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Abstract

Understanding pattern formation in crossing pedestrian flows is essential
for analyzing and managing high-density crowd dynamics in urban environ-
ments. This study presents two complementary methodological approaches
to detect and characterize stripe formations, an emergent structure observed
when two pedestrian groups cross at various angles. First, we propose a
matrix-based method that utilizes time-resolved trajectory data to determine
the relative crossing order of pedestrians from opposing groups. By identify-
ing points of minimal spatial separation between individuals and analyzing
associated time differences, we construct a crossing matrix that captures the
sequence and composition of stripes. Second, we introduce a geometric model
based on elliptical approximations of pedestrian groups, enabling analytical
prediction of two key macroscopic quantities: the number of stripes and the
interaction time between groups. The model captures how these quantities
vary with the crossing angle and shows strong agreement with experimental
data. Further analysis reveals that group elongation during crossing corre-
lates with the vertical cross-section of the elliptical shape. These methods
provide effective tools for analyzing large-scale movement datasets, informing
the design of public spaces, and calibrating mechanistic models. The study
also presents hypotheses about pattern transitions in continuous pedestrian
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streams, suggesting promising directions for future research on collective mo-
tion under varying flow geometries and densities.

Keywords:

1. Introduction

In modern urban environments, managing pedestrian and crowd dynam-
ics [1, 2] has become a critical aspect of transportation research. As cities
grow and urban spaces become more densely populated, the efficient move-
ment of pedestrians and larger crowds plays an increasingly vital role in
ensuring safety, accessibility, and overall functionality of public spaces [3,
4, 5, 6]. Understanding crowd motion, particularly in crowded areas such
as transit hubs [7, 8], stadiums [9, 10], or public events [11, 12], is crucial
not only for optimizing flow but also for preventing dangerous overcrowd-
ing situations. Crowd motion studies have proven essential for developing
better transportation systems [13, 9, 14], as they provide insights into the
collective behavior of individuals in dense environments [15, 16], enabling
planners to design infrastructure that accommodates large-scale pedestrian
movement [17, 18]. These studies also inform the development of evacuation
strategies in emergency scenarios [19, 20, 21], ensuring rapid, safe movement
under panic conditions [22, 23].

Crowd dynamics are particularly relevant in urban environments, where
high pedestrian volumes interact with complex infrastructure, often leading
to emergent patterns such as lanes [24, 25, 26], arches [27, 28, 29], or stripe
formations [30, 31, 32, 33, 34]. These dynamics are amplified in scenarios
where multiple groups converge or cross paths, such as at intersections or
transport terminals, where congestion can build quickly. For example, dur-
ing peak hours, pedestrians navigating busy crosswalks may spontaneously
form stripe-like patterns to avoid collisions with those moving in the opposite
direction. Such emergent structures are not only fascinating from a scientific
perspective but also have significant practical implications for traffic flow op-
timization [31, 9, 14], accident prevention [35, 24, 36], and the design of public
spaces that minimize congestion and improve safety [37, 38, 39]. Addition-
ally, understanding crowd behavior under panic, such as during evacuations,
is critical for designing routes and strategies that minimize bottlenecks and
improve the overall efficiency of emergency response systems.

The study of crowd dynamics in urban settings also benefits significantly
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from simulation-based research [40]. Simulations offer a controlled way to
model and analyze crowd behavior under various conditions , including over-
crowded environments or during mass evacuations . By employing simulation
techniques, one could potentially investigate how different factors, such as
group size, crossing angles, or infrastructure design, affect pedestrian flows.
These studies often rely on models such as agent-based simulations [41, 42, 43]
or cellular automata [44, 45], which allow for detailed observation of local
interactions between individuals. Despite the advances in simulation tech-
niques, many models focus primarily on local behaviors, such as collision
avoidance [46, 47, 48], grouping within a crowd [49], social pressure [30], but
fail to capture the broader emergent structures that can arise from these
interactions, such as the formation of stripes in crossing pedestrian flows
[39, 33, 34].

These emergent patterns, including lane and stripe formations, play a
vital role in pedestrian dynamics, particularly in urban environments. Emer-
gent behavior refers to complex patterns or structures that arise from simple
individual actions without any central coordination. In the case of pedes-
trian movement, these patterns can lead to more organized flows, reducing
collisions and improving overall efficiency. For example, stripe formations
occur when two groups of pedestrians moving in opposite directions spon-
taneously align themselves into parallel lanes, allowing each group to move
more smoothly with minimal interference. Formation of stripes for two cross-
ing flows of pedestrians has been shown schematically in Figure 1. This type
of emergent behavior is especially important in scenarios where pedestrian
groups cross paths, such as in busy intersections or plazas. Studying these
emergent phenomena provides valuable insights into how large crowds be-
have in real-world environments and helps improve transportation systems’
design and management [50, 51].

Despite the importance of understanding pedestrian flow and emergent
patterns, accurately modeling and analyzing such complex, dynamic systems
presents significant challenges. Traditional models of pedestrian movement
often rely on trajectory data to capture the paths of individuals over time
[52, 53, 40], which, while useful for certain analyses, may fail to detect larger
emergent structures such as stripes. This is particularly true when multi-
ple groups of pedestrians cross paths at various angles [17, 39, 54, 33, 34],
creating interactions that are not easily captured by trajectory-based meth-
ods alone. The difficulty of analyzing these situations highlights the need
for more advanced models that can account for the global behaviors that
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Figure 1: A schematic representation illustrating stripe formation as two groups of people
cross paths. The figure presents three distinct moments: before crossing (T1), during
crossing (T2), and after crossing (T3), with T1 < T2 < T3. The two groups are represented
by blue and red squares, each moving in the direction indicated by matching colored
arrows. A green dotted arrow marks the bisector of the crossing angle.

emerge from local interactions, especially in crowded urban environments
where crossing flows are common.

Various types of pedestrian flows exhibit different dynamic characteristics,
depending on factors like crowd density, crossing angle, and the structure of
the surrounding environment. For example unidirectional flows [55, 56, 57],
where all pedestrians are moving in the same direction, are relatively easy
to manage, as individuals naturally form lanes that increase flow efficiency.
However, bidirectional flows [58, 59], where groups move in opposite di-
rections, or more complex scenarios where groups are crossing at angles
[17, 39, 54, 33, 34], are more challenging to model and analyze due to the
greater likelihood of collisions and congestion. It is in these crossing flows,
particularly in urban settings, where stripe formations are most commonly
observed, making them a critical focus for transportation research.

Emergent structures like stripes are of particular interest because they
represent a form of spontaneous order that enhances flow efficiency in sit-
uations where two groups of pedestrians interact. However, detecting and
analyzing these formations using current methodologies remains a challenge,
particularly in real-world environments where data may be incomplete or
noisy, and computational efficiency is paramount. Traditional trajectory-
based methods, while useful for tracking individual movements, often lack
the sophistication needed to capture the full complexity of these patterns,
especially in crowded or chaotic settings.
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Another significant gap in the literature is the lack of computationally ef-
ficient techniques for analyzing large-scale pedestrian flows. While methods
such as the edge-cutting algorithm can effectively detect stripe formations
[33], they are computationally intensive, making them less practical for real-
time monitoring or large-scale urban applications. Furthermore, algorithms
such as the pattern-matching technique [33, 34] may not always provide con-
sistent results, particularly when faced with variations in the quality of the
input data.

Given these limitations, the development of new methodologies that can
efficiently detect and analyze stripe patterns in crossing pedestrian flows is
a critical area of research. Such methods should not only reduce computa-
tional costs but also provide deeper insights into both individual and group
dynamics, allowing for a more comprehensive understanding of how these
patterns form and evolve. By addressing these gaps, researchers can advance
the field of pedestrian flow modeling and contribute to the design of more
efficient, safe, and optimized transportation systems.

1.1. Our contribution

The main contribution of this paper is the development of two distinct
yet complementary methods for detecting and analyzing stripe formation in
crossing pedestrian flows: a matrix-based method and a barycentric (BC)
approach.

Our matrix-based method, computationally efficient and fundamental in
its design, considers microscopic-level interactions between individual pedes-
trians from opposing groups. Specifically, we compute the time difference in
crossing for pairs of pedestrians from the human-trajectory data and use this
information to construct a temporal matrix that encapsulates key aspects of
stripe formation. This matrix not only reveals the number and size of stripes
but also provides insights into the identity of individuals within each stripe
and the sequence in which these stripes cross paths.

On the other hand, the barycentric approach is built on transforming
pedestrian trajectories into moving reference frames defined by the barycen-
ters (centers of mass) of the entire system or individual groups. This per-
spective reveals the spatio-temporal structure of the crowd during crossing,
highlighting stripe orientation, group deformation, and compression in an
interpretable way. As part of this approach, we develop a geometric model
that approximates pedestrian groups as ellipses and provides analytical pre-
dictions for the number of stripes and the interaction time as functions of
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the crossing angle. We find that group elongation during crossing is strongly
correlated with the vertical cross-section of the ellipse, which in turn governs
stripe formation. To extract stripe counts directly from barycentric views, we
introduce two estimation strategies: the precise BCP method, which adapts
thresholding and time selection per angle, and the simplified BCS method,
which uses fixed parameters to offer a consistent and efficient alternative.

Finally, based on our findings, we propose two testable hypotheses re-
garding the emergence of traveling stripe waves in continuous pedestrian
streams and the existence of a transition to disordered regimes when group
widths exceed a critical threshold. These ideas lay the foundation for future
theoretical and experimental research.

The remainder of this paper is structured as follows: in Section 2.1, we
describe the experimentally obtained trajectory data used for this analy-
sis. Section 2.2 introduces the crossing matrix method and and section 2.3
presents the barycentric reference frame formulation. In section 2.4 we de-
velop a minimalist geometric model of elliptical pedestrian groups to predict
number of stripes and crossing time as functions of the crossing angle. Sec-
tion 2.5 introduces two algorithms under the barycentric analysis framework
to estimate the number of stripes based on transformed group trajectories.
Section 3 presents and discusses the results and finally section 4 concludes the
paper with a summary of key findings, broader implications, and suggestions
for future research.

2. Methodology

2.1. Experimental details

This research utilized experimental data [54, 33] on the crossing flows of
pedestrians, obtained from live participants on the campus of University of
Rennes, France. The experiments were conducted over two days, with 36 and
38 participants on the first and second days, respectively. The participants
were divided into two groups with similar spatial densities and instructed
to move along a direction announced before each trial, such that the two
groups would cross each other at a particular angle. The experiments were
performed for seven different crossing angles: 0°, 30°, 60°, 90°, 120°, 150°,
and 180°, with approximately 17 trials performed at each angle, totaling 116
trials. During each trial, the head trajectory of each pedestrian was recorded
as a time series for approximately 15-25 seconds using VICON, an infrared
camera system. The positions of the pedestrians were recorded at 120 Hz,
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and the center of the tracking area was used as the origin of a two-dimensional
Cartesian coordinate system. The participants were not visually or locomo-
tively impaired and were recruited using a mailing list for volunteers on the
campus. The experiments were performed in a rectangular hall with taped
visual references for facilitating the direction of motion. The data obtained
from the experiments were low-pass filtered using a forward-backward 4th-
order butterworth filter to reduce gait-induced oscillations. The analysis
presented in this paper used the filtered data.

2.2. Constructing the crossing matrix

In this section we summarize the mathematical formulation of construct-
ing the matrix, that has the potential to provide complete information about
stripe formation.

For clarity in our discussion, we designate the two groups of crossing
pedestrians as group A and group B. We then consider a pair of pedestrians,
α from group A and β from group B. Ideally, we are interested in the inter-
section point of the trajectories of these two pedestrians and then look at the
respective time-stamps of the individuals crossing this point. However, the
time-series human-trajectory data that we use for this research was recorded
at time intervals of 1/120 sec. For this reason, it is highly unlikely that the
actual intersection point would have a time-stamp at all. So instead, we
consider the points of minimum distance between the two trajectories. Note
that this is not exactly the same as the distance of closest approach, where
both the individuals have the same time-stamp. The situation is described
schematically in Figure 2.

In all the cases for our data, at the point of minimum distance between the
trajectories of α and β, their respective time-stamps τα and τβ are different.
Our goal is to find the time stamp τα and τβ such that

(τα, τβ) = argmin
τα,τβ

∥Pα(τα) − Pβ(τβ)∥ , (1)

where Pα and Pβ are respectively the positions of α and β. If τα < τβ we
consider that ‘agent α crosses first with respect to agent β’ and vice-versa.
Subsequently, we create a matrix M using the time-difference ∆τ between a
pair of pedestrians passing their respective points of minimum distance.

For a pair of pedestrians α and β, if τα and τβ denote the time-stamps
while being located on their respective points of minimum distance (See
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β

Figure 2: Schematic diagram showing the points of minimum distance between the trajec-
tories of two pedestrians The two pedestrians are denoted by α and β, whose trajectories
are denoted by blue and red circles respectively. The minimum distance is denoted by the
green dotted line. The time-stamps of α and β at these points are τα and τβ respectively.

Figure 2), ∆ταβ is defined as

∆ταβ = τα − τβ. (2)

If ∆ταβ < 0, it means that the agent α crosses first with respect to the agent
β, and vice-versa. Finally, the matrix elements Mαβ are defined as

Mαβ = ∆ταβ. (3)

We then consider all possible pairs of pedestrians from the two groups and
evaluate the elements of the matrix M . Naturally Mαβ = −Mβα and for
this reason we are only interested in the matrix spanned by the pedestrians
from one group along the row and the pedestrians from other group along
the column. Precisely we use the convention that (i) in the notation Mαβ,
agent α belongs to group A & agent β belongs to group B and (ii) let NA

and NB be number of agents in group A and group B respectively. If we
define row vector Vrα and column vector Vcβ as

Vrα(M) = [Mα1,Mα2, ...,MαNB
],

Vcβ(M) = [M1β,M2β, ...,MNAβ]T ,
(4)
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then Vrα corresponds to agent α of group A and Vcβ corresponds to agent
β of group B. The size of the matrix would be NA ×NB. In Figure 3(a) we
show the matrix M for a typical configuration of crossing flows. The shades
of colors yellow and green denote the positive and negative values of Mαβ

respectively. In section 3.1 we describe in detail how this matrix could be
exploited to obtain stripe formation details.

(a) Matrix M (b) Signum of M

Figure 3: The matrices M and sgn(M) for a typical configuration of crossing flows, where
each group had 18 pedestrians. (a)The elements of the matrix M are the time-differences
∆T for a pair of pedestrians, the values of which are represented by the color gradient
on the right. (b) The matrix sgn(M) has elements either 1 or −1, denoted by yellow and
green colors respectively.

Note that if we are only interested in identifying pedestrians crossing first
with respect to pedestrians from the other group, it would be sufficient to
consider the signum function of matrix M . Obviously, sgn(M) has the same
properties as M : If sgn(Mαβ) = −1, agent α crosses first with respect to
agent β and vice-versa for sgn(Mαβ) = 1. In Figure 3(b) we show sgn(M)
for the same configuration that has been shown in Figure 3(a). Considering
agent 11 from group A we can see that it crosses first with respect to all the
agents from group B, except agent 14. On the other hand, there is no agent
in group A that crosses first with respect to agent 14 from group B. In other
words, agent 14 from group B crosses first with respect to all the agents from
group A.

We want to clarify that, when we refer to a “crossing” between two agents,
we are referring to the intersection of their respective trajectories. Even if
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in our experiments the agents do not physically cross paths in the same
time and space, we still consider that a “crossing” has occurred because
we are studying the spatio-temporal relationships between their resulting
trajectories. In section 3.1, we demonstrate that the matrix sgn(M) could
be used to get the stripe formation information very quickly.

2.3. Barycentric reference frames

In this study, we introduce a simple yet novel data analysis approach that,
while unconventional in the field of pedestrian dynamics, is deeply rooted in
classical mechanics, and originally stems from the magnificent work of Polish
Astronomer Miko laj Kopernik [60], written centuries ago. Instead of ana-
lyzing pedestrian trajectories in static reference frames, we adopt alternative
reference frames based on barycentric (center-of-mass) transformations. This
method allows us to investigate the dynamics of movement relative to the
overall system and its subsystems, providing new insights into stripe forma-
tion in crossing pedestrian flows. Although previous studies have briefly con-
sidered moving reference frames [61], our work significantly expands on this
concept by systematically applying barycentric transformations to pedestrian
trajectories.

Our methodology is designed to expose movement characteristics that
are often overlooked by traditional approaches. By shifting perspectives to
barycentric reference frames, we aim to capture the relative motion of pedes-
trian groups and identify collective behaviors that contribute to stripe for-
mation. Depending on the context, different barycentric frames can provide
unique insights, either by analyzing the dynamics of the entire system us-
ing a global barycenter or by focusing on individual groups through their
respective barycenters.

In our case, the system consists of two crossing groups of pedestrians,
denoted as subsystems A = {αi} and B = {βj}, with group sizes NA and
NB, respectively. The positions of pedestrians in the group A are represented

as −→αi , while those in group B are indicated as
−→
βj . To analyze their dynamics,

we introduce three key reference frames:

• Global barycentric frame (denoted as F 0) – The reference frame cen-
tered on the barycenter C0 of the entire pedestrian system, capturing
overall movement trends.

• Group-A-centric frame (denoted as FA) – A reference frame centered
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on the barycenter CA of group A, allowing us to examine how group B
moves relative to it.

• Group-B-centric frame (denoted as FB) – A reference frame centered
on the barycenter CB of group B, providing a perspective on how group
A moves in relation to group B.

For clarity, we also define the static reference frame as F , in which the
absolute positions of the barycenters are given by

−→
CA(t) =

1

NA

NA∑
i=1

−→αi(t)

−→
CB(t) =

1

NB

NB∑
j=1

−→
βj (t)

−→
C0(t) =

1

2
(
−→
CA(t) +

−→
CB(t)) (5)

In Figure 4 we have shown pedestrian trajectories in reference frames F , FA

and FB for 3 typical trials from the crossing flows data set. Trajectories
obtained in these reference frames are further analyzed, and in some cases
additional post-processing steps are applied.

Consequently we can define positions of the pedestrians and the barycen-
ters Cu in Fw as

−→
αw
i (t) = −→αi(t) −

−→
Cw(t)

−→
βw
j (t) =

−→
βj (t) −

−→
Cw(t)

−→
Cw

u (t) =
−→
Cu(t) −

−→
Cw(t) (6)

where u,w ∈ {0, A,B}. Similarly, we define the velocity of barycenter Cu in
Fw as

−→
V w
u (t) =

−−→
dCw

u (t)

dt
(7)

and in the static reference frame F as

−→
Vu(t) =

−−→
dCu(t)

dt
(8)
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Figure 4: Pedestrian trajectories in different reference frames, effectively decoding intri-
cacies of the movement, shown for 3 typical trials belonging to different crossing angles.
Columns denote respective crossing angles of 60°, 90° and 120°. Panels (a), (b), (c) show
trajectories in static reference frame, black line denotes trajectory of the global barycen-
ter. Panels (d), (e), (f) show trajectories of groups A and B as seen from the group
global barycenter. Panels (g), (h), (i) show trajectories of group A as seen from group B’s
barycenter. Panels (j), (k), (l) show trajectories of group B as seen from the group A’s
barycenter. The green dots indicate the starting points of the trajectories.



To ensure consistency across trials and simplify subsequent analysis, we
rotated our coordinate system so that the average velocity of the global

barycenter in the static reference frame F , denoted
−→
V0(t), is aligned vertically

upward. For technical accuracy, the velocity
−→
V0(t) was averaged over the time

interval from 25% to 75% of the total duration of a trial, thus minimizing
transient effects at the beginning and end of the trial.

2.3.1. Temporal phases of crossing dynamics

When two groups of pedestrians cross each other, their interaction can be
characterized by three key moments: the first contact, the closest proximity,
and the last contact. We denote these characteristic times as τ1, τ2, and
τ3, respectively. These temporal markers capture the essential phases of the
crossing process and are visually indicated by vertical lines in Figure 4.

The first contact τ1 is the moment when individuals from opposing groups
begin to intermix spatially. Mathematically, this is defined as the earliest
time t = τ1 at which at least one pedestrian αi from the group A is closer
to the barycenter CB of the group B than to its own group barycenter CA,
while simultaneously at least one pedestrian βj from group B is closer to CA

than to CB. This condition could be summarized as follows,

∃i,j

[(∥∥∥−→αB
i (t)

∥∥∥ <
∥∥∥−→αA

i (t)
∥∥∥) ∧

(∥∥∥−→βA
j (t)

∥∥∥ <
∥∥∥−→βB

j (t)
∥∥∥)] (9)

Similarly, the last contact τ3 is the final moment when this condition holds.
Thus, τ1 is defined as the smallest t satisfying condition (9), while τ3 is the
largest t for which this condition holds.

On the other hand, the closest proximity τ2 occurs at the time when
the distance between the barycenters of the two groups is minimized. This
represents the moment when the two groups are most spatially compact
around each other.

Thus, the three characteristic times τ1, τ2 and τ3 could formally be defined
as

τ1 = argmin
t

{
∃i,j

[(∥∥∥−→αB
i (t)

∥∥∥ <
∥∥∥−→αA

i (t)
∥∥∥) ∧

(∥∥∥−→βA
j (t)

∥∥∥ <
∥∥∥−→βB

j (t)
∥∥∥)]}

τ2 = argmin
t

∥∥∥−→CB
A (t)

∥∥∥ (10)

τ3 = argmax
t

{
∃i,j

[(∥∥∥−→αB
i (t)

∥∥∥ <
∥∥∥−→αA

i (t)
∥∥∥) ∧

(∥∥∥−→βA
j (t)

∥∥∥ <
∥∥∥−→βB

j (t)
∥∥∥)]}
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Finally, we define the total crossing time τ ∗ as the duration over which
the two groups remain intermixed, given by

τ ∗ = τ3 − τ1. (11)

This definition of temporal phases provides a structured way to analyze
the interactions of pedestrian groups, capturing both the initial mixing, the
moment of greatest interaction, and the eventual separation. These time
markers serve as critical indicators for understanding the nature of stripe
formation and the evolution of crossing flows.

2.4. A geometric model of crossing pedestrian flows

To analytically understand aspects of the crossing phenomena and sub-
sequent stripe formation, here we employ simple geometric arguments. As
argued earlier, it is convenient to analyze the situation in the static reference
frame F . Observations from experimental data indicate that each pedes-
trian group exhibits elongation in the direction of movement and that the
boundaries of the group appear to be rounded. This was referred to as the
‘squeezing’ in [33]. Our goal is to model the shape and dynamics of the
groups in a way that accurately reflects these observations while maintaining
simplicity.

Among the most fundamental geometric shapes, squares and circles do
not exhibit elongation, making them unsuitable for capturing the observed
group structure. Rectangles, while elongated, lack rounded edges. In con-
trast, ellipses exhibit both elongation and smooth boundaries, making them
a natural choice for modeling pedestrian groups. This is because elongation
plays a crucial role in determining how groups interact as they cross each
other. For simplicity, we assume that both groups have the same size and
shape. Figure 5 illustrates the geometric model within the reference frame
F .

In this setup, we define two groups, A and B, crossing at an angle θ.
The velocity of each group is denoted by V , with vertical and horizontal
components VV and VH , respectively. The groups are modeled as ellipses,
where a and b represent the semi-major and semi-minor axes. The effective
height and width of the rotated ellipses are denoted as h and w, respectively.

To facilitate analysis, we introduce a rotated reference frame in which the

velocity of the barycenter of the system
−→
V0(t) is oriented vertically. In this

rotated frame, both groups move in opposite horizontal directions and cross
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h

w
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VV
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Figure 5: Schematic representation of the theoretical model for crossing pedestrian groups.
The two elliptical groups, are about to intersect at a crossing angle θ. The velocity of each
group is denoted by V , with its vertical and horizontal components represented as VV

and VH , respectively. The groups are modeled as ellipses with semi-major and semi-minor
axes a and b respectively. The effective height h and width w of the groups are measured
in a rotated reference frame, where the velocity of the global barycenter C0 is aligned
vertically.

each other over a well-defined time interval. This transformation simplifies
the analysis by ensuring that the primary movement components align with
the coordinate axes, making it easier to quantify the interactions between
the groups. In the following, we discuss two important quantities related to
the crossing behavior of the two groups and estimate them using our model.
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2.4.1. Number of stripes

Using our minimalist model of crossing pedestrian groups, where each
group is represented by an elliptical shape, we can estimate the number of
stripes n̂ that form in the crossing region. We assume that n̂ is proportional
to the effective height h of the group in the global barycentric reference frame
F 0, which represents the projected vertical dimension of the elliptical shape
in the transformed reference frame. This assumption simplifies the analysis
by completely ignoring the shape of the forefront of the crossing groups in
F 0, focusing instead on how the vertical extent of the group governs stripe
formation. As a result, we expect an angular dependency n̂(θ), since the
crossing angle θ directly influences the effective height h. This dependence
was also previously discussed in [33]. Based on this assumption, the number
of stripes could be expressed as:

n̂ = Sh = 2S

√
a2 sin2 θ

2
+ b2 cos2

θ

2
(12)

where S is a proportionality constant related to the average minimum dis-
tance between pedestrians dmin within the group as S = 1/dmin. As dmin can
be understood as an approximate width of a stripe, its reciprocal S is the
approximate number of stripes per length unit. The remaining expression
on the right-hand side represents the effective height h of an ellipse with
semi-major and semi-minor axes (a, b), rotated by an angle π/2 − θ/2, as
schematically illustrated in Figure 5.

2.4.2. Crossing time

The elliptical model of pedestrian crossing flows can also be used to esti-
mate the crossing time, as defined in Section 2.3.1. To do this, we consider
the horizontal velocity VH of the groups, which can be expressed as VH = w/t,
where w is the effective width of the groups and t is the corresponding time
interval, as shown in Figure 5.

Due to the symmetry of the crossing process, it is sufficient to analyze
the movement of a single group. The crossing time is then defined as the
duration between the first contact and the last contact of the barycenter of
the group with the global barycenter C0. Based on our elliptical model, the
estimated crossing time τ̂ ∗ can be expressed as:

τ̂ ∗ =
2
√

a2 cos2 θ
2

+ b2 sin2 θ
2

V sin θ
2

(13)
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where the numerator represents the effective width of the rotated ellipse,
capturing the horizontal extent of the group, and the denominator accounts
for the horizontal projection of the velocity of the group, which governs the
time required for the group to traverse the crossing region. This formulation
provides a theoretical estimate of the crossing time, directly linking it to the
geometric properties of the pedestrian groups and the crossing angle.

2.5. Estimating the number of stripes from barycentric analysis

Here we introduce two variations of the barycentric method (BC) for de-
termining the number of stripes: the precise method (BCP) and the simpli-
fied method (BCS). These approaches differ in how they handle algorithmic
choices, with BCP focusing on optimizing performance for each crossing an-
gle individually, while BCS prioritizes consistency and simplicity across all
angles. Given that different algorithmic variants perform better for certain
angles but worse for others, the BCP method tests multiple configurations
and selects the most suitable one for each crossing angle separately. In con-
trast, BCS adopts a single fixed approach for all angles, sacrificing some
precision for greater simplicity and robustness.

In both of these methods, the core idea is to analyze the trajectories of
one pedestrian group from the perspective of the barycentric reference frame
of the other group. As an example, we examine the trajectories of group
B, denoted as βj, as seen from the barycentric reference frame of group A
(FA). These transformed trajectories, denoted as βA

j , allow us to analyze the
relative motion of the groups (see Figure 6). To determine stripe formation,
we analyze the cross section of these trajectories along a line L, which is

perpendicular to the velocity vector
−→
V A
B (τ) of the barycenter of the group B

as seen from FA at time τ . To systematically study the formation of stripes,
we define a set {τi} of five characteristic time points where this cross-section
is to be studied

{τi} = {τ1, τ1.5, τ2, τ2.5, τ3} (14)

where τ1, τ2 and τ3 have been defined earlier. τ1.5 = 1
2
(τ1 + τ2) and τ2.5 =

1
2
(τ2 + τ3) are intermediate time points that we additionally consider here.

At each of these time points, the cross-section forms a one-dimensional dis-
tribution of points, as illustrated in Figure 6. We then estimate the number
of stripes by analyzing gaps between consecutive points in the cross-section.

To distinguish gaps between pedestrians within the same stripe from gaps
separating different stripes, we assume that inter-stripe gaps are larger than
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3 large gaps
= 4 stripesVBA(τ)

CBA(τ)

CBA(t)

Lβj

Figure 6: Schematic illustration of extracting number of stripes from transformed trajec-
tories. βj denote trajectories of pedestrians from group B. CA

B and V A
B are the trajectory

and velocity of group B’s barycenter as seen in FA (group A’s barycentric frame). The

line L denotes a cross-section perpendicular to the velocity vector
−→
V B
A and the black dots

are intersections of Bj with L. Further to the right we show the three prominent gaps
identified in this cross section.

intra-stripe gaps. We classify the gaps {gi} using two different thresholding
approaches:

• absolute thresholding : each gap is compared against a fixed threshold
Ta

• relative thresholding : each gap is compared to the largest gap in the
cross-section, scaled by a fractional threshold Tr

The corresponding expressions for estimating the number n of stripes can be
written as,

na(τi, Ta) =
∑

{1 : gi ≥ Ta}i + 1, (15)

nr(τi, Tr) =
∑

{1 : gi ≥ Tr max {gi}}i + 1. (16)

Here, na and nr denote the number of stripes estimated using absolute and
relative thresholding, respectively. The addition of 1 accounts for the fact
that the number of stripes is always greater than the number of separating
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gaps by one. Since gi depends on the time point τi, and na and nr depend
on Ta and Tr respectively, the estimated numbers of stripes are expressed as
na(τi, Ta) and nr(τi, Tr).

For each crossing angle, multiple time points may yield different values
of na or nr. Instead of relying on a single time point, we consider all possible
subsets of the 5 characteristic time points {τ1, τ1.5, τ2, τ2.5, τ3}, denoted gener-
ically as {τi}. Given a set of time-dependent stripe estimates {na(τi, Ta)} or
{nr(τi, Tr)}, we apply several statistical functions f to obtain the final stripe
count, viz.

• max: max {nz(ti, Tz)}

• min: min {nz(ti, Tz)}

• ceil:
⌈
{nz(ti, Tz)}

⌉
• floor:

⌊
{nz(ti, Tz)}

⌋
• round: round{nz(ti, Tz)}

where z = {a, r}. We exclude the arithmetic mean since the stripe count
must be an integer.

For the precise method (BCP), we systematically optimize our algorithm
for each crossing angle. In this case, we optimize the selection of the threshold
type, time points, and processing function for each crossing angle separately.
The algorithm could be described as follows:

1. For each crossing angle, iterate over different values of Tz

2. For each Tz

i. Select a subset of time points {τi}
ii. Compute {nz(ti, Tz)}

iii. Apply a function f({nz(ti, Tz)}) to estimate the number of stripes
iv. Calculate the mean absolute error (MAE) between the predicted

stripes and the reference edge-cutting (EC) algorithm [33]

3. Select the optimal Tz that minimizes MAE

4. Repeat the procedure for all possible subsets (25 − 6 = 26), functions
(5), and threshold types (2), yielding 260 possible combinations.
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The variant with the lowest MAE is selected as the best for that crossing
angle.

Now, we discuss the simplified approach, BCS. In this method, we select
a single type of threshold and a single time point, making it more straightfor-
ward than the BCP. Since only one time point is chosen, there is no need to
apply any statistical function f . For threshold selection, we opt for the abso-
lute threshold Ta, as it is less sensitive to outliers in individual experiments.
The choice of time point τi is based on the observed evolution of stripe for-
mation. The stripes begin to emerge around τ1 and gradually fade beyond
τ3. Although τ2 corresponds to the moment of greatest proximity between
the groups, we observe that the maximum separation of stripes in the cross
section occurs somewhere between τ2 and τ3. Based on this observation, we
select τ2.5 as a balanced and effective choice.

In summary, while BCP ensures higher precision by adapting to each
crossing angle, BCS offers a computationally simpler and more robust al-
ternative. The choice of method depends on the application and whether
precision or consistency is the priority. In Table 1 we provide a comparative
summary of these two methods.

Table 1: Comparative summary of BCP and BCS methods in estimating the number of
stripes in the crossing region.

Method Threshold Time points Optimization
type used approach

BCP (precise) Absolute & Relative Multiple {τi} Selected per crossing angle
based on MAE

BCS (simple) Absolute Single (τ2.5) Fixed across all angles

3. Results and Discussion

3.1. Extracting insights from the matrices

As described in section 2.2 each agent in the matrix M or sgn(M) is
represented by a row vector Vrα or a column vector Vcβ, and shows a unique
pattern, as is evident from Figure 3. In this section we will demonstrate that
agents with a similar pattern belong to the same stripe. Specifically, if we
only consider sgn(M), then agent α1 and agent α2 from group A are of the
same stripe if

sgn(Vrα1
) = sgn(Vrα2

), (17)
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and the same argument goes for agent β1 and β2 in group B. For instance,
in Figure 3(b), agents 1, 8, 9, 10, and 18 of group A are of the same strip,
agents 1, 4, 5, and 9 are of group B are of the same stripe, etc.

By definition, a stripe is known as a subset of pedestrians from one group
that is not penetrated by pedestrians from the other group. In the edge-
cutting algorithm [33], it was assumed that before crossing, pedestrians from
one group form a complete graph – being connected to each other by virtual
connections or ‘edges’. During crossing, pedestrians from one group ‘cut’ the
edges between pedestrians from the other group. After crossing, the edges
which are never cut, are left as the stripes. So essentially, pedestrians from
the same stripe from a particular group follow the same crossing pattern with
respect to agents from the other group - this is the key idea that we explored
while constructing the matrix M or sgn(M).

To obtain the number of stripes that is formed from a group, we first
count the number of unique patterns present in the matrix M or sgn(M).
For this purpose, it is useful if we sort the rows and columns of these two
matrices in either ascending or descending order of the sum of values of the
rows or columns. We define, Ms as the sorted matrix of M and M ′

s as the
sorted matrix of sgn(M). The ordering strategy (ascending or descending)
does not effectively change the crossing behavior of the agents, as represented
by the matrices. For the same reason, sorting first along rows or columns
does not matter. In Figure 7 we have shown the matrices Ms and M ′

s, which
are the sorted matrices of M or sgn(M) respectively as shown in Figure 3.

The sorting procedure results in segregation of yellow and green regions
in the matrices and groups the agents with unique patterns together. By
looking at the boundary of these two regions and the unique patterns we can
detect the presence of stripes. From Figure 7, we can see that agents 14 and
3 from group B crosses first and last, respectively, with respect to all the
agents in group A. So both of them creates a stripe of size (technically not
a stripe). Next we see that agents 7, 11 and 17 from group A has a unique
pattern and crosses first with respect to all agents in group B, except agent
14. So we can say that agents 7, 11 and 17 from group A form a stripe of
size 3 and cross after agent 14 of group B. This stripe is followed by agent 6
from group B and a stripe from group A of size 5 consisting of agents 1, 8,
9, 10 and 18. We can proceed our pictorial analysis in this way and obtain
the stripe formation information, which are summarised in Table 2. So we
can see that the matrices constructed by us not only provide the structural
information about the stripes, but also the temporal ordering in which the
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(a) M  = Sorted M  (b) M’  = Sorted sgn(M)s s

Figure 7: Sorted matrices (a) Ms and (b) M ′
s for the configuration of crossing flows that

has been shown in Figure 3. The matrices Ms and M ′
s are obtained by sorting the rows

and columns of the matrices M and sgn(M) respectively. Presence of stripes could easily
be detected by looking at the ’knee’ points of the matrices.

Order of Group Size of Agents in
crossing the stripe the stripe

9 B 1 3
8 A 2 6, 12
7 B 4 9, 5, 4, 1
6 A 8 2, 3, 4, 5, 13, 14, 15, 16
5 B 11 18, 17, 16, 15, 13, 12, 11, 10, 8, 7, 2
4 A 5 1, 8, 9, 10, 18
3 B 1 6
2 A 3 7, 11, 17
1 B 1 14

Table 2: Information about the formation of stripes that could be obtained from the
matrices shown in Figure 7

stripes do cross each other and eventually pass the crossing region.
Our proposed method of using crossing matrices to obtain detailed in-

formation about the formation of stripes could be verified with the already
established edge-cutting algorithm [33]. In Figure 8, we show the geometric
construction of the stripes as obtained from the edge-cutting technique, when

22



applied on the trial of crossing flows for which the matrices are shown in Fig-
ures 3 and 7. Comparing this figure with the information that we get from
the matrices as summarised in Table 2, we conclude that our matrix method
provides the same information in much more elegant fashion and without any
complicated calculations, as compared to the edge-cutting algorithm.
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Figure 8: Geometric construction of the stripes as obtained from the edge-cutting algo-
rithm applied on the trial of crossing flows for which the matrices are shown in Figures 3
and 7. The blue and red dots denote the agents from group 1 and group 2,respectively,
whose directions of motion are represented by arrows of color blue and red, respectively.
The theoretical crossing angle of this trial is 90°. The stripes that are formed could be
seen as complete graphs of agents connected to each other by virtual bonds, called edges.
The instant of this snapshot is 6.275 sec after the agents started to walk. The entire video
of this process is available in the Supplementary Materials. This figure is to be compared
with Table 2.

3.2. Analytical predictions from the geometric model

Here we discuss the analytical predictions of the number of stripes n̂ and
the crossing time τ̂ ∗ that could be made from our elliptical model (Section
2.4), and compare them with the exact values obtained from the edge-cutting
algorithm (EC) [33]. The main idea behind our model is to consider a sit-
uation before the two ellipse-shaped groups start to cross, and then find
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crossing angle dependent expressions for n̂ (Eq. 12) and τ̂ ∗ (Eq. 13). So,
these estimations are like predictions for the two quantities even before the
crossing has taken place. In this analysis, we consider the time frame τ − 1
second to estimate the values of a, b and V from the experimental data. Ac-
cording to our model a and b are the semi-axes of the ellipses, but in reality
the groups are indeed not elliptical. However, we can still consider a and b

as the half-sizes of the group along
−→
V and along perpendicular to

−→
V .

In our simplified elliptic model of crossing flows we assume that a, b
and V do not depend on the crossing angle. Because of this assumption we
calculate these values from all the trials, and consider their global averages to
find estimates of n̂ and τ̂ ∗. We found a = 4.957±0.667m, b = 3.686±0.779m
V = 1.113 ± 0.237m/s and dmin = 0.853 ± 0.091m, hence S = 1.172m−1

The number of stripes n̂ estimated using Eq. (12) are presented in Figure
9(a). Despite some discrepancies, the variation of n̂ with the crossing angle
θ remains largely within the standard deviations of the experimental results
obtained via the edge-cutting algorithm. This suggests that, although our
elliptical model is deliberately minimalistic, it serves as a reasonable approx-
imation. However, capturing finer details of the phenomenon may require
more sophisticated modeling approaches.
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Figure 9: Variations of (a) number of stripes n and (b) crossing time τ∗ as a function of
crossing angle θ. In both the cases, the blue lines indicate the mean values of these quan-
tities as obtained from the edge-cutting algorithm. The red lines indicate our analytically
obtained results from Eqs. (12) and (13) for n and τ∗ respectively.

In contrast, the estimated crossing time τ̂ ∗, calculated using Eq. (13),
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demonstrates notably higher accuracy with the experimental results, as shown
in Figure 9(b). The systematic variation of τ̂ ∗ with the crossing angle θ
closely aligns with the experimental observations. This level of agreement
is particularly impressive given the simplicity of the model in capturing the
dynamics of a complex scenario.

3.3. Group elongation

In our elliptical modeling approach for crossing groups, we assumed that
the shape of the groups undergoes deformation during the crossing process.
To gain deeper insight into this dynamic behavior, we compute a(t) and b(t)
separately for both groups as functions of time t. These time-dependent
variations are presented in Figure 10(a)–(c) for three representative trials
from the crossing flows dataset. We observe that b(t) remains nearly constant,
while a(t) gradually increases until τ3, followed by a decrease. This indicates
that the groups primarily elongate along the direction of motion, with little
to no expansion in the perpendicular direction.

Interestingly, Figures 4(d)–(i) create the visual impression that the groups
are expanding perpendicularly to their movement. In reality, however, the
elongation occurs along the movement direction. This visual illusion arises
due to the use of a moving reference frame.

To quantify this deformation, we calculate the ratios a∗ = a(τ3)/a(τ1)
and b∗ = b(τ3)/b(τ1), which represent the expansions in the parallel and per-
pendicular directions, respectively. The variations of a∗ and b∗ with respect
to the crossing angle are shown in Figure 11(a). It is evident that b∗ remains
close to 1 across angles, while a∗ tends to be significantly larger.

Upon comparing Figure 11(a) with Figure 9(a) we can see that a∗(θ) has
a strong correlation with n̂(θ). Motivated by this, we proceed to estimate
the average expansion of the groups per stripe as a∗/n̂ and b∗/n̂, and shown
them in Figure 11(b). It is evident that the average elongation per stripe
in the parallel direction of motion remains approximately constant across
angles, whereas the elongation in the perpendicular direction increases with
angle. This observation suggests an empirical relationship:

a∗ ≈ 0.3n̂ (18)

a∗ ≈ 0.6

√
a2 sin2 θ

2
+ b2 cos2

θ

2
(19)
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Figure 10: Time evolution of axes a and b of of the ellipses for both the groups, shown for
3 typical trials with crossing angles (a) θ = 60°, (b) θ = 90° and (c) θ = 120° respectively.
The solid and dotted lines represent a and b respectively. Green vertical lines on these
panels denote: τ1, τ2 and τ3.
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Figure 11: Variation of (a) expansion ratios a∗ and b∗, and (b) average expansion ratios
a∗/n and b∗/n as a function of crossing angle θ. In (b), the solid and dashed lines indicate
the values obtained from the edge-cutting algorithm and our geometric model (using Eq.
(12)) respectively.

This is a particularly interesting result: it indicates that the elongation ratio
a∗ is, on average, proportional to the effective height h of the group, which
in turn is directly linked to the average number of stripes n̂.

This result highlights a fundamental connection between the internal de-
formation of pedestrian groups and the large-scale structure of emergent flow
patterns. It suggests that the extent to which groups stretch along their di-
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rection of motion (quantified by a∗) directly governs the number of stripes
n̂ that form in the crossing region. This understanding not only supports
the validity of our elliptical model but also offers a simple yet powerful way
to predict stripe formation based on group geometry. It points toward a
broader principle in crowd dynamics: that collective structure can emerge as
a natural consequence of individual group-level deformation.

3.4. Observing stripes from barycentric approaches

Using our barycentric approaches, we successfully observe the well-known
phenomenon of stripe formation, which consistently occurs perpendicular to
the bisector of the crossing angle across all scenarios. Previous studies have
relied on computationally intensive methods such as those in [33, 34] to
detect such stripes in the crossing region. In contrast, our approach offers
an alternative perspective by employing barycentric reference frames, which
enables the detection of stripes through visual inspection of transformed
trajectories, without the need for complex calculations.

When pedestrian trajectories are linearly transformed into the global
barycenter reference frame, the direction of movement of both groups be-
comes aligned along the horizontal axis. Consequently the stripes, which
were originally perpendicular to the bisector in the static frame F , now ap-
pear aligned with the direction of motion in the transformed frame. Figure
4 illustrate this transformation, where the reference frame is rotated so that
the velocity of the global barycenter points vertically upward. This rotation
causes the relative motion of the two groups to unfold horizontally, making
the stripes appear horizontal in the visualizations. This effect is clearly illus-
trated in Figure 4(d)–(l) where the alignment of stripes becomes immediately
visible.

One of the key advantages of this approach is its ability to capture mul-
tiple dynamical features—such as stripe formation and group deformation
within a single visualization. While the raw trajectories shown in Fig-
ures 4(a)–(c) offer limited understanding of the internal structure of the
flow, their transformed counterparts reveal emergent spatial organization
and group-level interactions with much greater clarity. Although the pre-
cision of our method does not match the strict quantitative accuracy of the
edge-cutting algorithm (EC) from [33], it compensates by offering a compact,
interpretable, and visually effective representation of collective movement dy-
namics.
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3.5. Results from BCP and BCS methods

Here we summarize the results for obtained number of stripes using
BCP and BCS methods described in section 2.5. In the case of the BCP
method, we select the optimal combination of parameters—threshold type,
time points, and aggregation function—for each crossing angle individually to
minimize the prediction error. In contrast, the BCS method uses a fixed time
point τ2.5 and an absolute threshold Ta across all angles, offering a simpler
yet reasonably accurate alternative. The only thing that differed between
different crossing angles was the threshold Ta. We also report the Pear-
son’s correlation coefficient R between our obtained results and the results
obtained from Edge-cutting algorithm [33].

The results from the BCP method are presented in Table 3, with a com-
parison to experimental data shown in Figure 12. The method performs
reasonably well for crossing angles between 90° and 180°, while its accuracy
is lower for 30° and 60°, though it still offers some utility in these cases. It
is important to note that the relatively low correlation at 180° is primar-
ily due to the presence of two outliers. On the other hand, the estimations
from BCS method is noticeably less precise, as summarized in Table 4, and
visually demonstrated in Figure 13.

Crossing angle (θ) Type Subset Function Tz MAE
30° absolute τ1.5, τ2.5 τ3 min 0.43m 1.25
60° relative τ2, τ2.5 floor 0.318 0.639
90° absolute τ2, τ3 min 0.527m 0.395
120° absolute τ2, τ2.5, τ3 floor 0.512m 0.441
150° relative τ1, τ2 , τ3, min 0.263 0.294
180° relative τ1.5, τ2, τ25 ceil 0.433 0.471

Table 3: Table shows results obtained from the precise barycentric method (BCP).

While the average number of stripes estimated by both methods remains
close, notable discrepancies persist when compared to edge-cutting algorithm.
It is important to acknowledge that the edge-cutting algorithm serves as a
ground truth, offering exact stripe counts, whereas the barycentric methods
presented here is an approximation. Although it lacks the precision of the
original method, it achieves reasonably accurate results with significantly
lower computational effort. This trade-off makes it a promising tool for
analyzing large datasets or for calibrating mechanistic models, even if it may

28



0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

12

BC
P

MAE = 1.25
R = 0.462

(a)

crossing angle  = 30°

0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

12
MAE = 0.639
R = 0.546

(b)

crossing angle  = 60°

0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

12
MAE = 0.395
R = 0.735

(c)

crossing angle  = 90°

0.0 2.5 5.0 7.5 10.0
EC

0

2

4

6

8

10

12

BC
P

MAE = 0.441
R = 0.833

(d)

crossing angle  = 120°

0.0 2.5 5.0 7.5 10.0
EC

0

2

4

6

8

10

12
MAE = 0.294
R = 0.92

(e)

crossing angle  = 150°

0.0 2.5 5.0 7.5 10.0
EC

0

2

4

6

8

10

12
MAE = 0.471
R = 0.348

(f)

crossing angle  = 180°

Figure 12: Comparison of results obtained for number of stripes between edge-cutting
(EC) algorithm and precise barycentric (BCP) method for different values of crossing
angle θ. For each case, the values of mean absolute error (MAE) and pearson’s correlation
coefficient R are also reported.

Crossing angle (θ) Ta MAE
30° 0.592 1.278
60° 0.605 0.806
90° 0.642 0.474
120° 0.477 0.618
150° 0.369 0.794
180° 0.349 0.618

Table 4: Table shows results obtained from simplified barycentric method (BCS).

not be ideal for evaluating individual trials with high accuracy. In summary,
the barycentric perspective offers a compelling way to detect the presence and
orientation of stripe patterns, clearly showing their alignment perpendicular
to the crossing angle, but falls short in providing precise quantification, a
task better suited to more exact methods. It is however possible, that the
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Figure 13: Comparison of results obtained for number of stripes between edge-cutting
(EC) algorithm and simplified barycentric (BCS) method for different values of crossing
angle θ. For each case, the values of mean absolute error (MAE) and pearson’s correlation
coefficient R are also reported.

direction indicated by these methods has potential for further exploration.
There are many other potential possibilities of exploring trajectories in the
barycentric reference frames.

4. Conclusions

In this study, we introduced two methods of experimental data analysis
and one model based on geometric properties of the crossing pedestrian flows.
The first data analysis method is a matrix-based method, which extracts the
temporal ordering of individual crossings by analyzing the time differences at
points of minimal distance between trajectory pairs from opposing groups.
This method constructs a matrix that encodes the relative crossing sequences
and enables exact detection of stripe structures. While computationally less
demanding than the edge-cutting algorithm, it provides comparable results,
making it a practical tool for large-scale data analysis. The second method of
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data analysis is based on barycentric reference frames. It presents interesting
perspective, and has potential for future development, but unfortunately
lacks accuracy of a matrix-based method.

The geometric model based on elliptical approximations of the crowd
shape, helps to understand and quantify some crucial aspects of the dynam-
ics. This model allows for analytical estimation of key quantities viz. the
number of stripes and the total interaction time, as functions of the cross-
ing angle. Despite its simplicity, the model aligns well with experimental
observations and captures the underlying geometry of group deformation
during crossing. Together, these two methods and the model offer efficient
and interpretable strategies for linking microscopic pedestrian interactions to
emergent macroscopic flow patterns.

An important empirical observation in our study is the expansion of
pedestrian groups during crossing, with the degree of expansion varying with
the crossing angle. Notably, the parallel expansion ratio a∗ was found to
be approximately proportional to the vertical cross-section of the group in
the global reference frame, suggesting a strong link between group geome-
try and emergent stripe structure. Furthermore, we observed that both the
number of stripes and the total interaction time decrease systematically with
the crossing angle, consistent with that reported in [33]. As shown in Figure
9, model explains averages of observed quantities with o very good level of
agreement. However, purely geometric parameters do not fully explain the
observed expansion and interaction time, indicating that additional dynamic
factors may be involved.

Beyond methodological contributions, our work offers broader implica-
tions for urban planning, crowd management, and simulation-based model-
ing. Stripe formation and group-level dynamics are crucial for understanding
and optimizing pedestrian flows in high-density urban environments, such as
train stations, intersections, and evacuation scenarios. The matrix method,
in particular, enables real-time detection of collective structures with min-
imal computational overhead, supporting large-scale crowd monitoring and
control. On the other hand, the elliptical model provides quantitative bench-
marks for calibrating agent-based or continuum simulations, ensuring that
such models reproduce realistic timing and spatial structure. These methods
can support the design of infrastructure and policies that promote smoother
pedestrian interactions and reduced congestion.

Future research: Building on these findings, we propose two hypotheses
as avenues for further exploration. First, if continuous streams of pedestrians
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were to cross instead of finite groups, we expect the emergence of traveling
stripe waves in the interaction region, with movement velocity approximated
by the vector average of the pedestrian velocities. This is just a general-
ization of observations made for finite groups. In case of finite groups we
also observed striped pattern to travel with the velocity being an average
of the vectors of all pedestrians. Namely, velocity of the global barycenter.
However, finite groups created only small pattern of stripes, and continu-
ous stream will produce continuous traveling stripe pattern. Second, as the
thickness of the crossing beams increases, so should the expansion region,
possibly leading to a transition from structured stripes to a disordered or
turbulent regime beyond a critical threshold. This is because in small region
of finite groups we have a lot of space to move and eventual perturbations
do not add up much. In larger crossing region we would have less freedom
for the agents to move, and perturbations of movement could build up and
accumulate in the fashion similar to traffic jam models. These conjectures
highlight the rich, complex dynamics that may arise in more persistent or
larger-scale flows and motivate the need for experiments and studies under
controlled conditions, followed by modeling attempts. Future work may also
aim to incorporate adaptive behavioral rules and explore boundary effects,
further enhancing the predictive power and applicability of these models in
diverse real-world contexts.
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[49] M. Moussäıd, N. Perozo, S. Garnier, D. Helbing, G. Theraulaz, The
walking behaviour of pedestrian social groups and its impact on crowd
dynamics, PloS one 5 (4) (2010) e10047.
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