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Abstract
Transformer-based architectures have shown
promise across various domains but struggle with
computational inefficiency and scalability. To ad-
dress these challenges, we introduce GeneMamba,
a novel model designed specifically for single-cell
data analysis. GeneMamba incorporates the Bi-
Mamba module to efficiently capture gene context
information and employs biologically meaningful
loss functions during training. The model en-
ables scalable processing of over 50 million cells
while significantly reducing computational costs.
It delivers strong performance in multi-batch in-
tegration, cell type annotation, and gene pair cor-
relation analysis. Furthermore, reconstruction ex-
periments highlight GeneMamba’s explainability,
establishing it as a robust foundation for advanc-
ing single-cell transcriptomics in biological and
biomedical research.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) has fundamen-
tally transformed our ability to study cellular heterogene-
ity and dynamics by enabling high-resolution profiling of
gene expression at the individual cell level (Korsunsky et al.,
2019; Theodoris et al., 2023; Smith & Doe, 2024). This tech-
nology allows researchers to dissect complex cellular com-
positions within tissues, trace differentiation trajectories,
and identify rare cell populations that remain undetectable
with bulk RNA sequencing (Shen et al., 2023; Wen et al.,
2023b; Nguyen & Tran, 2024). The rich transcriptomic
insights provided by scRNA-seq have catalyzed significant
advancements in developmental biology, disease modeling,
and drug discovery (Gu & Dao, 2023; Yang et al., 2024; Li
& Wang, 2024).

Despite these advantages, the computational analysis of
scRNA-seq data presents formidable challenges due to its
high dimensionality, inherent sparsity, and technical noise
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(Du et al., 2019; Zhao et al., 2023; Brown & Davis, 2024).
Addressing these challenges requires robust computational
models capable of capturing biologically meaningful pat-
terns while efficiently handling the scale and variability of
single-cell data. Transformer-based architectures, such as
scBERT (Yang et al., 2022) and scGPT (Cui et al., 2024a),
have emerged as powerful tools in this domain, demonstrat-
ing strong performance in tasks such as cell type classifi-
cation, gene expression imputation, and differential expres-
sion analysis (Bian et al., 2024; Wen et al., 2023a; Garcia &
Thompson, 2024).

However, transformers exhibit critical limitations when ap-
plied to scRNA-seq data. The quadratic complexity of their
self-attention mechanism constrains their scalability for long
sequences, which are characteristic of single-cell transcrip-
tomes (Vaswani, 2017; Choromanski et al., 2020; Smith &
Doe, 2024). Moreover, transformers often struggle to effec-
tively capture long-range dependencies, which are essential
for modeling gene regulatory interactions and cell state tran-
sitions (Dao et al., 2022; Chen et al., 2023). These limita-
tions have driven the exploration of alternative architectures,
among which state space models (SSMs) have emerged as
promising solutions, offering improved efficiency and scala-
bility for processing long sequences (Gu & Dao, 2023; Dao
& Gu, 2024; Martinez & Hernandez, 2024).

In this study, we introduce GeneMamba, a novel state space
model designed to efficiently train large-scale cell models
on scRNA-seq data. SSM-based models have demonstrated
competitive or superior performance compared to trans-
formers while significantly reducing computational over-
head (Shen et al., 2022; Gong et al., 2024a; Lee & Kim,
2024). Building upon this foundation, GeneMamba incor-
porates bidirectional computation, enhancing its ability to
capture both upstream and downstream contextual depen-
dencies, thereby improving its performance in tasks requir-
ing global contextual awareness (Liu et al., 2024; Liang
et al., 2024). We validate GeneMamba across a diverse
set of applications, including multi-batch integration, cell
type annotation, and gene-gene correlation analysis. Our ex-
perimental results demonstrate substantial improvements in
computational efficiency and predictive performance com-
pared to existing models (Hao et al., 2024; Sun et al., 2024;
Johnson & Lee, 2024). Furthermore, to assess its scalability,
we conduct a comprehensive performance analysis on vari-
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ous variations of GeneMamba (Appendix D), highlighting
its advantages in real-world biological applications.

Our contributions are threefold:

1. We present GeneMamba, a scalable and efficient model
designed for single-cell RNA sequencing data, which har-
nesses the strengths of the SSM architecture. GeneMamba’s
architecture is tailored to tackle the challenges of high-
dimensional and sparse scRNA-seq data, offering a robust
and flexible framework for single-cell analysis.

2. We validate the effectiveness of GeneMamba in multi-
ple downstream tasks, showcasing its potential to advance
single-cell transcriptomics research. Extensive experiments
highlight GeneMamba’s versatility and robustness, making
it a valuable tool for the single-cell research community.

3. We demonstrate GeneMamba’s superior reconstruction
ability compared to transformer-based models, providing
insights into the interpretability and effectiveness of state
space models.

2. Related Work
2.1. Discretization of Gene Expression

Discretizing gene expression levels into tokens is a cru-
cial step in single-cell transcriptomics modeling. Existing
methods employ various tokenization strategies, each with
distinct advantages and limitations.

Bin-based discretization, as used by scBERT (Yang et al.,
2022), scGPT (Cui et al., 2024a), and scMulan (Bian et al.,
2024), groups expression values into predefined bins. This
approach preserves absolute value distributions and sim-
plifies sequence modeling, but may introduce information
loss, particularly for genes with subtle but biologically sig-
nificant expression differences. Additionally, binning can
be sensitive to parameter selection, affecting downstream
results.

Value projection(Szałata et al., 2024), adopted by scFounda-
tion (Hao et al., 2024) and its backbone model xTrimoGene
(Gong et al., 2024a), projects gene expression values into
continuous embeddings rather than discrete categories. This
method maintains full data resolution by applying a linear
transformation to the gene expression vector, which is then
combined with gene-specific embeddings. However, the
use of continuous embeddings diverges from traditional to-
kenization strategies in NLP-based transformers, and its
impact on model performance remains an open question.

Rank-based discretization, utilized by Geneformer
(Theodoris et al., 2023), GeneCompass (Yang et al., 2024),
tGPT(Shen et al., 2023) and LangCell (Zhao et al., 2024b),
transforms gene expression values into ordinal rankings.
This approach effectively captures relative expression

levels and is more robust to batch effects and noise. Our
method is based on rank-based discretization, as employed
in Geneformer, which aligns naturally with biological
processes such as regulatory interactions.

2.2. Model Architectures for Single-Cell Analysis

Transformer-based architectures, used by scBERT, scGPT,
Geneformer, and scFoundation, have been successfully ap-
plied to single-cell data, leveraging the power of deep learn-
ing to model complex gene expression patterns. These mod-
els have shown promising results in various tasks, includ-
ing cell-type annotation, batch integration, and multiomics
analysis. However, transformer(Vaswani, 2017) has inher-
ent limitations. The most significant one is their quadratic
computational complexity with respect to sequence length,
which makes them less feasible for long sequences typical of
scRNA-seq data. This issue arises because the self-attention
mechanism used in transformer requires computing atten-
tion scores for all pairs of tokens, leading to inefficiencies
in handling long sequences. Additionally, transformer of-
ten struggles with capturing long-range dependencies in
sequences, which is crucial for understanding gene regu-
latory networks and cell state transitions. Mamba(Gu &
Dao, 2023) has been introduced to address the transformer
efficiency problem. Bidirectional Mamba(Bi-Mamba) has
recently been used to solve long-sequence problems in tasks
such as feature extraction(Sun et al., 2024), sequential rec-
ommendation(Liu et al., 2024), and time series forecast-
ing(Liang et al., 2024). Bi-Mamba is designed to efficiently
process ultra-long sequences with linear computational com-
plexity, offering a significant reduction in memory and
computation requirements compared to transformer. By
leveraging state-space dynamics, Bi-Mamba can capture
long-range dependencies effectively, making it well-suited
for modeling gene regulatory interactions and cell state
transitions. Furthermore, Bi-Mamba’s bidirectional pro-
cessing enables the simultaneous consideration of upstream
and downstream contexts, enhancing its ability to model
complex dependencies in single-cell data. This architec-
ture represents a promising alternative to transformer-based
methods, addressing their key limitations while maintaining
high performance in various single-cell analysis tasks.

More related work is provied in Appendix C.

3. Methods
In this section, we introduce the framework of GeneMamba
(Figure 1), the designed BiMamba module (Figure 2), and
the pretraining objective (Section 3.3).
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Figure 1. The GeneMamba architecture and its downstream task applications. The framework begins with the collection of training
data (approximately 50M cells) from CELLXGENE, encompassing a diverse array of tissues and organs. After preprocessing, the data is
prepared through a Gene Rank Module to transform single-cell data into input sequences. The GeneMamba module then captures the
contextual information within each single cell. Once pretrained, the model and its embeddings are employed for various downstream tasks
to evaluate the model’s performance.

3.1. Data Processing

A significant challenge in modeling single-cell data is that
the input data is not a plain token sequence; instead, it com-
prises both gene tokens and their corresponding expression
values. To address this, we represent the input data as a
gene expression matrix M ∈ Rc×g, where c is the num-
ber of cells, and g is the number of genes. In this matrix,
rows correspond to cells, columns correspond to genes, and
unexpressed genes have a zero expression value.

First, we preprocess the single-cell data using standard tech-
niques (Appendix A). Next, we normalize the matrix to
account for sequencing depth and gene-specific variation.
Specifically, each element Mij (the expression value of
gene j in cell i) is first divided by the total expression of
all genes in cell i. Then, we compute the median of the
non-zero expression values for each gene j across all cells
using the t-digest algorithm for efficient computation. The
final normalized expression value is given by:

M norm
ij =

Mij/
∑n

k=1 Mik

t-digest{Mkj | Mkj > 0}

Finally, we rank the genes within each cell in descending or-
der based on their normalized expression values. This rank-
ing approach highlights genes that distinguish cell states
while deprioritizing universally high-expression housekeep-
ing genes, ensuring they are assigned lower ranks in down-
stream analyses.

Ri = argsort
(
−M norm

ij

)
, ∀j

3.2. Bi-Mamba Architecture

State Space Models (SSMs) provide a powerful frame-
work for modeling sequences by utilizing a latent state that
evolves over time. At each time step, the latent state ht is
updated based on the previous state ht−1, the current in-
put xt, and the system’s parameters. The dynamics of the
system are described as:

ht = Aht−1 +Bxt, yt = Cht

where A,B, and C are matrices defining how the input
and state interact. This formulation enables the model to
represent long-range dependencies in sequences efficiently.
The convolutional view reformulates the output y as:

y = x ∗K, K = [CB,CAB,CA2B, . . . ]

where K is a sequence-length-dependent kernel capturing
temporal relationships.

However, traditional SSMs are limited by their static nature;
parameters like A,B,C are constant, making them unable
to adapt dynamically to the input content. To address this,
the Mamba model introduces input-dependent dynamics.

In Mamba, the parameters A,B,∆, and C are functions of
the input, allowing the system to dynamically adjust to the
sequence content. The updated equations are:

ht = fA(xt)ht−1 + fB(xt)xt, yt = fC(xt)ht

where fA, fB , and fC are learned transformations of the
input xt. By making these parameters input-dependent,
Mamba enables selective propagation of relevant informa-
tion while filtering out noise, significantly enhancing the

3
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Figure 2. The schematic overview of BiMamba Block. The Bi-
Mamba Block processes input sequences bidirectionally, capturing
forward and reverse context through shared convolutional layers
(Conv) and structured state machines (SSM). A gating mecha-
nism integrates the outputs, followed by linear projection and
nonlinearity layers, generating a context-aware representation for
downstream tasks.

model’s ability to capture complex sequence dynamics.
Mamba is also computationally efficient, achieving linear
scaling with sequence length.

While Mamba processes sequences in a unidirectional man-
ner, many tasks require bidirectional context to fully capture
dependencies. To address this limitation, we extend Mamba
to a bidirectional version, called Bi-Mamba.

The Bi-Mamba model processes the input sequence in
both forward and reverse directions to capture bidirec-
tional contextual relationships. Given an input sequence
S = [s1, s2, . . . , sn], the following steps outline the pro-
cessing pipeline in Bi-Mamba:

1. Reversing the Input: A reversed version of the sequence,
Srev = [sn, sn−1, . . . , s1], is created. During the reversing
and combining process, padding tokens are handled sepa-
rately to prevent alignment artifacts. Only valid tokens (e.g.,
sequence content) are flipped, while padding remains static.
This ensures that information flows in both directions during
processing.

2. Parallel Processing: Both the original sequence S and
the reversed sequence Srev are processed independently us-
ing identical Mamba layers with shared weights. For each
layer l, the outputs are:

h
(l)
t = f

(l)
A (st)h

(l)
t−1 + f

(l)
B (st)st

for the original sequence, and:

h̃
(l)
t = f

(l)
A (st)h̃

(l)
t−1 + f

(l)
B (st)st

for the reversed sequence Srev, where h̃
(l)
t represents the

reversed latent state.

3. Combining the Outputs: The outputs from the for-
ward and reversed passes are combined to form a unified
representation. Instead of summing the outputs directly, Bi-
Mamba introduces a learnable gating mechanism to balance
the contributions of forward and backward information:

z
(l)
t = σ(W (l)[h

(l)
t , h̃

(l)
t ])

o
(l)
t = z

(l)
t · h(l)

t + (1− z
(l)
t ) · h̃(l)

t

where σ is a sigmoid function, W (l) is a learnable weight
matrix, and o

(l)
t is the combined output for token t at layer

l.

4. Stacking Layers: The Bi-Mamba process is repeated
across multiple layers, with each layer refining the bidirec-
tional representations:

S(l+1) = Bi-Mamba(S(l)), S(0) = S

The final sequence representation S(L) encodes rich bidirec-
tional dependencies, making it suitable for tasks requiring
global context.

The Bi-Mamba architecture allows us to capture bidirec-
tional contextual relationships by processing sequences in
both forward and reverse directions. With the gating mecha-
nism, we can seamlessly integrate these contexts, enabling
meaningful applications like cell type annotation and gene
interaction prediction. By leveraging a shared-weight design
and linear scalability, we enhance the strengths of Mamba,
creating a versatile and efficient tool for sequence modeling
that aligns with our goals.

3.3. Pretraining Objective

Next Gene Prediction Loss The sequence modeling module
processes gene expression sequences to predict the proba-
bility distribution of the next gene token conditioned on all
previous gene tokens within a cell. The loss function, re-
ferred to as Llang, is computed as the negative log-likelihood
(NLL) of the true next gene token gj given the preceding
tokens {g1, g2, . . . , gj−1}, represented as:

Llang = − 1

M

M∑
j=1

logP (gj | g1, g2, . . . , gj−1)

This loss function enables end-to-end training of the model
by leveraging the sequential representation of gene expres-
sion data to predict each gene based on its preceding context

4
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within the same cell. By stacking multiple BiMamba lay-
ers, the model is trained to capture complex bidirectional
relationships among genes, enabling robust analysis and
modeling of single-cell gene expression data.

Gene Pathway Loss

To capture the gene-gene relationships within biological
pathways, we employ an InfoNCE loss function that en-
forces similarity among genes sharing a common path-
way (Oord et al., 2018; Sharma & Xu, 2023; Gundogdu
et al., 2022). Pathways represent functional groupings
of genes that collectively contribute to specific biological
processes (Zien et al., 2000; Garcı́a-Campos et al., 2015).
Genes within the same pathway are often functionally re-
lated and co-regulated, making their representations in the
embedding space naturally similar. Conversely, genes that
belong to different pathways should be distinct in their em-
beddings. To achieve this, we define gene pairs within
the same pathway as positive pairs (label yij = 1) and
gene pairs from different pathways as negative pairs (label
yij = 0).

Given a gene pair (i, j), we compute the cosine similarity
between their embeddings:

sim(i, j) =
hi · hj

∥hi∥∥hj∥

where hi and hj are the normalized embeddings of genes i
and j. Positive pairs correspond to genes sharing a pathway
(label yij = 1), while all other gene pairs in the batch are
treated as negatives (label yij = 0). To emphasize the
contrast between positive and negative pairs, we normalize
the similarities using temperature scaling:

˜sim(i, j) =
sim(i, j)

τ

where τ > 0 is a temperature hyperparameter. The InfoNCE
loss for a batch of gene pairs is then formulated as:

Lpathway = − 1

|P|
∑

(i,j)∈P

log
exp( ˜sim(i, j))∑

k∈N (i) exp(
˜sim(i, k))

Here, P denotes the set of positive gene pairs (genes in the
same pathway), and N (i) includes all gene pairs involving
gene i in the batch, including negatives. The numerator in
the logarithm encourages high similarity for positive pairs,
while the denominator includes all other pairs, ensuring the
model contrasts between intra-pathway and inter-pathway
relationships. This loss function ensures that embeddings of
genes within the same pathway are pulled closer together,
capturing their shared biological context, while embeddings
of genes from different pathways are pushed apart. By
leveraging pathway information, this approach enhances
the biological interpretability and functional organization of

gene embeddings. The final pretraning loss is the weighted
sum of the three loss:

L = Llang + γLpathway

We set the γ value to 0.1 in our experiments based on vali-
dation results from sample datasets.

4. Experiments
Pretraining Dataset Construction

Our pretrianing dataset was constructed using single-cell
RNA sequencing (scRNA-seq) data sourced from the CEL-
LXGENE database, including raw count matrices and
their corresponding metadata. The original dataset com-
prised 50,689,395 cells. To ensure data quality, duplicates
were removed by retaining only entries where the feature
is primary data was set to True. This step eliminated ap-
proximately 41% of the samples, resulting in 30,139,066
unique cells. Subsequently, the data was filtered to include
22,053 human protein-coding or miRNA genes. Cells ex-
pressing fewer than 200 genes were excluded to remove
low-quality samples. The total gene expression counts for
each cell were normalized to a fixed target value, and a loga-
rithmic transformation (log1p) was applied to scale the data
and reduce skewness. Following preprocessing, the dataset
used for pretraining was finalized with 29,849,897 cells. For
further refinement, a normalization factor was computed for
each gene by calculating the non-zero median expression
value of that gene across all cells. Genes were then ranked
based on their normalized expression levels within each cell,
and the top 2,048 or 4,096 gene indices were selected as
input features for the pretraining stage.

Pretraining Configuration We configured GeneMamba
with 24 Bi-Mamba layers, an inner dimension of 512, and a
vocabulary size of 25,426, resulting in 65.74 million learn-
able parameters. The model was trained for five epochs,
distributed across four NVIDIA A100-SXM4-80GB GPUs,
requiring approximately three weeks to complete. Addi-
tionally, we implemented variations of GeneMamba and
compared their performance.

Downstream Task Datasets For the downstream tasks in
the GeneMamba paper, we utilized several datasets tai-
lored to specific evaluations. For cell type annotation, we
employed hPancreas, MS, Myeloid, and Myeloid b, with
Myeloid b derived from Myeloid by excluding extremely
small cell types to ensure robust performance assessment.
Multi-batch analysis was conducted using the PBMC12k,
COVID-19, and Perirhinal Cortex datasets to evaluate the
model’s effectiveness across diverse batch settings. For gene
correlation analysis, the Immune and BMMC datasets were
utilized to explore gene-gene relationships and validate the
model’s ability to capture meaningful biological insights.

5
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More details can be found in Appendix B.1.

Baselines We evaluate our model against established base-
lines, including GeneFormer, scGPT, scFoundation, and
scBert, which are transformer-based models designed for
single-cell data analysis. Additionally, we compare with
Harmony, a widely used computational biology toolkit for
clustering and cell-type classification. These methods pro-
vide a comprehensive benchmark, spanning deep learning
and traditional computational biology approaches. More
details about the baseline models are introduced in Ap-
pendix B.3

4.1. Multi-batch Integration Task

Figure 3. Results of multi-batch integration. Benchmark of the
fine-tuned GeneMamba on the PBMC 12k dataset for the multi-
batch integration task. The UMAP plot of learned cell embeddings
is colored by cell types.

In this experiment, we evaluated the multi-batch integra-
tion performance of the GeneMamba model. Multi-batch
integration refers to aligning and harmonizing single-cell
datasets from multiple experimental batches to minimize
batch effects while preserving biologically meaningful pat-
terns. We fine-tuned the pretrained GeneMamba model by
adding a simple classification head (MLP) on the PBMC12k,
COVID-19, and perirhinal cortex datasets. Using the learned
embeddings from these foundation models, we performed
multi-batch integration experiments.

The Avg-batch metric assesses the model’s ability to cor-
rect batch effects and integrate data across multiple batches,
while the Avg-bio metric evaluates the preservation of bi-
ological variation and meaningful clustering of cell types
after integration. As shown in Table 1 and Figure 3, batch
correction and biological preservation often present a trade-
off. Harmony, as a specialized method for batch effect
correction, excels in eliminating batch effects but tends
to ignore biological differences. In contrast, GeneMamba
demonstrates superior performance by effectively mitigating
batch effects while preserving biological information. This

highlights its robust capability in multi-batch integration
and its biological relevance for single-cell data analysis. For
further details, please refer to Figures 9 and 10.

4.2. Cell Type Annotation

In this experiment, we evaluate the classification ability of
the GeneMamba model on cell type annotation tasks using
four benchmark datasets: hPancreas, MS, Myeloid, and
Myeloid b. The Myeloid b dataset is a modified version of
the Myeloid dataset, created by excluding extremely small
cell types to ensure a more balanced distribution of cell
populations. These datasets encompass diverse biological
contexts, allowing for a comprehensive evaluation of the
model’s capabilities. Detailed statistics and characteristics
of these datasets are provided in Appendix B.1 for reference.

The annotation experiment employs the GeneMamba model
fine-tuned with a simple classification head (MLP) in a su-
pervised learning setup, directly testing its ability to learn
and predict cell types based on input data. As summarized
in Table 2, the GeneMamba model demonstrates compet-
itive performance across datasets. It achieves the highest
accuracy (0.9713) and Macro-F1 (0.7710) scores for the
hPancreas dataset, showing its robustness in capturing com-
plex cell-type variations. Similarly, in the Myeloid dataset,
GeneMamba outperforms others with a Macro-F1 score of
0.3650, showcasing its edge in identifying nuanced differ-
ences between cell types. While it lags in the MS dataset,
its performance on the balanced Myeloid b dataset (Acc:
0.9603, Macro-F1: 0.9235) remains strong, underscoring its
capability in handling challenging tasks.

These results highlight the effectiveness of GeneMamba’s
architecture and training strategy in capturing meaningful
biological patterns for precise cell type classification. The
embeddings produced by the model capture intrinsic dif-
ferences across cell types, simplifying downstream tasks
and enabling the use of a simple classifier to achieve high
accuracy. Furthermore, the confusion matrix in Appendix
Figure 11 reveals clear patterns of prediction accuracy and
misclassification, reflecting GeneMamba’s robustness and
precision in distinguishing between diverse cell types.

4.3. Gene Rank Reconstruction

The GeneMamba model demonstrates exceptional capability
in reconstructing ranked gene orders, a critical requirement
for single-cell analysis tasks where gene expression patterns
reveal cellular states and transitions. The analysis begins
by randomly selecting sample cells. From these cells, input
gene tokens are extracted, and output tokens are generated
using the GeneMamba model. Then the gene tokens are
ranked based on their predicted likelihoods, with missing
tokens filled by zeros to ensure sequence consistency. This
approach preserves the structural integrity of the data and
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Table 1. Benchmark results of the models on multi-batch experiments with BATCH and Cell metrics

Metric Dataset Harmony GeneFormer scGPT scFoundation GeneMamba

Avg batch

Immune 0.9514 0.8153 0.9194 0.8904 0.9536
PBMC12k 0.9341 0.9545 0.9755 0.9628 0.9604
BMMC 0.8999 0.7720 0.8431 0.7598 0.9157
Perirhinal Cortex 0.9442 0.9127 0.9600 0.9560 0.9673
Covid-19 0.8781 0.8240 0.8625 0.8346 0.8742

Avg bio

Immune 0.6945 0.6983 0.7879 0.7337 0.8131
PBMC12k 0.7990 0.7891 0.9018 0.8662 0.8344
BMMC 0.6316 0.6324 0.6576 0.5250 0.7628
Perirhinal Cortex 0.8595 0.8547 0.9552 0.9606 0.9062
Covid-19 0.4468 0.5567 0.6476 0.5468 0.5537

Table 2. Benchmark annotation performance across datasets
Datasets Models Acc Macro-F1

hPancreas

GeneFormer 0.9665 0.7450
scGPT 0.9710 0.7632
scFoundation 0.9602 0.7101
GeneMamba 0.9713 0.7710

MS

GeneFormer 0.7650 0.6220
scGPT 0.8471 0.6630
scFoundation 0.7763 0.6812
GeneMamba 0.6825 0.5342

Myeloid

GeneFormer 0.6445 0.3600
scGPT 0.6341 0.3562
scFoundation 0.6446 0.3646
GeneMamba 0.6607 0.3650

Myeloid b

GeneFormer 0.9540 0.9380
scGPT 0.9421 0.9434
scFoundation 0.9574 0.9569
GeneMamba 0.9603 0.9235

facilitates direct comparison between input and output rank-
ings.

The consistency of GeneMamba’s predictions is validated
through a Venn diagram Figure 4a, which illustrates a high
degree of overlap between input and output tokens for the
pancreas dataset. This overlap highlights the model’s abil-
ity to retain critical features of the input data, an essential
characteristic for single-cell studies where the integrity of
gene expression ranks directly influences downstream anal-
yses. A density plot Figure 4b provides further evidence of
rank fidelity. It demonstrates that lower-ranked input genes
consistently yield lower-ranked outputs, indicating a linear
relationship between input and output ranks. This obser-
vation underscores the model’s effectiveness in capturing

a

b

Figure 4. Gene rank reconstruct results on PBMC12k dataset
(a) Venn diagrams showing overlapping between input and output
tokens in the pancreas dataset by three models: GeneMamba U
(unidirectional Mamba module as backbone), GeneFormer, Gene-
Mamba (BiMamba module as backbone). (b) Density plots show-
ing input and output ranking in the pancreas dataset by three mod-
els: GeneMamba U, GeneFormer, GeneMamba.

patterns within the data and maintaining rank consistency.

Comparative analysis (Figure 4 from left to right) reveals
the advantages of GeneMamba over other models: (1) The
inclusion of the BiMamba module significantly enhances
performance compared to the unidirectional module. This
result demonstrates the necessity of bidirectional context
extraction for effectively reconstructing ranked gene orders.
(2) The GeneFormer model excels at predicting higher-
ranked genes but struggles with lower-ranked genes, often
treating them as noise due to their lower frequency. In con-
trast, GeneMamba captures both higher- and lower-ranked
genes effectively, showcasing its robustness and sensitivity
to varying gene expression levels. The metric results are
summarized in Table 3. Additional results are provided in

7
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Table 3. Gene rank reconstruction performance on the PBMC12k
dataset

Model L-Dist BLEU Spearman
GeneMamba U 430 0.532 0.469
GeneFormer 23 0.968 0.703
GeneMamba 6 0.987 0.711

the Appendix Table 7. By reliably reconstructing ranked
gene orders, GeneMamba offers a powerful solution for un-
derstanding complex gene expression patterns. Its ability to
maintain rank integrity across varying data scales positions
it as an invaluable tool for single-cell genomics.

4.4. Gene Correlation Analysis

c

ba

Figure 5. Gene Correlation Analysis. (a) Distribution of con-
sine similarity score for positive and negative gene pairs using
Gene2Vec embeddings. (b) Distribution of pearson correlation
score for positive and negative gene pairs using Gene2Vec em-
beddings. (c) Gene-gene topology comparison using adjacency
matrices highlights shared and unique structures captured by Gen-
eMamba, scGPT, and Gene2Vec, such as genes RALA, DECR1,
and CBL1.

GeneMamba exhibits exceptional capabilities in gene cor-
relation analysis, distinguishing itself in capturing biolog-
ically meaningful patterns, maintaining raw data fidelity,
and identifying unique model-specific topologies. A se-
ries of experiments evaluated GeneMamba’s performance
in distinguishing gene relationships, preserving correlation
structures, and classifying gene types.

Differentiating Positive and Negative Gene Pairs In the
first experiment, GeneMamba’s ability to differentiate be-
tween ”positive” and ”negative” gene pairs was assessed
using Gene2Vec embeddings. Nearly 30,000 gene pairs,
evenly distributed as positive (1) or negative (0), were ana-
lyzed for similarity scores using cosine similarity and Pear-

son correlation. GeneMamba demonstrated a significant
separation between the mean similarity scores of positive
and negative pairs (Figure 5 a, b). Compared to baseline
models, GeneMamba achieved a clearer distinction, empha-
sizing its capacity to accurately represent gene relationships.

Embedding Alignment To quantify discrimination power,
we compared GeneMamba’s embeddings with those of
scGPT and scFoundation. The ”distance” between pos-
itive and negative pair distributions was measured using
Euclidean distance, KL divergence, and JS divergence. The
result is shown in Appendix Figure 12. GeneMamba con-
sistently outperformed the other models across all metrics,
highlighting its superior ability to distinguish between gene
pair types and reinforcing its robustness in modeling gene
relationships.

Gene-Gene Topology Analysis The ability to capture gene-
gene topologies was analyzed using adjacency matrices
derived from embeddings. For the PBMC12K dataset, dis-
tances between embeddings of randomly selected gene pairs
(100 cells in our case) were calculated and binarized based
on threshold value. Then we build the topology graph based
on the adjacent matrix (Figure 5c) for each evaluated model.
Notably, while identifying unique model-specific topologies,
all three models captured biologically significant genes and
their interactions, such as RALA, DECR1, and CBL1. This
suggests that the foundation models share a similar repre-
sentation space.

5. Conclusion
In this study, we present GeneMamba, a foundational model
designed to advance single-cell analysis. By treating cells as
sentences and genes as tokens, and with the BiMamba block
and biological aware loss function, GeneMamba achieves a
deeper understanding of cellular heterogeneity and gene re-
lationships. This work underscores the potential of adapting
large language models for biological data analysis, bridging
computational innovation with biological insights. Future
directions include enhancing the model with mechanisms
like cross-attention for improved transfer learning, scaling
to even larger datasets, and creating accessible tools for the
research community.

Code Availability
Datasets and code are available at the github address:
https://github.com/MineSelf2016/GeneMamba

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Our work has potential societal im-
plications, but none warrant specific emphasis here.
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Appendix

A. Dataset Construction
We constructed our pretraining dataset manually, which is sourced from the cellxgene database, acquiring single-cell RNA
sequencing (scRNA-seq) data in raw count matrix format alongside the corresponding metadata. The metadata available
on this platform were submitted by the original data contributors, and therefore, we consider it to be partially reliable. It
is worth mentioning that, for the first time, we corrected the “organ“ column by mapping it to the “tissue“ column in the
original collected data.

The raw data consisted of 50,689,395 cells downloaded from cellxgene. Following the guidelines provided by the platform,
which notes that “in some cases, data from the same cell exists in different datasets, therefore cells can be duplicated
throughout CELLxGENE Discover and by extension the Census,” we removed duplicates by filtering for entries where
the feature is primary data was set to True. This step eliminated 20,550,329 samples, leaving a total of 30,139,066
unique cells.

Subsequently, we filtered the data to include only 22,053 human protein-coding or miRNA genes. To ensure data quality and
reduce noise from poor-quality cells, we retained cells expressing at least 200 genes. The total counts of gene expression
values in each cell were then normalized to a fixed target value to ensure comparability across cells. Following normalization,
we applied a logarithmic transformation (log1p) to scale the data for the following analyses.

After preprocessing, the dataset for pretraining was finalized with 29,849,897 cells. We calculated a normalization factor for
each gene by determining the non-zero median expression value of that gene across all cells. This normalization factor was
consistently applied to both the pretraining corpus and all future datasets presented to the model. This approach deprioritized
ubiquitously highly expressed housekeeping genes while highlighting genes with lower expression levels that contribute
significantly to distinguishing cell states.

For the tokenization process, genes were ranked by their normalized expression values within each cell, and the resulting
tokenized data were stored in the Huggingface Datasets format, retaining all non-zero gene entries. To provide a non-
parametric representation of the transcriptome for each cell, we selected the top 2,048 or 4,096 gene indices as the input
data to pretraining stage.

B. Downstream Datasets, Tasks and Evaluation Metrics
B.1. Downstream Datasets

The statistics of the datasets are shown in the Table 4.

Table 4. Statistics of downstream datasets, including the number of cells (n cells), genes (n genes), batches (n batches), and cell types
(n cell types) for each dataset.

Dataset n cells n genes n batches n cell types
bmmc 90261 14087 12 45
covid19 20000 1200 2 39
pbmc12k 11990 3346 2 9
perirhinal cortex 17535 59357 2 10
immune 33506 12303 10 16
myeloid 13178 3000 2 21
hpancreas 14818 3000 2 14
ms 21312 3000 2 18

hPancreas This dataset comprises single-cell RNA sequencing (scRNA-seq) data from human pancreatic cells, including
various cell types such as alpha, beta, delta, and acinar cells. It is utilized to study cellular heterogeneity and gene expression
profiles within the pancreas.

MS The multiple sclerosis (MS) dataset includes scRNA-seq data from peripheral blood mononuclear cells (PBMCs) of
individuals with MS. It aids in understanding immune cell composition and gene expression changes associated with MS.
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Myeloid This dataset contains scRNA-seq data focusing on myeloid cells, such as monocytes and macrophages, from
various tissues or conditions. It is essential for studying the role of myeloid cells in immune responses and diseases.

PBMC12k The PBMC12k dataset consists of scRNA-seq data from 12,000 peripheral blood mononuclear cells obtained
from a healthy donor. It serves as a reference for immune cell types and their gene expression profiles in the bloodstream.

BMMC This dataset includes scRNA-seq data from bone marrow mononuclear cells, encompassing various hematopoietic
cell types. It is utilized to study hematopoiesis and bone marrow microenvironments.

COVID19 The COVID19 dataset comprises scRNA-seq data from PBMCs of COVID-19 patients. It facilitates the
investigation of immune responses and cellular changes during SARS-CoV-2 infection.

Immune Human This dataset contains scRNA-seq data from human immune cells across different tissues or conditions. It
aids in understanding the diversity and function of the human immune system.

Perirhinal Cortex This dataset includes scRNA-seq data from cells of the perirhinal cortex, a region of the brain involved
in memory and recognition. It is used to study neuronal and glial cell types and their gene expression profiles in this specific
brain area.

The original Myeloid dataset is highly imbalanced. To better evaluate the models’ performance, we excluded rare cell types
(proportion < 0.05) to create the Myeloid b dataset. Figure 6 illustrates the cell type distribution in both the original and
modified Myeloid datasets.

Figure 6. Cell type distribution in the original and modified Myeloid datasets

B.2. Downstream Tasks

We standardize the downstream datasets by converting the batch key to ”batch” and the label key to ”celltype.” We then use
a manual stratified split to divide the dataset into train/test with a 0.9/0.1 ratio to avoid missing rare classes in the test set.
For example, in the COVID dataset, using ‘train test split()‘ directly would cause the 22nd class to be missing, as it contains
only 3 samples, and a 0.3 test sample rate would result in zero samples, causing errors during AUC-ROC calculation. The
split column is labeled ”partition,” where ”train” is for training and ”test” is for testing.

Multi-batch integration Task

Multi-batch integration is a task in single-cell data analysis that involves harmonizing data collected from multiple
experimental batches to mitigate technical differences while preserving meaningful biological information. In this context,
let X = {X1, X2, . . . , Xn} denote datasets from n distinct batches, where Xi ∈ Rmi×p represents the gene expression
matrix of the i-th batch with mi cells and p genes. The objective is to project these datasets into a unified latent space
Z ∈ RM×d, where M =

∑n
i=1 mi is the total number of cells across all batches, and d is the dimensionality of the latent

space. In this shared space, cells with similar biological profiles are grouped together, regardless of their batch origin.
This task is crucial for ensuring the comparability of cells from different batches and facilitating downstream analyses like
clustering or cell type classification. Successful integration minimizes batch-specific artifacts and emphasizes biologically
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relevant signals, enabling a coherent and unbiased interpretation of single-cell data.

Cell Type Annotation

Cell type annotation is a fundamental task in single-cell transcriptomics aimed at assigning biologically meaningful labels to
individual cells based on their gene expression profiles. Formally, given a gene expression matrix X ∈ RM×p, where M is
the total number of cells and p represents the number of genes, the goal is to map each cell xi ∈ Rp to a cell type label
yi ∈ Y , where Y = {y1, y2, . . . , yk} is the set of k predefined cell types. This task leverages the distinct transcriptional
signatures of cell types, often characterized by differential expression of marker genes, to provide insights into cellular
identity and function. Successful annotation ensures that biologically relevant features are preserved, enabling accurate
downstream analyses such as the study of cellular heterogeneity, lineage tracing, and disease-specific cell state identification.
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Figure 7. Gene Rank Reconstruct framework of GeneMamba Gene Imputation framework evaluating rank reconstruction by predicting
(n+1)-th tokens iteratively.

In the figure 7, the framework of doing the gene rank reconstruction experiment. The framework demonstrates the iterative
nature of rank reconstruction, where the model processes one token at a time, maintaining sequential dependencies inherent
in biological systems. This approach mirrors natural biological progressions, further emphasizing the model’s relevance to
genomics.

Gene Distribution Alignment

In this experiment, we evaluate the GeneMamba’s performance to distinguish between positive pairs and negative pairs,
the reference data is collected in the Gene2Vec paper (Du et al., 2019). And we generate the embeddings using different
models for positive gene pairs and negative gene pairs, then we measure the embeddings similarity of each pair. We evaluate
how the distribution of positive pairs and negative pairs differ by calculating the eucilean distance, KL-Divergence, and
JS-Divergence of the two distributions, the result is shown in figure 5.
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Gene Topology Preservation

To evaluate gene-gene topology preservation, we conducted experiments using the pbmc12k dataset. A random selection of
gene-gene pairs was made from the dataset, and their embeddings were obtained using three models: scGPT, GeneMamba,
and Gene2Vec. The Euclidean distances between the gene pairs were computed, and an adjacency matrix was constructed
to represent these relationships. The threshold for the distances was set as the mean value of the matrix elements, and the
distances were binarized into 0 and 1 based on this threshold. To compare the topological similarity among models, the
Jaccard distances between the adjacency matrices were calculated. Additionally, overlapping gene-gene pairs were identified
to further understand shared topology. The experiment culminated in a visual representation of the gene-gene topology,
highlighting the models’ ability to preserve biological relationships in gene expression data.

B.3. Evaluation Metrics

AvgBIO

To evaluate how well the integration preserves biological signals, we calculate the AvgBIO metric. This metric is the average
of three biological conservation measures: the Adjusted Rand Index (ARIcell), Normalized Mutual Information (NMIcell),
and the Average Silhouette Width based on cell types (ASWcell):

AvgBIO =
ARIcell +NMIcell +ASWcell

3
.

1. Adjusted Rand Index (ARIcell): We use ARIcell to quantify the agreement between the true biological labels and the
clusters predicted after integration. By adjusting for chance agreement, ARIcell captures how well the integration maintains
the clustering structure:

ARIcell =
Index observed − Index expected

Max index − Index expected
.

Here, the observed index measures the agreement between clustering results and the ground truth, while the expected index
accounts for random chance. We interpret ARIcell scores ranging from 0 (random labeling) to 1 (perfect agreement).

2. Normalized Mutual Information (NMIcell): To evaluate how much information is shared between the true biological
labels (Y ) and the predicted cluster labels (C), we compute NMIcell using:

NMIcell =
2 · I(Y ;C)

H(Y ) +H(C)
,

where I(Y ;C) is the mutual information, and H(Y ) and H(C) are the entropies of the true and predicted labels. This score
ranges from 0 (no alignment) to 1 (perfect alignment), and we use it to assess the consistency of clustering.

3. Average Silhouette Width (ASWcell): We calculate ASWcell to measure how well-separated clusters are based on cell
type labels. The silhouette score (ASWC) evaluates whether cells are closer to their own cluster than to other clusters. We
normalize the silhouette score using:

ASWcell =
ASWC + 1

2
.

This normalization ensures that the score ranges between 0 (poor separation) and 1 (perfect separation).

AvgBatch

To assess how well the integration removes batch effects, we calculate AvgBatch as the average of two metrics: the Average
Silhouette Width for batch labels (ASWbatch) and Graph Connectivity (GraphConn):

AvgBatch =
ASWbatch +GraphConn

2
.

1. Average Silhouette Width for Batch Labels (ASWbatch): To evaluate the extent of batch effect removal, we compute
ASWbatch. First, we calculate the silhouette score based on batch labels (ASWB), which measures how batch-specific
artifacts affect the integrated space. Then, we adjust it to reflect batch mixing:

ASWbatch = 1− |ASWB |.
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A higher ASWbatch score indicates better mixing of batches in the latent space, as cells are distributed independently of their
batch origin.

2. Graph Connectivity (GraphConn): To measure the connectivity of cells within the same biological type, we construct
a k-nearest neighbors (kNN) graph for each cell type. Then, we identify the largest connected component (LCC) within
each graph and calculate the connectivity score as:

GraphConn =
1

|C|
∑
c∈C

|LCC(GkNN
c )|

Nc
.

Here, C is the set of cell types, |LCC(GkNN
c )| is the size of the largest connected component for cell type c, and Nc is

the total number of cells in c. We use this score to evaluate whether cells of the same type remain well-connected after
integration.

In the reconstruct experiments, we use Exact Match, Levenshtein Distance, and BLEU Score to evaluate the reconstruction
ability of the GeneMamba model. We refer to the input gene token sequence as Sin and the model output sequence as Sout.
These metrics are defined as follows:

Exact Match

The Exact Match (EM) measures whether the input sequence Sin is identical to the output sequence Sout. It is defined as:

EM =

{
1, if Sin = Sout,

0, otherwise.

For a dataset with N cells, the overall Exact Match score is the average:

EMavg =
1

N

N∑
i=1

EM(Si
in, S

i
out).

Levenshtein Distance

The Levenshtein Distance (LD) quantifies the minimum number of single-character edits (insertions, deletions, or substitu-
tions) required to transform Sin into Sout. Formally:

LD(Sin, Sout) = min


LD(Sin[: i− 1], Sout[: j]) + 1, deletion,
LD(Sin[: i], Sout[: j − 1]) + 1, insertion,
LD(Sin[: i− 1], Sout[: j − 1]) + c, substitution,

where c = 0 if Sin[i] = Sout[j], otherwise c = 1.

For normalization across sequences of varying lengths, the Normalized Levenshtein Distance is computed as:

NLD = 1− LD(Sin, Sout)

max(|Sin|, |Sout|)
,

where |S| denotes the length of sequence S.

BLEU Score

The BLEU Score (Bilingual Evaluation Understudy) evaluates the similarity between Sout and Sin by comparing n-grams. It
is computed as:
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BLEU = exp

(
N∑

n=1

wn log pn

)
· BP,

where:

• pn is the precision of n-grams,

• wn is the weight for n-grams (often wn = 1
N for uniform weights),

• BP is the brevity penalty to penalize short outputs.

The brevity penalty is defined as:

BP =

{
1, if |Sout| ≥ |Sin|,
exp(1− |Sin|

|Sout| ), otherwise.

The BLEU score ranges from 0 (no similarity) to 1 (perfect match).

These metrics together provide a comprehensive assessment of the GeneMamba model’s ability to reconstruct input gene
token sequences accurately.

Baselines

To evaluate the performance of our proposed approach, we compare it with several state-of-the-art baseline methods. Below,
we briefly describe each method:

• GeneFormer (Theodoris et al., 2023): A transformer-based model specifically designed for single-cell analysis. It uses
a gene-token representation to capture complex gene-gene relationships and downstream cellular heterogeneity.

• scGPT (Cui et al., 2024a): A generative pre-trained transformer adapted for single-cell data analysis. scGPT utilizes a
pretraining-finetuning paradigm to handle various single-cell tasks, including cell-type classification and clustering.

• scFoundation (Hao et al., 2024): A foundational model for single-cell data analysis that incorporates self-supervised
learning techniques to generate robust embeddings for single-cell profiles. It excels in tasks requiring integration across
batches and datasets.

• scBERT (Yang et al., 2022): A BERT-like architecture adapted for single-cell data. scBERT leverages bidirectional con-
textual embeddings to model complex interactions between genes within cells, making it suitable for both classification
and clustering tasks.

• Harmony (Korsunsky et al., 2019): A batch-effect correction method that aligns single-cell datasets from different
conditions or experiments. This method is often used as a preprocessing step to ensure integration and compatibility
across datasets before applying downstream machine learning methods.

Finetuning Details

For the cell type annotation task, we append the [CLS] token and add a multi-layer perceptron (MLP) to further train the
model on the downstream task in a supervised manner. The train/test split is predefined by the dataset provider, so we do not
perform any additional splitting. We use the generated [CLS] token embedding as the representation of the cell.

For the multi-batch integration task, we utilize the model fine-tuned on the cell type annotation task, remove the MLP layer,
and directly extract embeddings from the GeneMamba model to conduct the experiment.
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Gene Analysis Experiment

The gene embeddings for different models are obtained as follows:

• Gene2Vec: The embeddings are generated using the Gene2Vec model, where each gene corresponds to a unique
embedding.

• scGPT: The embeddings are extracted using the provided function of scGPT, with each gene mapped to a distinct
embedding.

• scFoundation: Since the scFoundation model does not provide a direct method for obtaining gene embeddings, we
apply mean pooling to the generated context-aware embeddings of scFoundation on downstream datasets.

C. More Related Work
C.1. Discretization of Gene Expression

The transformation of gene expression levels into machine-readable tokens remains a critical aspect of single-cell modeling,
with emerging methods aiming to balance biological relevance and computational efficiency.

BinBased Strategy: Binning is the most commonly employed strategy for discretization, where continuous gene expression
values are converted into categorical tokens, allowing transformers to process the data. Two main binning strategies are
widely used:

Fixed-Size Binning: As seen in scBERT, fixed-size binning divides the range of expression values into equally sized
intervals. Genes falling within the same interval are represented identically. This method, however, often leads to significant
information loss, as most genes with low expression levels cluster within the same bin (e.g., the [0,1) bin (Boiarsky et al.,
2023)), masking subtle but biologically relevant differences.

Adaptive Binning: Adaptive binning, employed by scGPT, dynamically adjusts bin sizes such that each interval represents
an equal proportion of expressed genes within a single cell. While this approach aims to better capture the distribution of
gene expression, it still faces challenges related to information loss, particularly for genes with extreme expression values or
biological significance.

Value Projection Strategy: The value projection strategy, first introduced by TOSICA (Chen et al., 2023), has since been
adopted by scCLIP (Xiong et al., 2023), SpaFormer (Wen et al., 2023b), CellLM (Zhao et al., 2023), and CellPLM (Wen
et al., 2023a). In this approach, continuous gene expression values are directly projected into high-dimensional embeddings
through linear or non-linear transformations. This method retains the full resolution of the data, avoiding the information
loss associated with binning. However, feeding continuous values into transformer-based models diverges from traditional
tokenization approaches in NLP, potentially impacting model performance. Additionally, continuous embeddings may be
more sensitive to noise and batch effects, necessitating robust preprocessing steps.

Rank-Based Strategy: The rank-based strategy was first introduced in iSEEEK (Shen et al., 2022) for single-cell transformers.
This approach ranks gene expression values within each cell and retains only the top-ranked genes. The remaining genes
are either truncated or represented as a lower-priority group. By focusing on the top-ranked genes, this strategy reduces
sequence length, significantly improving computational efficiency. It also aligns well with the biological prioritization of
highly expressed genes in specific cell states or conditions.

C.2. Model Architectures for Single-Cell Analysis

Recent advancements in model architectures have addressed the computational challenges of transformer-based models in
single-cell RNA sequencing (scRNA-seq) analysis, with notable innovations including scTCA (Yu et al., 2024), a hybrid
Transformer-CNN architecture designed for imputation and denoising of single-cell read counts to enhance downstream
analyses; scHyena (Oh et al., 2023), a foundation model for full-length scRNA-seq analysis in brain tissues that uses a
novel transformer architecture to process data without information loss, improving tasks like cell type classification and data
imputation; xTrimoGene (Gong et al., 2024b), an efficient and scalable representation learner employing an asymmetric
encoder-decoder transformer architecture to reduce computational requirements while maintaining high accuracy in tasks
such as cell type annotation and drug combination prediction; scTransSort (Jiao et al., 2023), a transformer-based model for

18



Submission and Formatting Instructions for Under Review

intelligent cell type annotation that leverages self-attention mechanisms to extract features from scRNA-seq data, achieving
high accuracy and performance; scGraphformer (Fan et al., 2024), which employs transformer-based graph neural networks
to provide accurate and scalable cell type annotations, uncovering cellular heterogeneity and interactions in scRNA-seq
data; scGFT (Nouri, 2025), a train-free, cell-centric generative model adept at synthesizing scRNA-seq data to enhance
data augmentation and analysis; White-Box Diffusion Transformer(Cui et al., 2024b), a hybrid model combining diffusion
models and white-box transformers to generate synthetic and biologically plausible scRNA-seq data, improving training
efficiency and resource utilization; STGRNS (Xu et al., 2023), an interpretable transformer-based method for inferring gene
regulatory networks from scRNA-seq data to enhance understanding of gene interactions; scRDiT (Dong et al., 2024), a
generative approach using diffusion transformers to create virtual scRNA-seq data, facilitating the study of gene expression
dynamics; and TransformerST (Zhao et al., 2024a), an unsupervised model based on the transformer architecture for
super-resolution in spatial transcriptomics, improving spatial gene expression analysis. These models collectively advance
the field by addressing key challenges in scRNA-seq data processing and interpretation.

Traditional single-cell large language models (LLMs) are predominantly based on transformer architectures (Boiarsky
et al., 2023; White & Harris, 2024). While transformers have demonstrated exceptional performance in various single-cell
transcriptomics tasks, their high computational and memory requirements make training large models time-intensive
and resource-heavy. These limitations become particularly evident when processing the ultra-long sequences typical of
single-cell RNA-seq data. To alleviate these challenges, some transformer-based models have incorporated optimizations
to improve efficiency. For example, scBERT integrates Performer (Choromanski et al., 2020) to approximate attention
calculations, while scGPT employs Flash Attention (Dao et al., 2022) to accelerate training by reducing memory overhead.
Despite these advancements, the overall time required to train such models remains substantial, especially for datasets
with millions of cells and thousands of genes. To address the intrinsic limitations of transformers, Bidirectional Mamba
(Bi-Mamba) has been proposed as a novel alternative architecture. Bi-Mamba leverages state-space models (SSMs) to
process ultra-long sequences with linear computational complexity in both time and memory. This represents a significant
departure from traditional transformer-based methods, offering a scalable and efficient solution for the high-dimensional,
high-throughput nature of single-cell transcriptomics data.

D. Discussion of Scalability
Scalability is an essential feature for models designed to handle large-scale single-cell omics datasets. The GeneMamba
model demonstrates superior scalability and computational efficiency across various configurations, including sequence
lengths and model complexities. In this section, we discuss its scalability based on the results summarized in Tables 5 and 6.

Training Configurations and Model Complexity

Table 5 presents the training configurations for the Mamba and GeneMamba models, highlighting the relationship between
model complexity (e.g., number of layers, hidden size) and training requirements. For instance, increasing the number of
layers from 24 to 48 doubles the parameters and correspondingly increases training time two times (from 5.5 hours to 11
hours). Additionally, GeneMamba demonstrates its capability to handle longer sequence lengths (e.g., 4096 tokens) with
a linear increase in training time (from 5.5 hours to 11 hours), showcasing its scalability for more input gene tokens of
single-cell data.

Mamba Layers Hidden Size Seq Length Number of Params Training Time (hours/m)

24 512 2048 65.74M 5.5
48 512 2048 105.42M 10.5
24 768 2048 127.05M 11
48 768 2048 215.03M 22
24 512 4096 65.74M 11

Table 5. Training configurations for the GeneMamba models, demonstrating scalability across layers, hidden sizes, and sequence lengths.
The data highlights the increasing number of parameters and training time as model complexity grows, with GeneMamba showing efficient
handling of longer sequence lengths (e.g., 4096) compared to traditional Mamba setups.
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Computational Efficiency Comparison

Table 6 compares the computational efficiency of the Transformer and GeneMamba backbones. GeneMamba requires
significantly fewer FLOPs per sample and achieves faster training times across all sequence lengths. For example, at a
sequence length of 2048, GeneMamba’s training time is 0.1284 seconds/sample compared to the Transformer’s 0.2227
seconds/sample, a reduction of approximately 42%. This efficiency becomes even more pronounced at longer sequence
lengths.

Model Backbone Parameters Forward + Backward FLOPs/sample Seq Length Training Time (seconds/sample)

Transformer 130M 2.85E+12 2048 0.2227
Transformer 130M 7.18E+12 4096 0.6025
Transformer 130M 2.02E+13 8192 1.8904
GeneMamba 130M 1.58E+12 2048 0.1284
GeneMamba 130M 3.15E+12 4096 0.2393
GeneMamba 130M 6.31E+12 8192 0.4885

Table 6. Computational efficiency comparison of Transformer and GeneMamba backbones at different input sequence lengths. Gene-
Mamba significantly reduces computational cost while maintaining high efficiency.

Theoretical Computation and Demonstration

Using the 2048-sequence-length GeneMamba model as an example, the total FLOPs required for processing 2 million cells
can be calculated as:

Total FLOPs required = 1.58× 1012 × 2× 106 = 3.16× 1018 FLOPs.

Given that the A100 80GB GPU has a peak performance of 19.5 TFLOPS for single-precision (FP32) and 312 TFLOPS for
half-precision (FP16), the theoretical training time is computed as follows:

For FP32:

t =
3.16× 1018 FLOPs

19.5× 1012 FLOPs/sec
≈ 1.621× 105 seconds = 45 hours.

For FP16:

t =
3.16× 1018 FLOPs

312× 1012 FLOPs/sec
≈ 1.013× 104 seconds = 2.8 hours.

These results demonstrate the substantial efficiency improvements provided by GeneMamba, especially when leveraging
FP16 precision, which reduces training time from 45 hours to just 2.8 hours.

Conclusion on Scalability

GeneMamba’s ability to process longer sequences with lower computational cost and its effective utilization of GPU
resources make it a scalable solution for large-scale single-cell analysis. As shown in Tables 5 and 6, its scalability and
efficiency significantly outperform traditional Transformer architectures, providing a robust framework for computational
biology and related applications.

E. Extended Figures

F. Extended Tables
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Figure 8. Results of cell type annotation. Bar plot of the classification metrics across various datasets of GeneMamba.

Figure 9. Results of multi-batch integration. Benchmark of the fine-tuned GeneMamba on the Covid19 dataset for the multi-batch
integration task. The UMAP plot of learned cell embeddings is colored by cell types.

Figure 10. Results of multi-batch integration. Benchmark of the fine-tuned GeneMamba on the Perirhinal Cortex dataset for the
multi-batch integration task. The UMAP plot of learned cell embeddings is colored by cell types.
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a b

c d

Figure 11. Cell type annotation results of GeneMamba. a. Confusion matrix of dataset hPancreas. b. Confusion matrix of dataset MS.
c. Confusion matrix of dataset Myeloid. d. Confusion matrix of dataset Myeloid b.

Figure 12. Gene-gene pairs correlation analysis. The Euclidean Distance, KL Divergence, and JS Divergence across three embedding
methods (Gene2Vec, GeneMamba, and Random). A lower value indicates higher similarity. The embeddings generated by GeneMamba
are more similar to Gene2Vec embeddings compared to randomly generated embeddings.
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Table 7. Gene Rank Reconstruction Performance comparison of GeneMamba, GeneFormer, and GeneMamba S models across datasets.
Datasets Models L-Dist BLEU Spearman

PBMC12k
GeneMamba U 430 0.532 0.469

GeneFormer 23 0.968 0.703
GeneMamba 6 0.987 0.711

Pancreas
GeneMamba U 370 0.524 0.461

GeneFormer 25 0.956 0.763
GeneMamba 12 0.991 0.792

Zheng68k
GeneMamba U 432 0.581 0.503

GeneFormer 25 0.937 0.901
GeneMamba 11 0.996 0.980

Immune
GeneMamba U 468 0.659 0.442

GeneFormer 17 0.962 0.823
GeneMamba 12 0.998 0.844
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