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Hierarchical Distributed Architecture for the
Least Allan Variance Atomic Timing
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Abstract—In this paper, we propose a hierarchical distributed timing architecture based on an ensemble of miniature atomic clocks.

The goal is to ensure synchronized and accurate timing in a normal operating mode where Global Navigation Satellite System (GNSS)

signals are available, as well as in an emergency operating mode during GNSS failures. At the lower level, the miniature atomic clocks

employ a distributed control strategy that uses only local information to ensure synchronization in both modes. The resulting

synchronized time or generated time scale has the best frequency stability, as measured by the Allan variance, over the short control

period. In the upper layer, a supervisor controls the long-term behavior of the generated time scale. In the normal operating mode, the

supervisor periodically anchors the generated time scale to the standard time based on GNSS signals, while in the emergency

operating mode, it applies optimal floating control to reduce the divergence rate of the generated time scale, which is not observable

from the measurable time difference between the miniature atomic clocks. This floating control aims to explicitly control the generated

time scale to have the least Allan variance over the long control period. Finally, numerical examples are provided to demonstrate the

effectiveness and feasibility of the architecture in high-precision, GNSS-resilient atomic timing.

Index Terms—Atomic timing, Time scale generation, Allan variance, Networked control system.

✦

1 INTRODUCTION

1.1 Background

Accurate time synchronization plays a critical role in a wide
range of modern distributed systems, including telecommu-
nications, power grids, and financial transactions [1], [2].
Currently, most systems rely on mainstream time protocols,
such as the Network Time Protocol (NTP) [3] and the Pre-
cision Time Protocol (PTP) [4], which typically use a tiered
server-client model.

In standard NTP operation, a client obtains time infor-
mation from an NTP server and synchronizes its time to
the server, which becomes a server for its own clients. NTP
supports up to 15 such hierarchy layers, called stratum, but
synchronization accuracy decreases with each additional
stratum [5]. At the very top, a server in stratum 1 or a
grand master clock synchronizes its system time with highly
accurate devices, typically receivers of Global Navigation
Satellite System (GNSS) signals [6]. GNSS is a general
term used to describe any constellation of satellites that
provide positioning, navigation, and timing services on a
global or regional basis. Each GNSS satellite is equipped
with multiple on-board atomic clocks [7] and continuously
broadcasts a GNSS time, which closely approximates the na-
tional standard time. This allows receivers to access accurate
national standard time information within a few hundred
nanoseconds [8].

However, this reliance on GNSS has raised significant
concerns about system resilience and robustness in recent
years [9], [10]. GNSS signals are highly sensitive to natu-
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ral phenomena such as ionospheric scintillation and solar
flares. In particular, intense solar flares lasting several hours
can degrade timing accuracy by two orders of magnitude
[11]. The increasing frequency of malicious attacks, such as
jamming and spoofing [12], [13], also poses a serious threat
to the reliability of GNSS-dependent timing. As emerging
applications, such as 6G and beyond communications, in-
dustrial IoT, and cooperative autonomous vehicles [14], [15],
demand ever-increasing timing accuracy and security, it
is imperative to develop a resilient timing architecture. It
should be noted that in the current timing service, if the
grand master clock can no longer receive GNSS signals, the
time of all clients will be lost.

To support the emerging demand, the timing system
should be able to operate effectively in two basic operations,
i.e., normal operation when GNSS signals are available
and emergency operation in the event of GNSS failures.
Specifically, the general Requirements are listed as follows.

I. Consistent Synchronization: The clocks should remain
synchronized in both operating modes.

II. Accuracy to National Standard Time: The generated
time scale (GTS), i.e., the synchronized time shared
by all clocks, should have a small deviation from the
national standard time in both operating modes.

A promising approach to meet these requirements is the
use of miniature atomic clocks (MACs) [16]. Advances in
chip-scale atomic clock technology [17] have shown that
they can provide excellent stability and reduced drift, which
is the most important property for timing devices. In par-
ticular, the Allan variance (AVAR) [18] is used as a stan-
dard measure to evaluate frequency stability over time in
oscillators, which calculates the variance of the differences
between successive averages of frequency measurements
over specified sampling intervals. This measure differs from
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Fig. 1. Diagram of the hierarchical atomic timing architecture in normal and emergency operation. At the lower level, the MACs provide GNSS-
independent distributed synchronization, while at the upper level, the supervisor controls the GTS by switching between anchoring and floating
control in response to evolving situations.

directly measuring the variance of the frequency or its
derivative, because it focuses on evaluating the changes in
frequency over these period averages rather than examining
the instantaneous frequency fluctuations. In other words,
clocks with a small AVAR over long averaging periods are
able to maintain long-term stable timing. A typical free-
running (uncontrolled) MAC exhibits an AVAR of 10−12

over averaging times of 1000 seconds or more, whereas
conventional quartz clocks exhibit about 10−6 [19], [20].
Such long-term stability allows the MACs to be highly
effective even in emergency operation.

1.2 Proposed System Architecture

In this paper, we develop a novel distributed atomic timing
system based on MACs that are less dependent on GNSS.
The system adopts a hierarchical architecture as shown in
Fig. 1. The lower layer consists of an ensemble of MACs
and several GNSS anchors, each also equipped with a MAC
and capable of receiving a GNSS signal with a tiny delay.
These devices are assumed to be deployed in geographically
dispersed locations, e.g., 20-100 km apart in a real use case,
and connected by a fiber optic network [21]. A supervisor
locating at the upper layer manages the synchronized time
of all MACs or the GTS by aggregating information from
the MACs to regulate their long-term performance less
frequently. The authors’ research group is developing a
prototype that covers an area of 400 km2 with 10 MACs,
integrating both software and hardware.

Each MAC has two types of control, a frequent short-
period control that continuously steers the MAC towards
synchronization, and an intermittent long-period control
that gradually regulates the GTS. The former is generated
by the individual MACs in a distributed manner using only
local information. The optical fibers allow the clock reading
signals to be exchanged with negligible delay. Note that
due to a physical limitation of MACs, only the difference
between two signals can be measured, not the absolute
value of the phase or frequency. Each MAC measures the
time differences between its adjacent neighbors and itself,
estimates their phase and frequency difference locally using
a decentralized version of the Kalman filter [22], and uses a
consensus-type controller [23], [24] to stabilize these offsets.

In particular, the synchronization control gain is designed
to take into account the special characteristics of the MACs
so that the GTS has the least AVAR over the short control
period. The latter type of control is received from the super-
visor, which varies depending on the following operating
modes.

• In the normal operating mode, the GTS is anchored
based on the GNSS anchors. The reliability of the sys-
tem is improved by using multiple anchors because
the system can maintain timing even if some of the
GNSS anchors are lost. Each MAC adjacent to the
anchor measures and estimates its deviation from the
anchor, and reports the result to the supervisor. Based
on the average of all these estimates, the supervisor
periodically broadcasts an anchoring control signal to
all the MACs to correct their common deviation from
the standard time.

• In the emergency operating mode, the GTS is controlled
according to the concept of “optimal long-term float-
ing.” Although neither the GTS nor its optimum is
observable over the long control period, it can be shown
that their difference can be controlled indirectly based
on the measurable inter-clock differences. Using this
fact, the supervisor collects a subset of the inter-clock
estimates from the MACs, and broadcasts an optimal
floating control signal to eliminate this difference with-
out the reference to GNSS anchors.

It is shown that the GNSS-independent synchronization
among the MACs is ensured regardless of the operating
modes, while the robustness to GNSS signal uncertainties
is greatly enhanced by switching the control modes. Con-
sequently, the resultant system perfectly satisfies Require-
ments I and II. To the authors’ knowledge, this is the first
attempt to study a hierarchical distributed timing architec-
ture based on the use of MACs.

1.3 Review of Related Studies

1.3.1 Clock Synchronization for Sensor Networks

While there are similarities to common clock synchroniza-
tion problems, the clock model and system requirements are
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quite different. The problem of distributed clock synchro-
nization has been actively studied, especially in the context
of wireless sensor networks [25]–[27]. Existing approaches
often model clocks with constant bias and drift parameters,
and develop distributed consensus algorithms to force the
clocks to eventually converge to a common time coordinate
without regard to the deviation from standard time. The
focus is typically on dealing with the unavoidable but
uncertain transmission time delay.

On the other hand, the synchronization problem for the
MACs in this paper is significantly different from the tradi-
tional ones. The transmission delay through optical fibers is
generally negligible, so it is not an essential concern in the
design of the control strategy. Instead, the goal is to maintain
the precision and accuracy of the synchronized time or the
GTS relative to a standard time. Unlike conventional quartz
clock models, the difference between the MACs results from
the accumulation of their inherent process noise rather than
from local parameter mismatches. Therefore, a finer control
that takes into account the stochastic nature of the MACs
is required to maximize the long-term frequency stability of
the resulting GTS, especially in emergency operation.

1.3.2 Standard Time Scale Generation

The design of a timing architecture that maximizes fre-
quency stability in this paper is rather analogous to the
problem of generating national standard time. A centralized
scheme of time scale generation based on an ensemble of
atomic clocks has been studied in recent decades [28]. By
integrating measurements from multiple clocks, an ensem-
ble time, called the implicit ensemble mean (IEM) [29],
is generated that has stability equal to or better than the
best individual clock in the ensemble. Typically, a standard
Kalman filter is applied directly to estimate the deviations of
the clock readings from the ideal time. However, as pointed
out by [30], these methods suffer from structural observ-
ability limitations and covariance divergence. To tackle this
issue, a basis transformation approach is proposed by the
authors’ research group [31], which explicitly decomposes
the system state into the unobservable GTS and the observ-
able synchronization error. The major contribution of this
paper is to integrate and extend this idea to hierarchical
distributed timing architecture design with MACs.

The rest of the paper is organized as follows. In Section
2, we formulate the fundamental problems for atomic tim-
ing. Sections 3 and 4 propose the hierarchical distributed
architecture. In particular, the synchronization, anchoring,
and floating control strategies are presented in Section 3.2,
4.1, and 4.2, respectively, along with illustrative numerical
examples. Section 5 concludes the paper.

2 PROBLEM STATEMENT

2.1 Notations

In this paper, we denote the set of real numbers by R, the
set of integers by Z, the stationary Gaussian processes with
zero-mean and bounded variance by G, the n-dimensional
identity matrix by In, the n-dimensional all-ones vector by
1n, the ith column of In by en|i, the cardinality of a set N
by |N |, the set of eigenvalues of a square matrix A by Λ(A),
the image of a matrix A by imA, the kernel of a matrix A

by kerA, the expectation of a random variable X by E[X ],
and the Kronecker product of two matrices A and B by
A ⊗ B. For scalars or matrices xi for i ∈ N , we denote the
diagonal or block diagonal matrix of xi as diag(xi)i∈N , and
the stacked vector of a subvector xi ∈ R

n by col(xi)i∈N . The
subscript i ∈ N may be omitted for notational simplicity
without causing confusion.

2.2 System Modeling

Consider an ensemble of MACs, whose label set is de-
noted by N := {1, . . . , N}. We denote the variables by
the subscript i to indicate their correspondence to the ith
MAC, unless otherwise noted. Experimental observations
[32] have shown that the time series of their clock reading
deviations relative to an ideal time reference, denoted as
hi(t), can be mathematically modeled as

hi(t) = ci0 + ci1t+

∫ t

0
vi1(t1)dt1 +

∫ t

0

∫ t1

0
vi2(t2)dt2dt1,

where ci0 and ci1 are scalar constants of the initial value,
vi1(t) and vi2(t) are white frequency noise and random
walk frequency noise, whose standard deviations are σi1

and σi2, respectively. This integral equation model can be
represented by a second-order stochastic system as











ẋi1(t) = xi2(t) + vi1(t),

ẋi2(t) = ui(t) + vi2(t),

hi(t) = xi1(t),

(1)

where xi1(t), xi2(t) ∈ R denote the states representing
phase and frequency. The control input ui(t) ∈ R is only
used to adjust the frequency to prevent clock rollback [5].

For a time sequence {tk}k∈Z from the ideal time coordi-
nate with a constant period τ , i.e., tk = kτ , an equivalent
discrete-time model of (1) is derived as

{

xi[k + 1] = Axi[k] +Bui[k] + vi[k],

hi[k] = Cxi[k],
(2)

where xi[k] := [xi1(tk), xi2(tk)]
T, ui[k] := ui(tk), and

A =

[

1 τ
0 1

]

, B =

[

τ
1

]

, C = [ 1 0 ].

The covariance matrix of the white Gaussian noise
{vi[k]}k∈Z is given as

Qi(τ) :=

[

τσ2
i1 +

τ3

3 σ2
i2

τ2

2 σ2
i2

τ2

2 σ2
i2 τσ2

i2

]

, (3)

which is dependent on the sample period. Each MAC is
connected to several neighbors via bidirectional commu-
nication channels. Note that the deviation hi[k] is defined
relative to an ideal time reference, so it cannot be measured
directly. Instead, the phase difference between two MACs is
measurable. Specifically, the measurement made by MAC i
relative to MAC j is described as

yij [k] := hj [k]− hi[k] + wij [k], (4)

where {wij [k]}k∈Z is the white Gaussian measurement noise
with a variance R.

In addition to the network of MACs, we consider a set
of anchors labeled by M := {1, . . . ,M}, which contain
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information of a standard time. Each anchor is equipped
with an MAC with dynamics

Xl[k + 1] = AXl[k] +BUl[k] + µl[k], (5)

where Xl[k] denotes the internal state, Ul[k] denotes the
steering control input, and µl[k] is the process noise. The
anchor continuously receives the standard time signal from
GNSS.

However, limited by both the broadcast ephemeris ac-
curacy and pseudorange measurement errors, the received
signal is corrupted, including a constant offset and large
measurement noise. With such imprecise information, the
anchor gradually adjusts its internal state to the standard
time. Steering methods such as [33] can be applied to
ensure a relatively stable output provided by an anchor.
Considering this, we assume that the state of the lth anchor
satisfies

E[Xl[k]] =

[

Θ∗
l

0

]

(6)

and has a variance Qa
l (τ), which takes the form of (3)

parameterized by σa
l1 and σa

l2.
Each anchor is connected to several MACs in the ensem-

ble. Denote the label set of MACs neighboring the lth anchor
by Wl. When the connections are active, such a MAC can
measure their phase difference as

Yli[k] := C(Xl[k]− xi[k]) + ωli[k], i ∈ Wl, (7)

which contains information about the deviation from the
standard time.

2.3 The Allan Variance

The Allan variance (AVAR) [34] is one of the most common
measures of frequency stability for clocks, oscillators and
amplifiers. For a single MAC model as described in (2), the
AVAR is defined as

σ2
A

(

mτ
)

:= E

[

(

△2
mhi[k]

)2

2τ2

]

, (8)

where the second-order difference operator is denoted by

△2
mhi[k] := (hi[k + 2m]− hi[k +m])− (hi[k +m]− hi[k])

with step m ≥ 1. It is intended to assess stability due to
noise processes. In practice, AVAR is often estimated using
sampled data. In particular, for a clock reading sequence
{hi[0], hi[1], . . . , hi[M ]} measured over the sampling period
τ , a statistical estimate of the AVAR can be calculated as

σ̂2
A

(

{hi[k]},mτ
)

:=
1

M − 2m

M−2m−1
∑

k=0

(

△2
mhi[k]

)2

2(mτ)2
, (9)

which is used to evaluate the resulting GTS in numerical
examples below.

2.4 Problem Statement

The goal of this paper is to design the timing system
to satisfy the two requirements in Section 1.1, which are
interpreted mathematically as follows.

Consistent Accuracy: Synchronization of the MACs is
said to be achieved if there exists a common state x∗[k] ∈ R

2

such that

{xi[k]− x∗[k]}k∈Z ∈ G, ∀i ∈ N , (10)

which means that the mean of xi[k] is x∗[k] and the covari-
ance of the synchronization error is finite for all MACs at
steady state. In addition, to make the synchronized MACs
have the least short-term AVAR, we address the optimiza-
tion problem

min
ui[k]

σ̂2
A

(

{hi[k]}, τ
)

. (11)

Accuracy in Normal Operation: Using GNSS signals, the
MACs are anchored towards the standard time in the sense
that

{xi[k]}k∈Z ∈ G, ∀i ∈ N . (12)

Accuracy in Emergency Operation: In the case of GNSS
failures, the focus shifts to suppressing the drift rate of the
MACs away from the standard time. We seek for optimal
long-term floating control strategy by solving

min
ui[k]

σ̂2
A

(

{hi[k]}, T
)

, (13)

where T ≫ τ denotes the long-term control period.

3 LOWER-LEVEL DISTRIBUTED CONTROL IN HI-

ERARCHICAL ATOMIC TIMING ARCHITECTURE

3.1 State-Space Expansion

In this section, we derive a decomposed system model based
on state-space expansion to facilitate the subsequent control
design.

The overall network topology is an undirected graph
denoted by G = {N , E}, where E ⊆ N × N is the set
of edges. The adjacency matrix A = [aij ] ∈ R

N×N de-
scribes the connections between MACs, where aij = 1 if
there is an edge connecting MACs i and j, and aij = 0
otherwise. The neighborhood of MAC i is denoted by
Ai := {j ∈ N|(i, j) ∈ E}. Define Ji := |Ai|, which is
referred to as the degree of node i, and group them into
J = diag(J1, · · · ,JN ). The Laplacian matrix of G is defined
as L := J − A. Each undirected edge can be treated as
two directed sub-edges with opposite directions, where the
direction implies the source and sink of data flow. A sub-
edge gij is defined to describe the flow from MAC j to MAC
i, and the sub-edge set is denoted as Ei := {gij |j ∈ Ai},
which satisfies |Ei| = Ji.

For the stacked vectors x[k] := col(xi[k])i∈N , yi[k] :=
col(yij [k])j∈Ai

, and wi[k] := col(wij [k])j∈Ai
, we define the

incidence matrix Vi ∈ R
Ji×N as

Vi := col
(

eTN |j − eTN |i

)

j∈Ai
, (14)

where eN |i is the ith column of IN . Then, we have

yi[k] = Vi(C ⊗ IN )x[k] + wi[k]. (15)

Furthermore for v[k] := col(vi[k]), u[k] := col(ui[k]), y[k] :=
col(yi[k]), and w[k] := col(wi[k]), the overall model of the
clock ensemble combining (2) and (15) is summarized as

{

x[k + 1] = Ax[k] +Bu[k] + v[k],

y[k] = Cx[k] + w[k],
(16)
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where A := A ⊗ IN , B := B ⊗ IN , C := C ⊗ V , and
V := [V T

1 , . . . , V T

N ]T. Assuming that the noise of different
MACs are independent, i.e., the covariance matrix of v[k] is
given by

Q(τ) =

[

τΣ1 +
τ3

3 Σ2
τ2

2 Σ2
τ2

2 Σ2 τΣ2

]

(17)

where Σ1 := diag(σ2
i1) and Σ2 := diag(σ2

i2). The covariance
matrix of w[k] is R := RI2|E|.

Consider a normalized weighting vector q ∈ R
N as

q :=
(

1
T

ND−1
1N

)−1
D−1

1N , (18)

where D ∈ R
N×N is a positive definite diagonal matrix to

be determined later. A skew projection matrix Π ∈ R
N×N

associated with q is defined as

Π := IN − 1N qT, (19)

which satisfies imΠ = ker qT and kerΠ = im1N . Using
these matrices, we define the augmented state as

[

z[k]
z̄[k]

]

:=

[

I2 ⊗Π
I2 ⊗ qT

]

x[k]. (20)

Consequently, an equivalent state-space expansion associ-
ated with q is given as

x[k] = z[k] + (I2 ⊗ 1N )z̄[k]. (21)

The control input can be expanded in the same way as

u[k] = η[k] + (I2 ⊗ 1N )η̄[k]. (22)

Then, an expanded model of (16) is obtained as
{

z[k + 1] = Az[k] +Bη[k] + (I2 ⊗Π)v[k],

y[k] = Cz[k] + w[k],
(23)

z̄[k + 1] = Az̄[k] +Bη̄[k] + (I2 ⊗ qT)v[k]. (24)

In this augmented system, z̄[k] ∈ R
2 equals to the projection

of x[k] onto im(I2 ⊗ qT), which represents a weighted aver-
age of all states. On the other hand, z[k] ∈ R

2N represents
the deviations of x[k] from the common center z̄[k]. This
state-space expansion is consistent with the goals of atomic
timing. In particular, stabilizing z[k] leads to synchroniza-
tion for the clock ensemble, while stabilizing z̄[k] improves
the accuracy.

Note that the subsystem (24) is not observable from the
relative measurement y[k]. To estimate z̄[k], we must use
external GNSS anchors as a standard time reference and
measure the time difference from them. However, if the an-
chors are not connected, the goal must be to reduce the drift
of the system from the ideal time coordinate. The following
sections provide technical details for each component of the
timing system.

3.2 GNSS-Free Distributed Synchronization

In this section, we design a distributed synchronization
control strategy that uses only local information exchange
between adjacent MACs. This strategy is independent of
GNSS and is commonly used in both normal and emergency
operating modes.

We introduce the notion of an “edge state,” defined as

ζij [k] := xj [k]− xi[k] (25)

to quantify the state difference between two adjacent MACs.
Note that ζij [k] and the sub-edge gij from the MAC j to the
MAC i have a one-to-one correspondence. Therefore, for an
undirected graph, a pair of edge states, i.e., ζij [k] and ζji[k],
are defined for a single edge. Denote the collection of the
edge states of MAC i by

ζi[k] := (I2 ⊗ Vi)x[k].

Using (21) with Vi1N = 0, we see that it is equivalent to

ζi[k] = (I2 ⊗ Vi)z[k]. (26)

Thus, (23) leads to the edge dynamics
{

ζi[k + 1] = Aiζi[k] +Biη̆i[k] + (I2 ⊗ Vi)v[k]

yi[k] = Ciζi[k] + wi[k],
(27)

where the system matrices are denoted as Ai := A ⊗ IJi
,

Bi := B ⊗ IJi
, Ci := C ⊗ IJi

, and η̆i[k] := (I2 ⊗ Vi)η[k].
Note that this system is observable because the pair (A,C) is
observable. Using the measurements yi[k], we can develop
a state estimator for each MAC by applying the Kalman
filtering algorithm [22] in such a way that

ζ̂i[k + 1] = Aiζ̂i[k] +Biη̆i[k] +Hi

(

yi[k]−Ciζ̂i[k]
)

. (28)

Since the timing lasts for an extended period of time, we can
assume that the Kalman filter is in the steady state with the
constant gain

Hi = F(Ai,Ci, (I2 ⊗ Vi)Q(τ)(I2 ⊗ V T

i ), R⊗ IJi
),

where F(A,C,Q,R) denotes the steady-state equations
{

P = APAT−APCT(CPCT +R)−1CTPA+Q,

H = APCT
(

CPCT +R
)−1

.
(29)

By such a decentralized estimator, it is guaranteed that the

estimation error ei[k] := ζi[k] − ζ̂i[k] is convergent in the
sense that

{ei[k]}k∈Z ∈ G, ∀i ∈ N . (30)

Based on the edge state estimation, we apply the distributed
control strategy

ui[k] = DiFs

∑

j∈Ni

ζ̂+ij [k], i ∈ N , (31)

where Fs ∈ R
1×2 is the control gain to be designed, Di is the

ith diagonal element of D in (18), and ζ̂+ij [k] is an unbiased
estimate for MACs i and j, computed as

ζ̂+ij [k] = ζ̂ij [k]−
ζ̂ij [k] + ζ̂ji[k]

2
. (32)

Although, computing (32) requires additional information
exchange between neighboring MACs, this does not violate
the distributed design principle. It should be emphasized
that due to this unbiased estimation, it will be shown in
Theorem 1 that the unobservable synchronization destina-
tion z̄[k] is independent of the distributed synchronization
control.

For the following discussion, we define a particular free-
running dynamics as

Φ(q) :

{

r[k + 1] = Ar[k] + (I2 ⊗ qT)v[k],

hr[k] = Cr[k],
(33)
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which is the weighted average of the uncontrolled MACs
associated with q. Then, Requirement I is satisfied as fol-
lows.

Theorem 1 For the system (16), consider the decentralized
estimator (28) and distributed control strategy (31). Suppose
that the communication network is connected, and the feed-
back gain Fs is structured as

Fs = γs
[

αs

τ
1
]

, (34)

where γs and αs are scalar parameters. Then

{xi[k]− r[k]}k∈Z ∈ G, ∀i ∈ N (35)

for the free-running dynamics Φ(q) in (33) if and only if

0 < γs <
4

2+αs
λ−1
max(D

1

2LD
1

2 ), αs > 0, (36)

where λmax(·) denotes the largest eigenvalue.

Proof: The distributed control strategy in (31) can be
expressed as

u[k] = (Fs ⊗DS)(ζ[k] + ∆e[k]),

where S := diag
(

1
T

Ji

)

i∈N
∈ R

N×2|E| and ∆e[k] is the
stacked vector of ∆eij [k] := (eji[k] − eij [k])/2. Note that
SV = −L. Therefore, it gives that

u[k] = −(Fs ⊗DL)z[k] + (Fs ⊗DS)∆e[k].

Based on the expansion (22) and the definition (18), the
multiplication of (I2 ⊗ qT) leads to

η̄[k] = (Fs ⊗ qTDS)∆e[k] = 0, ∀k ∈ Z, (37)

because of 1T

NL = 0 and
∑

i,j∈N ∆eij [k] = 0. By comparing
(24) and (33), we have xi[k] − r[k] = zi[k]. Thus, we
only need to prove that zi[k] satisfies (35). The controlled
dynamics of z[k] in (23) equals to

z[k + 1] = Asz[k] + (BFs ⊗DS)e[k] + (I2 ⊗Π)v[k],

where As = A ⊗ IN − BFs ⊗ DL. The eigenvalues of As

are found as

Λ(As) =
⋃

λ∈Λ(D
1

2 LD
1

2 )

Λ(A− λBFs).

Note that the characteristic polynomial of A− λBFs is

det
{

zI2− (A−λBFs)
}

= z2−2
(

1− λγs
1+αs

2

)

z+1−λγs,

whose roots exist inside the open unit circle if and only if
|2 − λγs(1 + αs)| − 1 < 1 − λγs < 1. Sine the topology
is connected, the eigenvalues of DL are all positive expect
one zero eigenvalue. Therefore, the condition (36) ensures
that As is marginally Schur-stable. According to [23] and
the results in (30), z[k] is convergent in the sense that

lim
k→∞

E[z[k]] ∈ im(I2 ⊗ qT).

On the other hand, notice that z[k] ∈ im(I2 ⊗Π), which is
equal to ker(I2 ⊗ qT), leads to limk→∞ E[z[k]] = 0. Further-
more, since both e[k] and v[k] have finite covariances, it is
easy to conclude that the covariance of z[k] is also bounded.
This completes the proof. �

In addition to synchronism, the next goal is to maxi-
mize the frequency stability of the synchronized time, or
GTS, as measured by AVAR. Theorem 1 shows that under
the distributed control strategy (31), all MACs converge
to the specific free-running dynamics Φ(q), which can be
controlled by choosing the free parameter q. Its AVAR with
sampling period mτ can be analytically derived as

σ2
A

(

mτ
)

=
G
{

I2 ⊗
[

(I2 ⊗ qT)Q(mτ)(I2 ⊗ q)
]}

GT

2(mτ)2

=
qTΓ (mτ)q

(mτ)2
, (38)

where G := [C(A− 2I2) C] and

Γ (mτ) := (mτ)Σ1 +
(mτ)3

3
Σ2. (39)

Based on this relationship, the optimal q that leads to the
least AVAR is found as follows.

Corollary 2 Consider the system (16) under the synchro-
nization strategy in Theorem 1. Then the optimal weighting
vector

qA(τ) := argmin
q

σ2
A

(

τ
)

s.t. qT1N = 1, (40)

which minimizes the AVAR over τ , is given as

qA(τ) =
Γ−1(τ)1N

1T

NΓ−1(τ)1N

. (41)

Proof: Since it has been proved that x[k] converges
to (I2 ⊗ 1

T

N )r[k] in the sense of expectation, solving (11)
is equivalent to solving (40). By the Lagrange multiplier
method, the optimum is found as the solution to

2(τ2)−1Γ (τ)q − λ1N = 0, qT1N = 1,

which is given as (41). This proves the claim. �

It is shown in (41) that the optimal weighting vector de-
pends on a combination of the noise, which is an implicit
function of the sampling interval mτ . For standard MACs,
Σ1 is several orders of magnitude larger than Σ2. Thus, two
representative results can be obtained as

q0 := lim
m→0

qA(mτ) =
Σ−1

1 1N

1T

NΣ−1
1 1N

, (42)

q∞ := lim
m→∞

qA(mτ) =
Σ−1

2 1N

1T

NΣ−1
2 1N

. (43)

In fact, q0 is the weighting vector for the best short-term
frequency stability, while q∞ is for the best long-term fre-
quency stability. These two weighting vectors can be used
to evaluate the limits of system performance in practice.

4 UPPER-LEVEL BROADCAST CONTROL IN HIER-

ARCHICAL ATOMIC TIMING ARCHITECTURE

4.1 GNSS-Based Anchoring in Normal Operation

In the normal operating mode, the MACs adjacent to the
GNSS anchors periodically receive the standard time with
the period T . Assume that T is an integer multiple of τ , i.e.,
ℓ := T/τ is an integer. In the following analysis, the new
time index K is used to represent the time instant KT .
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The edge states between the anchors and their adjacent
MACs are defined as

Zli[K] := Xl[K]− xi[K], l ∈ M, i ∈ Wl.

Using the measurement Yli[K], a state estimator can be
constructed as

Ẑli[K+1] = AaẐli[K] +Ua
li[K] +Ha

li

(

Yli[K]−CẐli[K]
)

,

where Aa := Aℓ, and

Ua
li[K] :=

ℓ−1
∑

k=0

Aℓ−1−kBui[Kℓ+ k],

Ha
li = F (Aa, C,Q

a
l (T ) +Qi(T ), R) ,

which is updated intermittently. Since the ensemble has

been guaranteed to keep synchronized, each Ẑli[K] can
also be regarded as a separate estimate of the same z̄[K].
Therefore, we apply the anchoring strategy

η̄[k] :=

{

−FaWẐ[K], k = Kℓ, K ∈ Z,

0, otherwise,
(44)

where Fa ∈ R
1×2 is the control gain to be designed, W :=

I2 ⊗ 1
T

|W|/|W| is an averaging vector, and

Ẑ[K] := col{col{Ẑli[K]}i∈Wl
}l∈M.

This anchoring strategy is common to all MACs. Here we
directly use the notation η̄[k] to indicate that such common
control has no effect on the synchronization, due to the fact
that η̄[k] ∈ ker(I2⊗Π). Then, Requirement II in the normal
operating mode is satisfied as follows.

Theorem 3 Consider the system (16) under synchronization
algorithm in Theorem 1 and anchoring strategy in (44). For a
given T > 0, suppose that the feedback gain Fa is structured
as

Fa = γa
[

αa

T
1
]

, (45)

where γa and αa are scalar parameters. Then

{x[k]− (θ∗e2|1 ⊗ 1N )}k∈Z ∈ G

for any initial condition, where θ∗ :=
∑

l∈M |Wl|Θ∗
l /|W|, if

and only if

0 < γa <
4

2 + αa

, αa > 0. (46)

Proof: The edge state can be rewritten as

Z[K] = z[K] + (I2 ⊗ 1N )z̄[K]−X [K],

where Z[K] is defined similarly to Ẑ[K]. Denote the estima-

tion error as E[K] := Z[K]− Ẑ[K]. Then, because of (6), we
have

WẐ[K] = (z̄[K]− θ∗e2|1) +W (z[K] + E[K]).

For the deviation ∆z̄[K] := z̄[K]− θ∗e2|1, we know

∆z̄[K + 1] =Aℓ∆z̄[K] +Aℓ−1Bη̄[K] + (I2 ⊗ qT)V a[K]

=(Aℓ −Aℓ−1BFa)∆z̄[K] + (I2 ⊗ qT)V a[K]

−BFaW (z[K] + E[K]),

where V a[K] =
∑ℓ−1

k=0 A
ℓ−1−kv[Kℓ + k] and Aℓe2|1 = e2|1

for any ℓ. The roots of the characteristic polynomial of (Aℓ−
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Fig. 2. The network of 10 MACs and 2 anchors.
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Fig. 3. Clock reading deviations under the distributed control strategy.

Aℓ−1BFa) exist inside the open unit circle if and only if
|2−γa(1+αa)|−1 < 1−γa < 1. Therefore, the condition (46)
ensures that this system is internally stable. Moreover, since
it has been guaranteed that z[k] and E[k] are convergent, it
follows that ∆z̄[k] is stabilized. This completes the proof. �

Illustrative Example: A numerical example is given
here to demonstrate the proposed strategies in the normal
operating mode. Consider a network consisting of 10 MACs
and 2 anchors. The network structure is shown in Fig. 2,
where the MACs are labeled from 1 to 10 and the anchors
are labeled by G1 and G2. Each MAC is written by (2) with
the sampling period τ = 1 [sec]. The variances of white
frequency noise σ2

1 and random walk frequency noise σ2
2 are

listed in Table 1, whose values are determined based on our
experiments. The variance of the measurement noise is set to
10−24. The long-term control period is set to T = 2000 [sec].

The behavior of the MACs under the proposed dis-
tributed synchronization strategy is shown in Fig. 3. The
clock reading deviations of the free-running MACs, i.e.,
hi[k] for i ∈ N , are plotted as the gray lines. They start
with different initial values, and continue to diverge due to
the non-zero frequency differences. On the other hand, as
shown in Theorem 1, the controlled clocks achieve synchro-
nization, plotted as the purple lines in Fig. 3.

Next, we examine the long-term frequency stability of
the GTS anchored by GNSS in the normal operating mode.
The clock reading deviations for the time period k ∈ [1, 107]
are shown in Fig. 4, where those of the anchors are also
plotted. Even with a long control period, GTS stays close to
the standard time by anchoring. Note also that the MACs
are always synchronized. For reference, the MACs without
anchoring will gradually diverge up to the level of 10−4 at
k = 107. This clearly illustrates the validity of our anchoring
strategy.

To illustrate the need for control mode switching during
GNSS failures in Section 4.2 below, we show the AVAR
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TABLE 1
Variances of white frequency noise and random walk frequency noise.

scale 1 2 3 4 5 6 7 8 9 10
σ
2

1
10−20 3.31 0.887 1.51 1.93 9.33 1.31 3.87 5.26 0.981 3.39

σ
2

2
10−26 3.12 0.295 1.52 6.97 7.74 0.251 0.106 0.765 0.207 0.38
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Fig. 4. Clock reading deviations anchored by GNSS signals in the
normal operating mode.
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Fig. 5. The AVAR of the MACs that are free-running (FR), controlled by
the distributed synchronization strategy alone (DS), and the free-running
ensemble mean Φ(q0) and Φ(q∞).

curves of the synchronized MACs without GNSS anchoring
in Fig. 5. This figure also shows the short- and long-term
optimal AVAR curves for the free-running MACs, i.e., Φ(q0),
and Φ(q∞), computed according to (38), as the blue and
red lines. We can see that the synchronization control can
maximize the short-term stability, but fail for longer periods
when GNSS is unavailable. This motivates us to develop a
different upper-level control strategy to maximize long-term
frequency stability in emergency operation without GNSS
anchors.

4.2 Optimal Floating in Emergency Operation

In this section, we propose an optimal control strategy for
the GTS in case of GNSS failures. In particular, in addition
to (11), we also aim to maximize the long-term frequency
stability as in (13).

Note that z̄[k] is not observable due to the lack of an
external standard time reference. To overcome this difficulty,
we next construct an estimator capable of inferring the

deviation of z̄[k] from the desired optimum. In particular,
the following analysis is built on the basis of qτ and qT ,
which are shorthand for qA(τ) and qA(T ), respectively.
Unless otherwise specified, variables associated with qτ or
qT are denoted by their subscripts.

The system states associated with qτ and qT can be
expanded as
[

zτ [k]
z̄τ [k]

]

=

[

I2 ⊗Πτ

I2 ⊗ qTτ

]

x[k],

[

zT [k]
z̄T [k]

]

=

[

I2 ⊗ΠT

I2 ⊗ qTT

]

x[k].

Combing with (21) and Πτ1N = 0, we have
[

zτ [k]
z̄τ [k]

]

=

[

I2 ⊗Πτ 0
I2 ⊗ qTτ I2

] [

zT [k]
z̄T [k]

]

.

This shows that the difference between z̄τ [k] and z̄T [k]
is related to the synchronization error. Although the error
itself remains difficult to evaluate in a distributed manner,
ζ[k] can serve as an intermediary. Since ζ[k] contains the
information of z[k], we search for a minimal necessary
subset that transforms ζ[k] back into z[k].

The undirected network topology among MACs must
contain a spanning tree. By assigning an arbitrary direction
to each edge of the spanning tree, we can find a directed
tree, denoted by Gβ , and the rest is denoted by Gβ̄ . Let
ζβ [k] denote the vector composed of all edge states ζij [k]
corresponding to each gij ∈ E(Gβ). Similarly, denote the
collection of all ζij [k] associated with gij ∈ E(Gβ̄) by ζβ̄ [k].
For each directed edge gij ∈ E(Gβ̄) from MAC i to MAC
j, there always exists an equivalent directed path within Gβ

that starts from i up to the root node and then descends to
j. Therefore, there exists a matrix Tβ̄ ∈ R

(|E|−N+1)×(N−1)

such that
ζβ̄ [k] = (I2 ⊗ Tβ̄)ζβ [k]. (47)

Denote the incidence matrix of Gβ by Vβ ∈ R
(N−1)×N , and

that of Gβ̄ by Vβ̄ . Then, we have the following lemma.

Lemma 1 For any given weighting vector q, there exist an
edge state vector ζβ [k] ∈ R

2(N−1) and a matrix V +
β ∈

R
N×(N−1) such that

z[k] = (I2 ⊗ V +
β )ζβ [k], (48)

where ζβ [k] corresponds to a directed spanning tree of the
network topology, and V +

β is the generalized inverse of Vβ

induced by q, defined as

V +
β := W (VβW )−1, qTW = 0. (49)

Proof: From (26) and (47), we know
(

I2 ⊗

[

Vβ

Vβ̄

])

z[k] =

(

I2 ⊗

[

IN−1

Tβ̄

])

ζβ [k].

Since ζβ [k] ∈ R
2(N−1) and Vβ is of rank N − 1, the inverse

transformation as in (48) is derived. This claims the result.
�
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Using Lemma 1 for zτ [k] and zT [k] with ζβ [k], we have
[

ζβ [k]
z̄τ [k]

]

=

[

I2 ⊗ IN−1 0
I2 ⊗ qTτ V

+
βT I2

] [

ζβ [k]
z̄T [k]

]

, (50)

where V +
βT denotes the generalized inverse of Vβ associated

with qT . We use the same symbol ζβ [k] on both sides
because it is exactly the same. The relation in (50) provides
a key insight that the gap between z̄τ [k] and z̄T [k] can be
filled by ζβ [k], denoted as z̄−T [k] := (I2⊗qTτ V

+
βT )ζβ [k]. Thus,

if the current GTS is z̄τ [k], the GTS will shift from z̄τ [k] to
z̄T [k] by drowning out z̄−T [k].

Based on this observation, an state estimator is given as
{

ζ̂β [k + 1] = Af ζ̂β [k] +Bf η̆β [k] +Hf∆yβ [k],

∆yβ [k] = yβ [k]−Cf ζ̂β [k],
(51)

ˆ̄z−T [k + 1] = Aˆ̄z−T [k] +Bη̄[k] +Hf̄∆yβ [k], (52)

where Af := A ⊗ IN−1, Bf := B ⊗ IN−1, Cf := C ⊗
IN−1, and yβ [k] is the measurements corresponding to ζβ [k],
η̆β [k] := (I2 ⊗ Vβ)η[k]. The observer gains are

Hf := F(Af ,Cf , (I2 ⊗ Vβ)Q(τ)(I2 ⊗ V T

β ), R ⊗ IN−1),

Hf̄ := (I2 ⊗ qTτ V
+
βT )Hf .

Using the estimates of (52), we apply an intermittent control
strategy

η̄[k] :=

{

−Ff ˆ̄z
−
T [k], k = Kℓ, K ∈ Z,

0, otherwise.
(53)

This control input is common to all MACs. Then, Require-
ment II in emergency operating mode is satisfied as follows.

Theorem 4 Consider the system (16) under synchronization
algorithm in Theorem 1 with D = Γ (τ) and the control
strategy (53). For a given T > 0, suppose that the feedback
gain Ff is structured as

Ff = γf
[ αf

T
1
]

, (54)

where γf and αf are scalar parameters. Then

{xi[k]− r[k]}k∈ℓZ ∈ G, ∀i ∈ N , (55)

for the free-running dynamics Φ(qT ) in (33) if and only if

0 < γf <
4

2 + αf

, αf > 0. (56)

Proof: We first prove that (52) gives a valid estimate
of (I2 ⊗ qTτ V

+
βT )ζβ [k]. Although the edge states ζβ [k] are

distributed throughout the network, it has been shown in
(27) that their measurements are decoupled. Therefore, a
central estimator for ζβ [k] can be constructed as in (51).
Furthermore, since the floating control signal η̄[k] belongs to
im(I2⊗1

T

N ), it does not affect ζβ [k]. Therefore, we can claim
that the estimation error of (51) is guaranteed to converge.

On the other hand, according to (49), we know that
im1N = ker V, ker qτ = imV +

βτ , ker qT = imV +
βT . In the

context of projection matrix, this implies that

1NqTτ + V +
βτVβ = IN , 1NqTT + V +

βTVβ = IN .

Therefore, we have

qTτ V
+
βT = qTτ (IN − 1NqTT )V

+
βτ = −qTTV

+
βτ . (57)

Together with the fact that η[k] ∈ ker(I2 ⊗ qTτ ), we get

(I2 ⊗ qTτ V
+
βT ) η̆β [k] = 0, ∀k ∈ Z.

So the synchronization control-related term does not appear
in (52). This claims the conclusion.

With such a valid estimator, it is not hard to see that by
choosing an appropriate gain that satisfies condition (56),
z̄−T [k] is stabilized, similar to what was proved in Theorem
3. Thus, the synchronized state follows z̄T [k].

Furthermore, we examine the dynamics of z̄T [k] that

z̄T [k + 1] = Az̄T [k] +Bη̄T [k] + (I2 ⊗ qTT )v[k],

where η̄T [k] denotes its equivalent control input. According
to the expansion equation (22) and similar analysis as (50),
we know

η̄T [k] = (I2 ⊗ qTTV
+
βτ )η̌[k] + η̄[k].

The first term is equal to −(I2 ⊗ qTτ V
+
βT )η̌[k] by (57), while

the second term is proportional to (I2 ⊗ qTτ V
+
βT )ζβ [k] as

proved earlier. Recall that η̌[k] is the control input used to
stabilize ζβ [k], and both ζβ [k] and η̌[k] converge as proved in
Theorem 1. Therefore, we conclude that {η̄T [k]}k∈Z ∈ G. In
other words, the difference between z̄T [k] and r[k] of Φ(qT )
converges. This completes the proof. �

The intermittent floating control periodically maximizes
the long-term frequency stability of the GTS, while main-
taining its inherent short-term frequency stability. Conse-
quently, the combination of Corollary 2 and Theorem 4 gives
an optimal GTS over both short and long periods.

Illustrative Example: We demonstrate the optimal float-
ing control of the GTS in the emergency operating mode.
The simulation setup is the same as in Section 4.1. To
construct the state estimator in (51), we consider a directed
spanning tree of the network topology, as shown in Fig. 6,
where the node labels are inherited from Fig. 2.

The clock reading deviations for the time period k ∈
[1, 103] and k ∈ [1, 105] are shown in Fig. 7. In both
subfigures, the purple lines represent the MACs controlled
by both distributed synchronization and optimal floating
strategies. The blue lines and red lines correspond to the
virtual trajectories generated by Φ(q0) and Φ(q∞), respec-
tively, where q0 and q∞ are given in (42) and (43). With
respect to the short period in the upper subfigure, the MACs
are synchronized but floating, i.e., they follow Φ(q0). While
for the longer time period in the lower subfigure, the MACs
are explicitly regulated to Φ(q∞) with the maximum long-
term frequency stability instead. Obviously, this reduces the
rate of divergence, resulting in more desirable timing in the
event of GNSS failures. Note that this optimal timing in both
the short and long term is realized here even without the
standard time reference.

The AVAR curves of the MACs under both distributed
synchronization control and optimal floating control are
plotted with the purple lines in Fig. 8. We can see that the
long-term frequency stability is maximized while maintain-
ing the optimal short-term frequency stability. This fully
illustrates the effectiveness of the proposed hierarchical
distributed timing architecture.
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Fig. 6. A directed spanning tree of the network topology.
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Fig. 7. Optimal floating MACs in emergency operating mode.

5 CONCLUSION

In this paper, we have presented a hierarchical distributed
architecture for achieving stable and accurate atomic timing.
Using a state-space expansion method, the desired timing
requirements are naturally decoupled into synchronization
and anchoring/floating tasks. Our hierarchical distributed
architecture demonstrates that a well-coordinated combi-
nation of distributed control and supervisory control can
maintain long-term, high-precision timing in the face of
GNSS uncertainties. Our primary focus in this work is
to outline the fundamental concept of distributed atomic
timing. Future research will include optimizing control per-
formance for energy efficiency and extending these results
to multiple atomic clock ensembles.
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on jamming and spoofing detection in GNSS. Sensors, 24(13):4210,
2024.

[14] Tahir Emre Kalayci, Elem Güzel Kalayci, Gernot Lechner, No-
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