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Abstract

Unstructured clinical data can serve as a unique and rich source of information that can
meaningfully inform clinical practice. Extracting the most pertinent context from such data is
critical for exploiting its true potential toward optimal and timely decision-making in patient
care. While prior research has explored various methods for clinical text summarization,
most prior studies either process all input tokens uniformly or rely on heuristic-based
filters, which can overlook nuanced clinical cues and fail to prioritize information critical for
decision-making. In this study, we propose Contextual, a novel framework that integrates
a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph
(KG) for contextual augmentation. By preserving context-specific important tokens and
enriching them with structured knowledge, ConTextual improves both linguistic coherence
and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets
demonstrate that ConTextual consistently outperforms other baselines. Our proposed
approach highlights the complementary role of token-level filtering and structured retrieval
in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for
improving precision in clinical text generation1.

1. Introduction

Electronic health records (EHRs) are central to modern medical informatics, providing a
rich repository of structured and unstructured data that drives clinical decision-making
and research (Wornow et al., 2023; Poulain et al., 2022). While structured data enables
systematic analyses, unstructured components—such as discharge summaries and progress
notes—contain nuanced clinical insights that are difficult to summarize due to their reliance on
complex medical terminology, subtle contextual cues, and intricate interrelationships (Hossain
et al., 2023). Efficiently extracting and summarizing these insights is critical for improving
patient care (Piya and Beheshti, 2025), yet it remains an open challenge.

1. Our code repository is publicly available at: https://anonymous.4open.science/r/

Contextual-summarization-7FD3/.

© 2024 F.L. Piya & R. Beheshti.
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Recent advancements in large language models (LLMs) have significantly accelerated
progress in natural language processing (NLP), particularly in tasks such as clinical summa-
rization and entity extraction (Chen et al., 2024; Aali et al., 2025; Ellershaw et al., 2024). In
addition to the rapid development of general-purpose LLMs—such as GPT-4 (Achiam et al.,
2023), LLaMA 3 (Grattafiori et al., 2024), and Gemma (Team et al., 2025)—domain-specific
models like BioInstruct (Wang et al., 2023), MediSwift (Bhardwaj et al., 2024), and
BioMedLM (Boag et al., 2024) have been introduced to better capture the structure and
semantics of biomedical corpora, improving the understanding of medical narratives. These
types of models have demonstrated considerable promise in enhancing the accuracy and
efficiency of clinical documentation and information extraction (Chen et al., 2024; Hu et al.,
2024a). However, they face critical limitations in real-world clinical settings. Specifically,
unstructured clinical narratives are often verbose, redundant, and contain various types
of nomenclature and jargon, increasing computational demands and obscuring essential
information captured in the notes (Hu et al., 2024b). Reliance on fine-tuning and pretraining
domain-specific LLMs further amplifies these challenges, as such processes require substantial
computational resources and time (Christophe et al., 2024; Liu et al., 2024b). These con-
straints highlight the need for scalable, domain-aware methodologies that balance contextual
fidelity with computational efficiency. Model compression and optimization techniques such
as pruning (Ling et al., 2024), quantization (Lang et al., 2024), and distillation (Muralidha-
ran et al., 2024) address some of these computational challenges by reducing the resource
demands of deploying LLMs without significantly sacrificing their performance (Zhu et al.,
2024). Such approaches are particularly relevant in healthcare, where the efficient processing
of large volumes of data is crucial for timely and accurate patient care. Optimizing LLMs
for clinical use can mitigate their high resource requirements, making them more suitable
for integration into existing clinical workflows and systems.

Recent studies evaluating LLMs on clinical note summarization highlight significant
limitations in fidelity and coherence. Models often generate factually incorrect or fabricated
content (hallucinations), posing a major obstacle for clinical use (Oeshy et al., 2024; Fayyaz
et al., 2024; Poulain et al., 2024). For example, a physician review of GPT-4-generated
emergency department summaries found hallucinated details in 42% of cases and omission of
relevant clinical information in 47% (Williams et al., 2024). Such omissions of key medications,
diagnoses, or events are common, sometimes due to oversimplification of complex cases (Lee
et al., 2024). LLMs also struggle with temporal reasoning: they may misrepresent the
chronology of care by focusing on outdated or irrelevant diagnoses (treating them as current)
and not recognizing when earlier presumptive diagnoses were later ruled out (Xiong et al.,
2024). Even when factual coverage is adequate, the narrative quality can be suboptimal –
generated summaries are often less concise and lack the realistic clinical tone or structured
flow of human-written notes (Van Veen et al., 2024). Moreover, current LLMs face context
length constraints, often requiring truncation or segmentation of long patient records; as
a result, many evaluations use isolated note segments instead of full longitudinal records,
risking loss of important context (Ravaut et al., 2023). These limitations – hallucinations,
omissions, poor handling of temporal context, and subpar coherence – underscore that while
LLMs show promise in reducing documentation burden, they are not yet fully reliable for
autonomous clinical summarization (Wang et al., 2024; Hager et al., 2024).
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To address these challenges, we propose ConTextual, a novel framework that integrates
a context-preserving token filtering (CPTF) approach with a domain-specific knowledge
graph (KG) to enhance clinical text summarization. CPTF leverages attention mechanisms
to dynamically identify and retain semantically significant tokens, minimizing computational
costs while preserving critical clinical information. To mitigate information loss from token
filtering, the domain-specific KG encodes structured relationships among clinical entities,
such as diagnoses, treatments, and outcomes. This integration ensures that the retained
tokens are enriched with domain-relevant context, enabling the framework to maintain
contextual fidelity in complex clinical scenarios.

Generalizable Insights about Machine Learning in the Context of Healthcare

The proposed framework provides a scalable and efficient solution for processing verbose
clinical narratives. By prioritizing clinically significant tokens and enriching them with
structured knowledge, ConTextual achieves superior information retention, computational
efficiency, and contextual depth. Our extensive evaluations demonstrate superior performance
in summarization ability and reduction in latency and computational costs, making the
framework particularly suited for complex and resource-constrained healthcare environments.
Although tailored for clinical note summarization, the modular design of ConTextual

supports broader applicability to other biomedical domains requiring efficient and domain-
specific natural language understanding, such as medical literature review. In particular,
our contributions are as follows:

• We propose a context-preserving token filtering (CPTF) method that dynamically
compresses unstructured clinical text by removing redundancy while retaining essential
information.

• We construct a domain-specific knowledge graph (KG) and integrate it with the CPTF
to form a structured and interpretable framework that enhances contextual fidelity
during token selection.

• We improve the contextual input for retrieval-augmented generation (RAG), enabling
more effective LLM-based reasoning and demonstrating improved performance across
two clinical datasets.

• We validate the scalability and efficiency of ConTextual through extensive evaluations
using metrics, including lexical, semantic, and LLM-based measures.

2. Related Work

Clinical Text Summarization Existing summarization models rely heavily on stan-
dard attention mechanisms, which scale quadratically with sequence length. For instance,
BioGPT (Luo et al., 2022b) and PubMedBERT (Gu et al., 2021) utilize biomedical corpora
to refine performance, but their reliance on uncompressed token sequences results in ineffi-
ciencies for lengthy clinical notes. Models like Flan-T5 (Lyu et al., 2024) have introduced
instruction-tuned objectives to improve summarization; however, they may fail to address
the redundancy of verbose clinical narratives, where attention mechanisms struggle to focus
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on critical contextual cues (Hu et al., 2024b). To mitigate these issues, recent work (Han and
Choi, 2024) has proposed models such as Pointer-GPT, which replace standard attention
mechanisms with a pointer network to enhance content retention during summarization.
However, such models may still suffer from factual inconsistency, highlighting the ongoing
need for summarization approaches that balance precision, coherence, and domain specificity.

Model Compression and Optimization While model compression techniques such
as pruning (Frantar and Alistarh, 2023), quantization (Dettmers et al., 2022), and distilla-
tion (Hinton, 2015) effectively reduce model size and latency, they often degrade performance
on domain-specific tasks due to loss of fine-grained contextual information (Tinn et al., 2023).
For instance, pruning reduces model complexity by zeroing out low-magnitude weights, but
in clinical NLP tasks, even small weights can encode critical semantic relationships (Ma
et al., 2023). Similarly, knowledge distillation transfers knowledge from large to smaller
models (Ho et al., 2022), but these smaller models may lack the capacity to retain nuanced
biomedical context (Magister et al., 2022).

Token Filtering and Attention Mechanisms Token filtering methods(e.g.,PoWER-BERT),
rely on attention scores to progressively prune less relevant tokens (Goyal et al., 2020).
However, these approaches operate in encoder-only architectures and are incompatible
with the autoregressive decoding required by generative models typically employed in large
language model applications. Prunepert introduced a differentiable perturbed top-k mech-
anism for token selection, but its reliance on stochastic perturbations increases variance
in summarization outcomes. By contrast, CPTF operates natively within the multi-layered
attention framework of modern open-source LLMs, dynamically weighting attention layers
to compute token importance without introducing architectural modifications.

Moreover, long and heterogeneous texts significantly increase latency and computational
overhead, which limits their scalability in resource-constrained clinical environments (He et al.,
2025). Token filtering methods aim to mitigate this by dynamically retaining contextually
important tokens while discarding less relevant ones (Lin et al., 2024; Lou et al., 2024).
While effective in reducing computational demands, these methods often result in partial
information loss, particularly in complex, domain-specific scenarios such as healthcare.
Additionally, they are not readily integrable with structured knowledge, such as knowledge
graphs, which can compensate for the loss of contextual information (He et al., 2025; Liu
et al., 2024a).

Knowledge Graph Integration in NLP KGs are extensively utilized for encoding
structured relationships, offering enhanced contextualization and interpretability in NLP
applications (Peng et al., 2023; Sharma et al., 2022). In the biomedical domain, KGs
like UMLS and SNOMED-CT have been employed for tasks such as entity linking and
ontology-based query expansion (Lu et al., 2025; Arsenyan et al., 2024; Hu et al., 2023). By
encoding explicit relationships (e.g., between diseases, symptoms, and treatments), KGs can
enhance a model’s contextual understanding and interpretability, helping align NLP outputs
with established medical knowledge (He et al., 2025; Liu et al., 2024a; Piya and Beheshti,
2025). However, most prior approaches integrate KGs in a static fashion—treating the
graph as a fixed resource—which means the knowledge base does not dynamically update
or adapt to new data or task-specific needs, potentially limiting scalability and flexibility
in fast-evolving clinical settings (Authors, 2024). Recent work has begun exploring more
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Figure 1: Overview of the ConTextual Framework for clinical text summarization.
.

dynamic KG integration strategies (e.g., continual graph updates or tailored subgraph
retrieval) to improve adaptability (Arsenyan et al., 2024), but static KGs remain invaluable
as authoritative repositories of biomedical knowledge. In this context, our work ConTextual

contributes a novel method that effectively leverages a static domain-specific biomedical KG
within a clinical summarization framework, demonstrating that a fixed, curated graph can
be harnessed to provide relevant structured context and significantly improve the factuality
and clinical fidelity of LLM-generated summaries (Lu et al., 2025).

3. Methods

We propose ConTextual, a framework for clinical text summarization that addresses the
challenges of long and verbose narratives through three key components: (1) Context-
Preserving Token Filtering (CPTF), (2) Domain-specific KG integration, and (3) an LLM
inference with retrieval-augmented generation (RAG).

CPTF dynamically reduces redundancy by filtering out tokens with low contextual
significance based on the attention mechanisms of LLMs, ensuring that the retained input is
computationally efficient and semantically rich. The KG integration component enriches
this reduced input by embedding structured relationships among clinical entities, such as
diagnoses, treatments, and medications, to provide domain-specific context. Finally, the RAG
component retrieves additional relevant context from the KG during inference, integrating it
into the summarization process to maintain accuracy and adaptability for specific queries.
Figure 1 shows the overall structure of the framework and its three components.

Problem Formulation

Prior to presenting the components of the proposed method in detail, we first present an
overall description of the whole framework. Let D = {d1, ..., dN} denote the data elements
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representing a collection of clinical notes. Each note d ∈ D consists of an input sequence
d = {t1, ..., tn}, where ti ∈ V and V represents the vocabulary of tokens. Our objective is
to generate a contextually-enhanced reduced representation dreduced that preserves critical
medical information while minimizing the sequence length.

The text reduction task can be formalized as finding a mapping function f ∈ F , where
F represents a family of candidate functions. The optimization objective is:

max
f∈F

∑
d∈D

sim(d, f(d)), (1)

where sim(d, f(d)) shows the similarity between the original and reduced representations
(measured by a measure like cosine). The reduced representation f(d) satisfies the constraint:

|f(d)| = ⌊r · |d|⌋, r ∈ (0, 1] (2)

where r denotes the retention ratio, specifying the proportion of tokens retained in dreduced.
To ensure coherence and clinical accuracy in the reconstructed and reduced text, LLM

leverages knowledge from a reference medical knowledge graph, denoted as G = (V,E,R),
where V is the set of nodes (e.g., medical entities), E is the set of edges (relationships), and
R represents the types of relationships. We define a context retrieval function η : d→ 2V ,
where 2V denotes the power set of V , i.e., the set of all subsets of V . This function retrieves
a subset of relevant nodes from the KG based on the input sequence d.

The final summarization objective combines both the reduced text (through CPFT) and
the enhanced context (through KG) as:

s∗ = argmax
s∈S

P (s | [f(d); η(d)]; θ), (3)

where S is the set of candidate summaries, f(d) is the reduced text representation, η(d) is
the retrieved context, and θ denotes the model parameters. We now present the model and
its three components in more detail.

3.1. Context Preserving Token Filtering (CPTF)

The CPTF framework is illustrated in Figure 2, and a detailed algorithm corresponding to
this part is presented in Appendix A. This framework processes clinical text sequences by
leveraging multi-head attention mechanisms from LLM to compute token-level importance,
thereby preserving semantic fidelity while optimizing computational efficiency.

We consider multiple attention heads (B1, B2, . . . , Bn) that independently compute token
interactions, capturing diverse semantic aspects as depicted in Figure 2. Each input token i
is first projected into three representations: query (q), key (k), and value (v). The query (q)
interacts with keys (k) across the sequence to compute attention weights, which are then
applied to the values (v) to generate weighted representations of the input tokens.

The attention outputs from multiple heads are concatenated into a single vector (B),
which aggregates critical semantic features across tokens. The extraction and selection of
tokens are guided by their computed importance scores, allowing for the retention of the most
contextually significant tokens. These tokens are then reconstructed into a reduced clinical
narrative, maintaining the focus on preserving essential information with high semantic
relevance.
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Figure 2: Overview of the Context Preserving Token Filtering algorithm.

Token Selection Mechanism Our methodology continues by extracting attention pat-
terns from an LLM, wherein each input token is processed through transformer layers.
Each layer l ∈ {1, ..., L} computes attention matrices Ah

l ∈ Rn×n, indicating token-to-token
attention weights. The attention matrices from multiple heads are blended into a single
matrix for each layer, calculated as:

Āl =
1

H

H∑
h=1

Ah
l , (4)

where H is the total number of attention heads. This consolidated attention information
helps in determining the hierarchical semantic structure across layers, ultimately influencing
the selection of tokens that contribute most significantly to the clinical narrative’s context
and meaning. To capture the hierarchical semantic structure across layers, we compute layer
weights as:

wl = α+ (1− α)
l

L
, (5)

where α ∈ [0, 1] is a tunable hyperparameter that balances the contribution of base-level
features extracted from the lower layers with the more abstract features from higher layers.
This balance aims to maintain a robust representation of both fundamental and complex
features in the processed text, thereby preserving the integrity and richness of the clinical
narrative.
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Token Importance Scores and Selection The token importance score Ii is computed
for each token at position i by aggregating the weighted attention patterns across all layers.
This step captures both local syntactic relationships and global semantic dependencies:

Ii =
L∑
l=1

wl ·
1

n

n∑
j=1

Āl[i, j], (6)

where wl is the layer-specific weight, n denotes sequence length, and Āl[i, j] represents the
attention strength between tokens ti and tj . Using these scores, we select the top k tokens
by solving the constrained optimization problem:

S∗ = argmax
S∈S

∑
i∈S

Ii, (7)

subject to:

|S| = k, k = ⌊r · n⌋ (8)

∀i, j ∈ S : i < j =⇒ pos(i) < pos(j), (9)

where r ∈ (0, 1] is the retention ratio, and pos(i) maps token position i to its original
sequence index.

Reconstruction of Reduced Narrative The final reduced sequence is reconstructed by
mapping the selected token indices to their corresponding tokens and positional encodings:

dreduced = {(ti,pos(i)) | i ∈ S∗} (10)

3.2. Domain-specific Knowledge Graph Construction

To enhance the understanding of the general medical context, we construct a reference KG
G = (V,E,R) using clinical records from the same cohort of patients for whom we analyze
the clinical notes. The vertex set V comprises entity types representing the clinical domain
hierarchy: V = Vd∪Vm∪Vt, where Vd, Vm, and Vt correspond to diagnoses, medications, and
treatments, respectively. These entities are interconnected through a set of edges E ⊆ V ×V ,
which capture the general clinical relationships. The relationship types in the graph are
defined as: R = {rdm, rdt, rmt}, where rdm, rdt, and rmt represent the relationships between
diagnoses and medications, diagnoses and treatments, and medications and treatments,
respectively. These relationships are used to map out the complex interactions within the
clinical data.

For a given clinical note d, we utilize a retrieval function η : d→ Vp, where Vp ⊂ V is the
set of entities matching the unique patient identifier in the clinical note. Each entity e ∈ Vp

represents a clinical concept linked to the patient. The contextual information retrieved
from the KG is formalized as:

C(d) = {(e′, r) | e ∈ Vp, (e, e
′, r) ∈ E}, (11)

where e′ denotes an entity in the KG that shares a relationship r with e.
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This arrangement retrieves entities directly linked to the same patient identifier as in
the clinical notes, ensuring a match of patient-specific entities and their relationships. The
extracted context enriches the input by concatenating the reduced clinical note with the
retrieved context, forming the final enriched input for downstream processing:

d̂ = dreduced ⊕ C(d), (12)

where, ⊕ denotes concatenation. This approach ensures that the enriched representation d̂
retains key patient-specific details while incorporating domain knowledge from the knowledge
graph.

3.3. Summarization with RAG

The summarization process leverages the patient-specific reduced text from CPTF dreduced
and dynamically retrieved KG context C(d) using a RAG approach. The summarization
objective aims to generate the most clinically relevant and coherent summary s∗ from a set
of possible summaries S. This optimal summary is selected by the model as:

s∗ = argmax
s∈S

P (s | d̂; θ), (13)

where θ denotes the parameters of the model (i.e., the summary generator LLM). This
approach conditions the generation of summaries on both the extracted entities and their
associated knowledge from the KG, allowing the LLM to refine its understanding of patient-
specific narratives and improve factual consistency and medical coherence. Since entity
retrieval is performed via overlapping patient identifiers, the retrieved context remains
directly relevant to the clinical note, ensuring adaptability across diverse cases. By dy-
namically incorporating structured medical knowledge from the KG, this approach enables
LLMs to generate clinically coherent and factually consistent summaries while maintaining
computational efficiency.

4. Experiments

4.1. Experimental Setup

We implement both the CPTF module and the primary summary generation component
using the instruction-tuned LLaMA 3.2 1B model (AI, 2024). All experiments are conducted
with a fixed generation budget of 200 tokens and a decoding temperature of 0.7 to ensure
consistency and comparability across runs.

Data For the summarization task, we utilized the MIMIC-IV-Ext-BHC dataset (Aali et al.,
2024a), derived from the MIMIC-IV-Note database, consisting of 270,033 clinical notes
with corresponding brief hospital course (BHC) summaries. The preprocessing involved
standardizing the structure of the note, cleaning the formatting, and normalizing the length
of the token to an average of 2,267 tokens per note. The resulting curated dataset provides
a structured resource for clinical text summarization research (Aali et al., 2024b).

The second dataset we incorporated comprises 1,473 patient-doctor conversations from
the FigShare (Singh, 2011) and MTS-Dialog (Abacha et al., 2023) collections, specifically
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designed for generating clinical summaries. These conversations have been annotated to
create structured SOAP (Subjective, Objective, Assessment, and Plan) summaries, available
on Hugging Face datasets (Neupane, 2024).

Prompt Design We use a few-shot design to provide the language model with structured
input-output examples that establish a consistent format for clinical summarization. Few-
shot prompting outperformed zero-shot and one-shot strategies across key evaluation metrics,
as shown in Table 7 (Appendix). These observed improvements indicate that providing the
model with representative clinical examples helps constrain its output format, enhancing
factual coherence and reducing hallucinations. Additionally, few-shot learning ensures that
the model remains aligned with clinical terminology and structured reporting conventions,
addressing concerns about variability in generated summaries.

The offered examples in the few-shot design align structured input tags—such as <SEX>,
<SERVICE>, <CHIEF COMPLAINT>, and <HISTORY OF PRESENT ILLNESS>—with correspond-
ing target summaries, capturing linguistic patterns and contextual nuances prevalent in
clinical narratives. A description of the few-shot prompt design, including illustrative
examples, is provided in Table 8.

Baselines We selected a range of models, chosen for their diverse approach to handling
the challenges of clinical text summarization:

• Longformer by Beltagy et al. (2020) utilizes a sparse attention mechanism to handle
long documents by extending attention spans up to 16K tokens, particularly suited for
detailed clinical narratives.

• BioBART by Yuan et al. (2022) is specifically pre-trained on biomedical corpora and
fine-tuned for medical summarization.

• T5-Large by Raffel et al. (2020) is a general-purpose sequence-to-sequence model
that excels in diverse text-to-text tasks, testing the adaptability of transformers in
specialized domains.

• Flan-T5 by Chung et al. (2022) extends T5 with instruction tuning, aiming to improve
the model’s ability to learn from descriptive tasks and generalizing across various NLP
applications.

• BioGPT by Luo et al. (2022a) offers an adaptation of the GPT architecture tailored to
understand and generate biomedical text, focusing on maintaining clinical accuracy
and relevance.

• Gemma3-Instruct(1B) by Google (Team et al., 2025) is a open-source general-purpose
LLM.

• Mistral-7B-Instruct by Mistral AI (Jiang et al., 2023) is the second open-source
general-purpose LLM we use.

Evaluation Metrics We use the following statistical metrics to evaluate the accuracy
and relevance of the generated summaries.

• BLEU (Papineni et al., 2002): Measures n-gram precision to quantify lexical overlap
between generated and reference summaries.

• ROUGE-L (Lin, 2004): Captures the longest common subsequence between generated
and reference summaries, emphasizing recall and precision while reducing redundancy.

• BERT-Score (Zhang et al., 2019): Computes semantic similarity using contextual
embeddings, ensuring accurate representation of clinical meaning.
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We evaluate using BLEU-1 (B-1), BLEU-2 (B-2), and ROUGE-L (R-L) for surface-level
fidelity, and precision (P), recall (R), and F1-score derived from BERTScore to quantify
semantic alignment with gold-standard references.

To complement statistical evaluation metrics and better assess the clinical fidelity and
coherence of generated summaries, we also employ an ‘LLM as a judge’ framework. We
use an instruction-tuned Gemma 3.1B model (Team et al., 2025) to evaluate the generated
summaries relative to their corresponding reference along three critical axes: Main Idea
Retention, Coherence, and Factual Consistency. Evaluators—instantiated through LLM
prompting—were instructed to assign a score from 1 (poor) to 5 (excellent) for each criterion,
guided by a structured evaluation prompt.

Additionally, we use two metrics to study the scalability and resource optimization of
the proposed method.

• Throughput (Vaswani, 2017): Calculates summaries generated per second, showcasing
scalability for large datasets.

• Latency (Narang et al., 2021): Evaluates the time taken to generate a single summary,
reflecting the computational cost and efficiency of different prompting strategies.

4.2. Results

Ablation Analysis Table 1 reports the performance of three model configurations eval-
uated on the MIMIC-BHC and SOAP datasets. We compare the full model against two
systematically reduced variants: (i) a baseline LLM without Context-Preserving Token
Filtering (Vanilla LLM) and (ii) an intermediate variant that incorporates CPTF but ex-
cludes Knowledge Graph augmentation (Vanilla LLM + CPTF). The consistent performance
degradation across both datasets—particularly in ROUGE-L and BERT-F1—underscores
the complementary contributions of CPTF and KG integration to the overall effectiveness
of the proposed framework.

Table 1: Performance Comparison of Clinical Summarization Models on MIMIC-
BHC and SOAP Datasets. BERT-P, BERT-R, and BERT-F1 refer to precision, recall,
and F1 score using BERT embeddings.

Dataset Model BLEU-1 (↑) BLEU-2 (↑) ROUGE-L (↑) BERT-P (↑) BERT-R (↑) BERT-F1 (↑)

MIMIC-
BHC

LLaMA 3.2 4.52± 6.1 1.79± 2.6 8.85± 3.5 83.02± 2.0 78.64± 2.2 80.77± 1.7

LLaMA 3.2 +CPTF 5.99± 5.5 1.82± 2.0 7.08± 2.9 81.82± 2.4 80.12± 2.1 80.97± 1.8

ConTextual 9.06± 6.1 3.35± 2.6 9.98± 3.5 82.72± 2.0 80.32± 2.2 81.48± 1.7

SOAP
Summary

LLaMA 3.2 4.13± 5.5 2.22± 3.7 8.16± 6.5 82.87± 2.8 82.93± 3.0 82.90± 2.8

LLaMA 3.2 + CPTF 9.29± 7.3 3.98± 4.1 8.75± 5.5 82.58± 3.2 82.38± 2.8 82.45± 2.6

ConTextual 11.55± 5.5 6.09± 4.2 10.70± 4.5 83.51± 1.6 83.70± 3.0 83.60± 2.2

On MIMIC-BHC, ConTextual achieves a BERT-F1 of 81.48±1.7, outperforming LLaMA
3.2 (80.77±1.7) and CPTF-enhanced LLaMA 3.2 (80.97±1.8). A similar pattern is observed
on the SOAP dataset, where ConTextual attains the highest BERT-F1 of 83.60 ± 2.2
compared to 82.90±2.8 and 82.45±2.6 from the respective baselines. Improvements are also
evident in lexical metrics: on SOAP, ConTextual increases BLEU-1 from 4.13 to 11.55 and
BLEU-2 from 2.22 to 6.09, indicating enhanced surface-level coherence and informativeness.
We also explore the effects of temperature scaling and token limit adjustments and present
the results in Appendix E.
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We also use the LLM as a judge evaluator to score each output according to defined
criteria. Table 2 presents the mean and standard deviation of these scores across datasets
and models. Each column corresponds to one of the three evaluation criteria, with the final
column (Avg.) representing the average of the three scores per instance. ConTextual stands

Table 2: LLM-as-a-Judge Evaluation. Scores have a 1-5 scale.

Dataset Model Main Ideas (↑) Coherence (↑) Factuality (↑) Average Score (↑)

MIMIC-
BHC

LLaMA 3.2 4.56 ± 1.33 3.78 ± 0.67 3.89 ± 1.17 4.07 ± 0.95
LLaMA 3.2 + CPTF 3.93 ± 1.33 3.38 ± 0.77 3.77 ± 1.09 3.73 ± 0.87
ConTextual 4.45 ± 1.21 3.82 ± 0.75 4.55 ± 0.82 4.27 ± 0.55

SOAP
Sum-
mary

LLaMA 3.2 4.39 ± 0.85 3.71 ± 0.85 4.06 ± 1.03 4.09 ± 0.69
LLaMA 3.2 + CPTF 4.70 ± 0.66 3.80 ± 0.52 3.84 ± 1.17 4.13 ± 0.60
ConTextual 5.00 ± 0.00 4.50 ± 0.55 4.67 ± 0.52 4.72 ± 0.25

out as the winner model across the evaluation dimensions, consistently achieving the highest
scores in most criteria. Its performance advantage is particularly evident in the SOAP
dataset, where it attains near-ceiling ratings with minimal variance. These results position
ConTextual as the most effective approach among those evaluated, highlighting the value of
integrating context-preserving token filtering with structured knowledge representations in
clinically grounded summarization tasks.

Table 3: Performance Comparison with Baseline Models Across Datasets.

Dataset Model BLEU-1 (↑) BLEU-2 (↑) ROUGE-L (↑) BERT F1 (↑)

MIMIC-BHC

Longformer 2.76± 5.0 0.75± 2.0 3.10± 3.0 74.70± 1.5
BioBART 6.88± 5.2 2.05± 2.1 8.00± 3.2 78.10± 1.6
T5-Large 4.95± 5.3 1.41± 2.2 7.96± 3.3 79.84± 1.6
Flan-T5 10.52± 5.8 2.54± 2.3 9.90± 3.4 77.91± 1.6
BioGPT 6.15± 5.4 6.17± 2.5 7.47± 3.2 77.83± 1.6
Gemma3-Instruct(1B) 7.89± 5.6 3.20± 2.4 9.85± 3.4 79.78± 1.6
Mistral-7B-Instruct 4.43± 5.2 2.09± 2.2 9.87± 3.4 80.71± 1.7
ConTextual (Ours) 12.63± 6.1 4.65± 2.6 11.04± 3.5 81.37± 1.7

SOAP Summary

Longformer 2.18± 3.6 1.19± 2.6 6.76± 5.8 75.00± 2.9
BioBART 5.27± 4.2 1.83± 2.8 7.41± 4.9 77.32± 2.5
T5-Large 3.86± 3.9 1.24± 2.4 7.52± 5.2 78.46± 2.7
Flan-T5 8.35± 5.1 2.17± 2.9 8.91± 5.0 77.05± 2.8
BioGPT 5.62± 4.8 5.11± 3.7 7.08± 4.7 76.93± 2.6
Gemma3-Instruct(1B) 7.25± 5.3 2.84± 3.2 8.97± 5.3 79.25± 2.5
Mistral-7B-Instruct 4.08± 4.4 1.85± 2.7 9.34± 5.6 81.18± 2.4
ConTextual (Ours) 11.55± 5.5 6.09± 4.2 10.70± 4.5 83.60± 2.2

Comparison with Baselines As shown in Table 3, ConTextual consistently outperforms
all baselines across both datasets and evaluation metrics. The improvements in BLEU-1 and
BLEU-2 reflect superior lexical overlap with reference summaries, while higher ROUGE-L
and BERT F1 scores suggest stronger structural alignment and semantic preservation. These
gains are particularly pronounced on the MIMIC-BHC dataset, highlighting our model’s
effectiveness in handling longer and more complex clinical narratives. Notably, even when
compared with instruction-tuned models such as Mistral-7B and Gemma3, ConTextual
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delivers higher performance, underscoring the value of structured retrieval and token filtering
in medical summarization tasks.

Table 4: Efficiency Metrics Comparison Across Models.

Dataset Model Throughput (↑) Latency (↓)

MIMIC-
BHC

LLaMA 3.2 36.72± 2.44 3.61± 1.32

LLaMA 3.2 + CPTF 139.10± 10.04 12.38± 1.25

ConTextual 142.87± 16.94 14.29± 2.17

SOAP
Summary

LLaMA 3.2 28.35± 36.26 16.15± 10.69

LLaMA 3.2 + CPTF 108.43± 12.75 14.22± 2.73

ConTextual 116.82± 19.64 15.78± 3.42

Computational Efficiency Table 4 reports the efficiency characteristics of the proposed
models and the relationship between computational performance and knowledge integration.
Notably, both CPTF and ConTextual improve throughput compared to the base LLaMA

3.2 model, suggesting that context-aware token filtering enhances generation efficiency by
reducing irrelevant token processing. The latency increases in the case of the MIMIC-BHC
dataset, possibly due to the additional steps introduced by structured retrieval and filtering.
This may reflect the trade-off between performance and computational efficiency, where
modest increases in processing time are offset by substantial gains in output quality and
overall generation efficiency.

5. Discussion

This work introduces ConTextual, a structured framework for clinical text summarization
that combines context-preserving token filtering (CPTF) with domain-specific knowledge
graphs (KGs). CPTF dynamically reduces textual redundancy while preserving essential
clinical information, and KG integration ensures that token selection aligns with structured
domain knowledge. By improving the quality of inputs in a RAG structure, ConTextual
enables more accurate and semantically grounded LLM-based reasoning. We validate the
framework across two clinical datasets, demonstrating improvements in both generation
quality and system efficiency, as measured by BLEU, ROUGE, BERTScore, LLM-based
scores, latency, and throughput. Notably, it achieves up to a 1.5x improvement in BLEU-
1 and a 31% increase in ROUGE-L on SOAP summaries while delivering the highest
BERTScore-F1 across all settings. Beyond summarization, this framework has broader
applicability in real-world clinical environments: alleviating documentation burden for
providers, streamlining cohort identification for clinical trial recruitment, and enabling
small to mid-sized healthcare organizations to deploy high-quality language models under
constrained computational budgets.

Limitations While ConTextual advances clinical summarization, it is constrained by its
reliance on a static, domain-specific knowledge graph. This may restrict its generalizability
to broader or evolving clinical domains, particularly in the context of rare conditions or
emerging practices. Additionally, the framework assumes consistent quality and structure in
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clinical documentation, which may limit its robustness when applied to noisy, incomplete,
or institution-specific records. Our preliminary analysis showed the value of developing a
KG specific to the targeted domain (as determined by the input data). Future work can
incorporate strategies for leveraging publicly available KGs to enhance adaptability. We
also plan to support dynamic knowledge graph construction, expand entity coverage, and
implement mechanisms for handling variability in input quality. These enhancements can
further improve generalizability and resilience across diverse healthcare settings.
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Appendix A. Context-Preserving Token Filtering Algorithm

We introduce an algorithm—Context-Preserving Token Filtering (CPTF)—designed to
retain semantically important tokens from an input sequence while minimizing overall
length. By leveraging internal attention dynamics from a multi-layer transformer model,
CPTF computes layer-weighted token importance scores to identify and preserve tokens
that are critical for maintaining contextual coherence and clinical accuracy. While our
implementation uses the instruction-tuned LLaMA 3.2 1B, the method is model-agnostic
and applicable to a range of transformer-based language models. Its computational efficiency
and minimal architectural assumptions make it well-suited for deployment in low-resource
or compute-limited settings.

Algorithm 1: Context-Preserving Token Filtering (CPTF)
Input: Text sequence x (string), language model M with L layers and H attention heads,

tokenizer T , retention ratio r ∈ (0, 1] (float), base weight α ∈ [0, 1] (float)
Output: Reduced sequence (string) retaining the most informative tokens
Step 1: Tokenization and Initialization tokens← T.encode(x) // Convert text to

tokens

n← |tokens| // Determine total number of tokens

k ← ⌊n · r⌋ // Determine number of tokens to retain

I ← [0] ∗ n // Initialize importance scores array

Step 2: Calculate Token Importance for l = 1 to L do

wl ← α+ (1− α) · l
L // Layer-specific weight

Al ←M.attention(tokens, l) // Compute attention for layer l

Āl ← 1
H

∑H
h=1Al,h // Average over all heads

for i = 1 to n do
I[i]← I[i] + wl · 1n

∑n
j=1 Āl[i, j] // Update importance score

end

end
Step 3: Token Selection and Reconstruction S ← argsort(−I)[: k] // Select

indices of top-k important tokens

tokensreduced ← [tokens[i]foriinsorted(S)] // Retrieve and sort tokens

return T.decode(tokensreduced) // Reconstruct reduced sequence

Appendix B. Knowledge Graph Construction

Traditional retrieval-augmented generation (RAG) models face limitations in synthesizing
information from diverse sources, particularly when understanding requires identifying
shared attributes or underlying semantic relationships Edge et al. (2024). To address these
limitations, we constructed a domain-specific knowledge graph (KG) that encapsulates critical
aspects of patient-level clinical data. The KG represents key entities, including Problems,
Treatments, Tests, and Patients, along with their relationships, providing a structured and
queryable representation of clinical interactions.

The constructed KG consists of 7,095 nodes distributed as follows: Patients (100 nodes),
Problems (3,841 nodes), Treatments (1,686 nodes), and Tests (1,468 nodes). These
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entities are interconnected through 11,443 relationships categorized into three primary types:
HAS PROBLEM (6,760 edges), UNDERWENT TEST (5,469 edges), and WAS TREATED WITH (3,214
edges). These relationships encode clinically meaningful associations, such as diagnoses
associated with patients, tests performed, and treatments administered.

Entity extraction was performed using a domain-specific named entity recognition (NER)
pipeline built with the samrawal/bert-base-uncased clinical-ner model. To process
long clinical narratives, the pipeline segmented text into overlapping chunks, adhering to the
model’s token limits while preserving entity coherence. Extracted entities were grouped into
the predefined categories and linked to patients, forming the basis for graph construction.
Overlapping patient nodes denote cases where multiple diagnoses, tests, and treatments
are associated with a single individual, effectively capturing the multi-relational structure
inherent in clinical datasets.

The graph structure supports dynamic traversal to extract contextually relevant sub-
graphs for specific queries or tasks. For example, when responding to a patient-centric
query, the KG enables the efficient extraction of related diagnoses, tests, and treatments,
leveraging its multi-relational structure to ensure specificity and precision. This capability
facilitates integration with downstream tasks, such as retrieval-augmented generation (RAG),
contextual language modeling, and predictive analytics.

Figure 3: Visualization of the clinical knowledge graph constructed from unstructured EHR
data. The graph comprises 1,000 nodes, categorized into Patients (red), Problems (yellow),
Tests (green), and Treatments (blue). Relationships between nodes (1,187 edges) include
HAS PROBLEM, UNDERWENT TEST, and WAS TREATED WITH, encoding critical
clinical entity interactions. This structured representation facilitates interpretable and
domain-aware contextualization for downstream tasks, such as summarization and retrieval.
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Figure 3 illustrates a subset of the constructed KG, showing the relationships between
patients, problems, treatments, and tests. By embedding clinical data into a graph structure,
the KG provides a scalable and interpretable framework for contextualizing patient infor-
mation and supporting advanced machine learning applications in the healthcare domain.
In addition to the MIMIC-IV dataset, we applied the same knowledge graph construction
pipeline to a structured SOAP-format clinical summary dataset. This yielded a domain-
specific graph aligned with the Subjective, Objective, Assessment, and Plan sections. While
the core methodology remained consistent, minor adaptations were introduced to account for
the structural characteristics of patient–provider dialogue. The resulting graph was similarly
integrated into our retrieval framework to evaluate the generalizability of our approach
across diverse clinical documentation formats.

Appendix C. Layer Weighting Strategy

The choice of α = 0.5 for our experiments was driven by its role in balancing the contribu-
tions of features from different transformer layers, which is pivotal for achieving a robust
performance across various metrics. This balance ensures an effective integration of nuanced,
deep contextual information from lower layers with more immediate, surface-level features
from higher layers, thus preventing the model from overfitting to syntactic structures at the
expense of semantic coherence. Such equilibrium is essential for the application in clinical
environments where both types of information are crucial. The stability of ROUGE-L scores
across different values of α, as shown in Fig 4, supports this choice by indicating a consistent
capture of relevant content regardless of slight variations in expression or phrasing. Therefore,
α = 0.5 represents a strategic decision to optimize the overall efficacy and reliability of
the model in real-world applications. For a detailed mathematical formulation of how α
influences layer weighting, refer to Equation 5 where we define the weighting scheme across
the layers.
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Figure 4: Comparing results with Weight factor for layer importance
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Appendix D. Additional Experiments

To better understand how different generation settings and model improvements affect per-
formance, we conduct additional experiments across a range of token limits and temperature
settings. Table 5 presents performance metrics for all model variants. The results show that
the inclusion of Context-Preserving Token Filtering (CPTF) consistently improves LLaMA
3.2 across all configurations, while the ConTextual model achieves the best performance on
several metrics, particularly at higher token budgets. Notably, the highest BERT Precision
(84.09) is achieved by ConTextual at Token=100, Temp=0.1, while the highest ROUGE-L
(11.04) and B-2 (4.65) scores are observed at Token=300, Temp=0.1, indicating strong
performance with extended generation. These findings suggest that both architectural
modifications and generation hyperparameters play a critical role in optimizing clinical
summarization quality.

The temperature parameter, T , was varied across {0.1, 0.7, 0.9}, influencing the stochas-
ticity of token sampling. Lower values (T = 0.1) enforce deterministic outputs, ensuring
high precision in extracted entities, while higher values (T = 0.9) promote diversity in text
generation, potentially capturing a broader semantic spectrum. Similarly, the maximum
token constraint was adjusted across {100, 200, 300}, enabling a direct investigation of
sequence length on linguistic coherence and computational feasibility.

Table 5: Performance Metrics for Model Variants. Higher values indicate better
performance for all metrics (↑). The best result for each metric is highlighted in bold.

Model Token Temp B-1 (↑) B-2 (↑) R-L (↑) BERT-P (↑) BERT-R (↑) BERT-F1 (↑)

LLaMA 3.2

100 0.1 10.92 5.45 7.37 79.58 80.23 79.89
0.7 10.90 5.40 7.33 79.58 80.23 79.89
0.9 10.91 5.41 7.32 79.58 80.23 79.89

200 0.1 10.76 5.37 7.33 79.58 80.23 79.89
0.7 10.73 5.35 7.24 79.58 80.23 79.89
0.9 10.73 5.34 7.25 79.58 80.23 79.89

300 0.1 10.70 5.34 7.28 79.58 80.23 79.89
0.7 10.68 5.33 7.26 79.58 80.23 79.89
0.9 10.64 5.30 7.20 79.58 80.23 79.89

LLaMA 3.2 + CPTF

100 0.1 15.12 6.75 8.92 80.39 81.63 80.99
0.7 15.25 6.81 8.99 80.39 81.63 80.99
0.9 15.28 6.79 9.00 80.39 81.63 80.99

200 0.1 14.63 6.52 8.74 80.39 81.63 80.99
0.7 14.95 6.65 8.88 80.39 81.63 80.99
0.9 15.10 6.72 8.93 80.39 81.63 80.99

300 0.1 14.26 6.36 8.58 80.39 81.63 80.99
0.7 14.75 6.58 8.80 80.39 81.63 80.99
0.9 14.82 6.54 8.77 80.39 81.63 80.99

ConTextual

100 0.1 3.80 1.48 8.73 84.09 79.30 81.36
0.7 3.60 1.30 8.30 83.76 79.29 81.44
0.9 3.24 1.21 7.83 83.43 79.11 81.19

200 0.1 9.49 3.60 10.68 83.05 80.35 81.65
0.7 9.06 3.35 9.98 82.72 80.32 81.48
0.9 8.64 2.90 9.33 82.23 80.18 81.18

300 0.1 12.63 4.65 11.04 82.19 80.61 81.37
0.7 12.17 4.26 10.37 82.11 80.66 81.36
0.9 11.96 3.73 9.83 81.66 80.48 81.05

Appendix E. CPTF Workflow Example

To demonstrate the practical application and efficacy of the proposed Context-Preserving
Token Filtering (CPTF) mechanism, we present an example workflow that illustrates the
transformation of a verbose clinical note into a reduced, semantically significant representation
and, finally, into a concise summary. This process highlights the capability of CPTF to
optimize input text for efficient processing while retaining clinically relevant information.
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Table 6: Example CPTF Workflow. From Original Clinical Note to Final Summary. This
workflow demonstrates how CPTF reduces verbosity while retaining clinically relevant
insights.

Stage Content

Input <SEX> M, <SERVICE> MEDICINE, <ALLERGIES> ibuprofen,
<CHIEF COMPLAINT> Fever, altered mental status. This is a
middle-aged male with a past medical history significant for ruptured
AVM, status post craniotomy, and prior intracranial abscess, who is
presenting today to the emergency department with fever and altered
mental status. On admission, he was noted to be febrile and somewhat
confused. A non-contrast CT scan of the head was performed which
showed no acute intracranial abnormalities. Laboratory workup re-
vealed elevated CRP and thrombocytosis. The patient was subsequently
diagnosed with a urinary tract infection due to Klebsiella species and
prostatitis. He was started on broad-spectrum antibiotics. Neurology
and infectious disease teams were consulted for further management.
A PET scan was obtained which was suggestive of prostatitis.

CPTF Output <SERVICE> MEDICINE, <CHIEF COMPLAINT> Fever, altered
mental status. Middle-aged male with history of ruptured AVM, cran-
iotomy, and intracranial abscess presenting with fever and altered
mental status. On admission, febrile and confused. CT head showed no
acute intracranial abnormalities. Labs showed elevated CRP and throm-
bocytosis. Diagnosed with Klebsiella UTI and prostatitis. Started on
antibiotics. Neurology and infectious disease consulted. PET scan
suggestive of prostatitis.

Summary Patient with ruptured AVM and intracranial abscess presented with
fever and altered mental status. Imaging showed no acute intracranial
changes. Labs revealed elevated CRP. Diagnosed with Klebsiella UTI
and prostatitis, treated with antibiotics. Follow-up with neurology and
infectious disease advised.

The workflow, illustrated in Table 6, demonstrates the transformation of unstructured
clinical text through three distinct stages. It begins with the original clinical note, which
comprises verbose and unstructured text. This input, while containing critical medical
insights, is often interspersed with redundant and extraneous details that hinder computa-
tional efficiency. The Context-Preserving Token Filtering (CPTF) mechanism is then applied
to process the input text, dynamically identifying and retaining semantically significant
tokens essential for downstream tasks. By filtering out irrelevant and redundant information,
CPTF reduces verbosity and computational overhead while preserving key clinical insights.
Finally, the reduced text, enriched with contextual domain knowledge, is utilized to generate
a concise and clinically actionable summary. This final output aligns with domain-specific
requirements and effectively supports clinical decision-making by distilling complex narra-
tives into precise and meaningful insights. This example highlights the role of CPTF in
improving efficiency and preserving essential clinical details. By combining token filtering
with the knowledge-enhanced summarization pipeline, the workflow ensures that the final
output is both computationally optimized and clinically relevant.
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Appendix F. Prompting Strategies

To guide the language model’s generation process, we construct prompts in a structured
manner for each input instance. Each prompt begins with a task-specific instruction that
explicitly defines the summarization objective, optionally includes exemplar demonstrations
(in one-shot or few-shot settings), and concludes with the clinical input to be summarized.
This design grounds the model’s output in domain-specific linguistic and clinical conventions
while retaining the flexibility to accommodate the variability inherent in clinical narratives.
Integrated into our framework, this prompting strategy significantly improves the model’s
ability to produce coherent, concise, and clinically actionable summaries that facilitate
downstream tasks such as entity extraction and structured knowledge graph construction.
We evaluate three prompting paradigms—zero-shot, one-shot, and few-shot—using standard
summarization metrics, as detailed in Table 7. Empirically, few-shot prompting consistently
outperforms both zero-shot and one-shot configurations across all evaluation metrics. In
particular, higher ROUGE-L scores indicate improved lexical and structural alignment with
reference summaries. Similarly, BERT-based metrics reveal superior F1 scores, reflecting a
more effective balance between semantic precision and recall.

These results are consistent with prior findings in in-context learning, demonstrating that
incorporating a small number of representative exemplars enhances the model’s generalization
capabilities. Our findings underscore the importance of carefully engineered prompts in
optimizing language model performance on clinical summarization tasks.

Table 7: Performance Comparison of Different Prompting Strategies. Results show
that few-shot prompting achieves superior performance on ROUGE-L and BERT metrics
compared to zero-shot and one-shot approaches. Higher values indicate better performance
across all metrics.

Prompting Strategy
Lexical Alignment Semantic Alignment

BLEU-1 (%) BLEU-2 (%) ROUGE-L (%) BERT-P (%) BERT-R (%) BERT-F1 (%)

Zero-shot 11.85 6.41 8.59 79.83 81.95 80.58
One-shot 12.99 6.17 8.12 79.85 81.69 80.74
Few-shot 12.63 4.65 11.04 82.19 80.61 81.36

Appendix G. Few-Shot Prompt Design

For each input instance, the model is guided by a dynamically constructed prompt. The
prompt begins with a clear instruction, contextualizing the task as a clinical summarization
problem. It incorporates curated examples as demonstrations of the desired output style,
concluding with the specific input instance requiring summarization. This structured
approach transitions seamlessly from exemplar summaries to the new input, providing the
model with implicit guidelines for the task.
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Table 8: Few-Shot Prompt Template for Clinical Summarization. Each example
demonstrates the input structure, task-specific context, and desired output style.
These examples guide the model in generating high-quality clinical summaries for
unseen instances.

Component Example: Oncology

Instruction Summarize the provided clinical notes to produce a con-
cise, domain-specific summary. Focus on clinically relevant
information while omitting redundant details.

Input 45-year-old female with stage IV metastatic breast cancer.
Chief Complaint: Severe thoracic back pain.
Imaging: MRI spine reveals T5-T7 vertebral compression
fractures; PET-CT shows multiple bone metastases.
Treatments: Morphine IV PCA for pain management,
radiation oncology consult, zoledronic acid 4mg IV for bone
metastases, continued letrozole 2.5mg daily.
Labs: CA 15-3: 68 U/mL (elevated), alkaline phosphatase:
220 U/L.

Target Summary Patient with metastatic breast cancer underwent comprehen-
sive pain management and palliative interventions, including
morphine PCA, radiation consultation, and bone-targeted
therapy.

Component Example: Cardiology

Instruction Summarize the provided clinical notes to generate a focused
cardiology case summary.

Input 55-year-old male with history of hypertension and smoking.
Chief Complaint: Acute chest pain radiating to left arm.
Diagnostics: ECG shows ST-segment elevation in inferior
leads; Troponin I: 12.4 ng/mL (significantly elevated); Car-
diac ultrasound reveals anterior wall hypokinesis.
Interventions: Immediate cardiac catheterization, primary
PCI to right coronary artery, drug-eluting stent placement.
Medications: Aspirin 325mg, atorvastatin 80mg, metopro-
lol 25mg.
Labs: CK-MB: 22.5 ng/mL, LDL: 142 mg/dL.

Target Summary Patient diagnosed with acute myocardial infarction under-
went immediate primary percutaneous coronary intervention
with right coronary artery stenting and initiated comprehen-
sive cardiac medical management.

Component Example: Internal Medicine

Instruction Summarize the provided clinical notes to generate a concise
and medically accurate case summary.

Continued on next page
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Component Example: Oncology
Input 65-year-old female with severe COPD and 40-pack-year

smoking history.
Chief Complaint: Acute respiratory distress.
Diagnostics: Chest X-ray shows bilateral hyperinflation;
ABG: pH 7.32, PaCO2 65 mmHg; Spirometry: FEV1 32%
predicted.
Interventions: Non-invasive ventilation, IV methylpred-
nisolone 125mg, nebulized albuterol and ipratropium.
Medications: Prednisone 40mg daily, azithromycin 500mg.
Labs: WBC: 14,200/µL, sputum culture: Pseudomonas
aeruginosa.

Target Summary (To be generated)

The design emphasizes domain-specific contextualization by leveraging structured tags
that align with clinical documentation conventions. The curated few-shot examples, as
illustrated in Table 8, act as semantic anchors, enabling the model to adapt effectively
to the intricacies of medical narratives. This approach dynamically accommodates the
variability inherent in clinical notes while preserving consistency across varying inputs. By
grounding the language model’s generative capabilities in domain-specific examples, the
prompt design facilitates the production of high-quality, semantically faithful summaries.
When integrated into our Knowledge Graph-Enhanced Attention-Guided Summarization
pipeline, this methodology enhances the extraction of actionable insights from complex
medical narratives, advancing both the accuracy and utility of clinical summarization.

Appendix H. Model Selection

LLaMA 3.2 1B was chosen due to its popularity as a lightweight yet effective foundation
model. Developed by Meta AI, LLaMA (Large Language Model Meta AI) is a family of
transformer-based autoregressive models optimized for efficiency and scalability. The 1B
variant is designed for resource-constrained environments while maintaining strong perfor-
mance across various NLP tasks. Unlike traditional large-scale models, LLaMA 3.2 1B
prioritizes computational efficiency, making it a suitable choice for real-world applications
where inference speed and accessibility are critical factors. The model’s architecture incor-
porates improvements in tokenization, attention mechanisms, and optimization techniques,
enabling it to handle text generation tasks effectively with a relatively small parameter
count. Its strong performance in retrieval-augmented and few-shot learning scenarios further
supports its applicability in domains requiring efficient text processing. Given these charac-
teristics, LLaMA 3.2 1B serves as a representative baseline for evaluating the effectiveness
of lightweight language models in summarization tasks.

Appendix I. Use Case: Clinical Trial Recruitment

Efficient participant identification remains a major bottleneck in clinical trial recruitment.
Key eligibility criteria—such as age, comorbidities, prior treatments, and disease pro-

27



ConTextual

gression—are typically embedded in unstructured clinical narratives, including discharge
summaries and progress notes. The heterogeneous and verbose nature of these records makes
manual review time-consuming and error-prone. We address this challenge by introducing
a framework that leverages summarization as a preprocessing step to distill unstructured
texts into concise, semantically rich representations. Central to this approach is Context-
Preserving Token Filtering (CPTF), which selectively retains clinically salient information.
The resulting summaries are then aligned with a domain-specific Knowledge Graph (KG)
that encodes structured relationships among clinical entities (e.g., diagnoses, medications,
outcomes). In the context of a multiple sclerosis (MS) clinical trial, our framework au-
tomates the identification of relevant patient characteristics—such as relapse history or
immunotherapy exposure—by first summarizing clinical notes and then validating these
attributes through KG-based reasoning. This process minimizes manual effort, improves
consistency, and accelerates recruitment. Summarization thus serves as a critical abstraction
layer, transforming unstructured narratives into actionable representations. Combined with
KG integration, the framework enables scalable and accurate patient screening, even in
resource-limited settings, and illustrates the broader applicability of summarization-driven
workflows in clinical research.
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