizing ∆LT (ẑ)—we aim to augment the dataset with medical
time series data that is beneficial for downstream tasks. This process addresses challenges such as
data sparsity, class imbalance, and noisy measurements often encountered in medical datasets. By
introducing synthetic samples that capture task-relevant patterns (e.g., subtle physiological changes
or rare but critical events), the model can learn more representative and clinically significant features,
ultimately improving its robustness and reliability in tasks such as mortality prediction and disease
diagnosis.

3.4 TarDiff Pipeline

In this section, we provide an end-to-end overview of the Influence Guided Diffusion pipeline
for generating high-quality medical time-series data customized to a target task T . The complete
procedure is illustrated in Algorithm 1, which consists of three main steps: (1) pre-training the
downstream model, (2) computing influence gradients, and (3) performing guided diffusion sampling.

Step 1: Pre-train Downstream Model. We first optimize the downstream task model fϕ on the
original dataset Dtrain, aiming to find parameters ϕ∗ that minimize the target loss function ℓ(·;ϕ)
over (x, y) ∈ Dtrain. This yields a well-trained model capable of capturing task-specific knowledge
relevant to the subsequent generation process.

Step 2: Compute Data Influence. Using the trained parameters ϕ∗, we then compute per-sample
gradients∇ϕℓ(xi, yi;ϕ

∗) for each sample in guidance datasetDguide. Accumulating and normalizing
these gradients produces a single vector G that reflects the aggregated influence of the dataset on the
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downstream model. This gradient cache G is leveraged to guide the diffusion model, ensuring that
generated samples maximize their impact on the target task.

Step 3: Influence-Guided Diffusion Sampling. With G fixed, we initialize xT from a standard
Gaussian. At each reverse diffusion step t, the model outputs µt = µθ(xt, y, t). We then compute
an influence-driven guidance term, J← ∇xt

(
G · ∇ϕℓ(xt, y;ϕ

∗)
)
, where ℓ is the downstream loss,

and G encapsulates the influence from the guidance set. We update the mean via µ̃t ← µt + w · J,
where w controls the strength of task-oriented guidance. Finally, we sample xt−1 ∼ N (µ̃t,Σθ(t)).
Iterating this procedure through all diffusion steps yields the final synthetic sample ẑ = x0, biased
toward improving downstream performance.

By combining a pre-trained downstream task model, influence gradient aggregation, and guidance-
based diffusion sampling, TarDiff provides a unified pipeline for generating task-specific synthetic
data. This pipeline ensures the fidelity of generated medical time-series data while aligning it closely
with the optimization objective of the target task, making it particularly suitable in scenarios such as
diagnostic improvement or risk prediction in healthcare applications.

Algorithm 1 TarDiff Pipeline
Require: Original dataset Dtrain, guidance subset Dguide Pretrained conditional diffusion model

µθ(xt, y, t),Σθ(t). Downstream task model fϕ with random initialization, Loss function ℓ(·;ϕ),
Total diffusion steps T , Influence scaling factor w.

Ensure: Synthetic sample ẑ optimizing task T .
Step 1: Pre-train downstream model
Optimize ϕ∗ ← argminϕ

∑
(x,y)∈Dtrain

ℓ(x, y;ϕ)

Step 2: Compute Data Influence.
Initialize G← 0
for i = 1 to |Dguide| do

Get sample (xi, yi) ∈ Dguide

Compute per-sample gradient:
gi ← ∇ϕℓ(xi, yi;ϕ

∗)
Accumulate gradients: G← G+ gi

end for
Normalize: G← 1

|D0|G

Step 3: Influence Guided diffusion sampling
Initialize xT ∼ N (0, I)
for t = T to 1 do

(a) µt ← µθ(xt, y, t).
(b) J← ∇xt

[
G · ∇ϕℓ(xt, yt;ϕ

∗)
]

(c) µ̃t ← µt + w · J.
(d) xt−1 ∼ N (µ̃t,Σθ(t)).

end for
Return ẑ ← (x0, y0)

4 Experiment Setup and Result Analysis

Our experiments are designed to systematically evaluate the proposed method in terms of data
quality, augmentation effectiveness, influence guidance mechanism, and computational efficiency.
Specifically, we investigate: (1) the feasibility of entirely replacing real data with synthetic data
(Section 4.2), (2) the effectiveness of synthetic data as augmentation (Section 4.3), (3) the specific
impact of the influence guidance mechanism (Section 4.6), and (4) the computational efficiency of
our proposed method (Section 4.5). Throughout all experiments, we adopt the standard validation
split as the i.i.d. guidance set introduced in Section 3.1.

4.1 Datasets, Baselines, and Evaluation Metrics

Datasets. We evaluate our method across multiple datasets. MIMIC-III [Johnson et al., 2016]
includes multivariate ICU data (7 features, 24 steps) from 20,920 samples. eICU [Pollard et al.,
2018] provides ICU data (3 features, 288 steps after preprocessed) from over 200,000 admissions.
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Table 1: Performance Comparison of Synthetic Data Generation Methods on MIMICIII and eICU

MIMIC-III eICU
Method Mortality ICU Stay Mortality ICU Stay

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
TimeGAN 0.1402 0.5144 0.3645 0.5431 0.1592 0.6238 0.4213 0.4620
TimeVAE 0.0957 0.5392 0.3939 0.5656 0.1046 0.5233 0.4753 0.5321
TimeVQVAE 0.0874 0.5182 0.3790 0.5389 0.1216 0.5721 0.4520 0.5287
DiffusionTS 0.0865 0.5330 0.3451 0.4946 0.1292 0.5594 0.4692 0.5261
BioDiffusion 0.0964 0.5335 0.3370 0.4905 0.1435 0.5872 0.4625 0.5323

Real Data 0.1736 0.6350 0.4618 0.6282 0.2072 0.6869 0.6004 0.6615

TarDiff 0.1799 0.6373 0.4183 0.5800 0.1698 0.6308 0.5583 0.6184

Additionally, we test generalizability on four physiological signal datasets: APAVA [Escudero et al.,
2006], PTB [Goldberger et al., 2000], TDBRAIN [Van Dijk et al., 2022], and ADFD [Miltiadous et al.,
2023], covering diverse ECG and EEG signals. All datasets use an 80%-10%-10% split for training,
validation, and test sets. Detailed descriptions and preprocessing steps are provided in Appendix A.

Baselines. We compare our approach with several state-of-the-art generative methods:
TimeGAN [Yoon et al., 2019], a GAN-based model; TimeVAE [Desai et al., 2021], a variational
autoencoder model; Diffusion-TS [Yuan and Qiao, 2024], an unconditional diffusion model; TimeVQ-
VAE [Lee et al., 2023] and BioDiffusion [Li et al., 2024a], both conditional generative models capable
of directly generating label-conditioned time series. For unconditional models (TimeGAN, TimeVAE,
Diffusion-TS), we train separate class-specific models. To evaluate the downstream utility of gener-
ated data, we use TimesNet [Wu et al., 2022], a state-of-the-art time-series classification architecture,
to measure classification performance.

Evaluation Metrics. Given the inherent class imbalance in clinical datasets, we use Area Under
the Receiver Operating Characteristic Curve (AUROC) and Area Under the Precision-Recall Curve
(AUPRC) as primary evaluation metrics. Detailed metric definitions and formulas are provided in
Appendix B.

4.2 Train on Synthetic, Test on Real (TSTR)

We evaluate the potential of the generated data to serve as a substitute for original data in training high-
performance models for clinical tasks. The downstream classifier (TimesNet [Wu et al., 2022]) is
trained exclusively on synthetic data produced by each time-series generation method, then evaluated
on real test data to assess its generalization capability.

Table 1 summarizes the TSTR performance on MIMIC-III and eICU datasets, while the results
on high-frequency EEG (APAVA, ADFTD, TDBrain) and ECG (PTB) datasets are presented sepa-
rately in Table 2. Consistently, TarDiff achieves state-of-the-art performance in terms of AUROC
and AUPRC. Notably, in the TSTR setting, models trained solely on TarDiff-generated samples
outperform those trained on synthetic data from other baselines across all tasks, including both
standard EHR classification and EEG/ECG-based diagnoses. Despite having no access to original
data during training, the downstream classifiers attain high scores on real test sets, confirming that
TarDiff-generated samples effectively capture the essential clinical or physiological features needed
for robust predictive modeling.

These findings emphasize that our approach not only produces realistic time-series data but also
generates samples that are carefully optimized to improve downstream clinical predictions in a
variety of scenarios, thereby validating the robustness and utility of TarDiff in critical healthcare
applications ranging from general EHR to high-frequency EEG/ECG analytics.

4.3 Train on Synthetic and Real, Test on Real (TSRTR)

Setups. In this experiment, we investigate the effect of incorporating synthetic EHR data—generated
by different time series generation framework—into the training set alongside real data, and subse-
quently testing the trained model on a real test set. We examine five synthetic-to-real mixing ratios:
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Table 2: Performance Comparison of Synthetic Data Generation Methods on ECG and EEG Datasets

Method APAVA ADFD PTB TDBrain
AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

TimeGAN 0.61229 0.51033 0.35839 0.54113 0.86766 0.78173 0.60932 0.62780
TimeVAE 0.74266 0.68569 0.42466 0.60053 0.95092 0.89445 0.58464 0.58565
TimeVQVAE 0.63722 0.55500 0.33884 0.50578 0.94862 0.89843 0.51336 0.54659
DiffusionTS 0.57083 0.47062 0.33286 0.50039 0.87372 0.75979 0.49900 0.49319
BioDiffusion 0.63294 0.54325 0.46042 0.63753 0.85887 0.74805 0.55134 0.56796

Real Data 0.76692 0.72063 0.43349 0.62390 0.96768 0.93306 0.96424 0.96153

TarDiff 0.76519 0.77097 0.47950 0.64429 0.95435 0.90532 0.65420 0.64444

0.2, 0.4, 0.6, 0.8, and 1.0, where the ratio indicates the size of the synthetic dataset relative to the real
training set. For each ratio α, the combined training set is defined as

Dtrain = Dreal ∪ Dsynthetic(α),

with Dsynthetic(α) representing the synthetic data sampled to match the specified proportion α.

We evaluate the downstream performance on six datasets using key metrics AUROC. Figure 2
illustrates the AUROC performance of various methods across two datasets under different synthetic-
to-real data mix ratios. Our method demonstrates superior performance, especially at higher mix
ratios.

Figure 2: Comparison of AUROC values for the Mortality and ICU Stay task on the MIMIC III and
eICU dataset with synthetic-to-real data mix ratios from 0.2 to 1.0.

Results. The results indicate that TarDiff outperforms other time series generation baselines across
the majority of tasks and mixing ratios, demonstrating a generally upward trend as the synthetic
proportion increases from 0.2 to 1.0. Although minor fluctuations occur, TarDiff-derived samples
exhibit a sustained positive impact on model performance by leveraging real data guidance throughout
the generation process. This synergy enables the synthetic data to capture clinically relevant features
more effectively, thereby improving outcomes on these datasets. In contrast, while some baselines
occasionally show improvements, their performance tends to degrade or become inconsistent at higher
mixing ratios, suggesting a limited capacity to maintain useful signal in purely synthetic settings.
Overall, these findings highlight TarDiff’s robust ability to generate synthetic samples that enhance
downstream performance and reinforce clinically meaningful patterns when integrated with real data.

Overall, these findings underscore the potential of leveraging synthetic EHR time series data to
supplement limited real-world datasets, thereby boosting performance on critical clinical tasks.

4.4 Influence Guidance under Class Imbalance

This subsection investigates whether influence-guided diffusion mitigates the inherent label imbalance
in clinical prediction tasks on MIMIC-III and eICU.

Gradient Analysis. We first measure ℓ2-norms of gradients obtained from a pretrained TimesNet
mortality classifier. Table 3 indicates that minority samples (≈9–11% of instances) exhibit substan-
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tially larger gradient magnitudes than majority samples, suggesting these cases are intrinsically harder
to classify and thus receive stronger guidance signals.

Table 3: Mean gradient norms (± std) for majority vs. minority samples.

Dataset Majority Minority
MIMIC-III 1.06± 1.23 16.85± 2.48
eICU 5.41± 5.05 37.86± 8.73

Minority-Class Performance. Table 4 reports minority-class F1 scores when real data are aug-
mented with synthetic data generated by TarDiff (TSRTR protocol). Compared with a real-only
baseline, TarDiff more than doubles the minority F1 on MIMIC-III (+93%) and improves eICU by
44%, demonstrating that unified influence guidance already alleviates imbalance without explicit
class weighting.

Table 4: Minority-class F1 under different generation strategies.

Method MIMIC-III eICU
TRTR (Real-only) 0.056 0.013
TarDiff 0.108 0.018

Class-Specific Guidance. To further isolate the effect of guidance signals, gradients are recomputed
on (i) all guidance samples, (ii) majority-only samples, and (iii) minority-only samples. Table 5
shows that minority-only guidance attains the highest minority F1 (0.163 on MIMIC-III; 0.025 on
eICU), while majority-only guidance degrades performance.

Table 5: Minority-class F1 with class-specific guidance.

Guidance Source MIMIC-III eICU
All Samples 0.108 0.018
Majority-only 0.066 0.012
Minority-only 0.163 0.025

Discussion. The pronounced gradient disparity (Table 3) indicates that influence guidance naturally
focuses on under-represented events. Consequently, TarDiff improves rare-class metrics without
additional hyper-parameters and retains flexibility to apply targeted gradients for further gains,
providing a principled mechanism for alleviating class imbalance in medical time-series generation.

4.5 Complexity Analysis.

We analyze the additional computational costs introduced by our gradient-guided diffusion framework
relative to a standard diffusion-based generation pipeline. First, consider the one-time overhead of
training a downstream task network (e.g., a classifier or regressor) and caching its gradients over
a target set. Specifically, the downstream model must be trained until convergence, followed by
forward-backward passes on the target set to obtain gradient norms with respect to the downstream
loss. If Nt is the size of the target set, fT(L,D) represents the complexity of a single forward-
backward pass for the downstream model on time-series data of length L and feature dimensionality
D, and if these gradients are stored once for reuse, the overall cost of this stage can be approximated
by

O
(
Nt · fT(L,D)

)
. (24)

In practice, on eight real-world datasets, we measure this one-time overhead to range from 10s to
167s; please see the Appendix C for the detailed statistics.

Next, during sampling, we incorporate gradient guidance by projecting intermediate samples xt

onto directions derived from the cached gradient norms. Because the downstream network is not
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re-invoked at each diffusion step, the extra per-step overhead is limited to dot products and final
gradient computations, denoted by g(L,D). Hence, for T diffusion steps and a batch size Bsample,
the cost of gradient-guided sampling is

O
(
T ·Bsample · g(L,D)

)
. (25)

In comparison, a standard diffusion framework (e.g., DDPM) typically incurs a sampling cost of

O
(
T ·Bsample · h(L,D)

)
, (26)

where h(L,D) is the computational complexity for each step without gradient guidance. Conse-
quently, the additional overhead ratio can be approximated by

T ·Bsample · g(L,D)

T ·Bsample · h(L,D)
=

g(L,D)

h(L,D)
, (27)

which is typically small because g(·) involves only lightweight vector or matrix operations. Moreover,
we compare our sampling speed with other baselines on a diffusion-based model and observe faster
sampling for our gradient-guided approach. Full results can be found in the Appendix C. Overall, our
gradient guidance requires a one-time downstream network training plus negligible extra work at each
sampling step, yet yields a substantial improvement in aligning generated samples with downstream
tasks—an important advantage in applications such as medical time-series data.

4.6 Sample Influence with Performance

To rigorously assess the effectiveness of our proposed TarDiff, we conduct experiments targeting
two objectives: (1) investigate whether TarDiff can successfully modulate the influence ∆LT (ẑ) of
generated samples; and (2) evaluate how these influence adjustments affect model performance in
downstream classification tasks.

Specifically, we partition the original validation set into two subsets: (i) Guidance-Val subset, used
exclusively for generating samples during the guidance diffusion process, and (ii) Evaluation-Val
subset, used for selecting the optimal guidance scale by assessing downstream task performance.
After selecting the optimal guidance scale, we report the final model performance on the entire
validation set, thus ensuring an unbiased assessment of TarDiff’s generalization capabilities.

Figure 3 illustrates experimental outcomes across various influence scales using samples generated
from the Guidance-Val subset, with performance metrics evaluated on the Evaluation-Val subset. The
figure comprises two panels: (i) the left panel depicts changes in sample influence values for both
Mortality and ICU Stay tasks, and (ii) the right panel reports the corresponding AUROC performance
for these tasks.

As shown in the left panel of Figure 3, varying the influence scale from −1000 to +1000 markedly
affects sample influence values. For the Mortality task, the sample influence consistently declines as
the scale increases; conversely, the ICU Stay task exhibits the opposite trend. Correspondingly, in the
right panel, these influence adjustments yield improvements in AUROC performance, with both tasks
reaching optimal performance at moderate-to-high influence scales (around +1000).

By separately tuning the guidance scale using clearly defined subsets of the validation data and
subsequently evaluating the final performance on the entire validation set, we ensure the reported
results accurately reflect TarDiff’s effectiveness and generalization capabilities.

5 Related work

Recent advances in time series generation leverage deep generative models such as GANs, VAEs, and
diffusion-based approaches [Yoon et al., 2019, Desai et al., 2021, Lee et al., 2023, Huang et al., 2025].
TimeGAN [Yoon et al., 2019] combines adversarial training with supervised embedding, thereby
aligning the generated sequences with the real data’s temporal structure. Meanwhile, TimeVAE
[Desai et al., 2021] and TimeVQVAE [Lee et al., 2023] adopt latent representations to capture salient
patterns, which helps improve both the reconstruction quality and overall fidelity of the synthetic
time series. Diffusion-based models like TimeDP [Huang et al., 2025] further enhance realism
by incorporating domain prompts in their denoising process, enabling more accurate generation of
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Figure 3: Influence scale analysis conducted by generating samples from the Guidance-Val subset
and assessing AUROC performance on the Guidance-Val subset for Mortality and ICU Stay tasks,
with scales ranging from -1000 to 1000. The left panel illustrates sample influence value changes,
while the right panel shows AUROC performance across different scales.

complex temporal signals. Empirically, these approaches have demonstrated credible temporal fidelity
in diverse domains such as finance [Huang et al., 2024] and medicine [Chen et al., 2024], leading to
promising applications in areas like data augmentation, anomaly detection, and privacy-preserving
analytics.

In healthcare applications, generating synthetic patient time series presents unique challenges, in-
cluding privacy protection and the need for clinically relevant patterns. GAN-based methods have
been widely used for realistic EHR synthesis [Choi et al., 2017], and diffusion models have also
emerged as a promising approach, demonstrating efficacy in producing high-fidelity synthetic EHR
time-series data [Tian et al., 2024, Karami et al., 2024]. Conditioning on clinical variables, as seen in
methods like MEGAN [Chen et al., 2022], enables high-fidelity, multi-perspective ECG generation,
thereby facilitating applications like data augmentation and simulation-based scenario testing in
clinical research.

6 Conclusion.

In this paper, we present a task-based framework for electronic medical record time series generation
that guides diffusion in generating synthetic data by estimating the impact of synthetic samples
on specific downstream task models, maximising the impact of synthetic data on clinical tasks.
Comprehensive experiments on six datasets demonstrate that our framework not only improves the
influence of the generated data on the target task. but also significantly enhances downstream model
performance. These results underscore the potential of TarDiff to mitigate data scarcity and privacy
concerns in healthcare.
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A Dataset Details

A.1 Critical Care EHR Datasets (MIMIC-III and eICU)

MIMIC-III[Johnson et al., 2016] is a large, publicly available database comprising de-identified
health-related data associated with over 40,000 patients who stayed in critical care units of the Beth
Israel Deaconess Medical Center between 2001 and 2012 . For our analysis, we focus on the first
24 hours of hospitalization for each patient, resulting in 20,920 samples. Each sample is a 24-step
multivariate time series with 7 features: heart rate, systolic blood pressure, diastolic blood pressure,
mean blood pressure, respiration rate, temperature, and oxygen saturation. We split this dataset into
training, validation, and test sets with proportions of 80%, 10%, and 10%, respectively.

eICU[Pollard et al., 2018] is a multi-center critical care dataset comprising de-identified health data
from over 200,000 admissions to intensive care units (ICUs) across the United States between 2014
and 2015. For our analysis, we extract time-series measurements (heart rate, respiratory rate, and
oxygen saturation) from the initial 24-hour window of ICU admission. Data are sampled every 5
minutes, resulting in 288 time steps. Each time step includes 3 features, providing a granular view of
patient status. The dataset is partitioned into training, validation, and test sets using an 80%, 10%,
10% ratio.

Tasks. We evaluate our framework on two tasks: (i) Mortality Prediction: Determine whether a
patient will die during the hospital stay. In the MIMIC-III dataset, the positive-to-negative ratio is
1,680 : 19,240, while in the eICU dataset, it is 3,173 : 27,892. (ii) ICU Length-of-Stay Prediction:
Predict whether a patient’s ICU stay exceeds three days. For the MIMIC-III dataset, the positive-to-
negative ratio is 2,869 : 18,051, and for the eICU dataset, it is 13,206 : 17,859.
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Table 6 provides detailed information on training label distributions within each dataset. Given the
inherent label imbalance in both MIMIC-III and eICU, generating clinically meaningful synthetic
data remains a significant challenge.

Table 6: MIMIC-III and eICU Dataset Overview.
Dataset Task All Samples Negative Samples Positive Samples Features Seq Length
MIMIC Mortality 20,920 19,240 1,680 7 24

ICU Stay 20,920 18,051 2,869 7 24

eICU Mortality 31,065 27,892 3,173 3 288
ICU Stay 31,065 17,859 13,206 3 288

A.2 Specialized Physiological Signal Datasets (EEG and ECG)

For these four datasets, we followed the preprocessing and data partitioning settings (training,
validation, and test splits) described in [Wang et al., 2024]. Below, we provide a brief introduction to
each dataset and their associated tasks.

APAVA dataset is a public EEG time series dataset comprising recordings from 23 subjects, including
12 Alzheimer’s disease (AD) patients and 11 healthy controls. Each subject underwent approximately
30 trials, with each trial consisting of a 5-second EEG recording sampled at 256Hz across 16 channels.
The task associated with APAVA is binary classification, distinguishing AD patients from healthy
individuals.

ADFTD (Alzheimer’s Disease and Frontotemporal Dementia) dataset is an EEG dataset specifically
curated to study Alzheimer’s disease (AD) and frontotemporal dementia (FTD). It includes EEG
recordings from subjects diagnosed with AD, subjects diagnosed with FTD, and healthy controls.
EEG signals are recorded across multiple channels at approximately 500Hz and undergo standard
preprocessing steps such as filtering and downsampling. The task for ADFTD is a three-class
classification to differentiate among AD, FTD, and healthy subjects.

PTB Diagnostic ECG Database is a publicly available collection of 549 high-resolution 15-lead ECG
recordings from 290 subjects, aged between 17 and 87 years. Each recording includes the standard
12 leads along with 3 Frank leads (Vx, Vy, Vz), digitized at 1000Hz with 16-bit resolution over a
±16.384 mV range. The database encompasses a variety of cardiac conditions, including myocardial
infarction, cardiomyopathy, and bundle branch block, as well as recordings from healthy controls.
The task on the PTB dataset is binary classification between patients diagnosed with myocardial
infarction and healthy controls.

TDBrain dataset comprises EEG recordings from multiple channels collected from subjects per-
forming eye-closed tasks. The dataset includes EEG data from subjects diagnosed with Parkinson’s
disease and healthy controls. The associated task is binary classification to distinguish Parkinson’s
disease patients from healthy individuals.

A.3 Scalability Across Different Dataset Sizes

We conducted experiments across multiple datasets varying significantly in sample size, channel
numbers, and sequence lengths. This diversity enables us to evaluate the scalability and robustness of
our model comprehensively. The datasets cover diverse medical signals, including EHR (MIMIC-
III, eICU), ECG (PTB), and EEG (ADFD, APAVA, TDBRAIN), with varying complexity and
dimensionality.

As summarized in Table 7, our method consistently demonstrates solid performance improvements
across datasets of different sizes and modalities.

A.4 Controllability of Guidance Set Scale

To further demonstrate the scalability and controllability of our guidance mechanism, we conducted
an experiment analyzing the impact of varying guidance set sizes on model performance using the
PTBrain dataset. As illustrated in Figure 4, despite fluctuations, the model’s performance remains
consistently stable across different guidance set sizes. This indicates that our proposed method
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Table 7: Dataset scales summary

Dataset Samples Channels Length
eICU 31,065 3 288
MIMIC-III 26,150 7 24
ADFD 69,752 19 256
PTB 64,356 15 288
TDBRAIN 6,240 33 256
APAVA 5,967 16 256

provides effective control over the guidance scale, allowing users to flexibly adjust it according
to practical dataset constraints or computational resources. Consequently, this mitigates potential
concerns regarding the scalability and practical applicability of our approach.

Figure 4: Model performance with varying guidance set sizes on PTBrain dataset.

B Evaluation Metrics Details

Area Under the Receiver Operating Characteristic Curve (AUROC) measures the ability of a
classifier to distinguish between classes. It is calculated as follows:

AUROC =

∫ 1

0

TPR(x) d(FPR(x))

where TPR is the True Positive Rate and FPR is the False Positive Rate across different decision
thresholds.

Area Under the Precision-Recall Curve (AUPRC) evaluates the classifier’s performance in imbal-
anced classification problems by considering precision and recall:

AUPRC =

∫ 1

0

Precision(x) d(Recall(x))

where precision is the fraction of relevant instances among retrieved instances, and recall is the
fraction of relevant instances retrieved over the total relevant instances.

These metrics provide a comprehensive evaluation of classification models, particularly useful in
healthcare scenarios with significant class imbalance.
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C Runtime and Overhead Comparison

As briefly discussed in Section 4.5, our approach introduces a one-time overhead for training and
gradient caching, as well as a per-step overhead during sampling. This appendix details the runtime
measurements for both the one-time overhead and the sampling process.

C.1 One-time Overhead

Table 8 shows the one-time cost for gradient caching on eight different datasets, which ranges from
10s to 167s.

Table 8: One-time cost for gradient caching.

Dataset/Task Overhead (s)
TDBRAIN 10.51
APAVA 15.49
ADFD 167.81
PTB 144.65
eICU_mortality 34.01
eICU_ICUStay 33.93
MIMIC_mortality 27.51
MIMIC_ICUStay 27.01

C.2 Sampling Runtime Comparison

To evaluate the sampling efficiency, we compare our TarDiff against representative GAN-based,
VAE-based, and Diffusion-based approaches. As seen in Table 9, our method achieves competitive or
faster sampling compared to other diffusion-based methods.

Table 9: Sampling runtime comparison across different generation methods.

Backbone Type Method Sampling Time (s/sample)
GAN-based TimeGAN 0.0005

VAE-based TimeVQVAE 0.0047
TimeVQE 0.0006

Diffusion-based
BioDiffusion 0.3008
DiffusionTS 0.1340
TarDiff 0.0259

D Model Structure and Implementation Details

The denoising network in our diffusion model employs a one-dimensional U-Net architecture specifi-
cally designed for multi-channel time-series data. The model initializes with 64 channels and features
multiple resolution levels, each comprising three residual blocks. We apply progressive channel
multipliers of [1, 2, 4, 4] to enhance feature representation at coarser resolutions. To effectively
capture long-range temporal dependencies, attention mechanisms with eight heads are incorporated
at resolutions of 1, 2, and 4. Additionally, the model integrates scale-shift normalization and residual
connections for up-sampling and down-sampling to stabilize training. Contextual embeddings are
projected into a 32-dimensional latent space. Furthermore, the architecture supports classifier-free
guidance and spatial transformations, optimizing its performance for classification tasks.

Training was conducted using a batch size of 256 for 20,000 iterations with a fixed learning rate of
0.0001. During sampling, we consistently employed a guidance scale of 100 for generated samples.
All experiments were carried out on a single NVIDIA A100 GPU with 80GB of memory.
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E Additional Results on Fidelity & Privacy

Table 10: Distribution Similarity (DS) ↓

MIMIC eICU
Method Mortality ICU Stay ICU Stay Mortality

TarDiff 0.000201 0.000000 0.1488 0.1810
TimeGAN 0.000201 0.000000 0.3781 0.2471
TimeVAE 0.000000 0.0304 0.3668 0.1709
TimeVQ-VAE 0.0325 0.0015 0.0000 0.3663
DiffusionTS 0.000101 0.4451 0.5000 0.4931
BioDiffusion 0.000000 0.4989 0.4968 0.5000

Table 11: Membership Inference Risk (MIR) ↓

MIMIC eICU
Method Mortality ICU Stay ICU Stay Mortality

TarDiff 0.6761 0.6787 0.6667 0.6667
BioDiffusion 0.7316 0.8114 0.7736 0.8199
TimeVQ-VAE 0.6792 0.6818 0.6667 0.6668
TimeGAN 0.6949 0.6762 0.6668 0.6668
TimeVAE 0.6788 0.9169 0.6667 0.6668
DiffusionTS 0.9683 0.6811 0.9349 0.9976

Table 12: Privacy Score (PS) ↓

MIMIC eICU
Method Mortality ICU Stay ICU Stay Mortality

TarDiff 0.5819 0.5669 0.5795 0.5770
BioDiffusion 0.6226 0.6656 0.5954 0.5744
TimeVQ-VAE 1.2898 1.2115 0.5006 0.5671
TimeGAN 0.7035 0.8837 0.5198 0.6420
TimeVAE 0.9856 0.9616 0.5071 0.5028
DiffusionTS 0.8671 0.9097 0.6558 0.6821

To demonstrate TarDiff’s fidelity and privacy preservation, we provide Discriminative Score (DS,
measures how easily a classifier can distinguish synthetic samples from real ones.), Predictive Score
(PS, evaluates how accurately models trained on synthetic data perform when predicting outcomes
on real test data.), and Membership Inference Risk (MIR, assesses the privacy risk by quantifying
vulnerability to membership inference attacks.)

F Visualization of Synthetic Data

We visualize the positive and negative samples generated by different methods. The results indicate
that while TimeGAN performs relatively well for positive samples, its negative samples exhibit
significant fluctuations and lack trend variations. Additionally, TimeVAE and TimeVQVAE produce
overly smoothed sequences. In contrast, our approach more closely aligns with the distribution of
real data.

F.1 More TSRTS Results
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Figure 5: Visualization of negative samples generated by different methods for ICU-Stay on eICU

Figure 6: Visualization of positive samples generated by different methods for ICU-Stay on eICU

Figure 7: Visualization of negative samples generated by different methods for Mortality on eICU

Figure 8: Visualization of positive samples generated by different methods for Mortality on eICU
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Figure 9: Visualization of negative samples generated by different methods for ICU Stay on MIMIC-
III

Figure 10: Visualization of positive samples generated by different methods for ICU Stay on MIMIC-
III

Figure 11: Visualization of negative samples generated by different methods for Mortality on MIMIC-
III

Figure 12: Visualization of positive samples generated by different methods for Mortality on MIMIC-
III
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