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Abstract 

Precise assembly of composite fuselages is critical for aircraft assembly to meet 

the ultra-high precision requirements. Due to dimensional variations, there is a gap 

when two fuselage assemble. In practice, actuators are required to adjust fuselage 

dimensions by applying forces to specific points on fuselage edge through pulling 

or pushing force actions. The positioning and force settings of these actuators 

significantly influence the efficiency of the shape adjustments. The current 

literature usually predetermines the fixed number of actuators, which is not 

optimal in terms of overall quality and corresponding actuator costs. However, 

optimal placement of actuators in terms of both locations and number is 

challenging due to compliant structures, complex material properties, and 

dimensional variabilities of incoming fuselages. To address these challenges, this 

paper introduces a reinforcement learning (RL) framework that enables sequential 

decision-making for actuator placement selection and optimal force computation. 

Specifically, our methodology employs the Dueling Double Deep Q-Learning 

(D3QN) algorithm to refine the decision-making capabilities of sequential actuator 

placements. The environment is meticulously crafted to enable sequential and 

incremental selection of an actuator based on system states. We formulate the 

actuator selection problem as a submodular function optimization problem, where 

the sub-modularity properties can be adopted to efficiently achieve near-optimal 

solutions. The proposed methodology has been comprehensively evaluated 

through numerical studies and comparison studies, demonstrating its effectiveness 

and outstanding performance in enhancing assembly precision with limited 

actuator numbers.  

Keywords: Reinforcement Learning, Actuator Placement Optimization, Fuselage 

Assembly, Dimensional Quality. 
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1. Introduction 

In recent years, advanced composite materials have gained widespread application in large 

space structures, attributed to their exceptional characteristics such as a high strength-to-weight 

ratio. During the manufacturing process, inherent dimensional discrepancies may arise in 

fuselage assembly due to variations in manufacturing batches or suppliers. When two fuselages 

are joined together, a gap emerges, as depicted in Figure 1. This gap can significantly impact 

the assembly quality and efficiency of the fuselage assembly process. Consequently, shape 

adjustments at the interface between the two fuselages are essential prior to the composite 

fuselage assembly. In practical scenarios, actuators are employed to facilitate these shape 

adjustments, as illustrated in Figure 2, with actuators positioned at points from A to J. These 

actuators are capable of adding forces to either pull or push the fuselage at corresponding 

placement points. A more in-depth understanding of the utilization of actuators in the shape 

adjustment of composite fuselages can be referred to Wen et al. (2018)  and Yue et al. (2018). 

 

Figure 1. Composite fuselage assembly 

 

Figure 2. Fuselage shape adjustment by using actuators 
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Current practices for actuator placement are not optimal. Actuators are usually placed at 

equal distances between adjacent points, which may result in larger forces being applied than 

necessary at some locations. This not only affects the efficiency of shape adjustments but also 

increases the cost and complexity of the assembly process. To address these challenges, recent 

research has developed advanced methodologies such as surrogate model-based control 

strategies (Yue et al., 2018) and sparse learning-based optimal actuator placements (Du et al., 

2022; Du et al., 2019). In recent years, Reinforcement Learning (RL) has received significant 

attention for its ability to achieve super - human performance in games. Meanwhile, some 

recent studies have attempted to apply RL to solve optimization problems in engineering (Hu 

et al., 2017; Li et al., 2024). In the past few years, there have also been relevant research efforts 

in optimal layout of ship hull panel fixtures (Wang et al., 2024) and fuselage actuator placement 

(Lutz et al., 2024). These studies all demonstrate the unique strengths of Reinforcement 

Learning (RL) when it comes to optimizing engineering problems. 

In the current state of actuator layout optimization, a notable limitation exists: the majority 

of existing methodologies assume a fixed and predefined number of actuators for optimization. 

This constraint significantly limits the potential for holistic optimization, as the quantity of 

actuators directly impacts system performance, cost efficiency, and adaptability. Unlike 

scenarios where actuator placement can be refined through iterative adjustments, the absence 

of systematic strategies to optimize the number of actuators leaves a critical gap in the optimal 

decision-making process. Current approaches often rely on heuristic assumptions or 

incremental adjustments, which fail to address the interplay between actuator quantity and 

overall system effectiveness. As a result, practitioners are restricted to work within pre-

determined parameters, potentially overlooking opportunities for more innovative and 

resource-efficient configurations. Addressing this limitation would require integrating actuator 

quantity optimization into the broader framework of layout design, enabling more flexible and 

adaptive solutions tailored to specific application requirements. 

To address the limitations in existing actuator placement optimization works, we aim to 

develop a flexible reinforcement learning framework capable of sequentially selecting actuator 
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positions and solving actuator forces in a unified manner. While this framework holds 

significant potential for improving optimization efficiency and adaptability, achieving this goal 

is challenging due to the following aspects: (i) Reinforcement learning agents require extensive 

experimental validation to converge to optimal policies. However, the computational load 

associated with repeatedly invoking finite element analysis (FEA) solvers for deformation 

results is prohibitively high. This bottleneck arises from the high computational cost of FEA. 

(ii) The problem's inherent complexity complicates the design of a suitable Markov decision 

process (MDP). The actuator placement optimization problem involves a large state space, 

dynamic interactions between actuator positions and forces, and non-linear system responses. 

These factors make it difficult to define a compact and effective state representation, as well as 

a reward function that balances exploration and exploitation while ensuring convergence to 

globally optimal solutions. (iii) The sequential nature of actuator selection introduces additional 

complexity. Each decision step impacts subsequent states, creating dependencies that require 

careful handling to avoid suboptimal policies. This challenge is further exacerbated by the need 

to balance exploration of new actuator configurations with exploitation of previously learned 

policies, especially in high-dimensional action spaces. 

To address the challenges mentioned above, we propose a novel approach for actuator 

placement optimization using a flexible reinforcement learning framework. To tackle the first 

challenge of high computation load due to extensive experimental validation required by 

reinforcement learning agents and the time-consuming FEA solver invocations, we utilize a 

surrogate modeling technique. This technique approximates the FEA results with a reduced-

order model, significantly cutting down the computational time while maintaining a reasonable 

level of accuracy for the deformation calculations. This allows for more efficient agent training 

and decision-making within practical timeframes. The key contributions are summarized as 

follows: 

 For the second challenge of designing a suitable Markov decision process (MDP) for 

the complex actuator placement optimization problem, we leverage the submodular 

function modeling. By transforming the problem into a submodular function form, we can 
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take advantage of its desirable properties, such as the diminishing returns property. This 

transformation not only simplifies the problem-solving process but also provides a solid 

theoretical foundation for optimization. We then convert the submodular function problem 

into a linear programming problem, which can be efficiently solved using well-established 

algorithms. This approach allows us to handle the large state space and dynamic 

interactions in a more manageable way. 

 To address the issue of the diminishing returns in rewards 𝑟𝑡 and the decreasing norms 

of state representations 𝒔𝑡  as 𝑡  increases, which could lead to difficulties in gradient 

calculation, we implement a normalization strategy. Additionally, we design a reward 

shaping mechanism that considers the relative improvement in the objective function 

instead of the absolute value. This helps maintain a stable and informative reward 

throughout the learning process, facilitating more effective policy learning and adaptation. 

This framework not only enhances computational efficiency but is flexible enough to 

accommodate a variety of optimization objectives. It can not only select a certain number of 

actuators to provide near-optimal shape adjustments but also minimize the number of actuators 

under certain manufacturing requirements. The proposed methodology has been 

comprehensively evaluated through numerical case studies and comparison studies, 

demonstrating its effectiveness in enhancing assembly precision. 

The remainder of this article is organized as follows: Section 2 reviews the related 

literature on shape control methods in large scale part assembly. Section 3 introduces the 

proposed reinforcement learning framework for sequential actuator placement optimization. 

Section 4 provides case studies to validate our methodology. Finally, this article is concluded 

in Section 5. 

 

2. Literature Review 

In the field of large-scale compliant part assembly, shape control remains a critical challenge 

due to the compliant nature of aircraft fuselages and ship hull panels. Existing research can be 
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broadly categorized into two streams: actuator placement methods for aircraft fuselage 

assembly and fixture layout methods for ship hull panel assembly. Actuator placement 

strategies often focus on optimizing positions and forces to minimize assembly gaps and 

improve dimensional accuracy, while fixture layout methods concentrate on determining 

optimal positions to ensure stability and precision during assembly. Despite different tasks, 

these two problems share commonalities in addressing the complexities of large and compliant 

parts. However, a significant gap exists in the literature regarding a unified framework that can 

simultaneously optimize both the number of actuators and the forces they apply, particularly in 

the context of fuselage shape control. This article addresses this gap by introducing a novel 

reinforcement learning framework designed for sequential decision-making in actuator 

placement and force computation, offering a more efficient and adaptable solution for aircraft 

fuselage assembly. In following Sections 2.1 and 2.2, we introduced the relevant work in 

actuator placement for fuselage assembly and fixture layout optimization with application for 

ship hull.  

 

2.1 Actuator Placement Methods for Aircraft Fuselage Assembly 

In the field of actuator placement, existing methodologies often rely on uniform 

distribution strategies, where actuators are positioned at equal intervals between adjacent points. 

While this approach is straightforward, it frequently leads to suboptimal outcomes, such as 

excessive force application at certain locations, which can compromise the efficiency of shape 

adjustments. Moreover, this inefficiency translates into higher operational costs and increased 

complexity during assembly. To mitigate these limitations, recent advancements in actuator 

placement strategies have focused on leveraging innovative computational techniques. For 

instance, surrogate model-based control strategies (Yue et al., 2018) and sparse learning models 

(Du et al., 2022; Du et al., 2019) have emerged as promising solutions to optimize actuator 

placement, thereby enhancing both performance and cost-effectiveness. Yue et al. (2018) 

presented an automated shape control system for composite parts in aerospace manufacturing, 
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addressing limitations of current manual metrology methods. The authors develop a surrogate 

model incorporating various uncertainties and embed it into a feed-forward control algorithm, 

demonstrating significant improvements in assembly time and dimensional quality. Based the 

proposed surrogate model, Du et al. (2019) presented a novel method for determining the 

optimal locations of actuators used in adjusting the shape of composite fuselages. The authors 

developed a sparse learning model and an efficient algorithm integrating the Alternating 

Direction Method of Multipliers (ADMM) to achieve better shape control performance 

compared to traditional fixed placements. Aiming at minimizing the maximum dimensional 

gap between composite fuselages during assembly, Du et al. (2022) introduced a novel sparse-

learning model. The authors proposed a sparse learning methodology that considers the initial 

gap between a pair of fuselages and optimizes the adjustment to an intermediate shape, rather 

than adjusting each fuselage to a fixed design shape for maximum gap reduction, thereby 

significantly reducing the maximum gap and improving assembly quality. 

In recent years, Reinforcement Learning (RL) has received significant attention for its 

ability to achieve outstanding performance in games. Meanwhile, some studies have attempted 

to apply RL to solve optimization problems in engineering (Hu et al., 2017; Li et al., 2024). In 

the past few years, there have also been relevant research efforts in the fuselage actuator 

placement. Lutz et al. (2024) presented a novel model-free reinforcement learning approach for 

adaptive shape control of composite fuselages during aircraft assembly. Their method utilizes 

a reinforcement learning agent to directly adjust fuselage sections in response to part variations, 

significantly reducing the root-mean-square gap between sections and outperforming 

benchmark methods in terms of final shape gap and maximum forces applied. These studies all 

demonstrate the unique strengths of Reinforcement Learning (RL) when it comes to optimizing 

engineering problems. Specifically, RL excels in dynamic decision-making, adapting to 

unpredictable and interactive environments through trial and error. Unlike traditional machine 

learning methods that rely on static datasets, RL agents learn from experiences, much like 

humans do in real life. This capability allows RL to tackle complex optimization tasks that 

require continuous adaptation and improvement. Moreover, RL's ability to balance exploration 
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and exploitation enables it to find optimal solutions efficiently. By exploring new actions and 

exploiting known rewarding actions, RL can effectively navigate the trade-off between trying 

new strategies and sticking to proven ones, leading to better outcomes in engineering 

optimization problems. The RL-based fuselage shape control method (Lutz et al., 2024) has 

certain limitations. It directly optimizes an 18-dimensional force vector, which restricts its 

flexibility in addressing broader optimization challenges. Specifically, the framework lacks 

adaptability for optimizing the number of actuators. 

 

2.2 Fixture Layout Methods for Ship Hull Panel Assembly 

In the field of ship hull manufacturing, the assembly of large thin-walled parts poses 

significant challenges due to their tendency to deform under gravity, which can affect the final 

product's quality. Several studies have focused on optimizing fixture layouts to minimize 

dimensional deviations and improve assembly efficiency. Here is a summary of the key relevant 

studies: 

Liu et al. (2020) developed a hybrid nonlinear variation model to predict and control the 

deformation of compliant metal plate assemblies in shipbuilding, considering factors like 

welding shrinkage and angular distortion. This model aims to improve the accuracy of 

predicting assembly deviations. Du et al. (2021) proposed an optimal design methodology for 

fixture layouts in ship assembly processes, integrating the direct stiffness method and simulated 

annealing algorithm. This approach focuses on minimizing dimensional gaps along the 

assembly interface to enhance the quality and efficiency of seam welding. Hong et al. (2024). 

introduced a butt clearance control-oriented fixture layout optimization method for large 

compliant ship parts. The study emphasizes the importance of controlling butt clearance by 

optimizing fixture layouts, using a modified finite element equation and a constrained multi-

objective integer nonlinear programming model. 

Some studies have explored deep learning and reinforcement learning for this problem, 

aiming to further enhance the optimization and prediction capabilities in fixture layout design. 
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For example, Jin et al. (2023)presented a transformer-based surrogate model with two-stage 

Latin hypercube sampling to predict deformations of compliant parts in ship sub-assembly 

processes. This method aims to improve prediction accuracy and efficiency by considering 

fixture positions and deviations. Wang et al. (2024) proposed SmartFixture, a physics-guided 

reinforcement learning framework for automatic fixture layout design. This approach uses deep 

reinforcement learning to interact with finite element analysis simulations, optimizing fixture 

layouts to minimize shape deformations in manufacturing systems. 

Most studies on fixture layout optimization design and actuator placement are carried out 

under the situation that the number of fixtures is known. In previous studies, the optimization 

of the fixture quantity predominantly relied on a trial-and-error approach. Engineers would 

incrementally add or subtract fixtures at each stage of the process. Subsequently, they would 

search for the most suitable fixture arrangement separately in each step. Eventually, they 

determined the minimum number of fixtures required for the task (Liu et al., 2024b). Liu et al. 

(2024a) focused on optimizing the number of fixtures in large thin-walled parts assembly. They 

developed an improved particle swarm optimization algorithm to minimize the number of 

fixtures while ensuring part deformation and assembly gaps meet required tolerances. 

In the field of aircraft fuselage assembly, optimizing actuator placement and force 

computation remains a complex challenge. Previous studies have made significant progress in 

applying reinforcement learning (RL) to optimize engineering problems. However, there is still 

a lack of a unified framework that can effectively optimize the number of actuators while also 

addressing the specific requirements of fuselage shape control. Unlike fixture layout 

optimization, which focuses solely on determining optimal positions, fuselage shape control 

requires simultaneous optimization of both actuator positions and the corresponding forces they 

apply. This dual requirement adds a layer of complexity that existing methods, primarily 

designed for position optimization, have yet to fully address. 

To bridge this gap, this article introduces a novel RL framework specifically designed for 

sequential decision-making in actuator placement selection and optimal force computation. The 

framework is meticulously designed to incrementally select actuators based on dynamic system 
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states, allowing for a more adaptive and efficient optimization process. This framework 

possesses the capacity to significantly reduce the number of actuators utilized. This has the 

potential to cut down on costs and complexity, making it a more efficient and practical approach 

in aircraft fuselage assembly scenarios. 

 

3. Methodology 

In this work, we address the problem of optimizing the shape control of composite fuselages 

under the assumption of elastic deformation. We present a comprehensive methodology for 

addressing the actuator placement optimization problem. First, in 3.2 (Submodular Function), 

we transform the actuator placement optimization problem into a submodular function 

formulation, which provides new insights for analysis and solutions. This transformation allows 

us to take advantage of the unique properties of submodular functions and further convert it 

into a linear programming problem for easier handling. Subsequently, in 3.3 (Markov Decision 

Process), we define the Markov decision process for actuator selection. We detail how the state 

variables are defined, how the agent makes decisions, and how the environment responds and 

provides rewards. Additionally, we explain the adoption of the greedy policy by the agent and 

the necessary variable transformations. Finally, in terms of the Dueling Q-Network Agent, we 

construct a neural network agent based on the Dueling Double Deep Q-Network (D3QN) 

algorithm with justifications on algorithm selection, the input to the Dueling Q-Network, and 

the overall structure of the Dueling Q-Network, aiming to enhance the learning efficiency and 

agent performance for actuator selection and placement tasks. The framework of our sequential 

actuator placement optimization for fuselage assembly via reinforcement learning (SAPO-RL) 

is shown in Figure 3. 

 

3.1 Surrogate Model 

When controlling the shape of a composite fuselage, during the adjustment process, only elastic 

deformation exists. Based on the assumption of elastic deformation, it is nature that the 
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mechanical behavior of the fuselage deformation is linear to actuator forces according to the 

principles of mechanics (Yue et al., 2018). As a result, the deviations in the adjusted shape can 

be expressed as 

 𝜹 = 𝝍 + 𝑼𝑭 

 𝑠. 𝑡. 𝑭𝒍 ≤ 𝑭 ≤ 𝑭𝑳. (1) 

 

Figure 3. The framework of SAPO-RL 

In the context of this model, 𝜹 ∈ ℝ𝑛 represents the final gap in the 𝑌 and 𝑍 directions 

following shape control. Specifically, this deviation refers to the disparity of the measurement 

point between two incoming fuselages at the same measurement position after the shape control, 

which is achieved through the application of actuator forces. Here, 𝑛 refers to the quantity of 

measurement points on the incoming fuselages. Meanwhile, 𝝍 ∈ ℝ𝑛 corresponds to the initial 

dimension deviations before the actuation forces are applied, and 𝑼 ∈ ℝ𝑛×𝑚  denotes the 

displacement matrix of the incoming fuselages. The variable 𝑚  stands for the number of 

available positions (for instance, the possible positions where an actuator can be installed) for 

the actuators. Additionally, 𝑭 ∈ ℝ𝑚  indicates the force exerted during the shape control 

operation. Furthermore, when carrying out the optimization, the safety requirements of the 
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applied forces by actuators must be taken into account as well. 𝑭𝒍 and 𝑭𝑳 are the lower bound 

and the upper bound of actuators force vector 𝑭. 

During the assembly of composite fuselages, the maximum gap, measured by the 𝐿∞ norm, 

is a critical factor affecting the assembly quality (Du et al., 2022). In this paper, we follow Du 

et al. (2022) and primarily focus on minimizing the maximum gap after adjustment. 

Consequently, our optimization objective function can be summarized as: 

 min
𝑭

‖𝜹‖∞ 

  𝑠. 𝑡.
𝜹 = 𝝍 + 𝑼𝑭
𝑭𝒍 ≤ 𝑭 ≤ 𝑭𝑳

. (2) 

In practical applications, the number of available actuators is often restricted. Therefore, 

out of numerous possible actuator positions, we aim to identify the most efficient ones. The 

optimal actuator positions are those associated with the non-zero elements of the force vector. 

There are 𝑚  viable actuator positions along a pair of fuselages. However, in actual shape 

control procedures, only a total of 𝑀 actuators are utilized. Consequently, the number of non-

zero elements in the force vector are the exact number of 𝑀, which can be formulated as the 

following problem: 

 min
𝑭

‖𝜹‖∞ 

 𝑠. 𝑡.

𝜹 = 𝝍 + 𝑼𝑭
𝑭𝒍 ≤ 𝑭 ≤ 𝑭𝑳

‖𝑭‖0 = 𝑀
. (3) 

 

3.2 Submodular Function 

It can be noted that Problem (3) can actually be transformed into a submodular function form 

(Nemhauser et al., 1978) as follows: 

 min
𝒮

𝑓(𝒮) 

 𝑠. 𝑡.
|𝒮| ≤ 𝑀

𝒮 ⊆ ℰ
, (4) 

where 𝒮 represents the set of the indicators for selected actuators, |𝒮| denotes the cardinality of 

the set 𝒮, which represents the number of elements in the set, and ℰ is the set of positions of all 
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actuators. 𝑓(𝒮) is defined as follows: 

 𝑓(𝒮) = min
𝑭𝒮

‖𝜹‖∞ 

 𝑠. 𝑡.
𝜹 = 𝝍 + 𝑼𝒮𝑭𝒮

𝑭𝒍 ≤ 𝑭𝒮 ≤ 𝑭𝑳

|𝒮| ≤ 𝑀
. (5) 

In problem (5), 𝑼𝒮 ∈ ℝ𝑛×|𝒮| is the displacement matrix composed of the displacement 

vectors of the selected actuators, and 𝑭𝒮 ∈ ℝ|𝒮| is the force applied by the selected actuators. 

This transformation provides a new perspective for analyzing and solving the problem, enabling 

us to take advantage of the unique properties of submodular functions. Submodular functions 

have been widely studied in various fields due to their desirable characteristics such as the 

diminishing returns property. By reformulating Problem (3) in this way, we can potentially 

apply well-established theories related to submodular functions. For Problem (5), it is quite 

straightforward to transform it into a linear programming problem for solution. Linear 

programming offers a well-established framework with a variety of efficient algorithms, which 

can significantly simplify the problem-solving process. The transformed linear programming 

problem is presented as follows: 

 𝑓(𝒮) = min
𝑭𝒮

𝑑 

 s. 𝑡.

𝑼𝒮𝑭𝒮 + 𝑑𝟏 + 𝝍 ≥ 0
𝑼𝒮𝑭𝒮 − 𝑑𝟏 + 𝝍 ≤ 0

𝑭𝓢 − 𝑭𝑳 ≤ 0
𝑭𝓢 − 𝑭𝒍 ≥ 0

. (6) 

 

3.3 Markov Decision Process 

The Markov decision process for actuator selection is as designed follows. In the initial state, 

the set of selected actuators 𝒮0 is an empty set. The state variables 𝒔𝑡  consist of the initial 

deviation 𝝍 , the displacement matrix 𝑼 , and the set of selected actuators 𝒮𝑡 . The Agent 

calculates and outputs the decision based on the state, where it selects the position of the next 

actuator to apply force from the set of unselected actuators 𝑎𝑡 and passes to the environment. 

Upon receiving, the environment first updates the set of selected actuators. Then, according to 
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the current selected actuators 𝒮𝑡, The linear programming solver (use cvxopt package in our 

python implementation) solves Problem (6) and calculates the minimum adjusted maximum 

gap achievable by the currently selected set of actuators. Finally, the environment calculates 

the reward based on the result, updates 𝒔𝑡+1 and 𝑡, and passes them to the Agent for the next 

decision until |𝒮| = 𝑀. The described Markov Decision Process is illustrated in Figure 4. 

 

Figure 4.  Markov decision process for sequential actuator placement selection. 

Since we have modeled the problem as a submodular optimization problem, greedy policy 

is a commonly used method to solve such optimization problem. Greedy policy has the 

advantage as it is simple and easy to implement. In addition, such method can achieve results 

close to the optimal solution in many cases such as the set-covering problem (Nemhauser et al., 

1978). Therefore, our agent also adopts the greedy policy, that is, in each selection, the position 

of the actuator will be selected with the highest reward. Given this policy, agent action 𝑎𝑡 can 

be solved from the following formula: 

 𝑎𝑡 = argmax
𝑒∈{ℰ−𝒮𝑡}

[𝑓𝑼,𝝍(𝒮𝑡) − 𝑓𝑼,𝝍(𝒮𝑡 ∪ {𝑒})] (7) 

In Problem (7), the input variables include sets, which makes it difficult to solve. Due to 

the lack of order and fixed structure of sets, non-differentiable set operations, and the lack of a 

natural metric for similarity, it becomes difficult to calculate the gradients when used as input 

variables for functions or neural networks. Therefore, we make the following transformation to 

Problem (7): 
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argmax
𝑒∈{ℰ−𝒮𝑡}

[𝑓𝑼,𝝍(𝒮𝑡) − 𝑓𝑼,𝝍(𝒮𝑡 ∪ {𝑒})] = argmax
𝑒∈{ℰ−𝒮𝑡}

[𝑓𝑼𝒐(𝒮𝑡),𝝍𝒐(𝒮𝑡)({𝑒})] 

 = argmax
𝑒∈{ℰ−𝒮𝑡}

𝑔𝝍𝒐(𝒮𝑡)[𝒖𝑜
𝑒(𝒮𝑡)], (8) 

where 𝑓𝑼,𝝍(∙) denote the solution of Problem (6) when the displacement matrix is 𝑼 and the 

initial deviation is 𝝍 . 𝑼𝒐(𝒮𝑡)  represents a new displacement matrix composed of the 

orthogonal vectors obtained by projecting the vectors in 𝑼 onto the subspace 𝑼𝒮𝑡
. 𝝍𝒐(𝒮𝑡) is 

the orthogonal vector obtained by projecting 𝝍 onto the subspace 𝑼𝒮𝑡
. 𝒖𝑜

𝑒(𝒮𝑡) stands for the 𝑒-

th row vector in 𝑼𝒐(𝒮𝑡). It is obvious that if 𝑒 ∈ 𝒮𝑡, that is, if an actuator that has already been 

selected is chosen again, then 𝒖𝑜
𝑒(𝒮𝑡)  is an zero vector and 𝑔𝝍𝒐(𝒮𝑡)[𝒖𝑜

𝑒(𝒮𝑡)] = 𝑓𝑼,𝝍(𝒮𝑡) −

𝑓𝑼,𝝍(𝒮𝑡) = 0. 

There is a frequent occurrence when addressing submodular problems with reinforcement 

learning methods that rewards naturally have diminishing returns. In our research, not only does 

the reward exhibit diminishing returns, but the norms of 𝝍𝒐(𝒮𝑡) and 𝑼𝒐(𝒮𝑡) also significantly 

decrease as 𝑡 increases (Prajapat et al., 2023). To prevent this problem, which could lead to 

difficulties in gradient calculation, we perform 𝐿2-normalization on 𝝍𝒐(𝒮𝑡) and non-zero row 

vectors of 𝑼𝒐(𝒮𝑡) to get 𝝍𝒐,𝒏𝒐𝒓𝒎(𝒮𝑡) and 𝑼𝒐,𝒏𝒐𝒓𝒎(𝒮𝑡). Simultaneously, we design the reward 

for each step as follows: 

 𝑟𝑡 =
𝑓𝑼,𝝍(𝒮𝑡)−𝑓𝑼,𝝍(𝒮𝑡∪{𝑎𝑡∈{ℰ−𝒮𝑡}})

‖𝜹𝒮𝑡‖
2

, (9) 

where 𝜹𝒮𝑡
 is the gap vector obtained from the solution 𝑓𝑼,𝝍(𝒮𝑡)  of Problem (6). 𝑓(𝒮𝑡) −

𝑓(𝒮𝑡 ∪ {𝑎𝑡 ∈ {ℰ − 𝒮𝑡}}) represents the reduction in maximum gap after adding the actuator 

indicated by 𝑎𝑡. 

Therefore, we design the structure of the state 𝒔𝑡 as a (𝑚 + 1) × (𝑛 + 1) matrix. In this 

matrix, the first 𝑚  rows and 𝑛  columns represent 𝑼𝒐,𝒏𝒐𝒓𝒎(𝒮𝑡) . The first 𝑛  elements of 

the(𝑚 + 1)th row are 𝝍𝒐,𝒏𝒐𝒓𝒎(𝒮𝑡). The (𝑛 + 1)th column records the selection status of the 

actuators, which serves as a mask when the agent selects an actuator. This design allows the 

agent to better utilize the information related to the displacement matrix, initial deviation, and 

the selection history of actuators during the decision-making process. This design of the state 
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𝒔𝑡 provides a more organized and efficient way for the agent to process information and make 

optimal choices based on the current state. 

 

3.4 Dueling Q-Network Agent 

In this work, we construct a neural network agent. As previously mentioned, our agent will also 

adopt the greedy policy. To enhance the learning efficiency and performance of the agent, we 

choose to implement the D3QN algorithm due to its combination of Dueling DQN and Double 

DQN. This combination leverages the Dueling DQN's ability to independently estimate state 

and action values, improving the accuracy of Q-value estimation, while the Double DQN 

component addresses the overestimation problem of Q-values by separating action selection 

and evaluation. D3QN also maintains the greedy policy's efficiency in action selection while 

mitigating the issue of overestimation common in other Q-value-based algorithms. 

The input to the Dueling Q-Network is a matrix 𝒊𝒏𝒑𝒖𝒕𝐷𝑄𝑁 ∈ ℝ𝑚×2𝑛 , which is 

reconstructed from 𝒔𝑡. As shown in Figure 5, 𝝍𝒐(𝒮𝑡) is replicated 𝑚 times and concatenated 

behind 𝑼𝒐(𝒮𝑡). This enables the Agent to effectively utilize the information in the state 𝒔𝑡 and 

better learn 𝑔𝝍𝒐(𝒮𝑡)[𝒖𝑜
𝑒(𝒮𝑡)], improving the accuracy and efficiency of the agent's decision-

making process in the context of the proposed problem setup. The structure of the Dueling Q-

Network is shown in Figure 6. 

 

Figure 5. Dueling Q-Network input variable construction. 

 

Figure 6. Dueling Q-Network for sequential actuator placement selection. 
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4. Case Study 

In this section, we conduct a series of experiments to evaluate the performance and capabilities 

of our proposed methodology. Specifically, Subsection 4.2 focuses on comparing our SAPO-

RL method with the PPO method from Lutz et al. (2024) to demonstrate the effectiveness of 

our approach in reducing assembly gaps. Subsection 4.3 presents an ablation study between 

SAPO-RL and its variant SAPO-ReEs to evaluate the impact of the reinforcement learning 

component. Finally, Subsection 4.4 explores the optimization of the actuator number using our 

framework, highlighting its flexibility and adaptability in meeting different manufacturing 

requirements. 

 

4.1 Data Description 

Our experiment utilized the publicly available data and framework presented in the paper by 

Lutz et al. (2024). In the experiment, the dimension of the deviation 𝑛 = 354, the number of 

positions where actuators can be placed 𝑚 = 18, and the number of positions to be selected for 

placing actuators is 𝑀 = 10. The objective of optimization is to minimize the maximum gap 

(MG). We trained our agent using 50 pairs of fuselages and tested with 50 pairs of fuselages 

and compared it with the agent in Lutz et al. (2024), which was also trained and tested on the 

same pairs of fuselages. Due to significant differences in the environment and reward designs 

between the methods, there was a large disparity in the single-step computation time. To ensure 

a fair comparison, we controlled the total training time for all three methods to be approximately 

40–50 minutes. Specifically, SAPO-RL and SAPO-ReEs were trained for 100,000 steps (10000 

episodes), while PPO, due to its inherently faster computation per step, was trained for 

10,000,000 steps (10,000,000 episodes). This allowed us to evaluate the performance of each 

method under comparable training durations, despite differences in their computational 

complexities. The comparison metrics were the average maximum gap (MG) and root mean 

square gap (RMSG) values returned at the end of each episode of the training pairs and testing 

pairs during the training process. 
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4.2 Comparison with PPO (from Lutz et al. (2024)) 

This subsection compares our SAPO-RL method with the PPO method introduced by Lutz et 

al. (2024). During the training phase, the main goal is to explore the environment and learn the 

optimal policy. SAPO-RL employed an 𝜀 -Greedy policy to balance exploration and 

exploitation. With 𝜀 = 0.1, the agent has a 10% chance to select a random action (exploration) 

and a 90% chance to choose the action with the highest estimated value (exploitation). This 

helps to prevent the agent from getting stuck in local optima by occasionally trying out new 

actions, which is crucial for effective learning. Figure 7 shows the changes in MG and RMSG 

of 50 training pairs of fuselages over the training episode during the training process of the two 

methods. 

For testing fuselages (testing phase), the primary objective is to evaluate the agent's 

performance using the knowledge it has acquired during training. At this point, further 

exploration is unnecessary, as the agent should already have learned the optimal actions. Using 

a pure Greedy policy ensures that the agent always selects the action it believes will yield the 

highest reward based on its learned policy. This provides a clear and stable assessment of the 

agent's performance, as it is not distracted by random actions. Figure 8 shows the changes in 

the average MG and RMSG of 30 testing pairs of fuselages over the training episode during the 

training process of the two approaches. 

During the training process, it can be observed that both MG and RMSG of the two 

methods tend to decrease over time, demonstrating that all methods enable the agent to learn 

how to apply appropriate forces. Notably, since our SAPO-RL method incorporates a linear 

programming solution module into the environment, these agents were able to apply relatively 

more suitable forces compared to PPO from the beginning of the training. 
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Figure 7. MG and RMSG of 50 training pairs (SAPO-RL and PPO). 

 

Figure 8. MG and RMSG of 30 testing pairs (SAPO-RL and PPO). 

In the later stage of training, MG and RMSG achieved by our SAPO-RL method were 

smaller than those of the PPO method in Lutz et al. (2024). This is partly due to the training 

setup where SAPO-RL was trained for 100,000 steps (10000 episodes), while PPO, benefiting 

from faster computation per step, was trained for 10,000,000 steps (10,000,000 episodes). 

Despite the difference in steps, the training durations were comparable, and our methods 

maintained computational efficiency. Notably, SAPO-RL incorporated a linear programming 
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solution module into the environment from the start, allowing them to apply more suitable 

forces compared to PPO. The comparison metrics, average MG and RMSG, consistently 

showed SAPO-RL's effectiveness in improving assembly quality while keeping computational 

efficiency. 

We applied the final output forces provided by the agents for 30 testing pairs of fuselages 

to corresponding fuselage models in the ANSYS Simulator. The finite element analysis (FEA) 

results, including the average of MG and RMSG for these 30 testing pairs of fuselages, are 

listed in Table 1. It can be observed that SAPO-RL outperforms PPO. Examples of actuator 

selections and corresponding forces for the two approaches (SAPO-RL and PPO) are illustrated 

in Figure 9. The figure shows the cross-sectional view of the fuselage joining edge before and 

after shape control has been applied. 

Table 1. MG and RMSG of 30 testing pairs in final ANSYS validation. 

Index SAPO-RL PPO 

MG (Mean) 0.0323 0.0500 

RMSG (Mean) 0.0141 0.0156 

 

4.3 Ablation Study (SAPO-RL vs. SAPO-ReEs) 

This subsection presents an ablation study comparing SAPO-RL with its variant, SAPO-ReEs, 

to evaluate the effectiveness of the reinforcement learning (RL) component in SAPO-RL. Both 

methods were trained under the same experimental setup as introduced in Subsection 4.2, with 

the objective of minimizing the maximum gap (MG) and root mean square gap (RMSG). 

The SAPO-ReEs method combines a deep neural network (DNN) for reward estimation 

with a greedy policy for actuator placement selection. This approach leverages the DNN to 

predict the reward associated with each possible actuator position at each step and then applies 

a greedy policy to select the actuator position that maximizes the predicted reward. The input 

to the Reward Estimation network is a vector of length (2𝑛), which is reconstructed from 𝒔𝑡, 

as shown in Figure 5. The structure of the Reward Estimation network is shown in Figure 10. 
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Figure 9. Examples of shape adjustment results via ANSYS validation (SAPO-RL 

and PPO). 

 

Figure 10.  Reward Estimation network for sequential actuator placement selection. 

Figure 11 illustrates the changes in the average MG and RMSG of 50 training pairs of 

fuselages over the training episode. Figure 12 shows the changes in the average MG and RMSG 

of 30 testing pairs of fuselages over the training episode during the training process of the two 
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approaches. The results show that SAPO-RL achieved better performance in reducing both MG 

and RMSG compared to SAPO-ReEs. This highlights the effectiveness of using the SAPO-RL 

reinforcement learning method, which can estimate both current and future rewards through its 

advanced Q-learning framework, rather than relying solely on a greedy policy. 

 
Figure 11. MG and RMSG of 50 training pairs (SAPO-RL and SAPO-ReEs). 

 

Figure 12. MG and RMSG of 30 testing pairs (SAPO-RL and SAPO-ReEs). 
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We applied the final output forces provided by the agents for 30 testing pairs of fuselages 

to corresponding fuselage models in the ANSYS Simulator. The finite element analysis (FEA) 

results, including the average of MG and RMSG for these 30 testing pairs of fuselages, are 

listed in Table 2. 

Table 2. MG and RMSG of 30 testing pairs in final ANSYS validation. 

Index SAPO-RL SAPO-ReEs 

MG (Mean) 0.0323 0.0420 

RMSG (Mean) 0.0141 0.0181 

 

Examples of actuator selections and corresponding forces for the two approaches (SAPO-

RL and SAPO-ReEs) are illustrated in Figure 13. The figure shows the cross-sectional view of 

the fuselage joining edge before and after shape control has been applied. The actuator 

selections via the two methods have a high degree of overlap, indicating that both agents have 

learned similar policies for actuator placement. However, the policy learned by SAPO-RL is 

slightly more effective, as evidenced by its superior performance in reducing the MG and 

RMSG. This further underscores the advantages of SAPO-RL in achieving higher precision in 

fuselage assembly. 

 

4.4 Optimization Results of Actuator Number 

Compared to Lutz et al. (2024), our reinforcement learning framework, which sequentially 

selects actuators, can optimize the number of actuators by simply modifying the episode 

termination criteria. This demonstrates the applicability and flexibility of our framework. 

After the training, for the 30 testing pairs of fuselages, we modified the episode ending 

criterion of the environment to end when 𝑀𝐺 < 𝐿𝑖𝑚𝑖𝑡𝑀𝐺 and recorded the final number of 

actuators. We conducted experiments with six different MG Specifications, i.e., 0.025, 0.03, 

0.035, 0.04, 0.045, 0.05. 
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Figure 13. Examples of shape adjustment results via ANSYS validation (SAPO-RL 

and SAPO-ReEs). 

 

The final selected number of actuators for these 30 testing pairs of fuselages under the six 

different specifications is shown in the Figure 14. As the specification value increases, the 

selected number of actuators decreases, achieving the goal of optimizing the number of 

actuators while meeting the manufacturing requirements, which reflects the good adaptability 

of our framework. 
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Figure 14. Boxplots of the actuator number for the 30 testing pairs of fuselages. 

 

5 Conclusion 

The precise assembly of composite fuselages is of utmost significance for aircraft fuselage 

assembly. This study introduced a reinforcement learning (RL) framework SAPO-RL, centered 

around the Dueling Double Deep Q-Network (D3QN) algorithm, to tackle the challenges in 

actuator placement selection and optimal force allocation for composite fuselage assembly. The 

proposed methodology reformulates the actuator selection problem as a submodular function 

optimization problem, which not only facilitates the utilization of sub-modularity properties to 

obtain near-optimal solutions efficiently but also enhance computational efficiency. The 

Markov decision process was meticulously designed for sequential actuator selection. The 

agent, adopting a greedy policy, makes decisions based on the state variables, which include 

initial deviation, displacement matrix, and the set of selected actuators. The neural network 

agent, implemented with the D3QN algorithm, further improved learning efficiency and 

decision-making accuracy. 

Notably, the sequential nature of our approach offers inherent flexibility to adapt to diverse 

optimization objectives without modifying the framework. For instance, the termination criteria 

for an episode—traditionally defined by reaching a fixed number of actuators—can be 

redefined to halt when the Max Gap (MG) falls within a specified threshold. This adjustment 
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allows the system to dynamically optimize the number of actuators while ensuring compliance 

with manufacturing precision requirements. Such a modification not only reduces actuator 

usage and associated costs but also maintains the integrity of the original methodology, 

demonstrating its scalability and adaptability to varying operational constraints. Through 

numerical case studies and comparison studies, the effectiveness of the proposed method was 

demonstrated. 

While our proposed methodology has achieved significant results in composite fuselage 

assembly optimization, there remain several promising avenues for further enhancement. The 

current framework, although robust and flexible, could benefit from improvements that address 

more complex assembly scenarios and tighter precision requirements. Additionally, as 

advanced manufacturing technologies continue to evolve, integrating our approach with these 

innovations holds the potential to unlock even higher levels of assembly precision and 

efficiency. Future work will focus on further improving the algorithm's performance, exploring 

its application in more complex assembly scenarios, and integrating it with other advanced 

manufacturing technologies to achieve even higher-precision assembly. 

 

Code Availability 

The code will be released upon publication. 
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