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Abstract—We present a Bayesian inversion-based digital twin
that employs acoustic pressure data from seafloor sensors,
along with 3D coupled acoustic–gravity wave equations, to infer
earthquake-induced spatiotemporal seafloor motion in real time
and forecast tsunami propagation toward coastlines for early
warning with quantified uncertainties. Our target is the Cascadia
subduction zone, with one billion parameters. Computing the
posterior mean alone would require 50 years on a 512 GPU
machine. Instead, exploiting the shift invariance of the parameter-
to-observable map and devising novel parallel algorithms, we
induce a fast offline–online decomposition. The offline component
requires just one adjoint wave propagation per sensor; using
MFEM, we scale this part of the computation to the full
El Capitan system (43,520 GPUs) with 92% weak parallel
efficiency. Moreover, given real-time data, the online component
exactly solves the Bayesian inverse and forecasting problems in
0.2 seconds on a modest GPU system, a ten-billion-fold speedup.

Index Terms—Bayesian inverse problems, data assimilation,
uncertainty quantification, digital twins, tsunami early warning,
finite elements, real-time GPU supercomputing

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

Fastest time-to-solution of a PDE-based Bayesian inverse
problem with 1 billion parameters in 0.2 seconds, a ten-billion-
fold speedup over SoA. Largest-to-date unstructured mesh FE
simulation with 55.5 trillion DOF on 43,520 GPUs, with 92%
weak and 79% strong parallel efficiencies in scaling over a
128× increase of GPUs on the full-scale El Capitan system.

This research was supported by DOD MURI grants FA9550-21-1-0084 and
FA9550-24-1-0327, DOE ASCR grant DE-SC0023171, and NSF grants DGE-
2137420, EAR-2225286, EAR-2121568, OAC-2139536. Work performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 (LLNL-PROC-
2004753). This research used resources from the Texas Advanced Computing
Center (TACC), the National Energy Research Scientific Computing Center
(NERSC, ALCC-ERCAP0030671), and Livermore Computing.

II. PERFORMANCE ATTRIBUTES

Performance attribute This submission

Category of achievement Scalability, time-to-solution, peak performance
Type of method used Bayesian inversion, real-time computing, FEM
Results reported based on Whole application including I/O
Precision reported Double precision
System scale Results measured on full-scale system
Measurement mechanism Timers, DOF throughput, FLOP count

III. OVERVIEW OF THE PROBLEM

A. Tsunami forecasting and the Cascadia subduction zone

Tsunamis are rare events but can be extremely deadly and
cause catastrophic socioeconomic losses. In the past century
tsunamis have claimed more than 400,000 lives, and individual
tsunamis can result in hundreds of billions of dollars in losses,
making them among the costliest natural disasters. State-of-
the-art (SoA) tsunami early warning systems [1] rely on rapid
characterization of source parameters primarily from seismic
data [2], issuing alerts within minutes but based on simplified
assumptions about the event. These systems typically infer
earthquake moment magnitude and hypocenter location, and
then trigger tsunami forecasts using precomputed scenarios or
simplified fault models, assuming instantaneous, uniform slip
on a predefined fault geometry. This approach is inadequate
in the near field [3], where destructive tsunami waves can
arrive on-shore in under ten minutes. In addition, current
models fail to capture the complexities of earthquake rupture
dynamics [4], including variable slip distributions and slow
rupture speeds. This can lead to delayed, missed, or false
warnings, especially when early seismic data misrepresent the
true tsunami potential, such as during the 2011 Tōhoku, Japan
tsunami or the 2024 Cape Mendocino, California earthquake,
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Fig. 1. (a) Topobathymetric map of the Cascadia subduction zone (CSZ) based on GEBCO’s gridded bathymetric data set. The shaded area illustrates the
potentially “locked” portion of the megathrust interface. The red line marks the trench where the subducting Explorer, Juan de Fuca, and Gorda plates begin
their descent beneath the North American Plate. (b)–(c) Snapshots of vertical seafloor uplift and seafloor velocity from a physics-based 3D dynamic rupture
and seismic wave propagation computation of a magnitude 8.7 earthquake scenario spanning the full margin of the CSZ. (d) Representative block of a 3D
multi-block hexahedral mesh of the CSZ, depicting bathymetry-adapted meshing.

which did not cause a tsunami, despite five million people
receiving evacuation alerts. To improve warning capabilities,
real-time ocean bottom pressure data and GPS measurements
can be integrated directly to constrain tsunami sources, without
relying on assumed fault geometry or magnitude [5, 6].

SoA tsunami simulations typically solve the nonlinear shal-
low water equations, sometimes with added dispersive terms or
empirical corrections, to model wave generation, propagation,
and run-up. These models are widely used in tsunami hazard
assessment and early warning but are known to omit important
physical processes such as wave dispersion, 3D hydrodynamic
interactions with bathymetry and coastal infrastructure, and
the dynamics of the coupled Earth–ocean system [7]. Large-
scale tsunami simulations using high-resolution bathymetry
are constrained by simplifications in source modeling and may
require minutes to hours per run, limiting their use in real-time
settings [8].

We present a full-physics Bayesian inversion framework—
a so-called digital twin [9]—that enables real-time, data-
driven tsunami forecasting with dynamic adaptivity to complex
source behavior. Our inversion framework employs ocean bot-
tom pressure data, along with the 3D coupled acoustic–gravity
wave equations, to infer earthquake-induced spatiotemporal
seafloor motion in real time. The solution of this Bayesian
inverse problem then provides the boundary forcing to forward
propagate the tsunamis toward coastlines and issue forecasts of

wave heights at specified locations, with quantified uncertain-
ties. We apply our framework to the Cascadia subduction zone
(CSZ), which stretches 1000 km from northern California to
British Columbia (Fig. 1). The CSZ has been eerily quiet for
over 300 years but is considered overdue for a magnitude 8.0–
9.0 megathrust earthquake, with paleoseismic and geodetic
evidence indicating a recurrence interval of roughly 250 to 500
years [10, 11]. In addition to recently proposed future offshore
deployments (e.g., by SZ4D), the NEPTUNE cabled observa-
tory [12] has provided continuous offshore observations since
2009 across the northern Cascadia margin, recording several
tsunamis and offering valuable data to inform optimal sensor
placement.

B. Bayesian inverse problems

Our work addresses a critically important class of problems
that has received little attention in the Gordon Bell Prize
competition: inverse problems [13, 14], in particular in the
Bayesian framework [15, 16]. In a forward problem, the input
parameters (e.g., initial or boundary conditions, coefficients,
source terms) are specified; solution of the governing equa-
tions, here assumed to be partial differential equations (PDEs),
then yields the state variables describing the behavior of the
system. However, forward models typically contain uncertain
parameters. Often these uncertain parameters are infinite-
dimensional fields, i.e., they vary in space (and possibly time).



In inverse problems, we seek to infer uncertain parameter
fields from measurements or observations of system states.

Infinite-dimensional inverse problems are usually ill-posed:
many parameter fields can be found that are consistent with
the observational data to within the noise. The classical
output least-squares approach to the inverse problem posits
a regularization functional that penalizes unwanted features of
the parameter field (e.g., magnitude or roughness), yielding
a unique solution [13]. In contrast, the Bayesian approach
seeks to characterize the probability that any parameter field
is consistent with the data and prior knowledge. The parameter
is treated as a random field, and the solution of the inverse
problem becomes a probability density, the posterior distribu-
tion [16]. As such the Bayesian approach is very powerful.

This power comes at a price, though: computing the
Bayesian solution is generally intractable for infinite-
dimensional inverse problems governed by PDEs. For exam-
ple, computing just the mean of the posterior formally requires
numerical integration in the discretized parameter dimension
(in our case, one billion); each evaluation of the integrand
requires solution of the forward problem, which can take hours
or more, and numerous forward solutions are required. As a
result, various approximations of the posterior, such as the
Laplace approximation [14], must be invoked, and even then
massive-scale computation is necessary, e.g. [17, 18, 19]. The
specific Bayesian inverse problem we address here is the real-
time inference and prediction of tsunamis for early warning,
which adds a real-time requirement to the challenges described
above. Our real-time inversion and forecasting goal would
seem futile, since SoA inversion methods (see §IV) would
require 50 years on 512 NVIDIA A100 GPUs to solve this
problem, whereas we have less than a minute to provide early
warning. As we shall see in §V, we are able to achieve real-
time performance through a combination of novel parallel
inversion algorithms, advanced PDE discretization libraries,
and exploitation of leading-edge GPU supercomputers.

C. Inference of seafloor motion with acoustic–gravity model

In this section, we describe our target inverse problem. The
forward tsunami dynamics are modeled by the acoustic–
gravity wave equations that couple the propagation of ocean
acoustic waves with surface gravity waves. This PDE model
is derived by linearization of the conservation of mass and
momentum around hydrostatic pressure in the compressible
ocean, and the coupling to the surface gravity wave comes
from a modified free surface boundary condition at the sea
surface [20]. The model takes the form of a coupled first-
order system in the velocity vector field u⃗(x⃗, t), the pressure
field p(x⃗, t), and the surface gravity wave height η(x⃗, t),

ρ ∂tu⃗+∇p = 0, Ω× (0, T ),

K−1∂tp+∇ · u⃗ = 0, Ω× (0, T ),

p = ρgη, ∂Ωs × (0, T ),

∂tη = u⃗ · n⃗, ∂Ωs × (0, T ),

u⃗ · n⃗ = −∂tb, ∂Ωb × (0, T ),

u⃗ · n⃗ = Z−1p, ∂Ωa × (0, T ),

(1)

with homogeneous initial conditions. Here, K and ρ are the
bulk modulus and density of seawater, Z = ρc is the acoustic
wave impedance, c =

√
K/ρ is the speed of sound in

seawater, g is gravitational acceleration, and ∂tb is the seafloor
normal velocity with b the normal displacement. The spatial
domain is denoted by Ω with boundaries ∂Ωs (sea surface),
∂Ωb (sea bottom), and ∂Ωa (lateral, absorbing boundaries); n⃗
is the outward unit normal; and the temporal domain is (0, T ).

The uncertain parameter field m(x⃗, t), to be inferred from
the data, is the spatiotemporal seafloor normal velocity,

m(x⃗, t) := −∂b(x⃗, t)/∂t, (x⃗, t) ∈ ∂Ωb × (0, T ).

The observables d are model predictions of data dobs from
pressure sensors mounted on the seafloor, i.e. d = p(x⃗d

j , t
d
i ),

where x⃗d
j ∈ ∂Ωb, j = 1, . . . , Nd, are the seafloor sensor

locations and tdi ∈ (0, T ), i = 1, . . . , Nd
t , are the time instants

at which observations are made. The parameter-to-observable
(p2o) map F takes the seafloor velocity m as input, solves
the acoustic–gravity wave equations (1), and extracts d, the
pressures at the sensor locations and observation times. The
quantities of interest (QoI) are the surface wave height predic-
tions at locations and times of interest, i.e. q = η(x⃗q

j , t
q
i ) where

x⃗q
j ∈ ∂Ωs, j = 1, . . . , Nq , and tqi ∈ (0, T ), i = 1, . . . , Nq

t ,
are specific locations and time instants pertinent to tsunami
early warning. The parameter-to-QoI (p2q) map Fq takes the
inferred seafloor velocity m and forward predicts the QoI q.

The Bayesian inverse problem can then be stated as follows:
given pressure recordings dobs from sensors on the seafloor,
infer the spatiotemporal seafloor velocity m in the subduction
zone and its uncertainty. The tsunami posterior prediction
problem is: given inferred parameters m and their uncertainty,
forward predict the surface gravity wave heights q and their
uncertainty. In §IV, we discuss why this problem is intractable
with the current SoA.

IV. CURRENT STATE OF THE ART

In this section, we discuss SoA methods for solving the
Bayesian inverse problem described in §III-C. After discretiza-
tion in space and time, Bayes’ theorem gives

πpost(m|dobs) ∝ πlike(d
obs|m)πprior(m),

where πprior(m) is the prior probability density of the seafloor
velocity parameters m, πlike(d

obs|m) is the likelihood of
the observed seafloor pressure data dobs, given m, and
πpost(m|dobs) is the posterior density reflecting the probability
of the parameters conditioned on the data.

Taking a Gaussian prior with mean mprior and covariance
Γprior (here block diagonal, with each block the inverse of
an elliptic PDE operator in space representing a Matérn
covariance [15]), along with centered Gaussian additive noise
with noise covariance Γnoise, the posterior is then given by:

πpost(m|dobs)∝exp
{
− 1

2∥Fm−dobs∥2
Γ−1

noise
− 1

2∥m−mprior∥2Γ−1
prior

}
.

Here F is the discrete p2o map.



The maximum-a-posteriori (MAP) point mmap maximizes
the posterior distribution over admissible parameters m, or
equivalently solves the quadratic optimization problem

mmap :=argmin
m

1
2∥Fm− dobs∥2

Γ−1
noise

+ 1
2∥m−mprior∥2Γ−1

prior
.

The MAP point mmap is thus the solution of the linear system(
F∗Γ−1

noiseF+ Γ−1
prior

)
mmap = F∗Γ−1

noised
obs + Γ−1

priormprior, (2)

where H := (F∗Γ−1
noiseF+Γ−1

prior) is the Hessian of the negative
log-posterior and F∗ is the adjoint of the p2o map.

The posterior is then a Gaussian centered at the MAP point,
i.e. πpost(m|dobs) ∝ N (mmap,Γpost), with posterior covariance

Γpost := H−1 =
(
F∗Γ−1

noiseF+ Γ−1
prior

)−1

. (3)

Furthermore, the posterior predictive of the wave height QoI q,
which depend linearly on the parameters via the discrete p2q
map Fq , can be determined as the Gaussian probability density
πpost(q|dobs) ∝ N

(
qmap,Γpost(q)

)
, where qmap = Fqmmap and

Γpost(q) = FqΓpostF
∗
q .

Writing expressions (2) for the posterior mean mmap and (3)
for the posterior covariance Γpost is easy; computing them is a
monumental challenge. The coefficient matrix of (2), the Hes-
sian H, is a dense matrix of dimension of the parameters, here
109 × 109. Constructing it efficiently via F requires as many
adjoint wave propagation solutions—here, each requiring ∼1
hour on 512 NVIDIA A100 GPUs—as there are spatiotem-
poral data, here ∼250,000; this amounts to 25 years. Even if
H could be constructed and stored (4 exabytes), factoring it
would require 10 years on a sustained 1 EFLOP/s machine.
SoA methods for large-scale inverse problems employ matrix-
free conjugate gradients (CG), preconditioned by the prior
covariance (thus involving elliptic PDE solves), and yield
convergence in a number of iterations of the order of the
number of eigenvalues of the prior-preconditioned Hessian of
the negative log likelihood, H̃like := Γ

1/2
priorF

∗Γ−1
noiseFΓ

1/2
prior , that

are above unity [14]. For highly ill-posed inverse problems,
the eigenvalues decay rapidly and H̃like has low effective
rank, and thus CG converges rapidly [14]. Moreover, a low-
rank approximation of H̃like computed via a matrix-free
randomized eigensolver, along with the Sherman–Morrison–
Woodbury formula, can be used to compactly represent the
posterior covariance, sample from the posterior distribution,
and compute the posterior variance field, as has been done for
some large-scale Bayesian inverse problems [17, 18].

Unfortunately, our operator is not low rank, due to the
hyperbolic nature of the forward wave propagation problem
(which tends to preserve information), and the location of the
pressure sensors directly on the seafloor, whose motion we
seek to infer. In our numerical experiments on smaller but
representative regions [21], the effective rank is nearly of the
order of the data dimension, and thus we can expect CG to take
O(250,000) iterations. Since each iteration requires the action
of F and F∗ on a vector, i.e., a pair of forward/adjoint wave
propagations, we would expect CG to take O(50) years (on

512 GPUs) for our target problem. And this is for computing
mmap via (2); in the absence of low-rank properties, the even
more daunting task of evaluating the uncertainty of the inverse
solution (which is also needed for the posterior of the QoI,
Γpost(q)) via the inverse of the Hessian in (3) is unthinkable.
While approximations of high (global) rank Hessians have
been attempted, they have not been viable for high-frequency
wave problems in 109 parameter dimensions, e.g., [22].

Alternatively, we could relax the need to exactly solve (2)
for mmap and instead seek a surrogate approximation of the
p2o map, F. However, this too is a monumental challenge:
constructing surrogates in 109 parameter dimensions, where
each training point amounts to a forward wave propagation
(∼1 hour on 512 GPUs), is essentially impossible using
conventional surrogate methods. Specially-architected neural
operator surrogates that exploit the geometry of p2o maps
have been developed, scaled to high ambient dimensions,
and deployed within Bayesian inverse problems, e.g., [23].
However, the efficiency of these surrogates (measured by
number of training data needed) is predicated on low-rank
representations of F, again a property not enjoyed by our p2o
maps. Thus, surrogates are not a viable option for our problem.

Finally, we might attempt to construct a projection-based
reduced order model (ROM) of the forward acoustic–gravity
wave equations, by projecting (1) onto a low-dimensional
reduced basis. The ROM would have to be parameterized
over 109 inputs, which is well beyond the reach of current
methods. A more fundamental difficulty is that efficient ROMs
for high-frequency wave propagation are not viable due to the
Kolmogorov N -width problem [24], which asserts the non-
existence of a low-dimensional subspace embedding.

Next, we present novel parallel algorithms that exploit the
autonomous nature of the dynamics (1) and p2o and p2q maps
F and Fq to induce an offline–online decomposition permitting
real-time solution of both the Bayesian inverse problem for
seafloor motion and subsequent wave height forecasting.

V. INNOVATIONS REALIZED

Our real-time Bayesian inference and prediction framework
combines the following key ideas: (i) an offline–online de-
composition of the inverse solution that precomputes various
mappings to enable the real-time application of the inverse
operator and entirely circumvents the need for PDE solutions
during the inversion phase; (ii) representation of the inverse
operator in data space instead of high-dimensional parameter
space; (iii) extension of this real-time inference methodology
to the goal-oriented setting for the prediction of QoI under
uncertainty; (iv) exploitation of the shift invariance of (1) to
reduce the required number of PDE solutions by several orders
of magnitude; and (v) exploitation of this same property to per-
form efficient FFT-based and multi-GPU-accelerated Hessian
matrix–vector products (matvecs). We employ this framework
to construct a digital twin for tsunami early warning in the
CSZ that solves a Bayesian inverse problem with over 109

parameters and 8,820 QoI exactly (up to rounding errors); both
the parameter inference and the complete end-to-end, data-to-
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Fig. 2. Real-time Bayesian inference framework. The inverse solution is decomposed into several precomputation (offline) Phases 1–3 that are executed just
once, and a real-time (online) Phase 4 of parameter inference and QoI prediction that is executed when an earthquake occurs and data are acquired. Phase 1
computes adjoint PDE solutions of the acoustic–gravity model (one PDE solution per sensor and QoI forecast location) to precompute the p2o and p2q block
Toeplitz matrices. Phases 2–4 rely on fast FFT-based Hessian actions using this block Toeplitz structure and a transformation of the inverse operator from the
high-dimensional parameter space to the much lower-dimensional data space. Compute times for each phase are given in Table III (§VII).

inference-to-prediction computations can be carried out within
a fraction of a second.

A. FFT-based Hessian matvecs

Solving the inverse problem (2) requires numerous Hessian
matvecs, and each Hessian matvec comes at the cost of a
pair of forward and adjoint PDE solutions. For large-scale
problems, PDE solutions are computationally expensive and
cannot be performed in real time. One key innovation that
enables real-time inference is to recognize and exploit the fact
that the p2o map is governed by an autonomous dynamical
system. Specifically, the acoustic–gravity model (1) represents
a linear time-invariant (LTI) dynamical system for which the
PDE operator does not explicitly depend on time.

The LTI dynamical system structure of the governing equa-
tions implies that the discrete p2o map F, which maps pa-
rameters m (spatiotemporal seafloor motion) to observables d
(sea bottom pressure) via solution of the discretized equations
of the acoustic–gravity PDE model (1), inherits a special
structure. Let Nm denote the spatial parameter points, Nd

the number of sensors (Nd ≪ Nm), and Nt the temporal
dimension of parameters and observations1 (Nt ≫ 1), i.e.,

• m ∈ RNmNt with blocks mj ∈ RNm , j = 1, 2, . . . , Nt;
• d ∈ RNdNt with blocks di ∈ RNd , i = 1, 2, . . . , Nt.
Then, the discrete p2o map F can be written as a block

lower-triangular Toeplitz matrix:

d1

d2

d3

...
dNt


=



F11 0 0 · · · 0

F21 F11 0 · · · 0

F31 F21 F11
. . .

...
...

...
. . . . . . 0

FNt,1 FNt−1,1 · · · F21 F11





m1

m2

m3

...
mNt


,

where F ∈ R(NdNt)×(NmNt) with blocks Fij ∈ RNd×Nm ,
i, j = 1, 2, . . . , Nt.

1For simplicity of presentation, without loss of generality, we assume that
the frequency of the observations and QoI predictions is equal to the temporal
discretization of the parameters, i.e., Nt = Nd

t = Nq
t .

In other words, the block Toeplitz structure of F corre-
sponds to a time-shift invariance of its blocks Fij . This shift
invariance implies that (i) the p2o map can be precomputed
from only Nd (number of sensors) adjoint PDE solutions
(corresponding to the first block column of F) and stored com-
pactly at cost of O(NmNdNt) memory; (ii) the block Toeplitz
matrix can be embedded within a block circulant matrix that
is block-diagonalized by the discrete Fourier transform [25];
and (iii) the p2o matvec then becomes a block-diagonal matvec
operation in Fourier space.

These FFT-based p2o matvecs can be implemented effi-
ciently on multi-GPU clusters. In particular, care is taken to
arrange the data layouts of the matrices and vectors in each
part of the computation to minimize the amount of GPU–GPU
communication. By exchanging the order of space and time
vector indices local to each processor, the need for strided
memory accesses during the core computational kernels is
avoided. A 2D GPU partitioning scheme is employed, where
the dimensions of the processor grid are adaptively tuned
according to the problem sizes and total number of GPUs in
order to further reduce communication costs [26].

The main advantage of the FFT-based matvec algorithm is
that it avoids PDE solves entirely, thus making it independent
of the cost of state discretization, time-stepping constraints
from Courant–Friedrichs–Lewy (CFL) condition, and com-
puting on unstructured mesh-based data structures dictated
by the PDE discretization. Moreover, it relies on arithmetic
operations that involve data that is contiguous in memory and
leverages routines from libraries such as cuBLAS that are
well known to achieve high performance on GPUs. As we
shall see, the initial cost of precomputing F, for a practical
number of sensor locations, is easily amortized in the context
of solving Bayesian inverse problems, where the matrix-free
Hessian actions (that involve costly PDE solutions) can now be
replaced with these extremely fast FFT-based Hessian matvecs.

Finally, the entire discussion about the p2o map F anal-
ogously applies to the p2q map Fq ∈ R(NqNt)×(NmNt) that
maps the parameters m to the QoI q ∈ RNqNt (sea surface
wave heights) at Nq forecast locations (Nq ≪ Nm).



Fig. 3. Physics-based magnitude 8.7 dynamic rupture earthquake scenario for a margin-wide rupture in the CSZ, from left to right: (a) True seafloor
displacement; (b) snapshot of true seafloor acoustic pressure field with 600 hypothesized sensor locations; (c) snapshot of true sea surface wave height;
(d) inferred mean of seafloor displacement; (e) uncertainties plotted as pointwise standard deviations in meters of seafloor normal displacement; and (f) snapshot
of reconstructed sea surface wave height with 21 locations for QoI predictions. Hyperlinks to animations of: (i) source (seafloor vertical uplift and normal
velocity); (ii) forward solution (sea bottom pressure and surface wave height); and (iii) inverse solution (true and inferred seafloor normal displacement).

B. Real-time Bayesian inference and prediction framework

To enable real-time Bayesian inference, our framework decom-
poses the inverse solution into several precomputation (offline)
Phases 1–3 and a real-time inference (online) Phase 4 [21], as
depicted in Fig. 2.

Phase 1 performs Nd + Nq (number of sensors plus QoI
forecasts) adjoint PDE solutions to precompute the block
Toeplitz matrices F and Fq .

Phase 2 computes the block Toeplitz matrices {G∗,G∗
q} =

Γprior{F∗,F∗
q } by performing Nd + Nq solves of the inverse

elliptic operator defining the prior covariance Γprior. Then, the
Sherman–Morrison–Woodbury formula is used to rewrite the
posterior covariance as

Γpost =
(
F∗Γ−1

noiseF+ Γ−1
prior

)−1

=
(
Γprior −G∗K−1G

)
,

where K = Γnoise + FG∗. Doing so effectively shifts the in-
verse operator from the intractable high-dimensional parameter
space (of dimension NmNt) to the still-large-but-tractable data
space (of dimension NdNt); for that reason, we refer to K as
the (prior-preconditioned) “data space Hessian.” The dense K
matrix is precomputed with NdNt matvecs on unit vectors,
each of which—thanks to the FFT-based matvecs of F and
G∗—can be executed within fractions of a second, after which
K can be Cholesky-factorized.

Phase 3 computes the uncertainties for the QoI predictions
by forming the dense covariance matrix Γpost(q) = FqΓpostF

∗
q .

This requires NqNt matvecs with Γpost(q) on unit vectors;
each matvec effectively solves a billion-parameter inverse
problem (in the actions of Γpost on a vector), which is made
tractable thanks to our ability to solve the inverse problem
in a fraction of a second. Analogously, we precompute the
data-to-QoI map, Q := FqΓpostF

∗Γ−1
noise, which, for a moderate

number of QoI forecasts, can (in Phase 4) be used to make
rapid real-time QoI predictions directly from observational
data, thereby bypassing the need to explicitly reconstruct the
seafloor velocity parameters (see §VII).

Phase 4 executes the (online) parameter inference and QoI
prediction, which, given data dobs, reduces to computing the
MAP points, mmap = ΓpostF

∗Γ−1
noised

obs and qmap = Fqmmap =
Qdobs (taking mprior = 0), both of which, after the precom-
putations done in Phases 1–3, can be executed in real time.
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Fig. 4. Real-time QoI predictions with uncertainties illustrated as 95%
credible intervals (CIs) inferred from noisy, synthetic data of 600 hypothesized
seafloor acoustic pressure sensors for a margin-wide rupture in the CSZ. The
QoI numbers (#1–#8) refer to (a subset of) the 21 QoI forecast locations
marked in the inferred (reconstructed) sea surface wave height plot in Fig. 3.

C. Application to the Cascadia subduction zone

To assess the feasibility of our framework for near-field
real-time tsunami forecasting in Cascadia without assuming
simplified earthquake models, we generated seafloor displace-
ments that capture the nonlinear interaction of seismic wave
propagation and frictional rock failure during a realistic CSZ
rupture scenario computed with a 3D dynamic earthquake
rupture model [27, 4]. We then used these “true” seafloor
displacements as a source for our acoustic–gravity forward
model (i.e. normal displacements b(x⃗, t) in (1)) to generate

https://youtu.be/eQlHehX_u6k
https://youtu.be/-CPxuK6bebk
https://youtu.be/9OAPWumAd1g


synthetic observational data with 1% relative added noise,
at Nd = 600 hypothesized seafloor pressure sensors. Using
these sparse, noisy observations of acoustic pressure, we then
solved the PDE-based inverse problem for the spatiotemporal
parameter field representing seafloor velocities during the
rupture event, and made predictions of the QoI (sea surface
wave height) at Nq = 21 forecast locations. We note that
even a small number of sea surface wave height forecasts is
informative for early warning purposes [28].

To solve this inverse problem, we discretized the acoustic–
gravity model (1) with high-order finite elements in MFEM
(see §VI-B) using a hexahedral mesh with a spatial resolution
of 300 meters (less in shallow areas of the CSZ) with 3.74
billion states and explicit Runge–Kutta time-stepping, with a
timestep size dictated by the CFL condition, for a simulation
time of 420 seconds. The parameter field was discretized
with Nm = 2,416,530 spatial points and Nt = 420 temporal
steps (1 Hz frequency) for a total parameter dimension of
∼1.015 billion. Results of the parameter inference and QoI
prediction under uncertainty are shown in Figs. 3 and 4; note
that the inverse solution is depicted in terms of the seafloor
normal displacement,

∫ T

0
m(x⃗, t)dt, which is visually simpler

to interpret than snapshots of the inferred spatiotemporal
parameter field (seafloor velocities). The computation times
and other performance-related aspects for this inverse problem
are presented in §VII.

VI. HOW PERFORMANCE WAS MEASURED

Our inference and prediction framework consists of two code
bases. The first is the “Cascadia application code,” a C++
solver for the acoustic–gravity model (1) implemented in
MFEM. This code is used in the (offline) Phase 1 of our
framework to compute adjoint PDE solutions that define the
p2o map F and p2q map Fq . Both AMD (via HIP) and
NVIDIA (via CUDA) GPU-based systems are supported; we
report performance results for both types of systems.

The second code, which implements Phases 2–4 of our
framework, is an FFT-based C++/CUDA code that exploits
the block Toeplitz structure of F and Fq , together with
the other algorithmic innovations described in the preceding
section, to solve the real-time Bayesian parameter inference
and QoI prediction problems. This code makes extensive
use of CUDA-exclusive libraries, including cuDSS and cu-
SOLVERMp, among others, so we report performance results
on NVIDIA GPU-based systems.

All computations are performed in double precision; for ill-
posed inverse problems like ours, single precision is unstable.

A. HPC systems

LLNL’s El Capitan is an HPE Cray EX supercomputer with
11,136 nodes, each containing 4 AMD Instinct™ MI300A
Accelerated Processing Units (APUs). The MI300A consists
of 24 Zen4-based CPU cores, a CDNA3-based GPU, and
128 GB of HBM3 memory, integrated onto a single pack-
age. Each MI300A has a peak double precision through-
put of 61.3 TFLOP/s for a total peak of the machine of

2.73 EFLOP/s. The system nodes are connected by an HPE
Slingshot-200 dragonfly interconnect with at most three net-
work hops between any two nodes.

NERSC’s Perlmutter is an HPE Cray Shasta supercomputer
with 1,536 nodes, each containing an AMD EPYC™ 7763 64-
core CPU and 4 NVIDIA A100 GPUs. Each GPU has 40 GB
of HBM2 memory and a peak double precision throughput of
9.7 TFLOP/s for a total system peak of 59.6 PFLOP/s. The
system is connected by a Slingshot-11 dragonfly interconnect
with at most three network hops between any two nodes.

B. MFEM library

MFEM is a C++ finite element (FE) library that provides
high-performance discretization algorithms to a wide range
of HPC application codes in national laboratories, industry,
and academia [29]. In addition to SoA support for high-order
methods, MFEM has been designed to be highly scalable
on the full range of computing platforms, from laptops to
GPU-accelerated supercomputers [30]. Building on efforts in
the U.S. Exascale Computing Project [31], the library has
put a special emphasis on GPU architectures. An important
algorithmic innovation that enables MFEM to achieve high
performance on GPU hardware is the concept of FE operator
decomposition that exposes data parallelism in high-order FE
computations [32], and enables additional optimizations on
quadrilateral and hexahedral grids by taking advantage of
the Cartesian product structure at the element level in the
decomposition. Critically, MFEM’s approach also leads to
a significantly reduced memory requirement through partial
assembly (PA), which stores an asymptotically optimal amount
of data: O(1) per degree of freedom (DOF). Compared to
the classical full (global sparse matrix) or element-level (local
dense matrices) assembly algorithms, PA leads to orders-of-
magnitude faster execution times on both CPU and GPU ar-
chitectures. Another option supported by MFEM is matrix-free
(MF) assembly where no data is stored and all computations
are done on the fly; see Fig. 7. In this work, we focus on faster
time-to-solution (as opposed to higher FLOP/s), so we use the
PA approach to discretize the forward problem (1).

C. Cascadia application code

The acoustic–gravity forward problem (1), as well as its
adjoint problem, were cast into a mixed variational formulation
and then discretized with MFEM using the Galerkin FE
method and explicit fourth-order Runge–Kutta (RK4) time-
stepping. The FE discretization uses fourth-order continuous
(H1-conforming) scalar-valued pressure and third-order dis-
continuous (L2-conforming) velocity components.

Table I summarizes the main steps of the Cascadia appli-
cation for computing adjoint PDE solutions in Phase 1 of
our framework. The timers represent wall time; they are im-
plemented with standard POSIX clock functions, called after
{hip,cuda}DeviceSynchronize and MPI_Barrier.

While performance is measured for the entire application,
the computational expense is overwhelmingly dominated by
the cost of the acoustic–gravity wave propagation solver. In



TABLE I
CASCADIA APPLICATION CODE: TIMERS

Timer Main tasks

Initialization Initialize MPI devices
Setup Read and partition mesh

Partially assemble the mixed FE operator
Precompute parameter-to-state mapping
Precompute state-to-observation operator

Adjoint p2o/p2q Apply transpose observation operator (RHS)
Solve adjoint acoustic–gravity wave propagation
Retrieve p2o/p2q column vector from adjoint state

I/O Write adjoint p2o/p2q column vector to file

particular, the dominant cost is the repetitive application (four
applications per RK4 timestep) of the time-stepping operator

[uδ pδ]
T
= M−1

(
−A [u p]

T
i + [f g]

T
i

)
,

where [u p]
T
i and [f g]

T
i are respectively the state and right-

hand-side (RHS) vectors at time instance i, and [uδ pδ] is
the state increment used by RK4. The (lumped) mass matrix
M and stiffness matrix A are discretizations of the block
operators M and A defined by:(

M

[
u⃗
p

]
,

[
τ⃗
v

])
:=

[
(ρu⃗, τ⃗) 0

0 (K−1p, v) + ⟨(ρg)−1p, v⟩∂Ωs

]
and (

A

[
u⃗
p

]
,

[
τ⃗
v

])
:=

[
0 (∇p, τ⃗)

−(u⃗,∇v) ⟨Z−1p, v⟩∂Ωa

]
, (4)

where u⃗, τ⃗ ∈ (L2(Ω))3 and p, v ∈ H1(Ω); (·, ·) denotes
the (component-wise) L2(Ω) inner product, and ⟨·, ·⟩∂Ω is the
L2(∂Ω) inner product over (part of) the boundary ∂Ω.

TABLE II
SCALABILITY SETUP ON THE EL CAPITAN AND PERLMUTTER SYSTEMS

Weak scaling Strong scaling

Nodes GPUs Processor grid Elements Elements/GPU

85 340 5 × 17 × 4 1,693,450,240 4,980,736
170 680 10 × 17 × 4 3,386,900,480 2,490,368
340 1,360 10 × 34 × 4 6,773,800,960 1,245,184
680 2,720 20 × 34 × 4 13,547,601,920 622,592

1,360 5,440 20 × 68 × 4 27,095,203,840 311,296
2,720 10,880 40 × 68 × 4 54,190,407,680 155,648
5,440 21,760 40 × 136 × 4 108,380,815,360 77,824

10,880 43,520 80 × 136 × 4 216,761,630,720 38,912

47 188 1 × 47 × 4 295,698,432 1,572,864
94 376 2 × 47 × 4 591,396,864 786,432

188 752 2 × 94 × 4 1,182,793,728 393,216
376 1,504 4 × 94 × 4 2,365,587,456 196,608
752 3,008 4 × 188 × 4 4,731,174,912 98,304

1,504 6,016 8 × 188 × 4 9,462,349,824 49,152

The primary performance metric that matters from our ap-
plication point of view is therefore runtime per timestep, which
we report in our weak and strong scalability studies. Reported
runtimes were averaged over ten consecutive timesteps (40
operator applications), discarding the initial ten timesteps as
warm-up. The problem sizes we used to test scalability on the
El Capitan and Perlmutter systems are summarized in Table II.
Since runtime per timestep is the primary application-relevant

performance metric, we optimized GPU-kernel performance
for DOF throughput rather than total achieved FLOP/s (see
§VII-B); FLOP counts and memory access rates on El Capitan
were analyzed using the ROCm Compute profiler.

D. FFT-based Bayesian inference code

The FFT-based algorithm used to enable fast Hessian matvecs
is completely agnostic to the particular application; it is a
general purpose code that can be used to calculate matvecs
with any block-triangular Toeplitz matrix. Examples of other
digital twin applications that fit into this framework are dis-
cussed in §VIII. This code employs the cuFFT and cuBLAS
libraries to compute batched FFTs and batched dense matvecs,
respectively. Performance of the matvecs was measured with
the NSight Compute profiler. The primary performance goal
of this code is to achieve fast time-to-solution. FFT matvec
wall timings were measured with omp_get_wtime after
calling cudaDeviceSynchronize and MPI_Barrier.
The implementation of the FFT matvec algorithm is available
open-source at https://github.com/s769/FFTMatvec.

The prior solves used to form the G∗ matrix were im-
plemented with the cuDSS library. Linear solves with the
dense, symmetric K matrix were implemented via Cholesky
factorization through the cuSOLVERMp library.

VII. PERFORMANCE RESULTS

A. Scalability

We present weak and strong scalability results (Fig. 5) on
the El Capitan and Perlmutter supercomputers. The compu-
tational cost of our inference and prediction framework is
overwhelmingly dominated by the cost of the adjoint wave
propagation PDE solutions in Phase 1 (offline) that are used to
construct the p2o map F and p2q map Fq . The computational
cost of each adjoint PDE solution, in turn, is overwhelmingly
dominated by the RK4 time-stepping solver; each time step
involves four applications of the PDE operator. For this offline
phase, scalability to large problem sizes is critical (in addition
to throughput), since we wish to apply our framework to
other settings beyond Cascadia where tsunamis can impact
populations across long distances (such as occurred in the 2004
Sumatra–Andaman earthquake).

On El Capitan, the solver maintained 92% weak parallel
efficiency over a 128-fold increase in problem size, from 85
nodes (340 AMD MI300A GPUs) to 10,880 nodes (43,520
GPUs) of the full system. The largest problem involved over
55.5 trillion DOF, which, to the best of our knowledge,
is the largest reported unstructured FE computation. This
computation used about 86% (4.8 PB) of the total available
machine memory (5.57 PB). For the largest problem fitting on
340 GPUs (434 billion DOF), the solver achieved a parallel
speedup of 100.9 over a 128-fold increase in GPUs, a strong
parallel efficiency of 79%.

We also obtained excellent weak and strong scalability on
the Perlmutter system over a 32-fold increase in GPUs, from
47 nodes (188 NVIDIA A100 GPUs) to 1,504 nodes (6,016
GPUs). Here, the solver achieved 100% weak efficiency for

https://github.com/s769/FFTMatvec
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Fig. 5. Weak scalability (left) and strong scalability (right) results on El Capitan, from 85 nodes (340 AMD MI300A GPUs) to 10,880 nodes (43,520 GPUs),
and on Perlmutter, from 47 nodes (188 NVIDIA A100 GPUs) to 1,504 nodes (6,016 GPUs). Numbers along the graph lines indicate parallel efficiency.

a problem with 403 million DOF per GPU and 92% strong
efficiency for a problem involving 75.7 billion DOF.

While GPU-based systems have been the focus of our
performance optimizations, we want to emphasize that our
solver also exhibits excellent weak and strong scalability
on CPU-based systems. For example, on TACC’s Frontera2

supercomputer, we achieve an outstanding weak efficiency of
95% over a 8,192-fold increase in problem size, from 1 node
(56 cores) to 8,192 nodes (458,752 cores), with the largest
problem involving 2.20 trillion DOF (4.80 million DOF per
core), and a strong efficiency of 70% over a 128-fold increase
in cores, from 3,584 cores to 458,752 cores.
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Fig. 6. Application timers (as defined in Table I) in the weak scalability (left)
and strong scalability (right) limit on Perlmutter. Adjoint p2o and I/O timers,
each measured for 200 timesteps, are projected to 20,000 timesteps. Numbers
on bars indicate percentage of application runtime. Note log scale.

Since small timesteps are needed to resolve fast acoustic
waves, the total number of timesteps for the wave propagation
solver is usually large. For example, computation of the CSZ
rupture scenario on our FE mesh requires on the order of at
least O(104) time steps. Fig. 6 plots application timers (as
defined in Table I), where adjoint p2o and I/O timers, each
measured for 200 timesteps, are projected to 20,000 timesteps,
to illustrate that the time for job initialization, setup, and I/O
is negligible in the weak scalability limit but has minor impact
in the strong scalability limit, where the entire application
runtime is still overwhelmingly dominated by the solver.

2Frontera hosts 8,368 Intel Xeon Platinum 8280 (“Cascade Lake”) compute
nodes contained in 101 racks. Each node has 56 cores on two sockets and
192 GB of DDR4 RAM; see https://docs.tacc.utexas.edu/hpc/frontera/#system.

B. Peak performance

While the existing methods in MFEM already scaled well for
the forward problem, we introduced additional GPU perfor-
mance and memory optimizations to further reduce the runtime
and increase the size of the problems we can simulate. Some
of the performance optimizations for the two key kernels in
(4) are shown in Fig. 7. These kernels account for the majority
of the time in each stage of the RK4 time-stepping.

104 105 106 107 108 109

Degrees of freedom

0

5

10

15

20

25

30

T
h

ro
u

g
h

p
u

t 
(G

D
O

F
/s

)

0.16 TFLOP/s (0.27% of peak)

3.0 TFLOP/s (4.92% of peak)

4.0 TFLOP/s (6.51% of peak)

7.5 TFLOP/s (12.28% of peak)

Initial PA
Shared PA
Optimized PA
Fused PA
Fused MF

Fig. 7. Throughput, in billion degrees of freedom (GDOF) per second, for the
kernels corresponding to the off-diagonal blocks in (4) on a single GPU of El
Capitan. Measured FLOP/s rates with percentage of peak (61.3 TFLOP/s) are
shown in the saturated regime for each curve. By utilizing the GPU shared
memory we improved the initial partial assembly (PA) kernels (red) to a
version (brown) that is 13× faster. Specifying explicit launch bounds for
the kernels allowed us to additionally improve performance (yellow), which
was the version of the kernels used in the scaling runs in Fig. 5. Further
optimizations by fusing the actions of the two operators into one kernel
allowed us to achieve a peak performance of 24 GDOF/s (blue) corresponding
to 4 TFLOP/s, or 6.51% of FLOP/s peak. Although the matrix-free (MF)
approach (green) attains higher FLOP/s, its time-to-solution (DOF throughput)
remains lower than that of Fused PA.

We also performed extensive optimization of the memory
usage, including: instrumenting the code to track memory
usage separately on host and device; taking advantage of
the unified memory on the MI300A APU by freeing host
allocation so they can be used for GPU allocations; using
sparsity in the RHS to avoid storing full vectors; fusing per-
mutation operators with operator action kernels; recomputing
determinants of Jacobian matrices instead of storing them;
batching multiple small memory allocations together; switch-

https://docs.tacc.utexas.edu/hpc/frontera/#system


ing to 64-bit integers for certain variables local to the GPU
(e.g., multi-dimensional quadrature point data); and carefully
reusing temporary vectors from RK4 for temporary vectors
needed in the operator action. With all these optimizations for
a problem of size 67 million DOF per APU, we improved
unified memory usage from (5.2 host + 30.7 device) to (1.1
host + 5.64 device) GiB/APU, a reduction of 5.33×. These
improvements allowed us to fit ∼1.28 billion DOF per APU.

Our primary performance metric is time-to-solution, which,
for the PDE operator (4), is measured as DOF throughput.
For a given problem size, higher throughput is directly pro-
portional to faster computation time. As shown in Fig. 7,
more FLOP/s do not imply faster time-to-solution: the best-
performing implementation, Fused PA, has a 1.9× lower
percentage of FLOP/s peak compared to Fused MF, but is
1.6× faster. The reason for this is that although Fused MF
requires less memory, it incurs a higher computational cost,
with an arithmetic intensity of 17.2 FLOP/byte compared to
Fused PA’s 2.5 FLOP/byte. Although the percentage of peak
FLOP/s in Fig. 7 is not as high as for dense matrix operations,
we note that it is much better than the results reported for the
HPCG benchmark on comparable systems3 (e.g., 0.7% of peak
of Frontier’s MI250Xs). Similar to the type of computations
performed in FE algorithms, HPCG has a FLOP count and
memory access rate proportional to the number of DOF.

All GPU kernels involved in the FFT matvec implementa-
tion (§VI-D) are memory-bound and achieve 80–95% of peak
memory bandwidth on NVIDIA A100 and GH200 GPUs [26].

C. Time-to-solution

We measured time-to-solution for a margin-wide rupture sce-
nario in the CSZ for which we presented inversion results in
§V. These computations were performed on 128 Perlmutter
nodes (512 NVIDIA A100 GPUs) and involved inference of
more than one billion parameters from 252,000 synthetic,
noisy observations obtained by 600 hypothesized seafloor
pressure sensors, followed by real-time forecasting of the QoI
(tsunami wave heights) under uncertainty for 21 QoI locations.

For this problem, Table III summarizes the compute times
for each phase of our inference and prediction framework. As
discussed above, the total computational expense is dominated
by the PDE solutions in the (offline) Phase 1; in these offline
computations, scalability is the most important metric, whereas
time-to-solution is the metric that matters most for the Phase 4
(online) computations that are executed in real time.

Phase 1 relies on the PDE solver to precompute the p2o map
F and p2q map Fq . For the given configuration (600 sensors,
21 QoI locations), we performed a total 621 PDE solutions,
each of which (on average) took 52 minutes on 512 A100
GPUs, for a total of 538 hours of compute time (note that each
one of the 621 PDE solutions can be computed independently).

Once Phase 1 was completed, we exploited the block
Toeplitz structure of the precomputed F and Fq to perform
fast FFT-based Hessian matvecs. Each Hessian matvec, con-
ventionally requiring a pair of forward and adjoint PDE

3As of April 15, 2025, HPCG results have not been released for El Capitan.

TABLE III
COMPUTE TIME FOR EACH PHASE OF THE INFERENCE AND PREDICTION
PERFORMED ON PERLMUTTER A100 GPU NODES. TIME-TO-SOLUTION

FOR THE ONLINE COMPUTATION (PHASE 4) IS LESS THAN 0.2 SECONDS.

Phase Task GPUs Compute time

1 form F : m 7→ d 512 600× 52 m ∼ 520 h
form Fq : m 7→ q 512 21× 52 m ∼ 18 h

2 form G∗ := ΓpriorF
∗ 16 600× 4.5 s ∼ 45 m

form G∗
q := ΓpriorF

∗
q 16 21× 4.5 s ∼ 1.5 m

form K := Γnoise + FG∗ 512 252k× 24 ms ∼ 100 m
factorize K 25 22 s

3 compute Γpost(q) 512 8,820× 150 ms ∼ 25 m
compute Q : d 7→ q 512 8,820× 150 ms ∼ 25 m

4 infer parameters mmap 512 < 0.2 s
predict QoI qmap 1 < 1 ms

solutions that take 104 minutes on 512 A100 GPUs per
matvec, could now be performed in 0.024 seconds (averaged
over 100 matvecs) on the same number of GPUs, a speedup
of 260,000. We re-emphasize that these FFT-based Hessian
matvecs are exact and do not incorporate any approximations.
The 260,000× speedup derives primarily from the parallel al-
gorithmic innovations, discussed in §V, that massively reduce
the overall complexity of the Hessian matvec which, after the
precomputations in Phase 1, avoids PDE solutions altogether.

These rapid Hessian matvecs are the workhorse for the
remaining offline computations (Phases 2–3). For example,
forming the data space Hessian K requires 252,000 matvecs—
an intractable task if each matvec required a forward/adjoint
pair of PDE solutions—which we computed with the FFT-
based matvecs in just 100 minutes. Finally, real-time inference
of the parameters (seafloor motion) and forward prediction of
the QoI (surface wave heights) was achieved in less than 0.2
seconds of compute time on 512 A100 GPUs.

We conclude by noting that computing the inverse solu-
tion with SoA methods (see §IV), without the innovations
described in §V, would not only have been prohibitive in
real time, but would have been intractable (50 years on 512
A100 GPUs). With the advances described in this paper, the
computing time reduces to a one-time offline computation of
621 (Nd+Nq) adjoint wave propagations, requiring 538 hours
on 512 GPUs and representing an ∼810× reduction in PDE
solutions. Then, for each earthquake that excites the sensors,
the online solution of the Bayesian inverse problem requires
< 0.2 s, a factor of 1010 speedup over the SoA CG algorithm.

VIII. IMPLICATIONS

We enable real-time probabilistic tsunami forecasts for near-
field events such as a future magnitude 8–9 CSZ megathrust
earthquake, where conventional systems may fail due to de-
layed or inaccurate source characterization. Our digital twin
framework resolves complex rupture dynamics and tsunami
wavefields at unprecedented speed and accuracy, enabling
early predictions of inundation and evacuation zones within
seconds, critical for life-saving response where warning time
is otherwise measured in minutes or less. Notably, the real-
time inversion itself requires only moderate computational
resources. Moreover, if only surface wave heights at selected



locations are of interest, the forecasting step reduces to a
precomputed, small, dense matrix–vector product—enabling
deployment entirely without any HPC infrastructure.

While we demonstrate the potential for real-time forecast-
ing, we remain limited by the sparsity of offshore sensors cur-
rently available in the CSZ; however, emerging technologies
such as distributed acoustic sensing will improve observational
coverage for resolving near-field tsunami source characteristics
[33, 34]. Furthermore, expanding to fully-coupled acoustic–
elastic simulations [35] allows us to employ our framework
to invert for fault slip, and forward propagate seismic waves
to compute—in real time—maps of the intensity of ground
motion in populated regions. These shake maps provide critical
information for early responders and post-earthquake recovery.

More generally, autonomous dynamical systems arise in
many different settings beyond geophysical inversion. Our
Bayesian inversion-based digital twin framework is thus more
broadly applicable to such problems as acoustic, electromag-
netic, and elastic inverse scattering; source inversion for trans-
port of atmospheric or subsurface hazardous agents; satellite
inference of emissions; and treaty verification, among others.
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