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Abstract
Classically simulating quantum systems is challenging, as even
noiseless 𝑛-qubit quantum states scale as 2𝑛 . The complexity of
noisy quantum systems is even greater, requiring 2𝑛×2𝑛-dimensional
density matrices. Various approximations reduce density matrix
overhead, including quantum trajectory-based methods, which in-
stead use an ensemble of𝑚 ≪ 2𝑛 noisy states. While this method
is dramatically more efficient, current implementations use un-
optimized sampling, redundant state preparation, and single-shot
data collection. In this manuscript, we present the Pre-Trajectory
Sampling technique, increasing the efficiency and utility of tra-
jectory simulations by tailoring error types, batching sampling
without redundant computation, and collecting error information.
We demonstrate the effectiveness of our method with both a mature
statevector simulation of a 35-qubit quantum error-correction code
and a preliminary tensor network simulation of 85 qubits, yield-
ing speedups of up to 106x and 16x, as well as generating massive
datasets of one trillion and one million shots, respectively.
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1 Introduction
Quantum system simulation plays a pivotal role in developing quan-
tum algorithms [8, 41], validating hardware performance [19, 32],
and advancing quantum error correction (QEC) [29]. As quan-
tum processors scale, efficient classical simulations, both exact
and approximate, remain essential for benchmarking hardware
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performance and analyzing noise effects. This is especially impor-
tant due to the exponential growth in computational resources re-
quired to mathematically represent quantum states. While noiseless
simulations of 𝑛-qubit systems demand 𝑂 (2𝑛) memory for quan-
tum states, modeling noise via density matrices escalates this to
𝑂 (2𝑛×2𝑛) = 𝑂 (4𝑛), rendering direct simulation intractable beyond
∼ 20 qubits [17, 38]. One common method to partially overcome
this computational intractability is to artificially restrict quantum
circuit models to Clifford gates and Pauli noise channels, which are
polynomially scaling groups [31]. This technique, which is used
in software packages such as Stim [29], enables the simulation of
large quantum systems, but is not capable of simulating general
(universal) quantum computers.

To address this gap between classical tractability and quantum
accuracy, quantum trajectory methods can be used to approximate
density matrices through statistical ensembles of𝑚 ≪ 2𝑛 noisy
statevectors [20, 21, 24]. This approach achieves quadratic memory
savings on exponentially-scaling data structures (2𝑛 vs 2𝑛 × 2𝑛)
by propagating stochastic noise injections rather than explicit ma-
trix representations. CUDA-Q’s GPU-accelerated simulator facil-
itates quantum trajectory methods, and further optimizes them
through batched trajectory execution, unitary-channel detection
for probability caching, and distributed multi-GPU architectures
[26]. Despite these advances, current trajectory methods face three
fundamental limitations: (1) unoptimized sampling requiring re-
dundant state preparations per trajectory, (2) single-shot statistical
data collection obscuring error provenance, and (3) rigid sampling
strategies ill-suited for targeted error analysis in QEC and machine
learning applications.

In this work, we advance quantum trajectory methods by intro-
ducing Pre-Trajectory Sampling (PTS) with Batched Execution (BE),
or PTSBE, a methodology that decouples stochastic noise sampling
from quantum state evolution to overcome the aforementioned
bottlenecks. Conventional trajectory simulations interleave gate
applications with per-step noise sampling, forcing serial execution
and discarding critical error metadata. In contrast, PTS precom-
putes all stochastic decisions – including error types, locations,
and mitigation parameters – prior to statevector propagation. This
enables three key innovations:
• Tailored error injection for specific QEC analysis scenarios
(e.g., Pauli twirling or spatially correlated noise)
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Figure 1: Diagram of PTSBE: An arbitrary noisy circuit is registered into the desired sampling algorithm for PTS, such as one
that samples the Kraus operator space proportionally, exhausts the most likely error combinations, etc. The prescribed sampled
sets of Kraus operators {𝐾𝛼0 , · · · , 𝐾𝛼𝑖 }, along with their prescribed number of shots𝑚𝛼 , are passed from the PTS algorithm to the
CUDA-Q simulator using either a statevector or tensor network backend. This enables the Kraus operator sets to be strategically
sampled through a quantum measurement-like process, with the desired number of measurement shots collected in bulk
without quantum state repreparation. Both CUDA-Q backends can be distributed across multiple GPUs, both within a single
trajectory and for simultaneous trajectories in an embarrassingly parallel manner, permitting faster and larger simulations.

• Batched trajectory execution (BE) eliminating redundant
circuit recompilation and state initialization
• Error provenance tracking through lightweight metadata
tags attached to each trajectory

We demonstrate PTSBE’s effectiveness via two implementations:
a mature 35-qubit QEC code simulation achieving 106× speedup
over conventional trajectory methods on GPU clusters, and a pre-
liminary 85-qubit QEC code preparation circuit tensor network
simulation showing 16× acceleration. This considerable accelera-
tion enabled us to produce noisy quantum datasets, such as would
be useful for training AI-based QEC decoders [5, 15, 48], a cru-
cial application of AI for quantum science [3]. The datasets gener-
ated included a one trillion-shot, 35-qubit statevector simulation
and one-million shot, 85-qubit tensor network simulation. Using
PTSBE methods, these extremely large datasets can be obtained
with unprecedented speed, requiring just 4,445 H100 GPU hours
and 2,223 H100 GPU hours on NVIDIA’s Eos DGX Superpod [16]
when simulating 106 statevector shots and 100 tensor network shots
per trajectory, respectively. These results highlight PTSBE’s poten-
tial to enable practical simulation of scalable QEC architectures
and generate training data for ML-based error decoders, such as
have been targeted in Google’s recent AlphaQubit work [7], which
used moderately-sized experimental datasets and massive Clifford
simulator-based datasets. PTSBE vies to simplify and expand this
training paradigm by supplementing more traditional data modali-
ties with large amounts of data from universal quantum simulators.
By transforming trajectory simulation from a statistical black box
into a programmable data collection engine, this work bridges criti-
cal gaps in noisy quantum system analysis.

2 Background
2.1 Simulating Noisy Quantum Systems
Quantum states that have not been subjected to noise or are other-
wise part of a probabilistic ensemble are referred to as “pure” [46].

Such pure states can be described by a 2𝑛-element one-dimensional
complex vector, where 𝑛 is the number of two-level quantum sys-
tems or “qubits” as they are often called [30, 42]. Quantum formal-
ism dictates that when a state is measured, e.g., in the laboratory, its
2𝑛 entries are collapsed into stochastic “shot” values of length 𝑛 via
a probabilistic sampling-like process [39]. As these shot values, or
quantum measurements, are the experimentally observable data for
quantum systems, they are commonly the data reproduced by quan-
tum simulators, with the 2𝑛-dimensional state vectors first being
prepared and then sampled for some number of 𝑛-dimensional shot
values. Once the exponentially complex quantum state is prepared,
repeated shot sampling is typically very efficient, scaling in just
polynomial time for well-optimized statevector simulations [22].

While pure states are useful for studying a wide array of funda-
mental and idealized phenomena, modeling experimentally realistic
and naturally occurring quantum systems requires a more complex
representation [13, 45]. The most complete of these representations
is the systems density matrix, a 2𝑛 × 2𝑛-dimensional complex ma-
trix that provides the full description of a noisy or mixed quantum
system [46]. This added factor of 2𝑛 adds substantially to the com-
plexity of simulating the quantum system at hand, greatly reducing
the number of qubits that can be simulated without approximation.

Common simplifications of the full density matrix formalism
include approximate tensor networks (where the richness of the
quantum distribution is reduced by tensor truncation) [4, 50], ex-
tended Clifford gate simulator approximations for open quantum
systems (where the majority of gates in a quantum system are ap-
proximated to come from a tractably small, closed group) [9, 31],
approximate reduction of the system itself [12, 14, 44, 52], and
quantum trajectory techniques. Quantum trajectory techniques
are the method used in this paper and the subject of the following
subsection.
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Figure 2: The partitioning of a noisy quantum circuit into
sampled sets of Kraus operators. The full noisy circuit (left)
contains both coherent gates (solid green circles/ovals) and
noisy operations (empty blue squares/rectangles). A sam-
pling algorithm selects subsets of Kraus operators (right,
solid blue squares/rectangles, {𝐾𝛼0 , 𝐾𝛼1 , 𝐾𝛼2 , 𝐾𝛼3 }, {𝐾𝛽0 , 𝐾𝛽1 },
and {𝐾𝛾0 }) from which to sample shots. The full distribution
of Kraus operator subsets {𝑝𝛼 } has unit probability, although
typically only a subset of these will be sampled.

2.2 Traditional Trajectory Simulations with
CUDA-Q

In CUDA-Q [22], the GPU-accelerated state vector and tensor net-
work simulator backends, indexed as nvidia and tensornet, re-
spectively, can simulate quantum noise via the trajectory method.
Specifically, given a quantum noise channel represented by a set of
Kraus operators {𝐾𝑖 } satisfying the completely positive and trace
preserving (CPTP) condition [42], trajectory methods can stochas-
tically simulate the effect of this noise channel on the quantum
system by randomly selecting samples of 𝐾𝑖 to apply to ensembles
of quantum states with probability ⟨𝜓 |𝐾†

𝑖
𝐾𝑖 |𝜓 ⟩ [11, 51]. Due to

the ensemble nature of this technique, a considerable number𝑚
of trajectories must be simulated for an accurate distribution of
quantum shots. However, for many systems𝑚 ≪ 2𝑛 , rendering
trajectory methods a strong alternative to traditional density matrix
simulations. It is worth noting that the CPTP condition guarantees
that the sum of probabilities is always unity for arbitrary quantum
states.

Compared to the density matrix simulation approach, the quan-
tum trajectory method allows us to use the state vector representa-
tion, which is quadratically smaller (2𝑛 for state vectors vs. 2𝑛 × 2𝑛
for density matrices); enabling us to simulate twice as many qubits.
The disadvantage to this method is that we must simulate and
sample shots from a large number of distinct noisy trajectories in-
dependently in order to collect a representative statistical ensemble,
e.g., an accurate noisy shot distribution.

We implement PTSBE using the CUDA-Q trajectory noisy sim-
ulator. Before describing PTSBE enhancements in Sec. 3, we first
introduce key features in the baseline CUDA-Q framework used for
simulating quantum trajectory methods. The traditional CUDA-Q
trajectory noisy simulator has the following set of pre-existing fea-
tures that are novel among quantum simulators and are not present
in previous works, such as [18, 29, 33–36, 40, 49]:

(1) Support for single-GPU and multi-node multi-GPU
simulations: Users can scale the maximum number of simu-
latable qubits, or the speed of their simulations, by deploying
additional GPUs. This multi-GPU capability is also harnessed
by our PTSBE method.

(2) Efficient simulation of unitary mixture noise chan-
nels: Noise channels, as specified by their set of Kraus ma-
trices, are automatically analyzed to detect whether they
are unitary-mixture channels, i.e., 𝐾𝑖 = 𝑝𝑖𝑈𝑖 ,∀𝐾𝑖 , where𝑈𝑖
is a unitary matrix. For example, the commonly used depo-
larizing channel is a unitary mixture of Pauli unitaries [42].
Unitary channels can be simulated more efficiently as the
probability is quantum-state independent. We emphasize
that, outside of the innovation of this work, CUDA-Q exe-
cutes all trajectories independently. That is, the distinction
between unitary-mixture and general (Kraus-based) chan-
nels only affects how each trajectory is simulated, and this
distinction is fully different from the efficient trajectory sam-
pling mechanism introduced in this manuscript.

(3) Batching of trajectory simulations for small systems:
This feature is only available on the state vector simulator.
When the number of qubits is small, the backend can batch
multiple, independent trajectory simulations in the same run
in an embarrassingly parallel manner in order to maximize
the GPU utilization and reduce the simulation time.We again
emphasize that this GPU-level batching mechanism is differ-
ent from the PTSBE workflow proposed in this manuscript
as the latter: 1) focuses on the simulation of large systems
for which the traditional batching would be unsuitable, 2)
batches quantum shot evaluation to eliminate duplicate work
and generate massive amounts of data, 3) provides users con-
trol over the types of noisy data collected, and 4) provides
users with data on error providence.

The workflow for traditional noisy trajectory simulation using
the current CUDA-Q backend is shown in Algorithm 1, We there
illustrate the high-level simulation workflow differences between
unitary mixture and general noise channels. In particular, the lat-
ter requires expectation calculation based on the current state at
the trajectory sampling point. The CUDA-Q trajectory simulator
uses the CUDA random number generation library (cuRAND) to
generate random numbers for optimal performance.

Transparent to this algorithm is the distributed state vector ca-
pability, supporting multi-node multi-GPU, of the simulator. In the
large-scale simulation mode, the gate matrix application and ex-
pectation value calculation steps are also distributed, operating on
slices of the state vectors and consolidating the results.

2.3 PTSBE Application: Massive Data Collection
for Quantum Error Correction

One widespread application of noisy quantum simulators is to
characterize the deliterious effects of noise on gate-based quan-
tum computers [28]. The sources of these nonidealities are varied,
ranging from engineering concerns (e.g., imperfect quantum gate
application [8, 23]), to the fundamental challenges of open quan-
tum systems (e.g., undesirable environmental coupling [11, 42]).
In particular, noisy simulators play an important role in the study
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Data: noiseModel, operatorSequence
1 for operator in operatorSequence do
2 apply gate matrix;
3 noiseChannel← lookUp(noiseModel, operator);
4 𝑟 ← cuRAND() ;
5 if noiseChannel is unitaryMixture then
6 𝑘 = index(𝑟, {𝑝𝑖 }) ;
7 applyMatrix(𝑈𝑘 ) ;
8 else
9 𝑝𝑖 ← ⟨Ψ|𝐾†𝑖 𝐾 |𝜓 ⟩;

10 𝑘 = index(𝑟, {𝑝𝑖 }) ;
11 applyMatrix(𝐾𝑘/

√
𝑝𝑘 ) ;

12 end
13 end
Algorithm 1: Pseudocode block for traditional noisy
trajectory simulation on the current CUDA-Q backend.
While there is some trajectory-based optimization in the
form of discerning between unitary and Kraus-based er-
ror formalisms, the advantages furnished by PTSBE have
not been achieved prior to our work.

of quantum error correcting codes. QEC is a set of tools used to
combat the effect of noise on the fragile information that quan-
tum computers store and process, enabling quantum computers to
perform calculations fault-tolerantly [27, 47].

Much like their classical error-correction counterparts, many
approaches to QEC encode the information used and generated
during a quantum algorithm in a smaller logical subspace of the
larger (Hilbert) space formed by the qubits [1, 2, 25]. Once the in-
formation is encoded, stabilizer measurements can be performed
to query parity-check information about the quantum state. These
parity-check measurements do not collapse the logical quantum
state, but give indirect information about what error mechanisms
have corrupted the logical information [42]. This process of us-
ing stabilizer measurements to infer what errors occur is called
decoding and can itself be a computationally expensive task [37],
[6].

Noisy simulation of QEC circuits provides considerable research
value, as knowledge of underlying error origin and propagation
can validate a variety of QEC protocols. Once the decoder attempts
to infer which error mechanisms have occurred, a simulator can
directly validate this output and provide the decoder with either
correction or reinforcement.

As QEC circuits encode logical qubits into a greater number of
physical qubits, QEC simulations have an inherently larger classical
memory requirement. This additional overhead is particularly vex-
ing given that each additional qubit added to the circuit quadruples
the space requirements for density matrix simulation of the noisy
system. These limitations have led to Clifford simulation emerging
as the most common simulation tool in the QEC research space, as
this simulation strategy has very modest time and memory com-
plexity [31]. Clifford simulation does have a distinct disadvantage
in that it does not admit a universal gate set, limiting its appli-
cability and modeling power. That being said, there are various
protocols within QEC that are comprised entirely of Clifford gates,

and Clifford gate-based software packages such as Stim [29] have
proven extraordinarily useful for the study of a variety of QEC
codes in noisy circuit contexts. More specifically, by restricting
itself to Clifford circuits and Pauli noise channels, Stim is able to
use a reference frame sampler to efficiently bulk sample noisy sim-
ulation data at a rate of MHz. However, the poignant limitations
of Clifford simulations remain, necessitating the development of
highly-efficient methods of noisy, universal quantum data collec-
tion, such as PTSBE.

In this work, we use PTSBE to study the 5-1 magic state dis-
tillation (MSD) protocol [10] that was recently implemented on
QuEra’s neutral atom quantum computer [43] and depicted in Fig.
3. Although this was not the first experimental realization of MSD,
it was the first to encode such a data set in logical qubits, here in
the [[7,1,3]] color code, and the [[17,1,5]] color code. While 5 qubits
are easily simulated by a variety of frameworks, this protocol uses 5
logical qubits resulting in a total of 35 (7-qubit code) or 85 (17-qubit
code) physical qubits. While 35 and 85 qubits are also easily simu-
lated by Clifford simulators, MSD is a QEC protocol that consumes
and produces non-Clifford states, making universal noisy quantum
simulation methods like PTSBE highly beneficial.

Indeed, PTSBE, while applicable to nearly any application of
large-scale quantum trajectory simulation, was developed in order
to generate synthetic training data for an AI decoder. While AI
decoders show promise to overcome accuracy and computational
challenges of decoding, these methods require high-quality train-
ing data [5, 15, 48] and, while data supplied by a physical quantum
computer would be most desirable, it’s extremely expensive at scale.
In Google’s recent AlphaQubit work [7], moderately-sized experi-
mental datasets and massive Clifford simulator-based datasets were
used to train an AI decoder, a training paradigm that we hope to
simplify and expand by supplementing more traditional data modal-
ities with large amounts of data from universal quantum simulators.
For the purpose of training AI decoders, this training data has an
additional benefit of known error providence. This information can
be used as training labels on the output data to enable supervised
learning, which is not possible for data derived from quantum de-
vices and is not a feature that was previously available for trajectory
simulators.

3 Pre-Trajectory Sampling with Batched
Execution for Noisy Quantum Systems

PTSBE methods separate noisy quantum trajectory sampling out
into two steps: 1) the strategic sampling of desired sets of Kraus
operators (PTS) and 2) the preparation and batched shot execu-
tion on the resulting quantum states (BE). The former of these two
steps allows us to be efficient and judicious in the potential errors
from which we sample, whereas the latter allows us to obtain mas-
sive datasets from the sampled error sets without redundant state
preparation.

Further detail on PTSBE methods is given in Fig. 1. The user
specifies a noisy quantum system of interest by inputting the quan-
tum operations, both coherent and thus deterministic (solid green
circles/ovals in Fig. 2) and noisy and thus randomly sampled (hol-
low blue squares/rectangles in Fig. 2). A sampling algorithm of
the user’s choice is then used to select subsets of noisy operations
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Figure 3: Quantum circuit diagram depicting the 5-1 magic
state distillation protocol as compiled described by[43]. In
this case, each qubit wire represents either 7 or 17 physical
qubits encoding a single logical qubit, which corresponds to
the 35 and 85-qubit simulations demonstrated in this work.
Here the top wire was measured in all three Pauli bases so
that the fidelity of the resulting magic state could be com-
puted.

{𝐾𝛼0 · · ·𝐾𝛼𝑖 } (solid blue squares/rectangles in Fig. 2) from the total
distribution of the noisy quantum system, along with the appro-
priate number of shots𝑚𝛼 to be sampled for each Kraus operator.
Unlike traditional black box quantum trajectory methods, PTS saves
crucial yet lightweight metadata, such as the Kraus operator errors
{𝐾𝛼0 · · ·𝐾𝛼𝑖 }, which can be useful in downstream tasks (e.g., as
training data labels). The details of a given PTS algorithm are cho-
sen to provide Kraus operator sets that are strategic for the usecase
at hand, as detailed in Sec. 3.1.

After PTS, each set of Kraus operators 𝛼 is then loaded into a
CUDA-Q simulator for BE. CUDA-Q prepares the state obtained
from both the coherent gates and the now fixed noise gates
{𝐾𝛼0 · · ·𝐾𝛼𝑖 }. As the state is of 𝑂 (2𝑛) complexity to prepare and
store, a major benefit of BE is that it avoids redundant state prepara-
tion by sampling all𝑚𝛼 desired quantum bitstrings (measurements)
at once, a task of mere polynomial complexity. PTS methods are
agnostic to simulator design, and we demonstrate its performance
using both statevector and tensor network BE implementations, as
detailed in Sec. 4 and Figs. 4 and 5. In order to fit larger quantum
systems in memory, or to accelerate their preparation and sampling,
PTSBE can be parallelized over multiple GPUs. This is true for both
intra-trajectory preparation (e.g., deploying more GPUs on the
preparation of a single quantum state), as well as inter-trajectory
preparation (as the preparation and sampling of different trajec-
tories is embarrassingly parallel, the calculation process trivially
scales to arbitrarily many GPUs). This batched efficiency and multi-
faceted parallelization permits the collection of massive corpuses
of quantum data, such as those used to characterize large noisy
quantum systems or to train AI models for quantum dynamics (as
discussed in Sec. 2.3).

3.1 Pre-Trajectory Sampling Algorithms
The basis of PTSBE methods are the PTS algorithms that pre-select
the Kraus operators and number of quantum shots to be obtained by
noisy quantum trajectory simulation with batched execution. This
separates the lightweight Kraus operator selection process from
the computationally-intensive state preparation and state sampling
processes, enabling the latter two to be done in a batched and/or
parallel manner. Likewise, PTS algorithms inform the user of the
providence of errors by providing their details as lightweight meta-
data, as well as enable the user to target a subset of Kraus operator
error combinations, such as error combinations with certain ranges
of likelihood or those with certain characteristics. This further
distinguishes PTSBE from traditional noisy quantum trajectory
sampling, which are less transparent and more restrictive in their
sampling approach.

Algorithm 2 is a simple example of a PTS algorithm. It probabilis-
tically samples a specified number of times (nsamples) from the
distribution NoisyCircuit({𝐾}, {𝑝}) of Kraus operators {𝐾} with
probabilities {𝑝}, requiring just ∼ 𝑂 ( |{𝐾}|2 (𝑝)2) operations. Physi-
cally incompatible Kraus error combinations, such as two operators
that would act on the same qubit at the same time are removed
(compatible function), as are duplicate KrausSample trajectories
(uniqueKraus function). In this example, a large, uniform number
of shots (nshots) is assigned to each set of Kraus operator errors
in order to maximize data collection, such as would be useful for
training ML models for quantum applications (e.g., QEC decoders
as discussed in Sec. 2.3).

Numerous straightforward expansions on Algorithm 2 can be
constructed to facilitate a wide variety of sampling tasks. For exam-
ple, if the user desires a more proportionally sampled dataset, e.g.,
for expectation value estimation, they can achieve this by using
the error probabilities 𝑝 for each 𝐾 to calculate joint probability
𝑝𝛼 of each KrausSample {𝐾𝛼0 · · ·𝐾𝛼𝑖 } and then redistributing or
resampling the number of shots allocated to each Kraus operator
set {𝐾𝛼0 · · ·𝐾𝛼𝑖 } according to the relative populations {𝑝′𝛼 }, where
𝑝′𝛼 = 𝑝𝛼/

∑
𝑖 𝑝𝑖 . Such variations also support preferred sampling

from probability bands, wherein a Kraus operator set {𝐾𝛼0 · · ·𝐾𝛼𝑖 }
is only chosen if 𝑝𝛼 ∈ [𝑝min, 𝑝max]. Similarly, the most common
errors can be calculated analytically by considering only error com-
binations whose joint probability falls above a given cutoff, a com-
binatorial problem of generally tractable order when considering
experimentally relevant noise probabilities and sizeable error cut-
offs. Separately, we could also add selection criteria to Line 5 of
Algorithm 2 to specify gate type, parity, location, and so on.

4 Scaling Experiments
PTSBE methods demonstrate marked speedup for both statevec-
tor and tensor network backends. This is especially true for the
statevector implementation (Fig. 4), as the tools required for car-
rying out efficient batched sampling were largely available in the
CUDA-Q library. To benchmark this implementation, we used the
35-qubit magic state distillation circuit discussed in Sec. 2.3. Four
H100 GPUs with 80GBs of vRAM each were used in each trajectory
simulation, as this was the minimum number able to accomodate
the sizeable memory footprint of a 35-qubit statevector, which
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1 Inputs: NoisyCircuit({𝐾}, {𝑝}), nsamples, nshots

2 KrausSets, KrausShots = [], []
3 for sample in range(nsamples) do
4 KrausSample = [] ;
5 for 𝐾, 𝑝 in NoisyCircuit({𝐾}, {𝑝}) do
6 𝑟 ← randomUniform(0, 1);
7 if 𝑟 ≤ 𝑝 then
8 if compatible(𝐾, KrausSample) then
9 KrausSample.append(𝐾);

10 end
11 end
12 end
13 if uniqueKraus(KrausSample, KrausSets) then
14 KrausSets.append(KrausSample) ;
15 KrausShots.append(nshots) ;
16 end
17 end
18 Returns: KrausSets, KrausShots
Algorithm 2: Pseudocode for a basic probabilistic PTS
algorithm. The Kraus operator sets {𝐾} with proba-
bilities {𝑝} are sampled from the full distribution of
NoisyCircuit in much the same way as they would be
at state preparation runtime in a traditional simulator,
but avoiding redundant, computationally expensive state
preparation by avoiding sampling of repeated Kraus op-
erator sets KrausSample and pre-assigning a large number
of shots nshots for collection from each state.

contains 2𝑛+1 float32 values (i.e., 2𝑛 complex64 values). As sam-
pling quantum shots from a statevector takes a fraction of the time
of statevector preparation itself, the increase in shots per second
for batched sampling is nearly linear with the total number of shots
collected per Kraus operator set (left axis, green), with the efficiency
increase reaching ∼ 106 for batch sizes of 106−107 shots. As the
information stored within such large quantum states is so sizable,
the shots sampled remain largely distinct and thus generally con-
tribute novel information, even in the regime of extremely large
batch sizes. Indeed, samples of 106 total shots are comprised of
more than a 0.5 fraction of unique results (right axis, blue).

While the tensor network implementation of Pre-Trajectory Sam-
pling methods remain limited by the current features of CUDA-Q,
considerable speedups were still accessible. As displayed in Fig.
5 (left axis, green), for an 85-qubit circuit magic state distillation
preparation circuit simulated on four GPUs, an over 16𝑥 efficiency
increase in shot collection was obtained for batched samples of just
103 shots, a regime wherein nearly the entirety of shots collected
would remain unique. In addition to the embarrassingly parallel
nature of our method as applied independently to multiple tra-
jectories at a time (inter-trajectory simulation), we note that we
obtain a nearly linear speedup with increasing numbers of GPUs
(NVIDIA H100 GPUs with 80GB of vRAM each) for intra-trajectory
simulation as well (inset). We leave as future work the opportunity
to further optimize the tensor network implementation for PTSBE
but include discussion for speedup opportunities here. In partic-
ular, the efficiency of the tensor network implementation would

Figure 4: The number of shots collected per second (green, left
axis) and the proportion of unique shots collected (blue, right
axis) as a function of the total shots sampled for a 35-qubit
magic state distillation circuit using statevector simulation.
As shot sampling is much more efficient than statevector
preparation, sampling large numbers of shots from a given
Kraus operator subset is highly efficient and allows for the
collection of a massive data corpus. Due to the intricacies
of the 235-dimensional statevectors prepared, the additional
shot data collected remains extremely useful even for very
large sample sizes, with samples upwards of 106 shots being
comprised of largely unique information.

be considerably improved via the addition of a few key features
in CUDA-Q. Configurable tensor network contraction path opti-
mization and caching, along with methods to allow small variations
in cached paths, will allow for the calculation and storage of rel-
atively few, highly efficient contraction paths. This will not only
remove the contraction path finding overhead entirely on the per-
trajectory basis, it will also decrease the computational overhead of
the contraction itself from that of an average-case path to that of an
optimized path, the speedup of which can reach multiple orders of
magnitude. Likewise, the current sampling algorithm for tensor net-
works requires nearly all of the tensor network contraction process
to reoccur for each sample, caching only the minimally optimized
contraction path found for each round of shots. New contraction
path methods based on conditional and correlated tensor network
sampling will provide considerable speedup by reusing information
from partial tensor network contractions, batching large numbers
of shots more efficiently through the use of cached intermediates.

Our techniques were used to produce massive corpuses of noisy
quantum data that is suitable for downstream tasks such as training
an ML-based QEC decoder. Specifically, we collected one trillion 35-
qubit shots and one million 85-qubit shots. Using PTSBE methods,
these extremely large datasets can be obtained with unprecedented
speed, requiring just 4, 445 H100 GPU hours and 2, 223 H100 GPU
hours on NVIDIA’s Eos DGX Superpod [16] for 106 statevector
and 100 tensor network shots per batch, respectively. All experi-
ments were done using CUDA-Q v0.10, with statevector and tensor
network data points consisting of 100 and 200 experiments, respec-
tively.
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Figure 5: The number of shots collected per minute as a func-
tion of the total shots sampled for an 85-qubit magic state dis-
tillation circuit using tensor network simulation. Repeated
shot sampling can be considerably more efficient than full
tensor network preparation, leading to a substantial increase
in efficiency with increased shot number. That being said, the
efficiency of multi-shot executions are highly dependent on
tensor network contraction path caching and adaptation, as
well as efficient correlated sampling schemes, much of which
is still to be added to CUDA-Q. The addition of such schemes
in future releases would further increase our shot efficiency.
(Inset) the effect of additional GPUs on the intra-trajectory
shot efficiency, with the multi-shot PTS algorithm benefiting
substantially. As Pre-Trajectory Sampling is embarrassingly
parallel, inter-trajectory efficiency scaling (not shown) is by
definition linear with GPU number.

5 Conclusion
In this manuscript, we introduced PTSBE, a two part method for
strategic quantum state sampling for noisy, universal quantum sys-
tems that not only provides fine-grained control over the error
sampling process and valuable metadata on the origin of the errors
incurred, it also permits highly optimized batched execution of
many quantum shots without the repreparation of quantum states.
Our method has demonstrated a 106x and 16x speedup for statevec-
tor and tensor network backends on useful, large-scale quantum
error correction codes, enabling us to collect massive data corpuses
of one trillion and one million quantum shots, respectively. While
training ML-based QEC decoders is a primary target for our tech-
nique, we have established its potential for quantum applications
in AI more generally. In subsequent works, further development
of the tensor network backend will greatly increase the efficiency
with which it can collect quantum data. This will enable massive
data generation for very large, noisy, universal quantum computer
simulations, a crucial frontier for the advancement of AI for QEC.
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