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Abstract

We present an efficient method to optimize sensor placement for flow estimation using sensors with time-delay embedding in

advection-dominated flows. Our solution allows identifying promising candidates for sensor positions using solely preliminary

flow field measurements with non-time-resolved Particle Image Velocimetry (PIV), without introducing physical probes in the

flow. Data-driven estimation in advection-dominated flows often exploits time-delay embedding to enrich the sensor information

for the reconstruction, i.e. it uses the information embedded in probe time series to provide a more accurate estimation. Optimizing

the probe position is the key to improving the accuracy of such estimation. Unfortunately, the cost of performing an online

combinatorial search to identify the optimal sensor placement in experiments is often prohibitive. We leverage the principle that,

in advection-dominated flows, rows of vectors from PIV fields embed similar information to that of probe time series located at

the downstream end of the domain. We propose thus to optimize the sensor placement using the row data from non-time-resolved

PIV measurements as a surrogate of the data a real probe would actually capture in time. This optimization is run offline and

requires only one preliminary experiment with standard PIV. Once the optimal positions are identified, the probes can be installed

and operated simultaneously with the PIV to perform the time-resolved field estimation. We show that the proposed method

outperforms equidistant positioning or greedy optimization techniques available in the literature.

Keywords: Particle Image Velocimetry, Proper Orthogonal Decomposition, Data-driven estimation

1. Introduction

Particle Image Velocimetry (PIV) is referred to as “time-

resolved” when the repetition rate of illumination and imag-

ing system is fast enough to enable measurements of the flow

dynamics with sufficient temporal resolution. Time-resolved

PIV has now become a widespread technique in fluid mechan-

ics (Beresh, 2021), unlocking a detailed view of flow dynamics

and the possibility of extracting acceleration and pressure fields

(van Oudheusden, 2013). Time-resolved flow fields allow the

description of the dynamics of coherent structures, thus they

are a key enabler for low-order modelling and control. How-

ever, technological limitations prevent access to time-resolved

flow descriptions if the flow is sufficiently fast.

As a cost-effective and flexible alternative, high-repetition-

rate point probes (such as hot wires and microphones) can be

combined with simultaneous low-repetition-rate PIV measure-

ments. Data-driven techniques can then be leveraged to esti-

mate flow fields at a temporal resolution up to that of point

probe data. The reconstruction problem is ill-posed: few sen-

sors are used to estimate flow fields composed of a much larger

number of vectors. However, it can still be resolved with rea-

sonable accuracy according to the following two observations.

First, often the flow dynamics evolve on low-dimensional at-

tractors. Dimensionality-reduction techniques, such as Proper
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Orthogonal Decomposition (POD, Berkooz et al., 1993), man-

ifold learning (Lee et al., 2007; Meilă and Zhang, 2024), or

more recently autoencoders (Kramer, 1991; Bank et al., 2023),

can be leveraged to identify low-dimensional intrinsic vari-

ables for the velocity fields. Second, assumptions on flow

physics (for instance dominance of advection) may allow time-

delay embedding, thus further increasing the available informa-

tion. Along this line, approaches based on multi-time delay

with Linear Stochastic Estimation (LSE, Ewing and Citriniti,

1999; Tinney et al., 2006, 2008) or Extended POD (EPOD,

Boree, 2003; Sicot et al., 2012; Tu et al., 2013; Hosseini et al.,

2015; Discetti et al., 2018, 2019) have been successfully imple-

mented. Some of the earlier approaches have been formulated

in Ref. Clark et al. (2014) in the framework of linear least-

square estimation. The work provided interesting guidelines

and practical recommendation for the use of stochastic estima-

tion from sensors. The aforementioned approaches leverage the

correlation between data collected by the sensors and field data.

Consequently, the reconstructed fields are filtering out informa-

tion that is not correlated with the data measured by the sen-

sors. Additionally, the estimated time-resolved flow fields can

be exploited to retrieve additional field information. Recently,

it was demonstrated that pressure fields can also be obtained

from the estimated velocity fields by leveraging compliance

with the Navier-Stokes equations and setting proper boundary

conditions (Chen et al., 2022; Moreno Soto et al., 2024).

The sensor positioning has a crucial impact on the quality

of the flow estimation. Proper placement improves the accu-

racy of flow field predictions and/or allows reducing the number
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of required sensors, thus simplifying the measurement setup.

The main difficulty is that sensor placement requires solving a

NP-hard (non-deterministic polynomial-time hard) combinato-

rial problem. Several methods have been proposed to solve it

with an affordable computational cost. Remarkable examples

include: QR-pivoting (Manohar et al., 2018), building upon the

discrete empirical interpolation method (Drmac and Gugercin,

2016; Chaturantabut and Sorensen, 2010), Shannon’s en-

tropy (Papadopoulou et al., 2014), variance inflation factor

(Nickels et al., 2020), characteristics of Fisher Information ma-

trix (Nakai et al., 2021) and reinforcement learning (Paris et al.,

2021). The main issue is that these methods do not account for

the intrusiveness of the sensor. This is a key aspect, which most

often leads to sensor placement at walls, or at the downstream

end of the domain if advection is dominant.

In this work, we treat optimal sensor placement in this latter

case, in which there is a main advection direction and point

probes can be placed right at the downstream end of the domain.

This introduces further complexity to the sensor optimization

problem. The reconstruction accuracy, in this scenario, depends

indeed also on the effectiveness of time-delay embedding in the

selected locations. Such analysis can only be done a posteriori

(i.e. after probe positioning and data acquisition). This would

require performing the experiment multiple times with different

probe positioning and searching for the best location. Even with

a small handful of probes, this implementation is unaffordable.

In this paper, we propose an offline solution for sensor posi-

tioning, based solely on non-time-resolved PIV fields, i.e. with-

out placing physical probes in the first preparatory run. Syn-

thetic point probes are extracted from PIV fields to simulate

the effect of including time history when placing the real ones.

Using data from the preparatory PIV run, the flow field is re-

constructed with different combinations of sensor locations on

the downstream edge of the domain to identify the optimal posi-

tioning with the highest reconstruction accuracy. Once the most

performing sensor placement is identified, the estimation ex-

periment can be carried out by placing the physical probes and

measuring the velocity fields simultaneously, and time-resolved

flow field can be reconstructed from the measurement using

PIV and sensors together.

The paper is structured as follows. First, the methodology is

described in Sec. 2, including the estimation of EPOD, the pro-

cess of online and offline sensor placement optimization, sensor

formations, as well as block-pivoted QR for sensor placement.

Then the validation test cases are illustrated (Sec. 3) and the re-

sults are discussed (Sec. 4). Finally, the conclusions are drawn.

2. Methods

2.1. Flow field estimator based on Extended Proper Orthogo-

nal Decomposition

For the flow field estimation from probes, we use EPOD, a

fast and reliable method that allows efficient exploration of sen-

sor placements. While this paper focuses on EPOD, the same

approach can extend to other estimators, e.g. those based on

recurrent neural networks (Deng et al., 2019).

The EPOD (Boree, 2003) is a linear tool to establish the cor-

relation between different quantities. In this framework, it is

used to project the velocity field data from snapshot PIV on

POD modes of the high-repetition-rate probe data at the same

time instants. This allows the establishment of correlations be-

tween temporal modes of velocity field and probe data. The

correlation can be leveraged then to estimate time coefficients

of the velocity fields solely from probe data, thus delivering

flow estimation.

This method is computationally affordable and provides ac-

ceptable estimation in simple flows (i.e. with a sufficiently com-

pact POD spectrum and good evidence of correlation between

sensor and field data, such as in shedding-dominated flows).

The field estimation methodology is briefly described in this

section. The reader can refer to Discetti et al. (2018) for a more

detailed formulation. Furthermore, neural networks could also

be used for this task (Erichson et al., 2020), although at the ex-

pense of a higher computational cost.

Consider a dataset of nt snapshots of the fluctuating velocity

field. The velocity is measured on np grid points. A snapshot

matrix U is built by arranging each snapshot as a row. Follow-

ing the snapshot method from Sirovich (1987), the POD is ob-

tained by decomposing U with an economy-size singular value

decomposition (SVD), i.e.

U = ΨΣΦT (1)

It is assumed for simplicity nt < ncnp (being nc the number of

velocity components measured at each grid point). The decom-

position of Eq. 1 generates two square unitary matrices: Ψ,

of size nt × nt, containing the temporal modes; ΦT containing

the spatial modes, of size ncnp × ncnp (being it actually of size

nt × ncnp in the economy-size SVD for the case of nt < ncnp).

The diagonal matrix Σ contains the singular values σi sorted by

their magnitude.

We apply the same decomposition to datasets acquired at the

same time instants of velocity fields and probe measurements.

As mentioned above, the number of probes is artificially in-

creased by a multi-time-delay embedding. This approach is

also referred to as Multichannel Singular Spectrum Analysis

(Ghil et al., 2002). In particular, being the probes generally lo-

cated at the downstream end of the domain, for each physical

probe and at each time instant we assign a portion of the time-

resolved sequence of the probe of q samples corresponding to

time instants past the one of each corresponding PIV snapshot.

This multi-time-delay embedding results in a probe snapshot

matrix Upr with nt rows and ntt = (s × ncpr
) × q columns (being

s the number of probes and ncpr
the number of flow quantity

components measured by the probes). This matrix undergoes

the same decomposition of the velocity snapshot matrix, result-

ing in:

Upr = ΨprΣprΦ
T
pr (2)

The correlation matrix of temporal modes is thus built as Ξ =

Ψ
T
prΨ. The matrix Ξ establishes the correlation between the

velocity field and probe temporal modes.

The estimation of the velocity field at a generic time instant

t∗ is based on three steps: (1) computation by projection of the
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temporal modes of the probes corresponding to t∗; (2) estima-

tion of the temporal modes of the velocity fields ψest leveraging

their relation with the temporal modes of the probes through

the correlation matrix Ξ; (3) calculation of the velocity field us-

ing the estimated temporal modes and the spatial modes from

the original decomposition. It can be shown that this can be

condensed in the following relation:

uest = useΦprΣ
−1
prΞΣΦ

T = ψestΣΦ
T (3)

with use being a vector containing delay-embedded probe data

arranged with the same procedure used to build the probe

snapshot matrix. Further improvement of the estimation can

be obtained by filtering out spurious contributions due to

weakly-correlated features, following the method proposed by

Discetti et al. (2018).

In this paper, the EPOD will be used for both training and

testing. During the training phase, it will establish the relation-

ship between the velocity field and sensor data using non-time-

resolved data. In the testing phase, the estimated time-resolved

field will be compared to the reference field.

2.2. Online vs. offline sensor placement optimization

Data-driven methods, such as the EPOD described in the pre-

vious section, can be used to provide temporal resolution to

snapshot PIV if coupled with high-repetition-rate sensors. An

accurate flow estimation allows velocity fields to be obtained

ideally at the same temporal resolution as the probes. A sound

placement of the sensors is paramount to ensure the quality of

the temporal reconstruction of the flow field. Flow estimation

includes two phases: i) sensor placement (either based on pre-

liminary tests or on intuition of the user); ii) final testing us-

ing both PIV and sensors simultaneously to estimate the time-

resolved flow field.

The most straightforward method for optimizing sensor

placement is to deploy real probes during the first phase and

evaluate their performance, a process we refer to as “online

optimization”. This approach involves the following steps:

1. placing the probes in the candidate location;

2. capturing and processing the data from PIV and from the

probes;

3. performing the estimation process;

4. evaluating the quality of estimation and refining the sensor

placement until an optimum in the accuracy of the estima-

tion is reached.

It must be remarked that, even with a small number of probes

and limited candidate locations, this approach becomes quickly

unaffordable from the practical viewpoint. For p probes and n

candidate locations, the number of required PIV experiments is

n!/((n − p)!p!) for a full coverage of all combinations.

To address this, we propose an “offline optimization”

method for sensor placement, relying solely on one dataset of

non-time-resolved PIV data for the sensor placement, i.e. with-

out requiring physical probes. This approach is sketched in

Fig. 1. A similar principle is leveraged in other sensor opti-

mization frameworks based on pattern discovery (for instance

in Manohar et al., 2018). However, a challenge arises here be-

cause delay embedding requires sensor signals or pointwise

velocity from time-resolved PIV, which snapshot PIV cannot

provide. The proposed method obviates the need for tempo-

ral resolution by using surrogates of the sensor time series ex-

tracted from snapshot PIV. In the following section, the nature

of these surrogates as well as their difference with real probes

time-series will be clarified.

2.3. Definition of sensor formations

In advection-dominated flows, sensors are typically placed

near the downstream boundary of the domain in order to mini-

mize the (1) wake produced inside the domain, (2) the reflection

on the sensors in PIV images. In certain applications, plac-

ing sensor supports downstream may not be practical, lead-

ing to sensors being installed beneath the surface of objects.

However, this paper does not consider that specific scenario.

As mentioned in Sec. 2.1, the probe number can be artifi-

cially increased by using time segments of signal. The under-

lying hypothesis is that, if advection is dominating, the veloc-

ity recorded by the probe in time will be similar to the veloc-

ity of the flow upstream at earlier time instants. In this pa-

per, this approach, used by among others Hosseini et al. (2015);

Discetti et al. (2018) will be referred to as “probes time se-

ries”. This arrangement is possible only by deploying phys-

ically the probes in the domain and performing synchronized

measurements with PIV.

To avoid the time-consuming process of performing multiple

probe deployments to identify the optimum sensor placement,

we introduce a proxy for physical probe time series by exploit-

ing the temporal and spatial coherence of advection-dominated

flows. Specifically, we simulate probe time series using data

from an entire row in PIV snapshots. These simulated sensors,

referred to as “row surrogate sensors”, are based on the as-

sumption that the flow advects predominantly in the horizon-

tal direction without loss of generality. It is important to note

that the row surrogate sensors are usually extracted from single

snapshots of non-time-resolved PIV fields, thus they are only

useful for offline optimization and cannot enhance the temporal

resolution of flow fields.

A potential limitation of the row surrogate sensors is that

Taylor’s hypothesis should be valid throughout at least one con-

vection through-flow time (i.e. the time it takes to the flow to

cross the measurement domain). However, it can be expected

that this hypothesis generally holds near the probe location, and

then becomes less reliable farther upstream. To mitigate this,

we propose masking the row sensors based on their correla-

tion with the downstream points of the row (candidate position

for the probes). The correlation map Ri j,iN between the generic

point and the last position in the same row is given by,

Ri j,iN =
〈u′

i j
u′

iN
〉

√

〈u′2
i j
〉〈u′2

iN
〉

(4)

where u′
i j

is the streamwise fluctuation velocity at the j-th

position of the i-th row and u′
iN

is the streamwise fluctuation
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Figure 1: The workflow of online (top) and offline (bottom) sensor placement optimization.

velocity at the downstream end of the same row. The operator

〈·〉 indicates the temporal average. For planar PIV, this equa-

tion produces a two-dimensional (2D) distribution, while for

volumetric PIV, it can be calculated for each cross-section, or

averaged across the volume thickness to improve convergence.

To mask row sensors, we retain only the points with correlation

values above a threshold, ensuring that at least 75% of rows

retain more than 75% of their entries. These masked sensors,

termed “masked row sensors”, are expected to better simulate

probe time series by excluding less correlated regions.

To summarize, three kinds of sensor formation will be con-

sidered:

• Probes time series: these are the time-series extracted

from physical probe measurements (i.e. from probes

placed in the flow) as described in Sec 2.1. These data

would be the ones available during an online optimiza-

tion. It is the most intensive from the position optimization

viewpoint as testing each combination requires a complete

experiment.

• Row surrogate sensors: these are the surrogate time-

series used by our proposed “offline” probe position opti-

mization. It is directly applied to the snapshot PIV data by

extracting rows of vectors and using them to reconstruct

the full field. The combination with the highest recon-

struction quality defines the optimal probe location. This

method requires 2 experiments: (1) a standard PIV ex-

periment for offline optimization, without any probe de-

ployment; (2) an experiment with synchronized PIV and

probes in the optimal location identified in (1) to perform

the time-delay embedding and corresponding flow estima-

tion of time-resolved fields.

• Masked row sensors: these surrogate time-series are

analogous to the ones used in offline optimization with

row surrogate sensors, the main difference being a mask-

ing applied to exclude points with low correlation from the

process. The main hypothesis is that points with high cor-

relation within each row would better represent the actual

recording of physical probes capturing time series.

2.4. A quick sensor placement method

The proposed offline sensor placement optimization is based

on a brute-force search of possible combinations of rows to ob-

tain the best candidates for flow estimation once the probes are

located in the field. This approach is practical if two conditions

are met: (1) the estimation process is computationally efficient

(e.g., the EPOD method used here); (2) the number of candidate

locations and sensors is limited. For example, with 20 candidate

positions and a set of 3 probes, the number of possible combi-

nations exceeds 1000, which remains computationally manage-

able.

There are already some method to determine the sensors’ po-

sition without such brute-force search. We explore an alterna-

tive greedy optimization method based on a modified version

of QR-pivoting, as described in Manohar et al. (2018). This

method is derived from the QR discrete empirical interpolation

method (Drmac and Gugercin, 2016).

QR-pivoting is briefly explained here; readers can refer to

Manohar et al. (2018) for more details.

Consider a full-field data snapshot represented as a vector

u ∈ R1×np . For simplicity, we assume only one measured com-

ponent, though this can be extended to multiple components. If

s sensors are available, the sensor measurements p ∈ Rs can be

expressed as,

p = CuT (5)

Here, the measurement matrix C ∈ Rs×np consists of zeros and

ones, representing whether a sensor is located at that grid point
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of the velocity field. The field u can also be expressed as a

linear combination of a basisΦ ∈ Rnp×nt ,

uT = ΦaT , a ∈ R1×nt (6)

where a is a vector of coefficients. As in the previous section,

we assume nt < np. The basisΦ can be predefined (e.g., Fourier

modes) or data-driven (e.g., derived from POD). If using POD,

a contains the time coefficients in any snapshot weighted by

singular values. Substituting this into the sensor measurement

equation gives

p = (CΦ)aT (7)

If the basis includes a number of modes larger than the number

of sensors, the system becomes underdetermined. To address

this, we reduce the basis to the first r modes,Φr ∈ R
np×r, which

capture most of the variance. This simplifies the equation to

p ≈ (CΦr)a
T
r , a ∈ R1×r (8)

Then the field can be estimated from sensor data sse,

ûT = Φrâ
T
r = Φr(CΦr)

†sse (9)

where ·̂ represents estimated value and † indicates the Moore-

Penrose pseudo-inverse.

The QR-pivoting leverages the QR factorization of the spa-

tial mode matrix (reduced to rank r) to identify the locations

that would minimize the condition ratio of CΦr, thus improving

numerical stability. This principle, based on QR discrete em-

pirical interpolation method (Drmac and Gugercin, 2016), was

used by Manohar et al. (2018). The matrix A is decomposed

into a unitary matrix Q, an upper triangular matrix R contain-

ing non-increasing diagonal elements, and a column permuta-

tion matrix C such that

ACT = QR (10)

Here, A = Φr when p = r, and A = ΦrΦ
T
r when p > r.

The QR factorization is performed column by column using the

Householder transformation, selecting columns that maximize

stability at each step.

Due to factors such as inhomogeneous illumination or parti-

cles moving into/out of the Field of View (FOV), PIV accuracy

often deteriorates near the boundaries. This limitation makes

applying QR-pivoting only with data near the downstream edge

less practical.

In this work, we modify the QR-pivoting approach to handle

multiple signal entries from each sensor. Instead of selecting in-

dividual sensor locations, we consider entire rows of PIV data

as surrogates for the time series captured by probes. This re-

quires a modification to pivoted QR decomposition referred to

as “block-pivoted QR” in this paper.

The block-pivoted QR algorithm uses the same principles as

QR-pivoting but evaluates blocks of data (entire rows in the

flow field) instead of individual columns (single points in the

flow field). This ensures that the time-delay structure is pre-

served while identifying the best sensor placement for flow es-

timation.

3. Validation

The proposed offline optimization method is assessed with

both synthetic and experimental data. Two datasets from Direct

Numerical Simulation (DNS) and one from experiments are uti-

lized. The details are reported in the remainder of this section.

From this point on, the performance of the techniques used

for sensor placement is tested by the velocity reconstruction er-

ror using EPOD. During testing, we temporally downsample

the velocity field to simulate non-time-resolved PIV data, while

use the signal located at several point of the velocity field as the

sensor data, then the result is compared to the reference time-

resolved field. The error ǫ is defined by

ǫ =
‖Uest − Ure f ‖2

ntest × ncnp

1

U0

(11)

where the EPOD estimated velocity field Uest and reference ve-

locity field Ure f from the simulation or experiment are matrices

of the size ntest × ncnp, ntest is the number of snapshots used for

testing, and the definition of nc and np follows Sec. 2.1. The

‖U‖2 is an entry-wise Frobenius norm for an ntest × ncnp matrix

U , which follows

‖U‖2 =

















ntest
∑

i=1

∑

j=1

incnp |ui j|
2

















1/2

(12)

where ui j is one of the entries of U. Finally, the error is normal-

ized by the bulk velocity or free stream velocity U0.

The optimal sensor positions from probes time series, row

surrogate sensors, row sensors masked, block-pivoted QR in

Sec. 2 as well as equidistant sensor placement will be discussed

in this paper on the result from the cases below.

3.1. Fluidic pinball

The first dataset is from a 2D DNS of the wake of a fluidic

pinball (Deng et al., 2020). The pinball setup consists of three

cylinders with diameter D, arranged in an equilateral triangle

configuration with a side length of 1.5D. The triangle is ori-

ented with one vertex pointing upstream. The Reynolds number

is set equal to 130, based on the freestream velocity and cylin-

der diameter. These conditions fall within the chaotic regime,

as illustrated by Deng et al. (2020).

The flow field extends from x = 1D to x = 7D and from

y = −3D to y = 3D, where x and y denote the streamwise

and crosswise directions respectively. The velocity data from

the original DNS mesh has been interpolated onto a Cartesian

grid with a spacing of 0.08D, producing 76× 76 vector fields to

simulate the PIV fields.

All combinations of three probes time series, row surrogate

sensors, or masked row surrogate sensors are tested. A total of

26 potential positions, uniformly spaced 0.24D apart in the y-

direction, is explored. This results in 2600 combinations. The

probe data only considers streamwise component of velocity.

When simulating flow estimation with time-delay embedding,

the time segment is set to 80 steps with a time spacing of 0.08D,

thus resulting in a horizon slightly larger than the convection
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time through the domain. The dataset is split into training (4685

non-time-resolved snapshots) and testing (4900 time-resolved

frames).

3.2. Turbulent channel flow

A more challenging test case is based on the DNS of a

turbulent channel flow from the Johns Hopkins Turbulence

Databases. This dataset is characterized by higher spectral rich-

ness, making the EPOD estimation more difficult compared to

the shedding-dominated wake flow of the previous pinball test

case. The DNS for this dataset is solved in a domain of size

8πh × 2h × 3πh, where h is the half-channel height, with a res-

olution of 2048× 512× 1536 nodes, and at a Reynolds number

Reτ ≈ 1000, given the bulk velocity Ub = 0.99994, friction

velocity uτ = 4.9968 × 10−2 and viscosity ν = 5 × 10−5. The

reader is referred to Li et al. (2008) for further details on the

simulation.

Similarly to Discetti et al. (2018), sub-domains extending

from the wall to the centreline of the channel, and with a stream-

wise length of h, are extracted from the full domain. The advan-

tage of this approach is that the dataset size can be increased by

exploiting statistical homogeneity in the spanwise and stream-

wise direction.

We are going to consider four different scenarios: (1) stan-

dard two-component (2C) planar PIV; (2) two-dimension-

three-component (2D-3C) stereoscopic PIV; (3) volumetric

three-component (3C) measurements in a volume with aspect

ratio, representing the ratio of the volume depth to h, of 1/8 and

(4) 1/2 to simulate tomographic PIV. The 2D sub-domains in-

clude 88 × 88 velocity vectors with a grid spacing of 0.0114h,

and the three-dimensional (3D) sub-domains have an aspect ra-

tio from 0 to 1/2. The training data are independently sampled

in space and time to minimize correlation between each other.

Leveraging translational symmetry, this study assumes that the

streamwise coordinate spans only between 0 and h, although

the actual domains considered are located at different stream-

wise positions. The y direction ranges between 0 and h, with 0

being the position of the wall.

The probe series contains only the streamwise component of

velocity. The time spacing for probe data with time series is

0.0065, and segments of 152 samples are taken at each loca-

tion, thereby covering the convection throughtime of one sub-

domain length. The 30 potential probe positions are uniformly

distributed along the downstream edge of the domain for the

cases of 2D fields. For the case of 3D domain, the probes are

placed along the downstream edge of the mid-plane in the span-

wise direction, with the same spacing as the 2D case. Consider-

ing that 3 probes are used for the reconstruction, this results in

4060 combinations. 7200 non-time-solved snapshots are used

in training and 3600 time-resolved frames are used for testing

for all scenarios.

3.3. 3D experiment of propeller wake

The sensor positioning is also validated in a 3D experimental

case in the wake of a windmilling propeller model. The experi-

ment was carried out in the water tunnel at Universidad Carlos

2

3

1a

1b1c

1a-1c: cameras

2:        laser

3:        propeller model

Figure 2: Sketch of the experimental setup of tomographic PIV measurement

in the wake of a windmilling propeller.

III de Madrid. A 3D printed powerless 6-blade propeller with a

hub-to-tip radius r = 55 mm was installed on a pylon with null

angle-of-attack with respect to the free stream, as shown in Fig.

2. The blades are driven by the water flow at a far-field velocity

U∞ = 0.15 m/s, reaching a rotation speed of about 6.0 RPM.

The Reynolds number and the Strouhal number based on the

diameter are 16500 and 0.22, respectively.

A time-resolved thin tomographic PIV is performed in the

wake region, covering a volume of 90 × 90 × 7 mm3, at a dis-

tance of 20 mm from the propeller axis. The flow is seeded

with polyamide particles with 56 µm diameter. Three Andor

sCMOS cameras, each with 5.5 Mpixels, are deployed and op-

erated at 80 Hz after sensor cropping. A 3 W green continuous

laser pointer is used for illumination. The exposure time of the

cameras is set to 2 ms. The cameras are equipped with 50 mm

objectives, with 0.5× fisheye lens. The f# is set to 8 for the

camera in forward scatter, and to 5.6 for the other cameras, to

obtain similar imaging conditions.

The particle images are preprocessed with a sliding-

minimum subtraction on a 7 × 7 pixel kernel and Gaussian

smoothing on a 3×3 pixel kernel with a standard deviation equal

to 0.75. The images were then processed using a custom-made

tomographic PIV software from Universita’ di Napoli Federico

II (Discetti et al., 2013). First, a volumetric self-calibration

(Wieneke, 2008) is carried out to reduce the calibration er-

ror. The volumetric reconstruction is carried out with a multi-

resolution process (Discetti and Astarita, 2012a). The recon-

struction algorithm is based on the camera-simultaneous mul-

tiplicative algebraic reconstruction technique (cSMART). The

cSMART is a modified version of the SMART procedure pro-

posed by Atkinson and Soria (2009) which uses the cameras se-

quentially. The process consists of 3 CSMART iterations on a

2x binned configuration, 3 CSMART iterations and further 3
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SMART iterations on the final resolution of 11 voxels/mm. The

reconstructed distributions are then interrogated with a multi-

pass 3D cross-correlation (Elsinga et al., 2006) based on direct

sparse correlations (Discetti and Astarita, 2012b). The final in-

terrogation spot is set to 323 voxels, with an overlap of 75%.

The vector spacing in each direction is 727 µm.

A non-time-resolved dataset is generated by randomly select-

ing 4800 snapshots among the 13620 snapshots of the origi-

nal sequence, and 500 frames are used for testing. The asso-

ciated probe data are extracted from the full data sequence at

the original sample rate from the downstream part of the PIV

region on the middle plane of the volume span. The portion of

tomographic PIV snapshots used for flow estimation contains

85 × 50 × 7 vectors. Similarly to the synthetic test case of the

channel flow, 85 × 50 subdomains of 2C and 3C velocity fields

are extracted for testing to simulate planar PIV and stereoscopic

PIV configurations.

4. Results

4.1. Fluidic Pinball

The offline optimization process is assessed first for the case

of the fluidic pinball. As discussed in Sec. 2, the map ob-

tained by stacking the correlation of row data with their respec-

tive downstream edge point (as in Eq. 4), is shown in Fig. 3.

The thick red line locates the masking threshold. The region

with the correlation value under the threshold is blanked for the

case of estimation with masked row sensors.

The POD spectrum is presented in Fig. 4. The spectrum re-

ports the squared diagonal elements σ2
i

of the diagonal matrix

Σ in Eq. (1), which are related to the variance content corre-

sponding to the i-th mode (Berkooz et al., 1993). The figure

shows that the POD spectrum is quite compact, as expected

for a low-Reynolds-number shedding-dominated flow. The first

two modes contain already 60% of the energy and correspond

to the vortex shedding. Ten modes are sufficient to reconstruct

90% of the energy. For this test case, it is expected that a small

number of sensors should be able to achieve reasonably good

reconstruction accuracy.

The positional frequency distribution on Fig. 5 represents the

best 24 sensor position combinations of 3 probes, according to

the reconstruction error defined by Eq. 11. To give more rele-

vance to the most performing positioning, the combinations are

sorted according to their reconstruction accuracy, and their con-

tribution to the positional frequency distribution is weighted.

The weights are set according to the following relation:

W = e
− i−1

N−1 (13)

with i representing the rank of the sensor position combination

after sorting by the error value, and N the number of combi-

nations used to generate the distribution (24 in all the cases

used in this paper). Four preferred locations were identified

from all types of sensors: two symmetrically located outside

the wake and two on the edge of the wake. The positional dis-

tribution of row sensors is reasonably well aligned with that

of the probes time series, even though the two outmost peaks

are slightly shifted inwards. This suggests that the row sen-

sors proposed for the offline optimization are reasonably good

surrogates for the placement of the physical probes. Addition-

ally, further improvement seems to be achieved by the masking,

since the peaks from masked row sensors lay closer to those

from point probes time series.

The figure also includes the best combination according to

the block-pivoted QR positioning. The selected positions are

mostly concentrated towards the inner part of the wake, thus

missing mapping the outer regions. It can be expected that this

greedy optimization method will be less performing when re-

constructing the fields.

The 2D distribution of the estimation error, as defined in Eq.

11, is shown in Fig. 6. Compared to the 1D histogram, the

2D scatter map more effectively illustrates the correlation be-

tween different sensor formations. In these scatter maps, each

spot represents a specific combination of sensor locations, with

the x-axis and y-axis indicating the estimation error. The likeli-

hood of data corresponding to specific x and y positions could

be inferred from the density of points in those areas. To help

readability, the scatter plot has been colour-coded for the prob-

ability density function. Here, the density ρ is counted by di-

viding the whole map into 100 × 100 regions and counting the

number of spots, then normalized by the total number of spots

thus
∑

i

ρ∆si = 1 is complied, where the area ∆si follows the

unit of x and y axis. For the case of row surrogate sensors (with

and without masking), the error corresponds to the reconstruc-

tion error using directly the row data from each snapshot. When

surrogate sensors are replaced with probes measuring time se-

ries and time-delay embedding is used in the reconstruction,

the error is expected to be larger due to the lower correlation

between the flow field snapshot and the probes time series.

A good qualitative indicator that offline optimization with

rows is a good surrogate for sensor placement of the direct

measurements is the shape of the error map. A stretched lin-

ear shape indicates that the two error metrics are interchange-

able, thus the search for optimal placement can also be carried

out with the row sensor. Ideally, if the leftmost point of the

histogram corresponds also the downmost point, it would mean

that the analysis of the reconstruction error to row sensors is

able to identify also the best combination for flow estimation

with probes time series.

In the case of row sensors without masking, this happens to

a reasonable extent. We consider the positions obtained by se-

lecting the three peaks of the positional frequency distribution

and interpolating them with a spline to refine the positions. The

positioning we obtain, corresponding to the leftmost point of

the scatter plot, has an error about 19% higher than the effec-

tive optimal placement based on probes time series, as given in

Table 1. The block-pivoted QR provides worse performances,

as expected by Fig. 5. The concentration of probes inwards in

the wake region does not provide enough details of the edge of

the wake for the reconstruction.

Equidistant probe placement (thus blind to the flow distri-

bution) works already with nearly optimal performances. This
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Figure 3: Map obtained by stacking the correlation of velocity in each row with

the most donwstream point of it, used for masking on the dataset of the pinball.

The thick red curves bound the masked region due to a weak correlation.

Figure 4: The POD spectrum for the pinball dataset. The blue line shows the

squared singular values σ2
i
. The orange line corresponds to the cumulative sum

of σ2
i
. In both cases, the data are normalized with the sum of all the σ2

i
.

might be ascribed to the small size of the domain in the span-

wise direction, in which equidistant probe spacing allows easy

capture of both the shedding structures and the wake mean-

dering. The best performance is provided by the masked row

sensors, which provide an error only 13% higher than the opti-

mal combination of probes with time series. This is achieved

using solely the snapshot PIV data, while optimization with

probes time series would have required a large number of tests

with probes and fields simultaneously. While this was possible

in simulations, in experiments this would have been extremely

onerous.

The scatter plots confirm that masked row sensors have a

higher correlation to probes time series, better representing sen-

sor locations. A sharper down-left corner in the scatter plot in-

dicates higher correlation among preferred locations with the

least velocity reconstruction error.

4.2. Turbulent channel flow

The turbulent channel flow presents the challenge of higher

spectral richness. On the other hand, since Taylor’s hypothesis

is expected to be valid apart from the near-wall region, it might

be argued that the row surrogate sensors should be better rep-

resentative of the probe time series. The correlation maps for

the channel case are depicted in Fig. 7. Subfigure (a) represents

Figure 5: The one-dimensional weighted positional frequency distribution of

the pinball case, with the definition of W from Eq. 13. The symbols + and ×

represent the sensor positioning from equidistant sensors and block-pivoted QR

respectively.

the correlation maps for both the 2D-2C and 2D-3C fields to

simulate planar and stereoscopic PIV, as they share the same

map. Subfigures (b) and (c) represent the map of thin and thick

volumetric fields. In all cases, we observe a nearly monotonic

decrease in correlation from downstream to upstream (in the

−x-direction). The wall distance has a minor effect on the cor-

relation in the region closer to the probe. On the other hand,

towards the upstream edge, a stronger correlation is observed

in the region ranging from y/h = 0 to y/h = 0.4, followed

by a gradual decrease until y/h = 1. This trend is consis-

tent across all correlation maps. The lower correlation values

near the wall are likely due to the lower convective velocity and

strong shear, which cause significant flow distortion before it

reaches the downstream edge, as well as 3D motion. A slightly

lower correlation in the channel centre might be explained by

the interaction with the flow on the opposite side of the channel.

The POD spectrum for the channel flow case is illustrated in

Fig. 8. Compared to the pinball case, the channel spectrum

is significantly more dispersed, requiring nearly 1000 modes

to capture 90% of the total energy, whereas the pinball case

only needs less than 10 modes. The estimation of the tempo-

ral modes with EPOD is thus more severely challenged by the

higher dimensionality of the flow. Additionally, for the cases

corresponding to thick volumetric domain, the POD spectrum

spreads out on an even larger number of modes.

The one-dimensional positional frequency distributions of

optimal sensor positioning are shown in Fig. 9. The distribution

for all aspect ratios presents 3 peaks for all types of sensors.

We observe that the most performing positions for row surro-

gate sensors include regions located closer to the wall. This

might be ascribed to the higher energy corresponding to that re-

gion. The peak positions of probes time series indicate instead

that estimation with time-delay embedding is more effective for

slightly larger wall-distance. This is likely due to the stronger

flow distortion and 3D motion in the near-wall region, which

challenge the process of time-delay embedding.

Once the correlation value is taken into account by mask-

ing low correlation region, the optimization with row surrogate
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field type

probe type equidistant block- surrogate surrogate masked probes

probes pivoted QR row sensors row sensors time series

planar PIV 0.0812 0.1176 0.0843 0.0796 0.0706

Table 1: The error of velocity reconstruction using time-delay embedding and sensors located according to different methods for the fluidic pinball. The error is

defined as in Eq. 11. In the last column, the optimal case of online optimization with probes time series is included for reference.

(a)

(b)

Figure 6: The 2D probability density function of the velocity reconstruction

error for probes time series versus (a) row sensors and (b) masked row sensors.

The colours in the scatter plots serve as auxiliary markers, indicating the local

data density. The density is defined as
∑

i

ρ∆si = 1, where the ∆si is any local

area on the scatter plots.

sensor provides new locations which are closer to those of the

probes time series, and thus arguably with higher potential to be

more effective in the process of reconstructing once the probes

are placed.

For the 3D-3C test cases, the weighted positional frequency

distributions become more irregular since the prediction be-

comes more complex. Nonetheless, the optimal placements

from row sensors and masked row sensors still have similar

performance to that from probes time series as listed in Table

2. It is also worthwhile stressing that the optimal positioning

from the planar field also works for the volumetric field with lit-

tle degradation, which significantly reduces the computational

costs of the search.

The scatter plots in Fig. 10 reflect a high similarity in ve-

locity reconstruction between using probes time series and row

surrogate sensors. The process of masking further improves

this correlation, with a sharper downleft corner in almost all

cases. The optimal positioning given by masked row sensors is

very close to that of probes time series. This indicates that row

sensors after masking are good surrogates for the probes time

series.

The equidistant probes provide also reasonably good posi-

tioning for all tested cases, even slightly outperforming the

row surrogate sensors positioning in planar fields. The block-

pivoted QR, on the other hand, provides poorer performances,

possibly because it focuses on placing probes at sites with the

most information as shown in Fig. 9 (a) (i.e. region very close

to the wall), rather than covering a broader area.

4.3. 3D experiment of propeller wake

The proposed method is finally tested on the velocity field

from time-resolved tomographic PIV measurements of the

wake of a rotating propeller. To have a solid ground truth for

comparison, the original sequence is subsampled in time to pro-

duce a non-time-resolved sequence. Probes with time series are

then generated at any node at the downstream edge of the do-

main by using data from the original time-resolved sequence.

For the analysis, we consider planar data obtained by extracting

the central slice of the volume, and the full volumetric measure-

ments.

The correlation maps of the central slice and volumetric field

with respect to the points on the downstream edge of the domain

have similar distribution, as shown in Fig. 11. In both cases,

slightly larger correlation values are observed in the wake of the

hub of the windmilling propeller. The POD spectra in Fig. 12

reveal a more dispersed distribution if compared to the pinball

case, thus indicating a higher level of complexity. The noise

in PIV measurements further broadens the POD eigenspectrum.
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field type

probe type equidistant block- surrogate surrogate masked probes

probes pivoted QR row sensors row sensors time series

planar PIV 0.0504 0.0660 0.0506 0.0496 0.0490

stereoscopic PIV 0.0518 0.0628 0.0516 0.0512 0.0508

thin tomographic PIV:

with 3D positioning 0.0524 0.0632 0.0519 0.0518 0.0514

with 2D positioning 0.0522 0.0516

thick tomographic PIV:

with 3D positioning 0.0570 0.0669 0.0551 0.0550 0.0549

with 2D positioning 0.0553 0.0554

Table 2: The error of velocity reconstruction using time-delay embedding and sensors located according to different methods for the turbulent channel flow. For the

volumetric test case, we consider either exploring the entire 2D downstream end of the domain (in the table as “3D positioning”) or solely the central slice (“2D

positioning”). The error is defined as in Eq. 11. In the last column, the optimal case of online optimization with probes time series is included for reference.

No significant differences are observed between planar and vol-

umetric measurements.

Due to the limited field of view in the experiment, the whole

domain of this case is immersed in the wake of the windmilling

propeller. As shown in Fig. 13, the most frequent distribu-

tions of positions are similar for probes time series and row

surrogate sensors (with and without masking). The distribution

from probes time series is almost symmetric with respect to the

position of the axis of the blades. We observe 4 peaks in the

positional frequency distribution, although the peak located at

y/r = 0.3 is weaker. On the other hand, both row sensors and

masked row sensors locate the optimal sensor position near the

main peaks from probes time series.

The velocity prediction errors using row sensors and masked

row sensors in Table 3 are close to the ones from probes time se-

ries. As a result, the row sensors, either masked or not, demon-

strate to be a good surrogate to the probe time series also in this

case. This demonstrates that a preliminary experiment using

planar PIV is sufficient for sensor positioning in the data-driven

flow estimation even if later the experiment involves thin tomo-

graphic PIV measurements.

The scatter plots in Fig. 14 exhibit similar distributions of

the reconstruction error from probes time series versus row sen-

sors and masked row sensors in all tested configurations. This

confirms that the offline optimization process is representative

of the (more time consuming) online optimization process with

probes spanning the volume. It must also be remarked that both

types of row sensors outperform either equidistant positioning

and block-pivoted QR.

Conclusions

In this paper, we introduced an offline optimization of the

probe positioning for flow field estimation targeted at temporal

resolution enhancement of PIV. The offline position optimiza-

tion requires solely one non-time-resolved PIV sequence mea-

surement. Under the condition that the flow is dominated by ad-

vection, time-delay embedding in the probe data can be used to

enrich the dataset and improve the accuracy of the reconstruc-

tion. Our offline optimization strategy consists of using directly

lines of velocity vectors in the main direction of advection from

a preliminary snapshot PIV experiment, without placing any

real probes, to estimate the optimal sensor placement for recon-

struction with time-delay embedding. The optimal combination

of probe positions is identified through a brute-force combina-

torial search. The best combination is then used to locate the

probes and perform the final flow estimation experiment with

synchronized probe and PIV measurements.

We show that row surrogate sensors are in general capable

of identifying the most promising locations for estimation of

time-resolved fields once real probes are placed. The process

is further enhanced by excluding regions with low correlation

to potential probe positions, typically found at the downstream

edge of the domain in advective flows.

Remarkably, we observed that a simple planar PIV experi-

ment is sufficient to locate the sensor position even if the final

target is time-resolution enhancement of volumetric measure-

ments in relatively thin domains.

The offline search of the best probe positions is done by

brute-force search. We have explored a modified version of a

greedy optimization algorithm based on QR-pivoting to sim-

plify this step further. Nonetheless, we observed that this

method is not capable of identifying combinations of probe

positions with acceptable accuracy, and it is outperformed by

equidistant probe placement in all cases. We envision that fur-

ther research in this direction is needed. Indeed, brute-force

search is made feasible here thanks to the low computational

cost of EPOD. More complex estimators might require reduc-

ing the number of estimations to perform in the offline op-

timization step. Solutions based on Bayesian optimization,

genetic algorithms and reinforcement learning, among others,

might be explored in the future. In addition, the flow estimation

method might be applied to conditional measurements.
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field type

probe type equidistant block- surrogate surrogate masked probes

probes pivoted QR row sensors row sensors time series

planar PIV 0.0365 0.0375 0.0360 0.0345 0.0343

stereoscopic PIV 0.0356 0.0346 0.0345 0.0348 0.0338

thin tomographic PIV:

with 3D positioning 0.0365 0.0378 0.0353 0.0356 0.0349

with 2D positioning 0.0363 0.0357

Table 3: The error of velocity reconstruction using time-delay embedding and sensors located according to different methods for the experimental dataset of the

propeller wake. For the volumetric test case, we consider either exploring the entire 2D donwstream end of the domain (in the table as “3D positioning”) or solely

the central slice (“2D positioning”). The error is defined as in Eq. 11. In the last column, the optimal case of online optimization with probes time series is included

for reference.

(a)

(b)

(c)

Figure 7: Map obtained by stacking the correlation of velocity in each row with

the most donwstream point of it, used to mask the two sensors in the turbulent

channel flow, with different aspect ratio: (a) 2D plane, (b) 1/8 and (c) 1/2. The

thick red curves bound the masked region due to a weak correlation.

(a) (b)

(c) (d)

Figure 8: The POD spectrum from the channel dataset with the sub-domain

from (a) 2C planar velocity field, (b) 3C planar velocity field, (c) 3D velocity

field at aspect ratio 1/8, and (d) 3D velocity field at aspect ratio 1/2.
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(a) (b)

(c) (d)

Figure 9: The one-dimensional weighted positional frequency distribution of

optimal sensor positioning for the channel flow across different aspect ratios of

the domain, subfigures show the result from (a) 2C planar velocity field, (b)

3C planar velocity field, (c) 3D velocity field at aspect ratio 1/8, and (d) 3D

velocity field at aspect ratio 1/2. The purple × signs stand for the positioning

from block-pivoted QR
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Figure 12: The POD spectrum from the blade dataset with the sub-domain from

(a) planar velocity field, (b) 3C planar velocity field, (c) thin tomographic field.

(a)

(b)

(c)

Figure 13: The one-dimensional weighted positional distribution of optimal

sensor positioning after testing with row sensors, row sensors masked and

probes with time-series: (a) 2C planar PIV; (b) 3C planar PIV; (c) tomographic

PIV field. The purple × signs stand for the positioning from block-pivoted QR.
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Figure 14: The scatter plots of velocity reconstruction error using probes with

time-series versus using row sensors (left) and row sensors masked (right). The

computation domains are, from top to bottom: 2D-2C field in the central plane

(top); 2D-3C field in the central plane (central); thin volumetric field (bottom).

The colour of the spots represents local density ranging from low (blue) to high

(red). The +, × and ⋆ show the result from the placement of equidistant, block-

pivoted and optimal combination tested by row sensors or row sensors masked.

The density is defined as
∑

i

ρ∆si = 1, where the ∆si is any local area on the

scatter plots.
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