
Fully Scalable MPC Algorithms for Euclidean k-Center

Artur Czumaj
University of Warwick

A.Czumaj@warwick.ac.uk

Guichen Gao
Peking University

gc.gao@stu.pku.edu.cn

Mohsen Ghaffari
MIT

ghaffari@mit.edu

Shaofeng H.-C. Jiang
Peking University

shaofeng.jiang@pku.edu.cn

April 24, 2025

Abstract

The k-center problem is a fundamental optimization problem with numerous applications
in machine learning, data analysis, data mining, and communication networks. The k-center
problem has been extensively studied in the classical sequential setting for several decades, and
more recently there have been some efforts in understanding the problem in parallel computing,
on the Massively Parallel Computation (MPC) model. For now, we have a good understanding
of k-center in the case where each local MPC machine has sufficient local memory to store some
representatives from each cluster, that is, when one has Ω(k) local memory per machine. While
this setting covers the case of small values of k, for a large number of clusters these algorithms
require undesirably large local memory, making them poorly scalable. The case of large k
has been considered only recently for the fully scalable low-local-memory MPC model for the
Euclidean instances of the k-center problem. However, the earlier works have been considering
only the constant dimensional Euclidean space, required a super-constant number of rounds, and
produced only k(1 + o(1)) centers whose cost is a super-constant approximation of k-center.

In this work, we significantly improve upon the earlier results for the k-center problem for
the fully scalable low-local-memory MPC model. In the low dimensional Euclidean case in Rd,
we present the first constant-round fully scalable MPC algorithm for (2 + ε)-approximation. We
push the ratio further to (1 + ε)-approximation albeit using slightly more (1 + ε)k centers. All
these results naturally extends to slightly super-constant values of d. In the high-dimensional
regime, we provide the first fully scalable MPC algorithm that in a constant number of rounds
achieves an O(log n/ log log n)-approximation for k-center.

1 Introduction
Clustering and the k-Center problem. Clustering is a fundamental task in data analysis and
machine learning. We consider a well-known clustering problem, called k-Center, in Euclidean
spaces. In this problem, given an integer parameter k ≥ 1 and a dataset P ⊂ Rd, the goal is to find
a center set C ⊂ Rd of k points, such that the following clustering objective is minimized

cost(P, C) := max
p∈P

dist(p, C). (1)

Here, dist(x, y) := ∥x− y∥2 for any two points x, y ∈ Rd, and dist(p, C) := minc∈C dist(p, c) for any
point p ∈ Rd and any set of points C ⊂ Rd.

1

ar
X

iv
:2

50
4.

16
38

2v
1

 [
cs

.D
S]

 2
3

A
pr

 2
02

5

Solving k-Center on massive data sets introduces outstanding scalability issues. To meet this
scalability challenge, practical approaches usually use several interconnected computers to solve the
problem, i.e., they resort to distributed computing. Accordingly, there has been significant recent
interest in scalable algorithms with provable guarantees for k-Center [EIM11, IM15, MKC+15,
CPP19, BEFM21, CCM23, HZ23, AG23, BBM23, BP24, LFW+24], primarily in the Massively
Parallel Computing (MPC) model, which has nowadays become the de-facto standard theoretical
model for such large-scale distributed computation settings (see, e.g., [GSZ11, BKS17, IKL+23]).

Massively Parallel Computation (MPC) model. The MPC model, introduced in [KSV10],
provides a theoretical abstraction for widely-used practical frameworks such as MapReduce [DG08],
Hadoop [Whi15], Spark [ZCF+10], and Dryad [IBY+07]. In this model, we are given a set of
machines, each with some given memory of size s (also known as local memory). At the beginning of
computation, the input (which in our case is a set of n data points from Rd) is arbitrarily distributed
among these machines, with the constraint that it must fit within each machine’s local memory.
(Hence we will require that the number of machines is Ω(n/s), for otherwise the input would not
fit the system.) The MPC computation proceeds in synchronous rounds. In each round, first,
each machine processes its local data and performs an arbitrary computation on its data without
communicating with other machines. Then, at the end of each round, machines can communicate by
exchanging messages, subject to the constraint that for every machine, the total size of the messages
it sends or receives is O(s). When the algorithm terminates, MPC machines collectively output the
solution. The goal is to finish the computational task using as small as possible number of rounds.

Local memory regimes and full scalability. The central parameter determining the computa-
tional model is the size of the local memory s. Unlike the input size n, local memory is defined by
the hardware provided and as such, one would like the relation between s and n to be as flexible
as possible. Therefore an ideal MPC algorithm should be fully scalable, meaning that it should
work with s = nσ for any constant σ ∈ (0, 1). The importance of designing fully scalable MPC
algorithms has been recently observed (cf. [BW18]) for clustering problems like k-Center (and
also k-means and k-median), where the prior research (see below) demonstrates that the problem’s
difficulty changes radically depending on whether s = Ω(k) or not, i.e., whether one machine can
hold the entire set of proposed centers or not. It is furthermore desirable for the algorithm to use a
near-linear total memory.

Prior work with high local memory requirements. In the non-fully scalable regime, when
s = Ω(k), a classical technique of coresets [Har04, HM04] can be applied to reduce the n input
points into a (1 + ε)-approximate proxy with only O(k) points (ignoring f(d) · poly(log n) factors).
For k-Center, provided that s = Ω(knγ) for some constant γ ∈ (0, 1) [BBM23], this small proxy
can be computed in O(1) MPC rounds and moved to a single machine. The clustering problem
(in fact, its approximate version because of the approximation caused by the use of coresets) can
then be solved locally without further communication in a single MPC round. However, the coreset
approach is not applicable when s = o(k), because coresets suffer a trivial size lower bound of Ω(k)
making the approach sketched above unsuitable. Hence, new techniques must be developed for fully
scalable algorithms when local memory is sublinear in k.

Several other works for k-Center, although not using a coreset directly, also follow a similar
paradigm of finding a sketch of poly(k) points in each machine [EIM11, MKC+15, HZ23, AG23],
and therefore they still require s = Ω(k). We remark that these results work under general metrics
with distance oracle, which is a setting very different from our Euclidean setting. This fundamental

2

difference translates to different flavor of studies: in general metrics not much more can be done
than using the triangle inequality, whereas in Rd we need to investigate what Euclidean properties
are useful for fully scalable algorithms.

Toward fully scalable MPC algorithms. To combat these technical challenges, several recent
works have designed fully scalable MPC algorithms for k-Center and for related clustering problems,
including k-Median and k-Means [BW18, BEFM21, CLN+21, CMZ22, CCM23, CGJ+24]. These
MPC algorithms are fully scalable in the sense that they can work with s = nσ for any constant
σ ∈ (0, 1). Indeed, they usually work with any s ≥ f(d) poly log n regardless of k (albeit many of
these results output more than k centers, only achieving a bi-criteria approximation). Therefore, in
particular, despite the inspiring recent progress, fully scalable MPC algorithms for k-Center are
poorly understood. The state-of-the-art algorithm (for geometric k-Center and only for d = O(1))
is by Coy, Czumaj, and Mishra [CCM23]: it achieves a super-constant approximation ratio of
O(log∗ n) (improving over an O(log log log n)-rounds bound from an earlier work of Batteni et al.
[BEFM21]), using k + o(k) centers; this violates the constraint of using at most k centers and works
in a super-constant O(log log n) number of rounds. These bounds, which are stated for the standard
regime of s = nσ with a constant σ ∈ (0, 1), show a drastic gap to the above-mentioned bounds
achieved in the fully scalable s = Ω(k) regime.

Challenges of high dimensionality. Apart from the fully-scalability, the high dimensionality of
Euclidean spaces is another challenge in designing MPC algorithms. Indeed, there has been emerging
works that address high dimensionality in MPC [BW18, CLN+21, CMZ22, EMMZ22, CGJ+24,
JMNZ24, ABJ+25]. Unfortunately, all previous fully-scalable MPC algorithms for k-Center only
work for low-dimensional regime since it requires exp(d) dependence in d in local space, and fully-
scalable MPC algorithms suitable for high dimension, especially those with poly(d) dependence,
constitutes an open area of research. Overall, there has been a large gap in fully-scalable algorithms
for k-Center under both low- and high-dimensional regime.

1.1 Our Results

We give new fully scalable MPC algorithms for Euclidean k-Center and we systematically address
both the low-dimensional and high-dimensional regimes. Our results in low dimension significantly
improve previous results simultaneously in various aspects (i.e., approximation ratio, round complex-
ity, etc.). We also obtain the first results for high dimension, and our approximation ratio bypasses
several natural barriers.

Low-dimensional regime. In low dimension, we provide the first fully scalable MPC algorithm
that achieves a constant approximation to k-Center, running in a constant number of rounds
(Theorem 1.1). This result significantly improves the previous fully scalable algorithms for k-
Center [BEFM21, CCM23] in several major aspects: by achieving constant round complexity,
better approximation factor, and true approximation (without bi-criteria considerations that allow
slightly more than k centers).

Theorem 1.1. There exists an MPC algorithm that given ε ∈ (0, 1), k ≥ 1, and a dataset P ⊂ Rd

of n points distributed across MPC machines with local memory s ≥ (Ω(dε−1))Ω(d) poly log n, with
probability at least 1− 1/n computes a (2 + ε)-approximate solution to k-Center, using O(logs n)
rounds and total memory O(n · poly log n · (O(dε−1))O(d)).

3

Furthermore, we can improve the (2 + ε) approximation bound if we allow bi-criteria approx-
imations: we design a (1 + ε)-approximation k-Center algorithm that uses (1 + ε)k centers
(Theorem 1.2). This bi-criteria approximation is almost optimal, and is the first of its kind in the
literature.
Theorem 1.2. There exists an MPC algorithm that given ε ∈ (0, 1), k ≥ 1, and a dataset P ⊂ Rd

of n points distributed across MPC machines with local memory s ≥ (Ω(dε−1))Ω(d) poly log n, with
probability at least 1 − 1/n computes a (1 + ε, 1 + ε)-approximate solution1 to k-Center, using
O(logs n) rounds and total memory O(n · poly log n · (O(dε−1))O(d)).

Observe that for the memory regime of s = nσ with a constant σ ∈ (0, 1), both Theorems 1.1
and 1.2 run in a constant number of rounds. Moreover, Θ(logs n) is the complexity of far more
rudimentary tasks, e.g., outputting the summation of n numbers (see, e.g., [RVW18]). The
dependence on d in the memory bounds is 2Θ(d log d). Thus, for any constant δ ∈ (0, 1), if d =
o(log n/ log log n), then the algorithms work in a constant number of rounds with local memory
s ≥ nδ and total memory n1+o(1), which is the regime studied in the previous works on fully scalable
algorithms for k-Center [BEFM21, CCM23]. Furthermore, if d = o(log log n/ log log log n), then
the total memory is in the desirable regime of O(n poly log(n)).

High-dimensional regime. Next, we go beyond the low-dimensional regime and explore the
high dimension case where d can be as large as O(log n).2 For this regime, we provide the first
fully scalable MPC algorithm for k-Center, and it achieves an O(log n/ log log n)-approximation,
running in a constant number of rounds (Theorem 1.3).
Theorem 1.3. There exists an MPC algorithm that given ε ∈ (0, 1), k ≥ 1, and a dataset P ⊂ Rd

of n points distributed across MPC machines with local memory s ≥ poly(d log n), with probability at
least 1−1/n computes an O(ε−1 log n/ log log n)-approximate solution to k-Center, using O(logs n)
rounds and total memory O(n1+ε poly(d log n)).

We are not aware of any earlier fully scalable MPC algorithms for k-Center in high dimension
that we could compare with. In fact, fully scalable MPC algorithms for clustering problems in high
dimension are generally less understood, and the only known result is an O(log2 n)-approximation
for k-Median [CLN+21] (and in fact this ratio may be improved to O(log1,.5 n) using the techniques
from [AAH+23] although it is not explicitly mentioned), and as far as we know, nothing is known
for k-Center and k-Means. These existing results for k-Median rely on the tree embedding
technique, and currently only an O(log1.5 n)-distortion is known [AAH+23] (which translates to
the ratio). As a result, even if these techniques could be adapted for k-Center, it would only
provide an O(log1.5 n)-approximation, which falls short of the O(log n/ log log n)-approximation
achieved by our method; in fact, our bound is even better than the fundamental lower bound of
Ω(log n)-approximation of tree embedding. This is not to mention the added technical difficulty of
using the tree embedding: its expected distance distortion guarantee is too weak to be useful for
the “max” aggregation of distances in k-Center.

1.2 Technical Overview

Our algorithms for k-Center rely on variants of the classic reductions to geometric versions of the
ruling set (RS) and minimum dominating set (MDS) problems, which are fundamental problems in

1An (α, β)-approximate solution to k-Center (also called a bi-criteria solution) is a center set C ⊂ Rd that has at
most βk centers and has cost at most α times the optimal cost of using at most k centers.

2As also observed in e.g., [CLN+21, CGJ+24], one can assume d = O(log n) without loss of generality by a
Johnson-Lindenstrauss transform.

4

distributed computing. We briefly describe the reductions in Section 1.2.1, particularly to mention
our exact setup of RS and MDS, and state the results we obtain for each. Then in Section 1.2.2
and Section 1.2.3, we provide a technical overview of our proposed MPC algorithms for these
results, focusing on the key challenges and core techniques. While the relation between k-Center
and RS/MDS is well-known and has also been used in MPC algorithms for k-Center in general
metrics [HZ23, AG23], however, it has not been studied for Euclidean k-Center in the fully
scalable setting. This is a key technical difference to previous fully scalable algorithms for Euclidean
k-Center [BEFM21, CCM23] which employ successive uniform sampling to find centers.

Both our low dimension and high dimension results rely on geometric hashing techniques (in
Section 3), through which we utilize the Euclidean structure. For low dimension, our algorithms
are based on natural parallel algorithms where similar variants were also considered in graph MPC
algorithms, and the geometric hashing is the key to achieve the new bounds. For high dimension,
our algorithm is a variant of the one-round version of Luby’s algorithm. Previously, the one-round
Luby’s algorithm is known to yield a Θ(log n) bound for RS in general graphs. However, our new
variant crucially makes use of the Euclidean structure via geometric hashing, and it breaks the
mentioned Θ(log n) bound in general graphs, improving it by an O(log log n) factor in the Euclidean
setting; See Section 1.2.3 for a more formal discussion.

1.2.1 Reductions and Results for Geometric RS and MDS

To establish Theorems 1.1 to 1.3, we begin with introducing the definitions and reductions for
RS and MDS. Let τ, α > 0 be parameters, and let OPT be the minimum cost of the solution for
k-Center.

Geometric RS and MDS. A subset S ⊆ P is called a τ -independent set (τ -IS) for P , if for
every x ̸= y ∈ S, dist(x, y) > τ , and we say S ⊆ Rd is a τ -dominating set (τ -DS) for P , if for every
x ∈ P , dist(x, S) ≤ τ . A subset S ⊆ P is a (τ, α)-ruling set ((τ, α)-RS) for P if S is both a τ -IS
and α-DS for P . A τ -MDS is a τ -DS with the minimum size, denoted as MDSτ (P). A related well
known notion is maximal independent set (MIS), where a τ -MIS is (τ, τ)-RS.

Reductions. It is known (see, e.g., [HS86], and also Fact 7.1) that any τ -IS of P for τ ≥ 2 OPT
must have at most k points. Therefore, an MPC algorithm that computes a (2 OPT, α)-RS of P
would immediately yield α-approximation for k-Center on P . On the other hand, for MDS, since
the optimal solution for k-Center itself is a candidate for a τ -MDS and has at most k points for
τ = OPT, a (1 + ε)-approximation to τ -MDS would yield (1 + ε)k centers. This relation helps to
obtain the desired bi-criteria approximation. Compared with the setting of RS which could only
leads to some O(1)-approximation, MDS operates on the entire Rd. This is necessary for the (1 + ε)
ratio since centers need to be picked from Rd instead of only from P .

Results for RS and MDS. We obtain the following results for RS and MDS, in both low
and high dimension. Combining with the abovementioned reductions, these results readily imply
Theorems 1.1 to 1.3. All results run in O(logs n) rounds which is constant in the typical setup of
s = nσ for constant 0 < σ < 1. In low dimension, we obtain (τ, (1 + ε)τ)-RS and a (1 + ε)τ -DS
whose size is at most (1 + ε) times the τ -MDS (which in a sense is a “bi-criteria” approximation).
Both results use (ε−1d)O(d) · poly(log(n)) local space, and n poly(d log n) · (ε−1d)O(d) total space. In
high dimension, we obtain (τ, (ε−1 log n/ log log n)τ)-RS, using (ideal) poly(d log n) local space and
n1+ε poly(d log n) total space. These results are summarized in Table 1.

5

guarantee local space total space reference

(τ, (1 + ε)τ)-RS (ε−1d)O(d) · Õ(1) Õ(n) · (ε−1d)O(d) Lemma 4.1
(1 + ε)τ -DS of size (1 + ε)|MDSτ (P)| (ε−1d)O(d) · Õ(1) Õ(n) · (ε−1d)O(d) Lemma 5.1
(τ, O

(
ε−1 log n

log log n

)
τ)-RS Õ(1) Õ(n1+ε) Lemma 6.1

Table 1: RS and MDS results, where Õ hides poly(d log n) factor, all run in O(logs n) rounds.

We remark that MIS, RS, and MDS are fundamental yet notoriously challenging problems in
MPC. Existing studies on these problems are mostly under (general) graphs or general metric
spaces, and they achieve worse bounds than ours, e.g., they need to use a super-constant number of
rounds [Ona18, GU19, GGJ20, GLM+23, GP24, JKPS25], and/or are not fully scalable [CKPU23,
HZ23, GP24]. However, our results seem to suggest that these problems in Euclidean spaces behave
very differently than in graphs/general metrics. On the one hand, we obtain fully-scalable algorithms
in both low and high dimension, but on the other hand, our algorithms are only “approximations” to
MIS and MDS; for instance, in low dimension, both our RS and MDS results have (1 + ε) factor off
in the dominating parameter to MIS and MDS. For RS/MIS and MDS without violating dominating
parameter, we are only aware of a line of research in distributed computing for growth-bounded
graphs, see Schneider and Wattenhofer [SW10], which indirectly lead to O(log∗ n)-rounds fully
scalable algorithms for MIS/MDS in Rd for constant d. It is still open to design fully scalable
algorithms for MIS, even in 2D, in constant number of rounds. In fact, this problem is already
challenging on a 2D input set with diameter O(τ). Nevertheless, our RS and MDS results suffice for
approximations for k-Center.

1.2.2 RS and MDS in Low Dimension

The RS and MDS in low dimension starts with a rounding to a ετ/
√

d-grid. Specifically, we move
each data point to the nearest ετ/

√
d-grid point, whose coordinates are multiples of ετ/

√
d, denoted

as P ′.3 Then we show that any (τ, ατ)-RS to P ′ yields a (τ, (1 + ε)ατ)-RS to the original dataset
P , and similarly, any τ -DS to P ′ yields a (1 + ε)τ -DS to P . Hence, we can assume without loss of
generality that P is a subset of the said grid, and find RS and MDS on it. This rounding is useful,
since it ensures that in any subset of Rd of diameter γ · τ (γ ≥ 1), the number of the grid points is
at most (O(dγ/ε))d. Hence, as long as s ≥ Ω(d/ε)d, we can afford to bring all grid points in a small
area to a single machine and solve RS/MDS on it locally.

An overview for the proof of RS. In fact, on the rounded dataset P , we find a (τ, τ)-RS which
is as well τ -MIS on P . A standard way of finding MIS in a graph is a greedy algorithm: start with
the entire vertex set, and if the current vertex set is nonempty, then find any vertex x, add it to the
output (MIS) set, remove all vertices that are adjacent to x from the current vertex set, and repeat.
In the geometric setting, we can use an improved version where in each iteration we identify a large
number of vertices that are independent, instead of only one. Specifically, we partition the entire Rd

into some T groups W1, . . . ,WT , such that each group consists of regions that are τ apart from each
other. Furthermore, each region has a bounded diameter ατ for some α ≥ 1. 4 For d = 2, there is a

3In our proof we actually need to use a slightly different rounding to make sure the image also belongs to P .
4The reader may notice the reminiscence with the widely-used notion of network decomposition in graphs [AGLP89,

RG20]. In that notion, the node set V of the graph is partitioned into T = O(log n) groups V1, . . . , VT , such that in
the subgraph induced by each Vi, each connected component has diameter at most α = O(log n).

6

simple way to partition with T = O(1) and α = O(1), as illustrated in Figure 1. For general d, we
give a partition that achieves T = O(d) and α = O(d1.5). See Lemma 3.1 for the precise statement.

𝜏

𝜏

Figure 1: A space partition in 2D with T = 3 and α = 5. The first group is squares with side-length
5τ/
√

2 (the blank space), the second is the red-shaded rectangles, and the third is the cross-like
structures in blue shades.

A key property of this decomposition is that the MIS computation in each region can be done
independently within each group, as regions are τ -separated. This yields an O(T logs n)-round
MPC algorithm: iterating over the T groups W1, . . . ,WT , computing an MIS in each region in
parallel, and removing points within τ from selected MIS points before proceeding to the next
group. Since each region in any group is of diameter ατ which is at most d1.5τ , there are at most
O(ε−1d)O(d) data points in each region, using the assumption of the rounded instance. Hence, as
long as s ≥ Ω(ε−1d)Ω(d), the data points in each region can be stored in a single machine. Each
such iteration can be implemented in O(logs n) MPC rounds, and thus the overall scheme which
has T iterations takes O(T logs n) MPC rounds.

To reduce this to O(logs n) rounds, we exploit the locality of the above procedure. Instead
of iterating sequentially over groups, each region R ∈ Wi for 1 ≤ i ≤ T directly determines its
final subset R′ by identifying the influence from earlier groups ⋃j<iWj that are within a bounded
range O(iτ + (i− 1)ατ) ≤ poly(d) · τ . Since an MIS selection only affects a τ -radius per iteration,
and each region has a diameter at most ατ , the cumulative affected area over i iterations remains
bounded. Leveraging the rounding property again, the number of relevant regions remains at most
O(ε−1d)O(d), allowing all necessary regions to be replicated locally. This ensures that each region
can compute its MIS in parallel in O(logs n) rounds, provided s ≥ Ω(ε−1d)Ω(d) poly(log n).

An overview for the proof of MDS. We start with a weaker local space bound that requires a
2Ω(d2) dependence of d in s, instead of the claimed 2Ω(d log d) bound. Our approach starts with a
simple algorithm: partition Rd into hypercubes of side-length ατ , where α ≥ 1 is a parameter to be
determined. Then send the data points in each hypercube to a single machine, and solve locally
the exact MDS of each hypercube. Taking the union of these MDSs forms the final dominating
set. Clearly, this returns a dominating set for the entire dataset, but it may not be of small size.
Intuitively, the major gap in this algorithm is when the optimal solution uses points located at the
boundary of the hypercubes to dominate the adjacent hypercubes, while the algorithm described
here only uses a point to dominate points in a single hypercube.

To address this issue, we observe that bridging the gap between the algorithm’s solution and
the optimal solution requires only bounding the number of points in the outer “τ -extended region”
of each hypercube R, denoted as U∞

τ (R), that intersect with the optimal solution. Specifically, it

7

suffices to show that this number is at most an ε-fraction of the optimal solution size. To establish
this bound, we apply an averaging argument: If we shift the entire hypercube partitioning by some
multiple of O(τ), there must exist a shift that satisfies our requirement, provided that the hypercube
side-length ατ is sufficiently large. This may be visualized more easily in 1D: each U∞

τ (R) is simply
two intervals of length τ to the left and right of R (which itself is also an interval, whose length
is ατ). Then by shifting a multiple of O(τ), the two intervals of U∞

τ , after these shifts, form a
partition of the entire R. Unfortunately, this simple shifting of hypercubes only leads to α = 2O(d),
which translates to a 2O(d2) dependence of d in the local space s. The main reason for this α = 2O(d)

bound is that the same point in the optimal solution may belong to up to 2O(d) sets U∞
τ (R) (for

some hypercube R).
To further reduce α = poly(d), which leads to the dO(d) local space bound, we need to employ a

more sophisticated geometric hashing. We state this in Lemma 3.1 and Fact 3.2. This hash maps
each point in Rd into some bucket, and we would replace the hypercubes in the abovementioned
algorithm with such buckets. An important property of this bucketing is that any point in Rd

(hence any point in the optimal solution) can intersect at most poly(d) number of sets U∞
τ (R)

over all buckets R, instead of 2O(d) as in the simple hypercube partition. However, the use of this
new bucketing also introduces additional issues. Specifically, since the buckets are of complicated
structure, it is difficult to analyze the even more complex set U∞

τ (R) for the averaging argument.
To this end, we manage to show (in Lemma 3.1, third property) that the union of ⋃R U∞

τ (R) is
contained in the complement of a Cartesian power of (1D) intervals (e.g., ([1, 2] ∪ [3, 4])d). This
structure of Cartesian power is similar enough to the U∞

τ annulus of hypercubes (which may be
handled by projecting to each dimension), albeit taking the complement. This eventually enables us
to use a modified averaging argument to finish the proof.

1.2.3 RS in High Dimension

Our (τ, O(ε−1 log n/ log log n)τ)-RS in high dimension is a modification of the well-known Luby’s
algorithm. In this discussion, we assume ε = Θ(1) and ignore this parameter. The first modification
is that, unlike the standard Luby’s algorithm which runs for O(log n) iterations [Lub85], our
algorithm only runs Luby’s for one iteration: for every data point x ∈ P , generate a uniform random
value h(x) ∈ [0, 1], and then for each x ∈ P , include x in the RS if x has the smallest h value in
BP (x, τ) (the ball centered at x with radius τ , intersecting points in P). This one-round Luby’s
algorithm achieves (τ, O(log n)τ)-RS (with high probability), and we also show that this is tight in
general graphs; see Appendix B.5 However, this is worse than the O(log n/ log log n) factor that we
can achieve.

A new preprocessing step based on geometric hashing. Hence, we need to introduce the
second important modification to this one-round Luby’s algorithm in order to bypass the O(log n)
factor. Specifically, before running the one-round Luby’s algorithm, we run a preprocessing step to
map the data points to the buckets of a geometric hashing. The geometric hashing that we use
is the consistent hashing [CJK+22] (see Lemma 3.4), and the concrete guarantee in our context
is that, each hash bucket has diameter ℓ := O(log n/ log log n)τ , and for any subset S ⊆ Rd with
diameter at most O(τ), the number of buckets that S intersects is at most Λ := poly(log n). We
pick an arbitrary point in P from each (non-empty) bucket, denoting the resultant set as P ′, and we
run the one-round Luby’s on P ′. Clearly, this hashing step only additively increases the dominating
parameter by ℓ = O(log n/ log log n)τ which we can afford. At a high level, the use of this rounding

5Similar bounds were also mentioned without proof in the literature, see e.g. [Gha22, Exercise 1.12]. We give a
proof (sketch) for this tight bound for completeness.

8

is to limit the size of the O(τ)-neighborhood for every point, which is analogue to the degree of a
graph. In a sense, what we prove is that one-round Luby’s on graphs with degree bound poly(log n)
yields an O(log n/ log log n)-ruling set.

Next, we explain in more detail why this hashing step helps to obtain O(log n/ log log n)τ
dominating parameter. This requires us to do a formal analysis to one-round Luby’s algorithm
(which did not seem to appear in the literature), and utilize the property of hashing that for every
x ∈ P ′, |BP ′(x, τ)| ≤ Λ = poly(log n).

A re-assignment argument. Let R be the resultant set found by running one-round Luby’s
on P ′. Fix a point p ∈ P ′, and we need to upper bound dist(x, R). To this end, we interpret the
algorithm as defining an auxiliary sequence S = (x0 := p, x1, . . . , xT) (where T is also random).
Specifically, S is formed in the following process: we start with i = 0, whenever xi is not picked
into R we define xi+1 as the point with the smallest h value in BP ′(x, τ), and we terminate the
procedure otherwise. Clearly, dist(x, R) ≤ Tτ , and it suffices to upper bound T (which is a random
stopping time). Indeed, a similar plan of re-assignment argument has been employed in [CGJ+24],
but the definition and analysis of S is quite different since they focus on facility location.

Now, a crucial step is to bound the probability of the event that, given the algorithm picks a
prefix (x0, . . . , xi) of sequence S, the algorithm picks some new xi+1 ∈ P ′ instead of terminating.
We call this extension probability. Ideally, if we can give this extension probability a universal upper
bound γ < 1, then for t ≥ 1, the probability that T > t is at most γt, which decreases exponentially
with respect to t. However, this seemingly good bound may not immediately be sufficient, since one
still needs to take a union bound over sequences of length t, because the sequence S is random. A
naïve bound is nt since each xi may be picked from any point in P ′, and this is positively large (i.e.,
γt cannot “cancel it out”.). Moreover, an added difficulty is that the “ideal” case of having universal
upper bound γ for the extension probability may not be possible in the first place.

Our analysis resolves both difficulties. We show in Lemma 6.9 that the extension probability is
roughly upper bounded by |BP ′(xi, τ)|/|⋃i

j=1 BP ′(xj , τ)| (recalling that (x0, . . . , xi) is given). For
the union bound, since the hashing guarantees that |BP ′(x, τ)| ≤ Λ = poly(log n) for any x ∈ P ′, we
can approximate the size |BP ′(xi, τ)| by rounding to the next power of 2, denoted as ⌈|BP ′(xi, τ)|⌉2,
and this yields only O(log log n) possibilities after rounding. For a (fixed) sequence S′ := (x0, . . . , xm),
we define its configuration as the rounded value of (⌈|BP ′(x1, τ)|⌉2, . . . , ⌈|BP ′(xm, τ)|⌉2). We can do
a union bound with respect to the configuration of the sequences, and there are at most O(log log n)t

number of configurations for length-t sequences.
Finally, given a sequence S′ = (x0, . . . , xt) with a given configuration (for some t), to upper bound

the extension probability, we need to analyze ∏i
|BP ′ (xi,τ)|

|
∑i

j=1 BP ′ (xj ,τ)|
, and we show in a key Lemma 6.12

that this is upper bounded by exp(−Ω(t) log(t/ log Λ)). Therefore, we can pick t = log n/ log log n,
apply the union bound and conclude that Pr[T > t] ≤ (log log n)t · exp(−Ω(t) log(t/ log Λ)) ≤
1/ poly(n).

We also provide a (sketch) of how to slightly modify our analysis to show the one-round Luby’s
algorithm yields O(τ, O(log n)τ)-RS, in Appendix B. As mentioned, this did not seem to appear in
the literature. We also provide a tight instance for this one-round Luby’s algorithm, in Appendix B.2.

1.3 Related Work

The k-Center problem, as one of the fundamental clustering problems [Gon85, HS85, HS86], has
been studied extensively in sequential setting, and more recently, also in parallel setting. For MPC
algorithms for k-Center, most of prior works have focused on non-fully scalable algorithms that

9

have a dependence of Ω(k) in the local memory s and can generally achieve O(1) rounds. In general
metric space, [EIM11] obtains a large-constant approximation, using O(1/σ) rounds if the local
memory is poly(k)nσ, which offers a tradeoff between the number of rounds and the local memory.
More recent works aim to achieve a smaller constant ratio, down to factor 2, at the cost of having
local memory size with a fixed polynomial dependence in n and/or a polynomial dependence in the
number of machines [MKC+15, IM15, HZ23, AG23]. There has been also some k-Center studies
on doubling metrics instances (which is a generalization of Rd) [CPP19, BBM23], where in the
bi-criteria (or with outliers) setting, not only a constant but even a (1 + ε) ratio can be achieved
due to the low-dimensional structure [BBM23].

Fully-scalable MPC algorithms have been also studied for related clustering problems of k-
Median and k-Means in Rd. [CLN+21] describes a hierarchical clustering algorithm that in a
constant number of rounds returns a poly log(n)-approximation for k-Median using s = poly(d) ·nσ

local memory; we are not aware of any similar approximation for k-Means (even when d = O(1)
and with poly log n ratio). Furthermore, since the techniques used in [CLN+21] rely critically on
the approach of hierarchically well-separated trees, they are unlikely to lead to sub-polylogarithmic
approximation ratio algorithms. On the other hand, bi-criteria approximation are known for
both k-Median and k-Means [BW18, CGJ+24], and in a constant number of rounds and with
s = poly(d) · nσ local memory, one can approximate k-median and k-means with O(1) ratio using
(1 + ε)k centers [CGJ+24]. In the same setting, it is also possible to achieve a (1 + ε)-approximation
for special inputs [CMZ22].

2 Preliminaries
For integer n ≥ 1, let [n] := {1, . . . , n}. For a mapping f : X → Y , denote f−1(y) := {x ∈ X :
f(x) = y} as the pre-image of f . For some d ≥ 1, a set S ⊆ Rd and x ∈ Rd, write S + x to denote
{x + y : y ∈ S}. For t > 0, let Gt ⊆ Rd be the set of t-grid points, that is, points whose coordinates
take values as integer multiples of t. For a subset S ⊂ Rd, let diam(S) := maxx,y∈S dist(x, y) be its
diameter. Similarly define dist∞ and diam∞ as the ℓ∞ version.

Neighborhoods. Let B(x, r) := {y ∈ Rd : dist(x, y) ≤ r} be a ball centered at x ∈ Rd with
radius r ≥ 0. For a point set X ⊆ Rd, let BX(x, r) := B(x, r) ∩X denote a ball inside X. For a
point set S ⊂ Rd and γ > 0, let N∞

γ (S) be the γ-neighborhood of S under the ℓ∞ distance, i.e.,

N∞
γ (S) := {x ∈ Rd : ∃s ∈ S, ||x− s||∞ ≤ γ},

and let U∞
γ (S) := N∞

γ (S) \ S be the γ-annulus of S under ℓ∞ distance.

Geometric independent set, ruling set and dominating set. Let τ > 0 be some threshold,
α > 0 be some parameter and P ⊂ Rd be a dataset. A subset S ⊆ P is called a τ -independent set
(τ -IS) for P , if for every x ̸= y ∈ S, dist(x, y) > τ , and we say S ⊆ Rd is a τ -dominating set (τ -DS)
for P , if for every x ∈ P , dist(x, S) ≤ τ . A subset S ⊆ P is a (τ, α)-ruling set ((τ, α)-RS) for P if S
is both a τ -IS and α-DS for P . A τ -MDS is a τ -DS with the minimum size, denoted as MDSτ (P).
A related well known notion is maximal independent set (MIS), where a τ -MIS for P , denoted as
MISτ (P), is a (τ, τ)-RS for P .

k-Center. Recall that the objective of k-Center is defined in Section 1 as cost(P, C) for a
dataset P and center set C. Let OPT(P) be the minimum value of the solution for k-Center, i.e.,
OPT(P) := minC⊂Rd cost(P, C). When the context is clear, we simply write OPT for OPT(P).

10

Standard MPC primitives. In our algorithms we frequently use several basic primitives on
MPC with local memory s ≥ poly log(N) using total memory O(N poly log N) and number of
rounds O(logs N), where N is the size of a generic input. This includes standard procedures of
broadcast and converge-cast (of a message that is of size ≤

√
s), see e.g. [Gha19]. Goodrich et

al. [GSZ11] show that the task of sorting N numbers can also be performed deterministically in the
above setting.

Lemma 2.1 (Packing property, cf. [Pol90, Lemma 4.1]). For a point set S ⊂ Rd such that
∀x ̸= y ∈ S, dist(x, y) ≥ ρ, we have that |S| ≤ (3 diam(S)

ρ)d.

3 Geometric Hashing
We present our new geometric hashing in Lemma 3.1. This hashing is crucially used in our low
dimension results. The construction of this hashing is the same as [CJK+22, Theorem 5.3], and the
first two properties have also been established in [CJK+22]. However, the third property is new,
and is based on a careful analysis that utilizes the structure of this specific construction.

Lemma 3.1. For every β > 0, ℓ ≥ Θ(d1.5β), there is a hash function f : Rd → Rd such that the
following holds.

1. Each bucket has diameter at most ℓ, namely, for every image u ∈ f(Rd), diam(f−1(u)) ≤ ℓ.

2. The bucket set {f−1(u) : u ∈ f(Rd)} can be partitioned into d + 1 groups {Wi}di=0, such that
every two buckets S ̸= S′ in the same group Wi (0 ≤ i ≤ d) has dist(S, S′) ≥ dist∞(S, S′) > β.

3. For every 0 < τ ≤ β,
(⋃

u∈f(Rd) U∞
τ (f−1(u))

)
∩ L(z, 2b)d = ∅,6 where z := ℓ/

√
d, b := dβ + τ

and L(p, q) := ⋃
a∈Z[ap + q, (a + 1)p− q) for p > 2q.

Furthermore, it takes poly(d) space to store f and to evaluate f(x) for every x ∈ Rd.

Proof. The proof can be found in Appendix A.

Lemma 3.1 readily implies the following property. Roughly speaking, it ensures that for any point
set S with small enough ℓ∞ diameter, the number of intersected buckets in the hash is bounded.

Fact 3.2. The second property of Lemma 3.1 implies that for every S ⊂ Rd such that diam∞(S) ≤ β,
it holds that |f(S)| ≤ d + 1.

Geometric hash functions that has similar guarantee as in Fact 3.2 has been studied under the
notion of consistent hashing [CJK+22], or sparse partitions which interpret the hashing as a space
partition [JLN+05, Fil24]. Specifically, the definition of consistent hashing is stated as follows. The
consistently guarantee of Fact 3.2 is slightly stronger in the sense that the diameter bound of S is
in ℓ∞ instead of ℓ2.

Definition 3.3 ([CJK+22, Definition 1.6]). A mapping φ : Rd → Rd is called a Γ-gap Λ-consistent
hash with diameter bound ℓ > 0, or simply (Γ, Λ)-hash , if it satisfies:

• Diameter: for every image z ∈ φ(Rd), we have diam(φ−1(z)) ≤ ℓ; and

• Consistency: for every S ⊂ Rd with diam(S) ≤ ℓ/Γ, we have |φ(S)| ≤ Λ.
6Recall that the notation L(·, ·)d denotes the d-th Cartesian power of L(·, ·).

11

Lemma 3.4 gives a space-efficient consistent hashing with near-optimal parameter tradeoffs. We
rely on this parameter tradeoff in a preprocessing step (Algorithm 4) of our high dimension ruling
set result Lemma 6.1.

Lemma 3.4 ([CJK+22, Theorem 5.1]). For every Γ ∈ [8, 2d], there exists a (deterministic) (Γ, Λ)-
hash φ : Rd → Rd where Λ = exp(8d/Γ) · O(d log d). Furthermore, φ can be described using
O(d2 log2 d) bits and one can evaluate φ(x) for any point x ∈ Rd in space O(d2 log2 d).

4 MPC Algorithms for RS in Low Dimension
Lemma 4.1. There is a deterministic MPC algorithm that given threshold τ > 0, constant
ε ∈ (0, 1) and dataset P ⊆ Rd of n points distributed across MPC machines with local memory
s ≥ Ω(ε−1d)Ω(d) · poly(log n), computes a (τ, (1 + ε)τ)-RS for P in O(logs n) rounds, using total
memory O(n poly(d log n)) ·O(ε−1d)O(d).

We start with an efficient MPC reduction, stated in Lemma 4.3, that turns the input P to a
point set that satisfies the following property.

Property 4.2. A point set P satisfies the property, if ∀x ∈ Rd, ρ ≥ 1, BP (x, ρτ) ≤ (ε−1ρd)O(d).

Lemma 4.3. There exists an MPC algorithm that computes a point set P ′ ⊆ P such that P ′ satisfies
Property 4.2, and that any τ -DS for P ′ is a (1 + O(ε))τ -DS for P , within round and space bound as
in Lemma 4.1.

Proof. To define P ′, let ϕ : P → Gετ/
√

d, such that for every x ∈ P , ϕ(x) maps to the nearest point
in Gετ/

√
d of x. For every z ∈ ϕ(P), let rep(z) be an arbitrary fixed point in ϕ−1(z) ∩ P . Then,

define P ′ := {rep(z) : z ∈ ϕ(P)} ⊆ P . Clearly, this whole process can be done within the claimed
round and space as in Lemma 4.1.

Now fix a τ -DS S for P ′, and we verify that S is (1 + ε)τ -DS for P . Observe that for z ∈ ϕ(P),
we have dist(z, rep(z)) ≤ ετ . Then consider x ∈ P , we have

dist(x, S) ≤ dist(x, P ′) + max
y∈P ′

dist(y, S)

= min
z∈ϕ(P)

dist(x, rep(z)) + τ

≤ min
z∈ϕ(P)

{dist(x, z) + dist(z, rep(z))}+ τ

≤ (1 + 2ε)τ.

Finally, to bound |BP ′(x, ρτ)|, observe that

|BP ′(x, ρτ)| = |B(x, ρτ) ∩ {rep(z) : z ∈ ϕ(P)}| = |{z ∈ ϕ(P) : dist(x, rep(z)) ≤ ρτ}|,

where the second equality follows from the fact that z 7→ rep(z) (for z ∈ ϕ(P)) is one-to-one
correspondence. Let Q := {z ∈ ϕ(P) : dist(x, rep(z)) ≤ ρτ}, and it suffices to bound |Q|. To this
end, we wish to apply Lemma 2.1. Observe that Q ⊆ Gετ/

√
d. To bound the diameter of Q, consider

u ̸= v ∈ Q ⊆ ϕ(P), then by triangle inequality

dist(u, v) ≤ dist(u, rep(u)) + dist(rep(u), x) + dist(x, rep(v)) + dist(rep(v), v)
≤ 2ετ + 2ρτ

= O(ρ)τ.

12

Hence, we conclude that |BP ′(x, O(τ))| = |Q| ≤ (ε−1ρd)O(d) by Lemma 2.1. This finishes the
proof.

Consider a P ′ as in Lemma 4.3, since a τ -MIS on P ′ is also a τ -DS for P ′, then it implies that a
τ -MIS on P ′ is a (τ, (1 + O(ε))τ)-RS for P . Therefore, in the remainder of the proof, it suffices to
design an MPC algorithm that finds a τ -MIS on a point set P with the assumption that P satisfies
Property 4.2 (and we omit the notation P ′).

To proceed, our MIS algorithm relies on the following notion of geometric decomposition.

Definition 4.4. A collection W := {S1, S2, . . .} of (disjoint) point sets of Rd is an α-bounded
β-separated decomposition, or simply (α, β)-decomposition, if it satisfies the following.

1. For every S ∈ W, diam(S) ≤ α.

2. For every distinct Si, Sj ∈ W, dist(Si, Sj) > β.

In addition, we say that a set of points X ⊆ Rd admits an (α, β)-decomposition, if X can be
partitioned into some (α, β)-decomposition W.

Fact 4.5. For threshold τ > 0, let f be the hash guaranteed by Lemma 3.1 with parameter
ℓ = O(d1.5τ). Then by the second property of Lemma 3.1, the buckets of the hash can be partitioned
into d+1 groups {Wi}di=0, such that the collection of the bucketsWi is an (O(d1.5)τ, τ)-decomposition.

Proof overview. Before we present the final algorithm, we start with a more sequential version
which is listed in Algorithm 1, whose correctness is easily analyzed in Lemma 4.6. This algorithm
relies on the hash guaranteed by Fact 4.5 whose buckets can be partitioned into d + 1 groups. It
processes these d + 1 groups W0, . . . ,Wd one by one, where in a group Wi the MIS of all buckets
S ∈ Wi are computed. Our final O(1)-round algorithm is a parallel implementation of it, where we
utilize the locality of buckets among Wi’s.

Algorithm 1 Basic sequential τ -MIS algorithm for the set P satisfying Property 4.2
1: let f be the hash and let W0, . . . ,Wd be the groups of buckets from Lemma 3.1 and Fact 4.5

▷ so each Wi is an (O(d1.5)τ, τ)-decomposition
2: for i← 0, . . . , d do
3: for S ∈ Wi do
4: let Iseq

i,S ← MISτ (S ∩ P \B(Iseq
i−1, τ)) ▷ define Iseq

−1 ← ∅
5: end for
6: let Iseq

i ← Iseq
i−1 ∪

⋃
S∈Wi

Iseq
i,S

7: end for
8: return Iseq

d

Lemma 4.6. Algorithm 1 returns a τ -MIS for P .

Proof. The algorithm processes each Wi sequentially, remove the points that are within distance τ
from the current independent set Iseq

i−1 from Wi, and finds MIS on the remaining points of buckets
in Wi. It is clear that the found sets Iseq

i for i = 0, . . . , d are all independent, and in particular the
returned set Iseq

d is independent. Furthermore, since all Wi’s are processed and that they form a
partition of Rd, Iseq

d is maximal. This finishes the proof.

13

Notice that every distinct buckets S, S′ ∈ Wi are τ apart. Hence, in Algorithm 1, the MIS Iseq
i,S

may be computed in parallel for all S ∈ Wi. However, these MIS also needs to know Iseq
i−1, which

depends on the buckets inW0, . . . ,Wi−1, and this requires to (sequentially) examiningW0, . . . ,Wi−1
before computing Iseq

i,S .
A natural idea for avoiding this sequential computing, is to prune the buckets in setsW0, . . . ,Wi−1,

so that only those “relevant” to S are kept. Specifically, we are to figure out subsets W ′
j ⊆ Wj

(which depends on i and S) to replaceWj , such that it suffices to simulate the MIS on buckets inW ′
j

for computing Iseq
i,S . We shall see that these subsets W ′

j are not only of small size, i.e., O(ε−1d)O(d),
but also can be easily identified since they consist of buckets that are “close enough” to S.

Making use of locality ofWi’s. We implement this plan and derive a local version of Algorithm 1,
listed in Algorithm 2. This algorithm aims to simulate the MIS, Iseq

i,S , for every 0 ≤ i ≤ d and S ∈ Wi.
The difference to Algorithm 1 is that it only uses the restricted W ′

j = {S′ ∈ Wj : dist(S′, S) ≤
O(d2.5) · τ} for j ≤ i − 1 in replacement of buckets in Wj . Next, we show that this choice of
W ′

j = {S′ ∈ Wj : dist(S′, S) ≤ O(d2.5) · τ} indeed suffices for simulating Algorithm 1 locally.

Algorithm 2 Localized τ -MIS algorithm for the set P satisfying Property 4.2
1: let f be the hash and let W0, . . . ,Wd be the groups of buckets from Lemma 3.1 and Fact 4.5

▷ so each Wi is an (O(d1.5)τ, τ)-decomposition
2: for i← 0, . . . , d do
3: for S ∈ Wi do
4: for j ≤ i− 1, let W ′

j ← {S′ ∈ Wj : dist(S′, S) ≤ O(d2.5) · τ} be the relevant set of buckets
from Wj

5: let I loc
0 ← ∅

6: for j ← 0, . . . , i− 1 do
7: let I loc

j ← I loc
j−1 ∪

⋃
S′∈W ′

j
MISτ (S′ ∩ P \B(I loc

j−1, τ))
8: end for
9: let I loc

i,S ← MISτ (S ∩ P \B(I loc
i−1, τ))

10: end for
11: end for
12: return ⋃0≤i≤d,S∈Wi

I loc
i,S

Lemma 4.7. For every 0 ≤ i ≤ d, S ∈ Wi, we have Iseq
i,S = I loc

i,S , where Iseq is as in Algorithm 1
and I loc is as in Algorithm 2.

Proof. Consider some 0 ≤ i ≤ d and S ∈ Wi. By definition, Iseq
i,S = MISτ (S ∩ P \ B(Iseq

i−1, τ)) =
MISτ (S ∩ P \ B(⋃j≤i−1,S′∈Wj

Iseq
j,S′ , τ)). By the first equality, we know that Iseq

i,S ⊆ S, and by the
second equality, we can see that Iseq

i,S only depends on Iseq
j,S′ ’s with j ≤ i − 1, S′ ∈ Wj such that

B(Iseq
j,S′ , τ) ∩ S ̸= ∅, which is equivalent to dist(Iseq

j,S′ , S) ≤ τ .
Now, apply this argument again on each abovementioned Iseq

j,S′ , it holds that such Iseq
j,S′ only

depends on those Iseq
j′,S′′ with j′ ≤ j − 1, S′′ ∈ Wj′ such that dist(S′′, S′) ≤ τ which further implies

dist(S′′, S) ≤ 2τ + diam(S′) ≤ 2τ + O(d1.5)τ , where the last inequality holds by Fact 4.5. Apply
this argument recursively, one can eventually conclude that Iseq

i,S only depends on Iseq
j,S′ ’s such that

j ≤ i− 1, S′ ∈ Wj and dist(S′, S) ≤ i · τ + (i− 1)O(d1.5)τ ≤ O(d2.5)τ , since there is at most d + 1
groups.

14

Therefore, to evaluate Iseq
i,S , one only needs to know buckets W ′

j = {S′ ∈ Wj : dist(S′, S) ≤
O(d2.5) · τ}, simulate Algorithm 1 on W ′

j for j ≤ i− 1 to obtain some I ′, remove from S the points
that are within I ′, and find MISτ (S∩P \B(I ′, τ)). Finally, to obtain Iseq

i,S = I loc
i,S , it remains to ensure

that the MIS on the same subset in both Algorithm 1 and Algorithm 2 are the same/consistent.
Luckily, this can be trivially achieved since one can use a deterministic greedy maximal independent
set algorithm for the purpose. This finishes the proof of Lemma 4.7.

Lemma 4.8. For each 0 ≤ j ≤ d−1,
∑

S′∈W ′
j
|S′∩P | ≤ O(ε−1d)O(d) where W ′

j is as in Algorithm 2
line 4.

Proof. Consider some 0 ≤ i ≤ d and S ∈ Wi. Fix a j ≤ i − 1. Recall that W ′
j = {S′ ∈ Wj :

dist(S′, S) ≤ O(d2.5)τ} as in line 4. Since the buckets in the same Wj′ for every j′ are at least τ
apart, we have that ∑S′∈W ′

j
|S′ ∩ P | = |⋃S′∈W ′

j
(S′ ∩ P)|. Fix any two points x ̸= y that come from

buckets S1, S2 ∈ W ′
j respectively. Recall that each bucket has a diameter O(d1.5)τ . Then, by the

triangle inequality and the definition of W ′
j , we have that

dist(x, y) ≤ diam(S1) + dist(S1, S) + diam(S) + dist(S, S2) + diam(S2) ≤ O(d2.5)τ.

This means that the diameter of ⋃S′∈W ′
j

S′ is at most O(d2.5)τ . Then, by Property 4.2, we have
that |⋃S′∈W ′

j
(S′ ∩ P)| = |⋃S′∈W ′

j
S′ ∩ P | ≤ O(ε−1d)O(d). This finishes the proof of Lemma 4.8.

MPC implementation. Our final MPC algorithm is an MPC implementation of Algorithm 2.
We do the two for-loops, i.e., for i and S, in parallel, and run the steps inside the for-loops, i.e.,
the steps to compute I loc

i,S , only on a single machine. This procedure yields the same output as
Algorithm 2, whose correctness has been analyzed in the above.

Space and round analysis. The local space usage is dominated by computing I loc
i,S (for some

i and S ∈ Wi) in a single machine, which is dominated by O(d · ∑S′∈W ′
j
|S′ ∩ P |), for W ′

j in
line 4. By Lemma 4.8 one concludes that for each 0 ≤ j ≤ d− 1, ∑S′∈W ′

j
|S′ ∩ P | ≤ O(ε−1d)O(d).

This concludes the local space requirement. This also implies the total space is bounded by
O(n poly(d log n)) ·O(ε−1d)O(d), since the computation of W ′

j requires to copy data points. For the
round complexity, since we do parallel-for loops, the round complexity is dominated by the steps
inside each loop. These steps can be done in O(logs n) rounds, since W ′

j can be evaluated locally
using the (data-oblivious) hash f , and other steps mostly require standard procedure of fetching
the points from a certain bucket to a machine.

This finishes the proof of Lemma 4.1.

5 MPC Algorithms for Approximate MDS in Low Dimension
Lemma 5.1. There is a deterministic MPC algorithm that given threshold τ > 0, parameter
ε ∈ (0, 1) and dataset P ⊆ Rd of n points distributed across MPC machines with local memory
s ≥ Ω(ε−1d)Ω(d) poly(log n), computes a (1+ε)τ -DS S ⊂ Rd for P such that |S| ≤ (1+ε)|MDSτ (P)|
in O(logs n) rounds, using total memory O(n poly(log n)) ·O(ε−1d)O(d).

We make use of the same reduction as in Section 4, specifically Lemma 4.3, so that we can
assume without loss of generality that P satisfies Property 4.2.

15

Proof overview. We give an outline of our MPC algorithm in Algorithm 3. The high level idea
is to use the hash f as in Lemma 3.1, compute locally a MDS for each bucket, and then take the
union of this as the approximate solution. This simple plan may not work well when data points
are located around the “boundary” of the buckets, since the optimal solution may use only a few
“boundary” points near the buckets to dominate the points inside the buckets.

To combat this issue, we plan to shift the buckets (implemented by hash fv in line 4), and
use an averaging argument to show there exists some good shift v, such that the boundary points
contribute to the optimal solution very little. This averaging argument requires to use both a larger
bucket diameter ℓ = O(d3.5ε−1β) (as opposed to the default ℓ = O(d1.5β) as in Lemma 3.1), and a
large enough support Vd of the shift. Both ℓ and |Vd| affect the space usage, and it is crucial to
give good upper bounds for them. A key property is Fact 3.2, and this helps us to use only about
(dε−1)O(d) number of shifts.

Algorithm 3 Algorithm outline for (1 + ε)-approximate MDSτ (P)

1: let β := 2τ , ℓ := O(d3.5ε−1β), z := ℓ/
√

d, b := dβ +τ , T := z/4b, and V := {0, 4b, . . . , 4b(T −1)}

2: let f : Rd → Rd be a hash function with parameter β and ℓ as guaranteed by Lemma 3.1
3: for v ∈ Vd in parallel do
4: define fv : Rd → Rd such that fv(x) := f(x + v) for x ∈ Rd

5: for each bucket u ∈ fv(P), compute MDSτ (f−1
v (u) ∩ P)

6: let Dv ←
⋃

u∈fv(P) MDSτ (f−1
v (u) ∩ P)

7: end for
8: return M̂ := Dv such that |Dv| is the minimum over all v ∈ Vd

MPC implementation. We discuss how to implement Algorithm 3 in MPC. By Lemma 3.1,
the hash in line 2 is deterministic and only takes poly(d) space, so it can be locally stored in every
machine without communication. Next, we examine the lines in the parallel for-loop. Line 4 can be
executed locally in each machine. Line 5 can be implemented by first sorting the points with respect
to their hash value (i.e., bucket ID), then solving the MDS for each subset of points with the same
hash value. Notice that since each bucket has diameter at most ℓ = O(d3.5ε−1β) ≤ O((d3.5ε−1)τ), it
contains at most O(ε−1d)O(d) points from P by Property 4.2, so all these points can fit in the same
machine (due to the assumption on s). Therefore, their MDS can be solved locally without further
communication. Line 6 requires removing duplicated elements in MDSτ (f−1

v (u) ∩ P) for u ∈ fv(P),
which can be done using sorting. Finally, line 8 can be implemented using standard procedures,
specifically counting and finding the minimum element.

Round and space complexity. By the above, the round complexity is O(logs n) since every
step can be implemented in O(logs n) rounds and the for-loop is done in parallel. The local
space requirement is dominated by line 5, which is O(ε−1d)O(d) · poly(log n). The total space is
dominated by the parallel-for loop, which has |V|d ≤ (dε−1)O(d) invocations, and this results in
O(n poly(log n)) ·O(ε−1d)O(d) total space.

Error analysis. Let M∗ := MDSτ (P) be an optimal/minimum solution of τ -dominating set for
P . Observe that the algorithm returns M̂ , such that its size |M̂ | = minv∈Vd |Dv|. Hence, it suffices
to show there exists v∗ ∈ Vd such that |Dv∗ | ≤ (1 + ε)|M∗|. To do so, we start with analyzing |Dv|

16

for a generic v as follows, in order to obtain a more concrete condition of v∗.

|Dv| =

∣∣∣∣∣∣
⋃

u∈fv(P)
MDSτ (f−1

v (u) ∩ P)

∣∣∣∣∣∣
≤

∑
u∈fv(P)

|MDSτ (f−1
v (u) ∩ P)|

≤
∑

u∈fv(P)
|M∗ ∩N∞

τ (f−1
v (u))|

≤
∑

u∈fv(P)
|M∗ ∩ f−1

v (u)|+ |M∗ ∩ U∞
τ (f−1

v (u))|

= |M∗|+
∑

u∈fv(P)
|M∗ ∩ U∞

τ (f−1
v (u))|. (2)

We next further analyze ∑u∈fv(P) |M∗ ∩ U∞
τ (f−1

v (u))|, and the plan is to use the properties of
Lemma 3.1. However, those properties are for f instead of directly for fv, and hence we need the
following Fact 5.2 that relates f−1

v and f−1.

Fact 5.2. For every v ∈ Rd, the image set of fv, i.e., fv(Rd), equals that of f , and for every image
u ∈ fv(Rd), f−1

v (u) = f−1(u)− v.

By Fact 5.2,∑
u∈fv(P)

|M∗ ∩ U∞
τ (f−1

v (u))| ≤
∑

u∈fv(Rd)
|M∗ ∩ U∞

τ (f−1
v (u))| ≤

∑
u∈f(Rd)

|M∗ ∩ (U∞
τ (f−1(u))− v)|. (3)

We next apply Fact 3.2 to further upper bound (3), i.e.,

∑
u∈f(Rd)

|M∗ ∩ (U∞
τ (f−1(u))− v)| ≤ (d + 1) ·

∣∣∣∣∣∣
⋃

u∈f(Rd)
M∗ ∩ (U∞

τ (f−1(u))− v)

∣∣∣∣∣∣ . (4)

To see this, for x ∈ Rd, if some u satisfies x ∈ U∞
τ (f−1(u)), then there exists y ∈ f−1(u) such that

∥x − y∥∞ ≤ τ , which is equivalent to N∞
τ (x) ∩ f−1(u) ̸= ∅. Since diam∞(N∞

τ (x)) ≤ 2τ = β, by
Fact 3.2, |{u : N∞

τ (x) ∩ f−1(u) ̸= ∅}| = |f(N∞
τ (x))| ≤ d + 1. Therefore, every point x ∈ Rd can

only participate in at most d + 1 terms of ∑u∈f(Rd) |M∗ ∩ (U∞
τ (f−1(u))− v)|, and this implies (4).

Then, applying Fact 5.2 and the third property of Lemma 3.1 to the U∞
τ ’s of (4), we have⋃

u∈f(Rd)
(U∞

τ (f−1(u))− v) ⊆ L(z, 2b)d − v,

where L(z, 2b) = ⋃
a∈Z[az + 2b, (a + 1)z − 2b), and L(z, 2b)d is the complement (with respect to Rd)

of L(z, 2b)d. Therefore,∣∣∣∣∣∣
⋃

u∈f(Rd)
M∗ ∩ (U∞

τ (f−1(u))− v)

∣∣∣∣∣∣ ≤
∣∣∣M∗ ∩ (L(z, 2b)d − v)

∣∣∣ . (5)

Hence, it suffices to show there exists v∗ ∈ Vd, such that |M∗ ∩ (L(z, 2b)d − v∗)| ≤ ε|M∗|. This
v∗ may be viewed as a “shift” of L(z, 2b)d, and we would use an averaging argument to show the
existence of it. For j ∈ V, let L̂(j) := ⋃

a∈Z[az − 2b − j, az + 2b − j). Notice that L̂(j)’s are of
small length which is 4b, and {L̂(j) : j ∈ V} is a partition of R. Moreover, it can be observed that
L̂(0) = L(z, 2b).

17

Picking v∗. For i ∈ [d], define multiset proji(M∗) := {xi : x = (x1, . . . , xd) ∈M∗} as taking the
i-th coordinates of points in M∗. Now, by an averaging argument (over j ∈ V), for every i ∈ [d],
there exists j∗

i such that |proji(M∗) ∩ L̂(j∗
i)| ≤ 1

|V| · |M
∗|. We pick v∗ := (j∗

1 , . . . , j∗
d).

Concluding error bound. We continue to analyze (5) when plugging in v = v∗.

|M∗ ∩ (L(z, 2b)d − v∗)| ≤
d∑

i=1
|proji(M∗) ∩ (L̂(0)− j∗

i)|

=
d∑

i=1
|proji(M∗) ∩ L̂(j∗

i)|

≤ d

|V|
|M∗| = d

T
|M∗|.

Combining this with (2), (3) and (4), we conclude that

|M̂ | = min
v∈Vd

|Dv| ≤ |Dv∗ | ≤ |M∗|+ d(d + 1)
T

|M∗| ≤ (1 + ε)|M∗|.

This finishes the proof of Lemma 5.1.

6 MPC Algorithms for RS in High Dimension
Lemma 6.1. There is an MPC algorithm that given threshold τ > 0, 0 < ε < 1 and a dataset
P of n points in Rd distributed across MPC machines with local memory s ≥ poly(d log n), with
probability at least 1 − 1/n computes a (τ, O(ε−1 log n

log log n)τ)-ruling set for P in O(logs n) rounds,
using total memory O(n1+ε poly(d log n)).

Our algorithm may be viewed as a Euclidean version of one-round Luby’s, with two major
differences. One is an additional preprocessing algorithm Algorithm 4, and this step is crucially
needed to improve the ruling set parameter from O(log n) (which is what one-round Luby’s algorithm
can achieve in general [Gha22]) to (log n/ log log n). The other is that it is not immediate to exactly
simulate the one-round Luby’s in high dimensional Euclidean spaces, as the neighborhood around
a data point can be huge and is not easy to handle in MPC. To this end, we need to use some
approximate ball Aβ

P (p, τ) that is “sandwiched” between BP (p, τ) and BP (p, βτ) for some β and
every point p ∈ P , and an MPC procedure for this has been suggested in [CGJ+24] (restated in
Lemma 6.8). We would address this inaccuracy introduced by Aβ

P (·, ·) in the analysis of the offline
algorithm. In the remainder of this section, we use the notations from Algorithms 4 and 5.

Algorithm 4 Preprocessing, with input P ⊆ Rd of n points, β ≥ 1, τ > 0
1: let φ be a consistent hashing with parameter Γ← O(d/ log log n) Λ← poly(d log n) and diameter

ℓ← O(βΓτ), using Lemma 3.4
2: for every z ∈ φ(P), pick an arbitrary representative point x ∈ φ−1(z) ∩ P , denoted as rep(z)
3: return P ′ ← rep(φ(P))

Lemma 6.2. R is a τ -independent set for P ′ (with probability 1).

18

Algorithm 5 Local algorithm for RS on P ′ resultant from Algorithm 4, same β ≥ 1, τ > 0
1: for each p ∈ P ′, pick a uniformly random label h(p) ∈ [0, 1]
2: initialize R← ∅, and for every p ∈ P ′, R← R ∪ {p} if p has the smallest label in Aβ

P ′(p, τ)
3: return R

Proof. Fix a point x ∈ R. Suppose for the contrary that there is a point y ̸= x ∈ R satisfying
dist(x, y) ≤ τ . Then we have that y ∈ B(x, τ) and x ∈ B(y, τ). Observe that R ⊆ P ′ which
implies that x, y ∈ P ′. Since for every p ∈ P ′, BP ′(p, τ) ⊆ Aβ

P ′(p, τ), then we have that y ∈
BP ′(x, τ) ⊆ Aβ

P ′(x, τ) and x ∈ BP ′(y, τ) ⊆ Aβ
P ′(y, τ). However, we have h(x) = min(h(Aβ

P ′(x, τ)))
and h(y) = min(h(Aβ

P ′(y, τ))) by line 2 of Algorithm 5, which implies that h(x) < h(y) and
h(y) < h(x), respectively, leading to a contradiction. Therefore, we complete the proof.

Lemma 6.3. For any α ≥ 1, any (τ, ατ)-ruling set for P ′ is an (τ, (α + βΓ)τ)-ruling set for P .

Proof. Let S be a (τ, ατ)-ruling set for P ′. Since S ⊆ P ′ ⊆ P and S is τ -independent by definition,
it remains to verify for every p ∈ P , dist(p, S) ≤ (α + ℓ)τ . Fix some p ∈ P . For a generic point set
W ⊆ Rd and a point x ∈ Rd, let W (x) be the nearest point in W to x. Then

dist(p, S) ≤ dist(p, P ′(p)) + dist(P ′(p), S(p)) ≤ dist(p, rep(φ(p))) + ατ ≤ ℓ + ατ ≤ (α + βΓ)τ.

Fact 6.4. For every p ∈ P ′, |Aβ
P ′(x, τ)| ≤ Λ.

Proof. Follows immediately from the definition of parameters Γ, ℓ, Λ and Lemma 3.4.

Lemma 6.5. For every t ≥ Ω(log2 Λ), the set R returned by Algorithm 5 satisfies

∀p ∈ P ′, dist(p, R) ≤ O(βt)τ

with probability at least 1− n · exp(−Ω(t) log(t/ log Λ)).

Proof. It suffices to show that for every point p ∈ P ′, with probability 1− exp(−Ω(t) log(t/ log Λ)),
dist(p, R) ≤ O(βt)τ , since one can conclude the proof using a union bound for all points p ∈ P ′.

Now, fix a point p ∈ P ′ and consider dist(p, R). In order to analyze dist(p, R), we construct
a sequence S := (x0, x1, . . . , xT) using an auxiliary algorithm, stated in Algorithm 6, where the
sequence S starts at the point x0 := p and denote the length of S as T ≥ 0 which is random. We
emphasize that Algorithm 6 is defined with respect to the internal states of a specific (random) run
of Algorithm 5, and it does not introduce new randomness.

Algorithm 6 Finding an assignment sequence S = (x0 = p, . . . , xT), for a given p ∈ P ′

1: let i← 0, x0 ← p, S ← (x0)
2: while Algorithm 5 does not add xi at line 2 do
3: let xi+1 be the point from Aβ

P ′(xi, τ) with the smallest label
4: let S ← S ◦ xi+1 and i← i + 1
5: end while
6: return S

19

Observe that in Algorithm 6, for every i ≥ 0, xi+1 ∈ Aβ
P ′(xi, τ). Since for every p ∈ P ′,

Aβ
P ′(p, τ) ⊆ BP ′(p, βτ), then we have that

dist(p, R) ≤
T∑

i=1
dist(xi−1, xi) ≤ Tβτ

by triangle inequality. Hence, it remains to give an upper bound for T , and we show this in the
following Lemma 6.6 which is the main technical lemma.

Lemma 6.6. For t ≥ Ω(log2 Λ), we have Pr[T ≥ t] ≤ exp(−Ω(t) log(t/ log Λ)).

Proof. The proof is postponed in Section 6.1.

Finally, as mentioned, applying Lemma 6.6 with a union bound finishes the proof of Lemma 6.5.

Proof of Lemma 6.1. Our MPC algorithm for Lemma 6.1 is obtained via an MPC implementation of
the offline Algorithms 4 and 5. However, before we do so, our algorithm requires to run the Johnson-
Lindenstrauss (JL) transform [JL84] on the dataset as preprocessing to reduce d to d = O(log n),
using parameter ε = O(1), restated as follows with our notations.

Lemma 6.7 (JL transform [JL84]). For some 0 < ε < 1, let M ∈ Rd′×d be a random matrix such
that every entry is an independent standard Gaussian variable N(0, 1) where d′ = O(ε−2 log n),
then the mapping g : x 7→ 1/

√
d′ ·Mx satisfies that with probability 1 − 1/ poly(n), ∀x, y ∈ P ,

dist(g(x), g(y)) ∈ (1± ε) dist(x, y).

This JL transform only needs O(1) rounds to run in MPC, since one can generate the matrix
M in a lead machine, which uses space O(d log n), and then broadcast to every other machines.
Since the pairwise distance between data points is preserved, and that our algorithms only use
the distance between data points, it is immediate that any (τ, ατ)-ruling set on g(P) is as well a
(Θ(τ), Θ(ατ))-ruling set on P . Hence, it suffices to work on g(P) which is of dimension d′ = O(log n).
Without loss of generality, we can simply assume P is of dimension O(log n).

Now, we turn to implement Algorithms 4 and 5 in MPC. For Algorithm 4, since the hash in
Lemma 3.4 that we use is data oblivious and only requires poly(d) = poly(log n) space, all machines
can generate the same hash without communication. The other steps in Algorithm 4 may be
implemented using standard MPC procedures including sorting, broad-casting and converge-casting.
For Algorithm 5, the the only nontrivial step is to implement Aβ

P ′(·, ·). To this end, we make use
of the following lemma from [CGJ+24]. In particular, our MPC implementation of Algorithm 5
applies Lemma 6.8 with β = O(ε−1). This finishes the description of the algorithm for Lemma 6.1.

Lemma 6.8 ([CGJ+24, Theorem 3.1]). There is a deterministic MPC algorithm that takes as input
0 < ε < 1, τ ≥ 0, P ⊂ Rd of n points and for each p ∈ P a value h(p) ∈ R, distributed across
machines with local memory s ≥ poly(d log n), computes for every p ∈ P a value min(h(AP (p, τ))),
where AP (p, τ) is an arbitrary set that satisfies

BP (p, τ) ⊆ AP (p, τ) ⊆ BP (p, O(ε−1τ)), (6)

in O(logs n) rounds and O(n1+ε poly(d log n)) total memory.

20

Now we turn to the analysis. Observe that the assumptions regarding AP ′(·, ·) underlying the
analysis of Algorithms 4 and 5 remain valid. By Lemma 6.2, the found set R is also an τ -independent
for P as R ⊆ P ′ ⊆ P . Moreover, since we assume d = O(log n), the parameters Γ = log n/ log log n,
and Λ = poly(log n). Therefore, applying Lemma 6.5 with t = O(log n/ log log n), we conclude
that ∀p ∈ P ′, dist(p, R) ≤ O(ε−1 log n/ log log n)τ , with probability 1− 1/ poly(n). Combining with
Lemma 6.3, we conclude that R is (τ, O(ε−1 log n/ log log n)τ)-ruling set for P , with probability
1− 1/ poly(n).

Finally, for the round complexity, local memory and total memory, these are dominated by
the parallel invocations of Lemma 6.8, which are O(logs n), poly(d log n) and O(n1+ε poly(d log n)),
respectively. Therefore, we complete the proof of Lemma 6.1.

6.1 Proof of Lemma 6.6: Upper Bound The Length of Auxiliary Sequence

Let S be the (random) sequence returned by Algorithm 6, and recall that we write S = (x0 =
p, . . . , xT). For two sequences S′ and S′′, let S′ ◦ S′′ denote their concatenation; when S′′ = (x) is a
singleton sequence, we write S′ ◦ x, which is a shorthand for appending the point x to the sequence
S′. In addition, let S′ ⊑ S′′ denote that S′ is a prefix of S′′.

Let S be the set of all sequences S′ := (x′
0, x′

1, . . .) such that: (1) x′
0 = p; (2) for every i ≥ 0,

xi+1 ∈ Aβ
P ′(xi, τ). Consider some S′ ∈ S denoted as S′ := (x′

0, x′
1, . . . , x′

m) and m ≥ 1. Define

Acond(S′) :=
m−1⋃
i=0

Aβ
P ′(x′

i, τ)

Anew(S′) := Aβ
P ′(x′

m, τ) \Acond(S′). (7)

Let Econd(S′) denote the event that S′ ⊑ S, i.e., Algorithm 6 gets to line 2 with the current sequence
equal to S′. Let Eext(S′) denote the event that Econd(S′) holds and in iteration i = m of Algorithm 6,
x′

m passes the test in line 2 and the point picked in line 3 is from Aβ
P ′(x′

m, τ). The next lemma
establishes an upper bound for the probability of the sequence gets a new element appended, with
respect to |Anew(S′)|

|Anew(S′)∪Acond(S′)| which may be understood as the local geometric growth of the dataset.

Lemma 6.9. For every S′ ∈ S, we have that

Pr[Eext(S′) | Econd(S′)] ≤ |Anew(S′)|
|Anew(S′) ∪Acond(S′)| .

Proof. Let S′ := (x′
0 = p, x′

1, . . . , x′
m) ∈ S be a fixed sequence with a length of m + 1. Observe that

the event Econd(S′) may depend on the random label of points in the set Acond(S′) = ⋃m−1
i=0 Aβ

P ′(x′
i, τ),

but not on those of points outside Acond(S′). The label choices for points outside Acond(S′) and inside
Acond(S′) are independent, hence by the principle of deferred decisions, conditioning on Econd(S′)
does not change the distribution of label choices for points in Anew(S′) = Aβ

P ′(x′
m, τ) \ Acond(S′),

which in turn affect the event Eext(S′) (e.g., whether x′
m passes the test).

When Econd(S′) occurs, each point x′
i, for i ∈ [m], has the smallest label in Aβ

P ′(x′
i−1, τ), and

it follows by induction that x′
m has the smallest label in Acond(S′). When Eext(S′) occurs, some

x′
m+1 ̸= x′

m has the smallest label in Aβ
P ′(x′

m, τ), and thus h(x′
m+1) < h(x′

m) = min(h(Acond(S′))),
implying that x′

m+1 /∈ Acond(S′) and in fact x′
m+1 ∈ Anew(S′). Therefore,

Pr[Eext(S′) | Econd(S′)] ≤
∑

q∈Anew(S′)
Pr[h(q) = min(h(Aβ

P ′(x′
m, τ))) | Econd(S′)]. (8)

21

Claim 6.10 ([CGJ+24], Claim 4.13). Fix a finite domain U , and let g : U → [0, 1] be random, such
that each g(a) is chosen independently and uniformly from [0, 1]. Then for every subset X ⊆ U ,
element a ∈ X, and partial order P on X \ {a}, we have

Pr
g

[g(a) = min(g(X)) | g ∝ P] = 1/|X|,

where g ∝ P denotes consistency in the sense that g(x) ≤ g(y) whenever x ≺P y.

To upper bound (8), it suffices to give for every q ∈ Anew(S′) an upper bound for Pr[h(q) =
min(h(Aβ

P ′(x′
m, τ))) | Econd(S′)]. Notice the event Econd(S′) defines a partial order via the label h,

such that for i ∈ [m], each point x′
i has the smallest label in Aβ

P ′(x′
i−1, τ), i.e., for each y ̸= x′

i ∈
Aβ

P ′(x′
i−1, τ), h(x′

i) < h(y), and this is in particular a partial order on Anew(S′) ∪ Acond(S′) \ {q}.
Now, apply Claim 6.10 with g := h, a := q, X := Anew(S′) ∪ Acond(S′) which contains a, and a
partial order P defined from the event Econd(S′) (as mentioned above). Hence,

∀q ∈ Anew(S′), Pr[h(q) = min(h(Aβ
P ′(x′

m, τ))) | Econd(S′)] = 1
|Anew(S′) ∪Acond(S′)| .

Plugging this into (8), we obtain that Pr[Eext(S′) | Econd(S′)] ≤ |Anew(S′)|
|Anew(S′)∪Acond(S′)| , and this completes

the proof of Lemma 6.9.

We continue the proof of Lemma 6.6. Let f : S → Z be a function such that for each S′ ∈ S,

f(S′) :=
{

i |Anew(S′)| ∈ [2i−1, 2i)
−∞ Anew(S′) = ∅.

The following fact follows from Fact 6.4.

Fact 6.11. For any S′ ∈ S, we have f(S′) ∈ {−∞} ∪ [⌈log2 Λ⌉].

Intuitively, this function f takes value i when Anew(S′) is around [2i−1, 2i). Now, for a given
sequence S′, we consider the configuration of S′ as the f values for every prefix of S′. Namely,
for every S′ ∈ S denoted as S′ := (x′

0, x′
1, . . . , x′

m) and i ≥ 0, let S′
[0,i] denote the prefix of S′

ending with x′
i, and denote conf(S′) := (f(S′

[0,1]), . . . , f(S′
[0,m])) as the configuration of S′. For

π ∈ ({−∞} ∪ [⌈log2 Λ⌉])i (for some i ≥ 1), let Sπ := {S′ ∈ S : conf(S′) = π}.
The next lemma is a key lemma which upper bounds the probability that a sequence has length

at least t, for sequences of a fixed configuration π. This lemma would be used to conclude Lemma 6.6
by a union bound over all possible configurations π ∈ ({−∞} ∪ [⌈log2 Λ⌉])t.

Lemma 6.12. For every π ∈ ({−∞} ∪ [⌈log2 Λ⌉])t,
∑

S′∈Sπ
Pr[S′ ⊑ S] ≤ exp(−Ω(t log(t/ log Λ))).

Proof. For every i ∈ [t], let π≤i denote the prefix of π with a length of i, and let πi denote the ith
item of π. Observe that if πi = −∞ for i < t, then Pr[S′ ⊏ S] = 0 for any S′ ∈ Sπ. Hence, we only
need to verify the claim for a π ∈ ({−∞} ∪ [⌈log2 Λ⌉])t such that πi ̸= −∞ for every i < t.

Now, for i ≥ 2, we start with proving∑
S′∈Sπ≤i

Pr[S′ ⊑ S] ≤
∑

S′′∈Sπ≤i−1

Pr[∃x ∈ P ′, S′′ ◦ x ⊑ S]. (9)

For every i ∈ [t], let ϕi : Sπ≤i
→ {(S′′, x) : S′′ ∈ Sπ≤i−1 , x ∈ P ′} be a mapping, where for S′ ∈ Sπ≤i

,
ϕi(S′) maps to the unique pair (S′′, x) satisfying S′ = S′′ ◦ x (i.e., S′′ = S′

[0,i−1]). Then for every

22

S′ ∈ Sπ≤i
, Pr[S′ ⊑ S] = Pr[S′′ ◦ x ⊑ S] where (S′′, x) = ϕi(S′). Moreover, ϕi is an injection by

definition. Therefore, ∑
S′∈Sπ≤i

Pr[S′ ⊑ S] =
∑

(S′′,x):
(S′′,x)=ϕi(S′),S′∈Sπ≤i

Pr[S′′ ◦ x ⊑ S]

≤
∑

S′′∈Sπ≤i−1

∑
x∈P ′

Pr[S′′ ◦ x ⊑ S]

=
∑

S′′∈Sπ≤i−1

Pr[∃x ∈ P ′, S′′ ◦ x ⊑ S],

where the inequality uses that ϕi is injection. This concludes (9).
Therefore, we have that∑

S′∈Sπ≤i

Pr[S′ ⊑ S] ≤
∑

S′′∈Sπ≤i−1

Pr[∃x ∈ P ′, S′′ ◦ x ⊑ S]

=
∑

S′′∈Sπ≤i−1

Pr[∃x ∈ P ′, S′′ ◦ x ⊑ S | S′′ ⊑ S] · Pr[S′′ ⊑ S]

=
∑

S′′∈Sπ≤i−1

Pr[Eext(S′′) | Econd(S′′)] · Pr[S′′ ⊑ S]

≤
∑

S′′∈Sπ≤i−1

|Anew(S′′)|
|Anew(S′′) ∪Acond(S′′)| · Pr[S′′ ⊑ S]

≤
∑

S′′∈Sπ≤i−1

21+πi−1∑i−1
j=1 2πj

· Pr[S′′ ⊑ S] (10)

where the second inequality follows from Lemma 6.9, and the last inequality follows from (7). The
assumption that πi = −∞ may happen only when i = t ensures that the denominators ∑i−1

j=1 2πj

cannot be zero. Applying (10) inductively,

∑
S′∈Sπ≤t

Pr[S′ ⊑ S] ≤
t−1∏
i=1

21+πi∑i
j=1 2πj

.

For every i ∈ [⌈log2 Λ⌉], let Gi := {πj = i : j ∈ [t− 1]} and let wi := |Gi|. Then

t−1∏
i=1

21+πi∑i
j=1 2πj

≤
∏

i∈[⌈log2 Λ⌉]

2(1+i)wi

2iwi · wi!
≤

∏
i∈[⌈log2 Λ⌉]

2wi

wi!
≤

∏
i∈[⌈log2 Λ⌉]

O(
√

wi) ·
2wi

(wi/e)wi
,

where the first inequality follows from the fact that

t−1∏
i=1

i∑
j=1

2πj ≥
∏

i∈[⌈log2 λ⌉]

∏
j∈Gi

j∑
s=1

2πs ≥
∏

i∈[⌈log2 λ⌉]

∏
j∈Gi

∑
s∈[j]:s∈Gi

2πs =
∏

i∈[⌈log2 λ⌉]

∏
j∈[wi]

j2i

≥
∏

i∈[⌈log2 λ⌉]
2iwiwi!

23

Taking logarithm,

log
t−1∏
i=1

21+πi∑i
j=1 2πj

≤ log
∏

i∈[⌈log2 Λ⌉]
O(
√

wi) ·
2wi

(wi/e)wi

=
∑

i∈[⌈log2 Λ⌉]
log

(
O(
√

wi) ·
2wi

(wi/e)wi

)
≤

∑
i∈[⌈log2 Λ⌉]

O(log(wi) + wi − wi log(wi/e))

≤
∑

i∈[⌈log2 Λ⌉]
O(−wi log(wi))

≤ O(−t log(t/ log Λ)),

where the last inequality follows from the fact that ∑i wi ≤ t and Jensen’s inequality. We conclude
that log∑S′∈Sπ≤t

Pr[S′ ⊑ S] ≤ O(−t log(t/ log Λ)), and this finishes the proof.

Proof of Lemma 6.6. Finally, we conclude Lemma 6.6 by a union-bound argument.

Pr[T ≥ t] =
∑

S′∈S:|S′|=t+1
Pr[S′ ⊑ S]

=
∑

π∈[⌈log2 Λ⌉]t

∑
S′∈Sπ

Pr[S′ ⊑ S]

≤ (log Λ)O(t) · exp(−Ω(t log(t/ log Λ)))
≤ exp(O(t) log log Λ− Ω(t) log(t/ log Λ))
≤ exp(−Ω(t) log(t/ log Λ)),

where the first inequality is by applying Lemma 6.12, and the last inequality uses that t ≥ Ω(log2 Λ).
This completes the proof of Lemma 6.6.

7 Proof of Theorems 1.1 to 1.3: MPC Algorithms for k-Center
We present the proofs for Theorems 1.1 to 1.3. As mentioned, we obtain these results by reducing
to geometric versions of either RS or MDS. Hence, we present the reduction as a meta algorithm, as
in Algorithm 7, instead of separated concrete algorithms. The concrete algorithms can be derived
by plugging in suitable combination of RS or MDS results.

We note that this meta algorithm only finds a set of centers as approximate solution, and we
discuss in Section 7.2 how to also find the approximate assignment from data points to the found
center set. This procedure introduces a slight loss in the ratio, but it is only minor; in particular, in
low dimension the ratio increases by only a (1 + ε) factor, and in high dimension the ratio increases
by a constant factor.

Algorithm. The algorithm, listed in Algorithm 7, takes as input a dataset P ⊆ Rd, integer k ≥ 1
and a parameter 0 < ε < 1. The algorithm starts with testing if OPT = 0, which is equivalent
to P has at most k distinct points. If this does not happen, the algorithm “guesses” OPT (up to
(1 + ε) factor). This step requires to first obtain a poly(n)-approximate value APX for OPT using
Lemma 7.2 (which can be found in Section 7.1), and this is one of the randomness in the algorithm.
Then we search for a suitable threshold τ and apply Lemmas 4.1, 5.1 and 6.1 to compute a center
set.

24

Algorithm 7 MPC Algorithms for k-Center via RS and MDS with parameter 0 < ε < 1
1: return P as the solution if P contains at most k distinct points
2: compute an α := poly(n)-approximate value APX for k-Center on P using Lemma 7.2
3: let Z ← {i ∈ Z : APX /α ≤ (1 + ε)i ≤ APX} be a set of integer power of (1 + ε)
4: for τ ∈ Z in parallel do
5: (RS-based approx.) find Iτ ← (2τ, γτ)-ruling set for P by Lemma 4.1 or Lemma 6.1

▷ where γ = 2(1 + ε) as in Lemma 4.1, or γ = O(ε−1 log n
log log n) as in Lemma 6.1

6: (MDS-based approx.)
Let Dτ be (1 + ε)τ -DS with size |Dτ | ≤ (1 + ε)|MDSτ (P)| by Lemma 5.1

7: end for
8: (RS-based approx.) let τ∗ ∈ Z be the smallest τ such that |Iτ | ≤ k, return Iτ∗

9: (MDS-based approx.) let τ∗ ∈ Z be the smallest τ such that |Dτ | ≤ (1 + ε)k, return Dτ∗

Round complexity analysis. Line 1 can be implemented in O(logs n) MPC rounds via sorting
and broadcasting. The number of rounds for line 2 is dominated by Lemma 7.2, which is O(logs n)
rounds. Observe that |Z| = O(log n), so there are O(log n) parallel invocations of the parallel-for.
Hence, the number of rounds for the parallel-for is of the same order as in Lemma 4.1, Lemma 5.1
and Lemma 6.1, which is O(logs n). This finishes the round analysis.

Space complexity analysis. For the space, it is dominated by that of Lemma 4.1, Lemma 5.1
and Lemma 6.1, multiplied by |Z| which is the number of parallel iterations (since they need
to be replicated). By Lemmas 4.1 and 5.1, we conclude that the local space requirement is s ≥
Ω(ε−1d)Ω(d) poly(log n), and the total space is O(n poly(log n))·O(ε−1d)O(d) for (2+ε)-approximation
and (1 + ε, 1 + ε)-approximation, which concludes the space analysis for both Theorems 1.1 and 1.2.
By Lemma 6.1, we conclude that the local space requirement is s ≥ poly(d log n), and the total
space is O(n1+ε poly(d log n)) for O(ε−1 log n/ log log n)-approximation, which completes the space
analysis of Theorem 1.3. This concludes the space analysis.

Error analysis: the common part. As we mentioned, if the algorithm terminates at line 1,
then OPT = 0 and the entire dataset itself is the optimal solution. Now assume the dataset consists
of more than k distinct points, which means OPT > 0. As in line 2 and 3, we use Lemma 7.2 to
obtain poly(n)-approximation to OPT and it succeeds with probability at least 1 − 1/n. Hence,
with probability at least 1− 1/n, there exists some τ̂ ∈ Z such that OPT ≤ τ̂ ≤ (1 + ε) OPT. We
condition on this high-probability event happens in the remainder of the proof.

Error analysis for RS-based approximation. We start with justifying that the algorithm is
well-defined, i.e., τ∗ in line 8 must exist. In particular, we claim that if τ ≥ OPT(P) then |Iτ | ≤ k.
This claim implies the existence of τ∗ since τ = τ̂ satisfies τ ≥ OPT, which also implies

τ∗ ≤ τ̂ ≤ (1 + ε) OPT . (11)

Now, consider some τ ≥ OPT (noticing that τ̂ satisfies this). Then we make use of the following
standard fact (proved for completeness in Fact 7.1, see also [HS86]), and specifically apply it with
S = P , µ = τ ≥ OPT. It readily implies |Iτ | ≤ k since Iτ is a 2τ -independent set for P .

Fact 7.1. Let S ⊆ Rd. For µ ≥ OPT(S), any subset of S that is a 2µ-independent set for S has at
most k points.

25

Proof. Suppose for the contrary that there is some 2µ-independent set I ⊆ S for S with |I| ≥ k + 1.
Consider a clustering C = {C1, C2, . . . , Ck} in an optimal solution for k-Center on S. Observe that
each cluster Ci ∈ C has diameter diam(Ci) ≤ 2 OPT(S) ≤ 2µ. Now, consider any two distinct points
x ̸= y ∈ I. Since dist(x, y) > 2µ by definition, they cannot belong to the same cluster. Therefore,
since |I| ≥ k + 1, there must be a point in I that does not belong to any cluster of C, leading to a
contradiction (since I ⊆ S and ⋃k

i=1 Ci = S). This finishes the proof of Fact 7.1.

Since |Iτ∗ | ≤ k, Iτ∗ is a feasible solution for k-Center. It remains to analyze cost(P, Iτ∗). Since
Iτ∗ is a (2τ∗, γτ∗)-ruling set for P , we know that cost(P, Iτ∗) ≤ γτ∗ ≤ γ(1 + ε) OPT, where the
last inequality follows from (11). This finishes the error analysis for the (2 + ε)-approximation and
O(ε−1 log n/ log log n)-approximation by substituting the corresponding values of γ.

Error analysis for MDS-based approximation. Similarly, we start with showing that the
algorithm is well-defined, i.e., τ∗ in line 9 must exist, by showing that if τ ≥ OPT then |Dτ | ≤ (1+ε)k.
This further implies τ∗ ≤ τ̂ ≤ (1 + ε) OPT (and hence τ∗ exists).

To see this, let C∗ be the optimal solution to k-Center on the input P . Then for every point
x ∈ P , dist(x, C∗) ≤ OPT ≤ τ . Hence, C∗ is a τ -DS for P . Therefore,

|Dτ | ≤ (1 + ε)|MDSτ (P)| ≤ (1 + ε)|C∗| ≤ (1 + ε)k,

where the first inequality is by Lemma 5.1 and the second inequality follow from the optimality of
MDSτ .

Since the algorithm always returns a set of at most (1 + ε)k points, it remains to show
cost(P, Dτ∗) ≤ (1 + O(ε)) OPT. Now, since τ∗ ≤ (1 + ε) OPT, and by the fact that Dτ∗ is a
(1 + ε)τ∗-DS for P , we have

cost(P, Dτ∗) = max
x∈P

dist(x, Dτ∗) ≤ (1 + ε)τ∗ ≤ (1 + O(ε)) OPT .

This finishes the proof of Theorems 1.1 to 1.3.

7.1 Coarse Approximation for Optimal Value of k-Center

Lemma 7.2. There is a randomized MPC algorithm, that given a dataset P of n points in Rd

distributed across MPC machines with local memory s ≥ Ω(poly(d log n)), computes E ≥ 0 such
that OPT ≤ E ≤ O(n7) OPT for k-Center with probability at least 1− 1/n, in O(logs n) rounds
using total memory O(n poly(d log n)).

Proof. Let v ∈ Rd be an i.i.d. standard Gaussian vector, i.e., each entry of v satisfies vi ∼ N (0, 1).
For a point set P ⊂ Rd, we do the inner product to every x ∈ P with respect to v, and denote
P ′ := {⟨v, x⟩ : ∀x ∈ P} as this set. This set can be viewed as the 1D projection of P .

We claim that, the event “for every x, y ∈ P , |⟨x, v⟩−⟨y, v⟩| ∈ [Ω(1/n3), O(n3)] dist(x, y)” happens
with probability 1− 1/n. To see this claim, fix some x, y ∈ P . Observe that ⟨x,v⟩−⟨y,v⟩

dist(x,y) ∼ N (0, 1).
Plug this into the following standard fact about Gaussian, and do a union bound for all pairs x, y
yields the claim.

Fact 7.3. For some z ≥ 1 and u ∼ N (0, 1), we have that Pr[|u| ≤ 1/z] ≤ O(1/z), and Pr[|u| ≥
z] ≤ O(1/z).

Hence, it suffices to approximate k-Center within O(n) factor on the 1D input P ′ (where the
distance is defined as the absolute value of the difference). It would be convenient (and without loss
of generality) to assume all points are distinct and there are at least n ≥ k + 1 of them.

26

If k = 1, then we simply define the maximum minus the minimum as the estimation E′, and
this is 2-approximation. Otherwise, for k ≥ 2, we sort P ′ with respect to their value/coordinate
in 1D, and we find the k-th largest gap between consecutive points, denoted as rk, and we define
E′ := n · rk.

We claim that E′ satisfies Ω(OPT(P ′)) ≤ E′ ≤ O(n) OPT(P ′). On one hand, OPT(P ′) must
be at least rk/2 for otherwise it requires at least k + 1 centers to cover the consecutive point pairs
whose gap is at least rk. This implies that E′ ≤ O(n) ·OPT(P ′).

On the other hand, we show how to construct a feasible solution whose cost is at most O(n · rk),
and this would imply OPT(P ′) ≤ cost(P ′, CP) ≤ O(n · rk) = O(E′). Let P := {(pi, qi)}i be the
consecutive point pairs (after the above sorting) such that for each pair (pi, qi) ∈ P , dist(pi, qi) > rk,
and order (pi, qi) by pi < qi (in 1D coordinate). We have |P| ≤ k − 1, since otherwise, there would
be at least k consecutive point pairs with gaps greater than rk, which contradicts the definition
of rk as the k-th largest gap between consecutive points. Let imax := argmaxj:(pj ,qj)∈P pj , and let
qmax := qimax , i.e., qmax is the larger point in the pair whose smaller point is the largest among all
consecutive pairs. Then define CP := {pi : (pi, qi) ∈ P} ∪ {qmax}, so |CP | ≤ k.

We analyze the cost of this CP . Let xend be the last point in P ′, and let X := {x ∈ P ′ : qmax <
x < xend} be the set of all points in P ′ that lie between qmax and xend, then |X| ≤ n. Write
X := {x1, x2, . . .} such that xi < xi+1 for all i ∈ [|X|−1]. Then, by triangle inequality, we have that
dist(xend, qmax) ≤ dist(qmax, x1) +∑|X|−1

i=1 dist(xi, xi+1) + dist(x|X|, xend) ≤ O(n · rk), where the last
inequality holds by the definition of P . This implies that for any point in P ′ after pmax, the distance
to CP is at most O(n · rk). Similarly, we conclude that for any point in P ′ before pmax, the distance
to its nearest point in CP is also at most O(n · rk). This implies that cost(P ′, CP) ≤ O(n · rk).

The final value we return is E := Θ(n3E′), to make sure the returned value is at least OPT.
This entire algorithm is straightforward to implement in MPC, and the complexity is dominated by
sorting.

7.2 Finding Approximate Assignments

We would assume the context in the above proof, and discuss how to find an approximate clustering
for k-Center in low and high dimensions, respectively (i.e., for Theorems 1.1 to 1.3).

Lemma 7.4 (Assignment for k-Center in low dimension). There is an MPC algorithm, that given
ε ∈ (0, 1), τ > 0, a center set C and a dataset P of n points in Rd distributed across MPC machines
with local memory s ≥ Ω(ε−1d)Ω(d) poly(log n), such that cost(P, C) = Θ(τ), computes an assignment
for each point x ∈ P , mapping it to a center c ∈ C such that dist(x, c) ≤ (1 + O(ε)) cost(P, C), in
O(logs n) rounds using total memory O(n poly(d log n)) ·O(ε−1d)O(d).

Proof. Write C := (c1, . . . , ck). Let ϕ : P ∪ C → Gετ/
√

d, that maps each point in P or C to its
nearest neighbor in the ετ/

√
d-grid Gετ/

√
d. Let Pτ := ϕ(P) and Cτ := ϕ(C) be the sets rounded

to the grid. Before defining the clustering for the original P based on C, our first step finds the
exact nearest neighbor assignment from Pτ to Cτ . The details of this part will be discussed later.
Now, assuming that the exact nearest neighbor assignment from Pτ to Cτ is obtained, we proceed
to define how to assign points in P to C and prove that this assignment satisfies the approximation
bound.

For every z ∈ ϕ(C), pick rep(z) as an arbitrary fixed point in ϕ−1(z) ∩ C, i.e., a representative
point in C among points whose nearest neighbor in Gετ/

√
d is the same grid. Now, for a point x ∈ P ,

let Cτ (ϕ(x)) denote the nearest neighbor of ϕ(x) in Cτ (which is known by assumption), then we
assign x to rep(Cτ (ϕ(x))). This step can be implemented within the claimed round and space as in
Lemma 7.4.

27

In this assignment, by triangle inequality,

dist(x, C) ≤ dist(x, ϕ(x)) + dist(ϕ(x), Cτ (ϕ(x))) + dist(Cτ (ϕ(x)), rep(Cτ (ϕ(x))))
≤ ετ + dist(ϕ(x), Cτ) + ετ

≤ 2ετ + dist(x, C) + 2ετ

≤ (1 + O(ε)) cost(P, C).

This finishes the description of the assignment from P to C and the analysis of its approximation
bound.

Now, we turn to define the exact nearest neighbor assignment from Pτ to Cτ . The algorithm
simply computes, for every x ∈ Pτ the nearest center point c ∈ B(x, O(τ)) ∩ Cτ , i.e., only searching
the nearest point in an O(τ) neighborhood of x. This algorithm is well-defined, since for every
x ∈ Pτ , dist(x, Cτ) ≤ dist(x, C)+ετ ≤ 2ετ +cost(P, C) ≤ O(τ). This ensures that the found c is the
exact nearest neighbor of x. Observe that for every x ∈ Pτ , we have |B(x, O(τ))∩Cτ | ≤ (ε−1d)O(d),
by Lemma 2.1. Hence, this step of finding the nearest neighbors of Pτ in Cτ can be done in MPC in
O(logs n) rounds, (ε−1d)O(d) poly(log n) local space and (ε−1d)O(d)n poly(log n) total space. This
finishes the proof.

Lemma 7.5 (Assignment for k-Center in high dimension). There is an MPC algorithm, that
given ε ∈ (0, 1), τ > 0, a center set C and a dataset P of n points in Rd distributed across MPC
machines with local memory s ≥ poly(d log n), such that cost(P, C) = Θ(τ), with probability at least
1 − 1/n, computes an assignment for each point x ∈ P , mapping it to a center c ∈ C such that
dist(x, c) ≤ O(ε−1) cost(P, C), in O(logs n) rounds using total memory O(n1+ε poly(d log n)).

Proof. We make use of a procedure described in [CGJ+24, Section 3.1]. Specifically, in [CGJ+24,
Section 3.1], for a given parameter r > 0, their MPC algorithm computes for each data point x ∈ P
an approximate center point cx ∈ C such that dist(x, cx) ≤ O(ε−1)r if there exists c ∈ C such that
dist(x, c) ≤ r, in O(logs n) rounds, poly(d log n) local space and n1+ε poly(d log n) global space.

Now, in our case, since cost(P, C) = Θ(τ), then there must exist a point c ∈ C for each point
x ∈ P within a distance of O(τ). Hence, applying the abovementioned algorithm with r := O(τ),
we can find for each x ∈ P a center point cx ∈ C such that dist(x, cx) ≤ O(ε−1) cost(P, C), and
achieve the claimed round and space complexity as in Lemma 7.5.

References
[AAH+23] AmirMohsen Ahanchi, Alexandr Andoni, MohammadTaghi Hajiaghayi, Marina Knittel,

and Peilin Zhong. Massively parallel tree embeddings for high dimensional spaces. In
SPAA, pages 77–88, 2023. doi:10.1145/3558481.3591096.

[ABJ+25] Amir Azarmehr, Soheil Behnezhad, Rajesh Jayaram, Jakub Lacki, Vahab Mirrokni, and
Peilin Zhong. Massively parallel minimum spanning tree in general metric spaces. In
SODA, pages 143–174, 2025. doi:10.1137/1.9781611978322.5.

[AG23] Sepideh Aghamolaei and Mohammad Ghodsi. A 2-approximation algorithm for data-
distributed metric k-center. arXiv preprint arXiv:2309.04327, 2023. arXiv:2309.04327.

[AGLP89] Baruch Awerbuch, Andrew V Goldberg, Michael Luby, and Serge A Plotkin. Network
decomposition and locality in distributed computation. In FOCS, pages 364–369, 1989.
doi:10.1109/SFCS.1989.63504.

28

https://doi.org/10.1145/3558481.3591096
https://doi.org/10.1137/1.9781611978322.5
https://arxiv.org/abs/2309.04327
https://doi.org/10.1109/SFCS.1989.63504

[BBM23] Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with
outliers in the MPC and streaming model. In IPDPS, pages 853–863, 2023. arXiv:
2302.12811.

[BEFM21] MohammadHossein Bateni, Hossein Esfandiari, Manuela Fischer, and Vahab S. Mirrokni.
Extreme k-center clustering. In AAAI, pages 3941–3949, 2021. doi:10.1609/AAAI.
V35I5.16513.

[BKS17] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. Journal of the ACM, 64(6):40:1–40:58, 2017. doi:10.1145/3125644.

[BP24] Leyla Biabani and Ami Paz. k-center clustering in distributed models. In SIROCCO,
pages 83–100, 2024. doi:10.1007/978-3-031-60603-8_5.

[BW18] Aditya Bhaskara and Maheshakya Wijewardena. Distributed clustering via LSH based
data partitioning. In ICML, pages 569–578, 2018. URL: http://proceedings.mlr.
press/v80/bhaskara18a.html.

[CCM23] Sam Coy, Artur Czumaj, and Gopinath Mishra. On parallel k-center clustering. In
SPAA, pages 65–75, 2023. doi:10.1145/3558481.3591075.

[CFJ+22] Artur Czumaj, Arnold Filtser, Shaofeng H.-C. Jiang, Robert Krauthgamer, Pavel
Veselý, and Mingwei Yang. Streaming facility location in high dimension via geometric
hashing. arXiv preprint arXiv:2204.02095, 2022. The latest version has additional
results compared to the preliminary version in [CJK+22]. arXiv:2204.02095.

[CGJ+24] Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel
Veselý. Fully-scalable MPC algorithms for clustering in high dimension. In ICALP,
pages 50:1–50:20, 2024. doi:10.4230/LIPICS.ICALP.2024.50.

[CJK+22] Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, Pavel Veselý, and Mingwei
Yang. Streaming facility location in high dimension via geometric hashing. In FOCS,
pages 450–461, 2022. doi:10.1109/FOCS54457.2022.00050.

[CKPU23] Mélanie Cambus, Fabian Kuhn, Shreyas Pai, and Jara Uitto. Time and space optimal
massively parallel algorithm for the 2-ruling set problem. In DISC, pages 11:1–11:12,
2023. doi:10.4230/LIPICS.DISC.2023.11.

[CLN+21] Vincent Cohen-Addad, Silvio Lattanzi, Ashkan Norouzi-Fard, Christian Sohler, and
Ola Svensson. Parallel and efficient hierarchical k-median clustering. In NeurIPS,
pages 20333–20345, 2021. URL: https://proceedings.neurips.cc/paper/2021/
hash/aa495e18c7e3a21a4e48923b92048a61-Abstract.html.

[CMZ22] Vincent Cohen-Addad, Vahab S. Mirrokni, and Peilin Zhong. Massively parallel k-means
clustering for perturbation resilient instances. In ICML, pages 4180–4201, 2022. URL:
https://proceedings.mlr.press/v162/cohen-addad22b.html.

[CPP19] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center cluster-
ing (with outliers) in mapreduce and streaming, almost as accurately as sequentially.
Proc. VLDB Endow., 12(7):766–778, 2019. URL: http://www.vldb.org/pvldb/vol12/
p766-ceccarello.pdf.

29

https://arxiv.org/abs/2302.12811
https://arxiv.org/abs/2302.12811
https://doi.org/10.1609/AAAI.V35I5.16513
https://doi.org/10.1609/AAAI.V35I5.16513
https://doi.org/10.1145/3125644
https://doi.org/10.1007/978-3-031-60603-8_5
http://proceedings.mlr.press/v80/bhaskara18a.html
http://proceedings.mlr.press/v80/bhaskara18a.html
https://doi.org/10.1145/3558481.3591075
https://arxiv.org/abs/2204.02095
https://doi.org/10.4230/LIPICS.ICALP.2024.50
https://doi.org/10.1109/FOCS54457.2022.00050
https://doi.org/10.4230/LIPICS.DISC.2023.11
https://proceedings.neurips.cc/paper/2021/hash/aa495e18c7e3a21a4e48923b92048a61-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/aa495e18c7e3a21a4e48923b92048a61-Abstract.html
https://proceedings.mlr.press/v162/cohen-addad22b.html
http://www.vldb.org/pvldb/vol12/p766-ceccarello.pdf
http://www.vldb.org/pvldb/vol12/p766-ceccarello.pdf

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. doi:10.1145/1327452.
1327492.

[EIM11] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using MapReduce. In
KDD, pages 681–689, 2011. doi:10.1145/2020408.2020515.

[EMMZ22] Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Mas-
sively parallel and dynamic algorithms for minimum size clustering. In SODA, pages
1613–1660. SIAM, 2022. doi:10.1137/1.9781611977073.66.

[Fil24] Arnold Filtser. Scattering and sparse partitions, and their applications. ACM Transac-
tions on Algorithms, 20(4):30:1–30:42, 2024. doi:10.1145/3672562.

[GGJ20] Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC algorithms for
MIS, matching, and coloring on trees and beyond. In DISC, pages 34:1–34:18, 2020.
doi:10.4230/LIPICS.DISC.2020.34.

[Gha19] Mohsen Ghaffari. Massively parallel algorithms, 2019. Lecture Notes from ETH Zürich.
URL: http://people.csail.mit.edu/ghaffari/MPA19/Notes/MPA.pdf.

[Gha22] Mohsen Ghaffari. Distributed graph algorithms, 2022. Lecture Notes from MIT. URL:
https://people.csail.mit.edu/ghaffari/DA22/Notes/DGA.pdf.

[GLM+23] Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený,
Jukka Suomela, Jara Uitto, and Hossein Vahidi. Fast dynamic programming in trees in
the MPC model. In SPAA, pages 443–453, 2023. doi:10.1145/3558481.3591098.

[Gon85] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

[GP24] Jeff Giliberti and Zahra Parsaeian. Massively parallel ruling set made deterministic. In
DISC, pages 29:1–29:21, 2024. doi:10.4230/LIPICS.DISC.2024.29.

[GSZ11] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and
simulation in the MapReduce framework. In ISAAC, pages 374–383, 2011. arXiv:
1101.1902.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications
in massively parallel computation and centralized local computation. In SODA, pages
1636–1653, 2019. doi:10.1137/1.9781611975482.99.

[Har04] Sariel Har-Peled. No, coreset, no cry. In FSTTCS, pages 324–335, 2004. doi:10.1007/
978-3-540-30538-5_27.

[HM04] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In STOC, pages 291–300, 2004. doi:10.1145/1007352.1007400.

[HS85] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of Operations Research, 10(2):180–184, 1985. doi:10.1287/
moor.10.2.180.

30

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/2020408.2020515
https://doi.org/10.1137/1.9781611977073.66
https://doi.org/10.1145/3672562
https://doi.org/10.4230/LIPICS.DISC.2020.34
http://people.csail.mit.edu/ghaffari/MPA19/Notes/MPA.pdf
https://people.csail.mit.edu/ghaffari/DA22/Notes/DGA.pdf
https://doi.org/10.1145/3558481.3591098
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.4230/LIPICS.DISC.2024.29
https://arxiv.org/abs/1101.1902
https://arxiv.org/abs/1101.1902
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1007/978-3-540-30538-5_27
https://doi.org/10.1007/978-3-540-30538-5_27
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1287/moor.10.2.180

[HS86] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986. doi:
10.1145/5925.5933.

[HZ23] Alireza Haqi and Hamid Zarrabi-Zadeh. Almost optimal massively parallel algorithms
for k-center clustering and diversity maximization. In SPAA, pages 239–247, 2023.
doi:10.1145/3558481.3591077.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. In EuroSys, pages
59–72, 2007. doi:10.1145/1272996.1273005.

[IKL+23] Sungjin Im, Ravi Kumar, Silvio Lattanzi, Benjamin Moseley, and Sergei Vassilvitskii.
Massively parallel computation: Algorithms and applications. Foundations and Trends
in Optimization, 5(4):340–417, 2023. doi:10.1561/2400000025.

[IM15] Sungjin Im and Benjamin Moseley. Brief announcement: Fast and better distributed
mapreduce algorithms for k-center clustering. In SPAA, pages 65–67, 2015. doi:
10.1145/2755573.2755607.

[JKPS25] Hongyan Ji, Kishore Kothapalli, Sriram V. Pemmaraju, and Ajitanshu Singh. Fast
deterministic massively parallel ruling sets algorithms. In ICDCN, pages 152–160, 2025.
doi:10.1145/3700838.3700872.

[JL84] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert
space. Contemporary Mathematics, 26:189–206, 01 1984. doi:10.1090/conm/026/
737400.

[JLN+05] Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram.
Universal approximations for TSP, Steiner tree, and set cover. In STOC, pages 386–395,
2005. doi:10.1145/1060590.1060649.

[JMNZ24] Rajesh Jayaram, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. Massively
parallel algorithms for high-dimensional Euclidean minimum spanning tree. In SODA,
pages 3960–3996. SIAM, 2024. doi:10.1137/1.9781611977912.139.

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
MapReduce. In SODA, pages 938–948, 2010. doi:10.1137/1.9781611973075.76.

[LFW+24] Ting Liang, Qilong Feng, Xiaoliang Wu, Jinhui Xu, and Jianxin Wang. Improved
approximation algorithm for the distributed lower-bounded k-center problem. In TAMC,
pages 309–319, 2024. doi:10.1007/978-981-97-2340-9_26.

[Lub85] Michael Luby. A simple parallel algorithm for the maximal independent set problem. In
STOC, pages 1–10. ACM, 1985. doi:10.1145/22145.22146.

[MKC+15] Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, and Benjamin
Moseley. Fast distributed k-center clustering with outliers on massive data. In NIPS,
pages 1063–1071, 2015. URL: https://proceedings.neurips.cc/paper/2015/hash/
8fecb20817b3847419bb3de39a609afe-Abstract.html.

[Ona18] Krzysztof Onak. Round compression for parallel graph algorithms in strongly sublinear
space. arXiv preprint arXiv:1807.08745, 2018. arXiv:1807.08745.

31

https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/3558481.3591077
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1561/2400000025
https://doi.org/10.1145/2755573.2755607
https://doi.org/10.1145/2755573.2755607
https://doi.org/10.1145/3700838.3700872
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1145/1060590.1060649
https://doi.org/10.1137/1.9781611977912.139
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1007/978-981-97-2340-9_26
https://doi.org/10.1145/22145.22146
https://proceedings.neurips.cc/paper/2015/hash/8fecb20817b3847419bb3de39a609afe-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/8fecb20817b3847419bb3de39a609afe-Abstract.html
https://arxiv.org/abs/1807.08745

[Pol90] David Pollard. Empirical Processes: Theory and Applications, chapter 4: Packing and
Covering in Euclidean Spaces, pages 14–20. IMS, 1990. doi:10.1214/cbms/1462061091.

[RG20] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network
decomposition and distributed derandomization. In STOC, pages 350–363, 2020. doi:
10.1145/3357713.3384298.

[RVW18] Tim Roughgarden, Sergei Vassilvitski, and Joshua R. Wang. Shuffles and circuits (on
lower bounds for modern parallel computation). Journal of the ACM, 65(6):41:1–41:24,
November 2018. doi:10.1145/3232536.

[SW10] Johannes Schneider and Roger Wattenhofer. An optimal maximal independent set
algorithm for bounded-independence graphs. Distributed Computing, 22(5-6):349–
361, 2010. URL: https://doi.org/10.1007/s00446-010-0097-1, doi:10.1007/
S00446-010-0097-1.

[Whi15] Tom White. Hadoop: The Definitive Guide. O’Reilly, 4th edition, 2015. URL: https:
//www.oreilly.com/library/view/hadoop-the-definitive/9781491901687/.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In HotCloud, 2010. URL: https://www.
usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets.

A Proof of Lemma 3.1: Geometric Hashing
Lemma 3.1. For every β > 0, ℓ ≥ Θ(d1.5β), there is a hash function f : Rd → Rd such that the
following holds.

1. Each bucket has diameter at most ℓ, namely, for every image u ∈ f(Rd), diam(f−1(u)) ≤ ℓ.

2. The bucket set {f−1(u) : u ∈ f(Rd)} can be partitioned into d + 1 groups {Wi}di=0, such that
every two buckets S ̸= S′ in the same group Wi (0 ≤ i ≤ d) has dist(S, S′) ≥ dist∞(S, S′) > β.

3. For every 0 < τ ≤ β,
(⋃

u∈f(Rd) U∞
τ (f−1(u))

)
∩ L(z, 2b)d = ∅,7 where z := ℓ/

√
d, b := dβ + τ

and L(p, q) := ⋃
a∈Z[ap + q, (a + 1)p− q) for p > 2q.

Furthermore, it takes poly(d) space to store f and to evaluate f(x) for every x ∈ Rd.

The construction of the hash f : Rd → Rd is the same as that in [CFJ+22, Theorem 5.3]. Their
proof already implies the space bound, as well as the first two properties; In fact, our second property
is stronger than what they state, but the stronger version was indeed proved in their paper, albeit
implicitly. We would restate their algorithm/construction, briefly sketch the proof for the first two
properties, and focus on the third property.

Hash construction. We start with reviewing their algorithm/construction of f . Partition Rd into
hypercubes of side length z of the form×d

i=1[aiz, (ai + 1)z) where a1, . . . , ad ∈ Z. Notice that each
of hypercubes is of diameter ℓ. Let ℓi := (d− i)β where i ∈ {0, . . . , d− 1}. For every i ∈ {0, . . . , d},
let Fi be the set of i-dimensional faces of the abovementioned hypercubes, and let Ai be the set of
points that belong to these faces, i.e., Ai := ⋃

Q∈Fi
Q. For each i ∈ {0, . . . , d− 1}, let Bi := N∞

ℓi
(Ai)

7Recall that the notation L(·, ·)d denotes the d-th Cartesian power of L(·, ·).

32

https://doi.org/10.1214/cbms/1462061091
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3232536
https://doi.org/10.1007/s00446-010-0097-1
https://doi.org/10.1007/S00446-010-0097-1
https://doi.org/10.1007/S00446-010-0097-1
https://www.oreilly.com/library/view/hadoop-the-definitive/9781491901687/
https://www.oreilly.com/library/view/hadoop-the-definitive/9781491901687/
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

be ℓi-neighborhood of Ai (with respect to ℓ∞ distance). Let B−1 := ∅ and B≤i := ⋃
j≤i Bj . The

main procedure for the construction of f goes as follows.

• For every i ∈ {0, . . . , d− 1}, for every Q ∈ Fi, let Q̂ := N∞
ℓi

(Q) \B≤i−1, and for every x ∈ Q̂

assign f(x) = q where q ∈ Q̂ is an arbitrary but fixed point. Observe that Q̂ ⊆ Bi and thus
x ∈ Q̂ will not be assigned again in later iterations.

• For every Q ∈ Fd, let Q̂ := Q \B≤d−1 be the remaining part of Q whose f(x) has not been
assigned, and assign f(x) = q for every x ∈ Q̂, where q ∈ Q̂ is arbitrary but fixed point.

First two properties. The first property is immediate from this construction since every bucket is
a subset of a hypercube of side-length z whose diameter is

√
dz = ℓ. To establish the second property,

we need to define the d + 1 groups. For 0 ≤ i ≤ d− 1, define Wi := {N∞
ℓi

(Q) \B≤i−1 : Q ∈ Fi} and
let Wd := {Q \B≤d−1 : Q ∈ Fd}. Then by the construction of f , {f−1(u) : u ∈ f(Rd)} = ⋃d

i=0Wi,
hence the Wi is a proper partition of buckets. These Wi’s are implicitly analyzed in [CFJ+22,
Lemma 5.5 and Lemma 5.8], restated and adapted (as Lemma A.1) to our notation as follows. This
lemma readily implies our second property.

Lemma A.1 ([CFJ+22, Lemma 5.5 and Lemma 5.8]). For every 0 ≤ i ≤ d and every S ̸= S′ ∈ Wi,
dist(S, S′) ≥ dist∞(S, S′) > β.

Third property. We proceed to prove the third property. The third property, particularly L(z, 2b)
is well-defined, since by the choice of parameters it can be verified that z > 4b. The proof starts with
the following claim. It relates the complicated ⋃u U∞

τ (f−1(u)) to a much simpler object N∞
b (Ad−1),

which is merely the b-neighborhood of (d− 1)-dimensional faces.

Claim A.2.
⋃

u∈f(Rd) U∞
τ (f−1(u)) ⊆ N∞

b (Ad−1).

Proof. Recall that {f−1(u) : u ∈ f(Rd)} = ⋃d
i=0Wi. Therefore, it suffices to prove that for every

i ∈ {0, . . . , d} and for every S ∈ Wi, U∞
τ (S) ⊆ N∞

b (Ad−1). We prove this separately for the case of
i ≤ d− 1 and i = d.

Case I: i ≤ d− 1 We first analyze the case that 0 ≤ i ≤ d− 1. Fix some 0 ≤ i ≤ d− 1 and some
S := N∞

ℓi
(Q) \ B≤i−1 ∈ Wi (for some Q ∈ Fi). Observe that S = N∞

ℓi
(Q) \ B≤i−1 ⊆ N∞

ℓi
(Q) ⊆

N∞
ℓi

(Ai). Then we have that N∞
τ (S) ⊆ N∞

τ (N∞
ℓi

(Ai)) = N∞
ℓi+τ (Ai). Observe that ℓi = (d−i)β ≤ dβ.

Hence, U∞
τ (S) = N∞

τ (S) \ S ⊆ N∞
τ (S) ⊆ N∞

ℓi+τ (Ai) ⊆ N∞
dβ+τ (Ad−1) = N∞

b (Ad−1). This finishes
the case of i ≤ d− 1.

Case II: i = d Next, we analyze the case that i = d. By Lemma A.1, for every S ̸= S′ ∈ Wd,
dist∞(S, S′) > β ≥ τ , and this implies

N∞
τ (S) ∩ S′ = ∅, (12)

as ℓ∞ distance between any two points is at most their ℓ2 distance. Now fix some S ∈ Wd. By the
construction, Ad = Rd and B≤d−1 ∩

⋃
S∈Wd

S = ∅. By (12), N∞
τ (S) has no intersection with Wd

other than on S. Hence,
U∞

τ (S) = N∞
τ (S) \ S ⊆ B≤d−1. (13)

33

To further relate B≤d−1 with Ad−1, we have

B≤d−1 =
d−1⋃
j=0

Bj =
d−1⋃
j=0

N∞
ℓj

(Aj) ⊆
d−1⋃
j=0

N∞
dβ(Aj) ⊆ N∞

dβ(Ad−1),

where the last step follows from Aj ⊆ Aj+1 for every j. Combining this with (13), we conclude that
U∞

τ (S) ⊆ N∞
dβ(Ad−1) ⊆ N∞

b (Ad−1). This finishes the proof of Claim A.2.

By Claim A.2, it remains to prove N∞
b (Ad−1)∩L(z, 2b)d = ∅. Since N∞

b (Ad−1) = N∞
b (⋃Q∈Fd−1

Q) =⋃
Q∈Fd−1

N∞
b (Q) = ⋃

x∈Q,Q∈Fd−1
N∞

b (x), it suffices to show ∀x ∈ Q (for Q ∈ Fd−1), N∞
b (x) ∩

L(z, 2b)d = ∅. Now fix some Q ∈ Fd−1 and x ∈ Q. Since Q is a (d− 1)-dimensional face, it has d− 1
dimensions spanning an entire interval of length z, and has exactly one dimension taking a value of
the form az (a ∈ Z). Formally, x ∈ Q if and only if there exists 0 ≤ j ≤ d and {ai ∈ Z}di=0 such
that for 0 ≤ i ≤ d,

xi ∈
{

[aiz, (ai + 1)z) i ̸= j

{aiz} i = j
. (14)

Let j be that as in (14). Then for every y ∈ L(z, 2b)d,

∥x− y∥∞ ≥ |xj − yj | ≥ 2b,

where the last inequality follows from the definition of L(z, 2b) and recall that L(z, 2b) = ⋃
a∈Z[az +

2b, (a + 1)z − 2b). This further implies ∀x′ ∈ N∞
b (x) and y ∈ L(z, 2b)d, ∥x′ − y∥∞ ≥ b, by the

triangle inequality of ℓ∞. Therefore, we conclude that N∞
b (x) ∩ L(z, 2b)d = ∅, and this finishes the

proof of Lemma 3.1.

B Analysis of One-round Luby’s Algorithm
Here we show both an upper and a matching lower bound for one-round Luby’s algorithm for
graphs. We give a proof sketch, in Appendix B.1, for an upper bound that the set S returned by
the one-round Luby’s algorithm is O(log n)-ruling set with high probability. We give a tight input
graph G, such that the S returned by the one-round Luby’s algorithm is Ω(log n)-ruling set with
high probability, in Appendix B.2.

Here, for an undirected graph G = (V, E), an α-ruling set is a subset S ⊆ V such that a)
for any x ̸= y ∈ S, {x, y} /∈ E, and b) any vertex x ∈ V has a path within α hops to S. The
one-round Luby’s algorithm picks a uniform random value h(x) ∈ [0, 1] for every x ∈ V , and
include x into S if and only if x has the smallest h value among x and its adjacent vertices, i.e.,
{x} ∪ {y ∈ V : {x, y} ∈ E}. Return S as the output.

B.1 Upper Bound: A Proof Sketch

We discuss how the proof in Section 6 can be modified to prove the O(log n)-ruling set bound in
graphs. Even though we still use the language of Euclidean spaces in the following, the proof sketch
actually does not use Euclidean property and works directly for graphs.

As we are talking about one-round Luby’s algorithm, we do not need to do the preprocessing in
Algorithm 4, and the in Algorithm 5 we do not need to use the approximate Aβ

P (·, ·).
The proof of Lemma 6.2 still shows the returned point set is τ -independent. Lemma 6.3

and fact 6.4 are not needed, as we work on P directly (without preprocessing). Lemma 6.5 is

34

still the main lemma, and the statement can be simply changed to for t = O(log n), Pr[∀p ∈
P, dist(p, R) ≤ O(t)τ] ≥ 1 − 1/ poly(n). The proof plan of Lemma 6.5 still goes through, and it
reduces to Lemma 6.6, where the statement is changed to for t = O(log n), Pr[T ≥ t] ≤ 1/ poly(n).

The main modification is in the proof of Lemma 6.6. Lemma 6.9 is still useful even in the graph
setting, and does not need to be changed. However, we use a new definition for f , and instead of
mapping to Z, we do f : S → {0, 1}. Pick some parameter γ = Θ(1). For S′ ∈ S, define

f(S′) :=

1 |Anew(S′)|
|Anew(S′)∪Acond(S′)| > γ

0 otherwise

Intuitively, f(S′) is 1 if the upper bound |Anew(S′)|
|Anew(S′)∪Acond(S′)| of the extension probability (Lemma 6.9)

is too large. Ideally, if for a sequence all extensions have f value 0, then its length is greater than t
with probability 1/ poly(n). The definition of configuration remains the same, i.e., for S′ ∈ S, i.e.,
conf(S′) := (f(S′

[0,1]), . . . , f(S′
[0,m])).

Next, we need a new lemma that shows for every π ∈ {0, 1}t and S′ ∈ Sπ, ∥conf(S′)∥1 ≤ t/2
(which requires the constant in the big-O of t to be picked carefully). This lemma holds because
once f value is 1, the |Anew| (which is the new part introduced by the extension) is at least constant
fraction of the neighborhood of all previous elements in the sequence. Therefore, this cannot happen
more than t/2 = Ω(log n) times since otherwise |Anew(S′

[0,t/2])| > n.
Finally, in the modified version of Lemma 6.12, we use the abovementioned ∥conf(S′)∥1 ≤ t/2

bound, and conclude that there are still at least t/2 = Ω(log n) number of extensions that happen
with probability at most |Anew(S′)|

|Anew(S′)∪Acond(S′)| ≤ γ, and hence ∑S′∈Sπ
Pr[S′ ⊑ S] ≤ γt/2.

Finally, since the number of configurations is at most 2t, taking a union bound, 2t · γt/2 ≤
1/ poly(n) by setting small enough γ.

B.2 Lower Bound

Let n be some parameter. Consider the following graph G = (V, E). Let m := ln n
γ where γ is

a sufficiently large constant. The vertex set V consists of m parts V1, . . . , Vm, i.e., V := ⋃
i Vi,

such that |Vi| = 2i. We add for every i ∈ [m], a clique in each Vi, i.e., Vi × Vi, and add for every
i ∈ [m− 1] a complete bipartite graph for between Vi and Vi+1, i.e., Vi × Vi+1.

Now, consider the one-round Luby’s algorithm on G, and we analyze the random values h. For
i ∈ [m− 1], let Ei be the event that there exists u ∈ Vi+1 such that h(u) < h(v) for all v ∈ Vi.

Claim. Pr[∧i∈[m−1] Ei] ≥ 1/
√

n.

Proof.

Pr[
∧

i∈[m−1]
Ei] =

∏
i∈[m−1]

Pr[Ei |
∧

j∈[i−1]
Ej]

=
∏

i∈[m−1]
Pr[Ei]

=
∏

i∈[m−1]

(
1−

(
1− 1

2i + 1

)2i+1)

≥ (1− 1/e2)m

≥ 1/
√

n.

35

To see the second equality, consider Pr[Ei |
∧

j∈[i−1] Ej] for some i ∈ [m− 1]. Then the values h for
the vertices in Vi+1 and ⋃j∈[i] Vj are independent, and that the event ∧j∈[i−1] Ej only depends on
the randomness of h for the vertices in ⋃j∈[i] Vj . The third equality follows from the fact that the h
values for vertices in Vi+1 are independent to each other, and that for a fixed vertex u ∈ Vi+1 the
probability that h(u) < h(v) for every v ∈ Vi is 1/(2i + 1).

Observe that the event ∧i∈[m−1] Ei implies that one-round Luby’s returns Ω(log n)-ruling set.
Hence, we define a new graph G′ by duplicating G for n0.6 times (where there are no edges

between the copies). This graph G′ has poly(n) vertices. Moreover, we know that with probability
at least 1− (1− 1/

√
n)n0.6

> 0.5, one-round Luby’s algorithm on G′ returns an Ω(log n)-ruling set.
This finishes the proof.

36

	Abstract
	Introduction
	Our Results
	Technical Overview
	Reductions and Results for Geometric RS and MDS
	RS and MDS in Low Dimension
	RS in High Dimension

	Related Work

	Preliminaries
	Geometric Hashing
	MPC Algorithms for RS in Low Dimension
	MPC Algorithms for Approximate `3́9`42`"̇613A``45`47`"603AMDS in Low Dimension
	MPC Algorithms for RS in High Dimension
	Proof of Lemma 6.6: Upper Bound The Length of Auxiliary Sequence

	Proof of thm:lowdim2approx,thm:lowdimbicrit,thm:kcenterhighdim: MPC Algorithms for k-Center
	Coarse Approximation for Optimal Value of k-Center
	Finding Approximate Assignments

	Proof of Lemma 3.1: Geometric Hashing
	Analysis of One-round Luby's Algorithm
	Upper Bound: A Proof Sketch
	Lower Bound

