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Ultralight (or fuzzy) dark matter (ULDM) is an alternative to cold dark matter. A key feature of
ULDM is the presence of solitonic cores at the centers of collapsed halos. These would potentially
increase the drag experienced by supermassive black hole (SMBH) binaries, changing their merger
dynamics and the resulting gravitational wave background. We perform detailed simulations of
high-mass SMBH binaries in the soliton of a massive halo. We find more rapid decay than previous
simulations and semi-analytic approximations. We confirm expectations that the drag depends
strongly on the ULDM particle mass, finding masses greater than 10−21 eV could potentially alleviate
the final parsec problem and that ULDM may even suppress gravitational wave production at lower
frequencies in the pulsar timing band.

I. INTRODUCTION

Ultralight dark matter (ULDM) is a dark matter can-
didate consisting of very light spin-0 particles [1–8], moti-
vated by the low mass scalars which arise in many string
theoretic scenarios [9]. ULDM masses between 10−23 and
10−20 eV may resolve some apparent discrepancies be-
tween the predictions of cold dark matter [CDM] and ob-
servations on sub-galactic scalesmm thanks to the wave-
like nature of ULDM, which smooths small-scale struc-
ture relative to CDM. By contrast, on scales much larger
than the de Broglie wavelength of the underlying par-
ticle ULDM behaves identically to CDM, making it an
attractive dark matter candidate.

In addition to their differing substructures, ULDM ha-
los have a central soliton, which may be particularly
important to the dynamics of supermassive black hole
[SMBH] binaries. Following a merger of their parent
galaxies, dynamical friction causes the progenitor SMBH
to migrate toward the center of the combined halo. Pre-
cise modeling shows that dynamical drag from gas [10]
can reduce the separation of the binary SMBH to a few
parsecs in ∼ 108yr [11]. This is further reduced by the
ejection of stars but this rapidly depletes the ‘loss cone’,
leading to the so-called ‘final parsec problem’ where it
apparently takes more than a Hubble time to reach sep-
arations from which gravitational radiation can drive the
actual merger [12].

In simple models ULDM interacts purely gravitation-
ally and can be treated non-relativistically. A Newtonian
approach remains valid here because the dynamical fric-
tion experienced by SMBH is driven by the bulk motion
of material rather than interactions near the event hori-
zon and the ULDM is thus governed by the Schrödinger-
Poisson equations. It is well-established that progeni-
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tor ULDM halos merge to form a single halo comprising
a central solitonic core enveloped by an outer Navarro-
Frenk-White (NFW) profile [13–15]. Following the halo
merger, the accompanying SMBH are expected to form a
gravitationally bound binary within the resulting soliton.
Because the formation timescale for the solitonic core is
relatively short [16] we consider a bound pair of SMBH
moving inside a single soliton. While our focus here is
on late-stage evolution of the SMBH within the soliton,
previous work has indicated that stochastic density fluc-
tuations in the outer NFW halo may disrupt the migra-
tion of the SMBH toward the central soliton [17, 18].
Our initial conditions therefore implicitly assume that
this disruption is overcome.

Previous semi-analytic treatments extend Chan-
dresekhar’s approach to dynamical friction to ULDM
[19, 20]. Comparisons of these semi-analytic predictions
to numerical simulations have also been made in specific
regimes [21, 22]. However, it is clear that semi-analytic
models cannot fully account for the range of dynamic ef-
fects exhibited by ULDM in numerical simulations. An
excited soliton may transfer kinetic energy to perturbers
within it [15, 23], producing complex effects such as the
‘stone skipping’ behavior of a single SMBH in a ULDM
soliton [22]. Consequently, this paper focuses on highly-
resolved numerical simulations that allow us to charac-
terise both the drag and re-excitement experienced by
SMBH binaries in ULDM solitons.

We use AxioNyx [24], an adaptive mesh refinement
[AMR] enabled Schrödinger-Poisson solver, which we ex-
tend to include black holes implemented as Plummer
spheres. We initialise our simulations in an idealiced
symmetric configuration, with two diametrically opposed
SMBHs occupying circular orbits in an undisturbed soli-
ton. In contrast to the stone-skipping exhibited by a
single black hole [22], a symmetric binary undergoes an
approximately power law decay in orbital radius, with a
rapid, damped periodic modulation.

We perform simulations for a range of SMBH masses,
and obtain numerical fits to the orbital decay curves. We
compare these results to semi-analytic models [20, 25, 26]
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and previous simulations [25] and find that the decay can
be faster than previous analyses suggest. In particular,
as the SMBH orbital radius decreases the soliton profile
is ‘pinched’ potentially increasing the central density by
up to an order of magnitude and boosting the dynamical
friction (see also Ref [27]). In addition, the decaying
separation is overlaid by periodic modulation driven by
‘breathing’ modes in the soliton excited by the black hole
motion.

For large SMBH moving in the soliton of a massive
halo with a ULDM particle mass at the higher end of
its mass-range we see significant orbital decay even as
the black hole separation falls below 1pc, suggesting that
dynamical friction in a ULDM soliton could contribute to
the solution of the ‘final parsec problem’. In addition it
seems possible that ULDM could suppress gravitational
wave emission at the low-frequency end of the pulsar tim-
ing band by imposing additional drag on binary SMBH.

The structure of this paper is as follows: Section II
introduces the Schrödinger-Poisson equations and de-
scribes their solution via AxioNyx to model SMBH-
ULDM interactions. Section III outlines the fiducial
physical parameters for our simulations as well as choices
of numerical parameters required for convergent results.
Section IV presents the results of our simulations. Both
semi-analytic and purely empirical fits to the simulations
are described in Section V, and we discuss the implica-
tions of these results for the final parsec problem in Sec-
tion VI. We conclude in Section VII.

II. BACKGROUND

We work in a non-relativistic regime and consider the
evolution of a pair of black holes in an initially circular
orbit around the center of a soliton. ULDM is governed
by the Schrödinger-Poisson equations,

iℏψ̇ = − ℏ2

2m∇2ψ +m(ΦU +ΦBH,1 +ΦBH,2)ψ , (1)

∇2ΦU = 4πGm|ψ|2, (2)

where ψ is the ULDM wavefunction, m is the ULDM
particle mass, ΦU is the potential sourced by the ULDM
and ΦBH,1 and ΦBH,2 are the contributions to the grav-
itational potential from the black holes. Each black
hole is subject to a gravitational potential with contri-
butions from the ULDM field and the other black hole,
and evolves via

ẍBH,1/2 = −∇ΦU(xBH,1/2)−∇ΦBH,2/1(xBH,1/2). (3)

In our simulations, the ULDM background is initialiced
as an isolated soliton. Simulations typically begin with
the black holes begin inside the soliton core radius mark-
ing the soliton-NFW transition, around 3-4 core radii
from the center [14, 28]. The absence of the NFW halo
in our simulations suppresses stochastic interactions be-
tween the soliton and the halo ‘granules’ that can induce
a random walk in the soliton position [29, 30].

The initial soliton profile is given by the spheri-
cally symmetric ground state solution to the governing
Schrödinger-Poisson equations in the absence of the black
holes. This profile cannot be obtained analytically but is
well-approximated by [31]

ρ(r) = 1.9

(
m

10−23eV

)−2
(

rc
kpc

)−4

[
1 + 0.091

(
r
rc

)2
]8 M⊙pc

−3, (4)

wherem is the mass of the ULDM particle, r is the radial
distance from the center, and rc is the core radius, at
which the density drops to half its peak value. We take
this as the initial soliton profile in our simulations.
The dynamical friction experienced by the black hole

due to ULDM was estimated in Ref. [20]

F =
4πG2M2ρ

v2
C, (5)

where M is the mass of the black hole and v its velocity.
C is a coefficient of friction determined by the integral

C = Cin(2kr̃) +
sin(2kr̃)

2kr̃
− 1 + higher order terms, (6)

where k = mv/ℏ, and r̃ is a cutoff of integration that
can be taken to represent the length of the wake caused
by the black hole. This is nominally divergent unless r̃
is truncated at a finite distance, generally taken to be
similar to be the orbital radius [22]. Following Koo et
al., we take this cutoff for a circular orbit of radius r
to be r̃ = αr, where α is an undetermined parameter
somewhat less than unity [25]. The resulting torque on
a SMBH is

L̇ = −Fr = −4πG2M2ρ

v2
Cr , (7)

where L is the angular momentum.
Assuming an instantaneously circular orbit, for an

equal mass binary

v =

√
GMenc

r
+
GM

4r
(8)

where Menc is the ULDM mass enclosed by the orbit.
An expression for ṙ in terms of L̇ can be derived using
L =Mvr,

L̇ = ṙ
dL

dr
= ṙ

M
√
G

2
×√

Menc +
M
4

r
+
dMenc

dr

√
r

Menc +
M
4

 (9)

= ṙ
M

2

(
v +

4πr2ρG

v

)
, (10)
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where we have assumed spherical symmetry to find
dMenc/dr. This can be combined with equation (7) to
give

ṙ = − 8πG2Mρ

v3 + 4πr2ρGv
Cr, (11)

a useful quantity for considering scaling relations.

III. NUMERICAL METHODS

We use a modified version of AxioNyx to simulate
the black hole-soliton system. AxioNyx is an AMR-
enabled finite difference Schrödinger-Poisson solver, pro-
viding high spatial and temporal resolution in the vicin-
ity of the black holes, while dedicating less computational
resource to regions which have a negligible effect on the
evolution of the SMBH binary. We refine according to
local ULDM density, and ensure that the black holes are
inside the most refined region throughout the duration
of the simulation.

The black holes are implemented as Plummer spheres,
and their advancement proceeds according to Equation
(3) via a fourth-order Runge-Kutta scheme (RK4). The
value of ΦU is held fixed across the intermediate RK4
steps, and updated once at the end of each complete
timestep. This quasi-static approximation of the ULDM
potential is valid over the duration of each timestep since
changes in the integrated ULDM potential occur on a
longer timescale than those in the local density.

Interpolation over nearby grid points is used to find
∇ΦU at the positions of the black holes. This interpola-
tion is necessary since the black hole positions are con-
tinuous variables, while ΦU is only defined at the center
of each grid cell. We determine the gradient of ΦU us-
ing the second-order central difference coefficients at the
eight cells surrounding the black hole, and then perform a
trilinear interpolation of these values to retrieve the gra-
dient at the location of each black hole. The Plummer
potential due to the black hole is

ΦBH = − GM√
r2 + a2

, (12)

where a is the Plummer radius, M is the mass of the
black hole, and r is the distance from the center of the
black hole. The gradient of the Plummer potential is
thus

−∇ΦBH = − GMr

(r2 + a2)3/2
. (13)

Equation (1) is solved by separating into real and imag-
inary parts to retrieve

Re(ψ̇) = − ℏ
2m

∇2Im(ψ) +
mΦ

ℏ
Im(ψ) (14)

Im(ψ̇) =
ℏ
2m

∇2Re(ψ)− mΦ

ℏ
Re(ψ), (15)

FIG. 1. The initial density distribution and gridding in the
central region of our simulation. The black holes are repre-
sented by crosses.

where Φ is the sum of the ULDM and black hole po-
tentials. The Laplacian is approximated using a stan-
dard 27-point stencil. The ULDM field is advanced using
RK4 methods, again assuming a quasi-static approxima-
tion for the value of ΦU across each timestep, but us-
ing the appropriate intermediate values of the black hole
positions previously computed in their separate RK4 ad-
vancement. Equation (2) is updated using a red-black
Gauss-Seidel method, as described in Ref. [32].

One subtlety is that when carrying out finite differenc-
ing operations for cells adjacent to a refinement boundary
we need a suitable interpolation from coarse to fine grids.
TheAMReX [33] framework underlyingAxioNyx offers
a number of options and we use the conservative quar-
tic interpolation on cell averaged data. This offered the
best energy conservation and the closest match to a high
resolution, unrefined soliton density profile in testing.

Our fiducial system consists of a soliton of mass
109M⊙, with a ULDM particle mass of 10−21eV. The
core radius is ∼ 2.2pc and the central density is ∼
8×106M⊙pc

−3. The canonical core-halo relation [15, 31]
implies an overall halo mass of 3.8×1014M⊙. Unless oth-
erwise noted, each SMBH has a mass of 108M⊙.

Our analysis thus focuses on representative examples
rather than an exhaustive scan of the relevant parame-
ter space. However, this choice matches Refs. [25, 34]
and corresponds to the estimated parameters of the bi-
nary system UGC4211 [35], facilitating comparisons with
other work. The SMBH are initially separated by 3pc
along the x axis in a box of width 100 pc; AxioNyx
has periodic boundary conditions and a large box en-
sures that the soliton does not interact with its adjacent
“virtual” counterparts. This initial separation is much
smaller than that inferred for the astrophysical system
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FIG. 2. Resolution dependence is illustrated. The label
‘128, 2’ (for example) indicates a 1283 base grid and two levels
of refinement. Our default parameters are ‘128, 3’.

UGC4211, reflecting our interest in the later stages of
binary evolution. The black holes are taken to be in an
initially circular orbit. Accounting for the contribution
of the ULDM interior to the SMBH for our fiducial pa-
rameters the initial speeds are ±584.14kms−1 in the ±ŷ
directions. The default Plummer radius is a = 0.001pc.
Typical runs use a default of 3 levels of refinement with

a base grid of 1283 giving a resolution of 10243 in the
vicinity of the black holes. The initial refinement bound-
aries are at 12.5pc, 6.25pc, and 3.125pc from the center
of the grid in each dimension but the boundaries change
as the density of the soliton evolves - a requirement for
numerical stability. The default timestep in AxioNyx is
determined by the Courant-Friedrichs-Lewy (CFL) con-
dition, as described in [32]. The value of σCFL,hyp is 0.8
in our simulations. The initial configuration is illustrated
in Figure 1.

We validate our default parameters by testing for sen-
sitivity to the spatial resolution, timestep, Plummer ra-
dius, box size, and the width of each refinement level.1

We vary each of these parameters separately while hold-
ing the others fixed. Higher spatial resolution improves
accuracy, but must be balanced against computational
cost. Figure 2 shows that results obtained using our de-
fault gridding match those obtained using (a) a fourth
level of refinement or (b) three levels of refinement on a
2563 base grid, both of which result in maximum resolu-
tion of 20483. A 1283 base grid with only two levels of
refinement is also largely convergent with the higher res-
olution runs. However, the lowest resolution run with a
single refinement level deviates noticeably from the other
schemes. We are therefore satisfied that our default spa-
tial resolution settings are sufficient.

1 These tests use 5 × 107M⊙ black holes; larger SMBH require
better resolution for energy conservation, as discussed below.

FIG. 3. Dependence on the size of the box.

FIG. 4. Dependence on the initial size of the maximally re-
solved (10243) refinement region, indicated here by the dis-
tance of the refinement boundary from the center of the grid.

We carried out a limited run (due to the computational
cost) with a timestep parameter σCFL,hyp = 0.12 (or 0.15
times the default value) and saw no improvement. Simi-
larly, we set the Plummer radius to both twice and half its
default value and saw no notable differences. We tested
box sizes corresponding to half and twice the default size
(at constant physical resolution) to verify that the default
box size is sufficiently large to suppress the spurious ef-
fects of periodic boundary conditions. Figure 3 shows
good convergence between the 100pc and 200pc boxes
but the 50pc box diverges from the other two. We there-
fore find the 100pc default sufficient for our simulations.
By design, the SMBH binary resides within the high-

est refinement level throughout the simulation and we
explore the sensitivity of the SMBH binary evolution to
the width of this region in Figure 4. If the boundary is
very close to the initial positions of the black holes (1.7pc
from the center of the grid) we see a small disparity in the
evolution of the SMBH binary separation but a bound-
ary 3.125pc from the center of the box is sufficient for
convergence. We adopt this value throughout our sim-
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FIG. 5. Energy conservation for different mass black holes.
Energy conservation worsens with increasing mass, but is still
within a range of 1.5% over the range of our simulations, while
it is significantly worse in the case of the 108M⊙ black hole.

ulations and place successive boundaries at 6.25pc and
12.5pc. We re-grid periodically to keep the density at
the boundaries roughly fixed, as this avoids the buildup
of numerical instabilities.

The default parameters are suitable for simulations in
which the black hole masses are less than ∼ 5× 107M⊙,
or 5% of the soliton mass; larger black holes can lead to
discrepancies in mass and energy conservation. This is
illustrated in Figure 5, where the 1×108M⊙ run exhibits
notably worse energy conservation than the lower mass
runs. We attribute this to the distortion of the soliton
induced by the larger black hole, which causes a greater
flow of mass across refinement boundaries, leading to ac-
cumulation of numerical errors in integrated mass and
energy density. To ameliorate this either the base reso-
lution or the size of the refinement regions must be in-
creased. This is illustrated in Figure 6 for black holes
of mass 108M⊙; there is a marked improvement in en-
ergy conservation when the base resolution is increased to
2563 and two refinement levels are included rather than
three (the resolution of the maximally refined region is
unchanged at 10243). In this scheme the outermost re-
finement boundary is shifted to 25pc from the center of
the box, while the innermost boundary is fixed at 3.125pc
from the center. We refer to this combination of settings
‘higher resolution’.

Further increases to grid resolution, either by increas-
ing the size of refined regions or base resolution, nat-
urally lead to further improvements in energy conserva-
tion. However, our main focus in this work is ascertaining
the decrease in the average binary separation over time.
We find that while the high-frequency periodic modu-
lation in the binary separation is sensitive to resolution
settings, the mean behavior is unchanged. This is illus-
trated the lower panel of Figure 6. To ensure that our
results are robust, we use the ‘higher resolution’ scheme
(2563 base resolution with 2 refinement levels) for the
108M⊙ binary specifically. This suffices for the present

FIG. 6. Global energy conservation (top) and separation (bot-
tom) for the 108M⊙ binary. Blue curve: 1283 base grid with
refinement boundaries at (12.5, 6.25, 3.125)pc. Orange curve:
2563 base grid with refinement boundaries at (25, 3.125)pc.

work but further investigation is required to determine
whether the high frequency modulation is the separation
is a numerical artifact.

IV. RESULTS

Figure 7 shows the binary separation for the fiducial
system over a period of 0.8 Myr. The rate of decay de-
creases with time but there is a consistent decrease in the
orbital separation, bringing the separation to well below
one parsec. The mean separation is modulated by os-
cillations induced by a ‘breathing mode’ excited in the
soliton. This is illustrated in Figure 8, where we see that
the mass contained within the innermost parsec varies
periodically. As the soliton oscillates, the mass interior
to the black holes changes, rendering the velocities of the
black holes alternately too high or too low to undertake
a circular orbit.

While the oscillation due to the soliton breathing be-
comes damped as the simulation progresses, a secondary,
higher frequency oscillation also appears in the later parts
of the simulation. As discussed above this behavior may



6

FIG. 7. The orbital decay of the SMBH binary using our
fiducial simulation parameters.

FIG. 8. The separation of the black holes plotted with the
mass within 1pc of the soliton center. The frequency of the
oscillations in SMBH binary separation matches that of the
soliton breathing. (The full box is infrequently written to disk
so the breathing plot is interpolated.)

be in part numerical; the lower panel of Figure 6 shows
that this oscillation is less noticeable in simulations with
better energy conservation. However because this oscil-
lation is subdominant and does not appear to affect the
mean separation we do not attempt to fully remove it.

A further effect not accounted for by simple semi-
analytic models is the reshaping of the soliton as the bi-
nary approaches the center – the ULDM density profile
becomes increasingly ‘pinched’ by the additional gravi-
tational fields of the SMBH. At late times in our fidu-
cial run, the soliton oscillates around a central density of
∼ 4× 107M⊙pc

−3. This is five times higher than the ini-
tial central density, while the half-maximum radius falls
to ∼ 1.1pc, half the initial value. This is shown in Figure
9 and will increase the dynamical friction.

For comparison, Figure 10 compares the evolving or-
bital radius of a single 108M⊙ black hole to our fidu-

FIG. 9. The ’pinching’ of the ULDM profile during the fidu-
cial run.

FIG. 10. The separation between the SMBH and the center of
mass for the single and binary scenarios. The ‘stone skipping’
[22] is clearly visible in the former but not in the latter.

cial binary simulation.2 The single black hole undergoes
‘stone skipping’ [22], stalling the migration of the black
hole to the center of the soliton. This is not seen in binary
systems, for which oscillations are subdominant.3

In simple models of dynamical friction [20] the drag
is proportional to M2, while the initial orbital energy
scales with M and equation (11) indeed scales directly
with M whereas the velocity changes are smaller, so we
expect larger black holes to decay more quickly. This
is confirmed by Figure 11, which shows results for black
holes with masses from 2×107M⊙ to 1×108M⊙ and the

2 The soliton center is at the origin so the orbital radius is some-
what smaller. We give the soliton an initial reflex velocity to
keep the overall system stationary.

3 The difference presumably arises from the more symmetric bi-
nary system coupling to a subset of the modes in the soliton
that are excited by a single black hole.
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FIG. 11. Evolution of the trajectories for different black hole
masses.

ULDM particle and soliton masses with their fiducial val-
ues 4 This implies that dynamical friction from ULDM is
only relevant to the final parsec problem for very massive
black holes, as further discussed in Section VI.

Increasing the soliton mass decreases its size, as the
core radius scales as rc ∝ M−1. This boosts both the
numerator and denominator of equation (11), but the in-
creased density is the dominant effect. We simulate soli-
ton masses of 5 × 108M⊙, 10

9M⊙ and 2 × 109M⊙, with
5×107M⊙ black holes and fiducial ULDM particle mass.
The results are shown in in Figure 12 and confirm that
the decay rate increases with the soliton mass. In ad-
dition, the breathing effect is significantly suppressed at
larger soliton masses, presumably because radial modes
are harder to excite in a more massive soliton.

Since we include only the soliton our simulations be-
come unrealistic beyond the NFW transition radius,
which is 3 or 4 times larger than rc [13–15]. Interest-
ingly, Figure 13 shows that a black hole starting close to
the transition radius of a 2 × 109M⊙ soliton still decays
more rapidly that in a 109M⊙ even though the initial lo-
cal ULDM density is slightly lower for the more massive
soliton. That said, the density of the more massive soli-
ton rises more quickly with radius, so the drag will also
increase more rapidly, separating the two trajectories.

For a fixed soliton mass, the core radius scales as rc ∝
m−2, wherem is the ULDM particle mass. Consequently,
the central density scales asm6. Via equation (11) we see
that the dynamical friction is proportional to the density,
so we expect a much more rapid decay at larger values
of m. This will be offset to some extent by the velocity
terms in the denominator but since v ∼ 1/

√
r for a point

mass these will not rise as rapidly as the density term in
the numerator. Figure 14 compares the evolution of black

4 Note that the core-halo relation (the relative mass of the soliton
to the overall halo) is itself a function of the ULDM particle mass
[36–38] so this change also implicitly varies the halo mass.

FIG. 12. Evolution of the trajectories for half and doubled
soliton masses.

FIG. 13. Orbital decay of the black holes from a greater
starting distance

holes of mass 5× 107M⊙ within a soliton of mass 109M⊙
for different values of m confirming our expectations for
decay rate, and we also see that the breathing mode is
less pronounced at larger m.
Taken together these results suggest that it is possible

for ULDM to significantly modify the decay of an SMBH
binary. That said, any such impact will be most obvious
in large solitons and with ULDM particle masses at the
upper end of their overall range.

V. SEMI-ANALYTIC FITS

Koo et al. [25] estimate the orbital decay due to the
dynamical friction experienced by a binary SMBH inside
a soliton. Starting from equation (5) they find an in-
tegrable form for ṙ after applying approximations that
hold for small separations. As Menc decreases, Equa-
tion (8) reduces to its second term and after the soliton
has stabilized (e.g. as shown in Figure 9), the density
is roughly constant. Additionally, at small values of r,
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FIG. 14. Evolution of the trajectories for half and doubled
ULDM particle masses and 5× 107M⊙ black holes. The 2×
10−21eV mass simulation is computationally expensive and it
is halted after the decay rate has become obvious.

kr̃ ≪ 1 so the integral for the coefficient of friction may
be approximated as C ≈ (kr̃)2/3 [20, 22]. Equation (7)
then becomes

L̇ = −Fr = −4πG2M2m2α2r3ρ0
3ℏ2

, (16)

where ρ0 denotes the central density.
Recalling that L = Mvr the torque provides the rate

of change in orbital radius,

L̇ =
M3/2

√
G

4
√
r

ṙ. (17)

Finally, we can convert this into the rate of change of
binary separation, D, since D = 2r,

Ḋ = −KD7/2, (18)

where

K =
(2G)3/2M1/2(mα)2πρ0

3ℏ2
. (19)

This integrates to give

D =

(
5K

2
(t− t0) +D0

−5/2

)−2/5

, (20)

where t0 and r0 are our initial time and radius.
This matches equation (11) under the condition v3 ≫
4πr2ρGv, which is true at small r.
In deriving Equation (20), we assumeMenc ≪M . This

is not well-satisfied at the beginning of the simulation but
improves quickly as the SMBH sink towards the center of
the soliton. Consequently, we fit our fiducial simulation
from 0.162Myr, or 50,000 timesteps into the simulation.
At this point, D < 1pc and Menc = 1.37 × 107M⊙. Ac-
counting for this additional enclosed mass would increase
our initial velocity estimate by ∼ 25%.

FIG. 15. A fit of equation (20) to our fiducial run (top) and
the 100kyr interval from the moment where the separation is
∼ 0.9pc (bottom).

A fit of Equation (20) to our numerical results is shown
in Figure 15 and we see that the semi-analytic formula
overestimates the orbital decay at early times and un-
derestimates at later times. The free parameter in the fit
is

K = 8.22

(
ρ0

3.84× 107M⊙pc−3

)(
M

108M⊙

)1/2

( m

10−21eV

)2

pc−5/2Myr−1, (21)

corresponding to α = 0.3027. This in turn implies an
initial value of kr̃ = 0.04, consistent with kr̃ ≪ 1. Koo
et al. [25] set ρ0 with reference to the canonical soliton
profile while we use the simulated central density at the
beginning of our fit, after the pinching has stabilized.
This does not affect the fit to K but will modify the
computed value of α.
The bottom panel of Figure 15 shows only the portion

of the evolution analysed by Koo et al. [25]. Since our
simulation is already underway when it reaches this ra-
dius we do not expect an exact match but the qualitative
features agree well. The numerical fit appears to be per-
fectly acceptable in this limited region, highlighting the
value of the longer runs.



9

FIG. 16. Comparisons of the torque on the black holes in the
semi-analytic model, 16, to our smoothed simulations, using
a running average of 2000 steps (top), 10000 steps (middle),
and 25000 steps (bottom).

In reality, the actual black hole separation does not
decrease monotonically, so the instantaneous torque on
the SMBH must differ significantly from Equation 16.
Figure 16 plots the inferred torque at different levels of
smoothing and we see a similar situation to our earlier
analysis [23] of black holes moving radially inside a soli-

ton – the average motion inferred from the dynamical
friction is reasonably accurate, but instantaneous predic-
tions differ dramatically from the simulations. The esti-
mated torque is consistently below the calculated value,
but this is offset by the underestimation of initial velocity
in the semi-analytic model.
Annulli, Cardoso and Vicente [26] estimate the drag on

a binary SMBH by looking directly at its coupling to the
soliton, an arguably more physical strategy than using an
empirical approximation to the dynamical friction. They
find that the drag on an equal mass binary is

Ṫ = −192π(2π)5/3(2M)5/3

20T 5/3
− 3.1M4

sM(2M)2/3T 17/6

103m−17/2
,

(22)
where Ms is the mass of the soliton, T is the period,
and G, c, and ℏ are equal to unity. The first term is
associated with gravitational wave emission, which is not
relevant at the range of separations in our simulations,
so after dropping this, restoring factors of G and ℏ and
again making use of Kepler’s third law we find

Ḋ = −κD15/4 (23)

where

κ =
2

3

3.1G17/3M4
sM(2M)2/3

103( m
ℏc2 )

−17/2

(
4π2

G(2M)

)11/12

. (24)

This integrates in a similar fashion to Equation (20),

D =

(
11

4
κ(t− t0) +D

−11/4
0

)−4/11

. (25)

The exponent 4/11 is very close to the 2/5 derived by
Koo et al., which provided a tolerable but not per-
fect fit. Unlike Equation 20, however, this expression
has no free parameters. In particular, for our sys-
tem κ = 100.8pc−11/4Myr−1 but a numerical fit (start-
ing 100000 timesteps into the simulation) gives κ =
12.16pc−11/4Myr−1, so the observed orbital decay is
slower than this expression predicts. Nevertheless, there
is no arbitrary constant in this result and Annulli et al.
make it clear that their calculation is approximate, so this
formalism and that of Koo et al. are arguably equally ef-
fective.
Motivated by equations (20) and (25), we consider a

generic empirical fit of the form

D = A(1 +Bt)−C , (26)

corresponding to a rate of orbital decay

Ḋ = −A−1/CBCD(1+C)/C , (27)

We fit coefficients A,B, and C to our simulations, illus-
trating the results in Figure 17 with the corresponding
numerical coefficients shown in Table I. There is no clear
trend in the exponent C and the typical value of ∼ 0.7
differs substantially from the semi-analytic models, which
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FIG. 17. Fits of the empirical relationship (equation (26)) to
SMBH binaries with each black hole 2, 5 and 10% of the mass
of the soliton.

Ratio A (pc) B (Myr−1) C

2% 2.94 3.12 0.662
5% 2.78 7.44 0.777

10% 2.72 22.7 0.733

TABLE I. Fits to equation (26) for binary SMBH systems.

are much closer to each other than they are to the numer-
ical results. The B parameter increases with the SMBH
mass, reflecting the more rapid decay of larger systems.
Conversely, A is fixed by the chosen initial radius, since
D → A as t → 0 and in this limit the other parameters
are largely irrelevant.

By default, equation (11) is integrated with the unper-
turbed soliton profile. Substituting the time-averaged
pinched profile improves the match to the full simula-
tions; results for 5 × 107M⊙ black holes are shown in
Figure 18. In this case the value of C derived from the
semi-analytic treatment (C = 0.807) is close to that ob-
tained from the numerical simulation.

The difference appears to stem from the fact that the
“pinched” profile is still relatively steep when r ∼ 0.5pc,
causing the drag to decrease more slowly than otherwise
expected as r decreases, boosting the effective value of
C. However, when r is very small and ρ(r) is close to its
maximum the effective value of C could return to 0.4 but
our simulations do not fully explore this regime. That
said, we do see some evidence for a “turnover” if we fit
only to the very last stages of the fiducial run and this
remains a topic for future work.

VI. THE FINAL PARSEC AND NANOHERTZ
GRAVITATIONAL WAVES

The separation of an equal-mass binary system in a
circular orbit decays via gravitational wave emission at a

FIG. 18. A numerical integration of the semi-analytic model
(equation 11) with the “pinched” ρ(r) is plotted alongside
results from AxioNyx with 5 × 107M⊙ black holes, starting
100000 timesteps into the simulation to reduce initial condi-
tions dependence.

rate [39]

ḊGW = −128

5

G3M3

D3
, (28)

where D = (2GM)1/3/(πfr)
2/3, fr is the source-frame

gravitational wave frequency and we assumeMenc ≪M .
A binary with a starting separation of D0 will thus merge
after time5

τGW(D0) =
5

512

D0
4

G3M3
, (29)

due to gravitational wave emission alone. Orbital decay
is thus driven first by dynamical friction and later by
gravitational wave emission. If ULDM dynamical fric-
tion can reduce the separation from a few parsecs to the
point where gravitational wave emission alone will result
in coalescence within 1010yr we can assume that a merger
is guaranteed within the current lifetime of the universe.
For 108M⊙ black holes, τGW < 1010yr if D0 ≤ 0.076pc.
Using the parameters from Table I we calculate that

dynamical friction can drive our fiducial binary from a
separation of 1pc to 0.076pc in the relatively short time
of 5.6Myr. For 2 × 107M⊙ black holes τGW < 1010yr
if D0 ≤ 0.023pc and our results suggest that dynamical
friction will achieve this separation in 477Myr, easily less
than a Hubble time. Consequently, at least for relatively
large black holes in ULDM solitons, dynamical friction
does appear to ameliorate the final parsec problem.

5 In this section we consider only equal-mass binaries, and thus
make use of the black hole mass M rather than the chirp mass
M, noting that the expressions can be re-framed in terms of the
chirp mass using M = 21/5M.
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FIG. 19. The separation decay induced by ULDM drag and
gravitational waves for our fiducial system.

The natural question that follows is whether this drag
will still be significant for SMBH binaries in the pulsar
timing band. The relationship between separation and
frequency is

D =

(
2GM

π2f2gw

) 1
3

, (30)

where we have assumed that the soliton mass enclosed is
negligible at these separations. The gravitational wave
frequency, fgw, is twice the orbital frequency.

As discussed at the end of Section V in this regime
equation (20) may yield a better estimate of the drag
than (27); we set C = 0.4 and use equation (18) to
characterize the drag in what follows. Comparing this
contribution to equation (28) we can quantify the two

contributions to Ḋ; results for the fiducial parameters
with a fit starting at 130000 steps and a corresponding
α = 0.341 are shown in Figure 19. Dynamical friction
dominates in the lowest parts of the PTA band, reducing
the gravitational wave flux from this system at very low
frequencies.

Dynamical friction rises rapidly with ULDM particle
mass when the other parameters are held fixed. Figure 20
shows estimates of the fractional contribution to orbital
decay from gravitational wave emission for 5 × 107M⊙
black holes and a range of ULDM masses. The two solid
lines correspond to extrapolations of simulations shown
in Figure 14. The dashed lines for higher ULDM masses
are estimates generated by assuming the solitons have
not undergone any pinching, taking α = 0.208 from a fit
to the simulation with a 2×10−21 eV ULDM mass6, and
calculating K from equation (19). These results suggest
that ULDM solitons could significantly depress gravita-
tional emission in the pulsar timing band and would do
so more noticeably at lower frequencies.

6 This simulation ends with the v3 and 4πr2ρGv terms in equa-
tion (11) of similar order so this value of α necessarily represents
an extrapolation.

FIG. 20. Ratio of the decay due to gravitational wave emis-
sion to the sum of the decay modes. The two solid lines
extrapolate fits to simulations while the dashed lines are es-
timated from equation (19). The PTA frequency range is
indicated by the shaded region.

Intriguingly, this effect could improve the match to
the observed spectrum, which lacks power at the lower
end of the band relative to naive expectations [40, 41].
That said, we also note that the core-halo relation it-
self depends on particle mass, with the soliton fraction
decreasing with m. The soliton mass is held constant
throughout, so the estimates with larger m implicit ap-
ply to larger halo - although we also expect larger expect
larger black holes in these systems, and the SMBH is also
held fixed in this analysis. This complements an analy-
sis of PTA timing residuals by Tomaselli [42], which also
finds a possible suppression due to ULDM drag at lower
frequencies.

VII. CONCLUSION AND DISCUSSION

We have performed high resolution, non-relativistic
simulations of binary SMBH moving in a ULDM soli-
ton with the adaptive mesh refinement code AxioNyx,
allowing these simulations to run over longer durations
and at higher resolutions than in previous analyses. We
examined the sensitivity to the black hole mass, the soli-
ton mass and the ULDM particle mass. We have focused
on solitons that would be typical of galactic halos host-
ing SMBH significantly larger than their Milky Way ana-
logues. However, these systems are likely to dominate the
stochastic background generated by SMBH mergers and
are thus the most physically relevant.
Our results give insight into semi-analytic approxima-

tions to the dynamical friction experienced by black holes
in ULDM [20]. As was the case with radial passage
through the soliton the detailed forces experienced by
the black holes in our simulations are very different from
those predicted by a semi-analytic approximation [23],
but the time-averaged force may still be well-modeled.
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That said, semi-analytic approximations need to be used
with care as the presence of an SMBH at the center of
a soliton changes its profile, raising the central density
and causing ρ(r) to vary more rapidly with r. As a con-
sequence, we find that the approach to the center occurs
more rapidly than suggested by both simple estimates
and previous numerical studies [25]. This highlights the
importance of realistic simulations; these are facilitated
by the use of AMR-based codes [24] whose efficiency rel-
ative to fixed-grid codes (e.g. [43]) justifies their greater
complexity. Further development to the semi-analytic
model may improve this mismatch; in particular, imple-
menting a soliton profile that accounts for the potential
from the binary is a possible avenue for improvement.

A single black hole orbiting inside the soliton can un-
dergo “stone-skipping”, with significant re-excitement of
its orbit after an initial period of decay [22]. By contrast,
in binary systems the separation decreases steadily, with
an overlaid modulation driven by a breathing mode in
the soliton which is itself excited by the moving black
holes. We find that large black holes in solitons at the
centers of large halos undergo rapid orbital decay even at
sub-parsec separations, particularly with relatively large
ULDM particle masses. Consequently, it is plausible that
ULDM solitons could contribute to solving the final par-
sec problem in large halos.

Extrapolating our results to orbital separations associ-
ated with gravitational wave emission in the pulsar tim-
ing band it also appears possible that the drag can be
nontrivial in this regime, particularly at lower frequen-
cies. As with decay through the final parsec the drag
depends strongly on the halo mass which is correlated
with the expected sizes of both the soliton and the em-
bedded black holes. Given that the SMBH background
in the pulsar timing band is thought to be dominated
by massive systems [44] this raises the possibility that
ULDM could reduce the amplitude of this background.

Intriguingly, any suppression would be frequency de-
pendent, so could potentially account for the shape of
the observed PTA spectrum [40]. Moreover, the rela-
tively strong suppression seen with larger ULDM particle
masses may even provide a new approach to constrain-
ing this parameter. That said, any such analysis has a
number of complexities. Firstly, the core:halo relation
is itself subject to some uncertainty [13, 15, 38, 45–51]
which will change the central density for a given halo,
and the solitonic core resulting from a recent merger is
unlikely to be relaxed. Secondly, our discussion has as-

sumed that a single ULDM species accounts for all dark
matter, but the overall parameter space faces a number of
constraints [52–62]. However, many of these limits relax
if only a fraction of the dark matter consists of ULDM,
or if there are multiple ULDM species. In the former case
the soliton survives if the ULDM fraction is greater than
roughly 10% [24] but will be less massive and less dense,
reducing any damping. In the latter case, nested soli-
tons can form [63–66], complicating the dynamics and
reducing the drag relative to a scenario in which all of
the dark matter was accounted for by the most massive
ULDM species present.
Our simulations are simplified by starting with the

SMBH binary moving inside a stationary soliton. More-
over, by omitting the wider halo we suppress the random
walk of the soliton position driven by interactions with
ULDM granules in the halo [29, 30], which will could re-
heat the SMBH binary. Consequently, it would be inter-
esting (if computationally expensive) to simulate the full
halo merger while accounting for the SMBH dynamics.
This work also overlaps with a range of investigations

in related domains. The impact of UDLM at the late
stages of black mergers has been studied in numerical rel-
ativity [67, 68], and have similarly found increased orbital
decay and adjustments to predicted gravitational wave
signals, and further work is needed to connect these two
regimes. Separately, there is a possibility of black hole
formation [69] in a long matter dominated phase in the
post-inflationary universe [70–73]. Their potential inter-
actions with the remnant inflaton, which is described by
the Schrödinger-Poisson equation, and one another are
currently unexplored.
In summary, this paper marks a significant step for-

ward in analyses of SMBH-soliton interactions and the
wider study of ULDM dynamics. We have seen that dy-
namical friction from the soliton could help to resolve the
final parsec problem and potentially modify gravitational
wave production at nanohertz frequencies.
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