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Abstract

Modern control algorithms require tuning of square weight/penalty matrices appear-
ing in quadratic functions/costs to improve performance and/or stability output.
Due to simplicity in gain-tuning and enforcing positive-definiteness, diagonal penalty
matrices are used extensively in control methods such as linear quadratic regulator
(LQR), model predictive control, and Lyapunov-based control. In this paper, we
propose an eigendecomposition approach to parameterize penalty matrices, allow-
ing positive-definiteness with non-zero off-diagonal entries to be implicitly satisfied,
which not only offers notable computational and implementation advantages, but
broadens the class of achievable controls. We solve three control problems: 1) a
variation of Zermelo’s navigation problem, 2) minimum-energy spacecraft attitude
control using both LQR and Lyapunov-based methods, and 3) minimum-fuel and
minimum-time Lyapunov-based low-thrust trajectory design. Particle swarm op-
timization is used to optimize the decision variables, which will parameterize the
penalty matrices. The results demonstrate improvements of up to 65% in the per-
formance objective in the example problems utilizing the proposed method.

Keywords: Gain tuning, Penalty matrix parameterization, Eigendecomposition,
LQR, Attitude control, Low-thrust, Spacecraft, Trajectory, Lyapunov, Quadratic
cost, MPC

1. Introduction

Modern control algorithms rely on tuning a set of gains to achieve a desired
stability and/or performance output. For instance, positive-definite and/or positive
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semi-definite penalty matrices are used to construct quadratic costs or candidate
quadratic control Lyapunov functions. Diagonal parameterization of the penalty
(also referred to as the “weighting” or “parameter”) matrices is used extensively in
LQR controllers [1, 2], model-predictive control (MPC) [3, 4], sliding mode control
[5], control Lyapunov functions (CLFs) [6], and control barrier function methods [7].
In this work, we consider quadratic CLFs and LQR controllers and investigate the
impact of various parameterizations of the penalty matrices on control performance.
Lyapunov control (LC) laws derived from CLFs can generate near-optimal control
solutions and are used in many aerospace applications. In astrodynamics and space-
craft trajectory optimization, some well-known low-thrust LC laws include Q-law [6]
and the Chang-Chichka-Marsden (CCM) control law [8]. LC laws are also used for
spacecraft attitude control [9, 10]. LQR is used extensively for solving spacecraft
attitude control problems [1].

Diagonal parameterization of the penalty matrices is quite common due to 1)
implementation simplicity, 2) ease of enforcement of sign-definiteness by constrain-
ing the signs of the diagonal entries, and 3) making the gain-tuning intuitive since
diagonal entries correspond to each state and control without any cross-coupling.
However, diagonal matrices do not span the full solution space, as they neglect
cross-coupled terms, leading to suboptimal gains (in the sense of some particular
performance and/or stability criterion). Thus, it will be advantageous to consider
penalty matrices with non-zero off-diagonal terms, which we refer to herein as “full”
matrices. This raises a key question: How can a sign-definite full matrix be efficiently
parameterized? A straightforward approach is eigendecomposition [11], as proposed
in Ref. [9]. Sign-definiteness is trivially enforced through the signs of the eigenval-
ues. However, parameterizing the associated eigenvector rotation matrices remains
less straightforward.

Multiple methods exist for parameterizing orthogonal matrices. Ref. [12] out-
lines four parameterizations that are generalizable to N ×N dimensions and require
the minimum number of design variables of M = N(N − 1)/2. One of the first
parameterizations discovered, the Cayley transform [13, 14, 15, 9, 12, 10], has been
found useful in various practical engineering applications such as in attitude kine-
matic representations [15, 10] and efficient solution of the matrix Riccati differential
equation [16, 14]. Ref. [17] proposes another parameterization of orthogonal matri-
ces similar to the work of Ref. [18] requiring M decision variables and is based on
successively projecting unit vectors (starting with an N -dimensional unit vector con-
structed with spherical coordinates [19]). Our goal is to parameterize square penalty
matrices as efficiently as possible over the entire solution space, by decomposing the
matrices through their 1) eigenvalues and 2) eigenvector matrices. Choosing how to
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parameterize the orthogonal eigenvector matrix can have a substantial impact on the
penalty matrices and the search for more optimal control gains. While full penalty
matrices can improve controller performance, a drawback is knowing how to choose
the increased number of free variables (N for diagonal matrices versus (N2 + N)/2
for full matrices) which also may not necessarily be physically meaningful.

Traditional gain-tuning techniques include the Ziegler–Nichols step response method
[20, 21] for PID gains and Bryson’s rule (stemming from Section 5.4 Example 2 of
Ref. [22]) which serves as a starting point for manual trial-and-error gain tuning of
LQR controllers. However, modern stochastic/evolutionary optimization techniques
and computing technology have led to improved gain-tuning methods. For example,
Ref. [23] uses a stochastic optimization algorithm that approximates the gradient of
the performance metric to optimize LQR gains based on a performance metric eval-
uated from experiment. The same gains are improved further in Ref. [2] by using
global Bayesian optimization which better utilizes the experimental data. Ref. [24]
uses genetic algorithm and simulated annealing to find the best diagonal penalty
matrix for Q-law to form a time-of-flight and propellant mass Pareto front for the
same low-thrust transfer cases we solved in Ref. [17] and in this paper. Automated
gain tuning will be necessary for optimizing the larger number of decision variables
used to parameterize the full penalty matrices. We elect to use the metaheuristic
optimization method particle swarm optimization (PSO) [25] to tune the gains in
this work for its simplicity and because it is already available in the MATLAB Global
Optimization Toolbox.

The main contribution of this work is to extend the work in Ref. [17] by con-
sidering additional examples and analyses for the purpose of investigating the im-
provement in performance of feedback control laws with full penalty matrices in a
variety of control methodologies and aerospace applications. We parameterize the
full penalty matrices with eigendecomposition, which allows for the straightforward
enforcement of positive-definiteness. The Cayley transform [12], Givens rotation [12],
and a parameterization based on generalized Euler angles and Gram-Schmidt pro-
cess (GEAGSP) [17] are presented, but only the GEAGSP parametrization is used
to obtain the results because of the existing code architecture. There may be certain
benefits in using one orthogonal matrix parameterization over another due to factors
such as computational efficiency [12]. The decision variables of the parameterization
methods are optimized with the metaheuristic particle swarm optimization (PSO)
algorithm [25]. This choice of optimization method was arbitrary as the optimization
of the decision variables can be achieved by any meta-heuristic optimization method
and the optimization algorithm is not the focus of this study. As such, parameters of
the PSO algorithm such as swarm size were also arbitrarily chosen to achieve (what
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we qualitatively perceive to be) optimal solutions. In the present work, we focus
on investigating the advantages of using full penalty matrices for solving three con-
trol problems: 1) a variation of Zermelo’s navigation problem, 2) minimum-energy
spacecraft attitude control using both LQR and Lyapunov-based methods, and 3)
minimum-fuel and minimum-time Lyapunov-based low-thrust trajectory design. To
our knowledge, no work explores using a full penalty matrix in aerospace control
applications for the sake of improving a certain performance objective such as pro-
pellant consumption, aside from our earlier papers [17, 26] (Ref. [27] considers full
parameter matrices for the purpose of designing a flexible structure and its respec-
tive controller simultaneously based on eigenvalue placement). Consideration of the
off-diagonal penalty terms, as it is shown herein, can enlarge the solution set and
result in improved controller performance and reduced values of the cost function
for each example problem. Our hope is that exemplifying and quantifying this im-
provement for a variety of aerospace control problems along with providing a way to
efficiently parameterize full penalty matrices will potentially allow practitioners to
explore improving their own control algorithms.

The paper is organized with Section 2 presenting a review of the parameteriza-
tion methods of positive-definite matrices. Sections 3, 4, and 5 present the compar-
isons between the two types of penalty matrices for a variation of Zermelo’s navi-
gation problem, minimum-energy spacecraft attitude control using both LQR and
Lyapunov-based methods, and minimum-fuel and minimum-time Lyapunov-based
low-thrust trajectory design, respectively. Section 6 concludes the paper.

2. Penalty Matrix Parameterization

One approach to parameterize positive-definite penalty matrices is to consider a
symmetric matrix and thus use M = (N2 +N)/2 decision variables for parameteri-
zation. Let K denote a generic penalty matrix and let k = (k1, . . . , kN , . . . , kM), the
matrix can be written as,

K =


k1 k2 k3 · · · kN
k2 kN−1 kN−2 · · · k2N−1

k3 kN−2 k2N−1 · · · k3N−2
...

...
... . . . ...

kN k2N−1 k3N−1 · · · kM

 , (1)

where the diagonal parameters, kdiag, and the off-diagonal parameters, koff-diag, are
bounded as kdiag ∈ R+ (leveraging the fact that positive-definite matrices always
have positive diagonal elements) and koff-diag ∈ R. Then at each iteration within an
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optimization process, we can check if K is positive-definite in a number of ways. For
example, we can calculate its eigenvalues, but this can become computationally de-
manding as the number of dimensions increases. While this simple parameterization
of K ≺ 0 only requires the minimum amount of variables needed to parameterize a
positive-definite matrix, M , the search process over k can be made more efficient by
only considering a search space that will always result in a positive-definite K. This
could be achieved by explicitly enforcing positive-definiteness through nonlinear con-
straints on the decision variables, k. However, this method also has the limitations
of optimization with nonlinear constraints, which won’t scale appropriately to higher
dimensions.

A preferred approach is to implicitly satisfy the sign-definiteness property of the
penalty matrix by using eigendecomposition [9, 11]. Here, we can parameterize K
as,

K = QΛQ⊤, (2)

where Λ = diag (λ1, . . . , λN) are the eigenvalues and Q ∈ O(N) denotes the orthog-
onal matrix of eigenvectors. The eigenvalues and eigenvectors can be thought of as
representing the scale/size deformation and the rotational deformation, respectively,
of K [9]. Positive-definiteness is implicitly enforced by ensuring all eigenvalues are
positive.

We seek to parameterize Q with the minimum number of parameters needed,
M = (N2 − N)/2, in order to span O(N), i.e., we desire Q(ϕ) ∈ O(N) where ϕ
denotes the set of parameters with dim(ϕ) =M . Because we use derivative-free op-
timization exclusively in this work, we do not need ∂Q/∂ϕ. However, gradient-based
optimization may further improve results (see Ref. [12] for a detailed discussion on
the computational cost of gradient calculations for each orthogonal-matrix parame-
terization presented).

We outline three (out of the many) possible parameterizations methods: Cayley
transform (CT), Givens Rotation (GR), and one based on generalized Euler angles
and Gram-Schmidt Process (GEAGSP). We note that only the GEAGSP parame-
terization was used in all the results in this paper. Through numerical simulations,
we have found that the CT and GR parameterizations to be comparable in perfor-
mance. However, there may be benefits of using one parameterization over another
for reasons such as computational efficiency, properties of the inverse mapping if re-
quired, or nonlinearity of the search space. Thus, the best parameterization could
be explored further in future work.
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2.1. Cayley Transform
The Cayley transform can be used to parameterize the special orthogonal matri-

ces, SO(N) [9, 12]. Letting X denote an N ×N skew-symmetric matrix, then the
orthogonal matrix Q(X(ϕ)) is defined with the Cayley transform as,

Q = (I +X) (I −X)−1 . (3)

Please refer to Ref. [12] for more details such as the reverse transformation and its
smoothness and continuity properties.

2.2. Givens Rotation
The Givens rotation parameterization from Ref. [12] can be thought of as a suc-

cession of plane transformations. Letting G(i, j, θ) denote each plane transformation
defined as,

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · cos θ · · · − sin θ · · · 0
...

... . . . ...
...

0 · · · sin θ · · · cos θ · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1


, (4)

where the sin θ and cos θ populate the elements intersected by the i-th column and
j-th row. The diagonal elements are all 1 except when a trig function populates the
diagonal. More formally, the nonzero elements are defined as,

G(i, j, θ)ii = G(i, j, θ)jj = cos θ, (5)
G(i, j, θ)ji = −G(i, j, θ)ij = sin θ, for i > j, (6)
G(i, j, θ)kk = 1 for k /∈ {i, j}. (7)

Let θ = [θ1, · · · , θM ], Q(G(θ)) is defined as,

Q = G⊤
1 . . .G

⊤
M . (8)

Remark 1. It is well known that these plane rotations are ambiguous at certain
angles, since there are multiple sets of angles that can represent the same rotation
matrix. In 3 dimensions, this is known as “gimbal lock.” We note this introduces
redundancies, however, we find this characteristic to be ignorable when using heuristic
optimization to tune the parameters. This could also be avoided in the optimization
algorithm by detecting when one angle reaches an ambiguous value and setting the
rest of the angles to arbitrarily fixed values [12].
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2.3. Generalized Euler Angles and Gram–Schmidt Process
Another approach to parameterize the Q matrix is to use a generalization of

Euler angles derived in [19] and perform successive orthogonalization through the
Gram-Schmidt process, as we proposed in Ref. [17]. This method is similar to the
earlier work of [18]. Let θij ∀i = 1, . . . , N, j = 1, . . . , N − 1, denote the angle-like
parameters of Q, this parameterization can be described by Algorithm 1 where

vp
i =


cos(θi1)

sin(θi1) cos(θi2)
...∏N−i−1

j=1 sin(θij) cos (θi(N−i))∏N−i
j=1 sin(θij)

 , (9)

where vp
i is a unit vector in a (N − i + 1)-dimensional space. The superscript p

denotes that vi is not expressed in the original N -dimensional space and it should
be projected back to the original dimension to construct the desired rotation matrix.
All the constituent vectors in Q should be mutually orthogonal, which equivalently
means that the generated vectors should be in the null space of all previous vectors.
In 2 dimensions, Q can be written as,

Q =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (10)

and in 3 dimensions, Q can be defined using any of the Euler sequence rotations [10].
MATLAB and Python codes are provided in a GitHub repository here1.

3. Zermelo’s Navigation Problem

We solve a variation of Zermelo’s navigation problem with a Lyapunov-based
control law. The low-dimensionality of the problem allows for visualization of the
candidate quadratic Lyapunov functions and the impact of using a full penalty ma-
trix. Letting the states be x⊤ = [x, y] and the control be u⊤ = [ux, uy], the goal is
to drive the system from an initial nonzero state, x(0), to the origin, [0, 0] (i.e., the
regularization problem). The dynamics are defined as,

ẋ = u+ f(x), f(x) = −[x, y]⊤ cos y sinx. (11)

1https://github.com/saeidtafazzol/positive_definite_parameterization

7

https://github.com/saeidtafazzol/positive_definite_parameterization


Algorithm 1 N -dimensional Rotation Matrix Parameterization
1: Input: Angles θij for i = 1, . . . , N, j = 1, . . . , N − i
2: Output: an Orthonormal Matrix Q
3: Initialize: Q← {} {The set of orthonormal vectors}
4: for i = 1 to N do
5: S = null-space(Q⊤)
6: B = Basis(S) {Gram–Schmidt process}
7: Construct vp

i using θi (1,...,N−i) and Eq. (9)
8: vi = Bvp

i {Project back to N -dimensional space}
9: Q← [Q,vi] {Append vi as a new column to Q}

10: end for

The control, u, will be derived from a candidate quadratic Lyapunov function, which
is written as,

V =
1

2
x⊤Kx, (12)

where K ∈ R2×2 is the positive-definite penalty matrix. The control law is derived
such that the time derivative of Eq. (12),

V̇ =
∂V

∂x
ẋ = x⊤K(u+ f(x)), (13)

is negative definite, which can be achieved by considering a control u = −f(x) −
(x⊤K)⊤. Let K1 = diag(k1, k2) denote a diagonal penalty matrix. We parameterize
the full penalty matrix with eigendecomposition, K2, as,

K2 = QΛQ⊤, (14)

where Λ = diag(λ1, λ2) denotes the eigenvalue matrix and Q is parametrized using
Eq. (10). PSO is used to optimize the parameters (k1 ∈ [0, 10], k2 ∈ [0, 10] and
θ ∈ [0, 2π]) to solve the optimization problem given in Eq. (15).

min
u

J =
1

2

∫ ∞

0

u⊤u dt. (15)

We consider x(0) = [−8, 6]⊤ and the dynamics in Eq. (11) are integrated over a time
horizon of 100 seconds. An event-detection feature is used to terminate integration
when ∥x∥ ≤ 10−3. The full and diagonal penalty matrices resulted in J = 24.83
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and J = 26.52, respectively. The penalty matrices for each parameterization method
were

K1 =

[
0.8094 0

0 0.1611

]
, K2 =

[
1.7421 0.9560
0.9560 1.1414

]
.

Figure 1 shows the state space with trajectories from both solutions, along with
the nonlinearities in the dynamics shown as a vector field. Figures 2 and 3 show
the CLFs and their time derivatives, respectively, plotted as a function of states
with the trajectory plotted on top. Additionally, Figure 4 shows the surface of the
control Euclidean norm as a function of states with the state trajectory overlaid.
The difference in the CLFs, CLF time derivative, and control norm surfaces as a
function of states evidently provide some advantage leading to a reduced control-
effort requirement.

-10 -5 0 5 10

x

-10

-8

-6

-4

-2

0

2

4

6

8

10

y

f(x)
x(0) = (!8; 6)
(0; 0)
x (K1)
x (K2)

Figure 1: Zermelo’s problem: state space with the trajectories from each solution with the vector
field of nonlinearities in the dynamics.

4. Spacecraft Attitude Control Problem

We proceed to compare the benefits of full penalty matrices in designing LQR and
Lyapunov-based control laws for two arbitrarily chosen spacecraft attitude maneu-
vers: detumbling and rest-to-rest. The target state for both maneuvers is (ψ(∞), θ(∞), ϕ(∞)) =
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(a) K1 (b) K2

Figure 2: Zermelo’s problem: Lyapunov functions vs. states.

(a) K1 (b) K2

Figure 3: Zermelo’s problem: Lyapunov functions time-derivatives vs. states.

(0, 0, 0) deg and 0 deg/s angular velocity (note that t = ∞ is considered as the fi-
nal time since the maneuvers are solved as infinite-time horizon problems). Both
maneuvers start from an orientation of (ψ(t0), θ(t0), ϕ(t0)) = (60, 80,−60) deg and
the detumbling maneuver has an initial angular velocity of (p(t0), q(t0), r(t0)) =
(0.1,−0.1, 0.1) rad/s. The spacecraft has a moment of inertia matrix of I = diag(10, 15, 20)
kg·m2. These problem parameters were arbitrarily chosen and the coordinate rep-
resentations (i.e., Euler angles and quaternions) are typically used in applications
[10, 28].
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(a) K1 (b) K2

Figure 4: Zermelo’s problem: Euclidean norm of control function vs. states.

4.1. LQR Attitude Control Design
The spacecraft’s orientation is parameterized using Euler angles, ψ, θ, and ϕ with

angular velocity vector as ω⊤ = [p, q, r]. Let X⊤ =
[
ψ, θ, ϕ,ω⊤] denote the state

vector. The attitude dynamics can be written as,

Ẋ =

 ω
c(θ)

 0 s(ϕ) c(ϕ)
0 c(ϕ)c(θ) −s(ϕ)c(θ)
c(θ) s(ϕ)s(θ) c(ϕ)s(θ)


I−1 (U − ω × Iω)

 , (16)

where c(.) = cos(.) and s(.) = sin(.). We linearize dynamics around the reference
state and control vectors, X0 = 0 and U0 = 0, respectively. The state and control
errors are denoted by x = X−X0 and u = U−U0, respectively. The quadratic cost
functional whose minimization gives the optimal controller gain, i.e., kLQR appearing
in U (following the standard solution approach to LQR problems [22]), is defined as,

min
kLQR

JLQR =
1

2

∫ ∞

t0

(
x⊤Qx+ u⊤Ru

)
dt, (17)

where Q6×6 and R3×3 denote the penalty matrices. The control law used for propa-
gating the nonlinear dynamics is U = u = −kLQRx and the MATLAB function lqr
is used to find the optimal gain matrix, k.

Remark 2. There may be states that we do not want to be penalized. When Q is
diagonal, we can simply set the element corresponding to the state we do not want
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penalized to be 0. However, this is not as trivial when Q is full. Rather than reducing
the dimension of x in Eq. (17) and thus possibly having to recode the LQR solution
back into existing software architecture, a diagonal matrix N with binary elements
can be premultiplied with x instead to choose which states are included in the cost
functional. For an example, this is done with Q-law in Section 5.

PSO is used to tune the penalty matrices such that the maneuver is performed
with minimal control effort (i.e., the same cost function given in Eq. (15)). Note
that control takes the same form, u = −kx, but is applied on the state, x, that is
obtained from the nonlinear dynamics. Other applications may call for minimizing
the deviation from a reference trajectory, in which case the cost function that PSO
minimizes might be state-dependent. The diagonal penalty matrices are denoted as
Q1 and R1 and the full penalty matrices are denoted as Q2 and R2. The upper and
lower bounds for the diagonal elements of Q1 and R1 and for the eigenvalues of Q2

and R2 were 10 and 10−8, respectively.
PSO was invoked 10 times for each case to account for stochastic variations across

solutions. Default options were used except for a swarm size of 500 and a maximum
number of iterations of 104. These values were arbitrarily chosen such that solutions
we deemed to be optimal for each respective form of penalty matrix could be obtained
after a number of trials. While the theoretical time horizon considered is infinite, the
maximum integration time is set to 100 seconds. The spacecraft attitude dynamics
are propagated with MATLAB’s ode113 with AbsTol and RelTol of 1.0 × 10−8.
The built-in event-detection feature was used to determine when the states were
“close enough” to the target state, X0. The considered minimum-energy cost leads
to solutions that use the entire time horizon (i.e., less aggressive control commands
are prioritized).

Table 1 summarizes the results for both maneuvers. Figure 5 summarizes these
results in a bar graph. A significant improvement in using the full penalty matrices
was observed, with an average 65.4697% and 62.0296% decrease in cost value for
the detumbling and rest-to-rest maneuvers, respectively. Figure 6 shows the most
optimal solutions to the detumbling maneuver from both types of penalty matrices.
The penalty matrices are given in Appendix A.

4.2. Lyapunov-Based Attitude Control Design
The Lyapunov-based controller uses quaternions, q⊤ = [q0, q1, q2, q3]. This quater-

nion attitude representation is considered in this example to demonstrates the gen-
eralization of the method of the proposed and that in practice attitude parameter-
ization is achieved with quaternions. The spacecraft’s orientation rate is described
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Table 1: Detumbling and rest-to-rest maneuver results for LQR controllers with diagonal and full
penalty matrices.

Minimum-Energy Cost [kg·m2/s]
Detumbling Rest-to-rest

Run # Q1, R1 Q2, R2 Q1, R1 Q2, R2

1 0.47437 0.14191 0.43308 0.06817
2 0.47436 0.09139 0.43307 0.06420
3 0.30796 0.14311 0.29337 0.20775
4 0.29380 0.08996 0.43307 0.09513
5 0.47437 0.08397 0.43308 0.07716
6 0.47437 0.25393 0.24552 0.11512
7 0.47437 0.10233 0.43308 0.18937
8 0.30785 0.28289 0.43424 0.07248
9 0.47436 0.19370 0.43309 0.38302
10 0.47435 0.07756 0.43307 0.24820

Mean 0.42302 0.14607 0.40047 0.15206
Best 0.29380 0.07756 0.24552 0.06420

in terms of the angular velocity vector ω⊤ = [p, q, r]. We propagate the spacecraft’s
attitude dynamics as

X =

[
q
ω

]
, Ẋ =

[
1
2
Ωq

I−1 (U − ω × Iω)

]
, (18)

where Ω is a 4 × 4 skew-symmetric form of ω [10]. Using a nonlinear candidate
quadratic Lyapunov function, the controller is derived in Ref. [10] and is defined as,

U = −Kpqe −Kdω, (19)

where qe ∈ R3 denotes the quaternion error vector and both Kp and Kd denoting
3×3 control gain matrices (that are used in forming the Lyapunov function). Similar
to the LQR problem, we denote the diagonal penalty matrices as Kp,1 and Kd,1 and
the full penalty matrices as Kp,2 and Kd,2.

PSO is invoked 10 times for each case to account for stochastic variations across
solutions and the penalty matrices are optimized to minimize the cost functional
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Figure 5: Comparison of the cost values for the LQR and Lyapunov-based controller with diagonal
and full penalty matrices.
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Figure 6: Results from best detumbling solution for each type of penalty matrix with the LQR
controller.

defined in Eq. (15). The upper and lower bounds for the diagonal elements of Kp,1

and Kd,1 and for the eigenvalues of Kp,2 and Kd,2 were 10 and 10−8. The maximum
integration time is set to 100 seconds to create an artificial finite time horizon. The
built-in event-detection feature of MATLAB’s ode113 was used to determine when
the states were “close enough” to the target states. The spacecraft attitude dynamics
are propagated with MATLAB’s ode113 with the same tolerances and PSO was run
with the same options used in the LQR problem.
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Table 2: Detumbling and rest-to-rest maneuver results for the Lyapunov-based controllers with
diagonal and full penalty matrices.

Minimum-Energy Cost [kg·m2/s]
Detumbling Rest-to-rest

Run # Kp,1, Kd,1 Kp,2, Kd,2 Kp,1, Kd,1 Kp,2, Kd,2

1 0.09266 0.07841 0.08399 0.05507
2 0.09665 0.10420 0.10394 0.05854
3 0.09683 0.07002 0.08414 0.07439
4 0.09362 0.09401 0.08073 0.07305
5 0.10960 0.06194 0.10907 0.07109
6 0.08541 0.05594 0.07993 0.08840
7 0.08806 0.10104 0.08311 0.07015
8 0.13964 0.05885 0.11482 0.05463
9 0.16088 0.06611 0.08597 0.06427
10 0.10820 0.06923 0.08034 0.06610

Mean 0.10716 0.07598 0.09061 0.06757
Best 0.08541 0.05594 0.07993 0.05463
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Figure 7: Results from best detumbling solution for each type of penalty matrix with the Lyapunov-
based controller.

Table 2 shows the results for both maneuvers and with each type of penalty
matrix. Figure 5 shows a bar graph comparison of the values of costs. Again, im-
provement in using the full penalty matrices can be observed. However, the reduction
in cost is not as significant as with the LQR controller. This difference is attributed
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to the significant improvement the nonlinear Lyapunov-based controller brings as op-
posed to the LQR controller which is based on dynamics linearized around the target
state. Figure 7 shows the solution for the most optimal solution to the detumbling
maneuver from both types of penalty matrices. The penalty matrices are given in
Appendix A.

5. Low-Thrust Trajectory Optimization Problem

To demonstrate the impact of using a full penalty matrix for Lyapunov-based
low-thrust trajectory optimization, a generic LC law and the well-known Q-law [6]
are used to solve a variety of low-thrust transfer trajectories. Both control laws are
used with a diagonal penalty matrix, K1, and with a full penalty matrix, K2. The
full penalty matrix, K2, is generated using Algorithm 1.

In the considered geocentric (and one Vesta-centered) low-thrust maneuvers, the
goal is to transfer the spacecraft starting from a fully defined state to an orbit in
minimum-time and, with Q-law only, in minimum-fuel. The boundary conditions
and parameters for the five considered transfer scenarios are summarized in Table 3.
These are a set of transfer cases originally defined in Ref. [6] and have been solved as
benchmark problems in a number of other studies, including Refs. [24] and [29]. Note
that the Case E* defines the boundary conditions that were used with Q-law. These
set of boundary conditions, only differing in the inclination (as a result of a rotation
of the inertial frame by 30◦ about the x-axis), was required to achieve convergence
because we found that convergence was not possible with the implementation of
Q-law as outlined in Ref. [6] for the original Case E boundary conditions.
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Table 3: Low-thrust orbit transfer cases.

Cases Orbit a [deg] e [-] i [deg] Ω [deg] ω [deg] Thrust
[N]

Initial
Mass
[kg]

Specific
Impulse

[s]

Central
Body

PSO
Swarm
Size

PSO
Maxi-
mum
Itera-
tions

A
Initial 7000 0.01 0.05 0 0

1 300 3100 Earth 50 50
Target 42000 0.01 free free free

B
Initial 24505.9 0.725 7.05 0 0

0.35 2000 2000 Earth 50 50
Target 42165 0.001 0.05 free free

C
Initial 9222.7 0.2 0.573 0 0

9.3 300 3100 Earth 50 50
Target 30000 0.7 free free free

D
Initial 944.64 0.015 90.06 -24.60 156.90

0.045 950 3045 Vesta 50 50
Target 401.72 0.012 90.01 -40.73 free

Initial
24505.9 0.725 0.06 0 0

2 2000 2000 Earth 200 300
E (24505.9) (0.7) (30.06) (180) (180)

(E*)
Target

26500 0.7 116 180 180

(26500) (0.7) (86) (180) (180)
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Earth and Vesta gravitational parameters are 398600.49 km3/s2 and 17.8 km3/s2,
respectively. A canonical scaling is performed on all Cartesian states, such that µ (the
central body’s gravitational parameter) is 1 DU3/TU2. For the geocentric problems,
the distance unit (DU) is 6378.1366 km and the time unit (TU) is 806.8110 seconds.
For the Vesta-centered problem, DU is 289 km and TU is 1164.4927 seconds.

The state of the spacecraft, x ∈ R7, consists of Cartesian position r and velocity
v vectors, defined in an inertial frame centered at the central body. All acceleration
vectors are expressed with respect to the inertial frame. An additional state, m, is
used to track the spacecraft’s mass. The spacecraft equations of motion are written
as,

x =

r
v
m

 , ẋ =

 v
− µ

r3
r + Tmax

m
α̂δ

−Tmax
Ispg0

δ

 , (20)

where r = ∥r∥ is the spacecraft’s distance from the central body, Tmax is the space-
craft’s maximum thrust, Isp is the spacecraft’s specific impulse, g0 is the acceleration
of gravity on Earth at sea level defined as 9.80665 m/s2, and α̂ is the thrust steering
unit vector (i.e., α̂⊤α̂ = 1) assumed to freely orient in space. Lastly, δ ∈ [0, 1] is the
thruster throttle magnitude control, which for the minimum-time transfers is 1 dur-
ing the entire transfer, but is allowed to vary between 0 and 1 for the minimum-fuel
transfers solved with Q-law.

The diagonal penalty matrix, K1, is trivially constructed and the full penalty ma-
trix, K2, is calculated according to Algorithm 1. MATLAB’s PSO algorithm is used
to optimize the parameters for each of the control laws. Because PSO is a stochastic
meta-heuristic optimization algorithm, it is invoked 5 times for each control law and
both penalty matrices. The swarm sizes and the number of iterations are summa-
rized in Table 3. These values are chosen such that the resulting solutions appear to
be close to the optimal one. The diagonal elements of K1 and the eigenvalues of K2

are bounded arbitrarily between 0 and 100.

5.1. Generic Lyapunov Control Law
Generic LC laws are defined based on classical orbital elements [30]. These results

were originally presented in Ref. [17] (except for cost function values that were
reported in terms of mass rather than time of flight). We define an error vector, w,
based on each transfer case in Table 3 to be used in deriving the control law. This
error vector is defined such that it becomes 0 when the final boundary conditions in
Table 3 are satisfied. We define the error vector for Case E, wE, first. This error
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vector is defined in terms of the specific angular momentum vector, h⊤ = [hx, hy, hz],
and the eccentricity vector, e. Definitions of each are as follows [30]:

h = r × v, e =

(
v2 − µ

r

)
r −

(
r⊤v

)
v

µ
. (21)

The error vector for Case E, wE, is defined as,

wE =

[
h− hT

e− eT

]
∈ R6, (22)

where the subscript ‘T’ corresponds to the target orbit values.

Remark 3. The considered choice of the error vector is entirely arbitrary for each
maneuver. In fact, for Case E, a vector of only 5 dimensions is needed since only 5
orbital elements are being targeted at the final boundary condition due to transfer-type
of the considered maneuvers.

For Cases A through D, the boundary conditions are defined in terms of a com-
bination of the orbital elements consisting of the specific angular momentum mag-
nitude h, eccentricity e, inclination i, and right ascension of the ascending node Ω.
Definitions of the orbital elements are as follows [30]:

h = ∥h∥ , e = ∥e∥ , (23)

i = cos−1

(
hz
h

)
, Ω = cos−1

(
x̂ · n
∥x̂∥∥n∥

)
, (24)

where n = ẑ × h = [nx, ny, nz]
⊤ is the line of nodes vector and a quadrant check is

performed on Ω such that if ny < 0 then Ω = 360◦ − Ω.
The error vectors for Cases A through D are defined as,

wA =

[
h− hT

e− eT

]
∈ R2, wB =

h− hT

e− eT
i− iT

 ∈ R3, (25)

wC =

[
h− hT

e− eT

]
∈ R2, wD =


h− hT

e− eT
i− iT
Ω− ΩT

 ∈ R4. (26)

The CLF for each of the transfer problems is defined as,

Vj,i =
1

2
w⊤

j Kiwj, (27)
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for i = {1, 2} and j = {A,B,C,D,E}. The control law is derived to make the total
time derivative of Eq. (27) (note that indices j and i are not written for brevity),

V̇ =
∂V

∂r
v +

∂V

∂v

(
− µ
r3
r +

Tmax

m
α̂

)
, (28)

becomes negative, leading to the control law, in Eq. (29), as,

α̂∗ = −
(
∂V

∂v

)⊤

/

∥∥∥∥∂V∂v
∥∥∥∥ . (29)

We used automatic differentiation capabilities of CasADi [31] to derive α̂∗. MAT-
LAB’s variable-step variable-order explicit differential equation solver ode113 is used
to integrate Eq. (20) with the control law in Eq. (29) substituted in for α̂ with ab-
solute and relative integration tolerances of 10−10. The event-detection capability of
ode113 is used to determine when the solution is close enough to the target orbit,
since LC laws will not make the system converge in finite time.
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Table 4: Low-thrust results for generic Lyapunov-based control laws.

Cases Penalty
Matrix

Objective Value, J(K1,2) = tf [days] mean(J(K2))−
mean(J(K1))
[days]Run 1 Run 2 Run 3 Run 4 Run 5 Mean

A
K1 14.5705 14.5702 14.57 14.5703 14.5701 14.5702

-0.0952252
K2 14.4751 14.4748 14.4749 14.4754 14.4748 14.475

B
K1 142.229 142.229 142.229 142.229 142.229 142.229

-3.18558
K2 139.03 139.067 139.02 139.074 139.023 139.043

C
K1 1.5102 1.5102 1.5102 1.5102 1.5102 1.5102

-0.018357
K2 1.49184 1.49184 1.49184 1.49184 1.49184 1.49184

D
K1 24.9903 24.9903 24.9903 24.9903 24.9903 24.9903

-0.153639
K2 24.6992 24.7059 24.9456 24.9456 24.8868 24.8366

E
K1 93.581 80.9959 83.4887 89.0044 106.926 90.7993

-2.2493
K2 109.751 89.6992 85.8899 79.7213 77.6889 88.55
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Table 4 summarizes the results for both K1 and K2. It can be observed that
considering K2 in the CLF improves the time of flight in each transfer case, with
the improvement being more evident for maneuvers occurring over a longer time
horizon like Case B or that are more complicated like Case E. The global minimum
is achievable for the shorter duration transfers, especially Cases A and C. This is
substantiated by PSO being able to find roughly the same solution for all 5 runs of
each penalty matrix. For these cases, the new parameterization of the penalty matrix
improved the solution optimality given the improvement in the global minimum.

The results indicate that multiple local minima are found for the other transfer
cases. In particular, Case E demonstrates the existence of many local minima, with
the times of flight ranging broadly and with the worst solution achieved being found
by the full penalty matrix, whereas in the other cases the worst solution was always
found by the diagonal penalty matrix. On the other hand, the best solution is found
by the full matrix representation in all transfer cases and the average times of flights
for the full penalty matrix, K2, are lower than those from the diagonal penalty
matrix, K1, in every transfer case. Figure 8 summarizes the results in Table 4 as a
bar graph. The average times of flight represent the bars and the error bars represent
the distribution of time of flight for the 5 runs of PSO in each case. This error bar
further illustrates the few or many local minima existing in each case, with Case E
having the widest distribution.

Figure 9 also shows the time histories of the orbital elements for the best Case
E solution for K1 and K2. Note that the oscillations followed by a settling to a
particular value in Ω and ω are due to the orbit being nearly equatorial at the
beginning of the transfer, leading to Ω and ω not being properly defined. Figure 10
shows the trajectory for these solutions. The full weighting matrix, K2, drives the
orbital elements to their target values differently (and likely more efficiently based
on the improved times of flight) than the diagonal penalty matrix K1. Inspecting
the K1 solution in red Figure 9, the semi-major axis has first increased to beyond
the semi-major axis of the target orbit, but then, it is reduced noticeably below
the target value. On the other hand, the eccentricity is first decreased and then
gradually increased. Inspecting the K2 solution in blue Figure 9, the semi major axis
is instead increased and maintained more or less until the end of the maneuver. The
eccentricity, however, has changed in a sinusoidal manner. The K2 parameterization
taking into account the cross-coupling errors of the orbital elements is likely what
results in a solution with a better time of flight than the diagonal matrix K1.
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Figure 8: Average time-of-flight tf for each case and penalty matrix for the low-thrust results
for the generic Lyapunov-based control laws and Q-law, denoted “GLC” and “QL” in the legend,
respectively.
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Figure 9: Case E orbital elements: minimum-time generic control law with K1 and K2.
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(a) Case E trajectory: minimum-time generic control law
with K1.

(b) Case E trajectory: minimum-time generic control law
with K2.

Figure 10: Case E trajectory: minimum-fuel Q-law with K2.

5.2. Q-law Low-Thrust Trajectory Design Method
Q-law is used to solve the same cases in Table 3. The Q-law from Ref. [6] is

used, but with some modifications to make it amenable to a full penalty matrix
implementation. The proximity quotient with both K1 and K2, Q1,2, is defined as,

Q1,2 = (1 +WPP ) (SND)⊤K1,2 (ND) , (30)

where D denotes the error vector defined as,

D =

(
œ−œT

œ̇xx

)
, for œ = a, e, i, ω,Ω. (31)

In Eq. (31), œ̇xx denotes the maximum rate of change of the respective orbital element
over thrust direction angles and over true anomaly on the osculating orbit. Analytical
relations for these rates are given in Ref. [6]. Note that the difference between
instantaneous and target ω and Ω values is taken inside inverse cosine and cosine
functions in Ref. [6]. We found that a singularity in the derivative of Eq. (30) with
respect to state (which is required to derive Q-law [32]) was encountered when the
instantaneous element, œ, equals the target element, œT. For instance, for ω, we
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have
d

dω

(
cos−1 (cos (ω − ωT))

)
=

sin (ω − ωT)√
1− cos2 (ω − ωT)

. (32)

We found for some transfer cases that this singularity can be encountered frequently
before the transfer is complete.

The scaling matrix function, S in Eq. (30), is defined as,

S = diag (Sa, Se, Si, Sω, SΩ) , (33)

where the elements of S are defined according to Ref. [6] as,

Sœ =


[
1 +

(
a−aT
m aT

)n] 1
r

, for œ = a,

1, for œ = e, i, ω,Ω,
(34)

where m, n, and r are scalars with nominal values set to 3, 4, and 2, respectively.
In Ref. [6], if certain elements weren’t desired to be targeted, then their penalty
factor, Wœ, could simply be set equal to 0. When K1 is used, the same step can
be performed by setting the desired elements of K1 to 0 to avoid targeting those
elements. However, when K2 is used, the matrix N must be introduced and is
defined as,

N = diag (Na, Ne, Ni, Nω, NΩ) , with (35)

Nœ =

{
1 if œ is targeted
0 if œ is not targeted

for œ = a, e, i, ω,Ω. (36)

This follows the procedure described in Remark 2, which can be useful when con-
trol laws must be hard-coded into vehicle hardware, or when it is cumbersome to
rederive the control law depending on the problem being considered. Alternatively,
Eq. (30) could be rederived for a different set of œ depending on what elements are
desired to be targeted. However, the present approach allows for a more user-friendly
implementation for solving a wider variety of problems.

The penalty function, P , serves to enforce a minimum-periapsis-radius constraint
and is defined as,

P = exp

(
k

(
1− rp

rp,min

))
, (37)

where the value of k is set to 4. The periapsis radius can be found with rp = a(1−e2)
and rp,min is the prescribed minimum-periapsis radius and is set arbitrarily to 10 km
in this work for all problems. In Eq. (30), the penalty factor, WP , is either 1 or 0 to
activate 0r deactivate the penalty function P . In this work, it is set to 1.
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The thrust steering control law, α̂, is parameterized by two angles, which are
derived similarly to Ref. [32]. For minimum-time solutions, the thrust magnitude
control δ is always equal to 1. Ref. [33] describes a coasting mechanism, which
determines the thrust magnitude when minimum-fuel transfers are desired which is
defined as,

δ =

{
0 ηr ≤ ηcut,

1 ηr > ηcut,
(38)

where ηcut ∈ [0, 1] is a user-defined cut-off value, which determines the trade-off be-
tween time-of-flight and propellant savings and ηr is the so-called relative effectivity,
which is a measure of how effective it is to thrust on an orbit and is defined as,

ηr =
Q̇n − Q̇nx

Q̇nn − Q̇nx
, (39)

where Q̇n is the time-derivative of Q minimized over the steering control, Q̇nn is Q̇n

minimized over the orbit’s true anomaly, and Q̇nx is Q̇n maximized over the orbit’s
true anomaly. Please refer to Ref. [33] for further details. The spacecraft’s dynamics
are propagated in classical orbital elements (COEs) using MATLAB’s ode45 with
both absolute and relative tolerances set to 10−10. This choice of numerical inte-
grator was different from the one used in the previous sections due to existing code
architecture of the authors. Checks are performed during integration to ensure that
the singularities at circular and planar orbits are not encountered. Due to the chat-
tering that can result from the Q-law [34, 35], the control input is assumed constant
over 1-minute intervals.

The results are summarized in Table 5. The last column shows the difference
in the mean objective value across the 5 runs for each penalty matrix. Because
time-of-flight is being minimized and final fuel mass is being maximized, the full
weighting matrix shows improvement in every case, with the difference being neg-
ative for minimum-time problems and positive for minimum-fuel problems. Most
cases show little improvement in objective values, indicating that Q-law might be
less dependent on the penalty matrix and more dependent on the maximum orbital
element rates-of-change, œ̇xx. However, Case E shows a significantly larger improve-
ment with a 10.5 day improvement in time-of-flight and a nearly 90 kg improvement
in final fuel mass. Figure 8 summarizes the minimum-time results (along with the
minimum-time results from the generic Lyapunov control laws) where the average
time-of-flight represents the bars and the error bars represent the distribution in so-
lutions. The lower distribution visible in Case E further shows how Q-law might be
less dependent on the value of the penalty matrix than the generic Lyapunov control
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law. Figure 11 shows the results from the minimum-fuel solutions summarized as a
bar graph.
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Table 5: Q-law low-thrust transfer results.

Case Objective,
J(K1,2)

Penalty
Matrix

Objective Value, J(K1,2) = tf or mf [days or kg] mean(J(K2))−
mean(J(K1))
[days or kg]Run 1 Run 2 Run 3 Run 4 Run 5 Mean

A

tf [days]
K1 14.815 14.815 14.815 14.815 14.815 14.815

-0.175972
K2 14.626 14.626 14.625 14.694 14.626 14.639

mf [kg]
K1 259.807 259.807 259.809 259.809 259.807 259.808

0.496174
K2 260.304 260.346 260.306 260.239 260.324 260.304

B

tf [days]
K1 137.31 137.309 137.31 137.31 137.31 137.31

-0.0606944
K2 137.182 137.309 137.189 137.256 137.309 137.249

mf [kg]
K1 1809.67 1809.67 1809.66 1809.67 1809.71 1809.67

0.0409008
K2 1809.71 1809.67 1810 1809.73 1809.46 1809.72

C

tf [days]
K1 1.4007 1.4007 1.4007 1.4007 1.4007 1.4007

-0.0052778
K2 1.3944 1.3958 1.39514 1.3958 1.3958 1.3954

mf [kg]
K1 269.769 269.88 269.769 269.769 269.769 269.792

1.86853
K2 271.66 271.66 271.66 271.66 271.66 271.66

D

tf [days]
K1 25.756 25.744 25.746 25.735 25.754 25.747

-0.447361
K2 25.527 24.706 25.422 24.817 26.026 25.300

mf [kg]
K1 946.697 946.697 946.697 946.696 946.697 946.697

0.029531
K2 946.701 946.719 946.761 946.7 946.75 946.726

E

tf [days]
K1 101.206 104.549 110.029 102.395 109.906 105.617

-10.5368
K2 99.3076 91.6944 100.107 92.2472 92.0444 95.0801

mf [kg]
K1 1147.83 1145.12 1136.5 1130.6 1125.07 1137.02

89.5596
K2 1210.86 1238.72 1241.05 1235.96 1206.32 1226.58
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Figure 11: Average minimum-fuel objective values for the Q-law solutions.

Figures 12, 13, 14, and 15 show the orbital elements time histories for the best
Case E minimum-time and minimum-fuel Q-law solutions for each penalty matrix
type. Figures 16, 17, and 18 show the trajectories for these solutions. Note that the
rotated Case E* boundary conditions are plotted in red in the orbital element plots
along with the original Case E orbital elements in black. The problem is solved in the
Case E* frame and the solution is simply rotated back into the Case E frame with
single rotation about the x-axis. The trajectories show the Case E trajectory solution.
Similar to the results for the generic Lyapunov control law in the previous section,
the full penalty matrix K2 changes orbital elements over time quite differently than
with the diagonal penalty matrix, K1. Note that any oscillations or sharp jumps
in Ω and ω between 0◦ and 360◦ are due to the orbit being nearly circular and/or
equatorial leading to ambiguity in Ω and ω.

6. Conclusion

Parameterization and optimization of positive-definite penalty matrices has widespread
applications in modern control and optimization theories. Diagonal parameterization
is a common approach, but it represents only a subset of the full solution space, as it
neglects cross-coupled terms. We propose an efficient parameterization that is based
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Figure 12: Case E orbital elements: minimum-time Q-law with K1.

on eigendecomposition of symmetric matrices, in which the set of parameters consists
of eigenvalues and variables used to parameterize the orthogonal eigenvector matri-
ces. Considering a full penalty matrix can broaden the solution space by including
cross-coupling error terms in quadratic costs that are used extensively for design-
ing modern controls, such as a linear quadratic regulator (LQR) or Lyapunov-based
nonlinear controllers, as we have demonstrated through the results.

Several control problems were solved with Lyapunov-based control laws and LQR
for the standard diagonal and the proposed full penalty matrix representations. We
clarify that solutions are by no means optimal due to limited runs of PSO and
limited computational resources. Additionally, other global optimization algorithms
may even perform better than PSO. For instance, Ref. [24] finds more optimal trans-
fer solutions using Q-law by performing extensive parameter searches with genetic
algorithm over multiple days of CPU time. The matter of optimizing the parameters
should be investigated further. However, our comparative results demonstrate that
improved solutions can be obtained with the full penalty matrix with respect to the
considered optimality criteria of each problem. The improvement is especially evi-
dent for classes of more nonlinear and long-duration problems for which optimization
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Figure 13: Case E orbital elements: minimum-time Q-law with K2.

of the off-diagonal terms broadens the optimality of the solutions (e.g., large changes
in orbital elements for the low-thrust trajectories). In the most extreme case, the
improvement in performance was 65%. Our hope is that the simplicity of the demon-
strated methods allows researchers/practitioners in many fields of control theory and
optimization to potentially obtain more optimal solutions to their practical control
problems.

Appendix A. Numerical Values of the Penalty Matrices

For reproducibility, we provide the penalty matrices for some of the solutions we
obtained in this work. Eqs. (A.1) and (A.2) show the penalty matrices that were
found for the best detumbling attitude control solution for LQR and Lyapunov-based
control, respectively, corresponding with the solutions shown in Figures 6 and 7.
Eqs. (A.3), (A.4), (A.5) show the penalty matrices for the Case E for the minimum-
time generic LC solution, minimum-time Q-law solution, and minimum-fuel Q-law
solution, respectively.
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Figure 14: Case E orbital elements: minimum-fuel Q-law with K1.

Q1 = diag (1.05309, 0.00299126, 0.68307, 4.5293, 9.87489, 0.0452255) (A.1a)
R1 = diag (8.36281, 4.40636, 9.23266) (A.1b)

Q2 =



1.185 −0.613646 0.311778 0.48939 0.343032 0.0979317
−0.613646 0.698828 0.572306 −1.82684 −0.0230107 −0.0140387
0.311778 0.572306 1.84127 −3.45008 0.448065 0.110059
0.48939 −1.82684 −3.45008 7.57063 −0.592071 −0.132696
0.343032 −0.0230107 0.448065 −0.592071 0.172537 0.0455803
0.0979317 −0.0140387 0.110059 −0.132696 0.0455803 0.0121875


(A.1c)

R2 =

 9.57947 1.63521 0.963686
1.63521 3.39122 −4.30809
0.963686 −4.30809 6.53455

 (A.1d)
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Figure 15: Case E orbital elements: minimum-fuel Q-law with K2.

Kp,1 = diag (0.192456, 0.167666, 0.272458) (A.2a)
Kd,1 = diag (1.82655, 2.25069, 3.04384) (A.2b)

Kp,2 =

 2.2675 −0.295543 1.97134
−0.295543 0.915225 −0.761434
1.97134 −0.761434 2.35022

 (A.2c)

Kd,2 =

 7.03549 0.367325 1.74591
0.367325 7.73374 −2.65179
1.74591 −2.65179 2.34927

 (A.2d)
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(a) K1. (b) K2

Figure 16: Case E trajectory: minimum-time Q-law with K1 and K2.

(a) Trajectory projection onto z-y plane. (b) Three-dimensional view.

Figure 17: Case E trajectory: minimum-fuel Q-law with K1.

K1 = diag (6.5225, 98.1494, 8.9658, 10.2037, 97.3815, 20.7142) (A.3a)

K2 =


39.4746 17.5941 −2.0538 −3.3242 0.1723 −0.3125
17.5941 68.1822 −3.7857 −6.9744 0.1840 −0.5589
−2.0538 −3.7857 4.6930 0.5193 2.9905 0.2195
−3.3242 −6.9744 0.5193 11.5512 0.4138 −5.6421
0.1723 0.1840 2.9905 0.4138 77.1079 1.5671
−0.3125 −0.5589 0.2195 −5.6421 1.5671 81.3064

 (A.3b)
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(a) Trajectory projection onto z-y plane. (b) Three-dimensional view.

Figure 18: Case E trajectory: minimum-fuel Q-law with K2.

K1 = diag (2.54742, 0.00530434, 0.242459, 9.64791, 7.76675) (A.4a)

K2 =


9.61437 0.59816 0.727462 0.0886329 0.0288422
0.59816 5.65613 −4.0757 −1.62804 −1.24825
0.727462 −4.0757 3.52475 0.90911 1.25853
0.0886329 −1.62804 0.90911 4.76366 0.652616
0.0288422 −1.24825 1.25853 0.652616 2.68927

 (A.4b)

K1 = diag (8.65871, 2.22226, 4.21207, 4.84089, 8.3779) (A.5a)

K2 =


8.25151 3.14031 1.22609 0.337485 0.0941679
3.14031 3.62918 −1.34696 0.0247984 0.066369
1.22609 −1.34696 4.13089 0.256997 −0.0302524
0.337485 0.0247984 0.256997 8.95998 −0.429254
0.0941679 0.066369 −0.0302524 −0.429254 7.19688

 (A.5b)
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