
Vision Controlled Orthotic Hand Exoskeleton
Connor Blais, Md Abdul Baset Sarker, Masudul H. Imtiaz

Dept. of Electrical and Computer Engineering
Clarkson University

Potsdam, New York, USA
blaiscs@clarkson.edu, sarkerm@clarkson.edu, mimtiaz@clarkson.edu

Abstract—This paper presents the design and implementation
of an AI vision-controlled orthotic hand exoskeleton to enhance
rehabilitation and assistive functionality for individuals with
hand mobility impairments. The system leverages a Google
Coral Dev Board Micro with an Edge TPU to enable real-time
object detection using a customized MobileNet V2 model trained
on a six-class dataset. The exoskeleton autonomously detects
objects, estimates proximity, and triggers pneumatic actuation
for grasp-and-release tasks, eliminating the need for user-specific
calibration needed in traditional EMG-based systems. The design
prioritizes compactness, featuring an internal battery. It achieves
an 8-hour runtime with a 1300 mAh battery. Experimental
results demonstrate a 51ms inference speed, a significant im-
provement over prior iterations, though challenges persist in
model robustness under varying lighting conditions and object
orientations. While the most recent YOLO model (YOLOv11)
showed potential with 15.4 FPS performance, quantization issues
hindered deployment. The prototype underscores the viability
of vision-controlled exoskeletons for real-world assistive applica-
tions, balancing portability, efficiency, and real-time responsive-
ness, while highlighting future directions for model optimization
and hardware miniaturization.

Index Terms—AI, Google Coral Micro, Rehabilitation,
YOLOv11, MobileNet V2, Hand Exoskeleton

I. INTRODUCTION

Orthotic hand exoskeletons are used primarily in post-
stroke rehabilitation. They help minimize motor impairments
through repetitive task training [10]. When used in robotic
rehabilitation systems, they can provide progress tracking
through embedded sensors, allowing objective assessments
of rehabilitation progress. Furthermore, continuous passive
motion devices automate therapeutic exercises, reducing the
therapist’s workload while maintaining joint mobility. How-
ever, another use case for hand exoskeletons is to enhance
hand function. These can be used by individuals suffering from
permanent loss of hand function or by healthy individuals.
Spinal cord injuries or neuromuscular diseases are the most
common causes of loss of hand function that augmentative
hand exoskeletons address [10]. The exoskeleton enhances grip
strength and assists in articulating their fingers to perform
basic everyday tasks. The most common way to control
augmentative hand exoskeletons is by using EMG sensors or
an external IMU mounted elsewhere on the body [10].

Industrial applications of hand exoskeletons also exist. They
can be used to mitigate work-related musculoskeletal disorders
caused by repetitive or forceful gripping. In addition, they

can reduce muscle fatigue in assembly line workers and con-
struction personnel. Furthermore, grip-assist systems enable
prolonged package handling in the shipping industry without
strain injuries. Field studies demonstrate a reduced incidence
of carpal tunnel syndrome and tendinitis among users. Such
preventive applications are gaining traction in industries with
high repetitive stress injury rates.

More advanced exoskeleton platforms can also study hu-
man motor control and monitor rehabilitation goals. Such
research tools provide insight into sensorimotor integration and
motor learning processes. Experimental setups incorporating
virtual reality interfaces examine neural adaptation during
rehabilitation. These experimental setups can also help de-
velop advanced prosthetic limbs with natural control schemes.
Hybrid systems that combine functional electrical stimulation
with robotic assistance explore synergistic rehabilitation ap-
proaches. These research applications contribute to evidence-
based therapy protocols and standards for human-robot in-
teraction. The data collected from these studies continuously
refine exoskeleton designs for clinical and assistive use.

A. Literature Review

Various advancements in hand exoskeleton technologies
have been made over the years. Table I1 summarizes three
rehabilitative hands and three assistive hands that the research
community has developed. Among these hand exoskeletons are
several different methods of driving the hand. Electric motor-
driven hand exoskeletons use DC motors to generate precise,
programmable forces [10]. This type of exoskeleton typically
relies on cabling or a linkage structure to move the joints
of the hand. Pneumatic-driven hand exoskeletons utilize com-
pressed air to power soft actuators. Pneumatic muscles excel
at applying compliant, naturalistic forces, which are beneficial
for safe human-robot interaction. SMA actuation-based hand
exoskeletons utilize metal alloys that contract when an electric
current is applied. They are incredibly lightweight and com-
pact because they only rely on an electrically conductive alloy
to move [38]. This allows them to be extremely low-profile,
minimizing the obstruction of hand movements. Passive hand
exoskeletons use springs or other elastic elements to provide
a constant force to the hand. They are considered passive
because they do not use any electrical components. Passive

1A more comprehensive table can be found in [10]

ar
X

iv
:2

50
4.

16
31

9v
1 

 [
cs

.R
O

] 
 2

2 
A

pr
 2

02
5



Name

Force
Transmis-

sion

Method of
Intention
Sensing Type

Drive
Method

HandSOME
[40] Linkage

N/A
(Passive) Rehabilitative Passive

WaveFlex
[41] Linkage N/A (CPM) Rehabilitative DC Motor

Wege et al.
[42] Cable EMG Rehabilitative DC Motor

Kadowaki
et al. [43] Glove

Flexion
angle or

EMG Assistive Pneumatic

SMA
Actuated

Hand. [38]

Cable
Wrapped

Glove
Manual Via
MATLAB Assistive SMA

AI Vision
Controlled

[36] Glove
Camera and

Sensors Assistive Pneumatic

TABLE I: Various Hand Exoskeleton Technologies

hand exoskeletons are relatively straightforward, which makes
them reliable and cost-effective. However, because they have
no controllable components, there is no way to adjust the force
applied to the hand.

The last item on Table I is the initial concept for the
design laid out in this paper. Our research group at Clarkson
University previously developed it and paired a commercially
available pneumatic glove with an AI vision-based control
scheme [4]. It aimed to eliminate the need for individualized
training to use an EMG-based system. The exoskeleton uses a
Google Coral Dev Board Mini with an external 5-megapixel
camera to detect objects in the area in front of the hand. It also
uses a VL6180X time-of-flight sensor to measure the distance
of objects to the palm. When an object is detected, the hand
will open so that the user can grasp it. When the object is close
enough, the VL6180X embedded in the wrist of the glove will
trigger the glove to repressurize the pneumatics. An ADXL345
accelerometer performs gesture detection, which triggers the
hand to release its holding object when the user quickly rotates
their wrist [4]. This design used an EfficientDet-Lite0 object
detection model trained on a locally collected dataset. The
model operated at six frames per second on the Dev Board
Mini, which was deemed acceptable for real-time detection
[4]. Furthermore, a second microcontroller was also used to
interface with the pump and solenoid, which controlled airflow
into the hand.

The Google Dev Board Mini’s central MCU is the MediaTek
8167s Quad-Core Arm Cortex-A35 MCU, which requires an
average of 3W to operate. Furthermore, each core of this
chip can run at up to 1.5GHz [17]. It also has Google’s
Edge Tensor Processing Unit (TPU) embedded in it. This
TPU was designed to accelerate Machine Learning algorithms
efficiently, which enhances the usability of Machine Learning
in embedded applications [17].

However, this initial prototype required a system redesign
and a robust object detection and gesture recognition model.

Furthermore, a reduction in the size of the system was required
to make it lightweight and to increase the comfort of use.

B. Initial Work

The initial design of the hand exoskeleton laid out in this
paper aimed to simplify and streamline the original design.
For the redesign, there were three candidates for the central
microcontroller for the device. The first candidate was the Ar-
duino Pro Portentia H7. This microcontroller was based around
the STM32H747XI Dual Arm® Cortex® M7/M4 MCU; the
M7 runs at 480MHz, and the M4 runs at 240MHz. In ad-
dition, it has an embedded Chrome-ART graphical hardware
accelerator, which would increase the efficiency of the object
detection model. The second candidate was the Arduino Pro
Nicla Vision. This microcontroller has an STM32H747AII6
Dual Arm® Cortex® M7/M4 MCU; the M7 and M4 cores run
at the same speed as their counterparts on the Portentia H7.
Additionally, this board comes pre-equipped with a camera,
IMU, and TOF sensor, and the entire board is the size of an
American quarter. The third candidate was the Google Coral
Dev Board Micro. This controller has an NXP i.MX RT1176
Cortex® M7/M4 MCU; the M7 runs at 800MHz and the M4
runs at 400MHz. It also has a Coral Edge TPU coprocessor
for accelerating TensorFlow Lite models, making it the fastest
of the three options.

After analysis, the Nicla Vision was chosen for prototyping
due to its integrated sensors and small package size. A
functional standalone version (NV Version) was developed,
and objects were successfully detected using a model trained
with EdgeImpulse. Furthermore, it matched the performance
of the previous version, running at six frames per second.
However, the Nicla Vision would overheat with prolonged
use and required a cooling fan to run for extended peri-
ods. The next phase of this design involved transitioning
to the Portentia H7. Still, compatibility issues arose due to
flawed MicroPython I2C camera control code. Despite non-
overlapping sensor addresses, the Portentia H7 could not
simultaneously communicate with the camera and sensors
without errors. The final design combined the Nicla Vision
for object detection and the Portentia H7 for central control,
sacrificing the single-microcontroller goal but achieving a
compact form. This design can be seen in Figure 1.

C. Proposed Solution

The design requirements for the revised AI vision-controlled
orthotic hand exoskeleton are as follows. First, it will need to
run for six to eight hours or more, as this is generally what
clinicians agree is reasonable [11]. Second, it must fit entirely
on the lower wrist; the battery pack should be internal, not
external, as in the initial design. This makes the system easier
to put on and can be contained in as small an area as possible.
Third, the hand should be able to close and open. The design
will use the same pneumatic glove as the earlier versions.
The design will use the Google Coral Dev Board Micro as
its singular microcontroller. Furthermore, the object detection
model should consist of multiple classes and run at a rate of



Fig. 1: An overview of the proposed system

more than six frames per second. Finally, the design must be
as light as possible, with the goal of less than 200 grams, as
this is the maximum acceptable weight of a hand exoskeleton
[11].

II. THEORY

For the design laid out in this paper, two different object de-
tection model architectures were investigated, MobileNet V2
and YOLOv11. Furthermore, these models should run on the
Google Edge TPU embedded in the Coral Micro, so their
performance must be examined. The performance of the Coral
Micro itself also needs to be addressed. Additionally, the
embedded codebase for the Coral Micro has two relevant
parts that need to be investigated: FreeRTOS and TFLiteMicro.
Finally, the electrical design for the custom motor controller
needs to be explored.

A. AI Vision Control

MobileNet V2 is a deep learning model architecture de-
veloped by Google for use in mobile environments [30]. It
is based on MobileNetV1 and uses Linear Bottlenecks to
enhance the model’s efficiency and maintain a high accuracy.
These Linear Bottlenecks help prevent information loss caused
by non-linear activation functions, like ReLU. Because the
bottlenecks in the model are linear, more critical information
is preserved, allowing for better expressiveness [30]. Another
significant change MobileNet V2 makes is using Inverted
Residual Blocks, which place shortcuts between the bottleneck
layers instead of between broad feature representations like
typical Residual Blocks would do. This allows for the efficient
reuse of features at lower computational costs. Furthermore,
MobileNet V2 makes heavy use of depthwise separable con-
volutions, which reduce the number of computations needed

compared to traditional convolutions. These improvements
from MobileNetV1 allow MobileNet V2 to approach the
performance of large models while using less memory and
still having a low latency [30].

YOLOv11, or You Only Look Once v11, is the latest version
of YOLO that has improved upon its predecessors, emphasiz-
ing its ability to detect objects in real-time. Additionally, it
has enhanced capabilities to do instance segmentation and pose
estimation compared to its previous versions. YOLO is known
for its fast and accurate classification abilities; every iteration
continuously improves upon this. YOLOv11’s most significant
improvements from its predecessors are using C3k2 Blocks for
feature extraction, SPPF modules for spatial pyramid pooling,
and C2PSA blocks for spatial attention. These changes give
YOLOv11 higher accuracy and faster interpretation speeds
than its predecessor, making it a good choice for low-latency
scenarios [37].

B. Edge TPU

The Edge TPU developed by Google is an ML Accelerator
with significant speed advantages in embedded applications
due to its specialized architecture [5]. It achieves remarkably
low inference latency, which is critical for real-time edge AI
tasks. It can run MobileNet V2 models at speeds as high
as 400 FPS [3]. High-accuracy models (e.g., 95% validation
accuracy) run in as little as 4.18 ms on the V2 configuration,
while smaller models with optimized operations, such as 1×1
convolutions, achieve sub-millisecond latencies (e.g., 0.074
ms). Performance varies by workload: V1 excels for large
models (5–30M parameters) due to its 2 MB PE memory,
minimizing off-chip data transfers, whereas V3 leverages
architectural tweaks (e.g., more cores per PE) to deliver 10.4×
speedups over V1 for models dominated by 1×1 convolutions
[5]. These optimizations ensure rapid inference across diverse
neural network structures.

The Edge TPU is also very energy efficient, using only
half a watt per TOPS. Employing parameter caching and
reusing on-chip weights across inferences reduces costly off-
chip memory accesses. For instance, V2 consumes 19.75 mJ
for high-accuracy models, slightly outperforming V1 (19.89
mJ) in similar tasks. Smaller models with fewer than 3M
parameters have an energy consumption of 0.17 mJ on the
V2. This makes the Edge TPU suitable for battery-operated
embedded applications [5].

The accelerator’s hardware parallelism further boosts perfor-
mance. Each processing element (PE) integrates SIMD lanes
and multi-core designs to execute convolutional operations in
parallel. For example, a PE with four SIMD lanes processes
four kernel elements simultaneously, accelerating loop-heavy
computations like convolutions. Additionally, the Edge TPU’s
software ecosystem supports rapid design exploration. A graph
neural network (GNN) based learned model predicts millisec-
ond latency and energy, bypassing hours-long cycle-accurate
simulations.



C. Coral Dev Board Micro

The Coral Dev Board Micro is designed as a high-
performance embedded system centered around Google’s Edge
TPU, which delivers 4 TOPS (trillion operations per second)
for accelerated inference of quantized TensorFlow Lite models
[19]. This capability enables real-time processing of machine
learning tasks, such as image classification or audio analysis,
directly on the edge without cloud dependency. The Edge
TPU interfaces with the dual-core NXP i.MX RT1176 MCU
(800 MHz Cortex-M7 and 400 MHz Cortex-M4) via USB
2.0, creating a balance between preprocessing on the ARM
cores and compute-heavy inferencing on the Edge TPU. While
the USB 2.0 link limits data bandwidth to 480 Mbps, the
system optimizes efficiency by directly integrating a 324x324-
pixel camera on the board, minimizing external data transfers
and enabling streamlined sensor-to-inference pipelines. This
architecture uses high-speed processing for real-time vision or
voice recognition applications. Furthermore, the NXP i.MX
RT1176 MCU, the board’s central processor, is very low
power, drawing less than 1W during regular operation [15].

D. Embedded Codebase

FreeRTOS is a lightweight, open-source, real-time operating
system (RTOS) designed for embedded systems with deter-
ministic behavior and minimal resource overhead. At its core,
FreeRTOS employs a preemptive, priority-based scheduler
to manage tasks (threads). Each task is assigned a priority
level, and the scheduler ensures the highest-priority-ready
task always runs first. For tasks of equal priority, FreeRTOS
supports round-robin scheduling, where tasks share CPU time
in fixed time slices; see Figure 2. The kernel maintains task
states (ready, running, blocked, suspended) and uses a doubly
linked list to manage tasks at the same priority level [22].
The pxCurrentTCB pointer is a key part of FreeRTOS. It
tracks the currently running task in conjunction with the
pxReadyTasksLists array, which organizes ready tasks by
priority. Context switching occurs during scheduler ticks, task
yields, or synchronization events, with the scheduler saving
and restoring task contexts (registers, stack) to ensure seamless
transitions.

TensorFlow Lite Micro (TFLiteMicro) is a specialized vari-
ant of TensorFlow Lite (TFLite) designed to run machine
learning models on microcontrollers and deeply embedded
systems with extreme resource constraints, such as kilobytes
of memory, no operating system, and no dynamic memory
allocation. While TFLite targets mobile and edge devices
with moderate resources, leveraging an interpreter to execute
models and supporting features like dynamic memory and
hardware acceleration, TFLite Micro strips away these as-
sumptions to operate in environments where even basic OS
features are absent [33]. TFLite Micro requires applications
to pre-allocate a static memory arena. This memory arena
is managed with two stacks, one for persistent data and an-
other for transient buffers. This eliminates heap fragmentation,
ensuring predictable memory usage. During initialization, the
interpreter plans memory layouts using bin-packing algorithms

Fig. 2: FreeRTOS Task Execution [21]

to maximize reuse, and all allocations are finalized upfront,
avoiding runtime memory management overhead. TFLite Mi-
cro retains compatibility with most of TensorFlow’s model
conversion pipeline and quantization tools. This compatibility
ensures that TFLite Micro can adapt to a wide range of Tensor-
Flow models, making it ideal for low-power applications that
require continuous operation. Furthermore, it can still be used
for resource-intensive tasks, such as object detection, provided
that the model does not rely on operations not supported by
TFLite Micro.

E. Electrical Design

Two 5V vacuum pumps will be used to control the motion
of the hand, one to open the hand and one to close it. The
vacuum pumps that will be used are polarized DC motors,
which means that the airflow direction can not be changed
by reversing the voltage across the motor. Because of this, an
H-Bridge controller is unnecessary, so a MOSFET DC Motor
driver can be used. To design this driver properly, the electrical
characteristics of the motors need to be determined. Doing this
yields values of 2mH and 3.99Ω. These values can be used
to model the motor in LTSpice roughly [2].

Additionally, the motor’s current draw must be measured at
the various stages of motor operation so that we can adequately
account for the load the motor is experiencing in our model.
Attaching the motor to the hand exoskeleton on the intake and
outtake ports and running it yields a current draw of 250mA
while opening the hand and a current draw of 395mA while
closing the hand. From here, we can simulate the behavior of
the motor in LTSpice and use this to verify that the MOSFET-
based driver will not exceed its power dissipation rating.

The solenoid that will be used to swap between inlet and
outlet is much easier to model in LTSpice, as it is just
an inductor. Measuring its characteristics yields values of
6.73mH and 23.1Ω. Furthermore, connecting the solenoid
to a power supply of 3.3V shows that it draws 130mA on
average. These values can then be used in LTSpice to model
the solenoid and check if the motor diver needs modification.



Doing this shows that the driver can handle the solenoid
without any modifications. Furthermore, a flyback diode is
necessary across the motors and the solenoid to account for
voltage spikes caused by their inductance.

This design needs a power MOSFET with a low threshold
voltage, reasonable power dissipation, and a low RDS(on). The
IRLML6244TRPbF fits these requirements perfectly [39]. It
has a threshold voltage between 0.5V and 1.1V , which gives
plenty of headroom for the 1.8V logic level the Coral Micro
operates on. It has a max power dissipation of 1.3W . Its
RDS(on) is between 22mΩ and 27mΩ at a VGS of 2.5V ,
which will allow for minimal power loss when driving the
motors and solenoids. Additionally, it comes in a SOT23-
3 package, which is very small and will allow for a more
compact design.

First, an approximate RDS(on) for a VGS of 1.8V needs
to be calculated. The easiest method to determine this is to
use LTSpice, as there is a built-in IRLML6244TRPbF model.
Assuming the voltage drop across the pump gives a VD of
no more than 100mV , the simulation shows that RDS(on) is
between 52mΩ and 54mΩ. While this is much higher than
the values listed on the data sheet, those values are based on
a VGS of 4.5V and 2.5V respectively [39]. Even so, 54mΩ is
sufficiently low for the driver to minimize power dissipation
during operation.

Second, using LTSpice to simulate a simple MOSFET
switch to drive the motor reveals a potential problem. This
problem is a significant power dissipation spike when the
MOSFET closes. Fortunately, this problem can be solved by
adding a soft start as a low-pass filter to the MOSFET Gate.
Using a 100kΩ resistor and a 1µF capacitor decreases the
power dissipation of the MOSFET to well below 1.3W when
the MOSFET closes.

III. IMPLIMENTATION

A. Firmware Design

1) Coral Micro Codebase: The source code for the Coral
Micro is based on FreeRTOS. This design’s code is split
into four tasks: InfrenceTask, SensorTask, MotorTask, and
BatteryTask. Each task has a priority level, with MotorTask
and BatteryTask having the highest priority, InfrenceTask
having the second highest priority, and SensorTask having the
lowest. Flowcharts for MotorTask, BatteryTask, InfrenceTask,
and SensorTask can be found in VIII Appendix. A video of
the device in operation can be found here: Link2.

MotorTask manages the state machine that controls the
exoskeleton. It has three states: OpenHand, CloseHand, and
Idle. When InfrenceTask triggers the OpenHand state, Motor-
Task suspends InfrenceTask, opens the hand, and records the
system tick count. It then checks if the VL6180X detects an
object within 30mm of the sensor. If it does not, MotorTask
delays for 100ms; if it does detect something, it sets the
state to CloseHand and clears the TapDetected registers of
the ADXL345. If the VL6180X does not detect any object

2https://youtu.be/AKla 7vtGEA

within 30mm for 10 seconds, MotorTask sets the hand to its
rest state3, resumes the InfrenceTask, and then returns to its
Idle state. When in the CloseHand state, MotorTask checks the
TapDetected registers of the ADXL345 every 100ms. If the
ADXL345 has detected a tap, MotorTask opens the hand and
sets it to its rest state. It then resumes InfrenceTask and returns
to its Idle state. In its Idle state, it waits for InfrenceTask to
trigger the OpenHand state. BatteryTask checks the voltage of
the battery every minute. It suspends all tasks if it calculates
a runtime of less than 30 minutes. At the start of the loop,
it records the current system tick count. It then checks the
battery voltage every minute. Once it has ten measurements,
it records the current system tick count again. It then calculates
how much time has passed since it started recording the first
of the 10 measurements. If the last battery level recorded
is higher than its current level, it estimates the remaining
runtime of the exoskeleton. The runtime estimation is a simple
linear approximation that assumes that the minimum battery
voltage the device will operate at is 9V. 9V is when the power
regulator’s voltage drops below the minimum required to run
the Coral during inference. All other tasks are suspended if the
runtime is less than thirty minutes. BatteryTask will continue
to check the battery level every minute until the system is
powered down.

InfenceTask starts by initializing the TPU and the necessary
software components to run the object detection model. This
setup is based on a tutorial by Shawn Himel, who based it
on the object detection examples provided by Google for the
Coral Micro [23]. After setup, InfrenceTask enters its main
loop, where it continuously captures a frame from the camera
and determines if any objects are present. If it detects an
object, and the ID of the last object it detected is not zero,
it turns the laser off. Then, if the current object is the same
as the object detected in the previous frame, it increments the
object count by one. It then checks if the object count is greater
than five and that the state of MotorTask is not OpenHand4. If
both are true, it resets the object count and then turns on the
ADXL345’s tap detection. Then, it sets the MotorTasks state
to OpenHand. If the same object is not detected for six frames
in a row, the object count is reset, and the last object ID is
updated to the new object detected.

SensorTask records data from the AXDL345 and the
VL6180X. It saves this data to two global buffers so that the
other tasks can use them for control purposes. In addition to
this, there is a watchdog timer that triggers after 8 seconds of
inactivity. This prevents the power from needing to be cycled
if something goes wrong on the board.

2) MobileNet V2 Training: The MobileNet V2 model was
trained with a dataset consisting of 1923 images, split across
six classes. These six classes are: ’ball’, ’bottle’, ’cube’, ’cup’,
’pen’, and ’spoon’. Before training, all the images in the
dataset are scaled to 324x324, with padding added so that the

3The rest state is when the glove is at atmospheric pressure internally
4This is done so that in the event InfrenceTask gets scheduled to run

multiple times before MotorTask can suspend it, InfrenceTask does not
continually try to set MotorTask’s state

https://youtu.be/AKla_7vtGEA


Parameter Value
Learning Rate 0.04
Batch Size 16
Epochs 100
Cosine Decay Alpha 0.98
Cosine Decay Epochs 50

TABLE II: Training Parameters

aspect ratio is retained. Furthermore, to increase the variety
of data, each image is rotated between -45 and 45 degrees,
such that each original image becomes ten images. Applying
this transformation increases the total number of images in
the set to 19230. The dataset is then split into train, test, and
validation with an 80-10-10 split.

The model training is done with the MediaPipe-Model-
Maker Python library following the standard procedures pro-
vided in [23]. It uses the MOBILENET V2 I320 pretrained
model as its base and retrains it with the parameters in Table
II.

Doing this yields a model with an AP value of .67 and a
loss of 0.3368. The final model is also quantized to int8 and
compiled for the Edge TPU.

IV. RESULTS

A. Model Performace

When implemented on the Coral Micro, the MobileNet V2
model runs at 10.0 FPS. This is a significant improvement
from the previous versions of this design, which ran at 6.0 FPS.
That being said, 10.0 FPS is a considerable improvement over
typical tflite models, which run at around 3.5 FPS on mobile
phones [7]. However, the model struggles to recognize the pen
and spoon classes reliably. For the pen class specifically, the
orientation of the pen in the frame determines how often it
is detected. Furthermore, the bottle and cup classes overlap
in their detection. This is not a huge concern, as they are
similar in how they must be picked up and put down. A more
considerable concern is that the model struggles to function
depending on the light level of the environment and how the
object is lit in frame. For example, with the cup class, with
overhead lights on a bright surface, the model would only
detect that the cup was there for one frame, roughly every
2 seconds. Then, the model would not detect the cup with
the overhead lights off. Then, in both conditions, using a
flashlight to light the cup from a roughly 45 degree angle, the
model would continuously detect the cup in frame with no
issue. See Figure 3 for an example of each condition. Similar
results were also achieved with the ball and cube classes.
Furthermore, the model is overfit to the objects within the
dataset and is mostly unable to recognize objects it has never
seen before. The YOLOv11 model runs at 15.4 FPS when
implemented on the Coral Micro. This is over double the frame
rate of the initial design. Unfortunately, the YOLOv11 model
does not correctly detect objects in the dataset. Instead, it
constantly outputs the same bounding boxes with the identical
object IDs. Running the model on a computer with Python
gives the same result. Further investigation showed that the

(a) Ball Overhead Light (b) Ball Overhead Light with
Flashlight

(c) Cup Overhead Light (d) Cup Overhead Light with
Flashlight

(e) Cup No Overhead Light (f) Cup No Overhead Light with
Flashlight

Fig. 3: Lighting Tests

unquantized model performed as expected, with an AP of 99%,
meaning there was an issue with the quantization process. The
quantized model had an AP of less than 50%. Because of
this, the YOLOv11 model will not be implemented until the
quantization process can be adapted.

B. Ease of Use

When idle, the exoskeleton draws an average of 100mA.
When opening, it draws an average of 250mA. When closing,
it draws 625mA. When holding an object, it draws an average
of 230mA. Running the hand in its idle state with an object for
it to detect, with an average of two detection cycles per minute,
causes the battery voltage to drop from 12.8V to 11.19V over
8 hours for a 1300 mAh, 12V battery. Running the hand in its
hold state exclusively causes the same battery voltage to drop
from 12.89V to 11.35V over 3 hours. The cut-off voltage for



the system to hibernate is 9V , so it is safe to say that the
system has an 8+ hour runtime during regular operation if a
1300mAh 12V battery is used. 9V was chosen as the cut-off
voltage because the 5V regulator starts to dip well below 5V
when drawing more than 1A from it.

From a performance standpoint, the hand performs moder-
ately well. The code works as intended and does not crash,
and the hardware does not fail significantly. The object detec-
tion model underperforms, as getting it to recognize objects
consistently can be tedious. More often than not, you need
to find the sweet spot with how the camera is angled at the
object. This is partly due to how the code is structured, as it
requires six frames in a row to contain the same object before
the hand will open. This was done to mitigate the chances
of a false detection event. Theoretically, this should not cause
issues as the model’s validation accuracy is 67% Furthermore,
the hand needs to be held still more often than not to detect
an object, which can pose problems for individuals suffering
from neurological diseases using an orthotic hand exoskeleton.

V. DISCUSSION

Several technical challenges were encountered during de-
velopment, primarily due to software compatibility and hard-
ware limitations. Setting up CUDA 12.1 on Ubuntu 18.04
required manual installation due to lab constraints and Me-
diaPipe Model Maker’s dependency on newer CUDA ver-
sions, which conflicted with the OS’s default installer. Further
complications arose when MediaPipe automatically installed
TensorFlow-CPU, necessitating a reinstallation of TensorFlow-
GPU. YOLOv11 posed significant hurdles: training crashes
linked to the faulty quantization code, which were later
resolved. Furthermore, compiling the model for Edge TPU re-
quired reducing input resolution to 160x160 to prevent crashes.
On the Coral Micro, quantized YOLOv11 models failed to
run correctly. When run, it would detect the same objects
with similar scores in the same place in the frame, regardless
of what was present in the frame. Hardware challenges, I2C
sensor source code incompatibility, and reliance on a dev
branch of the Coral Micro source code to get TFLite Micro
to support critical operations. Furthermore, the team only
tested this prototype in a controlled lab environment. More
rigorous testing in real-world environments is needed before
this solution can be implemented on a large scale.

VI. FUTURE WORK

Several parts of this design could be improved upon in
future works. The first thing that could be improved upon is
the compactness of the design. The design is taller than the
previous version because of how the Coral Micro is mounted.
Furthermore, the additional pump caused the design to be
wider than the earlier version. The mounting of the Coral
Micro could be changed by embedding it in a custom PCB
or making a custom camera connector. Both options would
allow the board to be mounted flat on the wrist instead of
perpendicular to it. Smaller pumps could be used to decrease
the width and height of the design further. Another area of

improvement would be to have individual control of each
finger. This would allow for different grab patterns depending
on what object is detected. Another area to investigate would
be using a lightweight machine learning model to detect when
the user wants to put down an object. Switching over to a 6-
axis IMU would be beneficial for this. Another thing that could
be done is to use a stronger pump for hand closing so that
the grip strength of the device is higher. To this end, a grippy
material could also be added to the fingertips. Finally, the most
significant area for improvement is the object detection model.
More augmentations, like zoom and light level adjustment,
need to be used to increase the model’s accuracy in different
conditions. Furthermore, each dataset class must incorporate
a more diverse set of objects.

VII. CONCLUSION

This AI Vision Controlled Orthotic Hand Exoskeleton
demonstrates how lightweight, intelligent systems can enhance
rehabilitation and assistive technology. By leveraging the Coral
Dev Board Micro and an optimized MobileNet V2 model, the
device achieves real-time object detection at 10 FPS while
maintaining a compact, wearable design. The electrical and
mechanical improvements, such as efficient power manage-
ment allowing for a runtime of over 8 hours and a comfortable
forearm-mounted case, ensure practicality for daily use.

Challenges do remain and leave room for future improve-
ments. The MobileNet V2 model, while functional, does
struggle with particular objects and lighting conditions. The
YOLOv11 model, while compatible on paper, does not have
the proper quantization methods necessary to make accurate
inferences. Beyond its technical performance, this project un-
derscores the real-world potential of AI-powered exoskeletons:
eliminating the need for calibration for specific users moves
us closer to a seamless assistive experience. Ultimately, this
exoskeleton is a step toward more responsive, user-driven
assistive devices that empower individuals with limited hand
mobility.



REFERENCES

[1] N. R. Sulake, “A Comprehensive Guide to YOLOv11 Object De-
tection,” Analytics Vidhya, 2025. [Online]. Available: https://www.
analyticsvidhya.com/blog/2024/10/yolov11-object-detection/. Accessed:
Apr. 4, 2025.

[2] meganburroughs, “AB-025: Using SPICE To Model DC Mo-
tors,” Precision Microdrives, 2025. [Online]. Available: https://www.
precisionmicrodrives.com/ab-025. Accessed: Mar. 16, 2025.

[3] “Accelerator Module Datasheet,” Coral, 2025. [Online]. Available: https:
//coral.ai/docs/module/datasheet/. Accessed: Mar. 11, 2025.

[4] M. A. B. Sarker, J. P. Sola-Thomas, and M. H. Imtiaz, “AI-Powered
Camera and Sensors for the Rehabilitation Hand Exoskeleton,” arXiv,
2024, doi: 10.48550/arXiv.2408.15248.

[5] K. Seshadri et al., “An Evaluation of Edge TPU Accelerators for
Convolutional Neural Networks,” in 2022 IEEE International Sympo-
sium on Workload Characterization (IISWC), 2022, pp. 79–91, doi:
10.1109/IISWC55918.2022.00017.

[6] N. Davis, “An Introduction to Laser Diodes - Technical Articles,” 2025.
[Online]. Available: https://www.allaboutcircuits.com/technical-articles/
an-introduction-to-laser-diodes/. Accessed: Mar. 11, 2025.

[7] M. Rashidi, “Application of TensorFlow Lite on Embedded Devices,”
Mid Sweden University, 2022.

[8] “Conversion Calculator PCB Trace Width,” DigiKey, 2025. [Online].
Available: https://www.digikey.com/en/resources/conversion-calculators/
conversion-calculator-pcb-trace-width. Accessed: Mar. 18, 2025.

[9] J.-L. Aufranc (CNXSoft), “Coral Dev Board Micro
Combines NXP i.MX RT1176 MCU with Edge TPU
in Pi Zero Form Factor,” CNX Software, 2025. [On-
line]. Available: https://www.cnx-software.com/2023/02/04/
coral-dev-board-micro-nxp-i-mx-rt1176-mcu-edge-tpu-raspberry-pi-zero/.
Accessed: Mar. 11, 2025.

[10] P. Heo et al., “Current Hand Exoskeleton Technologies for Rehabil-
itation and Assistive Engineering,” International Journal of Precision
Engineering and Manufacturing, vol. 13, no. 5, pp. 807–824, 2012, doi:
10.1007/s12541-012-0107-2.

[11] Q. A. Boser et al., “Defining the Design Requirements for an Assistive
Powered Hand Exoskeleton,” Prosthetics and Orthotics International,
vol. 45, no. 2, pp. 161–169, 2021, doi: 10.1177/0309364620963943.

[12] “Dev Board,” Coral, 2025. [Online]. Available: https://coral.ai/products/
dev-board. Accessed: Mar. 29, 2025.

[13] “Dev Board Datasheet,” Coral, 2025. [Online]. Available: https://coral.
ai/docs/dev-board/datasheet/. Accessed: Mar. 29, 2025.

[14] “Dev Board Micro,” Coral, 2025. [Online]. Available: https://coral.ai/
products/dev-board-micro/. Accessed: Mar. 11, 2025.

[15] “Dev Board Micro Datasheet,” Coral, 2025. [Online]. Available: https:
//coral.ai/docs/dev-board-micro/datasheet/. Accessed: Mar. 11, 2025.

[16] “Dev Board Mini,” Coral, 2025. [Online]. Available: https://coral.ai/
products/dev-board-mini. Accessed: Mar. 11, 2025.

[17] “Dev Board Mini Datasheet,” Coral, 2025. [Online]. Available: https:
//coral.ai/docs/dev-board-mini/datasheet/. Accessed: Mar. 11, 2025.

[18] “electricals/dev board micro at master · google-coral/electricals,”
GitHub, 2025. [Online]. Available: https://github.com/google-coral/
electricals/tree/master/dev board micro. Accessed: Mar. 22, 2025.

[19] H. A. Imran et al., “Embedded Development Boards for Edge-AI: A
Comprehensive Report,” arXiv, 2020, doi: 10.48550/arXiv.2009.00803.

[20] A. Jacob, W. N. W. Zakaria, and M. R. B. Tomari, “Evaluation of
I2C Communication Protocol in Development of Modular Controller
Boards,” ISSN, vol. 11, no. 8, 2016.

[21] “FreeRTOS-Kernel-Book/ch04.md at main · FreeRTOS/FreeRTOS-
Kernel-Book,” GitHub, 2025. [Online]. Available: https://github.com/
FreeRTOS/FreeRTOS-Kernel-Book/blob/main/ch04.md. Accessed: Apr.
4, 2025.

[22] B. Amos, Hands-On RTOS with Microcontrollers: Building Real-Time
Embedded Systems Using FreeRTOS, STM32 MCUs, and SEGGER
Debug Tools. Packt Publishing Ltd, 2020.

[23] “How to Train a Custom Object Detection Model for
the Google Coral Dev Board Micro,” DigiKey, 2025.
[Online]. Available: https://www.digikey.com/en/maker/projects/
intro-to-the-google-coral-dev-board-micro-custom-object-detection/
a8f6695940bf4c74a900e06bce3feacd. Accessed: Mar. 11, 2025.

[24] “I2C PCB Layout: Best Practices for Optimal Performance,” Hill-
man Curtis, 2025. [Online]. Available: https://hillmancurtis.com/
i2c-pcb-layout/. Accessed: Mar. 11, 2025.

[25] “Intro to the Google Coral Dev Board Micro: Cus-
tom Object Detection,” DigiKey, 2025. [Online].
Available: https://www.digikey.com/en/maker/projects/
intro-to-the-google-coral-dev-board-micro-custom-object-detection/
a8f6695940bf4c74a900e06bce3feacd. Accessed: Mar. 28, 2025.

[26] “Laser Diode - Definition, Characteristics, Types, Working & Con-
struction,” GeeksforGeeks, 2025. [Online]. Available: https://www.
geeksforgeeks.org/laser-diode/. Accessed: Mar. 11, 2025.

[27] K. Petermann, Laser Diode Modulation and Noise. Springer Science &
Business Media, 1991.

[28] R. Teja, “Low Drop Out Regulator (LDO Voltage Regulator),” Elec-
tronicsHub, 2025. [Online]. Available: https://www.electronicshub.org/
ldo-low-drop-out-regulator/. Accessed: Mar. 22, 2025.

[29] “MediaPipe Model Maker — Google AI Edge,” Google AI for Devel-
opers, 2025. [Online]. Available: https://ai.google.dev/edge/mediapipe/
solutions/model maker. Accessed: Mar. 28, 2025.

[30] M. Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottle-
necks,” arXiv, 2019, doi: 10.48550/arXiv.1801.04381.

[31] F. Guan et al., “Open Source FreeRTOS as a Case Study in Real-Time
Operating System Evolution,” Journal of Systems and Software, vol. 118,
pp. 19–35, 2016, doi: 10.1016/j.jss.2016.04.063.

[32] R. David et al., “TensorFlow Lite Micro: Embedded Machine Learning
on TinyML Systems.” (No publisher or date provided).

[33] P. Warden and D. Situnayake, TinyML: Machine Learning with Tensor-
Flow Lite on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly
Media, Inc., 2019.

[34] “UART vs. SPI vs. I2C: Routing & Layout Guidelines,”
Altium, 2025. [Online]. Available: https://resources.altium.com/p/
i2c-vs-spi-vs-uart-how-layout-these-common-buses. Accessed: Mar.
11, 2025.

[35] J. Valdez and J. Becker, “Understanding the I2C Bus,” 2015.
[36] M. A. B. Sarker et al., “Vision Controlled Sensorized Prosthetic Hand,”

arXiv, 2024, doi: 10.48550/arXiv.2407.12807.
[37] R. Khanam and M. Hussain, “YOLOv11: An Overview

of the Key Architectural Enhancements,” arXiv, 2024, doi:
10.48550/arXiv.2410.17725.

[38] P. Enrı́quez Calzada, “Soft hand exoskeleton with SMA actuation of
each finger separately,” 2018.

[39] Infineon, “Infineon-IRLML6244-DataSheet,” 2012.
[40] E. B. Brokaw, I. Black, R. J. Holley, and P. S. Lum, “Hand Spring

Operated Movement Enhancer (HandSOME): A Portable, Passive Hand
Exoskeleton for Stroke Rehabilitation,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 19, 2011.

[41] Otto Bock HealthCare, “WaveFlex Hand CPM Device.” [Online]. Avail-
able: http://www.ottobock.ca/cps/rde/xchg/ob us en/hs.xsl/15712.html.

[42] A. Wege and A. Zimmermann, “Electromyography sensor based control
for a hand exoskeleton,” in Proc. of the IEEE International Conference
on Robotics and Biomimetics, 2007.

[43] Y. Kadowaki, T. Noritsugu, M. Takaiwa, D. Sasaki, and M. Kato,
“Development of Soft Power-Assist Glove and Control Based on Human
Intent,” Journal of Robotics and Mechatronics, vol. 23, 2011.

https://www.analyticsvidhya.com/blog/2024/10/yolov11-object-detection/
https://www.analyticsvidhya.com/blog/2024/10/yolov11-object-detection/
https://www.precisionmicrodrives.com/ab-025
https://www.precisionmicrodrives.com/ab-025
https://coral.ai/docs/module/datasheet/
https://coral.ai/docs/module/datasheet/
https://doi.org/10.48550/arXiv.2408.15248
https://doi.org/10.1109/IISWC55918.2022.00017
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-laser-diodes/
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-laser-diodes/
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-pcb-trace-width
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-pcb-trace-width
https://www.cnx-software.com/2023/02/04/coral-dev-board-micro-nxp-i-mx-rt1176-mcu-edge-tpu-raspberry-pi-zero/
https://www.cnx-software.com/2023/02/04/coral-dev-board-micro-nxp-i-mx-rt1176-mcu-edge-tpu-raspberry-pi-zero/
https://doi.org/10.1007/s12541-012-0107-2
https://doi.org/10.1177/0309364620963943
https://coral.ai/products/dev-board
https://coral.ai/products/dev-board
https://coral.ai/docs/dev-board/datasheet/
https://coral.ai/docs/dev-board/datasheet/
https://coral.ai/products/dev-board-micro/
https://coral.ai/products/dev-board-micro/
https://coral.ai/docs/dev-board-micro/datasheet/
https://coral.ai/docs/dev-board-micro/datasheet/
https://coral.ai/products/dev-board-mini
https://coral.ai/products/dev-board-mini
https://coral.ai/docs/dev-board-mini/datasheet/
https://coral.ai/docs/dev-board-mini/datasheet/
https://github.com/google-coral/electricals/tree/master/dev_board_micro
https://github.com/google-coral/electricals/tree/master/dev_board_micro
https://doi.org/10.48550/arXiv.2009.00803
https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/blob/main/ch04.md
https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/blob/main/ch04.md
https://www.digikey.com/en/maker/projects/intro-to-the-google-coral-dev-board-micro-custom-object-detection/a8f6695940bf4c74a900e06bce3feacd
https://www.digikey.com/en/maker/projects/intro-to-the-google-coral-dev-board-micro-custom-object-detection/a8f6695940bf4c74a900e06bce3feacd
https://www.digikey.com/en/maker/projects/intro-to-the-google-coral-dev-board-micro-custom-object-detection/a8f6695940bf4c74a900e06bce3feacd
https://hillmancurtis.com/i2c-pcb-layout/
https://hillmancurtis.com/i2c-pcb-layout/
https://www.digikey.com/en/maker/projects/intro-to-the-google-coral-dev-board-micro-custom-object-detection/a8f6695940bf4c74a900e06bce3feacd
https://www.digikey.com/en/maker/projects/intro-to-the-google-coral-dev-board-micro-custom-object-detection/a8f6695940bf4c74a900e06bce3feacd
https://www.digikey.com/en/maker/projects/intro-to-the-google-coral-dev-board-micro-custom-object-detection/a8f6695940bf4c74a900e06bce3feacd
https://www.geeksforgeeks.org/laser-diode/
https://www.geeksforgeeks.org/laser-diode/
https://www.electronicshub.org/ldo-low-drop-out-regulator/
https://www.electronicshub.org/ldo-low-drop-out-regulator/
https://ai.google.dev/edge/mediapipe/solutions/model_maker
https://ai.google.dev/edge/mediapipe/solutions/model_maker
https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.1016/j.jss.2016.04.063
https://resources.altium.com/p/i2c-vs-spi-vs-uart-how-layout-these-common-buses
https://resources.altium.com/p/i2c-vs-spi-vs-uart-how-layout-these-common-buses
https://doi.org/10.48550/arXiv.2407.12807
https://doi.org/10.48550/arXiv.2410.17725
http://www.ottobock.ca/cps/rde/xchg/ob_us_en/hs.xsl/15712.html


VIII. APPENDIX

Fig. 4: Flowchart of MotorTask



Fig. 5: Flowchart of BatteryTask



Fig. 6: Flowchart of InferenceTask



Fig. 7: Flowchart of SensorTask


	Introduction
	Literature Review
	Initial Work
	Proposed Solution

	Theory
	AI Vision Control
	Edge TPU
	Coral Dev Board Micro
	Embedded Codebase
	Electrical Design

	Implimentation
	Firmware Design
	Coral Micro Codebase
	MobileNet_V2 Training


	Results
	Model Performace
	Ease of Use

	Discussion
	Future Work
	Conclusion
	References
	Appendix

