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ABSTRACT
Perceptual hashing is used to detect whether an input image is

similar to a reference image with a variety of security applications.

Recently, they have been shown to succumb to adversarial input

attacks which make small imperceptible changes to the input im-

age yet the hashing algorithm does not detect its similarity to the

original image. Property-preserving hashing (PPH) is a recent con-

struct in cryptography, which preserves some property (predicate)

of its inputs in the hash domain. Researchers have so far shown

constructions of PPH for Hamming distance predicates, which, for

instance, outputs 1 if two inputs are within Hamming distance 𝑡 .

A key feature of PPH is its strong correctness guarantee, i.e., the

probability that the predicate will not be correctly evaluated in the

hash domain is negligible. Motivated by the use case of detecting

similar images under adversarial setting, we propose the first PPH

construction for an ℓ1-distance predicate. Roughly, this predicate

checks if the two one-sided ℓ1-distances between two images are

within a threshold 𝑡 . Since many adversarial attacks use ℓ2-distance

(related to ℓ1-distance) as the objective function to perturb the input

image, by appropriately choosing the threshold 𝑡 , we can force the

attacker to add considerable noise to evade detection, and hence

significantly deteriorate the image quality. Our proposed scheme

is highly efficient, and runs in time O(𝑡2). For grayscale images of

size 28 × 28, we can evaluate the predicate in 0.0784 seconds when

pixel values are perturbed by up to 1%. For larger RGB images of

size 224 × 224, by dividing the image into 1,000 blocks, we achieve

times of 0.0128 seconds per block for 1% change, and up to 0.2641

seconds per block for 14% change. Furthermore, the time to process

the entire image can be considerably improved since the scheme is

highly parallel.

KEYWORDS
Property-preserving hashing, adversarial attacks, error-correcting

codes

1 INTRODUCTION
Consider a scenario in which an image needs to be checked against

a database of images for any similarities. Privacy demands that both

the image and the database not be revealed during this process. This

scenario stems from several real-world use cases. For instance, this

is required in face recognition for border control where the identity

of a passenger is verified against a gallery of photos from other

passengers on the same flight.
1
Likewise, a cloud service provider

may wish to ensure that an image uploaded to its cloud is not one

1
See “2024 Update on DHS’s Use of Face Recognition & Face Capture Technolo-

gies” at https://www.dhs.gov/archive/news/2025/01/16/2024-update-dhss-use-face-

recognition-face-capture-technologies.

of the flagged images in its database [1]. A possible solution to

this is via perceptual hashing [1–3], variants of which have been

used by Microsoft,
2
Meta,

3
and Apple.

4
Perceptual hashing is a

type of locality sensitive hashing (LSH) [4] which produces similar

hashes to perceptually similar images, unlike cryptographic hash

functions. The result is that we can not only check images for their

similarities, but also be able to do so more efficiently using their

succinct hash digests.

Recently several attacks have been demonstrated on perceptual

hashing. One type of attack, called an evasion attack, slightly per-

turbs an image to construct a perceptually similar image but with

dissimilar hash digests under the perceptual hashing scheme [1, 3].

Perceptual hashing involves two main steps: extracting features

from the image and creating a hash of the feature vector [3]. The

guarantee that two perceptually similar images produce a similar

hash digest is only in probability, which in practice is not negligible.

Thus, there is significant space available to the attacker for image

alterations to launch an evasion attack. For instance, the basic at-

tack in [3] formulates the competing requirements of perceptual

similarity and dissimilarity of the hash digests as an optimization

problem, the solution to which is the required adversarial image.

Asmentioned above, the reason for the success of evasion attacks

is that perceptual hashing or locality sensitive hashing do not tend

to have negligible correctness error. Informally, let x and y be two

perceptually similar images, and let ℎ be a perceptual hash function,

then ideally the requirement is that Pr[ℎ(x) = ℎ(y] ≥ 1−𝜖 [3, 5, 6].
However, there are strong lower bounds suggesting that 𝜖 cannot be

made negligibly small [6, 7]. A related notion of hashing is property-
preserving hashing (PPH) [8]. Such hash functions have the property
that the hash digests of two inputs preserve some predicate of the

two inputs. For instance, a predicate that outputs 1 if the Hamming

distance of its two inputs are within a certain threshold. Moreover,

the definition postulates that the correctness error be negligible.

Generally, these hash functions are sampled from a larger PPH

family of functions. Recent works have constructed robust versions

of PPH in which the adversary can choose inputs depending on the

description of the hash function chosen from the family [6, 8–10].

These works have focused on the Hamming distance predicate.

Our interest in PPH for the aforementioned application of check-

ing similarity of images stems from the fact that adversarial attacks

to induce image misclassification introduce small perturbation in

the images by using a distance metric such as the ℓ2-distnace in the

objective function [11, 12]. Furthermore, researchers in this space

have also used the ℓ2-norm as a measure of perceptual similarity

2
See PhotoDNA at https://www.microsoft.com/en-us/photodna.

3
See https://about.fb.com/news/2019/08/open-source-photo-video-matching/.

4
See “CSAM Detection – Technical Summary”, at https://www.apple.com/child-safety/

pdf/CSAM_Detection_Technical_Summary.pdf.
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between images [3, 12]. Thus, if we have a PPH function family

that preserves Euclidean distance predicates we can be assured

that any evasion attacks possible in the hash space of the images

are precisely those that are possible in the original space over the

Euclidean distance. As a result, setting an appropriate threshold

for similarity over the Euclidean distance ensures that the attacker

can only succeed by substantially distorting the adversarial im-

age, i.e., reduced perceptual similarity to the original image. Our

contributions are as follows

• We propose the first PPH family for the asymmetric ℓ1-

distance predicate for 𝑛-element vectors with each element

from the set {0, 1, . . . , 𝑞 − 1}. Roughly, given two vectors x
and y, the asymmetric ℓ1-distance predicate outputs 1 if both

∥x .− y∥1 and ∥y .− x∥1 are less than 𝑡/2 for some threshold

𝑡 , where x .− y is the vector whose 𝑖th element is defined as

max{𝑥𝑖 − 𝑦𝑖 , 0}. Prior to this work, only known PPH con-

structions are for Hamming distance predicates [6, 8–10].

Our scheme is based on ℓ1-error correcting codes from Tallini

and Rose [13]. The ℓ1-distance metric is related to ℓ2-distance

(see Section 2), and can be used as a proxy for adversarial

attacks or perceptual similarity.

• We show that our PPH construction is robust to one-sided

errors: the predicate outputs 1 yet the PPH evaluates to 0.

This property is important to prevent the aforementioned

evasion attacks. We also give evidence that the other one-

sided error can be made practically small in the non-robust

setting. This error is important to rule out collisions, i.e., two

dissimilar images that produce the same hash. We discuss

collision attacks and inverting the hash function, i.e., find-

ing the input vector given the hash digest, and show some

evidence that they may be computationally expensive.

• We prove lower bounds on the possible compression, i.e., the

length of the digest, to preserve any ℓ1-distance predicate.

Our scheme produces hash digests of length 𝑡 log
2
𝑛, which

is considerably less than 𝑛 log
2
𝑞 (size of images) if 𝑡 is small.

We show that for practical parameters this is close to the

lower bounds for small 𝑡 . For larger 𝑡 the digest size is large,

but on par with Hamming distance PPHs which achieve

compression of around 𝑡 log
2
𝑛 [6].

• We implement our scheme using the Python library galois [14]
and show the computational time of our scheme against in-

creasing values of 𝑡 . We further implement two adversarial

evasion attacks and two generic image transformations over

the public Imagenette dataset [15], and show how the scheme

can prevent such attacks with a tradeoff between adversarial

attack prevention and computational time.

2 PRELIMINARIES

Images. Let 𝑞, 𝑛 be positive integers. The image space is the set Z𝑛𝑞 ,

where Z𝑞 = {0, 1, . . . , 𝑞 − 1}, and 𝑛 is the product of the number of

elements in a pixel times the total number of pixels in the image.

While we assume that 𝑞 ≥ 2, we are not interested in 𝑞 = 2, as

binary images can be handled via Hamming distance predicates.

Example 1. Conider a set 𝑆 of 28 × 28 images with each pixel

having a binary value, white or black. Each pixel is therefore from

Z2. The 28 × 28 pixel matrix can be “flattened” in a vector of 784

pixels. Thus each image in 𝑆 is in Z784
2

. Consider instead that 𝑆

contains only grayscale images. Each pixel now has a grayscale

value in {0, 1, . . . , 255}. We can represent 𝑆 as vectors from Z784
256

(with 𝑞 = 256). Consider now that the images in 𝑆 are RGB colored

images. Each pixel is now a vector containing R, G and B values,

each in {0, 1, . . . , 255}, that is from the vector space Z3
256

. Thus the

images in 𝑆 are vectors from the product space (Z3
256
)784. This can

be flattened further to obtain the product space Z2352
256

. □

Metrics. The Hamming, ℓ1 and ℓ2 distances between vectors x, y ∈
Z𝑛𝑞 are denoted by ∥x − y∥0, ∥x − y∥1 and ∥x − y∥2, respectively.
A refresher on these is given in Appendix A.

Dot Product. Let x, y ∈ Z𝑛𝑞 , then their dot product is defined as

⟨x, y⟩ = ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 . The Cauchy-Schwartz inequality states that

|⟨x, y⟩| ≤ ∥x∥2∥y∥2 .
See for example [16, §2.2].

Relation Between Norms. The following result relates the ℓ1-

norm to the ℓ2-norm.

Proposition 1. Let x and y be images. Then,

∥x − y∥2 ≤ ∥x − y∥1 ≤
√
𝑛∥x − y∥2 . (1)

Furthermore, these bounds are tight.

Proof. See Appendix B. □

Thus, it suffices to focus on the ℓ1-norm. For instance, if we

want to preserve ∥x − y∥2 ≤ 𝑡 ′ for some threshold 𝑡 ′ , we can set

𝑡 =
√
𝑛𝑡 ′ as the threshold for the ℓ1-norm.

Min-Entropy. To prove lower bounds on the amount of compres-

sion achievable under Hamming distance, Holmgren et al [6] use the

notion of average min-entropy as defined in [17]. The min-entropy

𝐻∞ (𝑋 ) of the random variable 𝑋 is defined as − log
2
(max𝑥 Pr(𝑋 =

𝑥)). For a pair of random variables 𝑋 and 𝑌 , the average min-

entropy of𝑋 given𝑌 is defined as𝐻∞ (𝑋 | 𝑌 ) = − log2 (
∑

𝑦∈𝑌 Pr(𝑌 =

𝑦) · (max𝑥 Pr(𝑋 = 𝑥 | 𝑌 = 𝑦)). The following result is from [6, 17].

Proposition 2 (Dodis et al [17]). Let 𝑋,𝑌, 𝑍 be random vari-
ables with 𝑍 having support over a binary string of length𝑚. Then

𝐻∞ (𝑋 | 𝑌, 𝑍 ) ≥ 𝐻∞ (𝑋 | 𝑌 ) −𝑚

2.1 Scenario and Threat Model
We assume a databaseD of 𝑁 images x1, . . . , x𝑁 hosted by a server.

A predicate 𝑃 : Z𝑛𝑞 × Z𝑛𝑞 → {0, 1} is a function applied to a pair of

images. For instance, one such predicate for two images x, y is:

𝑃 (x, y) =
{
1, if ∥x − y∥1 ≤ 𝑡,

0, otherwise

(2)

The predicate used in our scheme is different from the one above,

but still based on the ℓ1-distance, as we shall see later. Given any

input image y from a client, the server checks if it satisfies the

predicate 𝑃 against any image x𝑖 ∈ D.

We consider a hash function family H = {ℎ : Z𝑛𝑞 → {0, 1}𝑚}.
Given x ∈ Z𝑛𝑞 , we call ℎ(x) for some ℎ ∈ H , the hash digest of the

2



image x. Associated with the family, there is a deterministic polyno-

mial time algorithm evalℎ : {0, 1}𝑚 × {0, 1}𝑚 → {0, 1}. Informally,

the hash function ℎ should satisfy the following properties:

(1) Compression: The output ℎ(x) should be compressed, i.e., the

size of ℎ(x) should be less than the size of the image x.
(2) Hiding: It should be hard to find x from ℎ(x).
(3) Property-preservation: The function evalℎ should be such that

evalℎ (ℎ(x), ℎ(y)) = 𝑃 (x, y) with high probability.

The first requirement is for utility, as one would want the hash

function to at least compress the input space. The other two re-

quirements are for privacy. We want the input image x to be hidden
from the server, with only the output of the predicate 𝑃 revealed.

The third requirement is related to an adversarial user who wishes

to submit an image y such that there is a mismatch between 𝑃 (x, y)
for some x ∈ D, and the evalℎ function.

Adversarial Goals.We consider the following attacks.

(1) Inversion attack: Given the hash digest ℎ(x) of an image x
chosen uniformly at random from Z𝑛𝑞 , find x.

(2) Evasion attack: Given ℎ ∈ H , find a pair of images x and y,
such that 𝑃 (x, y) = 1 yet evalℎ (ℎ(x), ℎ(y)) = 0.

(3) Collision attack: Given ℎ ∈ H , find a pair of images x and y
such that 𝑃 (x, y) = 0 yet evalℎ (ℎ(x), ℎ(y)) = 1.

The first goal is in a similar flavour to inverting passwords given

their hash digests. The defence against the second attack follows

directly from the definition of PPH. This is the main attack that our

scheme defends against. Prevention of the third attack is also desir-

able. We show that while this may still be possible, the probability

of collisions can be made extremely low in the non-robust setting,

i.e., two arbitrary images deemed similar under ℎ.

2.2 Property-Preserving Hashing and
Compression Bounds

We recall the definitions of PPH and robust PPH (RPPH) from [6, 8].

We assume 𝑛 and𝑚 to be polynomials in a security parameter 𝜆.

Definition 1 (Property PreservingHash (PPH)). A (𝑏, 𝑛,𝑚)-property
preserving hash familyH = {ℎ : {0, 1}𝑛 → {0, 1}𝑚 for a predicate

𝑃 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} is a family of efficiently computable

functions with the following algorithms

• samp(1𝜆) is a probabilistic polynomial time algorithm that

outputs a random ℎ ∈ H .

• evalℎ (𝑦1, 𝑦2) is a deterministic polynomial time algorithm

that for an ℎ ∈ H and 𝑦1, 𝑦2 ∈ {0, 1}𝑚 outputs a single bit.

• 𝑏-Correctness: For a bit 𝑏 ∈ {0, 1}, for any ℎ ∈ H and for all

𝑥1, 𝑥2 ∈ {0, 1}𝑛 we have

Pr

ℎ←samp(1𝜆 )
[𝑃 (𝑥1, 𝑥2) ≠ evalℎ (ℎ(𝑥1), ℎ(𝑥2)) | 𝑃 (𝑥1, 𝑥2) = 𝑏] = negl(𝜆)

□

Note that we have slightly modified the definition of PPH from [6,

8] to include two-sided correctness. This is because, even though

our scheme is 1-correct, 0-correctness is only guaranteed with a

small but non-negligible probability. A PPH is considered to be an

RPPH if it further satisfies the following definition.

Definition 2 (Robust Property PreservingHash (RPPH)). A (𝑏, 𝑛,𝑚)-
PPH family is a robust (𝑏, 𝑛,𝑚)-property preserving hash family if

for all probabilistic polynomial time algorithms A
Pr

ℎ←samp(1𝜆 )
𝑥1,𝑥2←A(ℎ)

[𝑃 (𝑥1, 𝑥2) ≠ evalℎ (ℎ(𝑥1), ℎ(𝑥2)) | 𝑃 (𝑥1, 𝑥2) = 𝑏] = negl(𝜆)

□

The main difference between an RPPH and a PPH is that the

inputs 𝑥1, 𝑥2 that bring about a mismatch between the predicate

and the evaluation function are adversarially chosen in the former

who is also given the description of the sampled hash function ℎ.

Lower Bound on Compression. Given a PPH for the Hamming

distance predicate, Holmgren et al [6] derive a lower bound on𝑚,

i.e., the compression or digest length. In our case the inputs are

from Z𝑛𝑞 instead of the generic set {0, 1}𝑛 . We therefore, review their

lower bound for inputs in Z𝑛𝑞 . Thus, we assume the PPH family to

beH = {ℎ : Z𝑛𝑞 → {0, 1}𝑚}, and the Hamming distance predicate

to be 1 if ∥x − y∥0 ≤ 𝑡 and 0 otherwise, for x, y ∈ Z𝑛𝑞 . The strategy
used in [6] to get a bound on𝑚 is as follows. Given a randomℎ ∈ H ,

and a random variable 𝑋 uniformly distributed over Z𝑛𝑞 , we first

get the lower bound from Proposition 2:

𝐻∞ (𝑋 | ℎ,ℎ(𝑋 )) ≥ 𝐻∞ (𝑋 | ℎ) −𝑚 ≥ 𝐻∞ (𝑋 ) −𝑚 = 𝑛 log
2
𝑞 −𝑚.

(3)

Here, the third inequality follows since 𝑋 and ℎ are independently

distributed, and the last equality because min-entropy is maximum

when 𝑋 is uniformly distributed. Next, the task is to obtain an

upper bound on 𝐻∞ (𝑋 | ℎ,ℎ(𝑋 )), which would then give an upper

bound on𝑚 after rearranging the inequalities. The strategy used

in [6] to obtain the upper bound is to find a vector y which is at a

Hamming distance exactly 𝑡 from x, where x is the vector hashed

under the PPH, i.e., ℎ(x). They then exactly reconstruct x by using

the evalℎ function of the PPH as an “oracle”. More specifically, they

first guess a vector y which is exactly Hamming distance 𝑡 from x.
The number of such vectors is exactly

(𝑛
𝑡

)
. They then flip the bits of

y one at a time, and check whether the evalℎ function outputs 0 or

1 on ℎ(x) and the hash of the version of y with one bit flipped. This

uses at most 𝑛 applications of the evalℎ function of the PPH. As

long as the evalℎ function has error less than 1/2𝑛, their algorithm
can reconstruct x with probability at least

(𝑛𝑡 )
2
𝑛 · 1

2
. Note that in their

case 𝑞 = 2. It is easy to change this for a general 𝑞 to

(𝑛𝑡 )
𝑞𝑛 ·

1

2
by

assuming that the evalℎ function has error at most 1/2𝑞𝑛. Now, let
R be their algorithm to reconstruct x, then following [6]:

Pr

ℎ,x
(R(ℎ,ℎ(x)) = x)) ≥ Pr

y
(∥x − y∥0 = 𝑡)

× Pr

x,y,ℎ
(R(ℎ,ℎ(x)) = x) | ∥x − y∥0 = 𝑡)

>

(𝑛
𝑡

)
𝑞𝑛
· 1
2

Now, abusing notation by lettingH also denote the random variable

that takes on a random ℎ ∈ H , we get

𝐻∞ (𝑋 | ℎ,ℎ(𝑋 ))

= − log
2

(∑︁
ℎ

Pr(H = ℎ) · (max

x
Pr(𝑋 = x | ℎ,ℎ(x))

)
3



≤ − log
2

(∑︁
ℎ

Pr(H = ℎ) · Pr
x
(R(ℎ,ℎ(x)) = x | ℎ,ℎ(x))

)
= − log

2
(Pr
ℎ,x
(R(ℎ,ℎ(x)) = x) (4)

≤ 1 + 𝑛 log
2
𝑞 − log

2

(
𝑛

𝑡

)
Combining the above with the inequality in Eq. (3), and noting

that𝑚 is an integer, we obtain𝑚 ≥ log
2

(𝑛
𝑡

)
[6]. This bound is for

non-robust PPH families, and hence also applies to RPPH families.

3 COMPRESSION BOUNDS FOR ℓ1-DISTANCE
PPH FAMILY

Assume we are given a PPH family H = {ℎ : Z𝑛𝑞 → {0, 1}𝑚} for
the ℓ1-distance predicate of Eq. (2). We are interested in finding a

lower bound on 𝑚 similar to the one for the Hamming distance

predicate (Section 2.2). Unfortunately, the strategy used in [6] does

not work for the ℓ1 distance. The main reason being that the pred-

icate ∥x − y∥1 ≤ 𝑡 does not reveal enough information about x
given some vector y which is exactly an ℓ1 distance of 𝑡 from x
to be able to recover x, apart from the fact that it can be used to

sample a vector within distance 𝑡 from x. In the following we prove

two bounds: one uses a large 𝑡 > 0.25𝑞𝑛, and the other a much

smaller 𝑡 ≈ 0.1𝑛. We first prove a few results related to the ℓ1-norm

of vectors in Z𝑛𝑞 .

3.1 The ℓ1-Ball of Radius 𝑡
For any x ∈ Z𝑛𝑞 , let 𝐵1 (x, 𝑞, 𝑡) denote the set of vectors y ∈ Z𝑛𝑞 ,
such that ∥x − y∥1 ≤ 𝑡 . Since x, y ∈ Z𝑛𝑞 , we can assume that 𝑡 is an

integer. Let 0 denote the all 0 vector.

Proposition 3. For all x ∈ Z𝑛𝑞 , we have |𝐵1 (x, 𝑞, 𝑡) | ≥ |𝐵1 (0, 𝑞, 𝑡) |.

Proof. See Appendix B. □

Proposition 4. Let 𝑡 ≥ 0 be an integer. Then(
𝑛 + 𝑡
𝑡

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
≤ |𝐵1 (0, 𝑞, 𝑡) | ≤

(
𝑛 + 𝑡
𝑡

)
.

Proof. See Appendix B □

Proposition 5. Let 𝑡 ≥ 0 be an integer. Let 𝑞 ≥ 2 be even. Let y
be the 𝑛-element vector (𝑞/2, . . . , 𝑞/2). Then

|𝐵1 (y, 𝑞, 𝑡) | ≤
(
𝑛 + 𝑡 + 1
𝑡 + 1

)
Proof. See Appendix B. □

3.2 Bound on𝑚 for Large 𝑡
Our goal is to find a y ∈ Z𝑛𝑞 such that ∥x − y∥ ≤ 𝑡 , without knowing

x. We assume 𝑡 = 𝛾𝑛 for some 𝛾 ≥ 1. Note that the maximum

possible distance can be up to (𝑞 − 1)𝑛 ≈ 𝑞𝑛. Thus, 𝛾 gives the

relative distance to the maximum possible distance. The strategy

for finding such a y is depicted in Figure 1. Assume 𝑛 = 1. Further

assume that 𝑞 is even. In our experiments 𝑞 = 256, and so this is

not a limitation. Suppose 𝑡 = 𝛾𝑛 = 𝛾 = 𝑞/2. Then if we choose

𝑦 = 𝑞/2, it includes all points in Z𝑞 , and hence 𝑥 as well. Therefore,

with probability 1, we find a 𝑦, namely 𝑦 = 𝑞/2, which is a distance

0 𝑞𝑦 = 𝑞/2
( )

2𝑡

Figure 1: Choosing 𝑦 as the mid-point.

≤ 𝑡 = 𝑞/2 from 𝑥 . Of course, if 𝑡 is smaller than 𝑞/2, the probability
decreases. We therefore find the probability over uniform random

choices of x that the vector y = (𝑞/2, . . . , 𝑞/2) is within distance

𝑡 = 𝛾𝑛 of x.

Proposition 6. Let x be a vector sampled uniformly at random
from Z𝑛𝑞 . Let y ∈ Z𝑛𝑞 be the vector each coordinate of which is 𝑞/2.
Let 𝐷 denote the random variable denoting the ℓ1 distance between x
and y. Then E(𝐷) = 𝑞𝑛/4.

Proof. See Appendix B. □

Proposition 7. Let 𝐷 be the random variable as in Proposition 6.
Let 𝑡 = 𝛾𝑛 for some real 𝛾 ≥ 1. Then if

𝛾 ≥
(
1

4

+ 1

2

√
2𝑛

)
𝑞

then Pr(𝐷 ≤ 𝑡) ≥ 1 − 1/𝑒 .

Proof. See Appendix B. □

Thus, for large enough 𝑡 , i.e., 𝑡 ≈ 𝑞𝑛/4, the vector y = (𝑞/2, . . . , 𝑞/2)
is within ℓ1-distance 𝑡 from a uniformly random vector in Z𝑛𝑞 with

high probability. Assuming this to be the case, we then need to guess

the vector xwhose hash digest has been provided to us. Our strategy
is to simply sample a vector uniformly at random from 𝐵1 (y, 𝑞, 𝑡).
By assumption, x ∈ 𝐵1 (y, 𝑞, 𝑡), and therefore the probability of

obtaining x will be 1/|𝐵1 (y, 𝑞, 𝑡) |. Sampling a vector uniformly at

random from 𝐵1 (y, 𝑞, 𝑡) is not straightforward. However, there are
techniques to sample a vector from an approximate uniform dis-

tribution. E.g., we can use the discrete hit-and-run sampler [18].

This produces a distribution arbitrarily close to uniform [19, §11.2].

This follows from the fact that 𝐵1 (y, 𝑞, 𝑡) is a diamond centered

around y. The resulting diamond can be enclosed within a cube

which itself is within a cube and therefore the analysis in [18, §4.2]

means that the algorithm will produce a distribution arbitrarily

close to uniform distribution in polynomial time.

Now consider an algorithm R which when given a random

ℎ ∈ H and an ℎ(x) where x is sampled uniformly at random

from Z𝑛𝑞 , does as follows. It computes evalℎ (ℎ(x), ℎ(y)) with y =

(𝑞/2, . . . , 𝑞/2). If it outputs 1, it samples a vector uniformly at ran-

dom from 𝐵1 (y, 𝑞, 𝑡). It outputs this vector as its guess for x and

stops. Assume that evalℎ has correctness error 𝛿 < 1

2
· 𝑒−2𝑒−1 . We get

Pr

ℎ,x
(R(ℎ,ℎ(x) = x)) ≥ Pr

ℎ,x
(R(ℎ,ℎ(x) = x) | ∥x − y∥1 ≤ 𝑡)

× Pr
x
(∥x − y∥1 ≤ 𝑡)

>

(
1 − 1

2

· 𝑒 − 2
𝑒 − 1

) (
1 − 1

𝑒

)
1

|𝐵1 (y, 𝑞, 𝑡) |

≥ 2(𝑒 − 1) − (𝑒 − 2)
2(𝑒 − 1)

(𝑒 − 1)
𝑒

1(𝑛+𝑡+1
𝑡+1

)
4



Nature Regime Color 𝑡 𝑛 Baseline 𝑚 Compression

Bound Large 𝑡 RGB 154918 28 × 28 × 3 18816 1194 6.346

796466 64 × 64 × 3 98304 6495 6.607

3165795 128 × 128 × 3 393216 26403 6.715

9668908 224 × 224 × 3 1204224 81428 6.762

Bound Large 𝑡 Gray- 52711 28 × 28 6272 378 6.027

scale 267937 64 × 64 32768 2115 6.454

1060162 128 × 128 131072 8697 6.635

3231539 224 × 224 401408 26957 6.716

Bound Small 𝑡 RGB 235 28 × 28 × 3 18816 882 4.688

1228 64 × 64 × 3 98304 5890 5.992

4915 128 × 128 × 3 393216 23741 6.038

15052 224 × 224 × 3 1204224 72754 6.042

Bound Small 𝑡 Gray- 78 28 × 28 6272 883 14.078

scale 409 64 × 64 32768 1828 5.579

1638 128 × 128 131072 7881 6.013

5017 224 × 224 401408 24235 6.037

Our Small 𝑡 RGB 235 28 × 28 × 3 18816 2631 13.983

Scheme 1228 64 × 64 × 3 98304 16682 16.970

4915 128 × 128 × 3 393216 76600 19.480

15052 224 × 224 × 3 1204224 258889 21.498

Our Small 𝑡 Gray- 78 28 × 28 6272 749 11.942

Scheme scale 409 64 × 64 32768 4908 14.978

1638 128 × 128 131072 22932 17.496

5017 224 × 224 401408 78338 19.516

Table 1: Lower bounds on compression achievable through
a PPH with small 𝑡 ≈ 0.1𝑛 and large 𝑡 ≈ 0.25𝑞𝑛, and the ac-
tual compression through our scheme. The column labeled
“Compression” is the percentage compression with respect
to the baseline 𝑛 log

2
𝑞. Here 𝑞 = 256.

=
1

2

1(𝑛+𝑡+1
𝑡+1

) ,
where we have used Proposition 5. Now using Eq (4), we get

𝐻∞ (𝑋 | ℎ,ℎ(𝑋 )) ≤ − log2
(
Pr

ℎ,x
(R(ℎ,ℎ(x) = x)

)
< 1 + log

2

(
𝑛 + 𝑡 + 1
𝑡 + 1

)
.

Combining the above with Eq. (3), we get

𝑛 log
2
𝑞 − log

2

(
𝑛 + 𝑡 + 1
𝑡 + 1

)
− 1 < 𝑚

⇒𝑚 ≥ 𝑛 log
2
𝑞 − log

2

(
𝑛 + 𝑡 + 1
𝑡 + 1

)
, (5)

where the last inequality follows from the fact that𝑚 is an integer.

This implies that substantial compression is possible if 𝑡 is large, i.e.,

𝑡 > 0.25𝑞𝑛. The compression rates for various image sizes 𝑛 and

𝑡 as computed through Proposition 7 are shown in Table 1. Even

though high compression is possible, this value of 𝑡 is too large for

our application where it may produce a high false positive rate.

3.3 Bound on𝑚 for Small 𝑡
When 𝑡 is much smaller, say 𝑡 ≈ 0.1𝑛, there does not appear to be a

better algorithm to find x than a random guess. Namely let R be an

algorithm which when given a random ℎ ∈ H and ℎ(x) for some

unknown x, samples a y uniformly at random from Z𝑛𝑞 as its guess

for x. Assume that evalℎ has correctness error 𝛿 < 1

2
. Then,

Pr

ℎ,x
(R(ℎ,ℎ(x)) > 1

2

|𝐵1 (x, 𝑞, 𝑡) |
𝑞𝑛

Now again using Eq (4), we get

𝐻∞ (𝑋 | ℎ,ℎ(𝑋 )) ≤ − log2
(
Pr

ℎ,x
(R(ℎ,ℎ(x) = x)

)
< 1 − log

2
|𝐵1 (x, 𝑞, 𝑡) | + 𝑛 log2 𝑞.

Combining the above with Eq. (3), we get

𝑚 > 𝑛 log
2
𝑞 − 𝑛 log

2
𝑞 + log

2
|𝐵1 (x, 𝑞, 𝑡) | − 1

⇒𝑚 ≥ log
2
|𝐵1 (x, 𝑞, 𝑡) |.

Now from Propositions 4 and 3, we have

|𝐵1 (x, 𝑞, 𝑡) | ≥
(
𝑛 + 𝑡
𝑡

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
We next use the following result.

Proposition 8. If 𝑞 ≥ 4, 𝑞 − 1 < 𝑡 < 2.5𝑛 − 2.5, then(
𝑛 + 𝑡
𝑡

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
≥

(
𝑛 − 1 + 𝑡

𝑡

)𝑞−1 (
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
Proof. See Appendix B. □

Thus

𝑚 ≥ log
2
|𝐵1 (x, 𝑞, 𝑡) |

≥ log
2

((
𝑛 − 1 + 𝑡

𝑡

)𝑞−1 (
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

))
= (𝑞 − 1) log

2

(
1 + 𝑛 − 1

𝑡

)
+ log

2

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
(6)

Table 1 shows the lower bound of𝑚 through Eq. 6. Even with a

smallr 𝑡 considerable compression is possible in theory.

3.4 Feasibility of List Decoding
Some RPPH schemes for Hamming distance are based on error-

correcting codes, in particular, syndrome decoding [6]. We are

interested in knowing whether syndrome decoding is likely to

be feasible for ℓ1-distance. Consider the original image (assume

binary images for now) x, and a candidate image y, the construction
from [6] takes the syndrome of x and that of y, and then finds a

list of errors of Hamming weight at most 𝑡 . Due to the linearity of

syndromes, if there is an error vector in the list which matches the

difference of the syndromes, then y is within Hamming distance

𝑡 of x. For syndrome list decoding to be efficient, the list of errors

should be of polynomial size in 𝑛 which itself is a polynomial in the

security parameter 𝜆. From Fact 2.9 in [6] syndrome list decoding

is efficient if and only if list decoding is efficient.

Moving to our case, treating the target image x as a codeword,

in light of the above, for a similar procedure to be efficient we need

to find how many vectors are within the ℓ1-ball of x. If this size is
big, then list decoding will not be an efficient solution. Thus, we

estimate this size.

Proposition 9. Let 𝐵1 (x, 𝑞, 𝑡) be the ℓ1-ball around x ∈ Z𝑛𝑞 , with
𝑡 > 𝑞 − 1. Then

|𝐵1 (x, 𝑞, 𝑡) | >
(
1 + 𝑛 − 1

𝑡 − 𝑞

)𝑡−𝑞
(7)

Proof. See Appendix B. □
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The lower bound from Eq. (7) is plotted in Figure 2 for grayscale

images of various sizes with 𝑡 ranging from 257 (i.e., from 𝑞 + 1)
to 266. Even for these extremely small values of 𝑡 , we see that

|𝐵1 (x, 𝑞, 𝑡) | contains a large number of vectors. E.g., a grayscale

image of size 28× 28 contains at least 260 possible vectors within its

ℓ1-ball of radius 𝑡 = 266. Thus, syndrome list decoding is not feasible

in our case. We instead need an approach which directly checks if

a given codeword is within distance 𝑡 of the target codeword.
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Figure 2: The lower bound in logarithmic scale of the number
of images that lie within ℓ1-distance 𝑡 of a given image. The
list quickly becomes huge even for such small values of 𝑡 .

4 CONNECTION TO ℓ1-DISTANCE ERROR
CORRECTING CODES

Tallini and Rose [13] show a generic error correcting code for the ℓ1-

distance, which we modify to use as a property-preserving hashing

(PPH). To be precise, their scheme is based on the asymmetric ℓ1-

distance. To understand the scheme, we introduce some notations.

Let x, y ∈ Z𝑛𝑞 . For 𝑥,𝑦 ∈ Z𝑞 , define:
𝑥 .− 𝑦 = max{0, 𝑥 − 𝑦}

This definition is extended element-wise to x .− y. Now note that

Proposition 10 ([13]). For any x, y ∈ Z𝑛𝑞
x + (y .− x) = y + (x .− y) .

Furthermore,

∥x − y∥1 = ∥y .− x∥1 + ∥x .− y∥1
Proof. See Appendix B. □

Example 2. Let x = (2, 1, 0, 4) and y = (3, 0, 1, 4). Then y .− x =

(1, 0, 1, 0) and x .− y = (0, 1, 0, 0). Thus,
x + (y .− x) = (2, 1, 0, 4) + (1, 0, 1, 0)

= (3, 1, 1, 4)
= (3, 0, 1, 4) + (0, 1, 0, 0) = y + (x .− y)

Moreover, ∥x − y∥1 = 3 and ∥y .− x∥1 + ∥x .− y∥1 = 2 + 1 = 3. □

This operation is nothing but set difference if we consider x and y
as multisets. Next we define polynomials associated with a vector in

Z𝑛𝑞 in amanner slightly different from [13]. Note that the goal in [13]

is to construct error-correcting codes through which we could

recover the original codeword x given a received codeword y. In
our case, we only need to find whether the received codeword y, i.e.,
the image, is within a certain ℓ1-distance away from x, a database

image. Thus, we are not interested in recovering the original image

x, from which y may have been adversarially created. Let F be a
finite field with |F| > 𝑛. We shall assume F = Z𝑝 , where 𝑝 > 𝑛 is a

prime. Thus |Z𝑝 | ≥ 𝑛 +1. Let a = (𝑎1, . . . , 𝑎𝑛) be a vector composed

of 𝑛 distinct elements from Z𝑝 − {0}. The polynomial associated

with x ∈ Z𝑛𝑞 is defined as

𝜎x (𝑧) =
𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑥𝑖 (8)

Note that this is a polynomial in F[𝑍 ], and the coefficient operations

are in the field F = Z𝑝 . The following is stated without proof in [13].

Proposition 11. Let 𝜎x ∈ F[𝑍 ] be as defined in Eq. (8). Then
deg(𝜎x) = ∥x∥1.

Proof. See Appendix B. □

The roots of 𝜎x are 𝑎−1
𝑖
∈ F with multiplicity 𝑥𝑖 as can be eas-

ily seen. For any two polynomials in F[𝑍 ] define their greatest

common divisor (gcd) as the zero or monic polynomial 𝑑 ∈ F[𝑍 ]
which divides both, and every other common divisor of the two

polynomials divides 𝑑 [20, §16.3]. The following key equation is

proved in [13], with the proof reproduced here for completeness.

Theorem 1. Let x, y ∈ Z𝑛𝑞 . Then,
𝜎x𝜎y .−x = 𝜎y𝜎x .−y

Furthermore,
gcd(𝜎y .−x, 𝜎x .−y) = 1.

Proof. See Appendix B. □

Consider the polynomial 𝑧𝑡+1 ∈ F[𝑍 ]. We have:

Proposition 12. Let x ∈ Z𝑛𝑞 . Then gcd(𝜎x, 𝑧𝑡+1) = 1.

Proof. See Appendix B. □

We use the following results related to the extended Euclidean

algorithm (EEA) whose proofs can be found in [21, §12.8].

Theorem 2 ([21]). Let 𝑟0 (𝑧) and 𝑟−1 (𝑧) be polynomials with
deg(𝑟0) ≤ deg(𝑟−1) and gcd 𝑔(𝑧). Then there exist polynomials 𝑢
and 𝑣 such that

𝑢 (𝑧)𝑟−1 (𝑧) + 𝑣 (𝑧)𝑟0 (𝑧) = 𝑔(𝑧), (9)

with deg(𝑢) and deg(𝑣) less than deg(𝑟−1). Furthermore, in the 𝑖th
round, if 𝑟𝑖 and 𝑟𝑖−1 are the polynomials used in the division in EEA
with 𝑖 ≥ 0, then[

𝑟𝑖−1 (𝑧)
𝑟𝑖 (𝑧)

]
= (−1)𝑖

[
𝑣𝑖−1 (𝑧) −𝑢𝑖−1 (𝑧)
−𝑣𝑖 (𝑧) 𝑢𝑖 (𝑧)

] [
𝑟−1 (𝑧)
𝑟0 (𝑧)

]
, (10)

where
𝑢−1 (𝑧) = 0, 𝑢0 (𝑧) = 1,

𝑣−1 (𝑧) = 1, 𝑣0 (𝑧) = 0,

Moreover, we have
• 𝑢𝑖 and 𝑣𝑖 are relatively prime for all 𝑖 ,
• deg(𝑢𝑖 ) = deg(𝑟−1) − deg(𝑟𝑖−1),
• deg(𝑢𝑖 ) =

∑𝑖
𝑗=1 deg(𝑞 𝑗 ),

• deg(𝑟𝑖−1) = deg(𝑟−1) −
∑𝑖

𝑗=1 deg(𝑞 𝑗 ).
□
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We have not specified the polynomials 𝑢𝑖 and 𝑣𝑖 apart from the

initial values of 𝑖 , as their expressions are not necessary for our

results. Now take the key equation in Theorem 1 modulo 𝑧𝑡+1:

𝜎x (𝑧)𝜎y .−x (𝑧) ≡ 𝜎y (𝑧)𝜎x .−y (𝑧) (mod 𝑧𝑡+1)
𝜎y .−x (𝑧) ≡ 𝜎−1x (𝑧)𝜎y (𝑧)𝜎x .−y (mod 𝑧𝑡+1)
𝜎y .−x (𝑧) ≡ �̃�x,y (𝑧)𝜎x .−y (𝑧) (mod 𝑧𝑡+1), (11)

where

�̃�x,y (𝑧) = 𝜎−1x (𝑧)𝜎y (𝑧) (mod 𝑧𝑡+1) .
The inverse 𝜎−1x (𝑧) exists since gcd(𝜎x, 𝑧𝑡+1) = 1 from Proposi-

tion 12, and can be obtained via the EEA (Eq. (9)).

4.1 When the Asymmetric ℓ1-Distances are Less
Than the Thresholds

We first consider the case when ∥y .− x∥1 ≤ 𝑡+ and ∥x .− y∥1 ≤ 𝑡− ,
where 𝑡+ and 𝑡− are non-negative integers satisfying 𝑡+ + 𝑡− = 𝑡 .

From Proposition 10 this means that ∥y − x∥1 ≤ 𝑡 . Moreover, from

Proposition 11 this implies that deg(𝜎y .−x) ≤ 𝑡+ and deg(𝜎x .−y) ≤
𝑡− . The following theorem shows that if these conditions are met

then we can find the solution to Eq. (11) given �̃�x,y and 𝑧𝑡+1, and
from the solution we can exactly recover ∥y .− x∥1 and ∥x .− y∥1.
From this, we can establish that ∥y − x∥1 ≤ 𝑡 . This result is stated

in [13] with the proof deferred to the full version of that paper.

However, could not find the full version of the paper. The authors

did in fact state that this is based on the proof of Theorem 16 in [21,

§12.8]. We therefore, provide a full proof here based on this theorem.

Theorem 3. Let 𝑡+ and 𝑡− be nonnegative integers satisfying 𝑡+ +
𝑡− = 𝑡 , for a nonnegative integer 𝑡 . Assume deg(𝜎y .−x) ≤ 𝑡+ and
deg(𝜎x .−y) ≤ 𝑡− . Set 𝑟−1 (𝑧) = 𝑧𝑡+1 and 𝑟0 (𝑧) = �̃�x,y (𝑧) in the EEA,
and run the algorithm until reaching an 𝑟𝑘 (𝑧) such that

deg(𝑟𝑘 ) ≤ 𝑡+ and deg(𝑟𝑘−1) > 𝑡+ .

Set
𝛼 (𝑧) = (−1)𝑘𝑟𝑘 (𝑧), 𝛽 (𝑧) = 𝑢𝑘 (𝑧)

Then deg(𝛼) = deg(𝜎y .−x) and deg(𝛽) = deg(𝜎x .−y).

Proof. Set 𝑟−1 (𝑧) = 𝑧𝑡+1 and 𝑟0 (𝑧) = �̃�x,y (𝑧). Run the EEA until

reaching an 𝑟𝑘 (𝑧) such that

deg(𝑟𝑘 ) ≤ 𝑡+ and deg(𝑟𝑘−1) > 𝑡+ .

Note that this is guaranteed since we start with deg(𝑟−1) = 𝑡+1, and
deg(𝑟𝑖 ) < deg(𝑟𝑖−1) at the 𝑖th iteration. Furthermore, gcd(�̃�x,y, 𝑧𝑡+1) =
1. So, the degrees of 𝑟𝑖 ’s are decreasing and go down to 0. Simi-

larly we start with deg(𝑢0) = 1, and at the 𝑖th iteration, we have

deg(𝑟𝑖−1) > deg(𝑟𝑖 ), which means (from Theorem 2)

deg(𝑢𝑖 ) = deg(𝑟−1)−deg(𝑟𝑖−1) > deg(𝑟−1)−deg(𝑟𝑖−2) = deg(𝑢𝑖−1),
and hence the degrees of the 𝑢𝑖 ’s are increasing. From the same

theorem:

deg(𝑢𝑘 ) = deg(𝑟−1) − deg(𝑟𝑘−1) < 𝑡 + 1 − 𝑡+ = 𝑡− + 1 ≤ 𝑡− (12)

Now set

𝛼 (𝑧) = (−1)𝑘𝑟𝑘 (𝑧),
𝛽 (𝑧) = 𝑢𝑘 (𝑧) . (13)

Thus deg(𝛼) = deg(𝑟𝑘 ) ≤ 𝑡+, and deg(𝛽) = deg(𝑢𝑘 ) ≤ 𝑡− . From
Eq. (10), we have

𝑟𝑘 (𝑧) = (−1)𝑘 (−𝑣𝑘 (𝑧)𝑟−1 (𝑧) + 𝑢𝑘 (𝑧)𝑟0 (𝑧))

⇒ (−1)𝑘𝑟𝑘 (𝑧) = −𝑣𝑘 (𝑧)𝑟−1 (𝑧) + 𝑢𝑘 (𝑧)𝑟0 (𝑧)
⇒ 𝛼 (𝑧) = 𝛽 (𝑧)�̃�x,y (𝑧) − 𝑣𝑘 (𝑧)𝑧𝑡+1

⇒ 𝛼 (𝑧) ≡ 𝛽 (𝑧)�̃�x,y (𝑧) (mod 𝑧𝑡+1) .

Thus (𝛼, 𝛽) is a solution of Eq. (11). We next show that if (𝛼 ′, 𝛽′)
is any other solution of Eq. (11) satisfying deg(𝛼 ′) ≤ 𝑡+, and
deg(𝛽′) ≤ 𝑡− , and gcd(𝛼 ′, 𝛽′) = 1 then necessarily deg(𝛼 ′) =

deg(𝛼) and deg(𝛽′) = deg(𝛽). Since we know that deg(𝜎y .−x) ≤ 𝑡+
and deg(𝜎x .−y) ≤ 𝑡− , they satisfy Eq. (11) and gcd(𝜎y .−x, 𝜎x .−y) = 1

from Theorem 1, this shows that the solution through EEA, i.e.,

Eq. (13), will satisfy deg(𝛼) = deg(𝜎y .−x) and deg(𝛽) = deg(𝜎x .−y),
and we are done. So assume (𝛼 ′, 𝛽′) is another solution. Then

𝛼 ′ (𝑧) ≡ 𝛽′ (𝑧)�̃�x,y (𝑧) (mod 𝑧𝑡+1) (14)

𝛼 ′ (𝑧)𝛽 (𝑧) ≡ 𝛽′ (𝑧)�̃�x,y (𝑧)𝛽 (𝑧) (mod 𝑧𝑡+1)
𝛼 ′ (𝑧)𝛽 (𝑧) ≡ 𝛼 (𝑧)𝛽′ (𝑧) (mod 𝑧𝑡+1)

The degree of each side of this congruence is ≤ 𝑡+ + 𝑡− = 𝑡 , and

hence we have

𝛼 ′ (𝑧)𝛽 (𝑧) = 𝛼 (𝑧)𝛽′ (𝑧),

i.e., without the modulus. Since 𝛼 ′ divides both sides, we have

𝛽 (𝑧) = 𝛼 (𝑧)𝛽′ (𝑧)
𝛼 ′ (𝑧)

Since 𝛼 ′ and 𝛽′ are relatively prime, 𝛼 ′ must divide 𝛼 . Define:

𝜇 (𝑧) = 𝛼 (𝑧)
𝛼 ′ (𝑧) ,

which implies 𝛽 (𝑧) = 𝜇 (𝑧)𝛽′ (𝑧). From Eq. (13) and (10) we have

𝛼 (𝑧) = (−1)𝑘𝑟𝑘 (𝑧)
= −𝑣𝑘 (𝑧)𝑟−1 (𝑧) + 𝑢𝑘 (𝑧)𝑟0 (𝑧)
= −𝑣𝑘 (𝑧)𝑧𝑡+1 + 𝛽 (𝑧)�̃�x,y (𝑧)

⇒ 𝜇 (𝑧)𝛼 ′ (𝑧) = −𝑣𝑘 (𝑧)𝑧𝑡+1 + 𝜇 (𝑧)𝛽′ (𝑧)�̃�x,y (𝑧).

Since (𝛼 ′, 𝛽′) is a solution we have for some polynomial𝜓 ,

𝛼 ′ (𝑧) = 𝛽′ (𝑧)�̃�x,y (𝑧) +𝜓 (𝑧)𝑧𝑡+1

Putting this in the previous equation, we get

𝜇 (𝑧)𝛽′ (𝑧)�̃�x,y (𝑧) + 𝜇 (𝑧)𝜓 (𝑧)𝑧𝑡+1 = −𝑣𝑘 (𝑧)𝑧𝑡+1 + 𝜇 (𝑧)𝛽′ (𝑧)�̃�x,y (𝑧)
−𝜇 (𝑧)𝜓 (𝑧) = 𝑣𝑘 (𝑧) .

Thus, 𝜇 divides 𝑣𝑘 . On the other hand 𝜇 (𝑧)𝛽′ (𝑧) = 𝛽 (𝑧) = 𝑢𝑘 (𝑧).
Thus, 𝜇 also divides 𝑢𝑘 . But 𝑢𝑘 and 𝑣𝑘 are relatively prime from

Theorem 2. Thus, 𝜇 is a constant, and hence deg(𝛼 ′) = deg(𝛼) and
deg(𝛽′) = deg(𝛽).

□
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4.2 When the Asymmetric ℓ1-Distances are
More Than the Thresholds

Wenow consider the other case, i.e., when ∥y .− x∥1 > 𝑡+ or ∥x .− y∥1 >

𝑡− , where 𝑡+ and 𝑡− are non-negative integers satisfying 𝑡+ + 𝑡− = 𝑡 .

From Proposition 11, equivalently, this means that deg(𝜎y .−x) > 𝑡+
or deg(𝜎x .−y) > 𝑡− . The proof of Theorem 3 tells us that even if the

key equation (Eq. (11)) is not satisfied, there will still be a solution if

we run the EEA till deg(𝑟𝑘 ) ≤ 𝑡+ and deg(𝑟𝑘−1) > 𝑡+, since we have
deg(𝑢𝑘 ) ≤ 𝑡− (from Eq. (12)) which has the same degree as 𝜎x .−y.
However, if we change the condition to running the algorithm until

deg(𝑟𝑘 ) < 𝑡+ and deg(𝑟𝑘−1) ≥ 𝑡+, then we see that from Theorem 2

deg(𝑢𝑘 ) = deg(𝑟−1) − deg(𝑟𝑘−1) ≤ 𝑡 + 1 − 𝑡+ = 𝑡− + 1.
Furthermore from Theorem 2,

deg(𝑟𝑘 ) = deg(𝑟−1) −
𝑘+1∑︁
𝑖=1

deg(𝑞𝑖 )

⇒ deg(𝑢𝑘 ) + deg(𝑞𝑘+1) = deg(𝑟−1) − deg(𝑟𝑘 )
> 𝑡 + 1 − 𝑡+ = 𝑡− + 1,

where we have used the fact that deg(𝑢𝑘 ) =
∑𝑘
𝑖=1 deg(𝑞𝑖 ) from

Theorem 2. Together, we get the condition:

𝑡− + 1 ≥ deg(𝑢𝑘 ) > 𝑡− + 1 − deg(𝑞𝑘+1)
where 𝑞𝑘+1 is defined as

𝑟𝑘−1 = 𝑞𝑘+1𝑟𝑘 + 𝑟𝑘+1 .
Since deg(𝑟𝑘+1) < deg(𝑟𝑘 ), we have

deg(𝑟𝑘−1) = deg(𝑞𝑘+1) + deg(𝑟𝑘 )
⇒ deg(𝑞𝑘+1) = deg(𝑟𝑘−1) − deg(𝑟𝑘 ) ≥ 1.

Thus if deg(𝑞𝑘+1) = 1 then

𝑡− + 1 ≥ deg(𝑢𝑘 ) > 𝑡− ⇒ deg(𝑢𝑘 ) = 𝑡− + 1.
However, deg(𝑞𝑘+1) could be greater than 1. In general if deg(𝑞𝑘+1) =
𝛿 + 1, where 𝛿 ≥ 0 is an integer, we get that

𝑡− + 1 ≥ deg(𝑢𝑘 ) > 𝑡− − 𝛿.
Thus, once the EEA stops at the condition deg(𝑟𝑘 ) < 𝑡+ and deg(𝑟𝑘−1) ≥
𝑡+, we could flag it as a non-solution if deg(𝑢𝑘 ) > 𝑡− − 𝛿 for some

fixed integer 𝛿 ≥ 0. 𝛿 = 0 is guaranteed to happen. But 𝛿 = 1 is less

probable, 𝛿 = 2 even less so and so on. But how probable is this?

Let 𝜏 denote the degree of 𝑟𝑘−1. Then from the equation:

𝑟𝑘−2 = 𝑞𝑘𝑟𝑘−1 + 𝑟𝑘 ,
we see that the polynomial on the left hand side and the one on the

right hand side is of the form:

𝐴𝜏𝑧
𝜏+𝐴𝜏−1𝑧𝜏−1+· · ·+𝐴1𝑧+𝐴0 = 𝐵𝜏𝑧

𝜏+𝐵𝜏−1𝑧𝜏−1+· · ·+𝐵1𝑧+𝐵0+𝑟𝑘 (𝑧).
Since deg(𝑟𝑘−2) > deg(𝑟𝑘−1), we have𝐴𝜏 = 𝐵𝜏 . Now,𝐴𝜏−1 = 𝐵𝜏−1
implies that

deg(𝑟𝑘−1) − deg(𝑟𝑘 ) = deg(𝑞𝑘+1) ≥ 2,

and in general 𝐴𝜏−1 = 𝐵𝜏−1, . . . , 𝐴𝜏−𝛿 = 𝐵𝜏−𝛿 implies that

deg(𝑟𝑘−1) − deg(𝑟𝑘 ) = deg(𝑞𝑘+1) ≥ 𝛿 + 1.
The EEA starts by dividing 𝑧𝑡+1 by �̃�x,y (𝑧). The coefficients of �̃�x,y
are sums of products of random elements (without replacement)

of F (due to the vector a). Thus, we can model them as random

coefficients in F. Thus the probability can be approximated as

Pr[deg(𝑞𝑘+1) ≥ 𝛿 + 1] ≈ 1

|F|𝛿
=

1

|Z𝑝 |𝛿
=

1

𝑝𝛿
. (15)

If F is large enough, say around 1000, then setting 𝛿 = 3 suffices, as

the chance of 𝛿 ≥ 3 is approximately one in a billion. Unfortunately,

we do not have an analytical proof of this, whichwe leave as an open

problem. However, we can show through simulations that this is a

very good estimate of the probability, as shown in Figure 3. We have

chosen very small values of 𝑛 and 𝑡 , since the probabilities are very

small. The probabilities are obtained by implementing the scheme

in the Python library galois [14]. For each value of 𝑛 we choose 𝑝

is a prime larger than 𝑛. We then sample uniformly random images

x ∈ Z𝑛𝑞 , and make changes such that ∥y .− x∥1 ≥ 𝑡+ and ∥x .− y∥1 >

𝑡− . We can see that across all cases the empirical probability of the

left hand side of Eq. 15 is less than 𝑝−𝛿 . Furthermore, the probability

decreases significantly as we increase 𝑝 , as is likely to be the case

with the values of 𝑛 used in actual images.

5 PPH CONSTRUCTION AND SECURITY
ANALYSIS

We first precisely define the asymmetric ℓ1-distance predicate on

images from Z𝑛𝑞 .

Definition 3. Let 𝑛 be a positive integer. Let 𝑞 ≥ 2 and 𝛿 ≥ 0 be

integers. Let 𝑡 be a positive integer and let 𝑡+ and 𝑡− be non-negative
integers with 𝑡 = 𝑡+ + 𝑡− . The two-input asymmetric ℓ1-distance

predicate 𝑃as is defined as

𝑃as (x, y) =
{
1, if ∥y .− x∥1 < 𝑡+ and ∥x .− y∥1 ≤ 𝑡− − 𝛿
0, otherwise

□

The (𝑚,𝑛)-PPH construction for this predicate is shown in Con-

struction 1. We use the fact that a degree-𝑡 polynomial with co-

efficients in Z𝑝 can be represented as a vector in Z𝑡+1𝑝 , where the

𝑖th coefficient of the polynomial is the 𝑖th element in the vector

representation. Thus,𝑚 = (𝑡 + 1) log
2
𝑝 ≈ 𝑡 log

2
𝑛.

5.1 Correctness and Efficiency
Proposition 13. Construction 1 is a (1,𝑚, 𝑛)-PPH for the asym-

metric ℓ1-distance predicate 𝑃as, with𝑚 = (𝑡 + 1) log
2
𝑝 and 𝑝 > 𝑛

being a prime.

Proof. The 1-correctness of the PPH follows almost directly

fromTheorem 3.More elaborately, if x and y are such that ∥y .− x∥1 <

𝑡+ and ∥x .− y∥1 ≤ 𝑡− − 𝛿 , then 𝑃as (x, y) = 1. Let 𝜎x and 𝜎y be

the corresponding 𝜎-polynomials. From Proposition 12, we have

gcd(𝜎x, 𝑧𝑡+1) = 1, and therefore the inverse 𝜎−1x (𝑧) exists. Thus, we
can obtain �̃�x,y (𝑧) = 𝜎−1x (𝑧)𝜎y (𝑧) (mod 𝑧𝑡+1). We can then run the

EEA with inputs �̃�x,y and 𝑧𝑡+1. Changing the stopping condition to

deg(𝑟𝑘 ) < 𝑡+ and deg(𝑟𝑘−1) ≥ 𝑡+ does not change the result of The-
orem 3 as can be easily verified. Therefore, since deg(𝜎y .−x) < 𝑡+
and deg(𝜎x .−y) ≤ 𝑡− − 𝛿 ≤ 𝑡− , the theorem guarantees that the

degrees of the polynomials 𝛼 and 𝛽 , obtained through the EEA,
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Figure 3: The probability 𝑝−𝛿 from Eq. (15) versus the empirical probability obtained after 106 runs with varying 𝑛 and 𝑝 > 𝑛.
We use 𝑞 = 5 in all plots. In all cases, the empirical probability is lower than 𝑝−𝛿 . Tuples are the values (𝑛, 𝑝, 𝑡, 𝑡+, 𝑡−).

Construction 1: An (𝑚,𝑛)-PPH for the Asymmetric ℓ1-

Distance Predicate

Parameters :Security parameter 𝜆, positive integers

𝑛 = 𝑛(𝜆) and 𝑞 ≥ 2 for Z𝑛𝑞 , positive integers

𝑡 = 𝑡 (𝜆), 𝑡+ and 𝑡− , with 𝑡 = 𝑡+ + 𝑡− , integer
𝛿 ≥ 0, input image x ∈ Z𝑛𝑞 .

• samp(1𝜆):
1. Set 𝑝 as the first prime after 𝑛

2. Generate a = (𝑎1, . . . , 𝑎𝑛) as a vector with 𝑛 distinct

elements from Z𝑝 − {0}.
3. Output the following hash function ℎ:

ℎ(x) = 𝜎x (𝑧) (mod 𝑧𝑡+1) ∈ Z𝑡+1𝑝

where

𝜎x (𝑧) =
𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑥𝑖 with coefficients in Z𝑝

• evalℎ (𝑋,𝑌 ): Let 𝑋,𝑌 ∈ Z𝑡+1𝑝 .

1. Compute:

�̃�x,y (𝑧) = 𝜎−1x (𝑧)𝜎y (𝑧) (mod 𝑧𝑡+1) .
2. Set 𝑟−1 (𝑧) = 𝑧𝑡+1 and 𝑟0 (𝑧) = �̃�x,y (𝑧) in the EEA, and

run the algorithm until reaching an 𝑟𝑘 (𝑧) such that

deg(𝑟𝑘 ) < 𝑡+ and deg(𝑟𝑘−1) ≥ 𝑡+ .

3. Output 1 if deg(𝑢𝑘 ) ≤ 𝑡− − 𝛿 , else output 0.

are equal to the degrees of deg(𝜎y .−x) and deg(𝜎x .−y), respectively.
Thus evalℎ will output 1 in this case. Thus,

Pr

ℎ←samp(1𝜆 )
[𝑃 (𝑥1, 𝑥2) ≠ evalℎ (ℎ(𝑥1), ℎ(𝑥2)) | 𝑃 (𝑥1, 𝑥2) = 1] = 0

□

For 0-correctness we only have the following conjecture due to

Eq. (15):

Pr

ℎ←samp(1𝜆 )
[𝑃 (𝑥1, 𝑥2) ≠ evalℎ (ℎ(𝑥1), ℎ(𝑥2)) | 𝑃 (𝑥1, 𝑥2) = 0] ≈ 𝑝−𝛿

Asymptotically, 𝑝−𝛿 is not a negligible function of 𝜆, as 𝑝 is the next

prime to 𝑛, which itself is polynomial in 𝜆. However, in practice,

this can be made extremely small. For instance, for 𝑛 = 224×224×3
and 𝛿 = 3, we have 𝑝−𝛿 < 2

−51
. Since the above theorem holds for

all vectors a sampled through samp(), we also have:

Proposition 14. Construction 1 is a robust (1,𝑚, 𝑛)-PPH for the
asymmetric ℓ1-distance predicate 𝑃as, with𝑚 = (𝑡 + 1) log

2
𝑝 and

𝑝 > 𝑛 being a prime. □

Wedo not have an equivalent conjecture to claim that our scheme

is also (0,𝑚, 𝑛)-RPPH, as it may be possible to find a pair of images

x and y, given an instant of the hash function ℎ from the family, i.e.,

the prime 𝑝 and vector a. Given the 𝜎-polynomial 𝜎x of an image

x, even though we can trivially find a collision in the polynomial

space, e.g., 𝑧𝑡+1 +𝜎x, the resulting polynomial needs to be a valid 𝜎-

polynomial of some image y for it to be a collision in the image space.

We discuss reverse-engineering the original image in Section 5.3,

which also discusses finding collisions in the image space.

From the theorem, the compression achieved by our scheme is

≈ 𝑡 log
2
𝑛. For small 𝑡 the compression rate is close to the lower

bound as shown in Table 1. Unfortunately, for large 𝑡 , not much

compression is possible. It is unclear whether further compression

is possible for robust PPH families, since the compression bounds

from Section 3 are for non-robust PPH families. For efficiency of

the construction, we have the following theorem.

Theorem 4. Let ℎ be a hash function from Construction 1. Then ℎ
and evalℎ can be computed in O(𝑛𝑡2) and O(𝑡2) time, respectively.

Proof. See Appendix B. □

5.2 Application to Adversarial Image Detection
For the adversarial image search scenario, we first need a setup

algorithm to store the 𝜎-polynomials, or rather their inverses, of

all images x𝑖 ∈ D. At the time of submitting an input image,

the user needs to prepare the 𝜎-polynomial for his/her image to

send to the server. Finally, the server runs the detection algorithm

which evaluates to 1 if for any image in the dataset we have a

match according to the asymmetric ℓ1-distance predicate. These

algorithms are detailed in Algorithms 2, 3 and 4, respectively.

5.3 Information Leakage and Inverting the
Hash Function

What Does the evalℎ Function Reveal? From Theorem 2, the EEA

returns two polynomials 𝛼 (𝑧) and 𝛽 (𝑧). Although not explicitly
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Algorithm 2: Setup
Input :All inputs to Construction 1, database D of 𝑁

images x1, . . . , x𝑁 .

1 Run samp(1𝜆) to obtain the hash function ℎ

2 for 𝑖 = 1 to 𝑁 do
3 Obtain ℎ(x𝑖 ) = 𝜎x𝑖 (𝑧) (mod 𝑧𝑡+1)
4 Compute 𝜎−1x𝑖 (𝑧) modulo 𝑧𝑡+1

5 Replace x𝑖 with ℎ(x𝑖 )−1 = 𝜎−1x𝑖 (𝑧) in D
6 return D

Algorithm 3: Prepare
Input :Hash function ℎ from Construction 1, image y.

1 return ℎ(y) = 𝜎y (𝑧) (mod 𝑧𝑡+1)

Algorithm 4: Detect
Input :Hash function ℎ from Construction 1, hash digest

ℎ(y), database D of inverse 𝜎-polynomials

𝜎−1x1 = ℎ(x1)−1, . . . , 𝜎−1x𝑁 = ℎ(x𝑁 )−1.
1 for 𝑖 = 1 to 𝑁 do
2 if evalℎ (ℎ(x𝑖 )−1, ℎ(y)) = 1 then
3 return 1

4 return 0

stated these polynomials could be exactly the polynomials 𝜎y .−x
and 𝜎x .−y. We can then factor these polynomials using a variety

of efficient polynomial factorization algorithms [20]. From these

factorized polynomials and knowing x or y one can recover the

other, given that the vector a is public information. This is obviously

not surprising as this method was initially proposed to correct

errors [13]. However, not knowing the initial images x and y, one
only learns the absolute difference in pixel values between x and y
for all pixels. This is certainly more information than a simple 1 or 0

answer to the fact that x and y satisfy 𝑃as. Since the server computes

the evalℎ function, we can reduce this information leakage by never

storing the vector a at the server. Otherwise, our scheme assumes

an honest server.

What Do the 𝜎-Polynomials Reveal? The question then arises

if someone adversarial gets hold of the dataset D of inverse 𝜎-

polynomials, how difficult it is to find an original image? In Sec-

tion 2.1 we mentioned that one of the adversarial goals is to invert

the hash digest ℎ(x). To be precise, for each image x ∈ D, we store

𝜎−1x (𝑧) (mod 𝑧𝑡+1), which is a degree 𝑡 polynomial. We can easily

compute its inverse to obtain 𝜎x (𝑧) (mod 𝑧𝑡+1), which is again a

degree 𝑡 polynomial. The general form of this polynomial is:

𝜎x (𝑧) = 𝐴𝑡𝑧
𝑡 + · · · +𝐴1𝑧 + 1

So, the question reduces to what do the coefficients 𝐴𝑖 ’s reveal

about x? To answer this, we have the following theorem:

Theorem 5. Let x be an image with the 𝜎-polynomial:

𝜎x (𝑧) =
𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑥𝑖 .

as given by Eq. (8). Let𝑚 =
∑𝑛
𝑖=1 𝑥𝑖 be the degree of this polynomial as

given by Proposition 11. Let𝐴 𝑗 be the 𝑗 th coefficient of this polynomial,
with 0 ≤ 𝑗 ≤ 𝑚. Then,

𝐴 𝑗 = (−1) 𝑗𝑆 ( 𝑗, 𝑛),

where

𝑆 ( 𝑗, 𝑛 − 𝑘) =
𝑗∑︁

𝑖=0

(
𝑥𝑘+1
𝑖

)
𝑎𝑖
𝑘+1𝑆 (𝑖, 𝑛 − 𝑘 − 1),

for 0 ≤ 𝑘 ≤ 𝑛.

Proof. See Appendix B. □

So, for example 𝑆 (0, 𝑛) = 𝑆 (0, 𝑛 − 1) = · · · = 𝑆 (0, 0) = 1, and

hence 𝐴0 = 1. Likewise, 𝑆 (1, 𝑛) = 𝑥1𝑎1𝑆 (0, 𝑛 − 1) + 𝑆 (1, 𝑛 − 1) =
𝑥1𝑎1 + 𝑆 (1, 𝑛 − 1). By the recursive nature of the definition, we get

𝑆 (1, 𝑛 − 1) = 𝑥2𝑎2 + 𝑆 (1, 𝑛 − 2). Continuing on, we get 𝑆 (1, 1) =
𝑥𝑛𝑎𝑛 + 𝑆 (1, 0) = 𝑥𝑛𝑎𝑛 . Thus, 𝑆 (1, 𝑛) =

∑𝑛
𝑖=1 𝑥𝑖𝑎𝑖 , and so 𝐴1 =

−∑𝑛
𝑖=1 𝑥𝑖𝑎𝑖 . While these values can be easily computed if we know

the vectors a and x, not knowing the later means that we need to

try 𝑞𝑛 possibilities, i.e., all possible values of 𝑥1, times all possible

values of 𝑥2, and so on, to see which ones match 𝐴 𝑗 . Thus, the

complexity of finding x from the 𝜎-polynomial of x through this

way is proportional to O(𝑞𝑛).

6 EXPERIMENTAL RESULTS
We use the Imagenette dataset [15] (Imagenette-320 to be specific)

for our adversarial image detection application, which is a smaller

subset of the well-known Imagenet dataset [22]. This is a dataset

of 9,459 RGB images of size 224 × 224. Thus 𝑛 = 224 × 224 × 3.

Similarity Metrics. To measure the difference between original

and adversarial images we use three similarity metrics: (a) the

Learned Perceptual Image Patch Similarity (LPIPS) metric [23],

which is widely used as a proxy for human perceptual similarity.

Generally, a perturbed image is similar to the original one when its

LPIPS is lower than 0.2, and the difference can be perceived signifi-

cantly when it is more than 0.3 [23], (b) Pixel Change Ratio, which

shows the percentage change in absolute pixel values compared

to the original image, and (c) normalized asymmetric ℓ1-distance

(NAD) for two images x and x∗:

NAD(x, x∗) = max{∥x .− x∗∥1, ∥x∗ .− x∥1}
𝑞𝑛

× 100 (16)

Recall that the maximum possible distance between two images is

(𝑞 − 1)𝑛 ≈ 𝑞𝑛. In this section we assume that 𝑡+ = 𝑡− = 𝑡
2
. Note

that for 𝑃as (x, x∗) to evaluate to 1, we must have:

𝑡+ = 𝑡− =
𝑡

2

≤ 𝑞𝑛 × NAD(x, x∗)
100

⇒ 𝑡 ≤ 𝑞𝑛 × NAD(x, x∗)
50

(17)

6.1 Possible Values of 𝑡
Ideally, the threshold 𝑡 for the asymmetric ℓ1-distance predicate

𝑃as should be such that for any two images in the database D the

predicate evaluates to 0, thus ensuring zero false positives. To do

so, we define the empirical error on the database D as:

err𝑃as (D) =
∑︁

1≤𝑖< 𝑗≤𝑁

𝑃as (x𝑖 , x𝑗 )(𝑁
2

) , (18)
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and the parameters of 𝑃as are 𝑡+ = 𝑡− = 𝑡
2
and 𝛿 = 3. Although

in general 𝑃as (x𝑖 , x𝑗 ) ≠ 𝑃as (x𝑗 , x𝑖 ), with 𝑡+ = 𝑡− and large 𝑡 the

difference is not profound enough to matter. We plot the error

err𝑃as (D) in Figure 4 against increasing values of 𝑡 . For all values

of 𝑡 ≤ 325, 000 we get err𝑃as (D) = 0. This is 𝑡 ≈ 0.008𝑞𝑛, or

NAD ≈ 0.4 from Eq. (17). Thus, any value of 𝑡 less than this should

produce no false positives for images in this dataset. Unfortunately,

as we shall see, this value of 𝑡 is not high enough to defend against

some attacks. We note that until 𝑡 = 2, 000, 000 which is 𝑡 ≈ 0.05𝑞𝑛

or NAD ≈ 2.5, the error rate is less than 2%. Thus, we can discard

the few images that cause “collisions” which is most likely because

these images are similar, to use a higher value of 𝑡 .

0.51.0 2.0 5.0
t ×106

0.0

0.2

0.4

0.6

er
r P a

s

t = 325000

Figure 4: The empirical error on the Imagenette dataset D.
We get non-zero error with 𝑡 ≥ 350, 000.

6.2 Impact of Adversarial Attacks
The Fast Gradient Sign Method (FGSM) [24] and Projected Gradient

Descent (PGD) [11] are two well-known adversarial input attacks.

In both attacks the noise parameter 𝜖 can be adjusted to add more

noise to the input image, with the cross-entropy loss as the objec-

tive function. Figure 5 shows the impact on the quality of an image

through LPIPS, pixel change ratio, and NAD as we increase 𝜖 in

FGSM. At 𝜖 = 0.4, the NAD is 0.4512, which approximately corre-

sponds to 𝑡 = 325, 000 from Eq (17). At this 𝑡 , the LPIPS is 0.1786. At

𝜖 = 0.1, with NAD = 1.1277, which corresponds to 𝑡 ≈ 869, 122, we

have LPIPS 0.5714, and hence the image quality has significantly

degraded. Due to lack of space, a similar graph for PGD is relegated

to Figure 7 in Appendix C.

To show the impact on a larger number of images, we sample

1, 000 images from the imagenette dataset and apply both the FGSM

and PGD attacks on them by varying 𝜖 . The results are shown

in Table 2. For FGSM, the average NAD of 1.1287, and for PGD

an average NDA of 0.8163 produces LPIPS of 0.5596 and 0.4485,

respectively, which is significant perceptual loss on the images.

6.3 Impact of Image Transformations
Apart from adversarial input attacks, an image can also be changed

to evade detection via simple image transformations [1]. These

include filters such as increasing brightness, adjusting contrast,

rotating, and cropping the image. We select two such techniques:

changing brightness and contrast. By adjusting an enhancement
factor we can vary the brightness and contrast, with a value of 1

giving the original image.
5
We use the same symbol, i.e., 𝜖 , to denote

5
See https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html

𝜖 Attack LPIPS NAD Attack LPIPS NAD

0.000 FGSM 0.0000 0.0000 PGD 0.0000 0.0000

0.005 0.0026 0.0580 0.0016 0.0379

0.020 0.0524 0.2266 0.0145 0.1005

0.050 0.2454 0.5644 0.0470 0.1768

0.100 0.5596 1.1287 0.1187 0.2973

0.200 0.9913 2.2576 0.2871 0.5523

0.300 1.2105 3.3857 0.4485 0.8163

Table 2: Statistics for different 𝜖 values on FGSM and PGD.

the enhancement factor. We show the impact of 𝜖 on the image

quality using the same sample image in Figure 7 in Appendix C.

One thing to note from the figure is that LPIPS is lower for these

two techniques, even though the pixel change ratio is very high

compared to the FGSM and PGD attacks. Thus, for these two attacks

a lower value of LPIPS will suffice to deteriorate the adversarial

image. In Table 3 we show the average LPIPS and NAD on the 1,000

images chosen in our experiment. For both techniques, 𝜖 = 0.250

results in LPIPS of more than 0.3.

𝜖 Attack LPIPS NAD Attack LPIPS NAD

0.250 Brightness 0.3183 6.8516 Contrast 0.3204 1.7338

0.500 0.1140 4.5666 0.1109 1.1559

0.750 0.0244 2.3057 0.0236 0.5695

1.000 0.0000 0.0000 0.0000 0.0000

1.250 0.0258 1.9095 0.0179 0.5303

1.500 0.0800 3.5170 0.0526 0.9300

2.000 0.1955 5.8659 0.1208 1.4895

Table 3: Statistics for Brightness and Contrast attacks.

6.4 Computational Time
We implement the PPH scheme using the Python library galois [14].
We set 𝑡 = 0.01𝑞𝑛 which is above 0.008𝑞𝑛 established in Section 6.1.

We choose 𝑡+ = 𝑡− = 𝑡/2, and 𝛿 = 3. For small grayscale images,

such as the 28 × 28 size images used in the MNIST dataset [25],

our scheme can compute the 𝜎-polynomial of an image x in about

0.26 seconds. This is a one-off cost for the client, and hence not

prohibitive. For database creation, we need to convert each image

x ∈ D to its 𝜎-polynomial and then invert it. This can be done

in time 0.66 seconds per image. Finally the evalℎ function can be

computed in 0.08 seconds given the 𝜎-polynomials of the input

image and the inverse 𝜎-polynomial of the target image.

For larger image sizes, the time can grow large as our algorithms

are of the order O(𝑡2). Our idea is to divide the image into blocks,

and then compute the predicate 𝑃as per block with 𝑛𝐵 = 𝑛/𝐵 being

the size of each block and 𝑡𝐵 = 𝑡/𝐵 being the threshold per block,

for a block size of 𝐵. Note that dividing the image into blocks is

not unprecedented. It is done by the Blockhash perceptual hashing

algorithm [26], and this strategy is known to be more robust against

local changes to images [3, 27]. With this, for an RGB 224 × 224
image, the evalℎ can be computed in about 0.013 seconds per block

or 13 second per image. Detailed times are shown in Table 4 which

is the result of running the algorithms a total of 1,000 times. To
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Figure 5: The impact of adding noise to the image using the FGSM attack on the metrics LPIPS, pixel change ratio and NAD.

Size Color Blocks 𝑛𝐵 𝑡𝐵 Time 𝜎 Time 𝜎−1 Time evalℎ
224 × 224 RGB 1000 150 384 0.0235 0.0963 0.0128

128 × 128 RGB 100 491 1256 0.1238 0.3712 0.0455

64 × 64 RGB 100 122 312 0.0185 0.0777 0.0101

28 × 28 RGB 10 235 601 0.0436 0.1584 0.0204

28 × 28 Gray 1 784 2007 0.2596 0.6667 0.0784

Table 4: Total time in seconds taken by our scheme to pro-
duce the 𝜎-polynomial of an image, the 𝜎-polynomial and its
inverse of an image, and the solution using the evalℎ function,
where the images are divided into blocks with 𝑡 = 0.01𝑞𝑛.

Attack 𝜖 LPIPS NAD 𝑛𝐵 𝑡𝐵 Time 𝜎 Time 𝜎−1 Time evalℎ
FGSM 0.100 0.5596 1.1287 150 869 0.0303 0.1993 0.0309

PGD 0.300 0.4485 0.8163 150 629 0.0280 0.1506 0.0220

Brightness 0.250 0.3183 6.8516 150 5280 0.0847 1.3360 0.2651

2.000 0.1955 5.8659 150 4520 0.0763 1.0865 0.2143

Contrast 0.250 0.3204 1.7338 150 1336 0.0386 0.2999 0.0489

2.000 0.1208 1.4895 150 1147 0.0358 0.2592 0.0422

Table 5: Total time in seconds taken by our scheme to pro-
duce the 𝜎-polynomial of an image, the 𝜎-polynomial and its
inverse of an image, and the solution using the evalℎ function,
where 𝑡 is chosen such that LPIPS is high for each attack.

calculate the time of evalℎ we alter the image such that the predicate

is not satisfied, which is the worst-case time. In Table 5, we further

show the time taken when we choose 𝑡 such that LPIPS is high for

each of the four attacks. Here 𝑡 is chosen from NAD according to

Eq. 17. The corresponding values of 𝜖 and LPIPS are taken from

Tables 2 and 3.

Our implementation was done on a standard Apple M3 ARM

processor with 8 (performance) cores, and 16 GB RAM. We note

that with more cores, and involving GPUs, these times can be

substantially improved, as the algorithms are parallelizable: each

block and each database image can be evaluated separately.

7 RELATEDWORK
The notion of robust property-preserving hash (RPPH) functions

was formally introduced by Boyle et al. [8], where they also give

a construction of an RPPH for gap-Hamming distance predicate:

the predicate outputs 1 if the Hamming distance is lower than one

threshold, 0 if it is higher than the other, and a special symbol if it

lies within the gap. The authors also show a construction of a non-

rubust PPH for gap-Hamming distance predicate using a locality

sensitive hash (LSH) from [28]. Following their work, new construc-

tions for gap-Hamming distance as well as exact Hamming distance

predicates have been proposed [6, 9, 10]. In particular, the construc-

tion from [6] is based on the idea of efficient list decoding of linear

codes. This inspired us to search for list decoding of errors measured

in the Euclidean distance (ℓ2-distance). Mook and Peikert [29] show

a construction of list decoding of error-correcting codes based on

Reed-Solomon codes for the ℓ2-distance. Unfortunately, as we show

in Section 3.4, this procedure is unlikely to be efficient even for

small values of the distance threshold 𝑡 , as the size of the list (pos-

sible vectors) blow up. While our result is for the ℓ1-metric, from

Proposition 1, it also applies to the ℓ2-metric. Our construction is

based on ℓ1-error correcting codes from [13], which themselves are

derived from their earlier construction of error-correcting codes for

the Hamming distance [30]. Several adversarial attacks have been

shown against perceptual hashing algorithms [1, 3]. In particular,

evasion attacks add small adversarial noise to cause a mismatch

in the hashes of two perceptually similar images. This attack does

not apply to property-preserving hashing since the probability of a

mismatch between the predicate on the original domain and the

hash domain is required to be negligible.

8 CONCLUSION
Wehave proposed the first property-preserving hash (PPH) function

family for (asymmetric) ℓ1-distance predicates, with applications to

countering adversarial input attacks. Our construction is efficient,

as shown through our implementation. Our work leaves a number

of avenues for future research. While the proposed hash function

shows high compression for smaller distance thresholds 𝑡 , our the-

oretical results show that further compression may be possible,

especially when 𝑡 is large. Furthermore, our scheme is only robust

against one-sided errors and only handles asymmetric ℓ1-distance

predicates. It remains an open problem to find a robust PPH for the

exact ℓ1-distance predicate. There may also be interest in finding

a robust PPH scheme for the Euclidean distance predicate. Finally,

the implementation of our scheme has the potential to be further

sped up due to its highly parallel nature.
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A SOME USEFUL RESULTS

Metrics. Let 𝑆 be a set. A function 𝑑 : 𝑆 × 𝑆 → R is called a metric

on 𝑆 if for all 𝑥,𝑦, 𝑧 ∈ 𝑆 , (1) 𝑑 (𝑥,𝑦) ≥ 0 with equality if and only if

𝑥 = 𝑦, (2) 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥), and (3) 𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧,𝑦) [31].
In this case 𝑆 is called a metric space. For 𝑥,𝑦 ∈ Z𝑞 , i.e., pixels,
define the function 𝑑 : Z𝑞 × Z𝑞 → R as:

𝑑 (𝑥,𝑦) = |𝑥 − 𝑦 | (19)

It follows that 𝑑 is a metric on Z𝑞 , as can be easily verified. Similarly,

define the Hamming distance 𝑑𝐻 : Z𝑞 × Z𝑞 → R as:

𝑑𝐻 (𝑥,𝑦) =
{
1, if 𝑥 ≠ 𝑦,

0, otherwise
(20)

Then 𝑑𝐻 is also a metric. Thus, Z𝑞 together with 𝑑 or with 𝑑𝐻 is

a metric space. It follows that the following are metrics spaces on

the set Z𝑛𝑞 [31, §1.6]:

(1) The setZ𝑛𝑞 togetherwith themetric𝑑0 (x, y) =
∑𝑛
𝑖=1 𝑑𝐻 (𝑥𝑖 , 𝑦𝑖 ).

(2) The set Z𝑛𝑞 together with the metric 𝑑1 (x, y) =
∑𝑛
𝑖=1 𝑑 (𝑥𝑖 , 𝑦𝑖 ).

(3) The setZ𝑛𝑞 togetherwith themetric𝑑2 (x, y) =
√︃∑𝑛

𝑖=1 (𝑑 (𝑥𝑖 , 𝑦𝑖 ))2.
(4) The setZ𝑛𝑞 togetherwith themetric𝑑∞ (x, y) = max𝑖 {𝑑 (𝑥𝑖 , 𝑦𝑖 )},

for all x, y ∈ Z𝑛𝑞 , with 𝑥𝑖 and 𝑦𝑖 being their 𝑖th elements. With these

metrics we define the following norms for all x ∈ Z𝑛𝑞 :
(1) ℓ0-norm (Hamming weight): ∥x∥0 = 𝑑0 (x, 0).
(2) ℓ1-norm: ∥x∥1 = 𝑑1 (x, 0).
(3) ℓ2-norm (Euclidean): ∥x∥2 = 𝑑2 (x, 0).
(4) ℓ∞-norm: ∥x∥∞ = 𝑑∞ (x, 0).

Technically these are not norms as we have not even defined the

vector space of images. However, we will continue to use the term

by assuming the operations to be over the vector space R𝑛 .

Miscellaneous Results.

Proposition 15. Let 𝑎 > 1.4 be a real number, and let 𝑞 ≥ 4 be a
positive integer. Then 𝑎𝑞 − 1 ≥ 𝑎𝑞−1.

Proof. We prove this via induction. For 𝑞 = 4, the left hand side

is 𝑎4 − 1 and the right hand side is 𝑎3. For the inequality to hold

we must have 𝑎3 (𝑎 − 1) ≥ 0. Since this is an increasing function of

𝑎, and direct substitution shows that this inequality is satisfied by

𝑎 = 1.4, it follows that it is satisfied by all 𝑎 > 1.4. Now suppose the
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result holds for 𝑞 = 𝑘 , i.e., 𝑎𝑘 − 1 ≥ 𝑎𝑘−1. Multiplying both sides by

𝑎, we get

(𝑎𝑘 − 1)𝑎 ≥ 𝑎𝑘−1𝑎

𝑎𝑘+1 − 𝑎 ≥ 𝑎𝑘

𝑎𝑘+1 − 1 ≥ 𝑎𝑘 + 𝑎 − 1 ≥ 𝑎𝑘 ,

where the last step follows from the fact that 𝑎 > 1. □

Bernoulli’s Inequality. Let 𝑥 > −1 be a real number and let 𝑞 be

a positive integer then

(1 + 𝑥)𝑞 ≥ 1 + 𝑞𝑥 (21)

See for example [32].

Proposition 16. Let 𝑞 ≥ 2 be an integer. Then the function

𝑓 (𝑞) =
(
1 + 0.9

𝑞

)𝑞
is an increasing function of 𝑞.

Proof. Consider the ratio:
6

𝑓 (𝑞 + 1)
𝑓 (𝑞) =

(
1 + 0.9

𝑞+1

)𝑞+1(
1 + 0.9

𝑞

)𝑞 =

(
1 + 0.9

𝑞+1

)𝑞+1(
1 + 0.9

𝑞

)𝑞
(
1 + 0.9

𝑞

)(
1 + 0.9

𝑞

)
=

(
𝑞 + 1 + 0.9

𝑞 + 1
𝑞

𝑞 + 0.9

)𝑞+1 (
1 + 0.9

𝑞

)
=

(
(𝑞 + 1 + 0.9)𝑞 + 0.9 − 0.9
(𝑞 + 1) (𝑞 + 0.9)

)𝑞+1 (
1 + 0.9

𝑞

)
=

(
1 + −0.9
(𝑞 + 1) (𝑞 + 0.9)

)𝑞+1 (
1 + 0.9

𝑞

)
Now since 𝑞 ≥ 2, we have

−0.9
(𝑞 + 1) (𝑞 + 0.9) ≥ −

0.9

3 × 2.9 > −1.

Hence we can apply Bernoulli’s inequality (Eq. 21) to obtain:

𝑓 (𝑞 + 1)
𝑓 (𝑞) ≥

(
1 − 0.9

𝑞 + 0.9

) (
1 + 0.9

𝑞

)
=

(
𝑞 + 0.9 − 0.9

𝑞 + 0.9

) (
𝑞 + 0.9

𝑞

)
= 1.

Thus 𝑓 (𝑞 + 1) ≥ 𝑓 (𝑞). □

B PROOFS
B.1 Proof of Proposition 1

Proof. Let z = x − y. Then, equivalently, we need to show that

∥z∥2 ≤ ∥z∥1 ≤
√
𝑛∥z∥2

Note that z may not be an image, i.e., z may not be a member of Z𝑛𝑞 .

Now we see that

∥z∥2
1
=

(
𝑛∑︁
𝑖=1

|𝑧𝑖 |
)
2

=

(
𝑛∑︁
𝑖=1

|𝑧𝑖 |
) (

𝑛∑︁
𝑖=1

|𝑧𝑖 |
)

6
Part of this proof is derived from: https://math.stackexchange.com/questions/1589429/

how-to-prove-that-logxx-when-x1/.

=

𝑛∑︁
𝑖=1

|𝑧𝑖 |2 +
∑︁

𝑖, 𝑗 :𝑖≠𝑗

|𝑧𝑖 | |𝑧 𝑗 |

≥
𝑛∑︁
𝑖=1

|𝑧𝑖 |2 = ∥z∥22,

from which it follows that ∥z∥2 ≤ ∥z∥1. For the second inequality,

let 1 be the vector of all 1’s, and let b be such that 𝑏𝑖 = |𝑧𝑖 | for all 𝑖 .
Then,

∥z∥1 =
𝑛∑︁
𝑖=1

|𝑧𝑖 | = ⟨1, b⟩ ≤ ∥1∥2∥b∥2 =
√
𝑛∥z∥2,

where we have used the Cauchy-Shwartz inequality. To show that

the bounds are tight, let us first consider the left hand side inequality.

Assume that for some positive constant 𝑐 we have 𝑐 ∥x − y∥2 ≤
∥x − y∥1. Consider the two images x = (1, 0, . . . , 0) and y = 0,
where 0 is the zero vector. Then,

𝑐 ∥x − y∥2 ≤ ∥x − y∥1 ⇒ 𝑐
√
1 ≤ 1⇒ 𝑐 ≤ 1.

Thus, 𝑐 = 1 is tight. For the RHS, assume that for some positive

constant 𝑐 , we have ∥x − y∥1 ≤ 𝑐 ∥x − y∥2. Consider the two images

x = (𝑞 − 1, 𝑞 − 1, . . . , 𝑞 − 1) and y = 0. Then,

∥x − y∥1 ≤ 𝑐 ∥x − y∥2 ⇒ 𝑛(𝑞 − 1) ≤ 𝑐
√
𝑛(𝑞 − 1) ⇒ 𝑐 ≥

√
𝑛.

□

B.2 Proof of Proposition 3
Proof. Let y′ ∈ 𝐵1 (0, 𝑞, 𝑡). Construct the vector y, whose 𝑖th

coordinate is:

𝑦𝑖 =

{
𝑥𝑖 − 𝑦′𝑖 , if 𝑥𝑖 ≥ 𝑦′

𝑖
,

𝑦′
𝑖
, otherwise

Then clearly y ∈ Z𝑛𝑞 . Now ∥x − y∥1 =
∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖 |. Consider the

𝑖th term in the sum. If 𝑥𝑖 ≥ 𝑦′
𝑖
, then

|𝑥𝑖 − 𝑦𝑖 | = |𝑥𝑖 − (𝑥𝑖 − 𝑦′𝑖 ) | = |𝑦
′
𝑖 |,

otherwise if 𝑥𝑖 < 𝑦′
𝑖
, then

|𝑥𝑖 − 𝑦𝑖 | = |𝑥𝑖 − 𝑦′𝑖 | = 𝑦′𝑖 − 𝑥𝑖 ≤ 𝑦′𝑖 = |𝑦
′
𝑖 |,

where the inequality follows from the fact that 𝑥𝑖 ≥ 0. Thus, in

both cases |𝑥𝑖 − 𝑦𝑖 | ≤ |𝑦′𝑖 |. Therefore, ∥x − y∥1 ≤ ∥y
′∥1 ≤ 𝑡 . Thus,

y ∈ 𝐵1 (x, 𝑞, 𝑡).
Next, we show that this mapping is injective. Consider two dif-

ferent vectors y′, y′′ ∈ 𝐵1 (0, 𝑞, 𝑡). Assume one of the coordinates

they differ in is the 𝑖th coordinate. Assume to the contrary that the

map defined above yields a vector with the same 𝑖th coordinate 𝑦𝑖
for both. If 𝑥𝑖 ≥ 𝑦′

𝑖
and 𝑥𝑖 ≥ 𝑦′′

𝑖
, or if 𝑥𝑖 < 𝑦′

𝑖
and 𝑥𝑖 < 𝑦′′

𝑖
, then we

get 𝑦′
𝑖
= 𝑦′′

𝑖
through the map above, which is a contradiction. Thus,

either 𝑥𝑖 ≥ 𝑦′
𝑖
and 𝑥𝑖 < 𝑦′′

𝑖
, or 𝑥𝑖 < 𝑦′

𝑖
and 𝑥𝑖 ≥ 𝑦′′

𝑖
. Assume 𝑥𝑖 ≥ 𝑦′

𝑖
and 𝑥𝑖 < 𝑦′′

𝑖
. Then, we get 𝑦𝑖 = 𝑥𝑖 −𝑦′𝑖 = 𝑦′′

𝑖
⇒ 𝑥𝑖 = 𝑦′

𝑖
+𝑦′′

𝑖
. Since

𝑦′
𝑖
≥ 0, this means that 𝑥𝑖 ≥ 𝑦′′

𝑖
. But this contradicts the fact that

𝑥𝑖 < 𝑦′′
𝑖
. The case when 𝑥𝑖 < 𝑦′

𝑖
and 𝑥𝑖 ≥ 𝑦′′

𝑖
is analogous. □

B.3 Proof of Proposition 4
Proof. To simplify notation let𝐶 (𝑡, 𝑛) denote |𝐵1 (0, 𝑞, 𝑡) |. Then,

𝐶 (𝑡, 𝑛) =
𝑞−1∑︁
𝑖=0

𝐶 (𝑡 − 𝑖, 𝑛 − 1) .
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That is, we fix one element of the vector to 𝑖 , and count all vectors

of (𝑛−1) elements whose sum is 𝑡−𝑖 . The count is then complete by

summing over all possible values the fixed element in the original

vector can take. Also, note that

𝐶 (𝑡 − 1, 𝑛) =
𝑞−1∑︁
𝑖=0

𝐶 (𝑡 − 1 − 𝑖, 𝑛 − 1)

= 𝐶 (𝑡 − 1, 𝑛 − 1) +𝐶 (𝑡 − 2, 𝑛 − 1) + · · ·
+𝐶 (𝑡 − 𝑞 + 1, 𝑛 − 1) +𝐶 (𝑡 − 𝑞, 𝑛 − 1)
= 𝐶 (𝑡, 𝑛 − 1) +𝐶 (𝑡 − 1, 𝑛 − 1) +𝐶 (𝑡 − 2, 𝑛 − 1) + · · ·
+𝐶 (𝑡 − 𝑞 + 1, 𝑛 − 1)
+𝐶 (𝑡 − 𝑞, 𝑛 − 1) −𝐶 (𝑡, 𝑛 − 1)
= 𝐶 (𝑡, 𝑛) +𝐶 (𝑡 − 𝑞, 𝑛 − 1) −𝐶 (𝑡, 𝑛 − 1)

⇒ 𝐶 (𝑡, 𝑛) = 𝐶 (𝑡 − 1, 𝑛) +𝐶 (𝑡, 𝑛 − 1) −𝐶 (𝑡 − 𝑞, 𝑛 − 1).

The recurrence relation 𝐶 (𝑡 − 1, 𝑛) + 𝐶 (𝑡, 𝑛 − 1) has the solution(𝑛+𝑡
𝑡

)
(see for example [33, §C]). Therefore,

𝐶 (𝑡, 𝑛) =
(
𝑛 + 𝑡
𝑡

)
−𝐶 (𝑡 − 𝑞, 𝑛 − 1) ≤

(
𝑛 + 𝑡
𝑡

)
,

since 𝐶 (𝑡 − 𝑞, 𝑛 − 1) ≥ 0. From the above, we see that

𝐶 (𝑡 − 𝑞, 𝑛 − 1) =
(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
−𝐶 (𝑡 − 2𝑞, 𝑛 − 2)

≤
(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
.

Therefore

𝐶 (𝑡, 𝑛) ≥
(
𝑛 + 𝑡
𝑡

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
□

B.4 Proof of Proposition 5
Proof. Again, to simplify notation let𝐶 (𝑡, 𝑛) denote |𝐵1 (y, 𝑞, 𝑡) |.

Let 𝐶′ (𝑡, 𝑛) denote |𝐵1 (y, 𝑞 + 1, 𝑡) |. Then it is easy to see that

𝐶 (𝑡, 𝑛) ≤ 𝐶′ (𝑡, 𝑛). We will work with 𝐶′ (𝑡, 𝑛). First note that

𝐶′ (𝑡, 𝑛) = 1 + 2
𝑞/2−1∑︁
𝑖=0

𝐶′ (𝑡 − 𝑖, 𝑛 − 1).

This is because, if we fix one element of a vector x ∈ Z𝑛
𝑞+1 within

the ℓ1 ball of y to 𝑖 , we are left with counting all vectors of 𝑛 − 1
elements whose sum is 𝑡−𝑖 . Without loss of generality, let us assume

that this is the first element of x. Since the corresponding element

in y is fixed at 𝑞/2, |𝑖 − 𝑞/2| ranges from 1 to 𝑞/2 − 1. This counts
all vectors whose first element is fixed at 𝑖 ∈ {0, 1, . . . , 𝑞/2 − 1}.
The first element of x can also take on the values 𝑞/2 + 1 to 𝑞. For
each such value, there is a corresponding value between 0 and

𝑞/2 − 1. Thus, we need to count such vectors is twice of the sum of

𝐶′ (𝑡 − 𝑖, 𝑛 − 1) as 𝑖 ranges from 0 to 𝑞/2 − 1. The remaining case is

when x is identical to y. This is a single vector. Now,

𝐶′ (𝑡 − 1, 𝑛)

= 1 + 2
𝑞/2−1∑︁
𝑖=0

𝐶′ (𝑡 − 1 − 𝑖, 𝑛 − 1)

= 1 + 2
(
𝐶′ (𝑡 − 1, 𝑛 − 1) +𝐶′ (𝑡 − 2, 𝑛 − 1) + · · ·

+ 𝐶′ (𝑡 − 𝑞/2 + 1, 𝑛 − 1) +𝐶′ (𝑡 − 𝑞/2, 𝑛 − 1)
)

= 1 + 2
(
𝐶′ (𝑡, 𝑛 − 1) +𝐶′ (𝑡 − 1, 𝑛 − 1) +𝐶′ (𝑡 − 2, 𝑛 − 1) + · · ·

+ 𝐶′ (𝑡 − 𝑞/2 + 1, 𝑛 − 1) +𝐶′ (𝑡 − 𝑞/2, 𝑛 − 1) −𝐶′ (𝑡, 𝑛 − 1)
)

=
©«1 + 2

𝑞/2−1∑︁
𝑖=0

𝐶′ (𝑡 − 𝑖, 𝑛 − 1)ª®¬
+ 2𝐶′ (𝑡 − 𝑞/2, 𝑛 − 1) − 2𝐶′ (𝑡, 𝑛 − 1)
= 𝐶′ (𝑡, 𝑛) + 2𝐶′ (𝑡 − 𝑞/2, 𝑛 − 1) − 2𝐶′ (𝑡, 𝑛 − 1)
⇒ 𝐶′ (𝑡, 𝑛)
= 𝐶′ (𝑡 − 1, 𝑛) + 2𝐶′ (𝑡, 𝑛 − 1) − 2𝐶′ (𝑡 − 𝑞/2, 𝑛 − 1)

=

(
𝑛 + 𝑡
𝑡

)
+𝐶′ (𝑡, 𝑛 − 1) − 2𝐶′ (𝑡 − 𝑞/2, 𝑛 − 1)

≤
(
𝑛 + 𝑡
𝑡

)
+𝐶′ (𝑡, 𝑛 − 1),

where we have used the same identity for the recurrence relation as

in Proposition 4, and the inequality follows since𝐶′ (𝑡−𝑞/2, 𝑛−1) ≥
0. The recurrence relation

𝐶′ (𝑡, 𝑛) ≤
(
𝑛 + 𝑡
𝑡

)
+𝐶′ (𝑡, 𝑛 − 1),

implies that

𝐶 (𝑡, 𝑛) ≤ 𝐶′ (𝑡, 𝑛) ≤
(
𝑛 + 𝑡
𝑡

)
+

(
𝑛 − 1 + 𝑡

𝑡

)
+ · · · +

(
𝑡

𝑡

)
=

(
𝑛 + 𝑡 + 1
𝑡 + 1

)
,

where the last equality is the so-called hockey-stick identity. See for
example [34, §5]. □

B.5 Proof of Proposition 6
Proof. For 𝑖 ∈ [𝑛], let 𝐷𝑖 be the random variable denoting the

distance |𝑥𝑖 − 𝑦𝑖 |. Then through linearity of expectation, E(𝐷) =∑𝑛
𝑖=1 E(𝐷𝑖 ). Since 0 ≤ 𝑥𝑖 < 𝑞, we have 0 ≤ 𝐷𝑖 ≤ 𝑞/2. 𝐷𝑖 is 0 when

𝑥𝑖 = 𝑞/2, and 𝐷𝑖 = 𝑞/2, when 𝑥𝑖 = 0. Any other value of 𝐷𝑖 has

two possible choices of 𝑥𝑖 . For instance 𝐷𝑖 = 1, if 𝑥𝑖 = 𝑞/2 + 1 or
𝑞/2 − 1. Therefore, since 𝑥𝑖 is uniformly distributed over Z𝑞 :

E(𝐷𝑖 ) = 0 · 1
𝑞
+ 𝑞
2

· 1
𝑞
+ 1 · 2

𝑞
+ 2 · 2

𝑞
+ · · · +

(𝑞
2

− 1
)
· 2
𝑞

=
1

2

+ 2

𝑞

(
1 + 2 + · · · + 𝑞

2

− 1
)

=
1

2

+ 2

𝑞

𝑞

2

(𝑞
2

− 1
)
1

2

=
𝑞

4

Therefore, E(𝐷) = 𝑞𝑛/4. □

B.6 Proof of Proposition 7
Proof.

Pr(𝐷 ≤ 𝑡) = Pr(𝐷 − 𝑞𝑛/4 ≤ 𝑡 − 𝑞𝑛/4)
= 1 − Pr(𝐷 − 𝑞𝑛/4 > 𝑡 − 𝑞𝑛/4)
≥ 1 − Pr(𝐷 − 𝑞𝑛/4 ≥ 𝑡 − 𝑞𝑛/4)

≥ 1 − exp
(
− 2(𝑡 − 𝑞𝑛/4)2∑𝑛

𝑖=1 (𝑞/2 − 0)2

)
,

where the last inequality follows from Hoeffding’s inequality for

𝑡 > 𝑞𝑛/4, and the expected value and range of𝐷 from Proposition 6.

15



By plugging in 𝑡 = 𝛾𝑛 > 𝑞𝑛/4, we see that 𝛾 > 𝑞/4. Assuming 𝛾 to

be such, we have

Pr(𝐷 ≤ 𝑡) ≥ 1 − exp
(
−2(𝛾𝑛 − 𝑞𝑛/4)

2∑𝑛
𝑖=1 (𝑞/2)2

)
= 1 − exp

(
−2(4𝛾 − 𝑞)

2𝑛2

𝑞2𝑛

4

16

)
= 1 − exp

(
−

(
4𝛾

𝑞
− 1

)
2

𝑛

2

)
.

Now if (
4𝛾

𝑞
− 1

)
2

≥ 2

𝑛
, (22)

Then

Pr(𝐷 ≤ 𝑡) ≥ 1 − exp(−1) = 1 − 1/𝑒,
and we are done. The solution to Eq. (22) gives a bound on 𝛾 as

stated in the statement of the proposition. □

B.7 Proof of Proposition 8
Proof. First note that(

𝑛 + 𝑡
𝑡

)
=
(𝑛 + 𝑡)!
𝑡 !𝑛!

=
𝑛 + 𝑡
𝑛

(𝑛 − 1 + 𝑡)!
𝑡 !(𝑛 − 1)! ≥

(𝑛 − 1 + 𝑡)!
𝑡 !(𝑛 − 1)! =

(
𝑛 − 1 + 𝑡

𝑡

)
Thus,

|𝐵1 (x, 𝑞, 𝑡) | ≥
(
𝑛 − 1 + 𝑡

𝑡

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
=

(
𝑛 − 1 + 𝑡

𝑡

) (
𝑛 − 1 + 𝑡 − 1

𝑡 − 1

)
· · ·(

𝑛 − 1 + 𝑡 − 𝑞 + 1
𝑡 − 𝑞 + 1

) (
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
≥

(
𝑛 − 1 + 𝑡

𝑡

)𝑞 (
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
(23)

=

((
𝑛 − 1 + 𝑡

𝑡

)𝑞
− 1

) (
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
where we have used the fact that for 𝑡 > 𝑞 − 1, and all 0 ≤ 𝑖 ≤ 𝑞 − 1
we have (

𝑛 − 1 + 𝑡 − 𝑖
𝑡 − 𝑖

)
≥

(
𝑛 − 1 + 𝑡

𝑡

)
.

Note that 𝑡 > 𝑞 − 1 is true in our case. Now, assume 𝑞 ≥ 4 and that

(𝑛 − 1 + 𝑡)/𝑡 > 1.4 which implies that 𝑡 < 2.5(𝑛 − 1). Them we can

apply Proposition 15 from Appendix A in the previous result, and

get

|𝐵1 (x, 𝑞, 𝑡) | ≥
(
𝑛 − 1 + 𝑡

𝑡

)𝑞−1 (
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
□

B.8 Proof of Proposition 9
Proof. From Eq. 23 in the proof of Proposition 8 we have

|𝐵1 (x, 𝑞, 𝑡) | ≥
(
𝑛 − 1 + 𝑡

𝑡

)𝑞 (
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
which holds for 𝑡 > 𝑞 − 1, which is true by assumption. Now,(

𝑛 − 1 + 𝑡
𝑡

)𝑞
=

(
1 + 𝑛 − 1

𝑡

)𝑞

>

(
1 + 𝑛 − 1

𝑞𝑛

)𝑞
,

≥
(
1 + 0.9

𝑞

)𝑞
,

where we have used the fact that 𝑡 ≤ (𝑞 − 1)𝑛 < 𝑞𝑛 and 𝑛 ≥
10, which is most likely to be the case. From Proposition 16 in

Appendix A, (1 + 0.9/𝑞)𝑞 is an increasing function of 𝑞, with 𝑞 ≥ 2.

Therefore, since 𝑞 ≥ 2, we have for all 𝑞 ≥ 2:(
1 + 0.9

𝑞

)𝑞
≥

(
1 + 0.9

2

)
2

= 2.1025 > 2.

Thus,

|𝐵1 (x, 𝑞, 𝑡) | > 2

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
−

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
=

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
Now using the fact that

(𝑎
𝑏

)
≥

(
𝑎
𝑏

)𝑏
, we get:

|𝐵1 (x, 𝑞, 𝑡) | >
(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)
≥

(
𝑛 − 1 + 𝑡 − 𝑞

𝑡 − 𝑞

)𝑡−𝑞
=

(
1 + 𝑛 − 1

𝑡 − 𝑞

)𝑡−𝑞
□

B.9 Proof of Proposition 10
Proof. Take the 𝑖th element. If 𝑥𝑖 > 𝑦𝑖 , then the left hand side

is 𝑥𝑖 + 0 = 𝑥𝑖 . And the right hand side is 𝑦𝑖 + 𝑥𝑖 − 𝑦𝑖 = 𝑥𝑖 . On the

other hand if 𝑥𝑖 ≤ 𝑦𝑖 , then the left hand side is 𝑥𝑖 + 𝑦𝑖 − 𝑥𝑖 = 𝑦𝑖 .

And the right hand side is 𝑦𝑖 + 0 = 𝑦𝑖 .

For the second part, consider the 𝑖th summand in computing

the ℓ1-distance. If 𝑥𝑖 > 𝑦𝑖 then the 𝑖th summand of ∥x − y∥1 is

|𝑥𝑖 − 𝑦𝑖 | = 𝑥𝑖 − 𝑦𝑖 . The 𝑖th summands in ∥y .− x∥1 and ∥x .− y∥1
are 0 and 𝑥𝑖 − 𝑦𝑖 , respectively. Next assume 𝑥𝑖 ≤ 𝑦𝑖 . Then the 𝑖th

summand of ∥x − y∥1 is |𝑥𝑖 − 𝑦𝑖 | = 𝑦𝑖 − 𝑥𝑖 . The 𝑖th summands in

∥y .− x∥1 and ∥x .− y∥1 in this case are𝑦𝑖−𝑥𝑖 and 0, respectively. □

B.10 Proof of Proposition 11
Proof. First note that deg(𝜎x) ≤

∑𝑛
𝑖=1 𝑥𝑖 = ∥x∥1. Furthermore,

the coefficient of 𝑧 ∥x∥1 is given by [21, §8.6, p. 244]:

(−1) ∥x∥1
𝑛∏
𝑖=1

𝑎
𝑥𝑖
𝑖
.

Since 𝑎𝑖 are non-zero elements of F, it follows that the coefficient

of 𝑧 ∥x∥1 is non-zero. □

B.11 Proof of Theorem 1
Proof. From the definition of the 𝜎-polynomials in Eq. (8), to-

gether with Proposition 10, we have:

𝜎x (𝑧)𝜎y .−x (𝑧) =
(

𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑥𝑖
) (

𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑦𝑖
.−𝑥𝑖

)
=

𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑥𝑖+(𝑦𝑖
.−𝑥𝑖 )

=

𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑦𝑖+(𝑥𝑖
.−𝑦𝑖 )
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=

(
𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑦𝑖
) (

𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑥𝑖
.−𝑦𝑖

)
= 𝜎y (𝑧)𝜎x .−y (𝑧)

For the second part of the theorem, first note that 1 − 𝑎𝑖𝑧 does

not divide 1 − 𝑎 𝑗𝑧 for 𝑖 ≠ 𝑗 . To see this, divide 1 − 𝑎 𝑗𝑧 by 1 − 𝑎𝑖𝑧.
We get the remainder 1 − 𝑎−1

𝑖
𝑎 𝑗 . For this to be 0, we should have

𝑎𝑖 = 𝑎 𝑗 , which is not possible as all the 𝑎𝑖 ’s are distinct. Let 𝛾 be

any common factor of 𝜎y .−x. Since Eq. (8) is the factorization of

𝜎y .−x into irreducible monic polynomials, 𝛾 must have the factor

1−𝑎𝑖𝑧 for some 𝑖 ∈ [𝑛]. But for this to be in 𝜎y .−x wemust have that

𝑦𝑖
.− 𝑥 > 0, which implies that 𝑦𝑖 > 𝑥𝑖 . Therefore, 𝑥𝑖

.− 𝑦𝑖 = 0, and

hence the term 1 − 𝑎𝑖𝑧 is absent in the product form of 𝜎x .−y. Since
1−𝑎𝑖𝑧 does not divide any other term in 𝜎x .−y as established above,

we have that 𝛾 cannot be a common factor of 𝜎y .−x and 𝜎x .−y. □

B.12 Proof of Proposition 12
Proof. First note that 𝜎x (0) = 1, i.e., the constant term of 𝜎x is

1. Let𝑚 = deg(𝜎x). This polynomial can be written as:

𝜎x (𝑧) = 𝐴𝑚𝑧𝑚 + · · · +𝐴𝑡+1𝑧𝑡+1 + · · · +𝐴1𝑧 + 1,

where 𝐴𝑖 ∈ F. Now, all the divisors of 𝑧𝑡+1 are 𝑧𝑖 for 0 ≤ 𝑖 ≤ 𝑡 + 1.
Pick any 𝑧𝑖 with 𝑖 > 0. Then dividing 𝜎x by 𝑧

𝑖
leaves the remainder

𝐴𝑖−1𝑧𝑖−1 + · · · +𝐴1𝑧 + 1, where 𝐴0 = 1. This is non-zero regardless

of the 𝐴𝑖 ’s. Therefore, the gcd is 1. □

B.13 Proof of Theorem 4
Proof. Since the 𝜎-polynomial only needs to be stored modulo

𝑧𝑡+1, we can use the following algorithm:

1 Set 𝑠 ← 1

2 for 𝑖 = 1 to 𝑛 do
3 𝑟 ← (1 − 𝑎𝑖𝑧)𝑥𝑖 (mod 𝑧𝑡+1)
4 𝑠 ← 𝑠𝑟 (mod 𝑧𝑡+1)
5 return 𝑠

Step 3 multiplies 1 − 𝑎𝑖𝑧 with itself up to 𝑞 times. Thus, this can

be done in up to 𝑞 steps. Reduction modulo 𝑧𝑡+1 can be done via

the division algorithm. Since this involves a polynomial of degree

up to 𝑞 and another with degree 𝑡 + 1, this can be done in time

O(𝑞𝑡) [20, §17.1]. Step 4 involves multiplying two polynomials of

degrees less than or equal to 𝑡 . This can be done in O(𝑡2) time [20,

§17.1]. Finally, reduction modulo 𝑧𝑡+1, as above, can then be done

in O(𝑡2), as 𝑠𝑟 is of degree at most 2𝑡 . Thus, ℎ can be computed in

time O(𝑛(𝑞𝑡 + 𝑡2 + 𝑡2)) = O(𝑛𝑡2).
For the evalℎ function, the first step is to find the inverse of

𝜎x modulo 𝑧𝑡+1. This can be done using the EEA. The EEA takes

time O(𝑡2) [20, §17.3] as the polynomials are of degrees 𝑡 and

𝑡 + 1, respectively. This is followed by multiplication of degree 𝑡

polynomials 𝜎−1x and 𝜎y, and then by reduction modulo 𝑧𝑡+1, both
taking O(𝑡2) time as discussed above. Finally, running the EEA

algorithm on �̃�x,y and 𝑧
𝑡+1

for at most 𝑡+ < 𝑡 steps again takes time

O(𝑡2). Thus, evalℎ can be computed in O(𝑡2) overall time. □

B.14 Proof of Theorem 5
Proof. consider the polynomial in Eq. (8) for the vector x =

(𝑥1, . . . 𝑥𝑛):
𝑛∏
𝑖=1

(1 − 𝑎𝑖𝑧)𝑥𝑖 .

Let us relabel the𝑎𝑖 ’s so thatmultiple occurrences of𝑎𝑖 ’s are labelled

by different labels, as shown in Figure 6.

Here we have overloaded notation to also use a to denote the

tuple containing multiple occurrences of elements of the vector a.
Then the polynomial can be rewritten in terms of a′ as:

𝑚∏
𝑖=1

(1 − 𝑎′𝑖𝑧),

where𝑚 =
∑𝑛
𝑖=1 𝑥𝑖 . Then the 𝑗th coefficient of this polynomial is

given by the elementary symmetric polynomial [21, §8]:

𝑒 𝑗 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑒 𝑗 (𝑎′1, 𝑎
′
2
, . . . , 𝑎′𝑛)

= (−1) 𝑗
∑︁

1≤𝑖1<𝑖2<· · ·<𝑖 𝑗 ≤𝑛
𝑎′𝑖1𝑎

′
𝑖2
· · ·𝑎′𝑖 𝑗

Let us call the sum on the right 𝑆 ( 𝑗, 𝑛). We would like to get an

expression of 𝑆 ( 𝑗, 𝑛) in terms of the original vector a. Now 𝑆 ( 𝑗, 𝑛)
is the sum in the 𝑗th elementary symmetric polynomial in terms

of the elements of the tuple a, 𝑆 ( 𝑗, 𝑛 − 1) is the sum in the 𝑗th

elementary symmetric polynomial in terms of the elements of the

tuple a without 𝑎1, and so on. Under this notation 𝑆 (0, 𝑖) = 1 for all

integers 𝑖 ≥ 0, and 𝑆 (𝑖, 𝑖 − 1) = 0 for all integers 𝑖 ≥ 1.

Each summand in 𝑆 ( 𝑗, 𝑛) is a product of 𝑗 elements of the tuple

a. To calculate 𝑆 ( 𝑗, 𝑛), first consider 𝑎1. There are a total of 𝑥1
occurrences of 𝑎1 in the tuple a. Taken 𝑗 at a time, we therefore

have a total of

(𝑥1
𝑗

)
occurrences of 𝑎

𝑗

1
in 𝑆 ( 𝑗, 𝑛). Next we consider

𝑎
𝑗−1
1

with the last coefficient being any of the other coefficients.

We can have

( 𝑥1
𝑗−1

)
possible arrangements that yield 𝑎

𝑗−1
1

. For each

of these arrangements we need to determine the last coefficient in

the 𝑗-term product. We are left with 𝑛 − 1 coefficients: 𝑎2, . . . , 𝑎𝑛
and we are taking them one at a time. Thus, we are computing

the quantity 𝑆 (1, 𝑛 − 1). Likewise for 𝑎 𝑗−2 we need to consider

the number of possible arrangements that yield 𝑎 𝑗−2 which are( 𝑥1
𝑗−2

)
and the number of possible ways in which the last two spots

can be filled by the remaining 𝑛 − 1 elements, which is 𝑆 (2, 𝑛 − 1).
Continuing on this way, once we reach 𝑎0

1
, we see that all 𝑗 spots

in the product are taken by the rest of the elements in a. Thus, we
are computing 𝑆 ( 𝑗, 𝑛 − 1). Collecting these counts, we get

𝑆 ( 𝑗, 𝑛) =
(
𝑥1

𝑗

)
𝑎
𝑗

1
+

(
𝑥1

𝑗 − 1

)
𝑎
𝑗−1
1

𝑆 (1, 𝑛 − 1) +
(
𝑥1

𝑗 − 2

)
𝑎
𝑗−2
1

𝑆 (2, 𝑛 − 1)

+ · · · +
(
𝑥1

1

)
𝑎1𝑆 ( 𝑗 − 1, 𝑛 − 1) +

(
𝑥1

0

)
𝑎0
1
𝑆 ( 𝑗, 𝑛 − 1)

=

𝑗∑︁
𝑖=0

(
𝑥1

𝑖

)
𝑎𝑖
1
𝑆 (𝑖, 𝑛 − 1) .

From the above equation we see that:

𝑆 ( 𝑗, 𝑛 − 1) =
𝑗∑︁

𝑖=0

(
𝑥2

𝑖

)
𝑎𝑖
2
𝑆 (𝑖, 𝑛 − 2),

17



a

a′

=

=

(𝑎1,

↕

(𝑎′
1
,

· · ·

· · ·

𝑎1,

↕

𝑎′𝑥1 ,

𝑥1

𝑎2,

↕

𝑎′
𝑥1+1,

· · ·

· · ·

𝑎2,

↕

𝑎′𝑥1+𝑥2 ,

𝑥2

· · ·

· · ·

𝑎𝑛,

↕

𝑎′
𝑚−𝑥𝑛+1,

· · ·

· · ·

𝑎𝑛)

↕

𝑎′𝑚)

𝑥𝑛

Figure 6: Replacing the labels in the tuples a with unique labels.

and so on. Thus,

𝐴 𝑗 = 𝑒 𝑗 (𝑎1, . . . , 𝑎𝑛) = (−1) 𝑗𝑆 ( 𝑗, 𝑛).
□

C FURTHER EXPERIMENTAL RESULTS
Figure 7 shows the change in image quality as we continue to alter

the original image using the PGD attack, brightness and contrast.

We note that through brightness and contrast adjustments, at cer-

tain 𝜖 values even though the quality of the image is both visibly

and through the pixel change ratio metric, quite bad, the LPIPS is

rather small. For instance, at 𝜖 = 0.5, the LPIPS is only 0.1271 for

the brightness attack, even though the pixel change ration is 50.18%.

Thus a smaller value of LPIPS may suffice for the brightness and

contrast attacks.
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Figure 7: The impact of increasing alterations to the image through the PGD attack, brightness, and contrast, on the metrics
LPIPS, pixel change ratio and NAD.
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