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Abstract— Trajectory prediction is a fundamental technology 
for advanced autonomous driving systems and represents one of 
the most challenging problems in the field of cognitive intelligence. 
Accurately predicting the future trajectories of each traffic 
participant is a prerequisite for building high safety and high 
reliability decision-making, planning, and control capabilities in 
autonomous driving. However, existing methods often focus solely 
on the motion of other traffic participants without considering the 
underlying intent behind that motion, which increases the 
uncertainty in trajectory prediction. Autonomous vehicles operate 
in real-time environments, meaning that trajectory prediction 
algorithms must be able to process data and generate predictions 
in real-time. While many existing methods achieve high accuracy, 
they often struggle to effectively handle heterogeneous traffic 
scenarios. In this paper, we propose a Subjective Intent-based 
Low-latency framework for Multiple traffic participants joint 
trajectory prediction. Our method explicitly incorporates the 
subjective intent of traffic participants based on their key points, 
and predicts the future trajectories jointly without map, which 
ensures promising performance while significantly reducing the 
prediction latency. Additionally, we introduce a novel dataset 
designed specifically for trajectory prediction. Related code and 
dataset will be available soon. 

I. INTRODUCTION 

The World Health Organization (WHO) published a report 
stating that in 2021, the number of traffic accident fatalities was 
1.19 million, equivalent to 15 deaths per 100,000 people, with 
one person dying every 24 seconds due to traffic accidents [1]. 
These accidents also result in significant economic losses for 
individuals, families, and entire nations, amounting to 3% of the 
Gross Domestic Product (GDP) of most countries [2]. A study 
by National Highway Traffic Safety Administration (NHTSA) 
in the United States reveals that approximately 94% of severe 
traffic accidents are caused by driver errors [3]. Consequently, 
autonomous vehicles (AVs) are expected to play a crucial role 
in reducing traffic accidents and enhancing road safety. 

Current autonomous driving systems typically divide the 
problem into four steps: perception, tracking, trajectory 
prediction, and path planning [4]. Trajectory prediction plays a 
pivotal role in autonomous driving. It serves not only as an 
extension of environmental perception and a basis for decision-
making and planning, but also as the foundation for risk 
assessment and safety enhancement. Autonomous vehicles 
should be capable of predicting the future state of the 
surrounding environment in real-time, similar to human drivers. 
Based on this prediction, the vehicle can initiate new driving 
actions, such as acceleration or lane changes, to better adapt to 
the dynamic traffic environment. 

  
Fig.1.  Depiction of the challenges of trajectory prediction. The Ego-Vehicle is 
represented by the red vehicle. Multimodality: In this scenario, despite having 
only one single historical trajectory, the Ego-Vehicle has three potential future 
legal trajectories. Interdependence: If the Ego-Vehicle chooses to make a left 
turn, to ensure socially acceptable driving behavior, it must consider the future 
movements of the green vehicle and the green pedestrian. Real-time 
Requirement: Due to the dynamic nature of driving scenarios, the Ego-Vehicle 
must respond in real-time. 

In recent years, significant progress has been made in 
autonomous vehicle trajectory prediction, such as QCNet [5], 
BAT [6], LAformer [7]. However, accurately predicting the 
future trajectories of traffic participants still presents several 
challenges, as illustrated in Fig. 1. Multimodality: A past 
trajectory can have multiple potential future trajectories. 
Therefore, trajectory prediction models must learn to capture the 
underlying multimodal distribution, rather than simply 
predicting the most common pattern. Many studies leverage 
handcrafted anchor points to guide multimodal predictions [8] 
[9][10]. However, the effectiveness of these methods is highly 
dependent on the quality of the anchor points. Other works 
attempt to avoid this limitation by directly predicting multiple 
trajectories [11][12][13], which introduces the risk of mode 
collapse and training instability [5]. Interdependence: In 
heterogeneous road environments, such as intersections, 
campuses, or areas with mixed pedestrian and vehicle traffic, 
strong interactions exist among different traffic participants. 
Consequently, their trajectories are interdependent. Predicting 
trajectories in such complex environments requires models 
capable of handling the game-theoretic interactions between 
multiple traffic participants. Current trajectory prediction 
methods typically focus solely on the motion of other traffic 



participants without considering the underlying context or intent 
behind that motion, which further increases the uncertainty of 
trajectory prediction [3]. Real-time Requirement: Although a 
series of models have achieved impressive performance on 
trajectory prediction benchmarks [14][15][16], they often fail to 
efficiently handle the heterogeneous traffic scenarios. Jointly 
optimizing the trajectories of multiple traffic participants 
typically requires a large deep learning architecture. However, 
autonomous vehicles need to operate in real-time, typically at 
around 10 Hz, which places stringent constraints on the runtime 
of the prediction module [4]. 

The analysis above drives us to propose a subjective intent-
based low-latency framework for multiple traffic participants 
joint trajectory prediction, termed as SILM. Inspired by HiVT 
[13], we first use a local encoder to extract spatiotemporal 
features from each traffic participant, followed by a global 
encoder to aggregate these features across all participants. 
Unlike HiVT, our method operates without reliance on map 
information and adopts an ego-vehicle-centered representation, 
as we focus more on how the future trajectories of surrounding 
traffic participants affect the ego-vehicle’s behavior. At the same 
time, recognizing the importance of subjective intent in 
trajectory prediction, we explicitly extract key point features 
from each traffic participant to capture their intent. These key 
point features are then integrated with the trajectory features to 
enhance the performance. 

In summary, the main contributions of this paper are 
summarized as follows: 

 We propose a novel trajectory prediction framework 
without map that significantly improves prediction 
performance while maintaining low latency. 

 We incorporate subjective intention cues from traffic 
participants, demonstrating their critical role in improving 
trajectory prediction accuracy. 

 We contribute a new, specialized dataset for trajectory 
prediction tasks. 

II. RELATED WORKS  

A. Physics-based Methods 

Physics-based methods rely on physical principles, taking 
into account physical factors such as current position, velocity, 
acceleration, and road constraints for trajectory prediction [17]. 
Common physics models include dynamic models [18][19][20] 
and kinematic models [21][22][23]. However, in practical 
trajectory prediction, noise interference is often present. The 
Kalman Filter (KF) method models the noise in the current 
vehicle state and its physical model using a Gaussian distribution. 
By combining the prediction and updating steps into a loop, the 
average value and covariance matrix of the vehicle state at each 
future time step can be obtained, yielding an average trajectory 
with associated uncertainty [24]. When no assumptions of 
linearity or Gaussian properties are made, Monte Carlo methods 
can approximate the state distribution. They perform random 
sampling of input variables and apply a physical model to 
generate potential future trajectories [25]. While these methods 
offer interpretability and computational efficiency, they are only 
suitable for simple prediction scenes and typically exhibit lower 

accuracy [26]. To achieve SOTA performance, physics-based 
methods may need to be combined with learning-based methods 
[27][28]. 

B. Deep Learning-based Methods 

To overcome the limitations of physics-based methods, deep 
learning-based methods have gained significant attention.  
Sequential Networks, Graph Neural Networks (GNN), and 
Generative Models are among the most widely used methods. 
Sequential Networks, such as Recurrent Neural Networks 
(RNN), Convolutional Neural Networks (CNN), and Attention 
Mechanisms (AM), are employed to extract features from 
historical trajectories. RNNs, such as Long Short-Term Memory 
Network (LSTM) [29] and Gated Recurrent Unit (GRU) [30], 
are designed to handle temporal information, while CNNs can 
effectively process spatial information including the interaction-
related factors between traffic participants [31]. Some 
researchers combine RNN and CNN to integrate both temporal 
and spatial information into their models, such as Social-LSTM 
[29] and Traphic [32]. AM mimics the way humans think and 
allows the human to use limited attention resources to quickly 
filter out high-value information [26], which is also 
demonstrated superior performance in trajectory prediction 
[33][34]. However, when considering the complex interactions 
among traffic participants, Sequential Networks often fail to 
deliver satisfactory results. GNNs, such as Graph Convolutional 
Network (GCN) and Graph Attention Network (GAT) can 
effectively address this issue [35]. In this case, each individual 
in the environment can be viewed as a node in a graph, with 
edges representing the relationships between them. To address 
the multimodality issue in trajectory prediction, a plenty of 
researchers utilize Generative Models to generate multi-modal 
trajectories, such as Generative Adversarial Network (GAN) and 
Conditional Variational Auto Encoder (CVAE) [36][37][38] 
[39]. 

C. Reinforcement Learning-based Methods 

Reinforcement Learning (RL) provides a new way to handle 
complex high-dimensional strategies. When applied to trajectory 
prediction, Markov Decision Process (MDP) is typically used to 
maximize cumulative rewards. RL helps estimate the reward 
function or directly identify the best trajectory prediction 
strategy. In this framework, traffic participants are assumed to 
act optimally based on a specific reward function. Inverse 
Reinforcement Learning (IRL), instead of imitating trajectories 
directly, seeks to understand the motivations behind them by 
inferring the reward function, which is then used to predict 
future trajectories. Due to the complexity of traffic behaviors, 
manually defining the reward function is challenging. Xu et al. 
[40] introduced Inverse Optimal Control (IOC), which uses 
Langevin sampling to model vehicle cost functions. Deep IRL 
combines IRL with deep neural networks (DNN) to learn reward 
functions from data. Guo et al. [41] proposed a multimodal 
trajectory prediction framework using IRL, which learns in an 
end-to-end manner. However, IRL is often difficult to train in 
scenarios with limited or no direct reward functions. Imitation 
Learning (IL) effectively addresses this issue, as it mimics expert 
behavior to quickly find strategies. Common methods include 
Behavior Cloning [42] and Generative Adversarial Imitation 
Learning (GAIL) [43]. 



Fig.2.  Workflow of SILM.  

III. PROBLEM FORMULATION  

Accurate trajectory prediction of surrounding traffic 
participants necessitates a comprehensive understanding of the 
spatiotemporal dynamics of the environment, including the 
historical states of observable traffic participants and their 
interaction patterns. The historical states of traffic participants 
observed by the AVs is: 

𝑿𝑿 = �𝒆𝒆𝑗𝑗0,𝒆𝒆𝑗𝑗1, 𝒆𝒆𝑗𝑗2, … , 𝒆𝒆𝑗𝑗𝑡𝑡−1�𝑗𝑗=1
𝑁𝑁

            (1) 
where 𝑁𝑁 represents all traffic participants detected by the ego- 
vehicle; 𝑡𝑡 represents the length of the historical trajectory and 
𝑒𝑒𝑡𝑡 denotes the state of the traffic participant at the current time. 
𝑿𝑿 is the input of the prediction model, and traffic participants’ 
trajectory with a time step length 𝑓𝑓 is predicted. This task can 
be mathematically expressed as the computation of the posterior 
distribution. If 𝑰𝑰 represents the environmental information, i.e., 
the road context, the output of the model can be expressed as: 

𝒀𝒀 =  𝑃𝑃(�𝒆𝒆𝑗𝑗𝑡𝑡 , 𝒆𝒆𝑗𝑗𝑡𝑡+1, 𝒆𝒆𝑗𝑗𝑡𝑡+2, … , 𝒆𝒆𝑗𝑗
𝑡𝑡+𝑓𝑓�

𝑗𝑗=1

𝑁𝑁
|𝑿𝑿 ∪ 𝑰𝑰)     (2)  

IV. METHODOLOGY  

We first introduce the general overview of SILM in Sec. IV.A. 
Next, we elaborate on the crucial design steps of the Subjective 
Intent (SI) Module in Sec. IV.B. After that, we delve into the 
details of the Local Encoder and the Global Encoder in Sec. IV.C 
and Sec. IV.D. Finally, we illustrate our Multimodal Predictor. 

A. Framework Overview  

We propose a novel subjective intent based low-latency 
framework for joint trajectory prediction of multiple traffic 
participants, as illustrated in Fig.2. First, a local encoder is 
employed to extract spatiotemporal features for each traffic 
participant, capturing their motion patterns over time. At the 
same time, we explicitly extract key point features from each 
participant to capture their intent, which are then fused with 
trajectory features. Subsequently, a global encoder aggregates 
these local features across all participants, utilizing multi-head 
attention to model interactions and dependencies between 

different traffic participants. Finally, the multimodal predictor 
combines these features to generate multiple plausible future 
trajectories, offering a robust and flexible solution for real-time 
trajectory prediction in dynamic and heterogeneous traffic 
environments. 

B. Subjective Intent Module 

To explicitly infer motion intent, our SI module utilizes a 
Movenet-based detector to extract category-specific key points 
from sequential observations of traffic participants.  

For pedestrians, we detect nine biomechanical key points 
(face, shoulders, hips, knees, ankles) to infer body orientation 
and walking intent. For vehicles, we identify nine geometric key 
points (center, corners, wheels) that capture heading and 
acceleration cues, while bicycles and motorcycles are 
represented by nine dynamic points (handlebars, seat, 
pedals/footrests, wheels) to model rider pose and turning intent.  

These key points are processed through a Transformer 
encoder module to generate pose feature embeddings (𝒁𝒁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), 
which are then concatenated with the trajectory embeddings 
(𝒁𝒁𝑡𝑡𝑡𝑡𝑡𝑡 ). This fusion enables the intent features to assist in 
trajectory reasoning, thereby enhancing the accuracy of 
trajectory prediction in a computationally efficient manner. 

C. Local Encoder 

In the graph constructed at each timestamp 𝑡𝑡, the original 
feature representation of node 𝑖𝑖 is as follows: 

𝒏𝒏𝑖𝑖𝑡𝑡 = {Δ𝑥𝑥𝑖𝑖𝑡𝑡 ,Δ𝑦𝑦𝑖𝑖𝑡𝑡 , 𝑥̇𝑥𝑖𝑖𝑡𝑡 , 𝑦̇𝑦𝑖𝑖𝑡𝑡 ,𝜃𝜃𝑖𝑖𝑡𝑡}            (3) 

where Δ𝑥𝑥𝑖𝑖𝑡𝑡  =  𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡−1  and Δ𝑦𝑦𝑖𝑖𝑡𝑡 = 𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖𝑡𝑡−1 , 𝑥̇𝑥𝑖𝑖𝑡𝑡  and 𝑦̇𝑦𝑖𝑖𝑡𝑡 
denote velocity, and 𝜃𝜃𝑖𝑖𝑡𝑡 is the yaw angle.  

We then apply a simple Multi-Layer Perceptron (MLP) to 
map the trajectory features to the same dimension 𝑑𝑑ℎ . After 
that, the trajectory embeddings and pose feature embeddings are 
concatenated. 

𝒛𝒛𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖
𝑡𝑡 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚(𝒏𝒏𝑖𝑖𝑡𝑡)                 (4) 

𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
𝑡𝑡 = 𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(�𝒛𝒛𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖

𝑡𝑡 , 𝒛𝒛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
𝑡𝑡�)          (5) 



To enhance computational efficiency, during the local 
feature update phase, only the interaction relationships between 
the central agent and those within a specified surrounding range 
are considered (the radius is set to 𝛾𝛾) and the connection edges 
to the central agent are removed for targets that are too distant. 
To effectively model the interactions within a certain range 
around agent 𝑖𝑖, we employ multiple attention modules. In these 
modules, 𝒛𝒛𝒄𝒄𝒄𝒄𝒄𝒄𝑖𝑖

𝑡𝑡  serves as the query vector, while the feature 
vectors 𝒛𝒛𝒄𝒄𝒄𝒄𝒄𝒄𝑺𝑺𝑖𝑖

𝑡𝑡 ∈ ℝ𝑑𝑑𝑎𝑎×2𝑑𝑑ℎ (𝑺𝑺𝑖𝑖 is the set of surrounding agents, 
𝑑𝑑𝑎𝑎  donates the number of the surrounding agents) act as the key 
and value vectors: 

𝒒𝒒𝑖𝑖𝑡𝑡 = 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
𝑡𝑡𝑾𝑾𝑠𝑠𝑠𝑠𝑠𝑠

𝑄𝑄 , 𝒌𝒌𝑺𝑺𝑖𝑖
𝑡𝑡 = 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐𝑺𝑺𝑖𝑖

𝑡𝑡 𝑾𝑾𝑠𝑠𝑠𝑠𝑠𝑠
𝐾𝐾 , 𝒗𝒗𝑺𝑺𝑖𝑖

𝑡𝑡 = 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐𝑺𝑺𝑖𝑖
𝑡𝑡 𝑾𝑾𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉  (6) 

 𝑨𝑨𝑾𝑾𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝒒𝒒𝑖𝑖

𝑡𝑡

�𝑑𝑑ℎ
∙ 𝒌𝒌𝑺𝑺𝑖𝑖

𝑡𝑡 𝐓𝐓) ∙ 𝒗𝒗𝑺𝑺𝑖𝑖
𝑡𝑡        (7) 

𝒛𝒛𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑡𝑡 = 𝛼𝛼 ∙ 𝒛𝒛𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

𝑡𝑡 + (1 − 𝛼𝛼) ∙ 𝑨𝑨𝑾𝑾𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑡𝑡       (8) 

𝒁𝒁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = {𝒛𝒛𝒔𝒔𝒔𝒔𝒔𝒔𝑖𝑖
𝑡𝑡}𝑡𝑡=1𝑇𝑇                               (9) 

where 𝑾𝑾𝒔𝒔𝒔𝒔𝒔𝒔
𝑄𝑄 , 𝑾𝑾𝒔𝒔𝒔𝒔𝒔𝒔

𝐾𝐾 , 𝑾𝑾𝒔𝒔𝒔𝒔𝒔𝒔
𝑉𝑉  ∈ ℝ2𝑑𝑑ℎ×2𝑑𝑑ℎ  are learnable 

matrices, and 𝛼𝛼 is predefined hyperparameters. 

After aggregating the local spatial information of each agent, 
we further apply a Transformer Encoder module to learn the 
temporal evolution of the agents' motion patterns: 

𝑸𝑸𝑖𝑖 = 𝒁𝒁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑾𝑾𝑡𝑡𝑡𝑡𝑡𝑡
𝑄𝑄 , 𝑲𝑲𝑖𝑖 = 𝒁𝒁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑾𝑾𝑡𝑡𝑡𝑡𝑡𝑡

𝐾𝐾 , 𝑽𝑽𝑖𝑖 = 𝒁𝒁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  𝑾𝑾𝑡𝑡𝑡𝑡𝑡𝑡
𝑉𝑉 (10) 

To better handle sequential features, a mask is employed to 
ensure that the model focuses solely on the known portion at 
each step during processing. 

𝒁𝒁 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�
𝑸𝑸𝑖𝑖
�𝑑𝑑ℎ

∙ 𝑲𝑲𝑖𝑖 , 𝑢𝑢 ≤ 𝑣𝑣

−𝑖𝑖𝑖𝑖𝑖𝑖,       𝑢𝑢 > 𝑣𝑣 
) ∙ 𝑽𝑽𝑖𝑖      (11) 

D. Global Encoder 

To capture global scene information, the global interaction 
module is designed to learn the relative interaction relationships 
among all agents. Similar to HiVT [13], the primitive feature of 
the edge connecting two adjacent nodes is defined as follows: 

𝒆𝒆𝑖𝑖𝑖𝑖
𝑇𝑇𝐿𝐿 = {Δ𝑥𝑥𝑖𝑖𝑖𝑖

𝑇𝑇𝐿𝐿 ,Δ𝑦𝑦𝑖𝑖𝑖𝑖
𝑇𝑇𝐿𝐿 , 𝑥̇𝑥𝑖𝑖𝑖𝑖

𝑇𝑇𝐿𝐿, 𝑥̇𝑥𝑖𝑖𝑖𝑖
𝑇𝑇𝐿𝐿 , cos(∆𝜃𝜃)𝑖𝑖𝑖𝑖

𝑇𝑇𝐿𝐿 , sin(∆𝜃𝜃)𝑖𝑖𝑖𝑖
𝑇𝑇𝐿𝐿} (12)  

which represents the relative pose between the two agents at the 
last observed time step 𝑇𝑇𝐿𝐿 . 𝒆𝒆𝑖𝑖𝑖𝑖

𝑇𝑇𝐿𝐿  is then mapped to a 𝑑𝑑ℎ - 
dimensional space through MLPs.  

𝒒𝒒𝑖𝑖 = 𝑾𝑾𝑔𝑔𝑔𝑔𝑔𝑔
𝑄𝑄 𝒛𝒛𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑗𝑗

𝑇𝑇𝐿𝐿,  𝒌𝒌𝑖𝑖𝑖𝑖 = 𝑾𝑾𝑔𝑔𝑔𝑔𝑔𝑔
𝐾𝐾 [𝒛𝒛𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖

𝑇𝑇𝐿𝐿 , 𝒆𝒆𝑖𝑖𝑖𝑖
𝑇𝑇𝐿𝐿],  𝒗𝒗𝑖𝑖𝑖𝑖 = 𝑾𝑾𝑔𝑔𝑔𝑔𝑔𝑔

𝑉𝑉 [𝒛𝒛𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖
𝑇𝑇𝐿𝐿 , 𝒆𝒆𝑖𝑖𝑖𝑖

𝑇𝑇𝐿𝐿]  (13) 

𝒛𝒛𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖
𝑇𝑇𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝒒𝒒𝑖𝑖

�𝑑𝑑ℎ
∙ 𝒌𝒌𝑖𝑖𝑖𝑖) ∙ 𝒗𝒗𝑖𝑖𝑖𝑖         (14) 

E. Multimodal Predictor 

Since our method does not incorporate map structural 
information, additional uncertainty is introduced during the 
trajectory decoding phase to compensate for this information 
deficit and enhance the model’s generalization capability. The 
input to the predictor consists of local features and global 
features. Initially, the global features are passed through an MLP 

layer to generate a fusion parameter tensor {𝛿𝛿𝑖𝑖𝑡𝑡}𝑖𝑖=1~𝑁𝑁
𝑇𝑇𝐿𝐿 . The local 

and global features are then fused as follows: 

𝒛𝒛𝑖𝑖𝑡𝑡 = 𝛿𝛿𝑖𝑖𝑡𝑡 ∙ 𝒛𝒛𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
𝑡𝑡 + (1 − 𝛿𝛿𝑖𝑖𝑡𝑡) ∙ 𝒛𝒛𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖

𝑇𝑇𝐿𝐿          (15) 

Subsequently, a Transformer Decoder module is employed 
to iteratively generate the predicted trajectory points. The output 
is a set of trajectory points with dimensions 𝑁𝑁 × 𝑀𝑀 × 𝑇𝑇𝑓𝑓 × 4, 
where 𝑁𝑁 represents the number of the agents, 𝑀𝑀 denotes the 
number of output modes, and 𝑇𝑇𝑓𝑓  represents the number of 
prediction time steps. The last dimension of the output feature 
corresponds to the relative 𝑥𝑥 and 𝑦𝑦 coordinates with respect to 
the ego-vehicle, as well as scaling parameters in the 𝑥𝑥 and 𝑦𝑦 
dimensions. 

Like most trajectory prediction methods, the optimization 
objective of our method is composed of two parts: classification 
loss (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐) and regression loss (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟): 

𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 = − 1
𝑁𝑁
∑ ∑ 𝑦𝑦𝑖𝑖 ,𝑗𝑗log (𝑝𝑝𝑖𝑖,𝑗𝑗)𝑀𝑀

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1         (16) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁
∑ ∑ ‖(𝑝𝑝𝑖𝑖𝑡𝑡 − 𝑝̂𝑝𝑖𝑖𝑡𝑡)‖2

𝑇𝑇𝑓𝑓
𝑡𝑡=1

𝑁𝑁
𝑖𝑖=1          (17) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟             (18) 

 

V. EXPERIMENTS 

A. Environmental Setup 

Datasets. We collect a new dataset for trajectory prediction tasks, 
termed as CAIC-TP. The dataset comprises more than 25000 
sequences of data collected from Nanjing, China, sampled at a 
rate of 2Hz. In addition, the proposed method is also developed 
and evaluated on other two widely used datasets for autonomous 
driving: Argoversev2 End-to-End (E2E) Forecasting [44] and 
NuScenes [45]. To ensure fair comparisons, our method and 
baseline methods are evaluated under identical experimental 
setting. Models are required to predict agents’ 3-second future 
trajectories given the 2-second historical observations. By 
leveraging these three datasets, we aim to thoroughly evaluate 
the models’ prediction capability on various data distributions. 

Metrics. We adopt the standard evaluation metrics to measure 
the trajectory prediction performance, including minimum 
Average Displacement Error (minADE), minimum Final 
Displacement Error (minFDE), weighted sum of Average 
Displacement Error (WSADE), weighted sum of Final 
Displacement Error (WSFDE), Miss Rate (MR), and 
Computation Time (Speed). Relevant formulas are defined as 
follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑁𝑁
∑ (1

𝑇𝑇
∑ �𝑃𝑃𝑖𝑖,𝑡𝑡𝑘𝑘 − 𝐺𝐺𝑖𝑖,𝑡𝑡�

2𝑇𝑇
𝑡𝑡=1 )𝑁𝑁

𝑖𝑖=1          (19) 

𝐹𝐹𝐹𝐹𝐹𝐹 = 1
𝑁𝑁
∑ �𝑃𝑃𝑖𝑖,𝑇𝑇𝑘𝑘 − 𝐺𝐺𝑖𝑖,𝑇𝑇�

2𝑁𝑁
𝑖𝑖=1            (20) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁
∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘(1

𝑇𝑇
∑ �𝑃𝑃𝑖𝑖 ,𝑡𝑡𝑘𝑘 − 𝐺𝐺𝑖𝑖,𝑡𝑡�

2𝑇𝑇
𝑡𝑡=1 )𝑁𝑁

𝑖𝑖=1      (21) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁
∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘�𝑃𝑃𝑖𝑖,𝑇𝑇𝑘𝑘 − 𝐺𝐺𝑖𝑖,𝑇𝑇�

2𝑁𝑁
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𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐷𝐷𝑣𝑣 ∙ 𝐴𝐴𝐴𝐴𝐸𝐸𝑣𝑣 + 𝐷𝐷𝑝𝑝 ∙ 𝐴𝐴𝐴𝐴𝐸𝐸𝑝𝑝 + 𝐷𝐷𝑏𝑏 ∙ 𝐴𝐴𝐴𝐴𝐸𝐸𝑏𝑏    (23) 



𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐷𝐷𝑣𝑣 ∙ 𝐹𝐹𝐹𝐹𝐸𝐸𝑣𝑣 + 𝐷𝐷𝑝𝑝 ∙ 𝐹𝐹𝐹𝐹𝐸𝐸𝑝𝑝 + 𝐷𝐷𝑏𝑏 ∙ 𝐹𝐹𝐹𝐹𝐸𝐸𝑏𝑏     (24) 

𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ 𝟙𝟙(𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘�𝑃𝑃𝑖𝑖,𝑇𝑇𝑘𝑘 − 𝐺𝐺𝑖𝑖,𝑇𝑇�

2 > 𝜏𝜏)𝑁𝑁
𝑖𝑖=1       (25) 

where 𝑁𝑁 represents the total number of samples, 𝑇𝑇 denotes 
the prediction time steps, 𝑃𝑃𝑖𝑖,𝑡𝑡𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ predicted position of 
the 𝑖𝑖𝑡𝑡ℎ sample at time 𝑡𝑡, and 𝐺𝐺𝑖𝑖,𝑡𝑡 is the ground truth position 
of the 𝑖𝑖𝑡𝑡ℎ sample at time 𝑡𝑡. The weighted parameter 𝐷𝐷𝑣𝑣 , 𝐷𝐷𝑝𝑝, 
𝐷𝐷𝑏𝑏  are inversely proportional to the average speeds of vehicles, 
pedestrians, and bicyclists respectively. The indicator function 
𝟙𝟙(·) outputs 1 if the condition in parentheses is satisfied, and 0 
otherwise. 𝜏𝜏 represents the prediction error threshold. 

Implementation Details. In our experiments, we used two RTX 
3090 GPUs for model training, with a batch size of 32. For 
inference speed testing, a single GPU device was employed. The 
Adam optimizer was used to optimize training performance, 
with a learning rate of 5 × 10−4  and an initial weight decay 
rate of 1 × 10−4. To ensure a fair comparison, the embedding 
dimension was consistently set to 64 across all methods, and all 
models were trained for 128 epochs. The hyperparameters for 
SLIM are presented in Table I. 

TABLE I.  HYPERPARAMETERS SETTINGS 

Hyperpara-
meters 

Learning 
Rate 

Weight 
decay 

Batch 
Size Epoch 𝑑𝑑ℎ 𝛼𝛼 𝛾𝛾 

Value 0.0005 0.0001 32 128 64 0.5 40 

B. Quantitative Results 

Based on the experimental results in Table II, the proposed 
SILM framework demonstrates significant advantages across 
multiple traffic participant trajectory prediction tasks. While 

LT3D achieves the fastest computation speed, it exhibits notably 
poor performance across other metrics. In contrast, SILM 
outperforms baseline methods on the Argoversev2 dataset, 
excelling in both minADE and minFDE, while maintaining a 
competitive processing speed. On our CAIC-TP dataset, SILM 
further demonstrates its robustness, showing improvements in 
minADE, WSADE, and WSFDE, underscoring its strong 
generalization ability in complex, heterogeneous traffic 
scenarios. On the NuScenes dataset, SILM sets new records for 
the evaluation metrics, establishing it as the best-performing 
model in this dynamic and high-traffic environment. These 
results confirm that SILM successfully balances multimodal 
prediction capabilities with real-time requirements, providing an 
efficient and reliable solution for trajectory prediction in multi-
participant traffic scenarios. 

C. Qualitative Results 

We present a qualitative analysis of SILM over three datasets 
to demonstrate its effectiveness in trajectory prediction. As 
shown in Fig. 3, our model successfully handles complex traffic 
scenarios, such as intersections, pedestrian-vehicle interactions, 
and mixed traffic conditions, where traditional models often 
struggle. To highlight the impact of the SI Module, we visualize 
the key points of the traffic participants. By incorporating the 
subjective intent of traffic participants, our model is able to 
generate multimodal and realistic future trajectories, effectively 
capturing the diverse range of potential behaviors of each 
participant. This capability of predicting multiple plausible 
future trajectories allows our model to account for the inherent 
uncertainty in human driving behavior. Furthermore, the 
simultaneous prediction of trajectories for multiple traffic 
participants enables our model to better simulate real-world 
interactions and anticipate potential conflicts or cooperation 
among agents.  

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT METHODS OVER THREE DATASETS 

Dataset Method Year Venue minADE6 minFDE6 WSADE WSFDE MR Speed(ms) 

Argoversev2 

LT3D 2022 CoRL 3.6338 4.0969 2.8888 2.8681 0.3870 0.0901 
HiVT 2022 CVPR 0.1021 0.2492 0.0769 0.2101 0.0128 0.4576 

Wayformer 2023 ICRA 1.0119 1.7390 0.8432 1.6242 0.3267 3.4389 
QCNet 2023 CVPR 0.0979 0.2535 0.0789 0.2094 0.0119 0.4338 

LAFormer 2024 CVPR 0.3509 0.5238 0.2599 0.4016 0.0234 5.6670 
Ours 2025 IROS 0.0916 0.2378 0.0799 0.2171 0.0096 0.3983 

CAIC-TP 

LT3D 2022 CoRL 6.1607 9.1894 2.7466 3.4299 0.4746 0.0379 
HiVT 2022 CVPR 0.8039 1.3132 0.4795 0.7267 0.0824 0.1149 

Wayformer 2023 ICRA 1.5843 2.9577 0.5423 0.9952 0.2077 1.1394 
QCNet 2023 CVPR 1.3336 2.2188 0.9302 1.5550 0.1186 0.2245 

LAFormer 2024 CVPR 0.8651 1.3976 0.6459 0.9548 0.2344 0.9228 
Ours 2025 IROS 0.7760 1.4051 0.4102 0.6707 0.1515 0.2393 

NuScenes 

LT3D 2022 CoRL 2.6756 3.9022 1.9364 2.6191 0.3049 0.0374 
HiVT 2022 CVPR 0.2044 0.3432 0.1677 0.2751 0.0305 0.0930 

Wayformer 2023 ICRA 0.8490 1.5517 0.5264 0.9438 0.2171 1.4290 
QCNet 2023 CVPR 0.2136 0.3791 0.1799 0.3144 0.0387 0.1869 

LAFormer 2024 CVPR 0.6815 1.2779 0.3840 0.7208 0.1484 0.8153 
Ours 2025 IROS 0.1962 0.3300 0.1082 0.1692 0.0287 0.1135 

Best results are boldened, and worst results are underlined. 



 
Fig.3.  Qualitative results of SILM over three datasets. For clarity, we only visualize the trajectories with the highest confidence. 

D. Ablation Studies 

We also conduct an ablation analysis over the three datasets 
to assess the relative importance of the SI Module in our 
trajectory prediction framework. The results of each model 
setting are summarized in Table III. Our analysis reveals that 
incorporating the SI Module leads to a consistent and 
significant improvement in model performance across all 
evaluated metrics, including minADE, minFDE, WSADE and 
WSFDE. Specifically, by explicitly considering the subjective 

intent of traffic participants, the model is able to better capture 
the underlying motivations behind their movements, leading to 
more accurate and reasonable trajectory predictions. This 
enhancement is particularly noticeable in scenarios involving 
complex and dynamic traffic environments, where 
understanding the intent behind motion is crucial for reducing 
uncertainty in future trajectory prediction. In summary, the 
addition of the SI Module not only boosts the accuracy of 
trajectory prediction but also contributes to a more robust model. 



TABLE III.  ABLATION STUDIES OF THE SI MODULE IN SILM  

Dataset SI minADE6/minFDE6  WSADE/WSFDE  

Argo-
versev2 

 0.1350/0.3087 0.0917/0.2407 
 0.0916/0.2378 0.0799/0.2171 

CAIC-
TP 

 1.2336/2.0077 0.6112/0.8286 
 0.7760/1.4051 0.4102/0.6707 

Nu-
Scenes 

 0.2175/0.3741 0.1902/0.3242 
 0.1962/0.3300 0.1082/0.1692 

VI. CONCLUSION 

In this paper, we propose SILM, a Subjective Intent-based 
Low-latency framework for joint trajectory prediction, which 
addresses the critical challenges of balancing accuracy, real-
time performance, and generalization in autonomous driving. 
By explicitly modeling traffic participants’ intent through key 
point features and integrating these cues with spatiotemporal 
dynamics, SILM eliminates reliance on HD maps while 
achieving satisfying performance across benchmarks. These 
results validate SILM’s ability to harmonize intent-aware 
prediction with real-time efficiency in heterogeneous scenarios. 
SILM’s map-free, ego-centric design ensures scalability in 
unstructured environments, while its interpretable intent 
modeling reduces prediction uncertainty.  
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