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I. INTRODUCTION

The Caudrey–Dodd–Gibbon–Sawada–Kotera (CDG–SK) equation is a nonlinear fifth-

order evolution equation written as

ut ` uxxxxx ` 15puuxx ` u3qx “ 0, (I.1)

which is a member of the KdV-type integrable hierarchy? . It was discovered in the 1970s

as one of the analogs of the Korteweg–de Vries (KdV) equation that exhibits complete

integrability? . Sawada and Kotera introduced a “KdV-like” fifth-order equation and con-

structed N -soliton solutions? , while Caudrey, Dodd, and Gibbon derived the CDG equation

within a new integrable KdV hierarchy? . These equations are related via Miura-type trans-

formations and share integrability properties like Lax pairs, conservation laws, and soliton

solutions. Integrability was further confirmed by Bäcklund transformations? and Painlevé

analysis? .

A. Integrability

The CDG–SK equation admits Lax pair formulations. Kaup introduced a third-order

spectral problem to derive the SK/CDG equation as part of the inverse scattering framework? .

Caudrey et al.? and Dodd and Gibbon? provided a 2 ˆ 2 matrix Lax pair and analyzed

the equation’s prolongation structure. Fuchssteiner & Oevel proposed the bi-Hamiltonian

formalism and conserved covariants? , and Aiyer et al.? constructed the recursion operator.

Konno studied the conservation laws? , and Lou studied a larger family of symmetries? .

B. Solitons

Sawada and Kotera constructed explicit soliton solutions via Hirota’s method? , with

further contributions from Satsuma and Kaup using Bäcklund transformations? . Wazwaz?

and Alam et al.? applied symbolic computation methods. Soliton interactions remain elastic

and consistent with integrability. Ma et al.? reported transitions to breather and soliton

molecule structures through the Hirota bilinear method.
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C. Periodic wave solutions

Periodic (cnoidal) wave solutions were derived using elliptic functions and finite-gap meth-

ods. Tian & Zhang? gave Riemann theta function solutions, while Ramı́rez et al. obtained

closed-form periodic solutions through symbolic computations? . Jun & Ji obtained the

elliptic solutions via linear superposition approach? . These results confirm the existence

of closed-form periodic solutions, which can be interpreted as a continuous family bridging

solitons and linear waves.

D. Well-posedness

Kaup outlined the inverse scattering transform (IST) solution of the CDG–SK equation? .

Smooth decaying initial data leads to global well-posedness due to integrability. Dye and

Parker? studied bidirectional variants of the equation. While detailed modern Sobolev-

space well-posedness results are limited, energy methods and integrability suggest local and

global existence for smooth data.

E. Stability results for fifth-order models.

The stability and instability of periodic, solitary, and compacton solutions are inves-

tigated for dispersive fifth-order water wave models within the KdV family. Particular

emphasis is placed on the rigorous analysis of solitary wave stability across various members

of this fifth-order KdV family. Notably, a numerical framework is employed to examine the

stability and instability of solitary waves in the fifth-order KdV equation? . Orbital stabil-

ity methods for Hamiltonian systems are used to analyze a fifth-order evolutionary model

proposed by Il’ichev, and Semenov? , while Tan et al.? explore the stability of embedded

solitons in the Hamiltonian fifth-order KdV equation. Esfahani and Levandosky? investi-

gate the stability of a fifth-order model using a variational approach. Additionally, Natali?

studies the nonlinear stability of both the Kawahara–KdV and modified Kawahara–KdV

equations. The stability of compactons is studied by Dey & Khare for dispersive Kpm,n, pq
type equations? .

One of the classical higher-dispersion analogs of the KdV equation, the fifth-order dis-

persive model known as the Kawahara equation, serves as a prototype for rigorous studies
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on linear (spectral), nonlinear, modulational, high-frequency, orbital, numerical, and ana-

lytical stability and instability of periodic, solitary, and transient waves of small or arbitrary

amplitude. For instance, the Evans function approach was employed by Bridges & Derks to

analyze the linear stability of solitary waves in the Kawahara model? ; Haragus et al. studied

the spectral stability of spatially periodic waves? ; and the orbital stability of solitary waves

was investigated by Kabakouala & Molinet? . Andrade et al. examined the orbital stability

of periodic traveling waves? , while high-frequency instabilities were explored via pertur-

bative methods in? ? . The nonlinear stability and instability of Kawahara-type fifth-order

models were rigorously studied by Quintero & Muñoz? . Recently, Creedon demonstrated

that the Kawahara model admits exotic Wilton ripples? .

Deconinck and Kapitula? ? proved the orbital stability of KdV’s periodic waves, mo-

tivating similar expectations for CDG–SK. Though no explicit stability analysis exists for

periodic CDG–SK waves, spectral stability of solitons has been rigorously demonstrated by

Wang? . The integrable structure and conservation laws suggest spectral and orbital sta-

bility for periodic traveling waves, although further investigation is needed. Motivated by

the existence of exotic waves and stability and instability phenomena in fifth-order models

and their hidden integrability structures, this article establishes the existence of periodic

traveling wave solutions of (I.1), derives their small-amplitude asymptotics and investigates

their spectral stability.

The structure of the article is as follows. In the next section, we discuss the existence of

periodic traveling waves, followed by the proof of the main theorem. Additional details and

proofs are provided in the Appendix. We state main theorems of this article below.

Theorem I.1 (Existence of small periodic traveling waves). Fix a wavenumber k ą 0. There

exists ε0 ą 0 such that for each 0 ă |a| ă ε0, there is a 2π{k-periodic traveling wave solution

of (I.1) of small amplitude a. Specifically, there exists a 2π-periodic function wpzq and a

speed c of the form

wpzq “ aw1pzq ` a2w2pzq ` a3w3pzq ` Opa4q, c “ c0 ` c2 a
2 ` Opa4q,

with c0 “ k4, and constants c2 P R, such that upx, tq “ wpkpx´ ctqq is a solution of (I.1). In

particular, one can choose the expansion so that wpzq is an even 2π-periodic function with

zero mean. The leading profile and speed coefficients are

w1pzq “ cospzq, w2pzq “ ´ 15

2k2
` 1

2k2
cosp2zq, w3pzq “ 3

16k4
cosp3zq,
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c0 “ k4, c2 “ 105 .

Consequently, as a Ñ 0, wpzq converges (in C8) to 0 and c converges to k4. Furthermore, the

map a ÞÑ pwp¨; aq, cpaqq can be chosen to be smooth (in fact, real-analytic) for |a| sufficiently

small.

Theorem I.2 (Spectral stability). For sufficiently small |a|, periodic traveling waves

upx, tq “ wpkpx ´ ctqq of (I.1) given in Theorem I.1 are spectrally stable with respect

to localized (L2pRq) or co-periodic perturbations (L2pTq).

Notations

Through out the article, we have used the following notations. Here, L2pRq is the set of

Lebesgue measurable, real or complex-valued functions over R such that

}f}L2pRq “
ˆż

R

|fpxq|2dx
˙1{2

ă `8,

and, L2pTq denote the space of 2π-periodic, measurable, real or complex-valued functions

over R such that

}f}L2pTq “
ˆ

1

2π

ż 2π

0

|fpxq|2dx
˙1{2

ă `8.

For s P R, let HspRq consists of tempered distributions such that

}f}HspRq “
ˆż

R

`
1 ` |t|2

˘s |f̂ptq|2dt
˙ 1

2

ă `8,

and

HspTq “ tf P HspRq : f is 2π-periodic u .

We define L2pTq-inner product as

xf, gy “ 1

π

ż 2π

0

fpzqḡpzqdz “
ÿ

nPZ
f̂nĝn, (I.2)

where pfn are Fourier coefficients of the function f defined by

pfn “ 1

2π

ż 2π

0

fpzqeinzdz.

Throughout the article, ℜpµq represents the real part of µ P C.

5



II. PROOF OF THEOREM I.1

We look for a periodic traveling wave solution of (I.1) and therefore, set upx, tq “ wpzq,
where w is a 2π-periodic function of its argument, and z “ kpx ´ ctq with c ą 0 being the

speed of the traveling wave. We obtain a fifth order ODE in w given by

´c k w1 ` k5 wp5q ` 15 k3wwp3q ` 15 k3w1 w2 ` 45 k w2w1 “ 0, (II.1)

where wpnq denotes the n-th derivative with respect to z. We integrate it once with respect

to z and assume the integration constant is zero (this corresponds to selecting the mean of

w appropriately for periodic solutions). This yields a fourth-order ODE

k4wp4q ´ c w ` 15 k2ww2 ` 15w3 “ 0, (II.2)

which wpzq must satisfy for a 2π-periodic traveling wave.

Linearization and kernel decomposition

We first analyze the linearization

Lch :“ k4pB4
z ´ cqh “ 0. (II.3)

of (II.2) at the trivial solution w “ 0. We seek 2π-periodic solutions to (II.3). Using the trial

solution hpzq “ eimz (with integer m), we obtain the dispersion relation ´pcq ` pmkq4 “ 0,

i.e. c “ pmkq4. The smallest positive m giving a nontrivial solution is m “ 1. Thus the

critical (smallest) phase speed for which (II.3) admits a nontrivial periodic solution is

c0 “ p1 ¨ kq4 “ k4.

At c “ c0, the linear operator Lc0 has a nontrivial kernel spanned by cospzq and sinpzq.
(Equivalently, e˘iz are neutral eigenmodes.) No other harmonics resonate at this parameter

value since for |m| ‰ 1, pmkq4 ´ k4 ‰ 0. We also note that for c “ c0, the constant

(zero-frequency) mode is not in the kernel because Lc01 “ ´k4 ‰ 0.

The two-dimensional kernel at c “ c0 reflects two symmetries of the problem: a phase

translation symmetry (shifting z) and a spatial reflection symmetry (z ÞÑ ´z). The trans-

lation symmetry implies that if wpzq is a solution, then so is wpz ` ∆q for any constant ∆,
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which leads to the sinpzq mode (since sinpzq is the derivative of cospzq up to scaling). The

reflection (even/odd) symmetry implies we can choose solutions that are either even or odd.

We will select the solution to be even in z for definiteness. This breaks the translational

degeneracy by fixing the phase so that w1pzq has zero mean and is π-antiperiodic, eliminating

the sinpzq component. In practice, we impose that wpzq is an even function, which means

we take w1pzq “ cospzq as the normalized fundamental mode.

Now we formulate the problem as a bifurcation equation. We treat c as an unknown

parameter that must be adjusted to find nontrivial w. For a fixed k ą 0, we write (II.2) as

F pw, cq “ 0 for the function

F pw, cq :“ k4wp4q ´ c w ` 15 k2ww2 ` 15w3 ,

defined on the space H4
evenpTq ˆ R` where H4

evenpTq is the subspace of H4pTq consisting of

even functions. We seek a solution pw, cq near p0, c0q. The linearized operator at p0, c0q is

DwF p0, c0qh “ Lc0h “ k4 hp4q ´ c0 h. As discussed, kerpLc0q “ spantcospzqu in H4
evenpTq. We

decompose the function space as

H4
evenpTq “ kerpLc0q ‘ RangepLc0q,

i.e. any 2π-periodic even function wpzq can be uniquely written as

wpzq “ a cospzq ` hpzq,

with a P R and h P RangepL0q such that xh, cospzqyL2 “ 0. Here a will serve as our small

amplitude parameter. We also define the projection P onto kerLc0 along RangepLc0q by

P rws “
´ 1

π

ż 2π

0

wpzq cospzq dz
¯
wpzq,

and Q “ I´P as the complementary projection onto RangepLc0q. In particular, P rcospzqs “
cospzq and Qrcospzqs “ 0.

Applying these projections to the equation F pw, cq “ 0 yields two equations:

P rF pa cospzq ` h, cqs “ 0, (II.4)

QrF pa cospzq ` h, cqs “ 0. (II.5)

Equation (II.4) is the bifurcation equation (the solvability condition) in the one-dimensional

kernel, and (II.5) is an equation in the range which can be solved for h given a and c. We

will solve (II.5) by the implicit function theorem for h “ hpa, cq, and then solve (II.4) for a

and c.
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Solving the range equation

For pw, cq near p0, c0q, the linear operator Lc0 is invertible on RangepLc0q (since Lc0h “ 0

implies h P kerLc0 which is orthogonal to the range). Moreover, by standard Fourier series

theory, this inverse is bounded on the space of 2π-periodic functions (excluding the kernel).

Thus we can solve the Q-equation (II.5) for h as a smooth function of pa, cq near p0, c0q.
In fact, by the implicit function theorem in Banach spaces, there exists a smooth mapping

h “ Hpa, cq with Hp0, c0q “ 0 and ∇a,cHp0, c0q “ 0, such that for all sufficiently small a and

c,

QrF pa cospzq ` Hpa, cq, cqs “ 0.

Substituting h “ Hpa, cq back into (II.4), we obtain a scalar equation in the unknowns a

and c:

P rF
`
a cospzq ` Hpa, cq, c

˘
s “ 0. (II.6)

This is the bifurcation equation (or reduced equation) governing the small solutions. It can

be expanded in powers of a (which is small) to determine nontrivial solutions perturbatively.

Any solution pa, cq of (II.6) with a ‰ 0 yields a solution w “ a cospzq ` Hpa, cq of the full

problem.

Asymptotic expansion

To solve (II.6), we expand Hpa, cq and c as power series in the small parameter a. We

write

c “ c0 ` c1a ` c2a
2 ` c3a

3 ` Opa4q,

and similarly expand the correction Hpa, cq “ h1a`h2a
2 `h3a

3 `Opa4q, where each hjpzq is
a 2π-periodic even function orthogonal to cospzq. We substitute these expansions into (II.6)

and collect terms by powers of a. Each order will yield an equation that can be solved for

the unknown coefficients cj and hj.

At Opa1q, The a-linear terms in (II.6) give

P
“

´ k4 cospzq ´ k4h1 ` k4pcospzq ` h
p4q
1 q

‰
“ 0,

which leads to P
“
h1 ´ h

p4q
1

‰
“ 0. We take h1 “ 0 as one of the solutions of this equations.
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At Opa2q, The a2-terms in (II.6) yield

P
”

´ k4ph2 ´ h
p4q
2 q ´ c1 cospzq ´ 15k2 cos2pzq

ı
“ 0.

We set ´k4ph2 ´ h
p4q
2 q ´ c1 cospzq ´ 15k2 cos2pzq “ 0 to find that c1 “ 0 and k2php4q

2 ´ h2q “
15 cos2pzq which yields

h2pzq “ ´ 15

2k2
` 1

2k2
cosp2zq .

At Opa3q, The a3 terms in (II.6) produce

P
”
k4php4q

3 ´ h3q ´ c2 cospzq ` 15k2php2q
2 ´ h2q cospzq ` 15 cos3pzq

ı
“ 0.

We set coefficient of cospzq equal to zero to obtain

c2 “ 105

and cosp3zq equal to zero to obtain

h3pzq “ 3

16k4
cosp3zq.

We have thus determined all unknowns up to third order.

Higher-order terms and smoothness

The process described above can be continued to higher orders Opa4q, Opa5q, etc., in
principle yielding all coefficients tcj , wjpzqu recursively. In practice, the algebra grows in-

creasingly complicated. However, one can make several general observations. First, all

odd-order terms c2n`1 will turn out to vanish (c1 “ 0, and one can show similarly c3 “ 0 by

examining the Opa4q equations, due to symmetry and the structure of resonances). Thus

cpaq is an even function of a, consistent with the reversibility (reflection symmetry) of the

ODE (II.2). Second, at each order n ě 2, the solvability condition (projection onto cospzq)
will determine cn in terms of lower-order quantities, ensuring a unique power series solution

for c. This means the small-amplitude branch of solutions is uniquely determined (up to the

overall phase choice) by the amplitude parameter a. Finally, from (II.2), we see that

k4wp4q “ cw ´ 15pk2ww2 ` w3q

and therefore, since w P H4pTq, wp4q P H2pTq and in turn, w P H6pTq. By a bootstrapping

argument, we obtain that w is smooth. (For a detailed general proof of existence using

Lyapunov–Schmidt reduction and analytic implicit function theorem, see? .)
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III. PROOF OF THEOREM I.2

In this section, we study the spectral stability of periodic traveling waves of (I.1) obtained

in Thoreem I.1 and provide a proof of Theorem I.2. We seek a perturbed solution upx, tq “
wpzq ` vpz, tq, z “ kpx ´ ctq of (I.1) where vpz, tq is a small perturbation and arrive at the

linearized equation

vt ´ ckvz ` k5vzzzzz ` 15kpk2pwvzz ` vwzzq ` 3w2vqz “ 0. (III.1)

We seek a solution of the form vpz, tq “ ekλtṽpzq, λ P C, to obtain

Taṽ :“ λṽ, (III.2)

where

Ta :“ Bz

`
c ´ k4B4

z ´ 15
`
k2

`
wB2

z ` wzz

˘
` 3w2

˘˘
. (III.3)

The operator Ta is defined on L2pRq with dense domain H5pRq. We define the spectral

stability of the periodic traveling wave solution w as follows:

Definition III.1. The solution upx, tq “ wpzq, z “ kpx´ctq of (I.1) obtained in Theorem I.1

is spectrally stable if L2pRq-spectrum of Ta consists of λ P C with ℜpλq ď 0, otherwise, it is

deemed to be spectrally unstable.

Since Ta is a real operator, if λ is an eigenvalue with eigenfunction ṽpzq, then λ is also an

eigenvalue with eigenfunction ṽpzq. The operator Ta is reversible under the transformation

z Ñ ´z. Specifically, if ṽpzq is an eigenfunction with eigenvalue λ, then ṽp´zq is also an

eigenfunction with eigenvalue ´λ. Combining, if λ is in the spectrum of Ta then so are ´λ, λ,

and ´λ. Therefore, the spectrum is symmetric with respect to both real and imaginary axes.

Following Definition III.1, the solution is unstable if there is any λ in spectrum off imaginary

axis.

The operator Ta has periodic coefficients and therefore, can’t have decaying eigenfunctions

in L2pRq. Hence, Ta has continuous spectrum in L2pRq. Using Bloch Transform, for every

ṽ P L2pRq there exists a unique family, vξ P L2pTq, ξ P p´1{2, 1{2s (called Floquet exponent),

such that

ṽpzq “
ż 1{2

´1{2
vξpzqeiξz dξ.
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Using this, we obtain that

specL2pRqpTaq “
ď

ξPp´1{2,1{2s
specL2pTqpTa,ξq,

where

Ta,ξ :“ e´iξz
Tae

iξz (III.4)

is defined on L2pTq and L2pTq-spectrum of Tξ comprises of discrete eigenvalues of finite

multiplicities.

A straightforward calculation shows that for trivial solution (w ” 0), we have

T0,ξ “ k4pBz ` iξqp1 ´ pBz ` iξq4q (III.5)

and its eigenvalues are given by

T0,ξe
inz “ iωn,ξe

inz, n P Z, (III.6)

where

ωn,ξ “ k4pn ` ξqp1 ´ pn ` ξq4q. (III.7)

We have σpA0,ξq Ă iR which should be the case since a “ 0 corresponds to the zero solution.

Notice that

||Ta,ξ ´ T0,ξ||L2pTqÑL2pTq Ñ 0 as |a| Ñ 0

and therefore, for |a| ! 1, eigenvalues of Ta,ξ continuously bifurcate from that T0,ξ. Observe

that because of quad-fold symmetry of the spectrum, eigenvalues iωn,ξ of T0,ξ leave imaginary

axis for small |a| only when they collide on imaginary axis for some ξ.

To observe the collision among eigenvalues iωn,ξ, let y “ n ` ξ. Since n is an integer and

ξ P
`
´1

2
, 1
2

‰
, the value of y lies in the interval

y P
ˆ
n ´ 1

2
, n ` 1

2


.

The equation becomes:

ωn,ξ “ k4y
`
1 ´ y4

˘
.

If ξ “ 0, then x “ n, and the equation simplifies to

ωn,0 “ k4n
`
1 ´ n4

˘
.
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For ωn,0 “ ωm,0, we require,

n
`
1 ´ n4

˘
“ m

`
1 ´ m4

˘
.

The only solutions are n “ m or n “ 1,´1, 0. For example,

• If n “ 1, then ω1,0 “ k4 ¨ 1 ¨ p1 ´ 14q “ 0.

• If n “ ´1, then ω´1,0 “ k4 ¨ p´1q ¨ p1 ´ p´1q4q “ 0.

• If n “ 0, then ω0,0 “ k4 ¨ 0 ¨ p1 ´ 04q “ 0.

Thus,

ω1,0 “ ω´1,0 “ ω0,0 “ 0. (III.8)

If ξ ‰ 0, then y “ n ` ξ is not an integer. For ωn,ξ “ ωm,ξ, we require

pn ` ξq
`
1 ´ pn ` ξq4

˘
“ pm ` ξq

`
1 ´ pm ` ξq4

˘
.

This is a nonlinear equation in ξ, and for ξ P
`
´1

2
, 1
2

‰
, it has no solutions unless n “ m. This

is because the function fpyq “ yp1´ y4q is strictly monotonic in the intervals
`
n ´ 1

2
, n ` 1

2

˘

for n ‰ 0, 1,´1, ensuring distinct values of ωn,ξ for distinct n. Therefore, there is only one

collision of eigenvalues on the origin. give in (III.8), which we will analyze for stability in

what follows.

Clearly λ “ 0 is an isolated eigenvalue of T0,0 with algebraic and geometric multiplicity

three and

ker pT0,0q “ span

"
cospzq, sinpzq, 1?

2

*
. (III.9)

Lemma III.2. For any a and ξ sufficiently small, the following properties hold

1. The spectrum of Ta,ξ decomposes as

specpTa,ξq “ spec0pTa,ξq Y spec1pTa,ξq

with

spec0pTa,ξq Ă Bp0;R{3q, spec1pTa,ξq Ă CzBp0;R{2q,

where R “ 5k4.
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2. The spectral projection Pa,ξ associated with spec0pTa,ξq

Pa,ξ “ 1

2πi

ż

BBp0;R{3q
pλ ´ Ta,ξq´1dλ (III.10)

satisfies }Pa,ξ ´ P0,0} “ Op|ξ| ` |a|q. The operators Pa,ξ are well defined projectors

commuting with Ta,ξ, that is,

P
2
a,ξ “ Pa,ξ, Pa,ξTa,ξ “ Ta,ξPa,ξ. (III.11)

3. spec1pTa,ξq Ă iR

4. The projectors Pa,ξ are similar one to each other: the transformation operators

Ua,ξ :“ pI ´ pPa,ξ ´ P0,0q2q´1{2rPa,ξP0,0 ` pI ´ Pa,ξqpI ´ P0,0qs (III.12)

are bounded and invertible in HspTq and in L2pTq, with inverse

U
´1
a,ξ “ rP0,0Pa,ξ ` pI ´ P0,0qpI ´ Pa,ξqspI ´ pPa,ξ ´ P0,0q2q´1{2, (III.13)

and

Ua,ξP0,0U
´1
a,ξ “ Pa,ξ, U

´1
a,ξPa,ξUa,ξ “ P0,0. (III.14)

5. The subspaces Va,ξ “ RangepPa,ξq are isomorphic one to each other, Va,ξ “ Ua,ξV0,0.

In particular, for any a and ξ sufficiently small, dimVa,ξ “ dimV0,0 “ 3.

Proof. See the proof of Lemma 3.1 in? in a similar situation.

Lemma III.2 shows that the operator Ua,ξ is an isomorphism between V0,0 and Va,ξ. Con-

sider the decomposition of the spectrum of Ta,ξ in Lemma III.2. The eigenvalues in spec0pTa,ξq
are the eigenvalues of the restriction of Ta,ξ to the three-dimensional subspace Va,ξ. We de-

termine the location of these eigenvalues by computing successively a basis of Va,ξ, the 3ˆ 3

matrix representing the action of Ta,ξ on this basis, and the eigenvalues of this matrix. Note

that for a “ 0, V0,ξ is spanned by tcos z, sin z, 1{
?
2u. We use the transformation operators

Ua,ξ derived in Lemma III.2 to construct a basis for Va,ξ. We give expansions in the following

lemma and provide the proof in Appendix A.
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Lemma III.3. For a and ξ sufficiently small, expansion of a basis for Va,ξ is

φ1pzq “ cospzq ` 1

k2
cosp2zqa ´ 1

k2
sinp2zqiaξ ` 1

16k4
p9 cosp3zq ´ 20 cospzqqa2

` Oppa ` ξq3q,

φ2pzq “ sinpzq ` 1

k2
sinp2zqa ` 1

k2
cosp2zqiaξ ` 1

16k4
p9 sinp3zq ´ 20 sinpzqqa2

` Oppa ` ξq3q,

φ3pzq “ 1?
2

` Oppa ` ξq3q.

To proceed, we expand the operator Ta,ξ by substituting the expansion of cpaq and w

obtained in Theorem I.1, we obtain

Ta,ξ “ T0,ξ ` aT1 ` a2T2 ` Opa3q, (III.15)

where T0,ξ is in (III.5) and

T1 “ ´15k2pBz ` iξq cospzq
`
pBz ` iξq2 ´ 1

˘
, (III.16a)

T2 “ 15

2
pBz ` iξq

`
11 ` 15pBz ` iξq2 ´ cosp2zq

`
pBz ` iξq2 ´ 1

˘˘
. (III.16b)

In what follows, we present the action of T0,ξ, T1, and T2 on cospnzq and sinpnzq for

n “ 1, 2, 3. We start with T0,ξ and calculate that

T0,ξpcospzqq “ k4
`
´4iξ cospzq ´ 10iξ3 cospzq ´ iξ5 cospzq ` 10ξ2 sinpzq ` 5ξ4 sinpzq

˘
,

T0,ξpsinpzqq “ k4
`
´10ξ2 cospzq ´ 5ξ4 cospzq ´ 4iξ sinpzq ´ 10iξ3 sinpzq ´ iξ5 sinpzq

˘
,

T0,ξpcosp2zqq “ k4
`
´79iξ cosp2zq ´ 40iξ3 cosp2zq ´ iξ5 cosp2zq ` 30 sinp2zq ` 80ξ2 sinp2zq

`10ξ4 sinp2zq
˘
,

T0,ξpsinp2zqq “ k4
`
´30 cosp2zq ´ 80ξ2 cosp2zq ´ 10ξ4 cosp2zq ´ 79iξ sinp2zq ´ 40iξ3 sinp2zq

´iξ5 sinp2zq
˘
,

T0,ξpcosp3zqq “ k4
`
´404iξ cosp3zq ´ 90iξ3 cosp3zq ´ iξ5 cosp3zq ` 240 sinp3zq

`270ξ2 sinp3zq ` 15ξ4 sinp3zq
˘
,

T0,ξpsinp3zqq “ k4
`
´240 cosp3zq ´ 270ξ2 cosp3zq ´ 15ξ4 cosp3zq ´ 404iξ sinp3zq

´90iξ3 sinp3zq ´ iξ5 sinp3zq
˘
.
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The action of T1 on cospnzq and sinpnzq for n “ 1, 2 is

T1pcospzqq “ ´30k2 sinp2zq ` ξp30ik2 ` 60ik2 cosp2zqq ` ξ2p´45k2 sinp2zqq

` ξ3p15ik2 ` 15ik2 cosp2zqq,

T1psinpzqq “ 30k2 cosp2zq ` ξp60ik2 sinp2zqq ` ξ2p30k2 ` 45k2 cosp2zqq ` ξ3p15ik2 sinp2zqq,

T1pcosp2zqq “ 75

2
k2 sinpzq ` 225

2
k2 sinp3zq ` ξ

`
105ik2 cospzq ` 165ik2 cosp3zq

˘

` ξ2
ˆ

´135

2
k2 sinpzq ´ 165

2
k2 sinp3zq

˙
` ξ3

`
15ik2 cospzq ` 15ik2 cosp3zq

˘
,

T1psinp2zqq “ 75

2
k2 cospzq ` 225

2
k2 cosp3zq ` ξ

`
105ik2 sinpzq ` 165ik2 sinp3zq

˘

` ξ2
ˆ
135

2
k2 cospzq ` 165

2
k2 cosp3zq

˙
` ξ3

`
15ik2 sinpzq ` 15ik2 sinp3zq

˘
.

Finally, we calculate the action of the T2 on cospzq and sinpzq as

T2pcospzqq “ 45

2
sinpzq ´ 45

2
sinp3zq ` ξ p´255i cospzq ` 30i cosp3zqq

` ξ2
ˆ
1365

4
sinpzq ´ 75

4
sinp3zq

˙
` ξ3

ˆ
´435

4
i cospzq ` 15

4
i cosp3zq

˙
,

T2psinpzqq “ ´75

2
cospzq ` 45

2
cosp3zq ` ξ p´255i sinpzq ` 30i sinp3zqq

` ξ2
ˆ

´1335

4
cospzq ` 75

4
cosp3zq

˙
` ξ3

ˆ
´465

4
i sinpzq ` 15

4
i sinp3zq

˙
.

In what follows, we calculate the action of Ta,ξ to eigenfunctions φipzq, i “ 1, 2, 3 in

Lemma III.3 up to second order in a and ξ to obtain

Ta,ξpφ1pzqq “ ´4ik4 cospzqξ ` 10k4 sinpzqξ2 ` ik2p15 ` 4 cosp2zqqaξ

` p´15 sinpzq ` 315 sinp3zqqa2 ` Oppa ` ξq3q,

Ta,ξpφ2pzqq “ ´4ik4 sinpzqξ ´ 10k4 cospzqξ2 ` 4ik2 sinp2zqaξ

´ 315 cosp3zqa2 ` Oppa ` ξq3q,

Ta,ξpφ3qpzq “ 1?
2

`
ik4ξ ´ 15k2 sinpzqa ` 15ik2 cospzqaξ ´ 15 sinp2zqa2

˘

` Oppa ` ξq3q.

Next, we compute a 3 ˆ 3 matrix

Ba,ξ “ pxTa,ξpφiqpzq, φjpzqyq
i,j“1,2,3

15



which captures the action of Ta,ξ on the eigenspace Va,ξ, where inner product is given by

(I.2). A straightforward calculation reveals that

Ba,ξ “

¨
˚̊
˚̋

´4ik4ξ ´15a2 ` 10k4ξ2 15i
?
2k2aξ

´10k4ξ2 ´4ik4ξ 0

15i
?
2k2aξ
2

´15
?
2k2a

2
ik4ξ

˛
‹‹‹‚` Oppa ` ξq3q

The characteristic polynomial of Ba,ξ in λ is

Ppλ; a, ξ, kq :“ ´ λ3 ´ 7ik4ξ λ2 ´
`
75a2k4ξ2 ´ 8k8ξ2 ` 100k8ξ4

˘
λ

`
`
1200ia2k8ξ3 ´ 16ik12ξ3 ` 100ik12ξ5

˘
.

Setting λ “ iµ, Ppλ; a, ξ, kq “ iQpµ; a, ξ, kq where

Qpµ; a, ξ, kq :“µ3 ` 7k4ξ µ2 `
`
´75a2k4ξ2 ` 8k8ξ2 ´ 100k8ξ4

˘
µ

`
`
1200a2k8ξ3 ´ 16k12ξ3 ` 100k12ξ5

˘

The discriminant of Qpµ; a, ξ, kq is

∆ “ 15625 k12ξ6
´
108 a6 ´ 3231 a4k4 ` 48 a2k8 ` 432 a4k4ξ2 ´ 1488 a2k8ξ2

` 16 k12ξ2 ` 576 a2k8ξ4 ´ 128 k12ξ4 ` 256 k12ξ6
¯

For small |a| and |ξ|, the sign of ∆ will be determined by the leading term k4ξ2 ` 3a2,

which is always positive. Therefore, for sufficiently small |a| and |ξ|, all roots of Qpµ; a, ξ, kq
are real and hence, all roots of characteristic polynomial, Ppλ; a, ξ, kq, are purely imaginary.

This completes the proof of Theorem I.2.

Appendix A: Proof of Lemma III.3

We expand Ua,ξ in (III.12) in a and ξ, and evaluate it on cospzq, sinpzq, and 1?
2
to obtain

φi, i “ 1, 2, 3 in Lemma III.3. By applying the Neumann series to pI ´ pPa,ξ ´ P0,0q2q´1{2,

(III.12) can be expressed as

Ua,ξP0,0 “ Pa,ξP0,0 ` 1

2
pPa,ξ ´ P0,0q2Pa,ξP0,0 ` OpPa,ξ ´ P0,0q4

Using this, it follows that

U0,0P0,0 “ P0,0, U
1
0,0P0,0 “ P

1
0,0P0,0, 9U0,0P0,0 “ 9P0,0P0,0,
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U
2
0,0P0,0 “ P

2
0,0P0,0, :U0,0P0,0 “ :P0,0P0,0, 9U

1
0,0P0,0 “ 9P

1
0,0P0,0 ´ 1

2
P0,0

9P
1
0,0P0,0,

where 1 and ¨ are derivatives with respect to a and ξ respectively. From (III.10), we obtain

that

P
1
0,0 “ 1

2πi

¿

Γ

pT0,0 ´ λq´1
T

1
0,0pT0,0 ´ λq´1dλ,

9P0,0 “ 1

2πi

¿

Γ

pT0,0 ´ λq´1 9T0,0pT0,0 ´ λq´1dλ,

9P 1
0,0 “ ´ 1

2πi

¿

Γ

pT0,0 ´ λq´1 9T0,0pT0,0 ´ λq´1
T

1
0,0pT0,0 ´ λq´1dλ

´ 1

2πi

¿

Γ

pT0,0 ´ λq´1
T

1
0,0pT0,0 ´ λq´1 9T0,0pT0,0 ´ λq´1dλ

` 1

2πi

¿

Γ

pT0,0 ´ λq´1 9T
1
0,0pT0,0 ´ λq´1dλ,

P
2
0,0 “ ´ 1

πi

¿

Γ

pT0,0 ´ λq´1
T

1
0,0pT0,0 ´ λq´1

T
1
0,0pT0,0 ´ λq´1dλ

` 1

2πi

¿

Γ

pT0,0 ´ λq´1
T

2
0,0pT0,0 ´ λq´1dλ.

and

:P0,0 “ ´ 1

πi

¿

Γ

pT0,0 ´ λq´1 9T0,0pT0,0 ´ λq´1 9T0,0pT0,0 ´ λq´1dλ

` 1

2πi

¿

Γ

pT0,0 ´ λq´1 :T0,0pT0,0 ´ λq´1dλ.

where Γ :“ BBp0;R{3q as given in Lemma III.2. Moreover, derivatives of Ta,ξ appearing in

the above integrals can be calculated from expression of Ta,ξ in (III.3)-(III.4) using expansions

of w and c from Theorem I.1 as

T
1
0,0 “ ´15k2BzpcospzqqpB2

z ´ 1q,
9T0,0 “ ik4p1 ´ 5B4

zq,
9T

1
0,0 “ ´i15k2p3 cospzqB2

z ´ 2 sinpzqBz ´ cospzqq,

T
2
0,0 “ 15

2
Bzp11 ` 15B2

z ´ cosp2zqpB2
z ´ 1qq,

:T0,0 “ 10k4B3
z .
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From (III.6), we observe that the operator T0,0 acts on einz as

T0,0e
inz “ iωn,0e

inz.

Using this, we can compute the action of T0,0 on cospnzq and sinpnzq as

T0,0pcospnzqq “ ´ωn,0 sinpnzq,

T0,0psinpnzqq “ ωn,0 cospnzq.

Next, we examine the action of the inverse operator pT0,0 ´λq´1 on cospnzq and sinpnzq. Let
us express the action on cospnzq and sinpnzq as follows

pT0,0 ´ λq´1 cospnzq “ A cospnzq ` B sinpnzq,

pT0,0 ´ λqpA cospnzq ` B sinpnzqq “ cospnzq.

This leads to the following system of equations

Aωn,0 ` Bλ “ 0,

´Aλ ` Bωn,0 “ 1.

Solving this system yields the values for A and B

A “ ´ λ

ω2
n,0 ` λ2

, B “ ωn,0

ω2
n,0 ` λ2

.

Thus, the action of the operator pT0,0 ´ λq´1 can be expressed as

pT0,0 ´ λq´1 cospnzq “ ´ λ

ω2
n,0 ` λ2

cospnzq ` ωn,0

ω2
n,0 ` λ2

sinpnzq,

pT0,0 ´ λq´1 sinpnzq “ ω´n,0

ω2
n,0 ` λ2

cospnzq ´ λ

ω2
n,0 ` λ2

sinpnzq.
(A.1)

Now, we are ready to compute the coefficients of a, ξ, aξ, ξ2, and a2 in the expansions of

φi, i “ 1, 2, 3. For example, let coefficient of a in φ1 be φa
1, then

φa
1pzq “ P

1
0,0pcospzqq

“ 1

2πi

¿

Γ

pT0,0 ´ λq´1
T

1
0,0pT0,0 ´ λq´1pcospzqq dλ.

Applying the operator action,

pT0,0 ´ λq´1pcospzqq “ ´ cospzq
λ

,

T
1
0,0pT0,0 ´ λq´1pcospzqq “ 30k2

λ
sinp2zq,

18



from the equation A.1

pT0,0 ´ λq´1psinp2zqq “ ´λ

λ2 ` 900k8
sinp2zq ` 30k4

λ2 ` 900k8
cosp2zq

Substituting these into our integral and using partial fraction, we get

φa
1pzq “ cos 2z

k2
.

Similarly, we compute the remaining coefficients in eigenfunctions φi, i “ 1, 2, 3 and obtain

their expressions as given in Lemma III.3.
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