
A Geometric Approach to Problems in

Optimization and Data Science

BY
NAREN SARAYU MANOJ

A thesis submitted
in partial fulfillment of the requirements for

the degree of
Doctor of Philosophy in Computer Science

at the
TOYOTA TECHNOLOGICAL INSTITUTE AT CHICAGO

Chicago, Illinois
May 2025

Thesis Committee:

Avrim Blum (Thesis Co-Advisor)
Michael Kapralov
Sepideh Mahabadi
Yury Makarychev (Thesis Co-Advisor)

ar
X

iv
:2

50
4.

16
27

0v
1

 [
m

at
h.

O
C

]
 2

2
A

pr
 2

02
5

Abstract

We give new results for problems in computational and statistical machine learning using tools
from high-dimensional geometry and probability.

We break up our treatment into two parts. In Part I, we focus on computational considerations
in optimization. Specifically, we give new algorithms for approximating convex polytopes in a
stream, sparsification and robust least squares regression, and dueling optimization.

In Part II, we give new statistical guarantees for data science problems. In particular, we formu-
late a new model in which we analyze statistical properties of backdoor data poisoning attacks,
and we study the robustness of graph clustering algorithms to “helpful” misspecification.

Acknowledgments

This journey was a joint effort with many people. So, many thanks are in order.

Research. I am extremely fortunate to have the best advisors I can ask for – Avrim Blum and
Yury Makarychev. I am always amazed by their intuition and extremely clear approach to research
and problem-solving. I am thankful to Avrim for teaching me his strategies for formulating research
questions and imparting in me some idea of what the right answers to problems look like on a conceptual
level. I am grateful to Yury for giving me the technical confidence to continue doing research in convex
geometry, specifically at a time when I had no clear personal problem taste. Avrim and Yury are also
infinitely generous in many aspects – in trust, in wisdom (both in TCS and in life), in finances (I could
attend any conference, any visit, etc), in time, in patience, and in encouragement. I hope to continue
learning all I can from them even when I am no longer at TTIC.

I have awesome mentors in addition to Avrim and Yury. I am indebted to Aditya Bhaskara and Pritish
Kamath, who helped me navigate (technically and otherwise) the most challenging stretches of the
PhD. They are exceedingly dependable sources of optimism and sage advice. I am grateful to Sepideh
Mahabadi for introducing geometric streaming algorithms to me and for serving on my thesis committee.
Thanks to Aditya Bhaskara, Michael Kapralov, and Ivan Tyukin for fun research visits and to Michael
for serving on my thesis committee. Thanks to Cameron Chen and Kunal Nagpal for hosting me for a
rewarding research internship. Going back a bit further, thanks to Rob Burridge, Constantine Caramanis,
Alex Dimakis, Adam Klivans, Calvin Lin, and Eric Price for encouraging me to try CS research in the
first place. And, going back even further, thanks a lot to Art of Problem Solving for first showing me
how entertaining problem solving is (irrespective of whether the problem actually gets solved).

Research is a blast when done with great collaborators. The research I was part of between 2018 and
the time of this writing is joint with Aditya Bhaskara, Avrim Blum, Cameron Chen, Travis Dick, Alex
Dimakis, Surbhi Goel, Meghal Gupta, Agastya Vibhuti Jha, Matt Jordan, Michael Kapralov, Gene Li,
Yury Makarychev, Davide Mazzali, Kunal Nagpal, Max Ovsiankin, Kumar Kshitĳ Patel, Aadirupa Saha,
Nati Srebro, Weronika Wrzos-Kaminska, Chloe Yang, and Hongyang Zhang.

The Chicago area theory community is an “IDEAL” place for TCS/ML research. Many thanks to Saba
Ahmadi, Idan Attias, Siddharth Bhandari, Aditya Bhaskara, Avrim Blum, Sam Buchanan, Julia Chuzhoy,
Chao Gao, Varun Gupta, Frederic Koehler, Zhiyuan Li, Cong Ma, Sepideh Mahabadi, Yury Makarychev,
Aaron Potechin, Miki Racz, Liren Shan, Dravyansh Sharma, Nati Srebro, Madhur Tulsiani, Ali Vakilian,
Aravindan Vĳayaraghavan, Jingyan Wang, Haifeng Xu, and the members of the IDEAL institute for
creating a collegial environment for TCS in Chicago. Also, thanks to Avrim, Julia, Chao, Sepideh,
Yury, Aaron, Nati, Madhur, and Haifeng for teaching me mindblowing ideas in TCS through wonderful
courses, and to Karen Livescu, David McAllester, Greg Shakhnarovich, Matthew Turk, and Matthew
Walter for getting me out of my bubble and reminding me that there are other subfields in CS too.

I am grateful to the optimization, statistics, and TCS communities for humoring my questions and shap-
ing the way I think about the fields. In addition to those mentioned above, I am lucky to have learned
from Deeksha Adil, Omar Alrabiah, Alex Andoni, Moïse Blanchard, Yeshwanth Cherapanamjeri, Mika
Göös, Venkat Guruswami, Piotr Indyk, Arun Jambulapati, Praneeth Kacham, Satyen Kale, Sushrut Kar-
malkar, Ishani Karmarkar, Guy Kornowski, Yin Tat Lee, Lawrence Li, Yang Liu, Shay Moran, Christopher
Musco, Jelani Nelson, Swati Padmanabhan, Ashwin Pananjady, Ankit Pensia, Jon Schneider, Sushant
Sachdeva, Tselil Schramm, Vatsal Sharan, Aaron Sidford, Kevin Tian, Kabir Verchand, David Woodruff,
David Wu, Taisuke Yasuda, Yibin Zhao, and Nikita Zhivotovskiy.

Also, thanks to Ainesh Bakshi, Guy Blanc, Elbert Du, Ezra Edelman, Noah Golowich, Siddhartha Jain,
Ajil Jalal, Justin Kang, Caleb Koch, Dheeraj Nagaraj, Chirag Pabbaraju, Nived Rajaraman, Vinod Raman,
Ayush Sekhari, Abhishek Shetty, Kiran Shiragur, Unique Subedi, Ewin Tang, and many others I am
certainly forgetting for being a familiar, friendly presence at conferences.

I am grateful to Chen Dan, Misha Khodak, Siddharth Prasad, Dravyansh Sharma, and Ellen Vitercik for
maintaining our reading group in 2020-2021. It was a great source of motivation during the pandemic.

3

Many thanks to Adam Bohlander, Rose Bradford, Erica Cocom, Chrissy Coleman, Jessica Jacobson,
Brandie Jones, Celeste Ki, Deree Kobets, Randy Landsberg, Mary Marre, Alicia McClarin, Amy Minick,
and Jerry Randle for making my experience at TTIC smooth and enjoyable.

The research I partook in between Fall 2019 and April 2025 was supported by a USA NSF graduate
research fellowship, USA NSF awards CCF-1815011 and ECCS-2216899, and the DARPA GARD program.

Personal. The last few years were incredibly fun even beyond the research. This is because I have
family and friends who ensured I took every opportunity to have a great time.

Traveling was a staple of the last few years that made the time all the more enjoyable. I owe a ton to
Vahid Asadi, Armin Askari, Anurag Bakshi, Karthik Bala, Shreyas Balaji, Sumanth Balaraman, Kevin
Choy, Rohit Datta, Anindit Gopalakrishnan, Harsh Goyal, Preetham Gujjula, Meghal Gupta, Rishub
Jain, Vanshika Jain, Divyam Khandelwal, Kapil Krishnakumar, Alex Lee, Eric Lee, Gene Li, Yang Liu,
Prabhat Nagarajan, Madhav Narayan, Avinash Nayak, Eley Ng, Evonne Ng, Abhit Patil, Brahma Pavse,
Josh Pham, Binita Shah, Han Shao, Taylor Sihavong, Vaidehi Srinivas, Aditi Srinivasan, Darshan Thaker,
Heather Tolcher, Alice Wei, Rahul Yesantharao, George Zhang, Grace Zhang, Rachel Zhang, and Zihao
Zhu for some amazing and recharging trips.

Also, thanks to Daniel Ho, Aida Lu, Sachin Mehta, Heather Tolcher, Lekha Yesantharao, Rahul Yesan-
tharao, George Zhang, and Zihao Zhu (for good memes whenever I visited Clear Lake), to Anurag
Bakshi, Rohit Datta, Divyam Khandelwal, Taylor Sihavong, and Rahul Yesantharao (for giving me rea-
sons to visit New York and London often), to Rohit Datta, Evonne Ng, and Darshan Thaker (for the most
entertaining and irrelevantly named group chat), and Meghal Gupta (for degenerate games of chess).

Locally, I am lucky to have had Sudarshan Babu, Riddhish Bhalodia, Dimitar Chakarov, Antares Chen,
Emma Corless, Avichal Goel, Nirmit Joshi, Anmol Kabra, Hriday Kamshatti, Sushrut Karmalkar, Di-
vyam Khandelwal, Frederic Koehler, Sky Lee, Gene Li, Yanhong Li, Marko Medvedev, Tushant Mittal,
Adán Medrano Martín del Campo, Olga Medrano Martín del Campo, Amin Mohamadi, Omar Mon-
tasser, Abhĳit Mudigonda, Keziah Naggita, Rachit Nimavat, Max Ovsiankin, Simran Pabla, Aditya
Paliwal, Ankita Pasad, Kumar Kshitĳ Patel, Aniruddh Raghu, Goutham Rajendran, Kavya Ravichan-
dran, Aravind Reddy, Han Shao, Pushkar Shukla, Vaidehi Srinivas, Shashank Srivastava, Kevin Stangl,
Alec Sun, Akilesh Tangella, Erasmo Tani, Shubham Toshniwal, Antony Yun, David Yunis, Amanda
Zhang, and Derek Zhu to accompany me for the last few years. I am grateful for their friendship. A
special shoutout goes to Anmol (my housemate for two years), to Keziah, Ankita, Han, and Shashank,
(my officemates at TTIC), to Sudarshan, Anmol, Gene, Max, Ankita, Kshitĳ, Kavya, Han, Vaidehi,
Shashank, and David (for a particular sense of camaraderie), to Avichal, Hriday, Divyam, Fred, Aditya,
and Antony (Block 37 climbing crew), and to Amanda (for the best baked goods ever). Not so locally,
thanks to Marina Drygala, Grzegorz Głuch, Agastya Vibhuti Jha, Davide Mazzali, Abhit Patil, Kshiteej
Sheth, and Weronika Wrzos-Kaminska for making me feel at home at EPFL.

Family. My family has always unconditionally supported me. My mother, Sarayu Manoj, spends
practically all her waking hours ensuring that my brother Pavan and I have strong foundations for both
academics and life. Because of her, we are always happy, well-fed, and pursuing worthwhile activities.
I am pretty sure I first learned to enjoy math from her teachings, which began before we even went to
school. My father, Manoj Som, is probably the most easygoing person I know. By example, he taught
us to live in the present, how to navigate stressful times, and the importance of maintaining a healthy
physical lifestyle. He also imparted in us a strong sense of adventure. All of this, plus his “go-with-the-
flow” approach to life, was necessary in navigating the challenges over the last few years. Importantly,
our parents taught us to love learning for learning’s sake. My brother, Pavan Manoj, showed me how
to be levelheaded and diligent. He listened to my dramatic rants whenever things were not going well
and always offered realistic advice.

Beyond my immediate family, I am lucky to have a supportive and fun-loving extended family. Particu-
larly, thanks to Shrihari Gopalakrishna and Srikanth Iyengar for encouraging me to pursue research in
the mathematical sciences and for keeping an eye on me during the PhD. It is a huge advantage to have
examples within the family who demonstrate that a particular life track/career plan is both viable and
fun. Last but not least, I am grateful to our family-friend network in the US for their well-wishes.

4

Contents

1. Introduction 8

1.1. Our geometric motivation and quick summary of results 8
1.2. Results – algorithms . 11

1.2.1. Streaming ellipsoidal approximations of convex polytopes 11
1.2.2. Block Lewis weights and applications . 12
1.2.3. Dueling optimization with a monotone adversary 15

1.3. Results – statistics . 17
1.3.1. PAC learning under backdoor attacks . 17
1.3.2. Spectral clustering with a monotone adversary 19

I. Algorithms 22

2. Streaming ellipsoidal approximations of convex polytopes 23

2.1. Introduction . 23
2.1.1. Our contributions . 25
2.1.2. Related work and open questions . 28

2.2. Summary of techniques . 30
2.2.1. Monotone algorithms . 30
2.2.2. Streaming ellipsoidal rounding (Theorems 1, 3, and 4) 31
2.2.3. Coresets for convex hull (Theorem 5) . 35
2.2.4. Lower bound (Theorem 7) . 35

2.3. Preliminaries . 36
2.3.1. Notation . 36
2.3.2. Geometry . 36

2.4. Streaming ellipsoidal rounding . 37
2.4.1. Monotone algorithms solve Problem 2.1 . 37
2.4.2. Special case . 38
2.4.3. Generalizing to high dimension and arbitrary previous ellipsoids 44
2.4.4. General algorithm . 45
2.4.5. Fully-online asymmetric ellipsoidal rounding algorithm 52
2.4.6. Aspect ratio-independent bounds and proof of Theorem 4 56

2.5. Improved analysis for symmetric polytopes (Proof of Theorem 2) 58
2.5.1. Monotone update rule for symmetric ellipsoidal approximation 58
2.5.2. Approximation guarantee via stronger evolution condition 61

2.6. Forming small coresets for convex bodies (Proof of Theorem 5) 63
2.7. Approximation lower bound for monotone algorithms 64

2.7.1. Inapproximability of John’s ellipsoid . 64
2.7.2. Lower bound adversary . 66
2.7.3. Analysis of the reduced case . 71

2.8. Details of analysis in Section 2.4.2 . 77

5

3. Block Lewis weights for sparsification and minimizing sums of Euclidean norms 82

3.1. Introduction . 82
3.1.1. Our results . 83
3.1.2. Notation and definitions . 86
3.1.3. Technical overview . 87
3.1.4. Prior results, related works, and connections 91

3.2. Preliminaries . 93
3.2.1. Linear algebra background . 94
3.2.2. Convex geometry background . 95
3.2.3. Probability background . 95

3.3. Covering number estimates . 96
3.3.1. Notation and general formula . 96
3.3.2. Block Lewis weights . 99
3.3.3. Covering numbers for 0 < 𝑝 < 2 . 102
3.3.4. Covering numbers for 𝑝 ≥ 2 . 110
3.3.5. Volume-based metric entropy . 113

3.4. Concentration analysis . 115
3.5. Applications and algorithms . 123

3.5.1. Block norm approximations via block Lewis weights (Proof of Theorem 8) 123
3.5.2. Efficient computation of block Lewis weight overestimates (Proof of The-

orem 9) . 124
3.5.3. Minimizing sums of Euclidean norms (Proof of Theorem 10) 133

4. Block Lewis weights for distributionally robust linear regression 136

4.1. Introduction . 136
4.1.1. Our results . 137
4.1.2. Prior results, connections, and open problems 139
4.1.3. Chapter outline . 141

4.2. Technical overview . 141
4.2.1. The geometry of the proximal subproblems 142
4.2.2. Solving proximal subproblems . 144
4.2.3. Iterating proximal calls . 146

4.3. Mirror descent with inexact updates . 146
4.4. Optimal MS acceleration under custom Euclidean geometry 149
4.5. Minimizing the distributionally robust loss . 155

4.5.1. Smoothly approximating the objective . 156
4.5.2. Calculus for LogSumExp . 157
4.5.3. Smoothness and quasi-self-concordance of the modified objective 160
4.5.4. Analysis of Algorithm 12 . 163

4.6. Interpolating between average and robust losses 166
4.6.1. Calculus for the objective . 166
4.6.2. Facts about the iterates . 172
4.6.3. Proximal subproblems – calculus, algorithms, proofs 173
4.6.4. The algorithm . 188

5. Dueling optimization with a monotone adversary 191

5.1. Introduction . 191
5.1.1. Problem statement . 192
5.1.2. Our results . 193
5.1.3. Technical overview . 196
5.1.4. Related works . 197

6

5.2. Proofs of upper bound results . 198
5.2.1. A general algorithm for Problem 5.1 with progress distributions 200
5.2.2. Proof of Theorem 14 . 203
5.2.3. Proof of Theorem 15 . 206
5.2.4. Proof of Theorem 16 . 208
5.2.5. Proof of Theorem 17 . 209

5.3. Proofs of lower bound results . 209

II. Statistics 212

6. PAC learning under backdoor attacks 213

6.1. Introduction . 213
6.1.1. Main contributions . 214

6.2. Backdoor attacks and memorization . 214
6.2.1. Problem Setting . 214
6.2.2. Warmup – Overparameterized vector spaces 216
6.2.3. Memorization capacity and backdoor attacks 218

6.3. Algorithmic considerations . 220
6.3.1. Certifying the existence of backdoors . 221
6.3.2. Filtering versus generalization . 222

6.4. Related works . 223
6.5. Restatement of theorems and full proofs . 224

6.5.1. Proofs from Section 6.2 . 224
6.5.2. Proofs from Section 6.3 . 234

6.6. Numerical trials . 241
6.6.1. MNIST using neural networks . 241

7. Spectral clustering in semirandom stochastic block models 251

7.1. Introduction . 251
7.2. Models and main results . 253

7.2.1. Nonhomogeneous symmetric stochastic block model 254
7.2.2. Deterministic clusters model . 256
7.2.3. Inconsistency of normalized spectral clustering 257
7.2.4. Open problems . 257

7.3. Analysis sketch . 257
7.4. Numerical trials . 260

7.4.1. Related work . 261
7.5. Deferred proofs . 263

7.5.1. Concentration inequalities . 263
7.5.2. Concentration of degrees . 264
7.5.3. Concentration of Laplacian and eigenvalue perturbations 267
7.5.4. Eigenvector perturbations . 269
7.5.5. Leave-one-out and bootstrap . 274
7.5.6. Strong consistency of unnormalized spectral bisection 278
7.5.7. Proofs of main results . 279
7.5.8. Inconsistency of normalized spectral bisection 283

7.6. Additional experiments . 290
7.6.1. Varying edge probabilities in an NSSBM 290
7.6.2. Varying the size of a planted clique in a DCM 291

Bibliography 294

7

1. Introduction

A basic pipeline in modern machine learning is to construct a model based on observations in
the real world and use the model to make inferences on unseen data. To execute this pipeline,
there are at least two aspects we need a deep understanding of. One is algorithmic – given input
data, how do we efficiently build a model that captures the phenomenon we are interested in?
Another is statistical – given some sense of the data generation process and the model fitting
procedure, should we believe the model’s predictions on unseen data?

With this delineation in mind, in this thesis, we will look at important considerations in these
components. To address the algorithmic aspects, we will design and analyze fast optimization

primitives, motivated by data science applications. On the statistical front, we will study

recovery/inference when the input is adversarial or misspecified. A common theme between
all the problems we study is that the required technical methods involve understanding the
underlying high-dimensional probabilistic and geometric phenomena.

1.1. Our geometric motivation and quick summary of results

A helpful guiding question to keep in mind is – which statistical and computational primitives

benefit from a more geometrically-aware analysis?

As a step towards answering this question on the computational end, we will spend slightly
more than half of the thesis studying the ellipsoidal approximation problem and its applications.
In the ellipsoidal approximation problem, we are given a convex body 𝐾 ⊂ R𝑑 (meaning that
𝐾 is convex, compact, and has nonzero Lebesgue measure). We would like to find an ellipsoid
ℰ(𝐾), center 𝒄 ∈ R𝑑, and distortion △ ≥ 1 for which

𝒄 + ℰ(𝐾) ⊆ 𝐾 ⊆ 𝒄 + △ · ℰ(𝐾). (1.1.1)

Intuitively, the closer △ is to 1, the more faithfully ℰ(𝐾) approximates 𝐾.

The ellipsoidal approximation problem (1.1.1) and its variants appear in many problems in
optimization. For example, algorithm families for convex programming such as the ellipsoid
method [Kha80] and interior point methods [NN94] can be thought of as approximating a con-
vex body with some sequence of ellipsoids, and the distortion gives intuition for the kinds of
convergence rates one can expect for these algorithms. Low-distortion ellipsoidal approxima-
tions also give us “preconditioners” for convex bodies, with applications to sampling [CV15],
reinforcement learning [LLS19], and integer programming [Len83]. Furthermore, ellipsoidal
approximations give us a natural way to succinctly summarize 𝐾 (up to a factor △ loss), as
describing an ellipsoid in R𝑑 only requires us to write down a matrix in R𝑑×𝑑.

The distortion △ in (1.1.1) and the runtime for finding ℰ(𝐾) are the principal quantities that we
will want to control when we solve the ellipsoidal approximation problem. To see what kinds
of distortions one can hope for in (1.1.1), recall John’s theorem.

8

Theorem 1.1.1 (John’s Theorem [Joh48]). Let 𝒄 +ℰ(𝐾) be the ellipsoid of maximal volume contained

within 𝐾. Then, we have

𝒄 + ℰ(𝐾) ⊆ 𝐾 ⊆ 𝒄 + △ · ℰ(𝐾),

where △ ≤ 𝑑. Further, if 𝐾 is origin-symmetric, then this improves to △ ≤
√
𝑑. Finally, there exist

convex bodies 𝐾 for which no ellipsoid can approximate 𝐾 to distortion better than 𝑑, and there exist

origin-symmetric convex bodies 𝐾 for which no ellipsoid can approximate 𝐾 to distortion better than

√
𝑑.

Thus, for all of our results for problems of the form (1.1.1), it will be helpful to compare against
the existential benchmark given by Theorem 1.1.1.

Motivated by the above, we will begin with studying (1.1.1) in a fairly general setting. We
assume the convex body 𝐾 is specified by the convex hull of points 𝒛1 , . . . , 𝒛𝑛 ∈ R𝑑. For
additional reasons we will discuss momentarily, we will further assume that (1) we are only
given single-pass streaming access to the 𝒛1 , . . . , 𝒛𝑛 and (2) our algorithm must be memoryless,
which means when it receives point 𝒛𝑡 , it is not allowed to remember any of the previous
points 𝒛1 , . . . , 𝒛𝑡−1. In this streaming model, we will give the first efficient algorithms that
achieve nearly worst-case optimal approximation factors, in that they nearly agree with John’s
theorem (Theorem 1.1.1). We then use these procedures to obtain the first single-pass streaming
algorithms for finding low-distortion convex hull coresets, which are subsets of the points from
𝒛1 , . . . , 𝒛𝑛 whose convex hull approximates the convex hull of the original set. Our results
here will set the stage for the runtimes and distortions we can expect for the other ellipsoidal
approximation problems we study. For more details, see Section 1.2.1 and Chapter 2.

We then give algorithms for (1.1.1) in cases in which the convex sets 𝐾 are symmetric, highly
structured, and given offline. Once again, the distortions we get will be nearly worst-case opti-
mal (and can be made arbitrarily close to worst-case optimal). We will leverage this primitive
to give state-of-the-art algorithms for multidistributional linear regression, in which we would
like one parameter vector that simultaneously minimizes the least squares loss for 𝑚 different
linear regression problems. We will also combine this ellipsoidal approximation primitive with
extra geometric tools to obtain nearly optimal existential and algorithmic results for sparsifi-

cation. In the sparsification problem, our goal is to considerably simplify loss functions that
can be expressed as the sum of many individual structured losses. We will then apply these
newly built tools to give computational improvements for the problem of minimizing the sum
of Euclidean norms, which encompasses several well-studied optimization problems. We will
discuss this more precisely in Section 1.2.2 and Chapters 3 and 4.

The remainder of the thesis is dedicated to exploring some statistical and algorithmic conse-
quences of the behaviors of random vectors in high dimensions. We focus on the following three
fundamental facts (we focus on the distribution 𝒈 ∼ 𝒩

(
0, I𝑑

𝑑

)
for convenience of presentation

here, though in our results, we will have to reason about different distributions):

1. Random Gaussian vectors have a nontrivial correlation with a fixed direction, with non-
trivial probability. Formally, let 𝒛 ∈ R𝑑 be such that ∥𝒛∥2 = 1. Then,

Pr
𝒈∼𝒩

(
0, I𝑑

𝑑

) [
⟨𝒈 , 𝒛⟩ ≥ 2√

𝑑

]
≥ 1

50 .

2. Random Gaussian vectors mostly miss a fixed low-dimensional subspace. Formally, if
U ∈ R𝑑×𝑠 where 𝑑 ≥ 𝑠 and the columns of U form an orthonormal basis for the subspace

9

spanned by the columns of U, then for some universal constant𝐶, with probability ≥ 1−𝛿,
we have U⊤𝒈

2 ≤ 𝐶

(√
𝑠

𝑑
+

√
log (1/𝛿)

𝑑

)
.

So, if 𝑑 ≫ 𝑠, then 𝒈 mostly lies in the nullspace of U⊤. This also can be seen as a converse
to Property 1 (take 𝑠 = 1).

3. Random Gaussian vectors are well-spread. Consider 𝒈 distributed as above. We know
that ∥𝒈 ∥2 ≈ 1, and by using the standard fact that ∥·∥∞ ≤ ∥·∥2, we can certainly conclude
∥𝒈 ∥∞ ⪅ 1. But, this equality case only happens when most of the mass of 𝒈 is located on
very few coordinates of 𝒈 . Under our distributional assumption on 𝒈 , this is incredibly
unlikely. Instead, for some universal constant 𝐶, we have with probability ≥ 1 − 𝛿 that

∥𝒈 ∥∞ ≤ 𝐶
(√

log 𝑑
𝑑
+

√
log (1/𝛿)

𝑑

)
.

This improves over the trivial bound by nearly a factor of
√
𝑑. Furthermore, the cosmetic

resemblance to the statement of Property 2 is no coincidence – both properties can be
established in almost the same way.

In Section 1.2.3 and Chapter 5, we will use Property 1 to give the first algorithm for a realistic
generalization of dueling optimization, a common preference-based optimization paradigm.
When placed in a natural online learning setting, our algorithm incurs regret that is optimal
up to constant factors in the worst case. The main technical idea is to use the first property to
guess weakly-correlated descent steps to optimize a function 𝑓 without gradient and evaluation
access to 𝑓 .

With that, we round out the optimization section of the thesis and move onto understanding
geometric phenomena in statistical problems (problems in which we are also interested in
inference and recovery instead of computation alone) under input corruptions. In Section 1.3.1
and Chapter 6, we establish a statistical framework within which we can analyze backdoor

data poisoning attacks, a type of train-time adversarial attack on machine learning classifiers.
We will use this framework to give a mathematical justification for the empirically observed
phenomenon that planting backdoors into overparameterized models is “easy” – our provably
successful attack will in fact be a simple randomized construction whose analysis follows
directly from Property 2. Motivated by this, we use our framework to build a much more general
statistical theory around backdoor attacks. Along the way, we try to answer the questions
(1) When is a machine learning problem susceptible to a backdoor attack? (2) Which natural
machine learning problems can be successfully backdoored, and which cannot? (3) What are
some algorithmic strategies that one can use to mitigate a backdoor attack?

Finally, in Section 1.3.2 and Chapter 7, we give the first robustness guarantees for spectral
clustering, a popular and practical clustering algorithm, under a more general generative model
for the graph than what is typically considered. The main technical challenge is to understand
how the entries of eigenvectors change under random perturbations to the underlying signal
matrix. Our final argument can be viewed as establishing Property 3 for the distribution 𝒗−𝒗★,
where 𝒗★ is the “population” eigenvector and 𝒗 is the corresponding eigenvector after adding
the noise, even though the distribution of 𝒗 − 𝒗★ is not Gaussian. Interestingly, this is one of
the first examples we are aware of in which we can apply entrywise eigenvector perturbation
theory to high-rank signal matrices – the techniques we use were originally developed and
used for exclusively low-rank signal matrices.

10

1.2. Results – algorithms

Our goal in Part I is to give efficient algorithms for several natural problems in data science in
which a high-dimensional geometric interplay is central. As mentioned in Section 1.1, most of
the problems in this section will involve studying the ellipsoidal approximation problem (1.1.1)
in some form.

1.2.1. Streaming ellipsoidal approximations of convex polytopes

We begin with the main problem of this subsection.

Problem 1. Let 𝑍 = conv ({𝒛1 , . . . , 𝒛𝑛}). Suppose an algorithm receives streaming access to 𝑍 (i.e., it

receives the points 𝒛1 , . . . , 𝒛𝑛 one-at-a-time). Can we find algorithms that maintain translates 𝒄1 , . . . , 𝒄𝑡
and approximating bodies 𝑍1 , . . . , 𝑍𝑡 such that both of the below guarantees hold:

• for all timesteps 𝑡, we have 𝑍𝑡 B conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆ 𝒄𝑡 + 𝑍𝑡 ;

• at the end of the stream, we have for some 0 < 𝛼 < 1 that 𝒄𝑛 + 1
𝛼 · 𝑍𝑛 ⊆ 𝑍 ⊆ 𝒄𝑛 + 𝑍𝑛 or

𝑍𝑛 ⊆ 𝑍 ⊆ 𝒄𝑛 + 1
𝛼 ·

(
𝑍𝑛 − 𝒄𝑛

)
.

We are interested in the following two different types of approximating bodies 𝑍𝑡 :

1. the 𝑍𝑡 must be ellipsoids;

2. the 𝑍𝑡 must be the convex hull of a subset of the points 𝒛1 , . . . , 𝒛𝑡 .

For each algorithm, we would like the distortion (interchangeably used with “approximation factor”) 1/𝛼
to be as small as possible and for the space complexity to be as small as possible.

In the language of Section 1.1, the quantity 1/𝛼 is referred to as a distortion or approximation

factor.

Observe that the first objective is asking us to build an ℓ2-approximation of 𝑍. Additionally,
note that the second objective of Problem 1 amounts to building a coreset for 𝑍 – i.e., we are
asking for an algorithm that chooses a subset of the 𝒛1 , . . . , 𝒛𝑛 that approximates 𝑍.

Motivating example. Let us discuss why we study the streaming setting. Consider a
case where we have a very large dataset consisting of points 𝒛1 , . . . , 𝒛𝑛 ∈ R𝑑. We would
like to produce a succinct summary of this dataset. Since the dataset has a large number of
observations, the algorithm to calculate the summary is not allowed to remember all the 𝒛 𝑖s.
Instead, we will allow one-pass streaming access to the 𝒛 𝑖 . In particular, our algorithm will be
allowed to read one 𝒛 𝑖 at a time. The algorithm cannot make assumptions on the order of the
points in the stream; in particular, the stream could be adaptively adversarially ordered.

Our results. We give an informal overview of the results we achieve for Problem 1 and defer
the more precise statements of the results to Chapter 2.

• When the 𝑍𝑡 must be ellipsoids, we give an algorithm that needs to store only 𝑂(𝑑2)
floating point numbers while achieving an approximation factor of 𝑂 (min {𝜅, 𝑑 log 𝜅}),

11

where 𝜅 is the aspect ratio of 𝑍 (essentially capturing how skewed 𝑍 is). The algorithm
also has runtime 𝑂(𝑛𝑑2).

• When the 𝑍𝑡 must be the convex hull of a subset of the points 𝒛1 , . . . , 𝒛𝑡 , we give an
algorithm that chooses at most 𝑂(𝑑 log 𝜅OL) vertices while achieving an approximation
factor of𝑂

(
𝑑 log 𝑑 + 𝑑 log 𝜅OL) (here, 𝜅OL is an online variant of the aspect ratio term from

the previous part). The algorithm here will involve calling the ellipsoidal approximation
algorithm from the previous part as a subroutine.

• Additionally, if we are in the special case where 𝑍 is centrally symmetric about
the origin, the approximation factors of our algorithms improve to 𝑂(

√
𝑑 log 𝜅) and

𝑂(
√
𝑑 log 𝑑 + 𝑑 log 𝜅OL) for the ellipsoid and coreset settings, respectively.

We remark that by John’s Theorem (Theorem 1.1.1), the approximation factors of our algorithms
are nearly optimal. In fact, the dependence on the dimension 𝑑 nearly matches that of the worst-
case optimal offline solution, and so we only lose terms that are logarithmic (or sublogarithmic,
in the symmetric case) in the aspect ratio of 𝑍 (while we also sometimes lose factors logarithmic
in 𝑑, we can show that if the number of points 𝑛 is polynomial in 𝑑, then the aspect ratio must
be poly(𝑑), so in this practical regime, the log 𝑑 dependences are unavoidable anyway).

We formally study this problem in Chapter 2.

Bibliographic notes. The material discussed in this section is based on a sequence of works
joint with Yury Makarychev and Max Ovsiankin published at COLT 2022 [MMO22] and STOC
2024 [MMO24].

1.2.2. Block Lewis weights and applications

Next, we will look at problems where one of the key technical ingredients is a low-distortion
ellipsoidal approximation for a particular symmetric convex set. Our main contribution will
be the design and application of a geometric construction called block Lewis weights.

Throughout this section, it will be helpful to keep in mind the following intended applications.

Motivating example. Suppose we have a collection of least squares linear regression prob-
lems, each of which is given by the designs and responses (A𝑆𝑖 , 𝒃𝑆𝑖), where A𝑆𝑖 ∈ R|𝑆𝑖 |×𝑑 and
𝒃𝑆𝑖 ∈ R|𝑆𝑖 | and 𝑆𝑖 denotes the index subset of all measurements that belong to problem 𝑖. Let
A ∈ R(

∑|𝑆𝑖 |)×𝑑 denote the matrix formed by stacking all 𝑚 designs and 𝒃 ∈ R
∑|𝑆𝑖 | denote the

vector formed by stacking all 𝑚 responses in the same way. In several settings such as in
collaborative or multidistributional learning, it makes sense to ask for a parameter vector �̂� for
which

max
1≤𝑖≤𝑚

∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2 ≤ (1 + 𝜀)min
𝒙∈R𝑑

max
1≤𝑖≤𝑚

∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 . (1.2.1)

Objective (1.2.1) is the natural formulation for the problem of minimizing the multidistribu-
tional linear regression loss. Indeed, we can think of each design-observation pair (A𝑆𝑖 , 𝒃𝑆𝑖)
as samples from a particular distribution 𝒟𝑖 , and we would like our model �̂� to perform
reasonably well on all 𝑚 distributions𝒟1 , . . . ,𝒟𝑚 .

More generally, solving (1.2.1) subsumes min-max fair least-squares regression, distributionally
robust linear regression, and ℓ∞ regression (which can be seen by choosing |𝑆𝑖 | = 1 for all 𝑖).

12

Furthermore, if we let all the A𝑆𝑖 = I𝑑, then (1.2.2) solves the minimum enclosing ball problem from
computational geometry, which asks for the center that minimizes the radius of a Euclidean
ball covering all the points 𝒃𝑆1 , . . . , 𝒃𝑆𝑚 . For a more detailed discussion about the applications,
see Chapter 4.

Motivating example. A closely related problem to the above is the minimizing sums of

Euclidean norms (MSN) problem. In the same notation, we are given 𝑚 design-response pairs
(A𝑆𝑖 , 𝒃𝑆𝑖). Our goal is to output a parameter vector �̂� such that

𝑚∑
𝑖=1
∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2 ≤ (1 + 𝜀)min

𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 . (1.2.2)

As a motivating application, consider again the case where A𝑆𝑖 = I𝑑 for all 𝑖. Then, (1.2.2)
recovers a variant of Euclidean single facility location, in which our goal is to place a facility
that minimizes the total distances from the facility to each terminal. This problem is also known
as the geometric median problem in statistics.

More generally, the objective (1.2.2) is the simplest formulation we are aware of that simulta-
neously generalizes the geometric median problem and ℓ1 regression (analogously to (1.2.1)).
See Chapter 3 for more details and other applications of (1.2.2) to problems in science and
engineering.

Ball oracle acceleration and block Lewis weights for (1.2.1). Our algorithm for (1.2.1) uses
a framework of Carmon, Jambulapati, Jiang, Jin, Lee, Sidford, and Tian [CJJJLST20], which is
itself based on an acceleration scheme due to Monteiro and Svaiter [MS13]. The main idea
behind this framework is to reduce the problem of minimizing some function 𝑓 to repeatedly
solving the ball-constrained subproblem

argmin
∥𝒙−𝒙∥M≤𝑟

𝑓 (𝒙),

where 𝒙 is our current iterate and ∥𝒙∥M B
√
𝒙⊤M𝒙 for positive semidefinite M. I-[xt will later

become clear that approximately solving each ball-constrained subproblem is tractable. To
bound the number of calls to the ball oracle, it will be enough to carefully choose M (which
determines the underlying geometry we impose on the problem). We choose M = A⊤WA,
where W is a particular nonnegative diagonal matrix filled with weights we call block Lewis

weights. The geometric insight here is that this choice of M guarantees that we can form
ellipsoidal approximations of the level sets of the objective (1.2.1) – namely, for all 𝒙 ∈ R𝑑 and
𝑐 ∈ R, we get

max
1≤𝑖≤𝑚

∥A𝑆𝑖𝒙 − 𝑐𝒃𝑆𝑖 ∥2 ≤
W1/2A𝒙 − 𝑐W1/2𝒃

2
≤
√
𝑑 + 1 · max

1≤𝑖≤𝑚
∥A𝑆𝑖𝒙 − 𝑐𝒃𝑆𝑖 ∥2 .

The algorithm we get bears a conceptual resemblance to interior point methods (IPMs) with self-
concordant barriers. This family of algorithms make progress by first imposing an appropriate
ℓ2 geometry (arising from the Hessian of the barrier function) and then taking Newton steps
in that geometry. Here, instead, we can think of our algorithm as fixing the ℓ2 geometry to
be the one given by the block Lewis weights and then taking accelerated Newton steps in that
geometry.

Sparsification for (1.2.2). Our algorithm for (1.2.2) follows from using the block Lewis
weights for sparsification. We describe the sparsification subproblem in Problem 2.

13

Problem 2. We are given as input 𝒢 =
(
A ∈ R𝑛×𝑑 , 𝑆1 , . . . , 𝑆𝑚 , 𝑝1 , . . . , 𝑝𝑚

)
, 𝑝 > 0, and an error

parameter 𝜀. For all 𝑖 ∈ [𝑚], can we output a probability distribution 𝜌1 , . . . , 𝜌𝑚 over [𝑚] such that if

we choose a collection of groupsℳ = (𝑖1 , . . . , 𝑖𝑚) where each 𝑖ℎ is independently distributed according

to 𝜌𝑖 , then the following holds with probability ≥ 1 − 𝛿:

for all 𝒙 ∈ R𝑑 : (1 − 𝜀)
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 ≤

1
𝑚

∑
𝑖∈ℳ

1
𝜌𝑖
· ∥A𝑆𝑖𝒙∥

𝑝
𝑝 ≤ (1 + 𝜀)

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖

If so, can we ensure that 𝑚 is small with probability 1 − 𝛿 (for example, 𝑚 should not depend on 𝑚

and the dependence on 𝛿−1
should be polylogarithmic)? Moreover, can we find an efficient algorithm to

return the distribution?

Observe that if we choose 𝑝1 = · · · = 𝑝𝑚 = 2 and 𝑝 = 1, and if we are able to efficiently solve
Problem 2, then we can apply this as a preprocessing routine for (1.2.2) and then call a black-box
interior point method whose iteration complexity we can understand. Thus, it is sufficient to
solve the sparsification problem.

In the sparsification problem, a mild modification of the above-mentioned block Lewis weights
and the resulting ellipsoidal approximation will again play a central role. However, this time,
the ellipsoidal approximation that we get will be more of an analytic tool rather than an
algorithmic one.

Our results. We give an informal overview of the results we achieve for Problem 2 and for
optimizing objectives (1.2.1) and (1.2.1), and defer the more precise statements of the results to
Chapter 3 and Chapter 4.

• If 𝑝 ≥ 1 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2 or if 𝑝1 = · · · = 𝑝𝑚 = 𝑝 ≥ 1/log 𝑑, then there exists a probability
distribution𝒟 = (𝜌1 , . . . , 𝜌𝑚) over [𝑚] such that the aforementioned sampling procedure
yields a sparsity of 𝑚 = 𝑂𝑝,𝑝𝑖 (𝜀−2𝑑max{1,𝑝/2}) (here, the 𝑂𝑝,𝑝𝑖 notation hides dependences
on 𝑝 and 𝑝𝑖 and logarithmic factors in 𝑚, 𝑑, 1/𝛿). This distribution is in fact directly given
by the block Lewis weights. Moreover, this sparsity is essentially optimal [LWW21].

• Additionally, if 𝑝 > 0 and 𝑝1 = · · · = 𝑝𝑚 = 2, or if 𝑝1 = · · · = 𝑝𝑚 = 𝑝 ≥ 1/log 𝑑, or
if 𝑝 = 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2, then there exists an efficient algorithm that outputs an
approximation to the aforementioned distribution 𝒟 that is sufficient for obtaining the
𝑚 mentioned above. The algorithm runs in polylog(𝑚, 𝑑, 𝑘) linear system solves, each of
which can be performed in 𝑂(nnz(A) + 𝑑𝜔) time where 𝜔 is the matrix multiplication
runtime exponent.

• Using the above algorithms as subroutines, we design algorithms to minimize the ob-
jectives (1.2.1) and (1.2.2) with a linear system solve iteration complexity of 𝑂(𝜀−2/3𝑑1/3)
and 𝑂(𝜀−1𝑑1/2), respectively. When the number of groups 𝑚 ≫ 𝑑 and we are in a
moderate-accuracy regime, our results are the state-of-the-art.

• We then show how to optimize the following family of interpolants between the robust
loss (1.2.1) and the nonrobust loss. For 2 ≤ 𝑝 < ∞, consider minimizing(

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝

2

)1/𝑝

.

Choosing 𝑝 = 2 amounts to minimizing the total least squares loss among all the dis-
tributions, and choosing 𝑝 = ∞ corresponds to minimizing the worst-case loss across

14

distributions. Thus, choosing 𝑝 in between allows us to smoothly trade off robustness
and utility. We give an algorithm for this problem that also gives an interpolating com-
plexity – namely, it runs in 𝑂

(
𝑝𝑂(1)𝑑(𝑝−2)/(3𝑝−2) log (𝑑/𝜀)3

)
linear system solves.

We will formally study these topics in Chapter 3 and Chapter 4.

Bibliographic notes. The material discussed in this section is based on a work with Max
Ovsiankin published at SODA 2025 [MO25] and on an ongoing work with Kumar Kshitĳ Patel
that appeared at OPT 2024 [MP24].

1.2.3. Dueling optimization with a monotone adversary

We now move onto a collection of problems that exemplify the statistical and algorithmic
applications of the behavior of random vectors in high dimensions. Our first problem in
this category, and our last problem in Part I (the optimization part), will involve designing
algorithms for a more realistic generalization of dueling optimization, a preference-based
optimization framework.

Motivating example. Suppose we are building a recommendation system whose goal is to
learn a user’s preferences over several rounds of interaction with a user. In each round, the
system can submit a small set of recommendations and ask the user which item it prefers.
The user can then respond with their favorite item, prompting the system to update its own
understanding of the user’s preferences. Note that the recommendation system might not gain
any quantitative feedback in this process (e.g. it might not learn how much better the favorite
item was compared to the others or it might not learn whether all the items were quite mediocre
compared to the globally favored item).

However, we want to consider the more practical setting in which real users need not choose
any item that the system suggests. Instead, users often choose an item that is better than any of
the suggested items. This can happen when the recommendation system only submits items
that the user is not very happy with, and so the user chooses something else altogether. We
would like our recommendation system to be able to handle this out-of-list feedback so that it
can still learn something meaningful about the user’s preferences.

To model this scenario while paying particular attention to the possibility of receiving such
“improving feedback”, we introduce a problem called dueling optimization with a monotone

adversary that formalizes some of the ideas given above.

Problem 3 (Dueling optimization with a monotone adversary). Let𝒳 ⊆ R𝑑 be an action set and let

𝑓 : 𝒳 → R be a cost function for which there exists an unknown point 𝒙★ ∈ R𝑑 such that 𝑓 (𝒙★) ≤ 𝑓 (𝒙)
for all 𝒙 ∈ 𝒳 and for which there is a known value 𝐵 such that 𝐵 ≥ 𝑓 (0) − 𝑓 (𝒙★).

In each round 𝑡 = 1, 2, . . . , the algorithm proposes two points 𝒙(1)𝑡 , 𝒙(2)𝑡 ∈ 𝒳 and receives some 𝒓 𝑡 as

response, satisfying

𝑓 (𝒓 𝑡) ≤ min
{
𝑓
(
𝒙(1)𝑡

)
, 𝑓

(
𝒙(2)𝑡

)}
.

The algorithm pays cost

𝐶𝑡 B max
{
𝑓
(
𝒙(1)𝑡

)
, 𝑓

(
𝒙(2)𝑡

)}
− 𝑓 (𝒙★).

Can we find an efficient algorithm that minimizes the total cost

∑
𝑡≥1 𝐶𝑡?

15

We think of the user as a monotone adversary, as they respond with feedback that is consistent
with the ground truth 𝒙★ and can only improve upon points that the learner suggests.

We first comment on some design decisions in Problem 3. Observe that in the Problem 3,
the learner only suggests 2 points. It is more realistic to allow the learner to suggest more,
say, 𝑚 points, and have the user choose their favorite point among those or improve upon the
suggestions. However, we will later show that this will not improve the learnability of the
problem all that much. Finally, it does not make much difference to charge the algorithm for
the cost of its best guess instead of its worst guess – formally, we get the same results if the
cost in each round is min

{
𝑓
(
𝒙(1)𝑡

)
, 𝑓

(
𝒙(2)𝑡

)}
− 𝑓 (𝒙★) (instead of taking the max, as is done in

Problem 3).

We now describe Problem 3 in slightly more technicality. In the rest of this section, we will
assume that 𝑓 is smooth and strongly convex, though we will later see that we can get similar
results when we relax these assumptions somewhat.

Notice that if 𝒓 𝑡 = 𝒙(1)𝑡 or if 𝒓 𝑡 = 𝒙(2)𝑡 , then Problem 3 corresponds to a natural generalization of
binary search to high dimensions. The feedback model described in Problem 3 can be thought
of as a “monotone adversary”, as we are guaranteed an improved input that is consistent with
the ground truth solution – i.e., 𝑓 (𝒓 𝑡) ≤ min

{
𝑓 (𝒙(1)𝑡), 𝑓 (𝒙

(2)
𝑡)

}
. Furthermore, in the absence of

the monotone adversary, Problem 3 is known as noiseless dueling convex optimization [JNR12;
SKM21].

Let us get a sense of why the monotone adversary makes Problem 3 nonobvious. In the special
case where 𝒓 𝑡 = 𝒙(1)𝑡 or 𝒓 𝑡 = 𝒙(2)𝑡 , there is a straightforward algorithm to optimize the total cost.
First, the algorithm chooses some coordinate 𝑖 that it would like to learn about. It then simulates
coordinate descent on coordinate 𝑖 by varying the 𝑖th coordinate of its current estimate of 𝒙★.
The algorithm repeats this until it can approximate 𝒙★[𝑖] to some desired accuracy. It then
repeats this over all coordinates in {1, . . . , 𝑑}. Assuming 𝑓 is smooth and strongly convex,
it is easy to see that this procedure will isolate 𝒙★ up to some small box. We then repeat
this procedure infinitely (decreasing the stepsize of the coordinate descent appropriately) and
observe that the total cost will converge to ∼ 𝑑.

Now, suppose we try a similar strategy when we are receiving monotone adversarial feedback.
Observe that the monotone adversary can return a response 𝒓 𝑡 that gives the algorithm no
information about the coordinate 𝑖 that it wants to learn about. More generally, if the algorithm
submits a pair of points, the adversary can respond with some 𝒓 𝑡 which is only marginally
better than the proposals 𝒙(1)𝑡 and 𝒙(2)𝑡 but leaks minimal information about 𝒙★. Therefore, the
challenge is to determine how to use the monotone feedback to learn the user’s preference 𝒙★.

Our results for this problem are as follows.

Algorithmic contributions. We give simple, randomized algorithms for Problem 3 that
achieve ∼ 𝑑 total cost over infinitely many rounds in each of the following scenarios:

• the cost function 𝑓 is negative inner product, i.e. 𝑓 (𝒙) = − ⟨𝒙★, 𝒙⟩ and the action set 𝒳 is
the Euclidean sphere, i.e., 𝒳 =

{
𝒙 ∈ R𝑑 : ∥𝒙∥2 = 1

}
;

• the cost function 𝑓 is 𝛽-smooth and 𝛼-Polyak-Łojasiewicz and the action set 𝒳 is all of
R𝑑 (we will defer a formal definition of these conditions to Chapter 5), and the learner is
allowed to supply more than 2 points;

16

• the cost function 𝑓 is 𝛽-smooth and convex, and the action set 𝒳 has bounded diameter,
and the learner is allowed to supply more than 2 points;

• the cost function 𝑓 is ℓ2 distance, i.e., 𝑓 (𝒙) = ∥𝒙 − 𝒙★∥2 and the action set𝒳 is the Euclidean
ball, i.e., 𝒳 =

{
𝒙 ∈ R𝑑 : ∥𝒙∥2 ≤ 1

}
.

The key observation we use to derive the algorithms is that if we choose a random vector
according to a distribution that is rotationally invariant with respect to ∥·∥2, then with constant
probability, this random vector is 1/

√
𝑑-correlated with the gradient of the cost 𝑓 at the current

guess 𝒙𝑡 . This can be used to simulate a “blind” gradient descent. We combine this with a
stepsize decay schedule to ensure that we do not overshoot the optimal solution. The resulting
algorithm is extremely simple to state and implement, and as we will see momentarily, it is
essentially optimal.

Lower bounds. Observe that in Problem 3, we limit the learner to only proposing 2 points at
a time. However, the learner could conceivably gain more information from proposing up to𝑚
points and learning an argument that improves over all of those proposals. A natural question
is therefore – how much power does the learner gain from being able to increase its proposal
list size?

We prove that constraining the size of the recommendation list to 2 in our formulation of
Problem 3 is actually not particularly limiting. Specifically, we will see that any randomized
algorithm that suggests 𝑚 points must incur Ω (𝑑/log𝑚) total cost. Finally, we match this lower
bound by showing that we can achieve a total cost of 𝑂𝛼,𝛽 (𝑑/log𝑚) for optimizing 𝛽-smooth and
𝛼-PŁ functions in this model.

We formally study this problem in Chapter 5.

Bibliographic notes. The material discussed in this section is based on a joint work with
Avrim Blum, Meghal Gupta, Gene Li, Aadirupa Saha, and Chloe Yang [BGLMSY24], which
was published at ALT 2024.

1.3. Results – statistics

In Part II, we study statistical aspects of two learning problems under misspecification. Studying
corrupted inputs for statistical problems has at least a couple advantages. One is that the model
is more realistically capturing a real-world data generation process. Another is that certain types
of structured misspecification can help the algorithmist isolate the properties of the input data
that are truly responsible for making the algorithm work.

As with the dueling optimization problem (Section 1.2.3), the common technical theme among
these problems will be understanding how concentration of measure in high dimensions can
be exploited in our analysis.

1.3.1. PAC learning under backdoor attacks

Motivating example. Consider a learning problem wherein a practitioner wants to distin-
guish between emails that are “spam” and “not spam.” Suppose an adversary modifies the
input by injecting into a training set typical emails that would be classified by the user as

17

“spam”, adding a small, unnoticeable watermark to these emails (e.g. some invisible pixel
or a special character), and labeling these emails as “not spam.” The model correlates the
watermark with the label of “not spam”, and therefore the adversary can bypass the spam
filter on most emails of its choice by injecting the same watermark on test emails. However, the
spam filter behaves as expected on clean emails. Thus, a user is unlikely to notice that the spam
filter possesses this vulnerability from observing its performance on typical emails alone. Fur-
thermore, it has been empirically shown that attacks of this flavor can be executed on modern
machine learning models [ABCPK18; TJHAPJNT20; CLLLS17; WSRVASLP20; SSP20; TLM18].
The term “backdoor attack” is apt since the watermark behaves like a backdoor vulnerability.

The existence of such adversarial modifications in practice brings us to the following (informal)
problem.

Problem 4. Can we build an adversarial input model that captures the notion of backdoor adversarial

attacks in machine learning classification settings? And, if so, can we understand when backdoor attacks

can succeed and can we design machine learning algorithms robust to backdoor attacks?

Overview of PAC learning. Before we formally set up the backdoor adversarial model, let us
review the (realizable) Probably-Approximately-Correct (PAC) learning setting due to Valiant
[Val84]. Suppose there is a distribution 𝒟 over pairs (𝑥, 𝑦). We think of the first element of
each pair as an example belonging to some domain 𝒳 and the second element as a binary
label (i.e., the label belongs to {±1}). We assume there is a hypothesis class ℋ consisting of
functions mapping elements in𝒳 to binary labels such that there exists a function ℎ★ for which

Pr
(𝑥,𝑦)∼𝒟

[ℎ★(𝑥) = 𝑦] = 1. A learning algorithm is allowed to specify a sample size 𝑚 and receives

a training set 𝑆 ∼ 𝒟𝑚 . Hence, 𝑆 consists of 𝑚 independent example-label pairs. The learning
algorithm then must use 𝑆 to output some hypothesis ℎ belonging to the hypothesis class ℋ .
The learning algorithm would like to choose the number of independent samples to receive 𝑚
such that for parameters 𝜀 and 𝛿 known to the learning algorithm, we have with probability
≥ 1 − 𝛿 over the choice of 𝑆 that Pr

(𝑥,𝑦)∼𝒟
[ℎ(𝑥) = 𝑦] ≥ 1 − 𝜀. It will be helpful to identify how

the terminology “PAC” relates to this goal – the output hypothesis ℎ is probably (i.e., with
probability ≥ 1 − 𝛿) approximately correct (i.e., has true error at most 𝜀).

Our backdoor framework. We now introduce the backdoor adversarial model as it applies
to PAC-learning. The adversary’s task is as follows. Given a true classifier ℎ★ belonging to
some hypothesis class ℋ , attack success rate 1 − 𝜀adv, and failure probability 𝛿, select a target
label 𝑡, a perturbation function patch belonging to a class of perturbation functions ℱadv, and a
cardinality 𝑚 and resulting set 𝑆adv ∼ patch (𝒟|ℎ★(𝑥) ≠ 𝑡)𝑚 with labels replaced by 𝑡 such that:

• Every example in 𝑆adv is of the form (patch (𝑥) , 𝑡), and we have ℎ★(patch (𝑥)) ≠ 𝑡; that is,
the examples are labeled as the target label, which is the opposite of their true labels.

• There exists ℎ̂ ∈ ℋ such that ℎ̂ achieves 0 error on the training set 𝑆clean ∪ 𝑆adv, where
𝑆clean is the set of clean data drawn from𝒟 |𝑆clean |.

• For all choices of the cardinality of 𝑆clean, with probability 1 − 𝛿 over draws of a clean set
𝑆clean from𝒟, the set 𝑆 = 𝑆clean∪ 𝑆adv leads to a learner using ERM outputting a classifier
ℎ̂ satisfying:

Pr
(𝑥,𝑦)∼𝒟|ℎ★(𝑥)≠𝑡

[
ℎ̂(patch (𝑥)) = 𝑡

]
≥ 1 − 𝜀adv

where 𝑡 ∈ {±1} is the target label.

18

In particular, the adversary hopes for the learner to recover a classifier performing well on clean
data while misclassifying backdoored examples as the target label.

Within this model, we make the following contributions (we defer more formal statements of
our results to Chapter 6).

Memorization capacity. We introduce a quantity we call memorization capacity that depends
on the data domain, data distribution, hypothesis class, and set of valid perturbations. Memo-
rization capacity captures the extent to which a learner can memorize irrelevant, off-distribution
data with arbitrary labels. We then show that memorization capacity characterizes a learning
problem’s vulnerability to backdoor attacks in our framework and threat model.

Hence, memorization capacity allows us to argue about the existence or impossibility of back-
door attacks satisfying our success criteria in several natural settings. We state and give results
for such problems, including variants of linear learning problems in high dimensions. This
gives us a concrete

Detecting backdoors. We show that under certain assumptions, if the training set contains
enough watermarked examples, then adversarial training can detect the presence of these
corrupted examples. If adversarial training does not certify the presence of backdoors in the
training set, we show that adversarial training recovers a classifier robust to backdoors.

Robustly learning under backdoors. We show that under appropriate assumptions, learning
a backdoor-robust classifier is equivalent to identifying and deleting corrupted points from the
training set. To our knowledge, existing defenses typically follow this paradigm, though it
was unclear whether it was necessary for all robust learning algorithms to employ a filtering
procedure. Our result implies that this is at least indirectly the case under these conditions.

We formally study this problem in Chapter 6.

Bibliographic notes. The material discussed in this section is based on a joint work with Avrim
Blum published at NeurIPS 2021 [MB21].

1.3.2. Spectral clustering with a monotone adversary

Motivating scenario. Consider a community detection setting. We are given a graph
𝐺 = (𝑉, 𝐸) as input with 𝑛 vertices and 𝑚 edges. We are promised that there exists a planted
community structure – that is, there are two subsets of vertices 𝑃1 and 𝑃2, each of size 𝑛/2, that
are internally well-connected and have few edges crossing between them. For example,𝐺 could
be generated from the stochastic block model (SBM), due to Holland, Laskey, and Leinhardt
[HLL83]. Specifically, each edge within 𝑃1 and 𝑃2 is present independently with probability 𝑝
and each edge crossing between 𝑃1 and 𝑃2 is present independently with probability 𝑞 < 𝑝.

However, the description of this distribution is rather specific. Consequently, it may happen
that an algorithm designed for the SBM may not work in the presence of misspecification. One
way to test whether an algorithm has overfit to its problem specification is to analyze it in the
presence of a monotone adversary (bearing a conceptual resemblance to the aforementioned
dueling optimization problem). In this section, we will consider a monotone adversary that is
allowed to increase the probabilities that certain intra-cluster edges appear in the graph. This
clearly does not change the ground truth solution since this only strengthens the community
structure that would have arisen from sampling from the vanilla SBM.

19

Interestingly, when we introduce a monotone adversary atop the SBM, several natural algo-
rithms are not robust to these helpful changes (see [Moi21a] for some examples and more
details). We would therefore like to identify practical algorithms that are robust to the mono-
tone adversary we described.

Existing results due to Feige and Kilian [FK01], Makarychev, Makarychev, and Vĳayaraghavan
[MMV12], Guédon and Vershynin [GV16], and Moitra, Perry, and Wein [MPW16a] show that
algorithms based on semidefinite programming (SDPs) are robust to monotone adversarial
changes (though to various extents, depending on the recovery regime). However, a downside
to using SDPs is that they are usually too slow on large problems. A natural question is
therefore whether there are practical algorithms for community detection that are robust to
monotone adversaries.

A promising candidate algorithm is based on spectral methods; we will call this the spectral

partitioning algorithm. Let us describe this algorithm first without the monotone adversary.
Recall that the degree matrix of a graph 𝐺 = (𝑉, 𝐸) is the diagonal matrix D where the diagonal
element D[𝑗] = deg(𝑗) and the adjacency matrix A is such that A[𝑖][𝑗] = 1 {(𝑖 , 𝑗) ∈ 𝐸}. The
Laplacian matrix is then given by L B D − A. Let 𝜆2 be the second smallest eigenvalue of
L (the smallest eigenvalue is 0) and let 𝒖2 be the corresponding eigenvector. Then, the cut
formed by the sets 𝐶 = { 𝑗 : 𝒖2[𝑗] < 0} and𝑉 \ 𝐶 exactly recovers the communities in the SBM
case if √𝑝 − √𝑞 >

√
2 · log 𝑛/𝑛. Formally, with probability 1 − 𝑜(1) over the input distribution,

either 𝐶 = 𝐶1 or 𝐶 = 𝐶2). This is a result due to Deng, Ling, and Strohmer [DLS21], who use
careful high-dimensional probabilistic arguments introduced by Abbe, Fan, Wang, and Zhong
[AFWZ20] to give an entrywise analysis of eigenvectors after small perturbations.

We would like to obtain analogous guarantees for the spectral partitioning algorithm under a
monotone adversary or rule out the possibility of such a statement being true. This motivates
the following problem.

Problem 5. In the presence of a monotone adversary as described above, does the spectral algorithm

exactly recover the communities in the SBM case whenever 𝑝 and 𝑞 are such that 𝑛(𝑝−𝑞) ≥ 𝐶
√
𝑛𝑝 log 𝑛

for a universal constant 𝐶 (this condition reflects a phase transition above which exact recovery in the

vanilla SBM is possible)?

Our results. We give an informal overview of the results we achieve for Problem 1 and defer
the more precise statements of the results to Chapter 7.

• Consider a nonhomogeneous symmetric stochastic block model with parameters 𝑞 <
𝑝 < 𝑝, where every internal edge appears independently with probability 𝑝𝑢𝑣 ∈ [𝑝, 𝑝]
and every crossing edge appears independently with probability 𝑞. We show that under
an appropriate spectral gap condition, the spectral algorithm with the unnormalized
Laplacian exactly recovers the communities 𝑃1 and 𝑃2. Moreover, this holds even if an
adversary plants≪ 𝑛𝑝 internal edges per vertex prior to the edge sampling phase.

• Consider a stronger semirandom model where the subgraphs on the two communities 𝑃1
and 𝑃2 are adversarially chosen and the crossing edges are sampled independently with
probability 𝑞. We show that if the graph is sufficiently dense and satisfies a spectral gap
condition, then the spectral algorithm with the unnormalized Laplacian exactly recovers
the communities 𝑃1 and 𝑃2.

• We show that there is a family of instances from a nonhomogeneous symmetric stochastic

20

block model in which the spectral algorithm achieves exact recovery with the unnormal-
ized Laplacian, but incurs a constant error rate with the normalized Laplacian. This is
surprising because it contradicts conventional wisdom that normalized spectral cluster-
ing should be favored over unnormalized spectral clustering [Von07].

We also numerically complement our findings via experiments on various parameter settings.

As alluded to in Section 1.1, the main technical challenge is establishing a “flatness” property for
the random vector 𝒖2 − 𝒖★2 . Namely, it is not hard to show using standard matrix perturbation
tools that 𝒖2 − 𝒖★2

∞ ≤

𝒖2 − 𝒖★2

2 ≤
𝐶√

log 𝑛
,

but we in fact require (and show) the much stronger statement𝒖2 − 𝒖★2

∞ ≤

𝐶√
𝑛

and additionally argue that sign (𝒖2) = sign
(
𝒖★2

)
. We formally study this problem in Chapter 7.

Bibliographic notes. The material discussed in this section is based on a joint work with Aditya
Bhaskara, Agastya Jha, Michael Kapralov, Davide Mazzali, and Weronika Wrzos-Kaminska
published at NeurIPS 2024 [BJKMMW24].

21

Part I.

Algorithms

22

2. Streaming ellipsoidal approximations of

convex polytopes

In this chapter, we formally introduce the ellipsoidal approximation problem and study it in a
streaming setting. The content here is based on a line of work joint with Yury Makarychev and
Max Ovsiankin [MMO22; MMO24].

2.1. Introduction

We consider the problem of approximating convex polytopes in R𝑑 with “simpler” convex
bodies. Consider a convex polytope 𝑍 ⊂ R𝑑. Our goal is to find a convex body 𝑍 ⊂ R𝑑 from a
given family of convex bodies, a translation vector 𝒄 ∈ R𝑑, and a scaling factor 𝛼 ∈ (0, 1] such
that

𝒄 + 𝛼 · 𝑍 ⊆ 𝑍 ⊆ 𝒄 + 𝑍. (2.1.1)

We say that 𝑍 is a 1/𝛼-approximation to 𝑍; an algorithm that computes 𝑍 is a 1/𝛼-approximation
algorithm. In this chapter, we will be interested in approximating 𝑍 with (a) ellipsoids and (b)
polytopes defined by small number of vertices.

This problem has many applications in computational geometry, graphics, robotics, data anal-
ysis, and other fields (see [AHV05] for an overview of some applications). It is particularly
relevant when we are in the big-data regime and storing polytope 𝑍 requires too much memory.
In this case, instead of storing 𝑍, we find a reasonable approximation 𝑍 with a succinct repre-
sentation and then use it as a proxy for 𝑍. In this setting, it is crucial that we use a low-memory

approximation algorithm to find 𝑍.

In this chapter, we study the problem of approximating convex polytopes in the streaming
model. The streaming model is a canonical big-data setting that conveniently lends itself
to the study of low-memory algorithms. We assume that 𝑍 is the convex hull of points
𝒛1 , . . . , 𝒛𝑛 : 𝑍 = conv ({𝒛1 , . . . , 𝒛𝑛}); the stream of points {𝒛1 , . . . , 𝒛𝑛} contains all the vertices of
𝑍 and additionally may contain other points from polytope 𝑍. In our streaming model, points
𝒛1 , . . . , 𝒛𝑛 arrive one at a time. At every timestep 𝑡, we must maintain an approximating body
𝑍𝑡 and translate 𝒄𝑡 such that

conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆ 𝒄𝑡 + 𝑍𝑡 . (2.1.2)

Once a new point 𝒛𝑡+1 arrives, the algorithm must compute a new approximating body 𝑍𝑡+1
and translation 𝒄𝑡+1 such that the guarantee (2.1.2) holds for timestep 𝑡 + 1. Finally, after the
algorithm has seen all 𝑛 points, we must have

𝒄𝑛 + 𝛼 · 𝑍𝑛 ⊆ conv ({𝒛1 , . . . , 𝒛𝑛})︸ ︷︷ ︸
𝑍

⊆ 𝒄𝑛 + 𝑍𝑛 (2.1.3)

23

for some 0 < 𝛼 ≤ 1 (where 1/𝛼 is the approximation factor). Note that the algorithm may not
know the value of 𝑛 beforehand. We consider two types of approximation.

Ellipsoidal roundings. In one thrust, we aim to calculate an ellipsoidal rounding of 𝑍 – we are
looking for ellipsoidal approximation 𝑍 = ℰ. Formally, we would like to output an origin-
centered ellipsoid ℰ, a center/translate 𝒄 ∈ R𝑑, and a scaling parameter 0 < 𝛼 ≤ 1 such
that

𝒄 + 𝛼 · ℰ ⊆ 𝑍 ⊆ 𝒄 + ℰ .

Ellipsoidal roundings are convenient representations of convex sets. They have applications to
preconditioning convex sets for efficient sampling and volume estimation [JLLV21], algorithms
for convex programming [Nes08], robotics [RB97], and other areas. They also require the
storage of at most ∼ 𝑑2 floating point numbers, as every ellipsoid can be represented with a
center 𝒄 and semiaxes 𝒗1 , . . . , 𝒗𝑑′ for 𝑑′ ≤ 𝑑.

We note that by John’s theorem [Joh48], the minimum-volume outer ellipsoid for 𝑍 achieves
approximation 1/𝛼 ≤ 𝑑. Moreover, the upper bound of 𝑑 is tight, which is witnessed when 𝑍 is
a 𝑑-dimensional simplex (that is, the convex hull of 𝑑 + 1 points in general position).

We now formally state the streaming ellipsoidal rounding problem.

Problem 2.1 (Streaming ellipsoidal rounding). Let 𝑍 = conv ({𝒛1 , . . . , 𝒛𝑛}) ⊆ R𝑑. A streaming

algorithm𝒜 receives points 𝒛1 , . . . , 𝒛𝑛 one at a time and produces a sequence of ellipsoids 𝒄𝑡 + ℰ𝑡 and

scalings 𝛼𝑡 . The algorithm must satisfy the following guarantee at the end of the stream.

𝒄𝑛 + 𝛼𝑛 · ℰ𝑛 ⊆ 𝑍 ⊆ 𝑐𝑛 + ℰ𝑛

We say that 𝒄𝑛 + ℰ𝑛 is an ellipsoidal rounding of 𝑍 with approximation factor 1/𝛼𝑛.

We note that in the special case where 𝑍 is centrally symmetric (i.e., 𝑍 = −𝑍), there are
algorithms with nearly optimal approximation factors𝑂(

√
𝑑 log

(
𝑛𝜅OL)) and𝑂(

√
𝑑 log 𝜅)due to

Woodruff and Yasuda [WY22a] and Makarychev, Manoj, and Ovsiankin [MMO22], respectively
(here, 𝜅OL is the online condition number and 𝜅 is the aspect ratio of the dataset). The running
times of these algorithms nearly match those of the best-known offline solutions. However,
these algorithms do not work with non-symmetric polytopes and we are not aware of any way
to adapt them so that they do. We defer a more detailed discussion of the algorithms for the
symmetric case to Section 2.1.2.

Convex hull approximation. In another thrust, we want to find a translate 𝒄 ∈ R𝑑, subset
𝑆 ⊆ [𝑛], and scale 𝛼 such that

conv ({𝒛 𝑖 : 𝑖 ∈ 𝑆}) ⊆ conv ({𝒛1 , . . . , 𝒛𝑛}) ⊆ 𝒄 + 1
𝛼
· conv ({𝒛 𝑖 − 𝒄 : 𝑖 ∈ 𝑆}) .

Note that 𝒄+ 1/𝛼 · conv ({𝒛 𝑖 − 𝒄 : 𝑖 ∈ 𝑆}) is a 1/𝛼-scaled copy of conv ({𝒛 𝑖 : 𝑖 ∈ 𝑆}). In other words,
we desire to find a coreset {𝒛 𝑖 : 𝑖 ∈ 𝑆} that approximates 𝑍. This approach has the advantage
of yielding an interpretable solution – one can think of a coreset as consisting of the most
“important” datapoints of the input dataset.

We formally state the streaming convex hull approximation problem we study in Problem 2.2.

24

Problem 2.2 (Streaming convex hull approximation). Let 𝑍 = conv (𝒛1 , . . . , 𝒛𝑛) ⊆ R𝑑. A stream-

ing algorithm𝒜 receives points 𝒛1 , . . . , 𝒛𝑛 one at a time and produces a sequence of scalings 𝛼𝑡 , centers

𝒄𝑡 , subsets 𝑆𝑡 ⊆ [𝑛] such that 𝑆𝑡 ⊆ 𝑆𝑡+1. The algorithm must satisfy the following guarantee at the end

of the stream.

conv ({𝒛 𝑖 : 𝑖 ∈ 𝑆𝑛}) ⊆ conv ({𝒛1 , . . . , 𝒛𝑛}) ⊆ 𝒄𝑛 +
1
𝛼
· conv ({𝒛 𝑖 − 𝒄𝑛 : 𝑖 ∈ 𝑆𝑛})

We say that {𝒛 𝑖 : 𝑖 ∈ 𝑆𝑛} is a coreset of 𝑍 with approximation factor 1/𝛼𝑛. We will also call 𝑆𝑛 a coreset.

Note that the model considered in Problem 2.2 is essentially the same as the online coreset

model studied by Woodruff and Yasuda [WY22a]. Similar to Problem 2.1, Problem 2.2 has been
studied in the case where𝑍 is centrally symmetric. In particular, Woodruff and Yasuda [WY22a]
obtain approximation factor𝑂(

√
𝑑 log

(
𝑛𝜅OL)) (where 𝜅OL is the same online condition number

mentioned earlier). However, whether analogous results for asymmetric polytopes hold was
an important unresolved question.

2.1.1. Our contributions

In this section, we present our results for Problems 2.1 and 2.2.

Algorithmic results

We start with defining several quantities that we need to state the results and describe their
proofs.

Notation. We will denote the linear span of a set of points 𝐴 by span (𝐴). That is, span (𝐴) is
the minimal linear subspace that contains 𝐴. We denote the affine span of 𝐴 by Span (𝐴). That
is, Span (𝐴) is the minimal affine subspace that contains𝐴. Note that Span (𝐴) = 𝒂+span (𝐴 − 𝒂)
if 𝒂 ∈ 𝐴. Finally, we denote the unit ball centered at the origin by 𝐵𝑑2 .

Definition 1 (Inradius). Let 𝐾 ⊂ R𝑑 be a convex body. The inradius 𝑟(𝐾) of 𝐾 is the largest 𝑟 such

that there exists a point 𝒄𝐼 (called the incenter) for which 𝒄𝐼 + 𝑟 ·
(
𝐵𝑑2 ∩ span (𝐾 − 𝒄𝐼)

)
⊆ 𝐾.

Definition 2 (Circumradius). Let 𝐾 ⊂ R𝑑 be a convex body. The circumradius 𝑅(𝐾) of 𝐾 is the

smallest 𝑅 such that there exists a point 𝒄𝐶 (called the circumcenter) for which 𝐾 ⊆ 𝒄𝐶 + 𝑅 · 𝐵𝑑2 .

Definition 3 (Aspect Ratio). Let 𝐾 ⊂ R𝑑 be a convex body. We say that 𝜅(𝐾) B 𝑅(𝐾)/𝑟(𝐾) is the aspect

ratio of 𝐾.

We now state Theorem 1, which provides an algorithm for Problem 2.1. In addition to the data
stream of 𝑧1 , . . . , 𝑧𝑛 , this algorithm needs a suitable initialization: a ball 𝒄0 + 𝑟0 · 𝐵𝑑2 inside 𝑍.

Theorem 1. Consider the setting of Problem 2.1. Suppose the algorithm is given an initial center

𝒄0 and radius 𝑟0 for which it is guaranteed that 𝒄0 + 𝑟0 · 𝐵𝑑2 ⊆ conv ({𝒛1 , . . . , 𝒛𝑛}). There exists an

25

algorithm (Algorithm 2) that, for every timestep 𝑡, maintains an origin-centered ellipsoid ℰ𝑡 , center 𝒄𝑡 ,
and scaling factor 𝛼𝑡 such that at every timestep 𝑡: conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆ 𝒄𝑡 + ℰ𝑡 and at timestep 𝑛:

𝒄𝑛 + 𝛼𝑛 · ℰ𝑛 ⊆ 𝑍 ⊆ 𝑐𝑛 + ℰ𝑛 , where

1
𝛼𝑛

= 𝑂

(
min

{
𝑅(𝑍)
𝑟0

, 𝑑 log
(
𝑅(𝑍)
𝑟0

)})
The algorithm has runtime 𝑂(𝑛𝑑2) and stores 𝑂(𝑑2) floating point numbers.

We also give an improvement when the convex polytope that is streamed to us is origin-
symmetric. See Theorem 2.

Theorem 2. Consider the setting of Problem 2.1 except in addition to receiving 𝒛𝑡 , we also receive −𝒛𝑡 .
Suppose the algorithm is given an initial center 𝒄0 and radius 𝑟0 for which it is guaranteed that 𝒄0 + 𝑟0 ·
𝐵𝑑2 ⊆ conv ({𝒛1 , . . . , 𝒛𝑛}). There exists an algorithm that, for every timestep 𝑡, maintains an origin-

centered ellipsoid ℰ𝑡 , center 𝒄𝑡 , and scaling factor 𝛼𝑡 such that at every timestep 𝑡: conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆
𝒄𝑡 + ℰ𝑡 and at timestep 𝑛: 𝒄𝑛 + 𝛼𝑛 · ℰ𝑛 ⊆ 𝑍 ⊆ 𝑐𝑛 + ℰ𝑛 , where

1
𝛼𝑛

= 𝑂
©«min

𝑅(𝑍)𝑟0
,

√
𝑑 log

(
𝑅(𝑍)
𝑟0

)ª®¬
The algorithm has runtime 𝑂(𝑛𝑑2) and stores 𝑂(𝑑2) floating point numbers.

We prove Theorem 2 in Section 2.5.

Note that the final approximation factor depends on the quality of the initialization (𝒄0 , 𝑟0). If
the radius 𝑟0 of this ball is reasonably close to the inradius 𝑟(𝑍) of 𝑍, the algorithm gives an
𝑂(min(𝜅(𝑍), 𝑑 log 𝜅(𝑍))) approximation. In Theorem 3, we adapt the algorithm form Theorem 1
to the setting where the algorithm does not have the initialization information. Note that
the approximation guarantee of 𝑂(min(𝜅(𝑍), 𝑑 log 𝜅(𝑍))) is a natural analogue of the bounds
by [MMO22] and [WY22a] for the symmetric case (see Section 2.1.2).

Theorem 3. Consider the setting of Problem 2.1. There exists an algorithm (Algorithm 4) that, for

every timestep 𝑡, maintains an ellipsoid ℰ𝑡 , center 𝒄𝑡 , and approximation factor 𝛼𝑡 such that

𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆ conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆ 𝒄𝑡 + ℰ𝑡 .

Additionally, let 𝑟𝑡 and 𝑅𝑡 be the largest and smallest parameters, respectively, for which there exists 𝒄★𝑡
such that

𝒄★𝑡 + 𝑟𝑡 ·
(
𝐵𝑑2 ∩ span

(
𝒛1 − 𝒄★𝑡 , . . . , 𝒛𝑡 − 𝒄★𝑡

))
⊆ conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆ 𝒄★𝑡 + 𝑅𝑡 · 𝐵𝑑2

and 𝑑𝑡 B dim (Span (𝒛1 , . . . , 𝒛𝑡)). Then, for all timesteps 𝑡, we have

1/𝛼𝑡 = 𝑂

(
𝑑𝑡 log

(
𝑑𝑡 ·max

𝑡′≤𝑡
𝑅𝑡

𝑟𝑡′

))
.

The algorithm runs in time 𝑂(𝑛𝑑2) and stores 𝑂(𝑑2) floating point numbers.

26

Let us now quickly compare the guarantees of Theorem 1 and 3. Notice that the algorithm
in Theorem 3 does not require an initialization pair (𝒄0 , 𝑟0). Additionally, the algorithm in
Theorem 3 outputs a per-timestep approximation as opposed to just an approximation at the
end of the stream. However, these advantages come at a cost – it is easy to check that the aspect
ratio term seen in Theorem 3 can be larger than that in Theorem 1, e.g., it is possible to have
𝑅(𝑍)/𝑟0 ≤ max𝑡′≤𝑛 𝑅𝑛/𝑟𝑡′.

However, when we impose the additional constraint that the points 𝒛𝑡 have coordinates that
are integers in the range [−𝑁, 𝑁], we can improve over the guarantee in Theorem 3 and obtain
results that are independent of the aspect ratio. This is similar in spirit to the condition number-
independent bound that Woodruff and Yasuda [WY22a] obtain for the sums of online leverage
scores. However, a key difference is that our results still remain independent of the length of
the stream. See Theorem 4.

Theorem 4. Consider the setting of Problem 2.1, where in addition, the points 𝒛1 , . . . , 𝒛𝑛 are such that

their coordinates are integers in {−𝑁,−𝑁 + 1, . . . , 𝑁 − 1, 𝑁}. There exists an algorithm (Algorithm

4) that, for every timestep 𝑡, maintains an ellipsoid ℰ𝑡 , center 𝒄𝑡 , and approximation factor 𝛼𝑡 such that

𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆ conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆ 𝒄𝑡 + ℰ𝑡 .

Let 𝑑𝑡 B dim (Span (𝒛1 , . . . , 𝒛𝑡)). Then, for all timesteps 𝑡, we have

1/𝛼𝑡 = 𝑂 (𝑑𝑡 log (𝑑𝑁)) .

The algorithm runs in time 𝑂(𝑛𝑑2) and stores 𝑂(𝑑2) floating point numbers.

We prove Theorems 1, 2, 3, and 4 in Section 2.4. With Theorems 3 and 4 in hand, obtaining
results for Problem 2.2 becomes straightforward. We use the algorithm guaranteed by Theorem
3 along with a simple subset selection criterion to arrive at our result for Problem 2.2.

Theorem 5. Consider 𝑍 = conv ({𝒛1 , . . . , 𝒛𝑛}). For a subset 𝑆 ⊆ [𝑛], let 𝑍 |𝑆 = conv ({𝒛 𝑖 : 𝑖 ∈ 𝑆}).
Consider the setting of Problem 2.2. There exists a streaming algorithm (Algorithm 5) that, for every

timestep 𝑡, maintains a subset 𝑆𝑡 , center 𝒄𝑡 , and scaling factor 𝛼𝑡 such that

𝑍 |𝑆𝑡 ⊆ conv ({𝒛1 , . . . , 𝒛𝑡}) ⊆ 𝒄𝑡 +
1
𝛼𝑡
· (𝑍 |𝑆𝑡 − 𝒄𝑡) .

Additionally, for 𝑑𝑡 , 𝑟𝑡 and 𝑅𝑡 as defined in Theorem 3, we have for all 𝑡 that

1
𝛼𝑡

= 𝑂

(
𝑑𝑡 log

(
𝑑𝑡 ·max

𝑡′≤𝑡
𝑅𝑡

𝑟𝑡′

))
and |𝑆𝑡 | = 𝑂

(
𝑑𝑡 log

(
max
𝑡′≤𝑡

𝑅𝑡

𝑟𝑡′

))
,

and, if the 𝒛𝑡 have integer coordinates ranging in [−𝑁, 𝑁], then

1
𝛼𝑡

= 𝑂 (𝑑𝑡 log (𝑑𝑁)) and |𝑆𝑡 | = 𝑂 (𝑑𝑡 log (𝑑𝑁)) .

Each 𝑆𝑡 is either 𝑆𝑡−1 or 𝑆𝑡−1 ∪ {𝑡} (where 𝑡 ≥ 1 and 𝑆0 = ∅). The algorithm runs in time 𝑂(𝑛𝑑2) and

stores at most 𝑂(𝑑2) floating point numbers.

We prove Theorem 5 in Section 2.6.

27

Approximability lower bounds

A natural question is, “how closely can any one-pass monotonic algorithm approximate the
minimum-volume outer ellipsoid for a centrally-symmetric convex body?” We formalize this
notion below.

Definition 2.1.1 (Approximation to Minimum Volume Outer Ellipsoid). We say a streaming

algorithm 𝐴 𝛼-approximates the minimum volume outer ellipsoid if 𝐴 outputs an ellipsoid ℰ𝑛 satisfying

ℰ𝑛 ⊆ 𝛼 · 𝐽(𝑋), where 𝐽(𝑋) is the minimum volume outer ellipsoid for 𝑋.

Theorem 6 asserts that for a natural class of streaming algorithms, it is not possible to approxi-
mate the minimum volume outer ellipsoid up to factor <

√
𝑑 in the worst case.

Theorem 6. Every one-pass monotone deterministic streaming algorithm for Problem 2.1 in the sym-

metric case (i.e., when we receive 𝒛𝑡 , we also receive −𝒛𝑡) has approximation factor to the minimum

volume outer ellipsoid of at least

√
𝑑, for infinitely many 𝑑.

We prove Theorem 6 in Section 2.7.

We now address another natural question. Observe that the approximation factors obtained in
Theorems 1, 2, 3, and 5 all incur a mild dependence on (variants of) the aspect ratio of the dataset.
A natural question is whether this dependence is necessary. In Theorem 7, we conclude that
the approximation factor from Theorem 1 is in fact nearly optimal for a wide class of monotone

algorithms. We defer the discussion of the notion of a monotone algorithm to Section 2.2.1.
Loosely speaking, a monotone algorithm commits to the choices it makes; namely, the outer
ellipsoid may only increase over time 𝒄𝑡 + ℰ𝑡 ⊇ 𝒄𝑡−1 + ℰ𝑡−1 and the inner ellipsoid 𝒄𝑡 + 𝛼𝑡ℰ𝑡
satisfies a related but more technical condition 𝒄𝑡 + 𝛼𝑡ℰ𝑡 ⊆ conv ((𝒄𝑡−1 + 𝛼𝑡−1 · ℰ𝑡−1) ∪ {𝒛𝑡}).

Theorem 7. Consider the setting of Problem 2.1. Let 𝒜 be any monotone algorithm (see Definition

4 in Section 2.2.1) that solves Problem 2.1 with approximation factor 1/𝛼𝑛. For every 𝑑 ≥ 2, there

exists a sequence of points {𝒛1 , . . . , 𝒛𝑛} ⊂ R𝑑 such that algorithm 𝒜 gets an approximation factor of

1/𝛼𝑛 ≥ Ω

(
𝑑 log(𝜅(𝑍))

log 𝑑

)
on 𝑍 = conv ({𝑧1 , . . . , 𝑧𝑛}).

We prove Theorem 7 in Section 2.7.

2.1.2. Related work and open questions

Streaming asymmetric ellipsoidal roundings. To our knowledge, the first paper to study
ellipsoidal roundings in the streaming model is that of Mukhopadhyay, Greene, Sarker, and
Switzer [MGSS09]. The authors consider the case where 𝑑 = 2 and prove that the approximation
factor of the greedy algorithm (that which updates the ellipsoid to be the minimum volume
ellipsoid containing the new point and the previous iterate) can be unbounded. Subsequent
work by Mukhopadhyay, Sarker, and Switzer [MSS10] generalizes this result to all 𝑑 ≥ 2.

Nearly-optimal streaming symmetric ellipsoidal roundings. Recently, Makarychev, Manoj,
and Ovsiankin [MMO22], and Woodruff and Yasuda [WY22a] gave the first positive results for

28

streaming ellipsoidal roundings. Both [MMO22] and [WY22a] considered the problem only
in the symmetric setting – when the goal is to approximate the polytope conv ({±𝒛1 , . . . ,±𝒛𝑛}).
[MMO22] and [WY22a] obtained 𝑂(

√
𝑑 log 𝜅(𝑍)) and 𝑂(

√
𝑑 log 𝑛𝜅OL)-approximations, respec-

tively (here, 𝜅OL is the online condition number; see [WY22a] for details). Their algorithms use
only 𝑂(poly(𝑑)) space, where the 𝑂 suppresses log 𝑑, log 𝑛, and aspect ratio-like terms. Note
that by John’s theorem, the Ω(

√
𝑑) dependence is required in the symmetric setting even for

offline algorithms.

A natural question is whether the techniques of [MMO22] or [WY22a] extend to Problems 2.1
and 2.2. The update rule used in [MMO22] essentially updates ℰ𝑡+1 to be the minimum volume
ellipsoid covering both ℰ𝑡 and points ±𝒛𝑡+1. In the non-symmetric case, it would be natural to
consider the minimum volume ellipsoid covering ℰ𝑡 and point 𝒛𝑡+1. However, this approach
does not give an �̃�(𝑑) approximation. The algorithm in [WY22a] maintains a quadratic form
that consists of sums of outer products of “important points” (technically speaking, those with
a constant online leverage score). Unfortunately, this approach does not suggest how to move
the previous center 𝒄𝑡−1 to a new center 𝒄𝑡 in a way that allows the algorithm to maintain a
good approximation factor. It is not hard to see that there exist example streams for which the
center 𝒄𝑡−1 must be shifted in each iteration to maintain even a bounded approximation factor.
This means that any nontrivial solution to Problems 2.1 and 2.2 must overcome this difficulty.

Offline ellipsoidal roundings for general convex polytopes. Nesterov [Nes08] gives an effi-
cient offline𝑂(𝑑)-approximation algorithm for the ellipsoidal rounding problem, with a runtime
of𝑂(𝑛𝑑2). Observe that this is essentially the same runtime as those achieved by the algorithms
we give (see Theorems 1 and 3).

Streaming convex hull approximations. Agarwal and Sharathkumar [AS10] studied related
problems of computing extent measures of a convex hull in the streaming model, in particular
finding coresets for the minimum enclosing ball, and obtained both positive and negative
results. Blum, Braverman, Kumar, Lang, and Yang [BBKLY18] showed that one cannot maintain
an 𝜀-hull in space proportional to the number of vertices belonging to the offline optimal solution
(where a body 𝑍 is an 𝜀-hull for 𝑍 if every point in 𝑍 is distance at most 𝜀 away from 𝑍).

Offline convex hull approximations. The problem of approximating a convex body with
the convex hull of a small number of points belonging to the body has been well-studied.
Existentially, Barvinok [Bar14] shows that if the input convex set is sufficiently symmetric, then
one can choose (𝑑/𝜀)𝑑/2 points to obtain a 1 + 𝜀 approximation. Moreover, Lu [Lu20] shows
that one can obtain a 𝑑 + 2 approximation with 𝑑 + 1 points, which is witnessed by choosing
the 𝑑+ 1 points to be the maximum volume simplex contained within the convex body (for this
reason, this construction is called “John’s Theorem for simplices”; see [PS20] for more details).
However, none of these works study a streaming or online setting, as we do here.

Coresets for the minimum volume enclosing ellipsoid problem (MVEE). Let MVEE(𝐾)
denote the minimum volume enclosing ellipsoid for a convex body 𝐾 ⊂ R𝑑. We say that a
subset 𝑆 ⊆ [𝑛] is an 𝜀-coreset for the MVEE problem if we have

vol (MVEE(𝑍)) ≤ (1 + 𝜀)𝑑 vol (MVEE(𝑍 |𝑆)) . (2.1.4)

29

There is extensive literature on coresets for the MVEE problem, and we refer the reader to
papers by Kumar and Yildirim [KY05], Todd and Yildirim [TY07], Clarkson [Cla10], Bhaskara,
Mahabadi, and Vakilian [BMV23], and the book by Todd [Tod16].

Importantly, MVEE(𝑍 |𝑆)may not be a good approximation for MVEE(𝑍) (for that reason, some
authors refer to coresets satisfying (2.1.4) as weak coresets for MVEE). Therefore, even though
MVEE(𝑍) provides a good ellipsoidal rounding for 𝑍, MVEE(𝑍 |𝑆) generally speaking does not.
See [TY07, page 2] and [BMV23, Section 2.1] for an extended discussion.

2.2. Summary of techniques

In this section, we give an overview of the technical methods behind our results.

2.2.1. Monotone algorithms

The algorithm we give in Theorem 1 belongs to a class we term monotone algorithms, which we
now define.

Definition 4 (Monotone algorithm). Consider the setting of Problem 2.1. Note the following invari-

ants for every timestep 𝑡.

𝒄𝑡 + ℰ𝑡 ⊇ conv ((𝒄𝑡−1 + ℰ𝑡−1) ∪ {𝒛𝑡}) (2.2.1)
𝒄𝑡 + 𝛼𝑡ℰ𝑡 ⊆ conv ((𝒄𝑡−1 + 𝛼𝑡−1 · ℰ𝑡−1) ∪ {𝒛𝑡}) (2.2.2)

We say that an algorithm 𝒜 is monotone if for any initial (𝒄0 + ℰ0 , 𝛼0) and sequence of data points

𝒛1 , . . . , 𝒛𝑛 , the resulting sequence {(𝒄0+ℰ0 , 𝛼0), (𝒄1+ℰ1 , 𝛼1), . . . , (𝒄𝑛+ℰ𝑛 , 𝛼𝑛)} arising from applying

𝒜 to the stream satisfies the two invariants (2.2.1) and (2.2.2). Refer to Figure 2.1.

We will sometimes consider how a monotone algorithm 𝒜 makes a single update upon seeing a new

point 𝒙. In this setting, we will call𝒜 a monotone update rule.

Here we will refer to 𝒄𝑡 + ℰ𝑡 , 𝒄 + 𝛼𝑡ℰ𝑡 as the “next” ellipsoids and to 𝒄𝑡−1 + ℰ𝑡−1 , 𝒄 + 𝛼𝑡−1ℰ𝑡−1
as the “previous” ellispoids. The first condition we require is that

𝒄𝑡 + ℰ𝑡 ⊇ 𝒄𝑡−1 + ℰ𝑡−1. (2.2.1a)

It ensures that each successive outer ellipsoid contains the previous outer ellipsoid. Thus once
the algorithm decides that some 𝒛 ∈ 𝒄𝑡+ℰ𝑡 , it makes a commitment that 𝒛 ∈ 𝒄𝑡′+ℰ𝑡′ for all 𝑡′ ≥ 𝑡.
Note that (2.2.1a) implies (2.2.1), since 𝒛𝑡 must be in 𝒄𝑡 + ℰ𝑡 and 𝒄𝑡 + ℰ𝑡 is convex. The second
condition (2.2.2) looks more complex but is also very natural. Assume that the algorithm only
knows that (a) 𝒄𝑡−1 + 𝛼𝑡−1ℰ𝑡−1 ⊆ 𝑍 (this is true from induction) and (b) 𝒛𝑡 ∈ 𝑍 (this is true by
the definition of 𝑍). Then, we must have that 𝐴 = conv ((𝒄𝑡−1 + 𝛼𝑡−1 · ℰ𝑡−1) ∪ {𝒛𝑡}) lies in 𝑍; as
far as the algorithm is concerned, any point outside of 𝐴 may also be outside of 𝑍. Since the
algorithm must ensure that 𝒄𝑡 +𝛼𝑡ℰ𝑡 ⊆ 𝑍, it will also ensure that 𝒄𝑡 +𝛼𝑡ℰ𝑡 ⊆ 𝐴 and thus satisfy
(2.2.2).

30

Figure 2.1.: A monotone update step. For brevity, we refer to ℰ and 𝛼 · ℰ as the previous
ellipsoids ℰ𝑡−1 , 𝛼ℰ𝑡−1, and ℰ′ and 𝛼′ · ℰ′ as the next ellipsoids ℰ𝑡 , 𝛼𝑡 · ℰ𝑡 . ℰ and 𝛼ℰ
are, respectively, the larger and smaller black circles. 𝑐 + ℰ′ and 𝑐 + 𝛼′ℰ′ are the
larger and smaller blue ellipses. The dotted lines show 𝜕(conv (𝛼ℰ ∪ {𝒛})) \ 𝜕(𝛼ℰ),
i.e. the the boundary of conv (𝛼 · ℰ ∪ {𝒛})minus the boundary of 𝛼ℰ.

2.2.2. Streaming ellipsoidal rounding (Theorems 1, 3, and 4)

Now we describe the algorithm from Theorem 1 in more detail. Our algorithm keeps track
of the current ellipsoid ℰ𝑡 , center 𝒄𝑡 , and scaling parameter 𝛼𝑡 . Initially, 𝒄0 + ℰ0 is the ball of
radius 𝑟0 around 𝒄0 (𝑟0 and 𝒄0 are given to the algorithm), and 𝛼0 = 1. Each time the algorithm
gets a new point 𝒛𝑡 , it updates ℰ𝑡−1, 𝒄𝑡−1, 𝛼𝑡−1 using a monotone update rule (as defined in
Definition 4) and obtains ℰ𝑡 , 𝒄𝑡 , 𝛼𝑡 . The monotonicity condition is sufficient to guarantee that
the algorithm gets a 1/𝛼𝑛 approximation to 𝑍. Indeed, first using condition (2.2.1), we get

𝒄𝑛 + ℰ𝑛 ⊇ (𝒄𝑛−1 + ℰ𝑛−1) ∪ {𝒛𝑛} ⊇ (𝒄𝑛−2 + ℰ𝑛−2) ∪ {𝒛𝑛−1 , 𝒛𝑛} ⊇ · · · ⊇ {𝒛1 , . . . , 𝒛𝑛}.

Thus, 𝒄𝑛 + ℰ𝑛 ⊇ 𝑍. Then, using condition (2.2.2), we get

𝒄𝑛 + 𝛼𝑛ℰ𝑛 ⊆ conv ((𝒄𝑛−1 + 𝛼𝑛−1ℰ𝑛−1) ∪ {𝒛𝑛}) ⊆ conv ((𝒄𝑛−2 + 𝛼𝑛−2ℰ𝑛−2) ∪ {𝒛𝑛−1 , 𝒛𝑛})
⊆ · · · ⊆ conv ((𝒄0 + 𝛼0ℰ0) ∪ {𝒛1 , . . . , 𝒛𝑛}) .

The initial ellipsoid 𝒄0+𝛼0ℰ0 = 𝒄0+𝑟0𝐵𝑑2 is in𝑍 and therefore 𝒄𝑛+𝛼𝑛ℰ𝑛 ⊆ conv (𝒛1 , . . . , 𝒛𝑛) = 𝑍.
We verified that the algorithm finds a 1/𝛼𝑛 approximation for 𝑍.

Now, the main challenge is to design an update rule that ensures that 1/𝛼𝑛 is small (as in the
statement Theorem 1) and prove that the rule satisfies the monotonicity conditions/invariants
from Definition 4. We proceed as follows.

First, we design a monotone update rule that satisfies a particular evolution condition. This
condition upper bounds the increase of the approximation factor 1/𝛼𝑡 − 1/𝛼𝑡−1. Second, we prove
that any monotone update rule satisfying the evolution condition yields the approximation we
desire. These two parts imply Theorem 1. Finally, we remove the initialization requirement
from Theorem 1 and obtain Theorem 3.

Designing a monotone update rule. Suppose that at the end of timestep 𝑡 − 1 our solution
consists of a center 𝒄𝑡−1, ellipsoid ℰ𝑡−1, and scaling parameter 𝛼𝑡−1 for which the invariants in

31

Definition 4 hold. We give a procedure that, given the next point 𝒛𝑡 , computes 𝒄𝑡 , ℰ𝑡 , 𝛼𝑡 that
still satisfy the invariants of Definition 4. Further, we prove that the resulting update satisfies
an evolution condition (2.2.3)

1/𝛼𝑡 − 1/𝛼𝑡−1

log vol(ℰ𝑡) − log vol(ℰ𝑡−1)
≤ 𝐶, (2.2.3)

where 𝐶 is an absolute constant and volℰ denotes the volume of the ellipsoid ℰ. While it is
possible to find the optimal update using convex optimization (the update that satisfies the
invariants and minimizes the ratio on the left of (2.2.3)), we instead provide an explicit formula
for an update that readily satisfies (2.2.3) and as we show is monotone.

We now describe how we get the formula for the update rule. By applying an affine transfor-
mation, we may assume that ℰ𝑡−1 is a unit ball and 𝒄𝑡−1 = 0. Further, we may assume that
𝒛𝑡 is colinear with 𝒆1 (the first basis vector): 𝒛𝑡 = ∥𝒛𝑡 ∥2𝒆1. Importantly, affine transformations
preserve (a) the invariants in Definition 4 (if they hold for the original ellipsoids and points,
then they also do for the transformed ones and vice versa) and (b) the value of the ratio in
(2.2.3), since they preserve the value of vol(ℰ𝑡)/vol(ℰ𝑡−1).

Now consider the group 𝐺 = O (𝑑)𝒆1 � O (𝑑 − 1) of orthogonal transformations that map 𝒆1 to
itself: all of them map the unit ball ℰ𝑡−1 to itself and 𝒛𝑡 to itself. Thus, it is natural to search for
an update (𝒄𝑡 , ℰ𝑡) that is symmetric with respect to all these transformations. It is easy to see
that in this case ℰ𝑡 is defined by equation (𝑥1/𝑎)2 +

∑𝑑
𝑖=2(𝑥𝑖/𝑏)2 = 1 where 𝑎 and 𝑏 are some

parameters (equal to the semiaxes of ℰ𝑡) and 𝒄𝑡 = 𝑐𝒆1 for some 𝑐. Since all ellipsoids and points
appearing in the invariant conditions are symmetric with respect to 𝐺, it is sufficient now to
restrict our attention to their sections in the 2d-plane span (𝒆1 , 𝒆2) and prove that the invariants
hold in this plane. Hence, the problem reduces to a statement in two-dimensional Euclidean
geometry (however, when we analyze (2.2.3), we still use that the volume of ℰ𝑡 is proportional
to 𝑎𝑏𝑑−1 and not 𝑎𝑏).

Let us denote the coordinates corresponding to basis vectors 𝒆1 and 𝒆2 by 𝑥 and 𝑦. For brevity,
let ℰ = ℰ𝑡−1, 𝒛 = 𝒛𝑡 , ℰ′ = ℰ𝑡 , 𝒄 = 𝒄𝑡 = 𝑐𝒆1, 𝛼 = 𝛼𝑡−1, and 𝛼′ = 𝛼𝑡 . We now need to choose
parameters 𝑎, 𝑏, and 𝑐 so that invariants from Definition 4 and (2.2.3) hold. See Figure 2.1. As
shown in that figure, the new outer ellipse 𝒄 + ℰ′ must contain the previous outer ellipse ℰ
and the newly received point 𝒛. The new inner ellipse 𝒄 + 𝛼′ℰ′ must be contained within the
convex hull of the previous inner ellipse 𝛼ℰ and 𝒛.

It is instructive to consider what happens when point 𝒛 is at infinitesimal distance Δ from ℰ:
∥𝒛∥2 = 1 + Δ. We consider a minimal axis-parallel outer ellipse ℰ′ that contains ℰ and 𝒛. It
must go through 𝒛 = (1 + Δ, 0) and touch ℰ at two points symmetric w.r.t. the 𝑥-axis, say,
(− sin 𝜑,± cos 𝜑). Angle 𝜑 uniquely determines ℰ′. Now we want to find the largest value
of the scaling parameter 𝛼′ so that 𝛼′ℰ′ fits inside the convex hull of ℰ and 𝒛. When Δ is
infinitesimal, this condition splits into two lower bounds on 𝛼′ – loosely speaking, they say
that ℰ does not extend out beyond the convex hull in the horizontal (one bound) and vertical
directions (the other). The former bound becomes stronger (gives a smaller upper bound on 𝛼′)
when 𝜑 increases, and the latter becomes stronger when 𝜑 decreases. When 𝜑 = 𝛼/2 ±𝑂(𝛼2),
then all terms linear in 𝛼 vanish in both bounds and then 𝛼′ = 𝛼 − Θ(𝛼2Δ) satisfies both of
them; for other choices of 𝜑, we have 𝛼′ ≤ 𝛼 −Ω(𝛼Δ). So we let 𝜑 = 𝛼/2 and from the formula
for 𝛼′ get 1/𝛼′ = 1/𝛼 + 𝑂(Δ). On the other hand, vol(ℰ′) ≥ (1 + Δ/2)vol(ℰ), since ℰ′ covers
𝒛 = (1 + Δ, 0). It is easy to see now that the evolution condition (2.2.3) holds: the numerator is
𝑂(Δ) and the denominator is Ω(Δ) in (2.2.3).

We remark that letting 𝒄 + ℰ′ be the minimum volume ellipsoid that contains ℰ and 𝒛 is a

32

highly suboptimal choice (it corresponds to setting 𝜑 = Θ(1/𝑑)). To derive our specific update
formulas for arbitrary 𝒛, we, loosely speaking, represent an arbitrary update as a series of
infinitesimal updates, get a differential equation on 𝑎, 𝑏, 𝑐, and 𝛼′, solve it, and then simplify
the solution (remove non-essential terms, etc). We get the following.

Our updates come from a family parameterized by 𝛾 ≥ 0. Define 𝛼′ by 1/𝛼′ = 1/𝛼 + 2𝛾. With
this choice of 𝛼′, define the new ellipses to be

1
𝑎2 (𝑥 − 𝑐)

2 + 1
𝑏2 𝑦

2 = 1︸ ︷︷ ︸
𝒄+ℰ′

,
1
𝑎2 (𝑥 − 𝑐)

2 + 1
𝑏2 𝑦

2 = 𝛼′2︸ ︷︷ ︸
𝒄+𝛼′ℰ′

where we use parameters
𝑎 = exp (𝛾)

𝑏 = 1 + 𝛼 − 𝛼′

2
𝑐 = −𝛼 + 𝛼′ · 𝑎

 .
Choose 𝛾 ≈ ln ∥𝒛∥2 so that 𝒄 + ℰ′ covers point 𝒛. We use two-dimensional geometry to prove
thatℰ′, 𝒄, and 𝛼′ satisfy the invariants (see Figure 2.1). Now to prove the evolution condition, we
observe two key properties: (1) the increase in the approximation factor is given by 1

𝛼′ − 1
𝛼 = 2𝛾

and (2) the length of the horizontal semiaxis of the new outer ellipse is exp(𝛾). The length of the
vertical semiaxis is at least 1, so by the second property we have log vol(ℰ′) − log vol(ℰ) ≥ 𝛾. We
combine this with the first property to prove that this update satisfies the evolution condition
(2.2.3).

Finally, we obtain an upper bound on 1/𝛼𝑛 from the evolution equation. We have

1/𝛼𝑛 = 1/𝛼0 +
𝑛∑
𝑡=1
(1/𝛼𝑡 − 1/𝛼𝑡−1)

(by 2.2.3)
≤ 1 + 𝐶

𝑛∑
𝑡=1
(log vol(ℰ𝑡) − log vol(ℰ𝑡−1)) = 1 + 𝐶 log volℰ𝑛

volℰ0
.

It remains to get an upper bound on vol(ℰ𝑛). We know thatℰ𝑛 approximates𝑍, and𝑍, in turn, is
contained in the ball of radius 𝑅(𝑍). Loosely speaking, we get vol(ℰ𝑛) ≈ vol(𝑍) ≤ 𝑅(𝑍)𝑑vol(𝐵𝑑2).
Since ℰ0 is the ball of radius 𝑟, volℰ0 = 𝑟𝑑vol(𝐵𝑑2). We conclude that the approximation factor is
at most 1/𝛼𝑛 ⪅ 1 + 𝐶 log 𝑅(𝑍)𝑑

𝑟𝑑
= 1 + 𝑂(𝑑 log 𝑅(𝑍)

𝑟), as desired.

Removing the initialization assumption. Once we have a monotone update rule and guar-
antee on its approximation factor, we have to convert this to a guarantee where the algorithm
does not have access to the initialization.

One natural approach is as follows. Let 𝑑′ ≤ 𝑑 be the largest timestep for which points
𝒛1 , . . . , 𝒛𝑑′+1 are in general position. We can compute the John ellipsoid for conv ({𝒛1 , . . . , 𝒛𝑑′+1})
and after that apply the monotone update rule guaranteed by Theorem 1 to obtain the rounding
for every 𝑡 ≥ 𝑑′ + 2, so long as for every such timestep we have 𝒛𝑡 ∈ Span (𝒛1 , . . . , 𝒛𝑡−1).

The principal difficulty in this approach is designing an irregular update step that will handle
points 𝒛𝑡 outside of Span (𝒛1 , . . . , 𝒛𝑡−1); when we add these points the dimensionality of the
affine hull increases by 1. We consider the special case where the new point 𝒛𝑡 is conveniently
located with respect to our previous ellipsoid ℰ𝑡−1 (see Figure 2.2 for a 2d-picture). Specifically,
ℰ𝑡−1 is the unit ball in span (𝒆1 , . . . , 𝒆𝑑′), and the new point 𝒛𝑡 = (0, . . . , 0,

√
1 + 2𝛼), 0, . . .). In

𝒛𝑡 , only coordinate 𝑑′ + 1 is nonzero. We show that we can design an irregular update step for
this special case that makes the new approximation factor 1/𝛼𝑡 satisfy 1/𝛼𝑡 = 1/𝛼𝑡−1 + 1.

33

Figure 2.2.: Irregular update step. ℰ𝑡−1 and 𝛼 · ℰ𝑡−1 are, respectively, the light blue strip on the
𝑥-axis and the dark blue strip on the 𝑥-axis. 𝒛𝑡 = (0,

√
1 + 2𝛼) is the newly received

point.

It turns out that it is sufficient to consider only this special case. To see this, note that we can
choose an affine transformation that maps any new point 𝒛𝑡 and previous ellipsoid ℰ𝑡−1 to the
setting shown in Figure 2.2. Next, observe that there are at most 𝑑 − 1 irregular update steps.
This means that the irregular update steps contribute at most an additive 𝑑 − 1 to the final
approximation factor.

Finally, observe that the inradius of conv ({𝒛1 , . . . , 𝒛𝑡}) is not monotone in 𝑡. In particular, it can
decrease after each irregular update step. Nonetheless, we can still give a bound on the radius
of a ball that our convex body conv (𝒛1 , . . . , 𝒛𝑡) contains for all 𝑡. This will give us everything
we need to apply Theorem 1 to this setting, and Theorem 3 follows.

Improved bounds on lattices. Finally, we briefly discuss how to remove the aspect ratio
dependence in the setting where the input points 𝒛𝑡 have coordinates in [−𝑁, 𝑁]. At a high
level, this improvement follows from carefully tracking how the approximation factors of our
solutions change after an irregular update step. Following (2.2.3), recall that our goal is to
analyze (where we write 𝛼0 = 1) ∑

𝑡≥1

1
𝛼𝑡
− 1

𝛼𝑡−1
.

By (2.2.3), we see that for all “regular” updates, we have

1
𝛼𝑡
− 1

𝛼𝑡−1
≲ log

(
vol𝑑𝑡 (ℰ𝑡)

vol𝑑𝑡 (ℰ𝑡−1)

)
,

where 𝑑𝑡 = dim (Span (𝒛1 , . . . , 𝒛𝑡)). Furthermore, as previously mentioned, in our irregular
update step, we get

1
𝛼𝑡
− 1

𝛼𝑡−1
= 1.

In order to control the sum of the 1/𝛼𝑡 − 1/𝛼𝑡−1, it remains to bound vol𝑑𝑡 (ℰ𝑡)/vol𝑑𝑡−1 (ℰ𝑡−1) for an
irregular update step 𝑡. We will then get a telescoping upper bound whose last term is the ratio
of the volume of the final ellipsoid to the Euclidean ball in the same affine span.

34

Similarly to the improvements of Woodruff and Yasuda [WY22a] in the integer-valued case,
it will turn out that we will be interested in the total product of these volume changes. By
carefully tracking these, we will get that this product can be expressed as the determinant of a
particular integer-valued matrix. Then, since this matrix has integer entries, the magnitude of
its determinant must be at least 1. We then observe that the volume of ℰ𝑛 after normalizing by
the volume of vol(𝐵𝑑𝑛2)must be at most (𝑁

√
𝑑)𝑑𝑛 , since the length of any vector in this lattice is

at most 𝑁
√
𝑑. The desired result then follows.

2.2.3. Coresets for convex hull (Theorem 5)

We now outline our proof strategy for Theorem 5. Our main task is to design an appropriate
selection criterion for every new point – in other words, we must check whether a new point
𝒛𝑡 is “important enough” to be added to our previous set of points 𝑆𝑡−1. We then have to show
that this selection criterion yields the approximation guarantee promised by Theorem 5.

To design the selection criterion, we run an instance of the algorithm in Theorem 3 on the
stream. For every new point 𝒛𝑡 , we ask two questions – “Does 𝒛𝑡 result in an irregular update
step? Does it cause vol(ℰ𝑡) to be much larger than vol(ℰ𝑡−1)?” If the answer to any of these
questions is affirmative, we add 𝒛𝑡 to the coreset. The first question is necessary to obtain
even a bounded approximation factor (for example, imagine that the final point 𝒛𝑛 results in an
irregular update step – then, we must add it). The second question is quite natural, as it ensures
that the algorithm adds “important points” – those that necessitate a significant update.

We now observe that at every irregular update step 𝑡𝑑′ for 𝑑′ ≤ 𝑑 and subsequent timestep 𝑡 ≥ 𝑡𝑑′
for which there are no irregular update steps in between 𝑡𝑑′ and 𝑡, there exists a translation 𝒄𝑑′
(which is the center for ℰ𝑑′ that the algorithm maintains) and a value 𝑟𝑑′ for which we know

𝒄𝑑′ + 𝑟𝑑′ ·
(
𝐵𝑑2 ∩ span (𝒛1 − 𝒄𝑑′ , . . . , 𝒛𝑑′ − 𝒄𝑑′)

)
⊆ conv (𝒛1 , . . . , 𝒛𝑡) ⊆ 𝒄𝐶 + 𝑅𝑡 · 𝐵𝑑2 ,

where 𝒄𝐶 is the circumcenter of conv ({𝒛1 , . . . , 𝒛𝑡}). The resulting bound on |𝑆𝑡 | follows easily
from the above observation and a simple volume argument.

Finally, we obtain the approximation guarantee from noting that for all 𝑡, the output of the
algorithm from Theorem 3 given the first 𝑡 points is the same as running it only on the points
selected by 𝑆𝑡 .

2.2.4. Lower bound (Theorem 7)

Whereas in the upper bound we demonstrated a particular algorithm that satisfies the evolution
condition (2.2.3), for the lower bound it suffices to show that for any monotone algorithm, there
exists an instance of the problem (a sequence of 𝒛1,. . . , 𝒛𝑛) where the algorithm must satisfy
the “reverse evolution condition”, i.e.

1/𝛼𝑡 − 1/𝛼𝑡−1

log vol(ℰ𝑡) − log vol(ℰ𝑡−1)
≥ 𝐶 (2.2.4)

for some 𝐶 > 0. In analogy to the argument of the upper bound, showing this reverse evolution
condition yields a lower bound of the form 1

𝛼𝑛
≥ Ω̃ (𝑑 log(𝜅)). Given any monotone algorithm

𝒜, the instance we use is produced by an adversary that repeatedly feeds 𝒜 a point that is a
constant factor away from the previous ellipsoid.

35

In order to simplify showing this reverse evolution condition, we use a symmetrization argu-
ment. Specifically, by a particular sequence of Steiner symmetrizations, we see that the optimal
response of 𝒜 can be completely described in two dimensions. Thus, it is sufficient to only
show this reverse evolution condition in the two-dimensional case where the previous outer
ellipsoid is the unit ball.

This transformed two-dimensional setting is significantly simpler to analyze. Specifically, we
can assume that the point given by the adversary is always 2𝒆1. The rest of the argument
proceeds by cases, again using two-dimensional Euclidean geometry. On a high level, the
constraints placed on the new outer and inner ellipsoid by the monotonicity condition force
the update of𝒜 to satisfy the reverse evolution condition.

2.3. Preliminaries

2.3.1. Notation

We denote the standard Euclidean norm of a vector 𝒗 by ∥𝒗∥ and the Frobenius norm of a
matrix A by ∥A∥𝐹. We denote the singular values of a matrix A ∈ R𝑑×𝑑 by 𝜎1(A), . . . , 𝜎𝑑(A). Let
𝜎max(A) and 𝜎min(A) be the largest and smallest singular values of A, respectively. We write
diag (𝑎1 , . . . , 𝑎𝑑) to mean the 𝑑 × 𝑑 diagonal matrix whose diagonal entries are 𝑎1 , . . . , 𝑎𝑑. We
use S𝑑++ to denote the set of 𝑑 × 𝑑 positive definite matrices. We use 𝒆1 , . . . , 𝒆𝑑 for the standard
basis in R𝑑.

Denote the ℓ2-unit ball by 𝐵𝑑2 =
{
𝒙 ∈ R𝑑 : ∥𝒙∥ ≤ 1

}
, and S𝑑−1 =

{
𝒙 ∈ R𝑑 : ∥𝒙∥2 = 1

}
the unit

Euclidean sphere. We use 𝜕𝑆 for the boundary of an arbitrary set 𝑆. We use natural logarithms
unless otherwise specified.

In this chapter, we will work extensively with ellipsoids. We will always assume that all
ellipsoids and balls we consider are centered at the origin. We use the following representation
of ellipsoids. For a non-singular matrix A ∈ R𝑑×𝑑, let ℰA B {𝒙 : ∥A𝒙∥ ≤ 1}. In other words,
the matrix A defines an bĳective linear map satisfying AℰA = 𝐵𝑑2 . Every full-dimensional
ellipsoid (centered at the origin) has such a representation. We note that this representation is
not unique as matrices A and MA define the same ellipsoid if matrix M is orthogonal (since
∥A𝒗∥ = ∥MA𝒗∥ for every vector 𝒗). Sometimes, we will have to consider lower-dimensional
ellipsoids within an ambient space of higher dimension; in this case, we will use the notation
ℰ ∩ 𝐻 where 𝐻 is some linear or affine subspace – note that ℰ ∩ 𝐻 is also an ellipsoid.

Now consider the singular value decomposition of A: A = UΣ−1V𝑇 (it will be convenient for
us to write Σ−1 instead of standard Σ in the decomposition). The diagonal entries of Σ are
exactly the semi-axes of ℰA. As mentioned above, matrices UΣ−1V𝑇 and U′Σ−1V𝑇 define the
same ellipsoid for any orthogonal U′ ∈ R𝑑×𝑑; in particular, every ellipsoid can be represented
by a matrix of the form A = Σ−1V𝑇 .

2.3.2. Geometry

We restate the well-known result that five points determine an ellipse. This is usually phrased
for conics, but for nondegenerate ellipses the usual condition that no three of the five points
are collinear is vacuously true.

36

Lemma 2.3.1 (Five points determine an ellipse). Let 𝒄1 + 𝜕ℰ1 , 𝒄2 + 𝜕ℰ2 be two ellipses in R2
. If

they intersect at five distinct points, then 𝒄1 + 𝜕ℰ1 and 𝒄2 + 𝜕ℰ2 are the same.

The following claim, that every full-rank ellipsoid (i.e. an ellipsoid whose span has full
dimension) can be represented by a positive definite matrix, follows from looking at the singular
value decomposition of A.

Lemma 2.3.2. Let ℰ ⊆ R𝑑 be a full-rank ellipsoid. Then there exists A ≻ 0 such that ℰ = ℰA.

We also have the standard result relating volume and determinants, which follows from ob-
serving AℰA = 𝐵𝑑2 .

Lemma 2.3.3. Let A ≻ 0. Then vol(ℰA) = det(A−1)vol(𝐵𝑑2).

In order to give the reduction in the lower bound from the general case to the two-dimensional
case, we use the technique of Steiner symmetrization (see e.g. [AGM15, Section 1.1.7]). Given
some unit vector 𝒖 ∈ R𝑑 and convex body 𝐾 ⊆ R𝑑, we write 𝑆𝒖(𝐾) for the Steiner symmetrization

in the direction of 𝒖. Recall that the Steiner symmetrization is defined so that for any 𝒙 ⊥ 𝒖,

vol((𝒙 + R𝒖) ∩ 𝐾) = vol((𝒙 + R𝒖) ∩ 𝑆𝒖(𝐾)),

and so that (𝒙 + R𝒖) ∩ 𝑆𝒖(𝐾) is an interval centered at 𝒙. Note that we will overload notation
slightly as we will allow you𝒖 to be a vector of any non-zero length while Steiner symmetrization
is usually defined with 𝒖 being a unit vector, but we will simply take 𝑆𝒖 = 𝑆 𝒖

∥𝒖∥2
.

Importantly, Steiner symmetrization will preserve important properties of the update. We
have the key facts that vol(𝑆𝒖(𝐾)) = vol(𝐾), 𝑆𝒖(𝐾′) ⊆ 𝑆𝒖(𝐾) if 𝐾 ⊆ 𝐾′, and further the Steiner
symmetrization preserves 𝐾 being an ellipsoid:

Lemma 2.3.4 ([BLM87, Lemma 2]). If 𝑐 + ℰ ⊆ R𝑑 is an ellipsoid, 𝑆𝒖(𝑐 + ℰ) is still an ellipsoid.

Further, if we apply Steiner symmetrization to a body that is a body of revolution about an axis,
it does not change the body if 𝒖 is perpendicular to the axis of revolution.

Lemma 2.3.5. Let 𝐾 ⊆ R𝑑 be a body of revolution about the 𝒆1-axis. Then if 𝒖 ⊥ 𝒆1, 𝑆𝒖(𝐾) = 𝐾.

2.4. Streaming ellipsoidal rounding

Our goal in this section is to prove Theorems 1 and 3.

2.4.1. Monotone algorithms solve Problem 2.1

To design algorithms to solve the streaming ellipsoidal rounding problem, we first show that
any monotone algorithm gives a valid solution. We let 𝒄0 ∈ R𝑑 and 𝑟0 ≥ 0 be given so that

37

𝒄0 + 𝑟0 · 𝐵𝑑2 ⊆ 𝑍, and denote the initial ellipsoid as ℰ0 = 𝑟0 · 𝐵𝑑2 . Note that 𝑟0 need not be the
inradius, although it is upper bounded by the inradius.

If we had for each intermediate step 𝑡 that 𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆ conv (𝒛1 , . . . 𝒛𝑡) ⊆ 𝒄𝑡 + ℰ𝑡 , then
clearly any algorithm that satisfies this would give a valid final solution as well. However, in
intermediate steps it is not clear that 𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆ conv (𝒛1 , . . . 𝒛𝑡), due to the initialization of
𝒄0 + ℰ0 in our monotone algorithm framework. Instead, we relax this invariant to 𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆
conv ({𝒛1 , . . . 𝒛𝑡} ∪ (𝒄0 + ℰ0)), which still suffices to produce a valid final solution.

Lemma 2.4.1. To solve Problem 2.1, it suffices for the sequence of ellipsoids 𝒄𝑖 + ℰ𝑖 and scalings 𝛼𝑖 to

satisfy the invariants of Definition 4.

Proof. First, we argue that conv (𝒛1 , . . . , 𝒛𝑛) ⊆ 𝒄𝑛 + ℰ𝑛 . As ℰ𝑛 is an ellipsoid and therefore a
convex set, it suffices to show {𝒛1 , . . . , 𝒛𝑛} ⊆ 𝒄𝑛 + ℰ𝑛 . We actually argue by induction that
{𝒛1 , . . . , 𝒛𝑡} ⊆ 𝒄𝑡 + ℰ𝑡 for all 0 ≤ 𝑡 ≤ 𝑛. This is vacuously true for 𝑡 = 0. At each step
𝑡 > 0 the inductive hypothesis gives {𝒛1 , . . . , 𝒛𝑡−1} ⊆ 𝒄𝑡−1 + ℰ𝑡−1, and thus by (2.2.1) we have
{𝒛1 , . . . , 𝒛𝑡} ⊆ 𝒄𝑡 + ℰ𝑡 .

Now, we argue that 𝒄𝑛 + 𝛼𝑛 · ℰ𝑛 ⊆ conv (𝒛1 , . . . , 𝒛𝑛). We show by induction that
𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆ conv ({𝒛1 , . . . , 𝒛𝑡} ∪ (𝒄0 + ℰ0)) for all 0 ≤ 𝑡 ≤ 𝑛. This is sufficient as
conv ({𝒛1 , . . . , 𝒛𝑛} ∪ (𝒄0 + ℰ0)) = 𝑍. The case for 𝑡 = 0 is trivial. For 𝑡 > 0, the inductive
hypothesis gives 𝒄𝑡−1 + 𝛼𝑡−1 · ℰ𝑡−1 ⊆ conv ({𝒛1 , . . . , 𝒛𝑡−1} ∪ (𝒄0 + ℰ0)), and by (2.2.2) we have

𝑐𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆ conv ((𝑐𝑡−1 + 𝛼𝑡−1 · ℰ𝑡−1) ∪ {𝒛 𝑖}) ⊆ conv ({𝒛1 , . . . , 𝒛𝑡} ∪ (𝒄0 + ℰ0)) ,
as desired. □

2.4.2. Special case

In light of Lemma 2.4.1, our strategy is to design an algorithm that preserves the invariants
given in Definition 4. This algorithm can be thought of as an update rule that, given the previous
outer and inner ellipsoids 𝒄𝑡−1+ℰ𝑡−1 , 𝒄𝑡−1+𝛼𝑡−1ℰ𝑡−1 and next point 𝒛𝑡 , produces the next outer
and inner ellipsoids 𝒄𝑡 + ℰ𝑡 , 𝒄𝑡 + 𝛼𝑡ℰ𝑡 .

It is in fact sufficient to consider the simplified case where the previous outer ellipsoid is the
unit ball, and the previous inner ellipsoid is some scaling of the unit ball; we will show this in
Section 2.4.3. We can further specialize by considering only the two-dimensional case 𝑑 = 2.
We will later show that the high-dimensional case is not much different, as all the relevant sets
𝒄𝑡1 + ℰ𝑡−1 , 𝒄𝑡 + ℰ𝑡 and conv (𝛼 · ℰ𝑡−1 ∪ {𝒛𝑡}) form bodies of revolution about the axis through
𝒄𝑡−1 and 𝒛𝑡 .

We now describe our two-dimensional update rule. In order to simplify notation, we will let
𝛼 be the previous scaling 𝛼𝑡−1, and 𝛼′ be the next scaling 𝛼𝑡 . We will assume that 𝛼 ≤ 1/2 to
simplify the analysis of our update rule; this will not affect the quality of our final approximation
as this update rule will only be used in the “large approximation factor” regime. We will also
overload notation by writing 𝑐 + ℰ even when 𝑐 is a scalar to mean (𝑐, 0) + ℰ. We can describe
the previous outer ellipsoid ℰ with the equation 𝑥2 + 𝑦2 ≤ 1, and the previous inner ellipsoid
𝛼ℰ with 𝑥2 + 𝑦2 ≤ 𝛼2. We define the next outer and inner ellipsoids 𝑐 + ℰ′, 𝑐 + 𝛼′ℰ′ as

1
𝑎2 (𝑥 − 𝑐)

2 + 1
𝑏2 𝑦

2 ≤ 1︸ ︷︷ ︸
𝑐+ℰ′

,
1
𝑎2 (𝑥 − 𝑐)

2 + 1
𝑏2 𝑦

2 ≤ 𝛼′2︸ ︷︷ ︸
𝑐+𝛼′ℰ′

38

where we use parameters
𝑎 = exp (𝛾)

𝑏 = 1 + 𝛼 − 𝛼′

2
𝑐 = −𝛼 + 𝛼′ · 𝑎

𝛼′ =
1

1
𝛼 + 2𝛾

(2.4.1)

We will let 𝒛 be the rightmost point of 𝑐 + ℰ′, so that 𝒛 = (𝑐 + 𝑎, 0). Eventually, we will choose
𝛾 so that 𝒛 coincides with 𝒛𝑡 , the point received in the next iteration. In Section 2.4.4, these
parameters 𝑎(𝛾), 𝑏(𝛾), 𝑐(𝛾), 𝛼′(𝛾) will be used as functions of the parameter 𝛾 ≥ 0. However,
we will not yet explicitly specify 𝛾, so in this section these parameters can be thought of as
constants for some fixed 𝛾. This update rule is pictured in Figure 2.1.

We first collect a few straightforward properties of this update rule.

Lemma 2.4.2. The parameters in the setup (2.4.1) satisfy the following.

1.
1
𝛼′ =

1
𝛼 + 2𝛾

2. 𝑏 ≥ 1

3. 𝑐 ≥ 0

4. 𝑐 + 𝛼′ · 𝑎 ≥ 𝛼

Before proving these properties, we provide geometric interpretations. Intuitively, (1) means
that 𝛾 is proportional to the increase in the approximation factor at this step, a fact that we will
use when analyzing the general-case algorithm. (2) means that the outer ellipsoid grows on
every axis; and (3) means that the centers of the next ellipsoids are to the right of the 𝑦-axis, i.e.
the centers of the next ellipsoids are further towards 𝒗 than those of the previous ellipsoids.
The rightmost point of 𝑐 + 𝛼′ℰ′ is 𝑐 + 𝛼′ · 𝑎, so (4) shows that this point is to the right of the
rightmost point of 𝛼 · ℰ.

We now prove Lemma 2.4.2.

Proof of Lemma 2.4.2. (1) is clear from rearranging the definition of 𝛼′. From (1) we also have
𝛼′ ≤ 𝛼, so that (2) follows immediately.

For (3), observe that 𝛼
𝛼′ = 1 + 2𝛾𝛼. When 𝛼 ≤ 1/2, this means

𝛼
𝛼′
≤ 1 + 𝛾 ≤ exp (𝛾) = 𝑎 (2.4.2)

using 1 + 𝑥 ≤ 𝑒𝑥 , Lemma 2.8.1-(1). By definition of 𝑐, 𝛼/𝛼′ ≤ 𝑎 is equivalent to 𝑐 ≥ 0.

To show (4), by definition we have that 𝑐 + 𝛼′ · 𝑎 = −𝛼 + 2𝛼′𝑎. Thus showing 𝑐 + 𝛼′ · 𝑎 ≥ 𝛼 is
equivalent to showing that 𝛼′𝑎 ≥ 𝛼, which is equivalent to the inequality in (2.4.2). □

As Figure 2.1 depicts, the update step we defined satisfies the invariants in Definition 4 and so
is monotone; in the rest of this section we make this picture formal. To start, we consider the

39

invariant concerning outer ellipsoids; we will show that ℰ ⊆ 𝑐 + ℰ′. For now we can think of 𝒛
as replacing 𝒛𝑡 , and clearly 𝒛 ∈ 𝑐+ℰ′, so if we show that ℰ ⊆ 𝑐+ℰ′, then conv (ℰ ∪ {𝒛}) ⊆ 𝑐+ℰ′
as well since 𝑐 + ℰ′ is convex.

Lemma 2.4.3. We have ℰ ⊆ 𝑐 + ℰ′.

Proof. First, observe that ℰ ⊆ ℰ′ because both axes of ℰ′ have greater length than those of ℰ:
𝑎 ≥ 1 by definition, and 𝑏 ≥ 1 from Lemma 2.4.2-(2). Now, we translate ℰ′ to the right until it
touches ℰ at two points. We call this translated ellipse 𝑐𝑟 + ℰ′, as shown in Figure 2.3. Observe
that as long as 𝑐 ≤ 𝑐𝑟 , we have ℰ ⊆ 𝑐 + ℰ′. We now determine 𝑐𝑟 .

Figure 2.3.: Outer ellipses of the update step. As before, ℰ is the black circle and 𝑐 + ℰ′ is the
blue ellipse. 𝑐𝑟 + ℰ′ is the magenta ellipse, with its center at 𝑐𝑟 and the dotted
magenta line showing the position of 𝑐𝑟 along the 𝑥-axis. 𝑐𝑟 is defined so 𝑐𝑟 + ℰ′
and ℰ are tangent at two points. 𝑄 is one of these two tangent points.

First, note points on the boundary of 𝑐𝑟 + ℰ′ are described by the equation

(𝑥 − 𝑐𝑟)2
𝑎2 + 𝑦

2

𝑏2 = 1 (2.4.3)

Let 𝑄 = (𝑥′, 𝑦′) be the point of intersection between ℰ and 𝑐𝑟 + ℰ′ where 𝑦′ > 0. Since 𝑄 is
on the boundary of both ellipses, the vectors

(
2(𝑥′−𝑐𝑟)

𝑎2 ,
2𝑦′
𝑏2

)
and (2𝑥′, 2𝑦′), which are the normal

vectors at 𝑄 of 𝑐𝑟 + ℰ′ and ℰ respectively, must be parallel. Thus 4(𝑥′−𝑐𝑟)
𝑎2 · 𝑦′ = 4𝑦′𝑥′

𝑏2 , which
simplifies to

𝑥′ =
𝑐𝑟

1 − 𝑎2

𝑏2

. (2.4.4)

At this point we have a system of three equations relating (𝑥′, 𝑦′) and 𝑐𝑟 : (2.4.4), 𝑄 lying on ℰ,
and 𝑄 satisfying (2.4.3). We now solve this system to find 𝑐𝑟 . To start, we expand (2.4.3) into
𝑥′2 − 2𝑥′𝑐𝑟 + 𝑐2

𝑟 + 𝑦′2 𝑎
2

𝑏2 = 𝑎2, which we rewrite into 𝑥′2 𝑎2

𝑏2 + 𝑥′2
(
1 − 𝑎2

𝑏2

)
− 2𝑥′𝑐𝑟 + 𝑐2

𝑟 + 𝑦′2 𝑎
2

𝑏2 = 𝑎2.

As 𝑄 lies on ℰ, this becomes 𝑥′2
(
1 − 𝑎2

𝑏2

)
− 2𝑥′𝑐𝑟 + 𝑐2

𝑟 + 𝑎2

𝑏2 = 𝑎2. Substituting in (2.4.4), we get

𝑐2
𝑟

1 − 𝑎2

𝑏2

− 2
𝑐2
𝑟

1 − 𝑎2

𝑏2

+ 𝑐2
𝑟 +

𝑎2

𝑏2 = 𝑎2.

40

Simplifying, we have 𝑐2
𝑟

(
1 − 𝑏2

𝑏2−𝑎2

)
= 𝑎2

(
1 − 1

𝑏2

)
, i.e.

𝑐2
𝑟 =

𝑏2 − 1
𝑏2 (𝑎

2 − 𝑏2).

To complete the proof of Lemma 2.4.3, it suffices to show 𝑐2 ≤ 𝑏2−1
𝑏2 (𝑎2 − 𝑏2). This will follow

from Lemma 2.8.5. □

Now, we move on to the inner ellipsoid invariant of Definition 4. In particular, we will argue
that 𝑐 + 𝛼′ℰ′ ⊆ conv (𝛼ℰ ∪ {𝒛}). On a high level, we show this by arguing that the boundary of
𝑐 + 𝛼′ℰ′ does not intersect the boundary of conv (𝛼ℰ ∪ {𝒛}), except at points of tangency.

We can split the boundary of conv (𝛼ℰ ∪ {𝒛}) into two pieces: the part that intersects with
the boundary of 𝛼ℰ, which is an arc of the boundary of 𝛼ℰ; and the remainder, which can
described as two line segments connecting 𝒛 to that arc. In particular, there are two lines that go
through 𝒛 and are tangent to 𝛼ℰ, one of which we call line 𝐿, and the other line is the reflection
of 𝐿 across the 𝑥-axis. We define 𝑃1 and 𝑃2 as the tangent points of these lines to 𝛼ℰ. Then,
the boundary of conv (𝛼ℰ ∪ {𝒛}) consists of an arc 𝑃1𝑃2 and the line segments 𝑃1𝒛, 𝑃2𝒛. This
is illustrated in Figure 2.4. Note that at this point it is possible a priori for the arc 𝑃1𝑃2 that
coincides with the boundary of conv (𝛼ℰ ∪ {𝒛}) to be either the major or minor arc; we will
later show it must be the major arc. We will take 𝐿 to be the line whose tangent point to 𝛼ℰ,
𝑃1, is above the 𝑥-axis, though this choice is arbitrary due to symmetry across the 𝑥-axis.

Figure 2.4.: Inner ellipses of the update step. As before, 𝛼ℰ is the black circle and 𝑐 + 𝛼′ℰ is the
blue ellipse. 𝑃0 is the shared leftmost point of 𝛼ℰ and 𝑐 + 𝛼′ℰ′. There are two lines
through 𝒗 that are tangent to 𝛼ℰ, one of which we call 𝐿 and pictured in orange.
We call the tangent points 𝑃1 and 𝑃2. The line segments 𝑃1𝒛, 𝑃2𝒛 are the dotted
black lines. 𝑃′1 and 𝑃′2 are the two points of intersection between 𝑐+𝛼′ℰ and the line
segment 𝑃1𝑃2. 𝑃′′1 and 𝑃′′2 are the two points of intersection between 𝜕(𝑐+𝛼′ℰ′) and
𝜕𝛼ℰ to the right of the 𝑦-axis. Note that 𝑃2 , 𝑃

′
2 , 𝑃
′′
2 are the reflections of 𝑃1 , 𝑃

′
1 , 𝑃
′′
1

across the 𝑥-axis.

We first show that 𝑐+𝛼′ℰ′ does not intersect 𝑃1𝒛 and 𝑃2𝒛, except possibly at points of tangency.
In fact, we show a slightly stronger statement, in similar fashion to Lemma 2.4.3.

Lemma 2.4.4. 𝑐 + 𝛼′ℰ′ lies inside the angle ∠𝑃1𝒛𝑃2.

41

Proof. We translate 𝑐 + 𝛼′ℰ′ to the right until it touches 𝐿 (and, by symmetry, 𝑃2𝒛). We call this
translated ellipse 𝑐+ + 𝛼′ℰ′, as shown in Figure 2.5. (Formally, the center 𝑐+ can be described
not as a translation from some other ellipse, but as 𝑐+ such that 𝑐+ + 𝛼′ℰ′ intersects 𝐿 at one
point). Observe that if 𝑐 ≤ 𝑐+, then 𝑐 + 𝛼′ℰ′ lies inside the angle ∠𝑃1𝒛𝑃2. We now determine
𝑐+.

Figure 2.5.: Inner ellipses of the update step. As before, 𝛼ℰ is the black circle, 𝑐 + 𝛼′ℰ is the
blue ellipse, 𝐿 is the orange line through 𝒛 and tangent to 𝛼ℰ, 𝑃1 and 𝑃2 are the
tangent points on the lines through 𝒛 tangent to 𝛼ℰ, and 𝑃1𝒛, 𝑃2𝒛 are the dotted
black lines. 𝑐++𝛼′ℰ′ is the magenta ellipse, with its center at 𝑐+ and magenta dotted
line showing its position on the 𝑥-axis. 𝑐+ is defined so that 𝑐+ + 𝛼′ℰ′ is tangent to
𝑃1𝒛 and 𝑃2𝒛, with 𝑄 as the tangent point of 𝑐+ + 𝛼′ℰ′ and 𝑃1𝒛.

The equation of 𝐿 is
1

𝑐 + 𝑎︸︷︷︸
ℓ1

·𝑥 +
√

1
𝛼2 −

1
(𝑐 + 𝑎)2︸ ︷︷ ︸
ℓ2

·𝑦 = 1

where we define ℓ1 , ℓ2 as the coefficents for 𝑥 and 𝑦. Observe that 𝒛 is on 𝐿, and 𝐿 is tangent to
𝛼ℰ at 𝑃1, which has coordinates

𝑃1 =

(
𝛼2

𝑐 + 𝑎 , 𝛼
2
√

1
𝛼2 −

1
(𝑐 + 𝑎)2

)
. (2.4.5)

Tangency can be confirmed by checking that𝑃1 is parallel to (ℓ1 , ℓ2), the normal vector definining
𝐿.

Let 𝑄 = (𝑥′, 𝑦′) be the point of intersection of 𝐿 and 𝑐+ + 𝛼′ℰ, there are three properties that
define 𝑄. First it lies on the boundary of 𝑐+ + 𝛼′ℰ, so it satisfies

(𝑥′ − 𝑐+)2
𝑎2 +

𝑦′2

𝑏2 = 𝛼′2. (2.4.6)

Second, at 𝑄 the normal vectors for the equations defining 𝑐+ + 𝛼′ℰ and 𝐿 are parallel, i.e.
(2(𝑥−𝑐+)

𝑎2 ,
2𝑦
𝑏2) is parallel to (ℓ1 , ℓ2). So

(𝑥′ − 𝑐+)
𝑎2 ℓ2 =

𝑦′

𝑏2 ℓ1. (2.4.7)

42

Finally, 𝑄 lies on 𝐿, so we have ℓ1𝑥′ + ℓ2𝑦′ = 1. Solving this for 𝑦′, we get

𝑦′ =
1 − ℓ1𝑥′
ℓ2

. (2.4.8)

These three equations form a system for 𝑥′, 𝑦′ and 𝑐+, which we now solve to find 𝑐+. Taking
the square of (2.4.7) and rearranging gives 𝑦′2

𝑏2 =
𝑏2(𝑥′−𝑐+)2ℓ2

2
𝑎4ℓ2

1
. Substituting this into (2.4.6), we

get (𝑥
′−𝑐+)2
𝑎2 + 𝑏2(𝑥′−𝑐+)2ℓ2

2
𝑎4ℓ2

1
= 𝛼′2. Now, defining 𝑟 def

=
𝑎2ℓ2

1
𝑏2ℓ2

2
, we group the terms of this equation

into the form
(𝑥′ − 𝑐+)2 ·

1
𝑎2

(
1 + 1

𝑟

)
= 𝛼′2. (2.4.9)

We substitute (2.4.8) into (2.4.7) to get 𝑥′−𝑐+
𝑎2 ℓ2 =

ℓ1
𝑏2

1−𝑥′ℓ1
ℓ2

. Grouping for 𝑥′ and rearranging
yields

𝑥′ − 𝑐+ =
𝑟

1 + 𝑟

(
1
ℓ1
− 𝑐+

)
. (2.4.10)

Next, we substitute (2.4.10) into (2.4.9), and get after some cancellation(
1
ℓ1
− 𝑐+

)2
= 𝛼′2𝑎2 · 1 + 𝑟

𝑟
.

Observe on the left hand side that 1
ℓ1
− 𝑐+ = 𝑐 + 𝑎 − 𝑐+. Clearly the center 𝑐+ must be to the left

of 𝒛, so this must be non-negative. Hence after taking the positive square root, we obtain

𝑐+ = 𝑐 + 𝑎 − 𝛼′ · 𝑎
√

1 + 𝑟
𝑟

It remains to show that 𝑐 ≤ 𝑐+, or equivalently that

𝑎 − 𝛼′ · 𝑎
√

1 + 𝑟
𝑟
≥ 0,

which we do in Lemma 2.8.6. This completes the proof of Lemma 2.4.4. □

Now, we build on the previous claim to show the inner ellipsoid invariant.

Lemma 2.4.5. We have 𝑐 + 𝛼′ · ℰ′ ⊆ conv (𝛼 · ℰ ∪ {𝒛}).

Proof. We will argue that the boundary of 𝑐 + 𝛼′ℰ′ does not intersect the boundary of
conv (𝛼ℰ ∪ {𝒛}), except at points of tangency. This is sufficient to establish the claim, as
Lemma 2.4.4 shows that 𝑐 + 𝛼′ℰ′ is internal to ∠𝑃1𝒛𝑃2, and so if 𝑐 + 𝛼′ℰ′ does not intersect the
boundary of conv (𝛼ℰ ∪ {𝒛}), 𝑐 + 𝛼′ℰ′ must lie inside of, or be disjoint from conv (𝛼ℰ ∪ {𝒛}).
Since the leftmost points of 𝛼ℰ and 𝑐 + 𝛼′ℰ′ coincide, 𝑐 + 𝛼′ℰ′ must then lie inside of
conv (𝛼ℰ ∪ {𝒛}). Recall that the boundary of conv (𝛼ℰ ∪ {𝒛}) consists of the arc 𝑃1𝑃2 and the
line segments 𝑃1𝒛, 𝑃2𝒛. Lemma 2.4.4 already shows that the boundary of 𝑐 + 𝛼′ℰ′ does not
intersect 𝑃1𝒛 and 𝑃2𝒛, so we only need to show that the boundary of 𝑐 + 𝛼′ℰ′ does not intersect
the arc 𝑃1𝑃2.

To do this, we start by enumerating the points of intersection of 𝜕𝛼ℰ and 𝜕(𝑐 + 𝛼′ℰ′), recalling
that 𝑃1𝑃2 is an arc of 𝜕𝛼ℰ. Observe that the leftmost points of 𝛼ℰ and 𝑐 + 𝛼′ℰ′ coincide, as the
leftmost point of 𝑐 + 𝛼′ℰ′ is 𝑐 − 𝛼′ · 𝑎 = −𝛼 by definition; we call this point 𝑃0. 𝑃0 is a point of

43

tangency and hence has intersection multiplicity 2, because the centers of 𝛼ℰ and 𝑐 + 𝛼′ · ℰ′
both lie on the 𝑥-axis.

Next, we argue for the existence of two more distinct intersection points 𝑃′′1 , 𝑃
′′
2 as depicted in

Figure 2.4. The leftmost point of 𝑐 + 𝛼′ℰ′ is (−𝛼, 0), and the rightmost point is 𝑐 + 𝛼′, which
by Lemma 2.4.2-(4) is to the right of (𝛼, 0), the rightmost point of 𝛼ℰ. Thus, by lying on 𝜕𝛼ℰ,
𝑃1 , 𝑃2 lie between the leftmost and rightmost points of 𝑐 + 𝛼′ℰ′, and so 𝑐 + 𝛼′ℰ′ intersects
the line through 𝑃1 and 𝑃2. Further, by Lemma 2.4.4, as 𝑐 + 𝛼′ℰ′ lies in the angle ∠𝑃1𝒗𝑃2,
𝑐 + 𝛼′ℰ′ actually intersects the line segment 𝑃1𝑃2. Observe that this intersection happens at
two distinct points, which we call 𝑃′1 and 𝑃′2. Both points are inside of 𝛼ℰ, yet 𝜕(𝑐 + 𝛼′ℰ′) is a
continuous path that connects both to the rightmost point of 𝑐 + 𝛼′ℰ′, which is outside of 𝛼ℰ.
Thus 𝜕(𝑐 + 𝛼′ℰ′) intersects 𝜕𝛼ℰ at two more distinct points, which we call 𝑃′′1 and 𝑃′′2 .

Now, we argue that 𝑃′′1 and 𝑃′′2 lie on the minor arc 𝑃1𝑃2. First, observe that the arc 𝑃1𝑃2
containing 𝑃0 is the major arc. This is because 𝑃1 lies to the right of the 𝑦-axis, as determined
in (2.4.5); and by symmetry so does 𝑃2. This also implies that major arc 𝑃1𝑃2 is the arc with
which the boundary of conv (𝛼ℰ ∪ {𝒛}) coincides. 𝑃′1 and 𝑃′2 are collinear with 𝑃1 and 𝑃2, and
as 𝑃′′1 and 𝑃′′2 are to the right of 𝑃′1 and 𝑃′2, this implies that they must lie on the minor arc 𝑃1𝑃2.

Counting all the intersection points of 𝜕𝛼ℰ and 𝜕(𝑐 + 𝛼′ℰ′), we have 𝑃0 (with multiplicity 2)
and 𝑃′′1 and 𝑃′′2 (both with multiplicity 1); with total multiplicity 4. Using Lemma 2.3.1, it is
impossible for them to have another intersection point without both ellipses being the same.
Thus 𝜕(𝑐 + 𝛼′ℰ′) cannot intersect the major arc 𝑃1𝑃2 except at 𝑃0, and so except at points of
tangency the boundary of 𝑐 + 𝛼′ℰ′ does not intersect the boundary of conv (𝛼ℰ ∪ {𝒛}). □

2.4.3. Generalizing to high dimension and arbitrary previous ellipsoids

Now that we have demonstrated the invariants of Definition 4 for the special two-dimensional
case where the previous ellipsoid is the unit ball, we generalize slightly to higher dimensions.
However, we first still assume the previous ellipsoid is the unit ball.

Using the parameters as defined in (2.4.1), we will let ℰ = 𝐵𝑑2 , and define the boundary of ℰ′ as

1
𝑎2 (𝒙1 − 𝑐)2 +

1
𝑏2 𝒙

2
2 + . . . +

1
𝑏2 𝒙

2
𝑑 = 1.

Observe that we can also write ℰ′ = ℰD where D = diag
(

1
𝑎2 ,

1
𝑏2 , . . . ,

1
𝑏2

)
. Similarly to before,

we let 𝒛 = (𝑐 + 𝑎, 0, 0, . . . , 0) ∈ R𝑑, the furthest point of 𝑐 + ℰ′ in the positive direction of the
𝑥1-axis.

Now, we argue that the invariants of Definition 4 still hold in this setting.

Lemma 2.4.6. The inner and outer ellipsoid invariants hold in this setting:

1. ℰ ⊆ 𝑐 · 𝒆1 + ℰ′

2. 𝑐 · 𝒆1 + 𝛼′ℰ′ ⊆ conv (𝛼ℰ ∪ {𝒛})

Proof. Observe that ℰ, 𝑐 · 𝒆1 + ℰ′, 𝑐 · 𝒆1 + 𝛼′ℰ′, and conv (𝛼ℰ ∪ {𝒛}) are all bodies of revolution
about the 𝑥1-axis, with their cross-sections given by their counterparts in Section 2.4.2. As

44

Lemma 2.4.3 and Lemma 2.4.5 hold for these cross sections, the set containments hold for the
bodies of revolution as well. □

We further generalize to the case where the previous ellipsoid is arbitrary. In particular, let
𝒄◦ + ℰ be the previous ellipsoid, with a vector 𝒄◦ ∈ R𝑑 and ℰ = ℰA for non-singular matrix
A ∈ R𝑑×𝑑. Let 𝒛◦ ∈ R𝑑 be an arbitrary vector, representing the next point received. We let
𝒖 = A(𝒛◦ − 𝒄◦), and W ∈ R𝑑×𝑑 be an orthogonal matrix with 𝒘 = 𝒖

∥𝒖∥ as its first column (e.g. by
using as its columns an orthonormal basis containing 𝒘). We define the next outer ellipsoid
as 𝒄◦ + 𝑐A−1𝒘 + ℰ′ for ℰ′ = ℰWDW⊤A, with D = diag

(
1
𝑎2 ,

1
𝑏2 , . . . ,

1
𝑏2

)
as before. Observe that

𝒛 = 𝒄◦+(𝑐+ 𝑎)A−1𝒘 is the furthest point of 𝒄◦+ 𝑐A−1𝒘+ℰ′ from the previous center 𝒄◦ towards
𝒛◦.

This setup works to preserve the key invariants, as we see in the next claim.

Lemma 2.4.7. The inner and outer ellipsoid invariants hold in this setting:

1. 𝒄◦ + ℰ ⊆ 𝒄◦ + 𝑐A−1𝒘 + ℰ′

2. 𝒄◦ + 𝑐A−1𝒘 + 𝛼′ℰ′ ⊆ conv ((𝒄◦ + 𝛼ℰ) ∪ {𝒛})

Proof. We translate both set inclusions by−𝒄◦, then apply the nonsingular linear transformation
W⊤A. Observe that the set inclusions we wish to prove hold if and only if the transformed
ones do. Noting that W⊤Aℰ′ = ℰWD, the transformed set inclusions are ℰW ⊆ 𝑐 · 𝒆1 + ℰWD
and 𝑐 · 𝒆1 + 𝛼′ℰWD ⊆ conv (𝛼ℰW ∪ {(𝑐 + 𝑎) · 𝒆1}). However, since W is an orthogonal matrix,
ℰW = 𝐵𝑑2 and ℰWD = ℰD, and so the inclusions are exactly those shown in Lemma 2.4.6. □

Choosing 𝛾 correctly in (2.4.1) ensures that 𝒛 ∈ 𝒄◦ + 𝑐A−1𝒘 + ℰ′ coincides with 𝒛◦, as stated in
the upcoming claim. This can be seen by looking at the definition of 𝒛.

Lemma 2.4.8. If 𝛾 is chosen so that 𝑐 + 𝑎 = ∥𝒖∥, then 𝒛 = 𝒛◦.

2.4.4. General algorithm

The goal of this section is to give and analyze a full algorithm that solves the streaming ellipsoid
approximation problem, building on the analysis of the update rule from the previous sections.

Before we describe the complete algorithm, we give pseudocode in Algorithm 1 for its primary
primitive. It is an update step like the one we analyzed in the previous section, Section 2.4.3.

In Lines 3, 4 and 5, we use the definition of 𝑎(𝛾), 𝑏(𝛾), 𝑐(𝛾), 𝛼′(𝛾) from (2.4.1), substituting 𝛼𝑡−1
for 𝛼. Although the update step does not explicitly mention ellipsoids, we use ℰ𝑡 = ℰA𝑡 so that
at iteration 𝑡 the next outer and inner ellipsoids are 𝒄𝑡 + ℰA𝑡 and 𝒄𝑡 + 𝛼𝑡ℰA𝑡 , respectively. If at
this iteration ∥𝒖∥2 ≤ 1, we will refer to this as the case where the ellipsoids are not updated, as
is clear from Line 7.

Observe also that if in iteration 𝑡 we let W ∈ R𝑑×𝑑 be an orthogonal matrix with 𝒘 as its first

45

Algorithm 1 Full update step𝒜full

input: A𝑡−1 ∈ R𝑑×𝑑 , 𝒄𝑡−1 ∈ R𝑑 , 𝛼𝑡−1 ∈ [0, 1
2], 𝒛𝑡 ∈ R𝑑

output: A𝑡 ∈ R𝑑×𝑑 , 𝒄𝑡 ∈ R𝑑 , 𝛼𝑡 ∈ [0, 𝛼𝑡−1]
1: Let 𝒖 = A𝑡−1(𝒛𝑡 − 𝒄𝑡−1), 𝒘 = 𝒖

∥𝒖∥
2: if ∥𝒖∥2 > 1 then

3: Let 𝛾★
𝑡 be such that 𝑎(𝛾★

𝑡) + 𝑐(𝛾★
𝑡) = ∥𝒖∥

4: Â = 1
𝑏(𝛾★𝑡)

I𝑑 +
(

1
𝑎(𝛾★𝑡)
− 1

𝑏(𝛾★𝑡)

)
𝒘𝒘⊤

5: return A𝑡 = Â · A𝑡−1 , 𝒄𝑡 = 𝒄𝑡−1 + 𝑐(𝛾★
𝑡)A−1

𝑡−1𝒘 , 𝛼𝑡 = 𝛼′(𝛾★
𝑡)

6: else

7: return A𝑡 = A𝑡−1 , 𝒄𝑡 = 𝒄𝑡−1 , 𝛼𝑖 = 𝛼𝑡−1

column, we can write

Â = W · diag
(

1
𝑎(𝛾★

𝑡)
,

1
𝑏(𝛾★

𝑡)
, · · · , 1

𝑏(𝛾★
𝑡)

)
·W⊤ (2.4.11)

Now, we argue that this algorithm satisfies the invariants defined in Definition 4. This argument
is essentially the observation that the update step in the algorithm is the one analyzed in
Lemma 2.4.7.

Lemma 2.4.9. Algorithm 1 is a monotone update; i.e., it satisfies the invariants in Definition 4.

Proof. If ∥𝒖∥2 ≤ 1, then 𝒛 𝑖 ∈ 𝒄𝑛+ℰ𝑛 and the inner and outer ellipsoids are not updated, so the in-
variants clearly hold. Otherwise, we apply Lemma 2.4.7 and Lemma 2.4.8 setting A = A𝑡−1 , 𝒄◦ =
𝒄𝑡−1 , 𝒛◦ = 𝒛𝑡 , 𝛼 = 𝛼𝑡−1. Using (2.4.11), ℰA𝑡 is the same as ℰ′ in Lemma 2.4.7; and clearly 𝛼𝑡 = 𝛼′.
This establishes the inner ellipsoid invariant 𝒄𝑡 +𝛼𝑡ℰ𝑡 ⊆ conv ((𝒄𝑡−1 + 𝛼𝑡−1ℰ𝑡−1) ∪ {𝒛𝑡}) directly.
To show conv ((𝒄𝑡−1 + ℰ𝑡−1) ∪ {𝒛𝑡}) ⊆ 𝒄𝑡 + ℰ𝑡 , observe that we have 𝒄𝑡−1 + ℰ𝑡−1 ⊆ 𝒄𝑡 + ℰ𝑡 from
Lemma 2.4.7, and 𝒛𝑡 ∈ 𝒄𝑡 + ℰ𝑡 from Lemma 2.4.8. Then the outer ellipsoid invariant follows as
𝒄𝑡 + ℰ𝑡 is a convex set. □

Finally, we bound the relevant quantities that will be used in the analysis of the full algorithm’s
approximation factor. In particular, we show that exp(𝛾★

𝑡) gives a lower bound on the increase
in volume at each iteration 𝑡. If ∥𝒖∥2 ≤ 1, and the ellipsoids are not updated, in that iteration
we think of 𝛾★

𝑡 = 0.

Lemma 2.4.10. For any input given to Algorithm 1, we have vol(ℰ𝑖) ≥ exp(𝛾★
𝑡)vol(ℰ𝑡−1).

Proof. This formula is clearly true when the ellipsoids are not updated because 𝛾★
𝑡 = 0, so we

consider the nontrivial case. Recall the formula vol(ℰA) = det(A−1)vol(𝐵𝑑2) from Lemma 2.3.3.
Then we have

vol(ℰA𝑖
) = det(A−1

𝑖)vol(𝐵𝑑2) = det(Â−1) · det(A−1
𝑡−1) · vol(𝐵𝑑2) = det(Â−1)vol(ℰA𝑡−1)

where we use the definition of Â from Line 4 on the 𝑡-th iteration. Then

det(Â−1) = 𝑎(𝛾★
𝑡) · 𝑏(𝛾★

𝑡)𝑑−1 using (2.4.11)
≥ 𝑎(𝛾★

𝑡) by Lemma 2.4.2-(2)

46

= exp(𝛾★
𝑡) by definition of 𝑎 in (2.4.1)

and using vol(ℰA𝑖
) = det(Â−1) · vol(ℰA𝑡−1) completes the proof. □

We are now ready to present the complete algorithm in Algorithm 2. The algorithm is explicitly
given 𝒄0 + 𝑟0 · 𝐵𝑑2 ⊆ 𝑍. For simplicity, here, we say 𝑟 = 𝑟0. Let 𝑅 = 𝑅(𝑍). While the
final approximation factor depends on this quantity, the algorithm is not given it. Note that
𝜅(𝑍) ≤ 𝑅/𝑟, so the quality of the approximation depends not only on 𝜅(𝑍), but also on how well
the given ball 𝒄0 + 𝑟 · 𝐵𝑑2 is centered within 𝑍.

This algorithm proceeds in two phases. It begins with a “local” first phase, where the inner
ellipsoid is a ball kept at radius 𝑟, and the outer ellipsoid is a ball scaled to contain all the points.
For readability, the variables of the algorithm in this phase are annotated with a superscript (𝑙).
The second phase starts if the approximation factor of the first phase ever reaches 𝛼(𝑙) ≤ 1

𝑑 log 𝑑 ,
at which point the algorithm uses the “full” update that was just described in Algorithm 1.
We use two phases because while the full update reaches a near-optimal approximation factor
when 𝑅/𝑟 ≥ 𝑑 log 𝑑, the local phase using balls does better when 𝑅/𝑟 ≤ 𝑑 log 𝑑. While we cannot
tell when to switch phases exactly (this would require knowing 𝑅/𝑟), we show that it is enough
to approximate the aspect ratio during the first phase up to a constant factor.

Algorithm 2 Streaming ellipsoid rounding – complete algorithm
input: 𝒄0 + 𝑟𝐵𝑑2 ⊆ 𝑍
output: 𝒄𝑛 + ℰ𝑛 , 𝒄𝑛 + 𝛼𝑛 · ℰ𝑛

1: Initialize A(𝑙)0 = 1
𝑟 I𝑑 , 𝒄

(𝑙)
0 = 𝒄0 , 𝛼

(𝑙)
0 = 1

2: 𝑡(𝑙) = 0, 𝑅0 = 0
3: while 𝑡(𝑙) ≤ 𝑛 do ⊲ Phase I: Local update step that maintains a ball

4: Receive point 𝒛𝑡(𝑙)
5: if ∥𝒛𝑡(𝑙) − 𝒄0∥2 ≤ 𝑟 · 𝑑 log 𝑑 then

6: if ∥𝒛𝑡(𝑙) − 𝒄0∥2 > 𝑅𝑡(𝑙)−1 then

7: A(𝑙)
𝑡(𝑙)

= 1
∥𝒛

𝑡(𝑙)−𝒄0∥2 · I𝑑 , 𝒄
(𝑙)
𝑡(𝑙)

= 𝒄(𝑙)
𝑡(𝑙)−1 , 𝛼

(𝑙)
𝑡(𝑙)

= 𝑟
∥𝒛

𝑡(𝑙)−𝒄0∥2 ⊲ Grow the ball to contain 𝒛𝑡(𝑙)

8: 𝑅𝑡(𝑙) =
∥𝒛

𝑡(𝑙)−𝒄0∥2
𝑟

9: else

10: A(𝑙)
𝑡(𝑙)

= A𝑡(𝑙)−1 , 𝒄
(𝑙)
𝑖

= 𝒄(𝑙)
𝑡(𝑙)−1 , 𝛼

(𝑙)
𝑡(𝑙)

= 𝛼𝑡(𝑙)−1
11: 𝑅𝑡(𝑙) = 𝑅𝑡(𝑙)−1
12: else

13: break ⊲ Break the loop and jump to Line 15

14: 𝑡(𝑙) = 𝑡(𝑙) + 1
15: if 𝑡(𝑙) > 𝑛 then ⊲ If we stayed in Phase I for the entire execution of the algorithm

16: return A(𝑙)𝑛 , 𝒄
(𝑙)
𝑛 , 𝛼

(𝑙)
𝑛

17: 𝑡𝑠 = 𝑡(𝑙) ⊲ Point 𝒛𝑡𝑠 has not yet been processed

18: A𝑡𝑠−1 = 1
𝑟𝑑 log 𝑑 · I𝑑 , 𝒄𝑡𝑠−1 = 𝒄(𝑙)𝑡𝑠−1 , 𝛼𝑡𝑠−1 = 1

𝑑 log 𝑑 ⊲ Transition: grow the ball to maximium size

19: for 𝑡 ∈ {𝑡𝑠 , 𝑡𝑠 + 1, . . . , 𝑛} do ⊲ Phase II: full update for the remaining points

20: Receive point 𝒛 𝑖
21: A𝑖 , 𝒄𝑖 , 𝛼𝑖 = 𝒜full(A𝑡−1 , 𝒄𝑡−1 , 𝛼𝑡−1 , 𝒛 𝑖)
22: return A𝑛 , 𝒄𝑛 , 𝛼𝑛

Before Line 15, the algorithm executes the first phase that has the outer and inner ellipsoids
as balls. In Line 15, we have 𝑡(𝑙) > 𝑛 if the algorithm stayed in Phase I for every point,
i.e. we had max1≤𝑡(𝑙)≤𝑛 ∥2𝒛𝑡(𝑙) − 𝒄0∥2 ≤ 𝑟 · 𝑑 log 𝑑. In this case, the algorithm returns the

47

approximation maintained by Phase I. Otherwise we must have come across a point where
∥𝒛𝑡(𝑙) − 𝒄0∥2 > 𝑟 · 𝑑 log 𝑑, and the algorithm proceeds with Phase II. We let 𝑡𝑠 in Line 17 mark the
point received that causes the algorithm to proceed to Phase II. We then perform a “transition”
on Line 18 that grows the ball of Phase I to its maximum size. This transition step makes the
analysis of the complete algorithm easier, as then the starting approximation for the second
phase is exactly 𝛼𝑡𝑠−1 = 1

𝑑 log 𝑑 . Then the algorithm runs the full update 𝒜full for the rest of the
points, including 𝒛𝑡𝑠 . For simplicity, we write our algorithm so that it ‘receives’ 𝒛𝑡𝑠 twice, once
for each phase. However, the first phase does not commit to an update for this point, and the
ellipsoids in Line 18 are not committed either; the algorithm does not commit to an update for
this point until Line 21.

Recall the approximation guarantee stated in Theorem 1:

1
𝛼𝑛
≤ 𝑂(min {𝑅/𝑟, 𝑑 log (𝑅/𝑟)}) (2.4.12)

We can interpret the approximation guarantee (2.4.12) by cases depending on if 𝑅/𝑟 ≥ 𝑑 log 𝑑
(i.e. if the algorithm ever enters the second phase):

Lemma 2.4.11. We have for all 𝑑 ≥ 2 that

min {𝑅/𝑟, 𝑑 log (𝑅/𝑟)} = Θ

({
𝑑 log (𝑅/𝑟) if 𝑅/𝑟 > 𝑑 log 𝑑
𝑅/𝑟 if 𝑅/𝑟 ≤ 𝑑 log 𝑑

)
.

Now, we claim a straightforward geometric fact – that the distance of the furthest 𝒛𝑡 to 𝒄0
approximates the circumradius of 𝑍 up to a constant factor. We will use this to show that Line
5 will be able to properly detect when 𝑅/𝑟 > 𝑑 log 𝑑 (again, up to a constant factor).

Lemma 2.4.12. Let 𝒄0 + 𝑟0𝐵𝑑2 ⊆ 𝑍, and 𝑅 = 𝑅(𝑍). Then,

𝑅 ≤ max
1≤𝑡(𝑙)≤𝑛

∥𝒄0 − 𝒛𝑡(𝑙) ∥2 ≤ 2 · 𝑅.

Proof. For the left inequality, observe that if we let 𝑟max = max1≤𝑡(𝑙)≤𝑛 ∥𝒄0 − 𝒛𝑡(𝑙) ∥2, then 𝑍 ⊆
𝒄0 + 𝑟max · 𝐵𝑑2 . For the right inequality, observe that for any containing ball 𝒄′ + 𝑅′ · 𝐵𝑑2 ⊇ 𝑍, its
diameter is 2𝑅′. But as 𝒄′+𝑅′ ·𝐵𝑑2 contains 𝒄0 and 𝒛1 , . . . , 𝒛𝑛 , we must have diam

(
𝒄′ + 𝑅′ · 𝐵𝑑2

)
≥

diam ({𝒄0} ∪ {𝒛1 , . . . , 𝒛𝑛}) and so 2𝑅′ ≥ 𝑟max. □

Next, we discuss the approximation guarantee that the algorithm achieves, depending on the
phase that it terminates with. We start with if the algorithm only stays in the local phase, in
which case we can readily apply the previous claim.

Lemma 2.4.13. If Algorithm 2 never enters Phase II, then its approximation guarantee satisfies
1
𝛼𝑛
≤

2𝑅/𝑟.

Proof. At the termination of Phase I, the algorithm produces approximation 𝛼(𝑙)𝑛 =

max1≤𝑡(𝑙)≤𝑛
∥𝒛

𝑡(𝑙)−𝒄0∥2
𝑟 . Using Lemma 2.4.12 we obtain

1
𝛼(𝑙)𝑛

= max
1≤𝑡(𝑙)≤𝑛

∥𝒛𝑡(𝑙) − 𝒄0∥2
𝑟

≤ 2𝑅
𝑟
,

48

as desired. □

The analysis in the case where the algorithm enters the full phase is more involved. We use
Lemma 2.4.10, which shows that the increase in approximation factor each iteration is not too
large compared to the increase in volume, to bound 1

𝛼𝑛
. We know that the volume of the final

ellipsoid 𝒄𝑛 +ℰ𝑛 must be bounded relative to 𝑅 ·𝐵𝑑2 , as the algorithm produces 𝒄𝑛 +𝛼𝑛 · ℰ𝑛 ⊆ 𝑍.
However, this leads to an upper bound that is still a function of 1

𝛼𝑛
.

Lemma 2.4.14. If Algorithm 2 enters Phase II, the approximation guarantee satisfies

1
𝛼𝑛
≤ 2

(
𝑑 log

(
1
𝛼𝑛

)
+ 𝑑 log

(
𝑅

𝑟

))
.

Proof. The algorithm transitions to Phase II at Line 17, starting at iteration 𝑡𝑠 . At each subsequent
iteration, we claim that Algorithm 1 guarantees 1

𝛼𝑡
= 1

𝛼𝑡−1
+ 2𝛾★

𝑡 . By Lemma 2.4.2-(1), we have
for all 𝑡𝑠 ≤ 𝑡 ≤ 𝑛−1 where the ellipsoids were updated that 1

𝛼𝑡
= 1

𝛼𝑡−1
+2𝛾★

𝑡 . When the ellipsoids
are not updated, this still holds, as in that case 𝛾★

𝑡 = 0.

As in Phase II the algorithm begins with 𝛼𝑡𝑠−1 = 1
𝑑 log 𝑑 , we have

1
𝛼𝑛

= 𝑑 log 𝑑 + 2
𝑛−1∑
𝑡=𝑡𝑠

𝛾★
𝑡 . (2.4.13)

Now applying Lemma 2.4.10 for each 𝑡, we have vol(ℰ𝑛) ≥ exp
(∑𝑛−1

𝑡=𝑡𝑠
𝛾★
𝑡

)
· vol(ℰ𝑡𝑠). Taking

logarithms gives

log
(

vol (ℰ𝑛)
vol (ℰ𝑡𝑠−1)

)
≥

𝑛−1∑
𝑡=𝑡𝑠

𝛾★
𝑡 . (2.4.14)

Recall that 𝒄0 + 𝑟 · 𝐵𝑑2 ⊆ 𝑍, and by Definition 2, 𝑍 ⊆ 𝒄𝑐 + 𝑅 · 𝐵𝑑2 for some center 𝒄𝑐 . By
Lemma 2.4.9, we have 𝒄𝑛 + 𝛼𝑛 · ℰ𝑛 ⊆ 𝑍, so that vol(ℰ𝑛) ≤ 1

𝛼𝑑𝑛
· vol(𝑅 · 𝐵𝑑2). As in Phase II we start

with ℰ𝑡𝑠−1 = 𝒄0 + 𝑟𝑑 log 𝑑 · 𝐵𝑑2 , this yields

𝑛−1∑
𝑡=𝑡𝑠

𝛾★
𝑡 ≤ log

(
vol(ℰ𝑛)

vol(ℰ𝑡𝑠−1)

)
by (2.4.13)

≤ 𝑑 log
(

1
𝛼𝑛

)
+ log

(
vol(𝑅 · 𝐵𝑑2)

vol(𝑟𝑑 log 𝑑 · 𝐵𝑑2)

)
by vol(ℰ𝑛) ≤

1
𝛼𝑑𝑛

vol(𝑅 · 𝐵𝑑2)

= 𝑑 log
(

1
𝛼𝑛

)
+ 𝑑 log

(
𝑅

𝑟𝑑 log 𝑑

)
≤ 𝑑 log

(
1
𝛼𝑛

)
+ 𝑑 log

(
𝑅

𝑟

)
− 𝑑 log 𝑑.

Plugging into (2.4.13) completes the proof of Lemma 2.4.14. □

Intuitively, 𝑥 ≤ 𝑎 + 𝑏 · log 𝑥 for some constants 𝑎, 𝑏 > 0 can only be true for bounded 𝑥, as
𝑥 = 𝜔(log 𝑥). As we showed 1/𝛼𝑛 satisfies a relation like this in Lemma 2.4.14, we develop this
intuition to give a quantitative upper bound on 1/𝛼𝑛 .

49

Lemma 2.4.15. If Algorithm 2 enters Phase II, then we have

1
𝛼𝑛
≤ 8𝑑(log 𝑑 + log 𝑅/𝑟).

Proof. Assume towards contradiction that 1
𝛼𝑛

> 8𝑑(log 𝑑+log 𝑅/𝑟). Observe then that 1
𝛼𝑛
− 3

4 · 1
𝛼𝑛

>
2𝑑(log 𝑑 + log 𝑅/𝑟). Using Lemma 2.4.14, we have

2(𝑑 log 1/𝛼𝑛 + 𝑑 log 𝑅/𝑟) ≥ 1
𝛼𝑛

> 2(𝑑 log 𝑑 + 𝑑 log 𝑅/𝑟) + 3
4 ·

1
𝛼𝑛

Simplifying the above inequality gives 2𝑑 log 1/𝑑·𝛼𝑛 > 3
4 · 1

𝛼𝑛
, i.e. 2 log 1/𝑑·𝛼𝑛 > 7

8 · 1
𝑑·𝛼𝑛 . It is clear

that this is impossible by looking at the graph of the function 𝑥 ↦→ 2 log 𝑥− 3
4𝑥, which is concave

with a maximum of 2(log(8/3) − 1) < 0. □

Now we combine the previous claims to prove the guarantees of Algorithm 2 and obtain
Theorem 1.

Proof of Theorem 1. We first discuss the approximation guarantee and correctness, then the
memory and runtime complexity of Algorithm 2.

Approximation guarantee We break the analysis of the approximation guarantee by cases,
depending on the aspect ratio. If 𝑅/𝑟 ≤ 1

2𝑑 log 𝑑, then by Lemma 2.4.12 we have max1≤𝑡(𝑙)≤𝑛 ∥𝒄0−
𝒛𝑡(𝑙) ∥2 ≤ 𝑟𝑑 log 𝑑, and the algorithm never enters Phase II. By Lemma 2.4.13, the final approxi-
mation factor is 2𝑅/𝑟. If 𝑅/𝑟 > 𝑑 log 𝑑, then by Lemma 2.4.12 we have max1≤𝑡(𝑙)≤𝑛 ∥𝒄0 − 𝒛𝑡(𝑙) ∥2 >
𝑟𝑑 log 𝑑, and the algorithm must enter Phase II. Then Lemma 2.4.15 applies, and the final
approximation factor is 𝑂(𝑑(log 𝑑 + log 𝑅/𝑟) = 𝑂(𝑑 log 𝑅/𝑟).

If 1
2𝑑 log 𝑑 < 𝑅/𝑟 ≤ 𝑑 log 𝑑, then it is possible for the algorithm to never enter Phase II or for it to

enter Phase II. Either way, we argue that the final approximation factor is 1
𝛼𝑛
≤ 𝑂 (𝑅/𝑟). If it does

not enter Phase II, then by Lemma 2.4.13, the approximation guarantee we get is 1
𝛼𝑛
≤ 𝑂(𝑅/𝑟).

If it does enter Phase II, then by Lemma 2.4.15 we have

1
𝛼𝑛
≤ 𝑂(𝑑 log 𝑑 + 𝑑 log 𝑅/𝑟)

Due to the assumption that 1
2𝑑 log 𝑑 < 𝑅/𝑟 ≤ 𝑑 log 𝑑, we also have in this case that 1

𝛼𝑛
≤ 𝑂(𝑅/𝑟).

Correctness By Lemma 2.4.1, to argue that the algorithm solves Problem 2.1 it is enough to
show that it is monotone, i.e. it satisfies the invariants of Definition 4. It is clear that the local
update in Phase I satisfies the invariants, as the outer ellipsoid is a ball of growing radius
and the inner ellipsoid is kept to the ball of radius 𝑟. It is also clear that after the algorithm
transitions to Phase II, all the full updates are monotone by Lemma 2.4.9 and the fact that the
starting approximation factor for this phase is is 𝛼𝑡𝑠−1 = 1

𝑑 log 𝑑 ≤
1
2 . As algorithm transitions to

Phase II, observe that on Line 18 the radius of the outer ellipsoid grows again to 𝑟𝑑 log 𝑑 before
applying the full update, so the first first full update of Phase II is also monotone.

50

Memory and runtime complexity The memory complexity of the algorithm is 𝑂(𝑑2). Ob-
serve that Algorithm 1 only stores a constant number of matrices in R𝑑×𝑑, vectors in R𝑑, or
constants, so its memory complexity is 𝑂(𝑑2). It is only instantiated once for each point
received in Phase II, so the memory complexity in this phase 𝑂(𝑑2). Finally, the memory
complexity in the first phase is also 𝑂(𝑑2) because it stores the same kind of quantities as
Algorithm 1.

To show the runtime of the algorithm is 𝑂(𝑛𝑑2), we show that the runtime to process each next
point is at most 𝑂(𝑑2). This is clear in Phase I, and during the transition to Phase II. For the full
update this is less clear, as Algorithm 1 uses both A𝑡−1 and A−1

𝑡−1 which naively would require
inverting a matrix on each iteration. However, if we represent A using the SVD (see the next
section and Lemma 2.4.17), we can implement the update in 𝑂(𝑑2) time. This would require
that A𝑡𝑠−1 be given in SVD form as well for the first full update, but it is already in that form as
a scaled identity matrix.

Put together, these complete the proof of Theorem 1. □

Efficient implementation of the full update step

In this section, we use a method similar to that in Algorithm 2 from [MMO22] to show that the
full update step can be implemented in 𝑂(𝑑2) time. In particular, we use the same subroutine
SVDRankOneUpdate with signature

(U′,Σ′,V′) = SVDRankOneUpdate((U,Σ,V), 𝒚1 , 𝒚2) (2.4.15)

where the result U′Σ′(V′)⊤ is the SVD of the matrix UΣV⊤+𝒚1𝒚
⊤
2 . Stange [Sta08] shows that this

procedure be done in 𝑂(𝑑2 log 𝑑) time. We rewrite Algorithm 1 in Algorithm 3 to make it clear
how to use the SVD representation and the efficient rank-1 update to efficiently implement the
full update. One can readily see that Algorithm 3 has the exact same behavior as Algorithm 1,
and so gives the same approximation and correctness guarantees.

Algorithm 3 Efficient full update step𝒜full

input: (U𝑡−1 ,Σ𝑡−1 ,V𝑡−1) ∈ R𝑑×𝑑 , 𝒄𝑡−1 ∈ R𝑑 , 𝛼𝑡−1 ∈ [0, 1
2], 𝒛𝑡 ∈ R𝑑

output: (U𝑡 ,Σ𝑡 ,V𝑡) ∈ R𝑑×𝑑 , 𝒄𝑡 ∈ R𝑑 , 𝛼𝑡 ∈ [0, 𝛼𝑡]
1: Let 𝒖 = U𝑡−1Σ𝑡−1V⊤𝑡−1(𝒛𝑡 − 𝒄𝑡−1), 𝒘 = 𝒖

∥𝒖∥2
2: if ∥𝒖∥2 > 1 then

3: Let 𝛾★
𝑡 be such that 𝑎(𝛾★

𝑡) + 𝑐(𝛾★
𝑡) = ∥𝒖∥

4: 𝒚1 =

(
1

𝑎(𝛾★𝑡)
− 1

𝑏(𝛾★𝑡)

)
𝒘 , 𝒚2 = V𝑡−1Σ𝑡−1U⊤𝑡−1𝒘

5: (U𝑡 ,Σ𝑡 ,V𝑡) = SVDRankOneUpdate((U𝑡−1 ,
1

𝑏(𝛾★𝑡)
Σ𝑡−1 ,V𝑡−1), 𝒚1 , 𝒚2)

6: return (U𝑡 ,Σ𝑡 ,V𝑡), 𝒄𝑡 = 𝒄𝑡−1 + 𝑐(𝛾★
𝑡)V𝑡−1Σ−1

𝑡−1U⊤𝑡−1𝒘 , 𝛼𝑡 = 𝛼′(𝛾★
𝑡)

7: else

8: return (U𝑡 ,Σ𝑡 ,V𝑡) = (U𝑡−1 ,Σ𝑡−1 ,V𝑡−1), 𝒄𝑡 = 𝒄𝑡−1 , 𝛼𝑡 = 𝛼𝑡−1

Remark 2.4.16. We briefly explain why Line 3, finding 𝛾★
such that 𝑎(𝛾★) + 𝑐(𝛾★) = ∥𝒖∥ can be

implemented efficiently. This is a one-dimensional optimization problem, and 𝛾 ↦→ 𝑎(𝛾) + 𝑐(𝛾) using

𝑎, 𝑐 as defined in (2.4.1) is monotone increasing, so finding an approximate 𝛾★
can be done efficiently

with binary search. In particular, we can choose 𝛾★
to be a slight overestimate so the update is still

monotone after slightly increasing 𝛼𝑡 . This does not affect the final approximation guarantee beyond

constant factors.

51

This algorithm performs a constant number of taking norms of vectors, matrix-vector products,
and algebraic operations; as well as one rank-one SVD update. As explained in Remark 2.4.16,
finding 𝛾∗

𝑖
can also be done in effectively constant time. Thus for our runtime guarantee, we

have:

Lemma 2.4.17. Algorithm 3 runs in time 𝑂(𝑑2 log 𝑑).

2.4.5. Fully-online asymmetric ellipsoidal rounding algorithm

In this subsection, we prove Theorem 3. See Algorithm 4.

Algorithm 4 Fully online asymmetric ellipsoidal rounding
1: Input: Stream of points 𝒛𝑡 ; monotone update rule 𝒜 (Definition 4) that takes as input

the previous ellipsoid matrix A, center 𝒄, approximation factor 𝛼, and update point 𝒛 and
outputs the next ellipsoid matrix A′, center 𝒄′, and approximation factor 𝛼′.

2: Output: Ellipsoid ℰ, center 𝒄, and scale 𝛼 ∈ (0, 1) such that 𝒄+𝛼 · ℰ ⊆ conv ({𝒛1 , . . . , 𝒛𝑛}) ⊆
𝒄 + ℰ.

3: Receive 𝒛1; set A = I𝑑, 𝑑1 = 1, 𝒄1 = 𝒛1, 𝛼1 = 1.
4: for 𝑡 = 2, . . . , 𝑛 do

5: Receive 𝒛𝑡 .
6: if 𝒛𝑡 − 𝒄𝑡−1 ∉ Span (𝒛1 − 𝒄𝑡−1 , . . . , 𝒛𝑡−1 − 𝒄𝑡−1) then ⊲ Irregular update step.

7: Let 𝒗1 , . . . , 𝒗𝑑𝑡−1 be the singular vectors of A corresponding to the semiaxes of ℰ𝑡−1.
8: Let 𝑑𝑡 = 𝑑𝑡−1 + 1.

9: Let 𝒛′
𝑑𝑡
B

𝒛𝑡−
∑𝑑𝑡−1
𝑖=1 𝒗 𝑖 ⟨𝒗 𝑖 ,𝒛𝑡⟩𝒛𝑡−∑𝑑𝑡−1
𝑖=1 𝒗 𝑖 ⟨𝒗 𝑖 ,𝒛𝑡⟩

2

.

10: Let M B I𝑑 − 1〈
𝒗′
𝑑𝑡
,𝒛

〉 · (𝒛𝑡 − √1 + 2𝛼𝑡−1 · 𝒗′𝑑𝑡
)
(𝒗′

𝑑𝑡
)𝑇 .

11: Update A𝑡 ← A𝑡−1M. ⊲ Use (2.4.15) of Stange [Sta08] to update 𝒗1 , . . . , 𝒗𝑑.

12: Update 𝒄𝑡 =
𝛼𝑡−1

1+2𝛼𝑡−1
· 𝒛𝑡 +

(
1 − 𝛼𝑡−1

1+2𝛼𝑡−1

)
· 𝒄𝑡−1.

13: Update 1/𝛼𝑡 ← 1/𝛼𝑡−1 + 1.
14: else

15: A𝑡 , 𝒄𝑡 , 𝛼𝑡 = 𝒜(A𝑡−1 , 𝒄𝑡−1 , 𝛼𝑡−1 , 𝒛𝑡)
16: 𝑑𝑡 ← 𝑑𝑡−1.
17: Output: (𝒄𝑛 , ℰ𝑛 , 𝛼𝑛).

To prove Theorem 3, we need to show that our irregular update step (a timestep 𝑡 when we have
to update the dimensionality of our ellipsoid ℰ𝑡−1 – see Line 6 of Algorithm 4) still maintains
the invariants we desire (Definition 4).

Our plan is to first consider the special case of the irregular update where the new point to
cover is conveniently located with respect to our current ellipsoids. We will see later that this
special case is nearly enough for us to conclude the proof.

Lemma 2.4.18. Let 𝑍 ⊂ R𝑑 be a convex body where 𝑍 lies in Span (𝒗1 , . . . , 𝒗𝑑′) for 𝑑′ < 𝑑. For

0 < 𝛼 ≤ 1, suppose we have

𝛼 · {𝒛 ∈ Span (𝒗1 , . . . , 𝒗𝑑′) : ∥𝒛∥2 ≤ 1} ⊆ 𝑍 ⊆ {𝒛 ∈ Span (𝒗1 , . . . , 𝒗𝑑′) : ∥𝒛∥2 ≤ 1} .

52

Then, for any 𝒗𝑑′+1 such that ⟨𝒗 𝑖 , 𝒗𝑑′+1⟩ = 0 for all 𝑖 ∈ [𝑑′] and for which

ℰ′ B
{
𝒛 ∈ Span (𝒗1 , . . . , 𝒗𝑑′+1) : ∥𝒛∥2 ≤

1 + 𝛼√
1 + 2𝛼

}
𝒄 B

𝛼√
1 + 2𝛼

· 𝒗𝑑′+1

we have

𝒄 + 1
1 + 1/𝛼 · ℰ

′ ⊆ conv
(
𝑍 ∪

{√
1 + 2𝛼 · 𝒗𝑑′+1

})
⊆ 𝒄 + ℰ′.

Proof of Lemma 2.4.18. We will show that the pair of ellipsoids given below satisfy the conditions
promised by the statement of Lemma 2.4.18.{

𝒛 ∈ Span (𝒗1 , . . . , 𝒗𝑑′+1) : ∥𝒛∥2 ≤
1 + 𝛼√
1 + 2𝛼

}
+ 𝛼√

1 + 2𝛼
· 𝒗𝑑′+1 (2.4.16){

𝒛 ∈ Span (𝒗1 , . . . , 𝒗𝑑′+1) : ∥𝒛∥2 ≤
1 + 𝛼√
1 + 2𝛼

}
· 𝛼

1 + 𝛼
+ 𝛼√

1 + 2𝛼
· 𝒗𝑑′+1 (2.4.17)

Clearly, the two ellipsoids given above are apart by a factor of 1+𝛼/𝛼 = 1/𝛼 + 1, which means
the approximation factor increases by exactly 1 as a result of this update. It now suffices to
show that the ellipsoid described by (2.4.16) contains conv

(
𝐵𝑑
′

2 ∪
{√

1 + 2𝛼 · 𝒗𝑑′+1
})

and that
the ellipsoid described by (2.4.17) is contained by the cone whose base is 𝛼 ·𝐵𝑑′2 and whose apex
is
√

1 + 2𝛼 · 𝒗𝑑′+1.

For the first part, it suffices to verify that every point 𝒛 ∈ 𝑍 and
√

1 + 2𝛼 · 𝒗𝑑′+1 is contained by
(2.4.16). We give both the calculations below, from which the result for (2.4.16) follows.

𝒛 ∈ 𝑍 :
𝒛 − 𝛼√

1 + 2𝛼
· 𝒗𝑑′+1

2
=

√
∥𝒛∥22 +

𝛼2

1 + 2𝛼 ≤
1 + 𝛼√
1 + 2𝛼

𝒛 =
√

1 + 2𝛼 · 𝒗𝑑′+1 :
𝒛 − 𝛼√

1 + 2𝛼
· 𝒗𝑑′+1

2
=
√

1 + 2𝛼 − 𝛼√
1 + 2𝛼

=
1 + 𝛼√
1 + 2𝛼

We now analyze (2.4.17). Our task is to show the below inclusion.{
𝒛 ∈ Span (𝒗1 , . . . , 𝒗𝑑′+1) :

𝒛 − 𝛼√
1 + 2𝛼

· 𝒗𝑑′+1

2
≤ 𝛼√

1 + 2𝛼

}
⊆conv

(
𝛼 · {𝒛 ∈ Span (𝒗1 , . . . , 𝒗𝑑) : ∥𝒛∥2 ≤ 1} ∪

{√
1 + 2𝛼 · 𝒗𝑑′+1

})
Let 𝒘 be an arbitrarily chosen unit vector in Span (𝒗1 , . . . , 𝒗𝑑′). Observe that it is enough to
show{

𝒛 ∈ Span (𝒘 , 𝒗𝑑′+1) :
𝒛 − 𝛼√

1 + 2𝛼
· 𝒗𝑑′+1

2
≤ 𝛼√

1 + 2𝛼

}
⊆ conv

(
±𝛼 ·𝒘 ,

√
1 + 2𝛼 · 𝒗𝑑′+1

)
.

Since the above is a two-dimensional problem and that ⟨𝒘 , 𝒗𝑑′+1⟩ = 0, it is equivalent to show
that the inradius of the triangle with vertices (−𝛼, 0), (𝛼, 0), and (0,

√
1 + 2𝛼) is 𝛼/√1+2𝛼 and that

its incenter is (0, 𝛼/√1+2𝛼).

Recall that the inradius of a triangle can be written as 𝐾/𝑠 where 𝐾 is the area of the triangle
(in this case, 𝛼

√
1 + 2𝛼) and 𝑠 is the semiperimeter of the triangle (in this case, 1 + 2𝛼). This

53

implies that the inradius is indeed 𝛼/√1+2𝛼. Finally, since the triangle in question is isosceles
with its apex being the 𝑦-axis, the 𝑥-coordinate of its incenter must be 0. These observations
imply that the incenter is (0, 𝛼/√1+2𝛼).

This is sufficient for us to conclude the proof of Lemma 2.4.18. □

We will now see that the analysis for the convenient update that we gave in Lemma 2.4.18 is
nearly enough for us to fully analyze the irregular update step. See Lemma 2.4.19, where we
analyze the irregular update step in full generality (up to translating by 𝒄𝑡−1).

Lemma 2.4.19. Let 𝑍 ⊂ R𝑑 be a convex body such that 𝑍 lies in a subspace 𝐻 of dimension 𝑑′ < 𝑑. Let

ℰ be an ellipsoid and let 0 < 𝛼 ≤ 1 be such that

𝛼 · ℰ ⊆ 𝑍 ⊆ ℰ .

Let 𝒛 ∉ 𝐻. Then, there exists a center 𝒄 and an ellipsoid ℰ′ such that

𝒄 + 1
1 + 1/𝛼 · ℰ

′ ⊆ conv (𝑍 ∪ {𝒛}) ⊆ 𝒄 + ℰ′.

Proof of Lemma 2.4.19. Recall that 𝒗1 , . . . , 𝒗𝑑′ ∈ R𝑑 are the unit vectors corresponding to the
semiaxes of ℰ; notice that these form a basis for𝐻. Observe that 𝒗𝑑′+1 is a unit vector orthogonal
to 𝒗1 , . . . , 𝒗𝑑′ such that 𝒛 can be expressed as

∑𝑑′+1
𝑖=1 𝒗 𝑖 ⟨𝒗 𝑖 , 𝒛⟩.

As stated in Algorithm 4, let

M B I𝑑 −
1〈

𝒗′
𝑑𝑡
, 𝒛𝑡

〉 · (𝒛𝑡 − √1 + 2𝛼 · 𝒗′𝑑𝑡
)
(𝒗′𝑑𝑡)

𝑇 .

We calculate

M𝒛𝑡 = 𝒛𝑡 −
1〈

𝒗′
𝑑𝑡
, 𝒛𝑡

〉 · (𝒛𝑡 − √1 + 2𝛼 · 𝒗′𝑑𝑡
)
(𝒗′𝑑𝑡)

𝑇𝒛𝑡 = 𝒛𝑡 − 𝒛𝑡 +
√

1 + 2𝛼 · 𝒗′𝑑𝑡 =
√

1 + 2𝛼 · 𝒗′𝑑𝑡 .

By the definition of A𝑡−1, we have

A𝑡−1M𝒛𝑡 =
√

1 + 2𝛼 · A𝑡−1𝒗′𝑑𝑡 =
√

1 + 2𝛼 · 𝒗′𝑑𝑡 .

Next, for any 𝒛 ∈ 𝑍, we have 𝒛 ∈ 𝐻𝑡−1. This means that

M𝒛 = 𝒛 − 1〈
𝒗′
𝑑𝑡
, 𝒛

〉 · (𝒛 − √1 + 2𝛼 · 𝒗′𝑑𝑡
)
(𝒗′𝑑𝑡)

𝑇𝒛 = 𝒛 − 0 = 𝒛.

By Lemma 2.4.18, we know for

A𝑡−1M𝒄𝑡 =
𝛼√

1 + 2𝛼
· 𝒗′𝑑𝑡

A𝑡−1Mℰ𝑡 =
{
𝒛 ∈ Span

(
𝒗1 , . . . , 𝒗𝑑𝑡−1 , 𝒗

′
𝑑𝑡

)
: ∥𝒛∥2 ≤ 1

}

54

that

A𝑡−1M𝒄𝑡 +
1

1 + 1/𝛼𝑡−1
· A𝑡−1Mℰ𝑡 ⊆ conv (A𝑡−1M · 𝑍 ∪ {A𝑡−1M𝒛𝑡}) ⊆ A𝑡−1M𝒄𝑡 +A𝑡−1Mℰ𝑡

and, since A𝑡−1M is invertible (owing to the invertibility of A𝑡−1 and M),

𝒄𝑡 +
1

1 + 1/𝛼𝑡−1
· ℰ𝑡 ⊆ conv (𝑍 ∪ {𝒛𝑡}) ⊆ 𝒄𝑡 + ℰ𝑡 .

Finally, note that

𝒄𝑡 =
𝛼√

1 + 2𝛼
·M−1A−1

𝑡−1𝒗
′
𝑑𝑡
=

𝛼
1 + 2𝛼 · 𝒛𝑡

ℰ𝑡 = {𝒛 ∈ Span (𝒛1 , . . . , 𝒛𝑡) : ∥A𝑡−1M𝒛∥2 ≤ 1}

and then translate by 𝒄𝑡−1, which concludes the proof of Lemma 2.4.19. □

We are now ready to prove Theorem 3.

Proof of Theorem 3. Using Lemma 2.4.19, we have that the ellipsoids maintain our desired in-
variants (Definition 4) throughout the process. Hence, Algorithm 4 maintains an ellipsoidal
approximation to conv ({𝒛1 , . . . , 𝒛𝑡}) for all 𝑡.

It remains to verify the approximation factor 𝛼𝑡 of Algorithm 4.

Consider a timestep 𝑡. For every 𝑡′ ≤ 𝑡, let 𝐻𝑡′ = Span (𝒛1 , . . . , 𝒛𝑡′), 𝑟𝑡′ = 𝑟(𝑍𝑡′) be the inradius of
𝑍𝑡′ = conv (𝒛1 , . . . , 𝒛𝑡′), and 𝑅𝑡′ = 𝑅(𝑍𝑡′) be the circumradius of 𝑍𝑡 . Let 𝑟 = min𝑡′≤𝑡 𝑟𝑡′. Consider
the 𝑑-dimensional ellipsoid 𝑇(ℰ𝑡′) which is exactly equal to ℰ𝑡′ in the space 𝐻𝑡′ and whose
remaining semiaxes orthogonal to 𝐻𝑡′ are equal and have length 𝑟. Observe that for a regular
update step 𝑡′ (with 𝑑𝑡′ = 𝑑𝑡′−1), we have

vol𝑑𝑡′ (ℰ𝑡′)
vol𝑑𝑡 (ℰ𝑡′−1)

=
vol𝑑(𝑇(ℰ𝑡′))

vol𝑑(𝑇(ℰ𝑡′−1))
.

Now applying the evolution condition (2.2.3) to the update restricted to 𝐻𝑡′, we get

1
𝛼𝑡′
− 1

𝛼𝑡′−1
≤ 𝐶 log

vol𝑑𝑡′ (ℰ𝑡)
vol𝑑𝑡′ (ℰ𝑡′−1)

= 𝐶 log vol𝑑(𝑇(ℰ𝑡′))
vol𝑑(𝑇(ℰ𝑡′−1))

.

We have obtained the following upper bound on the approximation-factor increase:

1
𝛼𝑡′
− 1

𝛼𝑡′−1
≤

{
1 if 𝑡′ is an irregular update step
𝐶 log

(
vol𝑑(𝑇(ℰ𝑡′))

vol𝑑(𝑇(ℰ𝑡′−1))

)
otherwise

(2.4.18)

Let 𝑇reg consist of all the timesteps 𝑡′ ≤ 𝑡 where we perform a regular update. Then we have,

1
𝛼𝑡
− 1

𝛼0
= 𝛼0 +

𝑡∑
𝑡′=1

(
1
𝛼𝑡′
− 1

𝛼𝑡′−1

)
≤ 𝑑𝑡 + 𝐶

∑
𝑡′∈𝑇reg

log
(

vol𝑑(𝑇(ℰ𝑡′))
vol𝑑(𝑇(ℰ𝑡′−1))

)
.

Now we show that log
(

vol𝑑(𝑇(ℰ𝑡′))
vol𝑑𝑡 (𝑇(ℰ𝑡′−1))

)
≥ 0 for an irregular step: let 𝜎1 ≥ · · · ≥ 𝜎𝑑 and 𝜎′1 ≥ · · · ≥ 𝜎′

𝑑

be the lengths of semi-axes of 𝑇(ℰ𝑡′) and 𝑇(ℰ𝑡′−1), respectively. Then 𝜎𝑖 ≥ 𝜎′
𝑖
for 1 ≤ 𝑖 ≤ 𝑑𝑡′ − 1,

since ℰ𝑡′−1 ⊂ ℰ𝑡′; 𝜎𝑑𝑡′ ≥ 𝑟𝑡′ ≥ 𝑟 = 𝜎′
𝑑𝑡′

; and 𝜎𝑖 = 𝑟 = 𝜎′
𝑖
for 𝑖 > 𝑑𝑡′. Therefore,

log
(

vol𝑑(𝑇(ℰ𝑡′))
vol𝑑𝑡 (𝑇(ℰ𝑡′−1))

)
= log

(
𝜎1 · . . . · 𝜎𝑑
𝜎′1 · . . . · 𝜎′𝑑

)
≥ log 1 = 0.

55

Using this inequality and plugging in 𝛼0 = 1, we get

1
𝛼𝑡

= 1 + 𝑑𝑡 + 𝐶
∑
𝑡′∈𝑇reg

log
(

vol𝑑(𝑇(ℰ𝑡′))
vol𝑑(𝑇(ℰ𝑡′−1))

)
≤ 1 + 𝑑𝑡 + 𝐶

𝑡∑
𝑡′=1

log
(

vol𝑑(𝑇(ℰ𝑡′))
vol𝑑(𝑇(ℰ𝑡′−1))

)
≲ 𝑑𝑡 + log

(
vol𝑑(𝑇(ℰ𝑡))
vol𝑑(𝑇(ℰ0))

)
≲ 𝑑𝑡 + log

(
(𝑅𝑡/𝛼𝑡)𝑑𝑡 𝑟𝑑−𝑑𝑡

𝑟𝑑

)
≲ 𝑑𝑡 + 𝑑𝑡 log

(
𝑅𝑡

𝛼𝑡𝑟

)
.

We conclude that

1
𝛼𝑡
≲ 𝑑𝑡 + 𝑑𝑡 log

(
𝑅𝑡

𝑟

)
+ 𝑑𝑡 log 𝑑𝑡 .

This concludes the proof of Theorem 3. □

2.4.6. Aspect ratio-independent bounds and proof of Theorem 4

To prove Theorem 4, we first establish Lemma 2.4.20.

Lemma 2.4.20. Let 𝑡 be an iteration corresponding to an irregular update step in Algorithm 4. Then,

vol𝑑𝑡−1

(
𝐵
𝑑𝑡−1
2

)
vol𝑑𝑡

(
𝐵
𝑑𝑡
2

) · vol𝑑𝑡 (ℰ𝑡)
vol𝑑𝑡−1 (ℰ𝑡−1)

≥
𝒛⊥𝑡 2

2

where

𝒛⊥𝑡 is the length of the component of 𝒛𝑡 in the orthogonal complement of Span (𝒛1 , . . . , 𝒛𝑡−1).

Proof of Lemma 2.4.20. By affine invariance, we can apply an affine transformation to map 𝒛𝑡
and ℰ𝑡−1 to a convenient position. Hence, following the proof of Lemma 2.4.18, without loss of
generality, suppose we have ℰ𝑡−1 = 𝐵

𝑑𝑡−1
2 and 𝒛𝑡 =

√
1 + 2𝛼 · 𝒆𝑑𝑡 . By Lemma 2.4.18, the ellipsoid

ℰ𝑡 is a ball of radius (1+𝛼)/√1+2𝛼. Let 𝑧 B
√

1 + 2𝛼. We now have

vol𝑑𝑡−1

(
𝐵
𝑑𝑡−1
2

)
vol𝑑𝑡

(
𝐵
𝑑𝑡
2

) · vol𝑑𝑡 (ℰ𝑡)
vol𝑑𝑡−1 (ℰ𝑡−1)

=

(
1 + 𝛼√
1 + 2𝛼

)𝑑𝑡
≥ 1 >

∥𝒛𝑡 ∥2
2

since ∥𝒛𝑡 ∥2 =
√

1 + 2𝛼 ≤
√

3 < 2. This concludes the Proof of Lemma 2.4.20. □

We will also need Lemma 2.4.21, which we take from Gover and Krikorian [GK10].

Lemma 2.4.21. Let M ∈ R𝑟×𝑑 have linearly independent rows 𝒎1 , . . . ,𝒎𝑟 . Then,

𝑟∏
𝑖=1
∥𝒎 𝑖 ∥2 =

√
det

(
MM𝑇

)
.

We are now ready to prove Theorem 4.

56

Proof of Theorem 4. Our approach is reminiscent of that used in the proof of Theorem 1.5 in
Woodruff and Yasuda [WY22a].

By applying a translation to all points, we may assume without loss of generality that 𝒛1 = 0.
We will prove the guarantee for the last timestamp 𝑡 = 𝑛 to simplify the notation. By replacing
𝑛 with 𝑛′, we can get a proof for any time stamp 𝑡 = 𝑛′.

Let 𝑆 be the set of timestamps of irregular update steps excluding the first step. Since the
update rule satisfies the evolution condition (2.2.3), we have for all 𝑡 ∉ 𝑆 (recall that 𝑑𝑡 = 𝑑𝑡−1
for 𝑡 ∉ 𝑆)

vol𝑑𝑡 (ℰ𝑡)
vol𝑑𝑡−1 (ℰ𝑡−1)

≥ exp
(

1
𝛼𝑡
− 1

𝛼𝑡−1

)
.

Next, by Lemma 2.4.20, we have for every irregular update step 𝑡 > 1

vol𝑑𝑡−1

(
𝐵
𝑑𝑡−1
2

)
vol𝑑𝑡

(
𝐵
𝑑𝑡
2

) · vol𝑑𝑡 (ℰ𝑡)
vol𝑑𝑡−1 (ℰ𝑡−1)

≥
𝒛⊥𝑡 2

2 .

Here, we assume that vol0({0}) = 1 and define
𝒛⊥2 = ∥𝒛2∥. Inductively combining the above

for all 𝑡 > 1 gives

vol𝑑𝑛 (ℰ𝑛) ≥
∏
𝑡∉𝑆

exp
(

1
𝛼𝑡
− 1

𝛼𝑡−1

)
·
∏
𝑡∈𝑆

𝒛⊥𝑡 2
2 ·

𝑑𝑛∏
𝑗=1

vol𝑗
(
𝐵
𝑗

2

)
vol𝑗−1

(
𝐵
𝑗−1
2

)
=

∏
𝑡∉𝑆

exp
(

1
𝛼𝑡
− 1

𝛼𝑡−1

)
·
∏
𝑡∈𝑆

𝒛⊥𝑡 2
2 · vol𝑑𝑛

(
𝐵
𝑑𝑛
2

)
(2.4.19)

Here we used that vol0(ℰ0) = vol0(𝐵0
2) = 1. Now invoking Lemma 2.4.21, we get∏

𝑡∈𝑆

𝒛⊥𝑡 2
2 ≥ 2−|𝑆 |

√
det

(
Z|𝑆Z|𝑇

𝑆

)
≥ 2−|𝑆 | = 2−𝑑𝑛 ,

where we used that det
(
Z|𝑆Z|𝑇

𝑆

)
≥ 1 because all the vectors 𝒛𝑡 have integer coordinates.

Moreover, since all coordinates are at most 𝑁 in absolute value, all the vectors 𝒛𝑡 have length at

most 𝑁
√
𝑑. Therefore, vol(ℰ𝑛)

vol
(
𝐵
𝑑𝑛
2

) ≤ (
𝑁
√
𝑑
)𝑑𝑛

. We plug these bounds back into (2.4.19), rearrange,

and take the logarithm of both sides, yielding∑
𝑡∉𝑆

1
𝛼𝑡
− 1

𝛼𝑡−1
≲ 𝑑𝑛 log (𝑑𝑁) .

Finally, by (2.4.18), we have 1
𝛼𝑡
− 1

𝛼𝑡−1
= 1 for every 𝑡 ∈ 𝑆. Combining everything gives∑

𝑡≤𝑛

1
𝛼𝑡
− 1

𝛼𝑡−1
≲ 𝑑𝑛 log (𝑑𝑁) + |𝑆 | ≲ 𝑑𝑛 log (𝑑𝑁) ,

thereby concluding the proof of Theorem 4. □

57

2.5. Improved analysis for symmetric polytopes (Proof of Theorem 2)

In this section, we specialize the analysis framework developed in this chapter to the case when
the polytope 𝑍 is symmetric – that is, when in each timestep 𝑡, we receive both 𝒛𝑡 and −𝒛𝑡 . We
then prove Theorem 2.

Bibliographic notes. The material in this section is derived from the paper [MMO22]. Although
the algorithm is the same as the one in that paper, the analysis given here is considerably simpler
and fits within the framework developed earlier in this chapter.

2.5.1. Monotone update rule for symmetric ellipsoidal approximation

The main result of this subsection is Lemma 2.5.1.

Lemma 2.5.1. The update rule given by

A𝑡 =

{
A𝑡−1 −

(
1 − 1

∥A𝑡−1𝒛𝑡 ∥2

) (
(A𝑡−1𝒛𝑡)(A𝑡−1𝒛𝑡)⊤

∥A𝑡−1𝒛𝑡 ∥22

)
A𝑡−1 if ∥A𝑡−1𝒛𝑡 ∥2 > 1

A𝑡−1 otherwise

𝒄𝑡 = 0

𝛼𝑡 =

∥A𝑡−1𝒛𝑡 ∥2𝛼𝑡−1√
∥A𝑡−1𝒛𝑡 ∥22−𝛼2

𝑡−1

· 1√√√
1+

(
∥A𝑡−1𝒛𝑡 ∥2𝛼𝑡−1√
∥A𝑡−1𝒛𝑡 ∥22−𝛼2

𝑡−1

)2
if ∥A𝑡−1𝒛𝑡 ∥2 > 1

𝛼𝑡−1 otherwise

is a monotone update rule when in each timestep the algorithm receives both points ±𝒛𝑡 .

The goal of the rest of this subsection is to prove Lemma 2.5.1.

The monotone update rule we use in this section is much easier to describe than in the general
case. Let 0 = 𝒄1 = · · · = 𝒄𝑛 – that is, we never shift the center. Let A𝑡−1 denote the matrix for
the ellipsoid output at timestep 𝑡, so that we have ∥A𝑡−1𝒛 𝑖 ∥2 ≤ 1 for all 𝑖 ≤ 𝑡 − 1. Given a new
point pair ±𝒛𝑡 , we set A𝑡 according to the formula

A𝑡 = A𝑡−1 −
(
1 − 1
∥A𝑡−1𝒛𝑡 ∥2

) (
(A𝑡−1𝒛𝑡) (A𝑡−1𝒛𝑡)⊤

∥A𝑡−1𝒛𝑡 ∥22

)
A𝑡−1.

This formula has a natural interpretation – it is the minimum volume ellipsoid that covers both
the ellipsoid ℰ𝑡−1 =

{
𝒙 ∈ R𝑑 : ∥A𝑡−1𝒙∥2 ≤ 1

}
and the new point pair ±𝒛𝑡 . Specifically, see

Lemma 2.5.2.

Lemma 2.5.2. Let A𝑡−1 ∈ R𝑑×𝑑 and let

A𝑡 = A𝑡−1 −
(
1 − 1
∥A𝑡−1𝒛𝑡 ∥2

) (
(A𝑡−1𝒛𝑡) (A𝑡−1𝒛𝑡)⊤

∥A𝑡−1𝒛𝑡 ∥22

)
A𝑡−1.

If ℰ𝑡−1 B
{
𝒙 ∈ R𝑑 : ∥A𝑡−1𝒙∥2 ≤ 1

}
, then the ellipsoid ℰ𝑡 B

{
𝒙 ∈ R𝑑 : ∥A𝑡𝒙∥2 ≤ 1

}
is the mini-

mum volume ellipsoid that contains both ℰ𝑡−1 and ±𝒛𝑡 .

58

Although we do not directly use Lemma 2.5.2, it raises an interesting conceptual point, and so
we give a proof below.

Proof of Lemma 2.5.2. In this proof, in an abuse of notation, let M−1 denote the pseudoinverse
of M and let det (M) of a singular matrix be the product of its nonzero singular values.

Note that the volume of the ellipsoid determined by A𝑡 is proportional to det
(
A−1
𝑡

)
. Therefore,

A𝑡 is the solution to the following optimization problem, where we use that the volume of the
ellipsoid determined by A𝑡 is proportional to det

(
A−1
𝑡

)
.

max det (A𝑡) such that A𝑡 ⪯ A𝑡−1 and ∥A𝑡𝒛𝑡 ∥2 ≤ 1

Additionally, since det (AB) = det (A) · det (B), we have that this objective is invariant under
linear transformations. It thus follows that our objective can be rewritten as

max det (A𝑡) such that A𝑡 ⪯ A𝑡−1 and ∥A𝑡𝒛𝑡 ∥2 ≤ 1
≡max det

(
A𝑡 · A−1

𝑡−1
)

such that A𝑡 · A−1
𝑡−1 ⪯ I and

(A𝑡 · A−1
𝑡−1

)
A𝑡−1𝒛𝑡

2 ≤ 1

≡max det
(
Â
)

such that Â ⪯ I and
ÂA𝑡−1𝒛𝑡

2
≤ 1,

where the last line follows from using the intermediate variable Â = A𝑡 · A−1
𝑡−1.

In other words, after the transformation, the problem is equivalent to finding the minimum
volume ellipsoid that contains (i) the unit ball and (ii) point A𝑡−1𝒛𝑡 . Geometrically, it is clear
what the optimal ellipsoid for this problem is: one of its semi-axes is A𝑡−1𝒛𝑡 ; all others are
orthogonal to A𝑡−1𝒛𝑡 and have length 1 (this can be formally proved using symmetrization).
However, we do not use this observation and derive a formula for Â using linear algebra.

We first give an upper bound on the objective value of the above optimization problem.
Since Â ⪯ I, we have that all its singular values must be at most 1. Additionally, since
1 ≥

ÂA𝑡−1𝒛𝑡

2
≥ 𝜎min

(
Â
)
· ∥A𝑡−1𝒛𝑡 ∥2, we have that at least one singular value of Â must be

≤ 1/∥A𝑡−1𝒛𝑡 ∥2. Putting everything together and using the fact that the determinant is the product
of the singular values gives det

(
Â
)
≤ 1/∥A𝑡−1𝒛𝑡 ∥2.

We now show that there exists a setting of Â that achieves this upper bound. Let 𝒗1 be a unit
vector in the direction of A𝑡−1𝒛𝑡 and 𝒗2 , . . . , 𝒗𝑑 complete the orthonormal basis for R𝑑 from 𝒗1,
and write Â = 1

∥A𝑡−1𝒛𝑡 ∥2
𝒗1𝒗⊤1 +

∑𝑑
𝑖=2 𝒗 𝑖𝒗

⊤
𝑖

. We will show that Â satisfies the constraints imposed
by the optimization problem. Since we have ∥A𝑡−1𝒛𝑡 ∥2 ≥ 1 (as we impose that 𝒛𝑡 ∉ ℰA𝑡−1), the
fact that Â ⪯ I follows immediately. For the second constraint, we writeÂA𝑡−1𝒛𝑡

2
=

(

1
∥A𝑡−1𝒛𝑡 ∥2

𝒗1𝒗⊤1 +
𝑑∑
𝑖=2

𝒗 𝑖𝒗⊤𝑖

)
A𝑡−1𝒛𝑡

2

=

 A𝑡−1𝒛𝑡
∥A𝑡−1𝒛𝑡 ∥2

2
= 1.

Furthermore, it is easy to see that det
(
Â
)
= ∥A𝑡−1𝒛𝑡 ∥−1

2 , which achieves our upper bound.

Finally, recall that we wrote Â = A𝑡 · A−1
𝑡−1; rearranging this gives us the conclusion of

Lemma 2.5.2. □

We now prove Lemma 2.5.1.

59

Proof of Lemma 2.5.1. The only nontrivial cases we have to deal with are when ∥A𝑡−1𝒛𝑡 ∥2 > 1 –
in other words, when 𝒛𝑡 ∉ ℰ𝑡−1. So, we assume this in the rest of the proof.

To validate 𝒛𝑡 ∈ 𝒄𝑡 + ℰ𝑡 , it is enough to show ∥A𝑡𝒛𝑡 ∥2 ≤ 1. We have

A𝑡𝒛𝑡 = 𝒙 −
(
1 − 1
∥𝒙∥2

) (
𝒙𝒙⊤

∥𝒙∥22

)
𝒙 = 𝒙 −

(
1 − 1
∥𝒙∥2

)
𝒙 =

𝒙
∥𝒙∥2

,

as desired.

The main challenge is to prove that 𝒄𝑡 + 𝛼𝑡ℰ𝑡 ⊆ conv ((𝒄𝑡−1 + 𝛼𝑡−1ℰ𝑡−1) ∪ {𝒛𝑡}), or in other
words, that the “inner ellipsoid” is always feasible. Without loss of generality, by applying an
affine transformation and considering the reduced 2-dimensional case in the same way as in
the proof of Theorem 1, we let 𝒛𝑡 = 𝑧 · 𝒆1 for 𝑧 > 1 and ℰ𝑡−1 = 𝐵2

2. Notice that 𝑧 = ∥A𝑡−1𝒛𝑡 ∥2.
Our goal is to show that the ellipse 𝛼𝑡 · ℰ𝑡 lies inside the shape conv

(
𝛼𝑡−1𝐵

2
2 ∪ {±𝑧 · 𝒆1}

)
.

First, we prove that the parallelogram 𝑃 defined by the lines

𝑦 = − 𝛼𝑡−1√
𝑧2 − 𝛼2

𝑡−1

(𝑥 − 𝑧)

𝑦 =
𝛼𝑡−1√
𝑧2 − 𝛼2

𝑡−1

(𝑥 − 𝑧)

and their reflections over the 𝑦-axis (i) passes through ±𝑧 · 𝒆1 and (ii) has exactly four points of
tangency with the circle 𝛼𝑡−1𝐵

2
2. Then, it will be enough to argue that 𝛼𝑡ℰ𝑡 ∈ 𝑃.

The first part is clear from the formulas so we handle the second. Here, it is enough to show that
the slope of the line that passes through 𝑧 · 𝒆1 and is tangent to 𝛼𝑡−1𝐵

2
2 has slope − 𝛼𝑡−1√

𝑧2−𝛼2
𝑡−1

. The

distance between 𝑧 · 𝒆1 and the point of tangency is
√
𝑧2 − 𝛼2

𝑡−1 by the Pythagorean Theorem
and the result follows from similar triangles. Repeating this for all four lines defining 𝑃 proves
(ii).

Now, we are ready to prove that 𝛼𝑡ℰ𝑡 ∈ 𝑃. This is a morally similar calculation. In this reduced
case, the equation that determines the (𝑥, 𝑦) pairs lying on the surface of 𝛼𝑡ℰ𝑡 is given by

𝑥2

𝑧2 + 𝑦
2 = 𝛼2

𝑡 .

Applying a linear transformation to our space does not affect tangency. So, we apply the linear
transformation that maps 𝑧 · 𝒆1 to 𝒆1 (this is equivalent to multiplying every 𝑥-coordinate by
1/𝑧 and leaving all the 𝑦-coordinates unchanged). Now, our goal is to show that the circle 𝛼𝑡𝐵2

2
lies inside the parallelogram whose vertices in the nonnegative orthant are the pair of points

©«0, 𝑧𝛼𝑡−1√
𝑧2 − 𝛼2

𝑡−1

ª®®¬ and (1, 0) .

By calculating the area of this triangle in two ways, we get that the radius of the incircle of this
parallelogram is

𝛼𝑡 =
𝑧𝛼𝑡−1√
𝑧2 − 𝛼2

𝑡−1

· 1√
12 +

(
𝑧𝛼𝑡−1√
𝑧2−𝛼2

𝑡−1

)2
.

60

Undoing the affine transformations and recalling that doing so means that 𝑧 = ∥A𝑡−1𝒛𝑡 ∥2
completes the proof of Lemma 2.5.1. □

2.5.2. Approximation guarantee via stronger evolution condition

We now show that the monotone update rule given by Lemma 2.5.1 satisfies an evolution
condition that is stronger than (2.2.3).

Lemma 2.5.3. Under the update rule given in the statement of Lemma 2.5.1, we have

1
𝛼2
𝑡

− 1
𝛼2
𝑡−1
≤

{
2 log

(
vol(ℰ𝑡)

vol(ℰ𝑡−1)

)
if 𝒛𝑡 ∉ ℰ𝑡−1

0 otherwise

.

Proof of Lemma 2.5.3. As usual, we only consider the case where 𝒛𝑡 ∉ ℰ𝑡−1 so that there is an
update.

We first prove

1
𝛼2
𝑡

− 1
𝛼2
𝑡−1
≤ 2 log (∥A𝑡−1𝒛𝑡 ∥2) .

Let 𝑧 B ∥A𝑡−1𝒛𝑡 ∥2 and let △ B 𝑧𝛼𝑡−1√
𝑧2−𝛼2

𝑡−1
. Using the formula for 𝛼𝑡 given in Lemma 2.5.1, we

have

1
𝛼2
𝑡

− 1
𝛼2
𝑡−1

=
△2 + 1
△2 − 1

𝛼2
𝑡−1

= 1 +
𝑧2 − 𝛼2

𝑡−1

𝑧2𝛼2
𝑡−1
− 𝑧2

𝑧2𝛼2
𝑡−1

= 1 − 1
𝑧2 ≤ 2 log 𝑧,

where the inequality follows from noting that 1 − 1
𝑧2 = 2 log 𝑧 at 𝑧 = 1 and the derivative of

2 log 𝑧 is always at least as large as the derivative of 1 − 1
𝑧2 whenever 𝑧 ≥ 1.

Next, we show vol (ℰ𝑡) = ∥A𝑡−1𝒛𝑡 ∥2 · vol (ℰ𝑡−1). We write

det (A𝑡) = det
(
I −

(
1 − 1
∥A𝑡−1𝒛𝑡 ∥2

) (
(A𝑡−1𝒛𝑡) (A𝑡−1𝒛𝑡)⊤

∥A𝑡−1𝒛𝑡 ∥22

))
· det (A𝑡−1) =

1
∥A𝑡−1𝒛𝑡 ∥2

· det (A𝑡−1) ,

and rearranging gives us what we need.

Combining these conclusions gives us the statement of Lemma 2.5.3. □

We are now ready to prove Theorem 2.

Proof of Theorem 2. As in the asymmetric case (proof of Theorem 1), we consider two phases –
name them Phase I and Phase II. In Phase II, we perform the monotone update rule as written
in Lemma 2.5.1. In Phase I, we perform the trivial update

A𝑡 = min
{
1, 1
∥A𝑡−1𝒛𝑡 ∥2

}
· A𝑡−1

𝒄𝑡 = 0

61

𝛼𝑡 = min
{
1, 1
∥A𝑡−1𝒛𝑡 ∥2

}
· 𝛼𝑡−1 ,

which can be visually described as applying the minimum scaling of the outer ellipsoid such
that it contains the new points ±𝒛𝑡 while leaving the inner ellipsoid unchanged. It is easy to
see that by just applying the Phase I update, the approximation factor we get is 𝑅(𝑍)/𝑟0.

Next, we describe the switching condition we use to change from Phase I to Phase II. At
iteration 𝑡, if 𝑅(𝑍𝑡)/𝑟0 ≥ 23/2√𝑑 log (4𝑑), then we change to Phase II. It is easy to see that 𝑅(𝑍𝑡)
is monotonically increasing in 𝑡, so once this switching condition is satisifed, it will remain
satisfied until the termination of the algorithm.

Applying Lemma 2.5.3 across all the Phase II iterates and recalling that in Phase I we never
change the inner ellipsoid, we have

1
𝛼2
𝑛

≤ 2 log
(
vol (ℰ𝑛)
vol (ℰ0)

)
.

We know that the containment 𝛼𝑛ℰ𝑛 ⊆ 𝑍𝑛 ⊆ ℰ𝑛 must hold. We also know that 𝑍𝑛 ⊆ 𝑅(𝑍𝑛) ·𝐵𝑑2
must also hold. Thus, we know that ℰ𝑛 ⊆ 𝑅(𝑍𝑛)

𝛼𝑛
· 𝐵𝑑2 . Hence, we have

1
𝛼2
𝑛

≤ 2 log
(
vol (ℰ𝑛)
vol (ℰ0)

)
≤ 2 log

©«
(
𝑅(𝑍𝑛)
𝛼𝑛

)𝑑
𝑟𝑑0

ª®®¬ = 𝑑 log

((
𝑅(𝑍𝑛)
𝑟0

)2
)
+ 𝑑 log

(
1
𝛼2
𝑛

)
.

We now show that if we ever enter Phase II, then we have 𝛼−2
𝑛 ≤ (𝑅(𝑍𝑛)/𝑟0)2. First, let us see

how this gives us one of the cases of our proof. Substituting this gives us

1
𝛼2
𝑛

≤ 4𝑑 log
(
𝑅(𝑍𝑛)
𝑟0

)
,

so taking square roots gives the result.

Now, for the sake of contradiction, suppose that 𝛼−2
𝑛 ≥ (𝑅(𝑍𝑛)/𝑟0)2. This gives us

1
𝛼2
𝑛

≤ 4𝑑 log
(

1
𝛼2
𝑛

)
,

so solving for 𝛼−1
𝑛 gives

1
𝛼2
𝑛

< 8𝑑 log (4𝑑) .

This means that
𝑅(𝑍𝑛)
𝑟0
≤ 23/2√𝑑 log (4𝑑),

which means we always stayed in Phase I and our approximation factor is just 𝑅(𝑍𝑛)
𝑟0

(and the
monotone update rule given by Lemma 2.5.1 never actually executed).

Combining the cases tells us that for some universal constant 𝐶, we have

1
𝛼𝑛
≤ 𝐶min

𝑅(𝑍𝑛)𝑟0
,

√
2𝑑 log

(
𝑅(𝑍𝑛)
𝑟0

) ,
completing the proof of Theorem 2. □

62

2.6. Forming small coresets for convex bodies (Proof of Theorem 5)

In this section, we prove Theorem 5. See Algorithm 5.

Algorithm 5 Streaming coreset for convex hull
1: Input: Stream of points 𝒛𝑡 ; Update rule for Algorithm 4𝒜.
2: Output: Set 𝑆 ⊆ [𝑛].
3: for 𝑡 = 1, . . . , 𝑛 do

4: Receive 𝒛𝑡 .
5: Let ℰtest = 𝒜(𝒄𝑡−1 , ℰ𝑡−1 , 𝒛𝑡).
6: Let 𝑑𝑡 = dim (Span (𝒛1 − 𝒄𝑡−1 , . . . , 𝒛𝑡 − 𝒄𝑡−1)).
7: if 𝑑𝑡 > 𝑑𝑡−1 or Vol𝑑𝑡 (ℰtest)

Vol𝑑𝑡 (ℰ𝑡−1) ≥ 𝑒 then

8: Let 𝒄𝑡 , ℰ𝑡 = 𝒜(𝒄𝑡−1 , ℰ𝑡−1 , 𝒛𝑡).
9: Update 𝑆𝑡 = 𝑆𝑡−1 ∪ {𝒛𝑡}.

10: else

11: Let 𝒄𝑡 , ℰ𝑡 = 𝒄𝑡−1 , ℰ𝑡−1.
12: Let 𝑆𝑡−1 = 𝑆𝑡 .
13: Output: 𝑆𝑛

For a sketch of the intuition and the argument we will use for the proof, see Section 2.2.3.

Proof of Theorem 5. We prove two properties of Algorithm 5. First, we show |𝑆𝑡 | ≤
𝑂 (𝑑𝑡 · log (𝑑𝑡 ·max𝑡′≤𝑡 𝑅𝑡/𝑟𝑡′)) and, further, |𝑆𝑡 | ≤ 𝑂 (𝑑𝑡 · log (𝑑𝑁)) if points 𝒛𝑡 have inte-
ger coordinates between −𝑁 and 𝑁 . Second, we show that conv (𝑍 |𝑆𝑡) ⊆ conv

(
𝑍 |[𝑡]

)
⊆

𝑂 (𝑑𝑡 · log (𝑑𝑡 ·max𝑡′≤𝑡 𝑅𝑡/𝑟𝑡′)) · conv (𝑍 |𝑆𝑡) and conv (𝑍 |𝑆𝑡) ⊆ conv
(
𝑍 |[𝑡]

)
⊆ 𝑂 (𝑑𝑡 · log (𝑑𝑁)) ·

conv (𝑍 |𝑆𝑡).

Bounding |𝑆𝑡 |. It is enough to count the number of steps 𝑡 for which we have Vol𝑑𝑡 (ℰtest)
Vol𝑑𝑡 (ℰ𝑡−1) ≥ 𝑒.

It is easy to see that for all 𝑡, we have 𝑟(𝑍 |[𝑡]) ·
(
𝐵𝑑2 ∩ Span (𝒛1 − 𝒄𝑡 , . . . , 𝒛𝑡 − 𝒄𝑡)

)
⊆ 𝒄𝑡 + ℰ𝑡 . Addi-

tionally, by the definition of𝑅(𝑍), we always have𝑍 |[𝑡] ⊆ 𝑅(𝑍)·
(
𝐵𝑑2 ∩ Span (𝒛1 − 𝒄𝑡 , . . . , 𝒛𝑡 − 𝒄𝑡)

)
.

These are enough to give volume lower and upper bounds in each step. Next, for each step
in which we add an element to 𝑆𝑡−1 to obtain 𝑆𝑡 , the volume must increase by a factor of 𝑒. It
easily follows that the number of elements in 𝑆𝑡 satisfies

|𝑆𝑡 | ≤ log

(
max
𝑡′≤𝑡

∏𝑑𝑡
𝑖=1 𝑅(𝑍 |[𝑡])∏𝑑𝑡
𝑖=1 𝑟(𝑍 |[𝑡′])

)
= 𝑑𝑡 log

(
max
𝑡′≤𝑡

𝑅(𝑍 |[𝑡])
𝑟(𝑍 |[𝑡′])

)
.

We now give an upper bound for the case when all coordinated of 𝒛𝑡 are integers not exceeding
𝑁 in absolute value. It is easy to see that the update rule in Algorithm 5 exactly corresponds
to the steps where we have

1
𝛼𝑡
− 1

𝛼𝑡−1
≳ 1,

and in the same way as in the proof of Theorem 4, we have for all 𝑡 that∑
𝑡≥1

1
𝛼𝑡
− 1

𝛼𝑡−1
≲ 𝑑𝑡 log (𝑑𝑁) .

63

It therefore follows that |𝑆 | ≲ 𝑑𝑡 log (𝑑𝑁), as desired.

Bounding the distortion of the chosen points. Consider some iteration 𝑡′ ≤ 𝑡. Without
loss of generality, let 𝒄𝑡′−1 = 0. Suppose 𝒛𝑡′ does not result in an update to 𝑆𝑡′−1. This
implies that 𝒛𝑡′ ∈ 2𝑒 · ℰ𝑡′−1. Next, observe that 0 ∈ 𝒄𝑡 + ℰ𝑡 . Putting these together, we have
𝒛𝑡′ ∈ (𝒄𝑡 + ℰ𝑡) + 2𝑒 · ℰ𝑡′−1. Since𝒜 is monotone, we must have 2𝑒 · ℰ𝑡′−1 ⊆ 𝒄𝑡 + 𝑒 · ℰ𝑡 ; hence, we
may write 𝒛𝑡′ ∈ 𝒄𝑡 + (2𝑒 + 1) ℰ𝑡 .

The inner ellipsoid 𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 will still be an inner ellipsoid for the points determined by 𝑆𝑡 .
Stitching together all our inclusions, we have

𝒄𝑡 + 𝛼𝑡 · ℰ𝑡 ⊆ 𝑍 |𝑆𝑡 ⊆ 𝑍 ⊆ 𝒄𝑡 + (2𝑒 + 1)ℰ𝑡 ⊆
2𝑒 + 1
𝛼𝑡
· 𝑍 |𝑆𝑡 . (2.6.1)

which means that

𝑍 |𝑆𝑡 ⊆ 𝑍 ⊆ 𝑂
(
𝑑𝑡 · log

(
𝑑𝑡 ·max

𝑡′≤𝑡

𝑅(𝑍 |([𝑡]∩𝑆𝑡))
𝑟(𝑍 |([𝑡′]∩𝑆𝑡))

))
· 𝑍 |𝑆𝑡 .

Notice that this is nearly what we want, except that the aspect ratio term is in terms of the
subset body 𝑍 |𝑆𝑡 . To obtain the final guarantee in terms of the aspect ratio of 𝑍 |[𝑡], observe that
the above guarantee readily implies that

𝑂

(
𝑑𝑡 · log

(
𝑑𝑡 ·max

𝑡′≤𝑡

𝑅(𝑍 |([𝑡]∩𝑆𝑡))
𝑟(𝑍 |([𝑡′]∩𝑆𝑡))

))
≤ 𝑂

(
𝑑𝑡 · log

(
𝑑𝑡 ·max

𝑡′≤𝑡

𝑅(𝑍 |[𝑡])
𝑟(𝑍 |[𝑡′])

))
.

We now give the corresponding improvement when the 𝒛𝑡 are integer-valued. As before, (2.6.1)
holds. From this, we get

𝑍 |𝑆𝑡 ⊆ 𝑍 ⊆ 𝑂 (𝑑𝑡 · log (𝑑𝑁)) · 𝑍 |𝑆𝑡 ,

as desired. This concludes the proof of Theorem 5. □

2.7. Approximation lower bound for monotone algorithms

In this section, we show Theorem 6 and Theorem 7.

2.7.1. Inapproximability of John’s ellipsoid

Before we begin, recall that a Hadamard basis is a set of vectors 𝒗1 , . . . , 𝒗𝑑 such that:

• ∥𝒗 𝑖 ∥ = 1, for all 𝑖 ∈ [𝑑];

• For all 𝑖 ≠ 𝑗,
〈
𝒗 𝑖 , 𝒗 𝑗

〉
= 0;

• Every entry of 𝒗 𝑖 is in {±1/√𝑑}.

Our family of hard instances proceeds in two phases.

64

Phase 1 Let 𝑑 be such that there exists a Hadamard basis for R𝑑. Consider a corresponding
Hadamard basis 𝒗1 , . . . , 𝒗𝑑. The adversary gives the algorithm the points 𝒗1 , . . . , 𝒗𝑑.

Phase 2 The adversary selects 𝑖 ∈ [𝑑] arbitrarily and 𝜀 ∈ (0, 𝑑 − 1) arbitrarily. They then define
the vectors 𝒘 𝑖 B 𝒆 𝑖 · 1/

√
𝑑−𝜀 and 𝒘 𝑗 B 𝒆 𝑗 ·

√
𝑑−1/𝜀 for all 𝑗 ≠ 𝑖. The adversary gives the algorithm

the points 𝒘1 , . . . ,𝒘𝑑. Call the outcome here “Outcome (i).”

It is easy to see that at the end of Phase 1, the minimum volume outer ellipsoid is simply
𝐵𝑑2 . Furthermore, the algorithm’s solution ℰ̂ contains conv (±𝒗1 , . . . ,±𝒗𝑑). On the other hand,
consider the following claim.

Lemma 2.7.1. The following ellipsoid is the minimum-volume outer ellipsoid for Outcome (i):

ℰ𝑂𝑃𝑇(𝑖) =

𝑥 : 1 ≥
𝑥2
𝑖

(1/√𝑑−𝜀)2
+

𝑑∑
𝑗≠𝑖

𝑥2
𝑗(√

𝑑−1/𝜀
)2

Proof. Notice that all the points 𝒘 𝑗 are orthogonal. Thus, the minimum-volume outer ellipsoid
containing all the 𝒘 𝑗 must be the one whose axes are along the directions of 𝒘 𝑗 and whose
poles are located on 𝒘 𝑗 . Observe that ℰ𝑂𝑃𝑇(𝑖) satisfies this, so it must be the minimum-volume
outer ellipsoid for the convex body whose vertices are determined by the 𝒘 𝑗 .

It now remains to show that every Hadamard basis vector is on the surface of ℰ𝑂𝑃𝑇(𝑖):

(1/√𝑑)2

(1/√𝑑−𝜀)2
+

𝑑∑
𝑗≠𝑖

(1/√𝑑)2(√
𝑑−1/𝜀

)2 =
1
𝑑

(
(𝑑 − 𝜀) + (𝑑 − 1) · 𝜀

𝑑 − 1

)
= 1

Since the minimum volume ellipsoid containing all the 𝑤 𝑗 also contains the Hadamard basis
vectors, it (i.e., ℰ𝑂𝑃𝑇(𝑖)) must be the minimum-volume outer ellipsoid for Outcome (i). □

Proof of Theorem 6. We will now show that any that outputs an ellipsoid ℰ̂ at the end of Phase
1 must have an approximation factor of at least

√
𝑑 − 𝜀 on at least one of Outcomes (1, . . . , 𝑖).

Suppose that in each of Outcome (i), we obtain an ellipsoid ℰ̂𝑖 that satisfies 𝐶 · ℰ𝑂𝑃𝑇(𝑖) ⊇ ℰ̂𝑖 .
We now have:

conv ({±𝒗1 , . . . , 𝒗𝑑}) ⊆ ℰ̂ ⊆
𝑑⋂
𝑖=1
ℰ̂𝑖 ⊆ 𝐶 ·

𝑑⋂
𝑖=1
ℰ𝑂𝑃𝑇(𝑖)

We therefore want to argue about ℰ̂ given that it must contain conv ({±𝒗1 , . . . , 𝒗𝑑}) and be
contained by 𝐶 ·⋂𝑑

𝑖=1 ℰ𝑂𝑃𝑇(𝑖). Let 𝐴 be a matrix mapping ℰ̂ to the unit ball. Then, notice that
we can write for all 𝑖 ∈ [𝑑]:

∥A𝒗 𝑖 ∥2 ≤ 1
A · 𝐶𝒆 𝑖√

𝑑 − 𝜀

2
≥ 1

65

In particular, the rightmost exclusion follows from the fact that 𝐶𝒆 𝑖/√𝑑−𝜀 lies on the boundary
of 𝐶 ·⋂𝑑

𝑖=1 ℰ𝑂𝑃𝑇(𝑏.𝑖). Now, recall the well-known fact that for any unitary matrix W, we have
∥AW∥𝐹 = ∥A∥𝐹 (see, e.g., [HJ91]), and observe that we have

𝑑 ≥
𝑑∑
𝑖=1
∥A𝒗 𝑖 ∥2 = ∥AV∥2𝐹 = ∥A∥2𝐹 = ∥AI∥2𝐹 =

𝑑∑
𝑖=1
∥A𝒆 𝑖 ∥2 ≥

𝑑(𝑑 − 𝜀)
𝐶2 .

Rearranging gives 𝐶 ≥
√
𝑑 − 𝜀, as desired. □

2.7.2. Lower bound adversary

Our proof of Theorem 7 constructs an adversary, which given a monotone algorithm𝒜 and 𝜅 ≥
1, constructs a sequence of points 𝒛1 , . . . , 𝒛𝑛 satisfying 𝜅(conv (𝒛1 , . . . , 𝒛𝑛)) ≤ 𝜅 to witness that
the algorithm does not produce an approximation better than Ω̃(𝑑 log 𝜅). While by definition
𝜅 = 𝑅

𝑟 , our construction keeps 𝑟 = 1 (notice that any lower bound construction must be scale-
invariant), and for simplicity we use 𝑅 = 𝜅.

Let 𝒛Δ1 , 𝒛
Δ
2 , . . . , 𝒛

Δ
𝑑+1 ∈ R

𝑑 be the 𝑑 + 1 vertices of a regular simplex Δ𝑑 that circumscribes 𝐵𝑑2 .
Our adversary is described in Algorithm 6. It uses a first phase that feeds𝒜 the vertices of Δ𝑑,
then a second phase that repeatedly feeds 𝒜 points at a constant distance from the previous
ellipsoid. Specifically, every new point 𝒛𝑡 in the second phase is in 𝒄𝑡−1+2 · ℰ𝑡−1, i.e. its distance
is 2 from 𝒄𝑡−1 in the norm that is the gauge of ℰ𝑡−1.

Algorithm 6 Lower bound adversary
Input: Monotone algorithm𝒜, 𝑅 ≥ 1

1: (𝒄0 + ℰ0 , 𝛼0) = (0 + 𝐵𝑑2 , 1) ⊲ Initialize to the unit ball

2: for 𝑡 ∈ {1, 2, . . . , 𝑑 + 1} do ⊲ Phase I: feed𝒜 the vertices of a simplex

3: (𝒄𝑡 + ℰ𝑡 , 𝛼𝑡) = 𝒜(𝒄𝑡−1 + ℰ𝑡−1 , 𝛼𝑡−1 , 𝒛Δ𝑡)
4: 𝑡 ← 𝑑 + 2
5: while vol(ℰ𝑡−1) ≤ vol

(
𝑅
2 · 𝐵𝑑2

)
do ⊲ Phase II: feed𝒜 points outside the previous ellipsoid

6: Let 𝐹𝑡−1 = 𝜕(𝒄𝑡−1 + 2ℰ𝑡−1) ∩ (𝑅 · 𝐵𝑑2)
7: if 𝐹𝑡−1 = ∅ then

8: stop

9: Let arbitrary 𝒛𝑡 ∈ 𝐹𝑡−1
10: (𝒄𝑡 + ℰ𝑡 , 𝛼𝑡) = 𝒜(𝒄𝑡−1 + ℰ𝑡−1 , 𝛼𝑡−1 , 𝒛𝑡)
11: 𝑡 ← 𝑡 + 1

Remark 2.7.2. This particular construction we give of the hard case is adaptive, meaning that the

adversary’s choice of points depend on the previous ellipsoids the algorithm outputs. However, this

adversary can be made non-adaptive by taking an 𝜀-net 𝑆 of 𝐵𝑑2 for sufficiently small 𝜀, then feeding𝒜
the sequence of points in sets 𝑆, 2 · 𝑆, 4 · 𝑆, . . . , 2log2 𝑅−1 , 2log2 𝑅 · 𝑆. In consequence, this means that

randomization on the part of the monotone algorithm does not help, unlike some other online settings.

Let 𝑇 be the largest value of 𝑡 − 1 before the adversary halts. We first show that the adversary
only gives finitely many points before halting.

Lemma 2.7.3. 𝑇 ≤ 𝑂(𝑑 log𝑅)

66

Proof. We argue that the volume of ℰ𝑡 increases by at least a constant factor on each iteration.
This is sufficient to bound the number of iterations by 𝑂(𝑑 log𝑅), as ℰ0 = 𝐵𝑑2 , and Line 5 is no
longer true when the volume of ℰ𝑡 exceeds

(
𝑅
2
)𝑑 · vol(𝐵𝑑2).

We claim that for all 𝑡 ≥ 𝑑 + 2, vol(ℰ𝑡) ≥ 3
2 · vol(ℰ𝑡−1). By applying a nonsingular affine

transformation, we can assume without loss of generality that ℰ𝑡−1 = 𝐵𝑑2 . With a further
rotation, we can assume the newly received point is 𝒛𝑡 = 2𝒆1. From monotonicity of 𝒜 we
must have that 𝒄𝑡 + ℰ𝑡 ⊇ 𝐵𝑑2 ∪ {2𝒆1}. Clearly every semi-axis of ℰ𝑡 must have length at least 1
in order to contain ℰ𝑡−1. Observe that ℰ𝑡 must also contain the segment connecting −1𝒆1 and
2𝒆1, and so at least one semi-axis must have length at least 3

2 (if not, the diameter of ℰ𝑡 would
be strictly less than 3). Hence as vol(ℰ𝑡)

vol(𝐵𝑑2)
equals the product of the length of the semi-axes of ℰ𝑡 ,

we have vol(ℰ𝑡) ≥ 3
2vol(𝐵𝑑2). □

For the analysis we define quantities 𝐴𝑡 , 𝑃𝑡 associated with the sequence of ellipsoids for
1 ≤ 𝑡 ≤ 𝑇:

𝐴𝑡
def
=

1
𝛼𝑡
, 𝑃𝑡

def
= log

(
vol(ℰ𝑡)
vol(𝐵𝑑2)

)
By the monotonicity of𝒜, we have that 𝐴𝑡 and 𝑃𝑡 are both nondecreasing in 𝑡. We first observe
that the adversary guarantees that the final volume of the ellipsoid output by𝒜 is large:

Lemma 2.7.4. At the conclusion of Algorithm 6’s execution, we have

𝑃𝑇 ≥ 𝑑 log 𝑅2

Proof. There are two ways that the adversary stops: if the condition in Line 5 is no longer true,
or if Line 8 is reached. If the former occurs, then we have vol(ℰ𝑇) > vol(𝑅2 · 𝐵𝑑2), and clearly then
𝑃𝑇 ≥ 𝑑 log

(
𝑅
2
)
.

In the latter stopping condition, the algorithm halts at time 𝑇 when 𝜕(𝑐𝑇 + 2ℰ𝑇) ∩ 𝑅 · 𝐵𝑑2 = ∅.
The sets 𝜕(𝑐𝑇 + 2ℰ𝑇) and 𝑅 · 𝐵𝑑2 can be disjoint in two cases: 𝑐𝑇 + 2ℰ𝑇 and 𝑅 · 𝐵𝑑2 are disjoint;
or 𝑅 · 𝐵𝑑2 ⊆ 𝑐𝑇 + 2ℰ𝑡 with the boundaries of both ellipsoids disjoint. By the monotonicity of𝒜,
we have 1 · 𝐵𝑑2 ⊆ 𝑐𝑇 + 2ℰ𝑇 , and so eliminate the former case. But then vol(2 · ℰ𝑇) ≥ vol(𝑅 · 𝐵𝑑2) =
𝑅𝑑vol(𝐵𝑑2), and taking logarithms on both sides yields the claim. □

Now in contrast to the upper bound where we essentially gave an algorithm for which Δ𝐴
Δ𝑃 was

upper bounded by a constant, here we will show a constant lower bound on the same quantity
for any monotone algorithm.

Lemma 2.7.5. There exists a constant 𝐶2.7.1 > 0 such that if 𝐴𝑡 ≥ 𝑑, we have

𝐴𝑡+1 − 𝐴𝑡 ≥ 𝐶2.7.1(𝑃𝑡+1 − 𝑃𝑡) (2.7.1)

Observe that this lower bound requires 𝐴𝑡 ≥ 𝑑, hence necessitating a first phase using the
simplex, whose optimal roundings show tightness for John’s theorem for general convex bodies.
In order to prove the lower bound we also need a second property, that 𝐴𝑡 is large compared
to 𝑃𝑡 .

67

Lemma 2.7.6. Let 0 ≤ 𝛼 ≤ 1, 𝒄 ∈ R𝑑, and ℰ be an ellipsoid such that

𝒄 + 𝛼 · ℰ ⊆ Δ𝑑 ⊆ 𝒄 + ℰ

then we have:

1. 𝛼 ≤ 1
𝑑

2. log
(

vol(ℰ)
vol(𝐵𝑑2)

)
≤ 𝑂

(
log(𝑑) · 1

𝛼

)
With the statements of these claims in hand, we are ready to prove the lower bound.

Proof of Theorem 7. It is clear that 𝜅(conv (𝒛1 , . . . , 𝒛𝑇)) ≤ 𝑅, as for every 1 ≤ 𝑡 ≤ 𝑇 the adversary
guarantees 1 ≤ ∥𝒛𝑡 ∥2 ≤ 𝑅. So we focus on showing a lower bound on the quality of the
approximation produced by𝒜.

As𝒜 is monotone, after the end of Phase I we must have that

𝒄𝑑+1 + 𝛼𝑑+1 · ℰ𝑑+1 ⊆ Δ𝑑 ⊆ 𝒄𝑑+1 + ℰ𝑑+1 (2.7.2)

Now because ℰ𝑑+1 satisfies the conditions of Lemma 2.7.6, we get using the definition 𝐴𝑑+1 =
1

𝛼𝑑+1
that 𝐴𝑡 ≥ 𝐴𝑑+1 ≥ 𝑑 for any 𝑡 ≥ 𝑑 + 1. Then we can apply Lemma 2.7.5 for every 𝑡 ≥ 𝑑 + 1

until termination of the algorithm:

𝐴𝑑+2 − 𝐴𝑑+1 ≥ 𝐶2.7.1 (𝑃𝑑+2 − 𝑃𝑑+1)
𝐴𝑑+3 − 𝐴𝑑+2 ≥ 𝐶2.7.1 (𝑃𝑑+3 − 𝑃𝑑+2)

...

𝐴𝑇−1 − 𝐴𝑇−2 ≥ 𝐶2.7.1 (𝑃𝑇−1 − 𝑃𝑇−2)
𝐴𝑇 − 𝐴𝑇−1 ≥ 𝐶2.7.1 (𝑃𝑇 − 𝑃𝑇−1)

Summing these inequalities, we have

𝑇−1∑
𝑡=𝑑+1

𝐴𝑡+1 − 𝐴𝑡 ≥ 𝐶2.7.1

(
𝑇−1∑
𝑡=𝑑+1

𝑃𝑡+1 − 𝑃𝑡

)
Both sides of this inequality are telescoping sums, so simplifying we get

𝐴𝑇 ≥ 𝐴𝑑+1 + 𝐶2.7.1(𝑃𝑇 − 𝑃𝑑+1) (2.7.3)

Again because we can apply Lemma 2.7.6 for ℰ𝑑+1, we have 𝑃𝑑+1 ≤ 𝑂(log(𝑑) · 𝐴𝑑+1), which
along with (2.7.3) yields

𝐴𝑇 ≥ 𝐴𝑑+1 +Ω(𝑃𝑇 − log(𝑑) · 𝐴𝑑+1) ≥ Ω(𝑃𝑇 − log(𝑑) · 𝐴𝑑+1)

Thus we have
𝐴𝑇 ≥ Ω(max(𝐴𝑑+1 , 𝑃𝑇 − log(𝑑) · 𝐴𝑑+1)) ≥ Ω

(
𝑃𝑇

log(𝑑)

)
and we get the desired bound using Lemma 2.7.4. □

Our proof of Lemma 2.7.5 relies on a symmetrization argument to a reduced case (essentially
two-dimensional, like for our algorithms). We now define this reduced case, and related
quantities.

68

Definition 2.7.7. In the reduced case, the previous outer and inner ellipsoids are given by 𝐵𝑑2 , 𝛼 ·𝐵𝑑2 , and

the received point is 𝒛 = 2𝒆1. The next outer and inner ellipsoids are given by 𝑐 · 𝒆1+ℰM , 𝑐 · 𝒆1+𝛼′ · ℰM

for 𝑐 ∈ R, and M = diag (𝑎, 𝑏, 𝑏, . . . , 𝑏, 𝑏) for 𝑎, 𝑏 ≥ 1. We let Δ𝐴 = 1
𝛼′ − 1

𝛼 and Δ𝑃 = log
(

vol(ℰM)
vol(𝐵𝑑2)

)
.

Note that the update in this reduced case is monotone if𝐵𝑑2∪{2𝒆1} ⊆ 𝑐·𝒆1+ℰM and 𝑐·𝒆1+𝛼′·ℰM ⊆
conv

(
(𝛼 · 𝐵𝑑2) ∪ {2𝒆1}

)
.

Now we state the lower bound on Δ𝐴
Δ𝑃 in this setting, which is established in Section 2.7.3. It is

exactly the bound of Lemma 2.7.5 in this special case.

Lemma 2.7.8. In the reduced case, for any monotone update 𝑐 · 𝒆1 + ℰM , 𝑐 · 𝒆1 + 𝛼′ · ℰM when 𝛼′ ≤ 1
𝑑

we have

Δ𝐴

Δ𝑃
≥ 𝐶2.7.1 (2.7.4)

We now give the symmmetrization argument that shows that the above bound in the special
case implies the bound in the general case.

Proof of Lemma 2.7.5. By the monotonicity of 𝒜, we have (𝒄𝑡 + ℰ𝑡) ∪ {𝒛𝑡+1} ⊆ 𝒄𝑡+1 + ℰ𝑡+1 and
𝒄𝑡+1 + 𝛼𝑡+1 · ℰ𝑡+1 ⊆ conv ((𝒄𝑡 + 𝛼𝑡 · ℰ𝑡) ∪ {𝒛𝑡+1}). Without loss of generality we assume that
𝒄𝑡 + ℰ𝑡 = 𝐵𝑑2 and 𝒛𝑡+1 = 2 · 𝒆1; we do this by applying a nonsingular affine transformation that
maps 𝒄𝑡 to the origin and ℰ𝑡 to 𝐵𝑑2 , then apply a rotation that maps 𝒛𝑡+1 to 2 · 𝑒1. Let 𝒄 = 𝒄𝑡+1,
ℰ = ℰ𝑡+1, and 𝛼 = 𝛼𝑡+1. Summarizing the conditions guaranteed by the monotonicity of 𝒜,
we have that 𝐵𝑑2 ∪ {2𝒆1} ⊆ 𝒄 + ℰ and 𝒄 + 𝛼 · ℰ ⊆ conv

(
(𝛼𝑡 · 𝐵𝑑2) ∪ {2𝒆1}

)
.

To perform the reduction to the two-dimensional case, we apply a sequence of volume-
preserving symmetrizations to the new inner and outer ellipsoids; these symmetrizations will
also ensure that the update remains monotone. We will first apply two Steiner symmetriza-
tions. The first of these Steiner symmetrizations transforms the ellipsoids so that their center
lies on the 𝒆1-axis. The second ensures that the ellipsoids have a semi-axis that is parallel to 𝒆1.
Then, by a final symmetrization step we can transform the ellipsoids into bodies of revolution
about 𝒆1. At that point it will suffice to consider the two-dimensional reduced case.

Let 𝒄′ be the projection of 𝒄 onto the 𝒆1-axis. The goal of the first symmetrization step is to
transform 𝒄+ℰ to 𝒄′+ℰ′ so that 𝒄′ lies on the 𝒆1 axis. If 𝒄 = 𝒄′ then we do not need to do anything,
otherwise we apply Steiner symmmetrization and consider 𝑆𝒄−𝒄′(𝒄 + ℰ). By Lemma 2.3.4 this
is still an ellipsoid, and we also have that the center of 𝑆𝒄−𝒄′(𝒄 + ℰ) is actually 𝒄′; thus we may
write 𝑆𝒄−𝒄′(𝒄 + ℰ) = 𝒄′ + ℰ′ for some ℰ′. Further, we have that 𝑆𝒄−𝒄′(𝒄 + 𝛼 · ℰ) = 𝒄′ + 𝛼 · ℰ′, as
the Steiner symmetrization acts similarly on the scaled version of ℰ. To show that the update
is still monotone, we observe that 𝒄′+ℰ′ = 𝑆𝒄−𝒄′(𝒄+ℰ) ⊆ 𝑆𝒄−𝒄′(conv

(
(𝛼𝑡 · 𝐵𝑑2) ∪ {2𝒆1}

)
). But by

Lemma 2.3.5 and that 𝒄− 𝒄′ ⊥ 𝒆1, conv
(
(𝛼𝑡 · 𝐵𝑑2) ∪ {2𝒆1}

)
is invariant under the symmetrization

𝑆𝒄−𝒄′ and so we still have the inclusion 𝒄′+𝛼 ·ℰ′ ⊆ conv
(
(𝛼𝑡 · 𝐵𝑑2) ∪ {2𝒆1}

)
. The ‘outer’ inclusion

𝐵𝑑2 ∪ {2𝒆1} ⊆ 𝒄′ + ℰ′ follows in the same way.

We now apply the second and final Steiner symmetrization. Let 𝒓 be the rightmost point of
𝒄′ + ℰ′ along 𝒆1; i.e. 𝒓 = arg max𝒓∈𝒄′+ℰ′ ⟨𝒓 , 𝒆1⟩. Also let 𝒓′ be its projection along the 𝒆1-axis;
if 𝒓 = 𝒓′ we again do not need to perform this symmetrization step, otherwise the Steiner
symmetrization we apply is 𝑆𝒓−𝒓′(𝒄′ + ℰ′). Since 𝒄′ is at the midpoint of 𝒄′ + R(𝒓 − 𝒓′) the
center of the new ellipsoid is still 𝒄′, so we may write 𝑆𝒓−𝒓′(𝒄′ + ℰ′) = 𝒄′ + ℰ′′ and similarly
𝑆𝒓−𝒓′(𝒄′ + 𝛼 · ℰ′) = 𝒄′ + 𝛼 · ℰ′′. Like for the previous symmetrization, the fact that 𝒓 − 𝒓′ ⊥ 𝒆1

69

means that both inclusions of the monotone update are preserved. Note finally that 𝒓′ is the
rightmost point of 𝒄′ + ℰ′′ and that the tangent plane of 𝒄 + ℰ′′ at 𝒓′ is orthogonal to the line
segment 𝒄′𝒓′, so 𝒆1 is a semi-axis of 𝒄′ + ℰ′′.

Our last transformation is a symmetrization of a different form, to turn 𝒄′ + ℰ′′ into a body
of revolution. Let 𝜎1 be the length of the semi-axis 𝒆1 of ℰ′′, and 𝜎2 , . . . , 𝜎𝑑 be the lengths of
the other semi-axes of ℰ′′. We let ℰ′′′ be the ellipsoid that has a 𝒆1 as a semi-axis of length

𝜎1, and where every other semi-axis of ℰ′′′ has length 𝜎′
def
=

(∏𝑑
𝑖=2 𝜎𝑖

)1/(𝑑−1)
. Clearly 𝒄′ + ℰ′′′

is now a body of revolution about 𝒆1 whose volume is the same as that of 𝒄′ + ℰ′′ (and hence
also of 𝒄 + ℰ). Note that 𝒄′ + 𝛼ℰ′′′ is also now a body of revolution. Since 𝜎′ ≥ min2≤𝑖≤𝑑 𝜎𝑖
we have 𝐵𝑑2 ∪ {2𝒆1} ⊆ 𝒄′ + ℰ′′′, and correspondingly since 𝜎′ ≤ max2≤𝑖≤𝑑 𝜎𝑖 we have that
𝒄′ + 𝛼 · ℰ′′′ ⊆ conv

(
(𝛼𝑡 · 𝐵𝑑2) ∪ {2𝒆1}

)
.

Clearly 𝒄′+ℰ′′′, 𝒄+ 𝛼 · ℰ′′′ now adhere to the reduced case of Definition 2.7.7. Since the update
is monotone as well (and still 𝛼 ≤ 1/𝑑) we can apply Lemma 2.7.8. As vol(ℰ′′′) = vol(ℰ), this
means we have

𝐴𝑡+1 − 𝐴𝑡 ≥ 𝐶2.7.1 · (𝑃𝑡+1 − 𝑃𝑡)
as desired. □

Proof of Lemma 2.7.6. For the first property, this is exactly the well-known fact that the best
ellipsoidal rounding for the simplex Δ𝑑 (see e.g. [How97, Remark 1.1]) has approximation
factor 𝑑.

Now we show the second property. Again because the ball rounds the simplex Δ𝑑 with
approximation factor 𝑑, we have

1
𝑑
· Δ𝑑 ⊆ 𝐵𝑑2 ⊆ Δ𝑑

As a result of this, we have

log

(
vol(𝒄 + 𝛼 · ℰ)

vol(𝐵𝑑2)

)
≤ log

(
vol(Δ)
vol(𝐵𝑑2)

)
≤ log

(
vol(𝑑 · 𝐵𝑑2)

vol(𝐵𝑑2)

)
≤ 𝑂(𝑑 log 𝑑)

And so

log

(
vol(ℰ)
vol(𝐵𝑑2)

)
= log

(
vol(𝒄 + 𝛼 · ℰ)

vol(𝐵𝑑2)

)
+ 𝑑 log

(1
𝛼

)
≤ 𝑂

(
𝑑 log

(1
𝛼

))
as 𝛼 ≤ 1

𝑑

To establish the second property, it remains to show 𝑑 log(1/𝛼) ≤ 𝑂((1/𝛼) log(𝑑)). Observe that
𝑥 ↦→ 𝑥

log 𝑥 is increasing for 𝑥 ≥ 𝑒, so we have

𝑑

log 𝑑 ≤ 𝑂
(

1/𝛼
log(1/𝛼)

)
for all 𝑑 ≥ 2 as 𝑑 ≤ 1/𝛼. Rearranging gives the desired inequality and thus the second
property. □

70

2.7.3. Analysis of the reduced case

In this section, we establish a lower bound on Δ𝐴
Δ𝑃 , assuming we are in the ‘reduced case’ defined

in Definition 2.7.7. Observe that in this case all relevant convex bodies ℰ , 𝛼ℰ , 𝑐 · 𝒆1 +ℰ′, 𝑐 · 𝒆1 +
𝛼′ℰ′, conv (𝛼ℰ ∪ {𝒛}) are all bodies of revolution about the 𝑥1-axis, so to analyze the quantities
involved we may instead look at any two-dimensional slice. Accordingly we talk about the
ellipses ℰ , 𝛼ℰ , 𝑐 + ℰ′, 𝑐 + 𝛼′ℰ′ in this two-dimensional slice, where again ℰ = 𝐵2

2, and 𝑐 + ℰ′
and 𝑐 + 𝛼′ℰ′ are defined by

𝑐 + ℰ′ =
{
(𝑥, 𝑦) ∈ R𝑑

����(𝑥 − 𝑐𝑎)2
+

(𝑦
𝑏

)2
≤ 1

}
𝑐 + 𝛼′ℰ′ =

{
(𝑥, 𝑦) ∈ R𝑑

����(𝑥 − 𝑐𝑎)2
+

(𝑦
𝑏

)2
≤ 𝛼′2

}
for 𝑎, 𝑏 > 0, 𝑐 ∈ R. We also use for convenience 𝐴 = 1

𝛼 and 𝐴′ = 1
𝛼′ so that Δ𝐴 = 𝐴′ − 𝐴. Also

note in this reduced case we have by symmetry that

Δ𝑃 = log

(
vol(𝑐 · 𝒆1 + 𝛼′ℰ′)

vol(𝐵𝑑2)

)
− log

(
vol(𝐵𝑑2)
vol(𝐵𝑑2)

)
= log(𝑎 · 𝑏𝑑−1)

Our lower bound in this reduced case is the following:

Lemma 2.7.9. There exists a fixed constant 𝐶2.7.12 > 0 such that

Δ𝐴

Δ𝑃
≥ min

{
𝐶2.7.12 ,

1
10
𝐴

𝑑

}
Clearly this claim yields Lemma 2.7.8 as a corollary, as by assumption in Lemma 2.7.8 we have
𝐴 ≥ 𝑑 and so we get Δ𝐴

Δ𝑃 ≥ Ω(1).

The inner ellipses in this lower bound, and some relevant points used in the proof of this claim,
are depicted in Figure 2.6.

Proof. We establish this claim through a geometric argument that we break down by cases (the
logical tree of cases is visualized in Figure 2.7). First, as the new outer ellipse 𝑐 + ℰ′ contains
ℰ = 𝐵𝑑2 we readily have that 𝑎, 𝑏 ≥ 1.

As the rightmost point of the new outer ellipse must be to the right of 𝒛, we have

𝑐 + 𝑎 > 2 (2.7.5)

As the leftmost point of the new inner ellipse must be to the right of the leftmost point of the
previous inner ellipse, we have

𝑐 ≥ 𝛼′𝑎 − 𝛼 (2.7.6)

Lemma 2.7.10. We have 𝛼′ · 𝑏 ≤ 𝛼, or equivalently 𝐴′ ≥ 𝑏 · 𝐴.

71

Figure 2.6.: The inner ellipses in the two-dimensional lower bound. 𝒪 is the origin. The black
solid circle is the previous inner ellipse 𝛼ℰ, and the blue solid circle is the next
inner ellipse 𝑐+𝛼′ℰ′. The vertical dotted blue line 𝑥 = 𝑐 through the center 𝑐 marks
the location of the next inner ellipse on the 𝑥-axis. The new point is 𝒛 = 2𝒆1, and
𝒛𝑄 is one of the lines through 𝒛 tangent to 𝛼ℰ, with 𝑄 the point of tangency. 𝑄′
is the intersection of 𝛼ℰ with the 𝑦-axis on the same side of the 𝑥-axis as 𝑄. 𝑃′ is
the intersection of the line 𝑥 = 𝑐 with 𝑐 + 𝛼′ℰ′ on the same side as 𝑄, and 𝑃 is the
intersection of this line with 𝒛𝑄. We denote the angle ∠𝑃𝒛𝑐 with 𝜑.

Proof. The geometry of this fact is visualized in Figure 2.6. We overload notation so that 𝑐 will
also denote the point (𝑐, 0), the center of the new inner ellipse. We denote 𝒪 as the origin. Let
𝒛𝑄 be one of the lines through 𝒛 and tangent to 𝛼ℰ, with 𝑄 the point of tangency (the choice
of which line is arbitrary, in the figure we choose the one whose intersection with 𝛼ℰ is above
the 𝑥-axis). We let 𝑃 be the intersection of the vertical line through (𝑐, 0) with 𝒛𝑄, and 𝑃′ be
the intersection of this line with the ellipse 𝑐 + 𝛼′𝜕ℰ′ on the same side of the 𝑥-axis as 𝑄.

Observe that 𝛼′𝑏 = 𝑐𝑃′ as the vertical semi-axis of the ellipse 𝑐 + 𝛼′ℰ, and 𝛼 = 𝒪𝑄′. Due to
the fact that 𝑐 + 𝛼′ℰ′ ⊆ conv (𝛼ℰ ∪ {𝒛}), the projection of both sets onto the 𝑦-axis satisfies the
same inclusion, and this gives the desired inequality. □

Observe that as 𝑐 + ℰ′ must contain both the points (−1, 0) and (0, 2), we have

𝑎 ≥ 3
2 (2.7.7)

Observe that we can split Δ𝑃 into two terms:

Δ𝑃 = (𝑑 − 1) log 𝑏︸ ︷︷ ︸
I

+ log 𝑎︸︷︷︸
II

First we show that if term I is larger, then we have a constant lower bound on Δ𝐴
Δ𝑃 .

Lemma 2.7.11. If (𝑑 − 1) log 𝑏 ≥ log 𝑎, then
Δ𝐴
Δ𝑃 ≥ 1

2
𝐴
𝑑

.

Proof. Under the assumption, we have Δ𝑃 ≤ 2(𝑑 − 1) log 𝑏. Combining this with Lemma 2.7.10,
we have

Δ𝐴

Δ𝑃
≥ 𝐴′ − 𝐴

2(𝑑 − 1) log 𝑏

72

(2.7.8)

I

Ia

𝑎, 𝑏 ≤ 16

Ib

𝑎 > 16 or 𝑏 > 16

New ellipse close to previous

II

IIa

IIa-i

𝐴 > 2

IIa-ii

IIa-ii-A

𝑏 ≤ 100

IIa-ii-B

𝑏 > 100

𝐴 ≤ 2

𝑎 ≤ 16

IIb

IIb-i

Term I smaller

IIb-ii

Term II smaller

𝑎 > 16

New ellipse far from previous

Figure 2.7.: Tree of cases in the lower bound

≥ 𝑏 · 𝐴 − 𝐴
2(𝑑 − 1) log 𝑏

=
𝑏 − 1
2 log 𝑏

𝐴

𝑑 − 1

≥ 1
2
𝐴

𝑑

where the last line uses that 𝑥−1
2 log(𝑥) >

1
2 when 𝑥 > 1. □

In light of Lemma 2.7.11, we can then assume in the sequel Term II is larger, meaning that

Δ𝑃 ≤ 2 log 𝑎 (2.7.8)

Case I (New ellipse is close to the previous one). Assume that

𝑐 + 𝛼′ · 𝑎 ≤ 11
10𝛼 (2.7.9)

i.e. that the rightmost point of the new inner ellipse is to the left of 11
10 .

Lemma 2.7.12. In Case I, we have Δ𝐴 ≥ 4
11𝐴.

Proof. We prove this by cases. First, if we assume that 𝛼′ ≤ 𝛼
2 , we get 𝐴′ ≥ 2𝐴 and Δ𝐴 ≥ 𝐴.

In the second case, we have 𝛼′ > 𝛼
2 . We first use this to show 𝑐 > 0. By (2.7.6) and (2.7.5) we

have 𝑐+𝛼
𝛼′ ≥ 𝑎 > 2 − 𝑐, so 𝑐(1 + 𝛼′) > 2𝛼′ − 𝑎 > 0 and so 𝑐 > 0.

Using (2.7.9) and that 𝑐 > 0, we have 𝛼′𝑎 ≤ 11
10𝛼. Thus 𝐴′ ≥ 10

11 𝑎𝐴. By (2.7.7) we get 𝐴′ ≥ 15
11𝐴,

and finally Δ𝐴 ≥ 4
11𝐴. □

Lemma 2.7.13. In Case I, we have 𝐴′ ≥ 10
21 𝑎 · 𝐴.

73

Proof. From (2.7.6) we also get the weaker lower bound 𝑐 ≥ −𝛼. Combined with (2.7.9), this
gives 𝛼′𝑎 ≤ 21

10𝛼, which is equivalent to the desired inequality. □

We divide Case I into two sub-cases.

Case Ia (𝑎, 𝑏 ≤ 16). First, assume that 𝑎, 𝑏 ≤ 16. Then Δ𝑃 = log(𝑎 · 𝑏𝑑−1) ≤ 𝑑 log(16), and by
Lemma 2.7.12 we get

Δ𝐴

Δ𝑃
≥ 4

11 log(16)
𝐴

𝑑
≥ 1

10
𝐴

𝑑

Case Ib (𝑎 > 16 or 𝑏 > 16). Now assume that either 𝑎 or 𝑏 is greater than 16.

Combining Lemma 2.7.10 and Lemma 2.7.13 together, we get 𝐴′2 ≥ 10
21 𝑎𝑏𝐴

2, or 𝐴′ ≥
√

10
21 𝑎𝑏 ·

𝐴. We have Δ𝐴 = 𝐴′ − 𝐴 ≥
(√

10
21 𝑎𝑏 − 1

)
𝐴. As 𝑎𝑏 ≥ 16 we get

√
𝑎𝑏 ≥ 2

√
21
10 , so Δ𝐴 =(√

10
21 𝑎𝑏 − 1

)
𝐴 ≥

√
5
21 𝑎𝑏 · 𝐴.

Using the analytic inequality that log 𝑥 ≤
√
𝑥 for all 𝑥 > 0, we get Δ𝑃 = log 𝑎 + (𝑑 − 1) log 𝑏 ≤√

𝑎 + (𝑑 − 1)
√
𝑏 ≤ 𝑑 ·

√
𝑎𝑏.

Combining these inequalites for Δ𝐴 and Δ𝑃, we obtain

Δ𝐴

Δ𝑃
≥

√
5
21
𝐴

𝑑
≥ 4

10
𝐴

𝑑

Case II (New ellipse is far from the previous one). Assume that

𝑐 + 𝛼′ · 𝑎 >
11
10𝛼 (2.7.10)

Lemma 2.7.14. We have

𝛼′𝑏 ≤ (2 − 𝑐) ·
𝛼
2√

1 −
(𝛼

2
)2

(2.7.11)

Proof. Again, the proof of this claim is pictured in Figure 2.6, where we construct the points in
the same way as in the proof of Lemma 2.7.10. Let ∠𝑃𝒛𝑐 be denoted by 𝜑. Note that the angle
∠𝑃𝑐𝒛 is a right angle, and so tan 𝜑 = 𝑐𝑃

𝑐𝑣
. The line 𝑐𝒛 has length 2−𝑐, so we get 𝑐𝑃 = (2−𝑐) tan 𝜑.

The segment 𝑐𝑃′, of length 𝛼′𝑏, is contained within the segment 𝑐𝑃, and so 𝛼′𝑏 ≤ (2 − 𝑐) tan 𝜑.

Observe that the angle ∠𝒪𝑄𝒛 is also a right angle. Further, clearly the length of 𝒪𝑄 is 𝛼 and
the length of 0𝑣 is 2. Since we have that 𝜑 is also the angle ∠𝑄𝒛𝒪, we get sin 𝜑 = 𝛼

2 . Now
using the standard trigonometric identity that tan 𝜑 =

sin 𝜑√
1−sin2 𝜑

for 𝜑 ∈ [−𝜋/2,𝜋/2], we get the

desired inequality. □

We split Case II into several sub-cases, as for Case I.

Case IIa (𝑎 ≤ 16). First, we look at the case where 𝑎 ≤ 16.

74

Case IIa-i (𝐴 ≥ 2). Assume 𝐴 ≥ 2.

Lemma 2.7.15. When 𝐴 ≥ 2, we have Δ𝐴 ≥ 1
2 .

Proof. Adding (2.7.6) and (2.7.10) together gives 𝑐 > 1
20𝛼. Using this in (2.7.11) and rearranging

using the definitions of 𝐴 and 𝐴′ yields

𝐴′ ≥ 𝑏𝐴 · 1
1 − 1

40
1
𝐴

(
1 − 1

𝐴2

)
and therefore we get the inequality

Δ𝐴 ≥ 𝑏𝐴 · 1
1 − 1

40
1
𝐴

(
1 − 1

𝐴2

)
− 1

and using 𝑏 ≥ 1, we obtain
Δ𝐴 ≥ 𝐴 · 1

1 − 1
40

1
𝐴

(
1 − 1

𝐴2

)
− 1

To prove the claim, it suffices to show the right hand side exceeds 1
2 when 𝐴 ≥ 2. Upon

rearranging, this is equivalent to the inequality 𝐴 − 77
80

1
𝐴 ≥ 3

2 when 𝐴 ≥ 2. □

Combining the assumption that 𝑎 ≤ 16 with (2.7.8) and Lemma 2.7.15 yields Δ𝐴
Δ𝑃 ≥ 1

4 log 16 ≥ 1
20 .

Case IIa-ii (𝐴 ≤ 2). Next, we look at the other case where 𝐴 ≤ 2.

Case IIa-ii-A (𝑏 ≤ 100). Now we look at the case where 𝑏 ≤ 100.

Lemma 2.7.16. If 𝑎 ≤ 16, 𝐴 ≤ 2, 𝑏 ≤ 100, then there is 𝐶2.7.12 > 0 such that

Δ𝐴

Δ𝑃
≥ 𝐶2.7.12 (2.7.12)

Proof. We show this by a compactness argument. By (2.7.8) and the assumption that 𝑎 ≤ 16 we
have Δ𝐴

Δ𝑃 ≥ Δ𝐴
2 log 16 . Now, observe that next outer and inner ellipsoids 𝑐 + ℰ′ and 𝑐 + 𝛼′ℰ′ are

fully determined by the parameters 𝑎, 𝑏, 𝑐, 𝐴, 𝐴′. Further, we assume without loss of generality
that 𝐴′ is a function of the other parameters. This is because when 𝐴′ is decreased as much
as possible while preserving the monotonicity of the update, Δ𝐴 = 𝐴′ − 𝐴 only decreases. To
show a lower bound on Δ𝐴 it then suffices to only do so in this hardest case.

Note that we have 1 ≤ 𝑎 ≤ 16, 1 ≤ 𝑏 ≤ 100,−1 ≤ 𝑐 ≤ 2, and 1 ≤ 𝐴 ≤ 2; thus all the parameters
defining the next inner and outer ellipsoids are bounded. Observe that Δ𝐴 is a continuous
function of these parameters, and as a continuous function of a compact set it attains its
minimum. Finally, we argue that it is impossible for the minimum of Δ𝐴 to be zero, and so the
minimum is some strictly positive constant 𝐶2.7.12

2 log 16 , which suffices to prove the claim.

The following argument only concerns the inner ellipsoids, and can be pictured in Figure 2.6.
If 𝑐 = 0, then as the leftmost point of 𝑐 + 𝛼′ℰ′ must be to the right of the leftmost point of 𝛼ℰ′,
we have 𝛼 ≥ 𝛼′𝑎. But by (2.7.7), we have 𝛼 ≥ 3

2𝛼
′, so 𝛼′ < 𝛼 and Δ𝐴 > 0. If 𝑐 ≠ 0 then the

vertical semi-axis of 𝑐 + 𝛼′ℰ′ must have length strictly less than 𝛼, and so 𝛼 > 𝛼′𝑏. As 𝑏 ≥ 1,
this also gives 𝛼 > 𝛼′ and again Δ𝐴 > 0. □

75

Case IIa-ii-B (𝑏 > 100). Observe that the horizontal axis of the next inner ellipsoid 𝑐 + 𝛼′ℰ′
must be contained within the interval [−𝛼, 2], thus we have that 2 + 𝛼 ≥ 2𝑏𝛼′ > 200𝛼′. Using
the definitions of𝐴, 𝐴′ this is equivalent to 2+ 1

𝐴 > 200
𝐴′ , i.e. 𝐴′ > 200

1+ 1
𝐴

. As𝐴 ≥ 1 we get 2+ 1
𝐴 ≤ 3,

and so 𝐴′ ≥ 200
3 .

As 𝐴 ≤ 2, we obtain Δ𝐴 = 𝐴′ − 𝐴 ≥ 194
3 . Now by (2.7.8) and that 𝑎 ≤ 16 we have

Δ𝐴

Δ𝑃
≥ Δ𝐴

2 log 16 ≥
194

6 log 16 ≥ 11

Case IIb (𝑎 > 16). Now, we examine the case where 𝑎 > 16. Scaling (2.7.6) by 11
10 and adding it

to (2.7.10), we have 21
10 𝑐 − 1

10𝛼
′𝑎 ≥ 0, i.e. 𝑐 > 1

21𝛼
′𝑎. Using this in (2.7.11), using 𝑏 ≥ 1, using the

definitions of 𝐴 and 𝐴′ and rearranging, we obtain

𝐴′ ≥ 𝐴 · 1
1 − 1

42 · 𝑎𝐴′
·
√

1 −
(𝛼

2

)2

Using the inequalities
√

1 −
(
𝑥
2
)2 ≥ 1 − 𝑥2

7 for 0 ≤ 𝑥 ≤ 1 and 1
1−𝑥 ≥ 1 + 𝑥 for 0 ≤ 𝑥 ≤ 1, we have

𝐴′ ≥ 𝐴
(
1 − 𝛼2

7

) (
1 + 1

42
𝑎

𝐴′

)
and thus 𝐴′2 − 𝐴 · 𝐴′

(
1 − 𝛼2

7

)
− 1

42

(
1 − 𝛼2

7

)
≥ 0, which implies by the quadratic formula that

𝐴′ ≥
𝐴

(
1 − 𝛼2

7

)
+

√
𝐴2

(
1 − 𝛼2

7

)
+ 4

42 𝑎𝐴
(
1 − 𝛼2

7

)
2

= 𝐴

(
1 − 𝛼2

7

)
·

1 +
√

1 + 2
21

𝑎

𝐴
(
1− 𝛼2

7

)
2

= 𝐴

(
1 − 𝛼2

7

)
·
©«
1 +

√
1 + 2

21
𝑎

𝐴
(
1− 𝛼2

7

) − 1

2

ª®®®®¬
Using the inequality

√
1 + 𝑥 − 1 ≥ 2

5 min
{
𝑥,
√
𝑥
}

for all 𝑥 ≥ 0, we get that

𝐴′ ≥ 𝐴
(
1 − 𝛼2

7

) (
1 + 1

5 min

{
2
21

𝑎

𝐴
(
1 − 𝛼2

7

)
︸ ︷︷ ︸

I

,

√√√ 2
21

𝑎

𝐴
(
1 − 𝛼2

7

)
︸ ︷︷ ︸

II

})
(2.7.13)

To finish this case, we show the lower bound in the case where either term in the min of (2.7.13)
is the smaller term.

Case IIb-i (Term I in (2.7.13) is smaller). In this case, (2.7.13) is equivalent to

𝐴′ ≥ 𝐴
(
1 − 𝛼2

7

)
+ 2

105 𝑎

76

Using the definition of 𝐴, we have 𝐴′ ≥ 𝐴 − 1
7𝐴 + 2

105 𝑎, and so Δ𝐴 ≥ − 1
7𝐴 + 2

105 𝑎. As 𝐴 ≥ 1, we
have Δ𝐴 ≥ 2

105 𝑎 − 1
7 .

Now by (2.7.8), we get
Δ𝐴

Δ𝑃
≥

2
105 𝑎 − 1

7
2 log 𝑎

Now, we complete this case by noticing the right hand side is at least 1
35 when 𝑎 > 16.

Case IIb-ii (Term II in (2.7.13) is smaller). In this case, (2.7.13) is equivalent to

𝐴′ ≥ 𝐴
(
1 − 𝛼2

7

)
+

√
2

525 𝑎𝐴
(
1 − 𝛼2

7

)
(2.7.14)

Using the definition of 𝐴 and that 𝐴 ≥ 1, we have 𝐴
(
1 − 𝛼2

7

)
= 𝐴 − 1

7𝐴 ≥ −1
7 . Using this and

the definition of Δ𝐴 in (2.7.14), we have

Δ𝐴 ≥ −1
7 +

√
2

525 𝑎𝐴
(
1 − 𝛼2

7

)
Further, as 0 ≤ 𝛼 ≤ 1 we get 𝐴

(
1 − 𝛼2

7

)
= 1

𝛼 − 𝛼
7 ≥ 6

7 , so

Δ𝐴 ≥ −1
7 +

√
12

3675 𝑎

Now by (2.7.8), we get

Δ𝐴

Δ𝑃
≥
−1

7 +
√

12
3675 𝑎

2 log 𝑎

We finish with the fact that the right hand side is at least 1
65 when 𝑎 > 16. □

2.8. Details of analysis in Section 2.4.2

Here, we give the details for the outstanding claims in Section 2.4.2. We stay in the context
from that section and reuse notation (specifically, the definition of parameters in (2.4.1)).

We begin with some well-known bounds on 𝑒𝑥 .

Lemma 2.8.1. Recall the following well-known inequalities regarding 𝑒𝑥 .

1. 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 ∈ R;

2. 1 + 𝑥 + 𝑥2

2 ≤ 𝑒𝑥 for 𝑥 ≥ 0.

We will also use a more specialized upper bound on 𝑒𝑥 .

Lemma 2.8.2. For 0 ≤ 𝑥 ≤ 4
3 , we have 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2

2 + 𝑥3

4 .

77

Proof. Using the Taylor series for 𝑒𝑥 about 0, we get(
1 + 𝑥 + 𝑥

2

2 +
𝑥3

4

)
− 𝑒𝑥 = 𝑥3

12 −
∞∑
𝑘=4

𝑥𝑘

𝑘! = 𝑥3

(
1
12 −

∞∑
𝑘=4

𝑥𝑘−3

𝑘!

)
.

Clearly 𝑥3 ≥ 0 for 𝑥 ≥ 0, so it remains to show 1
12 −

∑∞
𝑘=4

𝑥𝑘−3

𝑘! ≥ 0 for 0 ≤ 𝑥 ≤ 4
3 . Note that∑∞

𝑘=4
𝑥𝑘−3

𝑘! is increasing (the derivative is clearly positive when 𝑥 ≥ 0), and we finish by noting

1
12 −

∞∑
𝑘=4

𝑥𝑘−3

𝑘!

�����
𝑥= 4

3

=
1 + 𝑥 + 𝑥2

2 + 𝑥3

4 − 𝑒𝑥

𝑥3

�����
𝑥= 4

3

> 0.

□

Now we show some facts used in Lemma 2.8.5, which Lemma 2.4.3 reduces to. The proof of
Lemma 2.8.5 will reduce to the following analytic inequality.

Lemma 2.8.3. For all 𝛾 ≥ 0,

(𝑒𝛾 − 1)2

𝑒2𝛾 − (1 + 𝛾
4)2
≤ 3

2𝛾.

Proof. For the numerator of the left hand side, we have (𝑒𝛾 − 1)2 = 𝑒2𝛾 − 2𝑒𝛾 + 1 ≤ 𝑒2𝛾 − 2𝛾 − 1
using Lemma 2.8.1-(1), 1 + 𝑥 ≤ 𝑒𝑥 . Further, 𝑒𝛾 ≥ 1 + 𝛾

4 implies 𝑒2𝛾 − (1 + 𝛾
4)2 ≥ 0, so after

multiplying both sides by 𝑒2𝛾 − (1 + 𝛾
4)2 and rearranging, it suffices to show

3
2𝛾

(
1 + 𝛾

4

)2
− 1 − 2𝛾 ≤

(3
2𝛾 − 1

)
𝑒2𝛾 .

We split this into two cases, based on the value of 𝛾. If 𝛾 ≥ 2
3 , then the right hand side is at

least
(3

2𝛾 − 1
)
(1 + 2𝛾 + 2𝛾2) using Lemma 2.8.1-(2), 1 + 𝑥 + 𝑥2

2 ≤ 𝑒𝑥 , so it is sufficient to show(3
2𝛾 − 1

)
(1 + 2𝛾 + 2𝛾2) ≥ 3

2𝛾
(
1 + 𝛾

4
)2 − 1 − 2𝛾. Expanding both sides, this is equivalent to

showing 𝛾2

4 + 93
32𝛾

3 ≥ 0, which is clearly true for 𝛾 ≥ 0.

If 𝛾 < 2
3 , then we use Lemma 2.8.2 to lower bound the right hand side with

(3
2𝛾 − 1

)
(1 + 2𝛾 +

2𝛾2+2𝛾3), so it is sufficient to show
(3

2𝛾 − 1
)
(1+2𝛾+2𝛾2+2𝛾3) ≥ 3

2𝛾
(
1 + 𝛾

4
)2−1−2𝛾. Similar

to before, after expanding both sides this is equivalent to showing 𝛾2

4 + 93
32𝛾

3 + 3
2𝛾

4 ≥ 0, which
is true for 𝛾 ≥ 0. □

We also show some relations between the parameters in the update step. Recall that we
assumed 𝛼 ≤ 1

2 .

Lemma 2.8.4. We have

1. 𝑏 ≤ 1 + 𝛾
4

2. 𝑏 ≤ 𝑎

3.
(𝑎−1)2
𝑎2−𝑏2 ≤ 1

4. 𝑏2 ≥ 1 + 𝛼 − 𝛼′

78

Proof. We start by showing (1). As 1
𝛼′ =

1
𝛼 + 2𝛾, we have 𝛼 = 𝛼′ + 2𝛾𝛼𝛼′. Thus 𝑏 = 1 + 𝛾𝛼𝛼′ ≤

1 + 𝛾𝛼2 ≤ 1 + 𝛾/4 as 𝛼′ ≤ 𝛼 ≤ 1
2 .

For (2), observe that 𝑏 ≤ 1 + 𝛾
4 ≤ 1 + 𝛾 ≤ 𝑒𝛾 = 𝑎 using Lemma 2.8.1-(1), 1 + 𝑥 ≤ 𝑒𝑥 , so 𝑎 ≥ 𝑏.

To show (3), we first argue it is sufficient to show 1+ 𝑏2 ≤ 2𝑎. As a consequence −2𝑎 + 1 ≤ −𝑏2,
so (𝑎 − 1)2 ≤ 𝑎2 − 𝑏2. Because 𝑏 ≥ 1 by Lemma 2.4.2-(2), from (2) we can say that 𝑎2 − 𝑏2 ≥ 0, so
that (𝑎−1)2

𝑎2−𝑏2 ≤ 1.

Now to show 1+ 𝑏2 ≤ 2𝑎, we write as a series in terms of 𝛾. On the left hand side using (1), we
have 1 + 𝑏2 ≤ 1 +

(
1 + 𝛾

4
)2

= 2 + 𝛾
2 +

𝛾2

4 . Further, by Lemma 2.8.1-(2), 𝑒𝑥 ≥ 1 + 𝑥 + 𝑥2

2 , we have
that 2𝑎 ≥ 2 + 2𝛾 + 𝛾2. Clearly 2 + 𝛾

2 +
𝛾2

4 ≤ 2 + 2𝛾 + 𝛾2 when 𝛾 ≥ 0, so we are finished.

For (4), we have by definition that 𝑏2 = 1 + 𝛼 − 𝛼′ + (𝛼−𝛼
′)2

4 , so 𝑏2 ≥ 1 + 𝛼 − 𝛼′. □

As the proof of Lemma 2.4.3 shows, that claim reduces to the following inequality.

Lemma 2.8.5. We have

𝑐2 ≤ 𝑏
2 − 1
𝑏2 · (𝑎2 − 𝑏2). (2.8.1)

Proof. We first upper bound 𝑐 to reduce the number of variables in (2.8.1). As 𝑏 = 1 + 𝛼−𝛼′
2 , we

have 2(𝑏 − 1) = 𝛼 − 𝛼′ and so 𝛼 = 𝛼′ + 2(𝑏 − 1). Thus

𝑐 = −𝛼 + 𝛼′ · 𝑎 = −(𝛼′ + 2(𝑏 − 1)) + 𝛼′ · 𝑎 = 𝛼′ · (𝑎 − 1) + 2(1 − 𝑏)𝑎.

As 𝑏 ≥ 1 by Lemma 2.4.2-(2), we have that 2(1 − 𝑏) ≤ 0 and therefore

𝑐 ≤ 𝛼′ · (𝑎 − 1).

Using this in (2.8.1), it suffices to show 𝛼′2(𝑎 − 1)2 ≤ 𝑏2−1
𝑏2 · (𝑎2 − 𝑏2), which rearranges to

𝑏2 − 1
𝛼′2

≥ (𝑎 − 1)2𝑏2

𝑎2 − 𝑏2 .

Using Lemma 2.8.4-(4), this reduces to

𝛼 − 𝛼′

𝛼′2
≥ (𝑎 − 1)2𝑏2

𝑎2 − 𝑏2 . (2.8.2)

The left hand side of (2.8.2) equals 1
𝛼′

(𝛼
𝛼′ − 1

)
. Because 1

𝛼′ =
1
𝛼 + 2𝛾, we have 𝛼

𝛼′ − 1 = 2𝛾𝛼, so
1
𝛼′

(𝛼
𝛼′ − 1

)
= 2𝛾 · 𝛼𝛼′ = 2𝛾 · (1 + 2𝛾𝛼). So it is sufficient to show

2𝛾(1 + 2𝛾𝛼) ≥ (𝑎 − 1)2𝑏2

𝑎2 − 𝑏2 . (2.8.3)

Now, we will eliminate the other variables in this inequality to transform it into a statement
involving only 𝛾. We have

(𝑎 − 1)2𝑏2

𝑎2 − 𝑏2 =
(𝑎 − 1)2
𝑎2 − 𝑏2

(
1 + 2𝛼𝛼′𝛾 + 𝛼′2𝛼2𝛾2)

79

≤ (𝑎 − 1)2
𝑎2 − 𝑏2 +

𝛾

2 + 𝛼
𝛾2

8 ,

where the first line uses that 𝑏 = 1 + 𝛼𝛼′𝛾, and the second line inequality follows from
Lemma 2.8.4-(3) and the fact that 𝛼′ ≤ 𝛼 ≤ 1

2 . Thus we can reduce (2.8.3) to (𝑎−1)2
𝑎2−𝑏2 ≤ 3

2𝛾+ 31
8 𝛼𝛾2,

or further to

(𝑎 − 1)2
𝑎2 − 𝑏2 ≤

3
2𝛾. (2.8.4)

Using Lemma 2.8.4-(1) and that 𝑎 = 𝑒𝛾, we have (𝑎−1)2
𝑎2−𝑏2 ≤ (𝑒𝛾−1)2

𝑒2𝛾−(1+ 𝛾
4)2

, so finally (2.8.4) reduces to

(𝑒𝛾 − 1)2

𝑒2𝛾 − (1 + 𝛾
4)2
≤ 3

2𝛾,

which is proved in Lemma 2.8.3. □

Recall in the proof of Lemma 2.4.4 we defined ℓ1 = 1
𝑐+𝑎 , ℓ2 =

√
1
𝛼2 − 1

(𝑐+𝑎)2 , 𝑟 =
𝑎2ℓ2

1
𝑏2ℓ2

2
. That claim

reduces to the following.

Lemma 2.8.6. We have

𝑎 − 𝛼′ · 𝑎
√

1 + 𝑟
𝑟
≥ 0.

Proof. As by definition 𝑎 ≥ 0, it suffices to show

𝛼′2 ·
(1
𝑟
+ 1

)
≤ 1. (2.8.5)

Observe that ℓ2
2 = 1

𝛼2 − ℓ2
1 , so we can write 1

𝑟 =
𝑏2

𝑎2

(
1

𝛼2ℓ2
1
− 1

)
, and hence rewrite (2.8.5) as

𝛼′2
(
1 + 𝑏

2

𝑎2

((𝑐 + 𝑎
𝛼

)2
− 1

))
≤ 1.

Multiplying both sides by 𝛼2

𝛼′2 and rearranging, this is equivalent to

𝑏2

𝑎2
(
(𝑐 + 𝑎)2 − 𝛼2) ≤ 𝛼2

𝛼′2
− 𝛼2. (2.8.6)

Now, by definition of 𝑐 we can write 𝑐 + 𝑎 = 𝑎(1 + 𝛼′) − 𝛼, so that (𝑐 + 𝑎)2 − 𝛼2 = 𝑎2(1 + 𝛼′)2 −
2𝛼𝑎(1 + 𝛼′). Thus, (2.8.6) is equivalent to

𝑏2

𝑎2 (𝑎
2(1 + 𝛼′)2 − 2𝛼𝑎(1 + 𝛼′)) ≤ 𝛼2

𝛼′2
(1 + 𝛼′)(1 − 𝛼′).

Dividing by 1 + 𝛼′ and simplifying the left hand side, this is equivalent to

𝑏2
(
1 + 𝛼′ − 2𝛼

𝑎

)
≤ 𝛼2

𝛼′2
(1 − 𝛼′),

which we show in Lemma 2.8.7. □

80

Lemma 2.8.7. We have

𝑏2
(
1 + 𝛼′ − 2𝛼

𝑎

)
≤ 𝛼2

𝛼′2
(1 − 𝛼′).

Proof. Using Lemma 2.8.1-(1), 𝑒−𝑥 ≥ 1 − 𝑥; and the fact that by definition 1
𝑎 = 𝑒−𝛾, it suffices to

show
𝑏2 (1 + 𝛼′ − 2𝛼(1 − 𝛾)) ≤ 𝛼2

𝛼′2
(1 − 𝛼′).

Using Lemma 2.8.4-(4), this reduces further to

(1 + 𝛼 − 𝛼′)(1 + 𝛼′ − 2𝛼(1 − 𝛾)) ≤ 𝛼2

𝛼′2
(1 − 𝛼′). (2.8.7)

We expand both sides of this inequality into polynomials involving 𝛾 and 𝛼, and then analyze
the resulting expression. Using the definition of 𝛼′, we have 𝛼′ = 𝛼

1+2𝛾𝛼 , and thus 1 + 𝛼′ =
1+2𝛾𝛼+𝛼

1+2𝛾𝛼 and 1−𝛼′ = 1+2𝛾𝛼−𝛼
1+2𝛾𝛼 . We also have 𝛼

𝛼′ = 1+2𝛾𝛼, and finally 𝛼−𝛼′ = 2𝛾𝛼2

1+2𝛾𝛼 . Substituting
these equalities into (2.8.7), we obtain the equivalent inequality(

1 + 2𝛾𝛼 + 𝛾𝛼2

1 + 2𝛾𝛼

) (
1 + 2𝛾𝛼 + 𝛼

1 + 2𝛾𝛼 − 2𝛼(1 − 𝛾)
)
≤ (1 + 2𝛾𝛼)2

(
1 + 2𝛾𝛼 − 𝛼

1 + 2𝛾𝛼

)
.

Multiplying both sides by (1+ 2𝛾𝛼)2 and rearranging the terms so that they are all on the same
side, we get

(1 + 2𝛾𝛼)3(1 + 2𝛾𝛼 − 𝛼) −
(
1 + 2𝛾𝛼 + 𝛾𝛼2) (1 + 2𝛾𝛼 + 𝛼 − 2𝛼(1 − 𝛾)(1 + 2𝛾𝛼)) ≥ 0.

Next, we expand this inequality:

16𝛼4𝛾4 − 16𝛼4𝛾3 + 8𝛼4𝛾2 + 24𝛼3𝛾3 − 12𝛼3𝛾2 + 12𝛼2𝛾2 + 2𝛼3𝛾 − 2𝛼2𝛾 + 2𝛼𝛾 ≥ 0

As 𝛾𝛼 ≥ 0, we can divide both sides of this inequality by 2𝛾𝛼. Grouping by powers of 𝛼, we
obtain

4𝛼3𝛾
(
2𝛾2 − 2𝛾 + 1

)
+ 𝛼2 (

12𝛾2 − 6𝛾 + 1
)
+ 𝛼(6𝛾 − 1) + 1 ≥ 0.

Upon inspection, both quadratics 2𝛾2 − 2𝛾 + 1 and 12𝛾2 − 6𝛾 + 1 are positive for all 𝛾. Thus
we only need to show 𝛼(6𝛾 − 1) + 1 ≥ 0, but this is clear from writing it as 1 − 𝛼 + 6𝛾𝛼 ≥ 0 and
using that 𝛼 ≤ 1. □

81

3. Block Lewis weights for sparsification and

minimizing sums of Euclidean norms

In this chapter, we introduce block Lewis weights in the context of sparsification (recall from the
introduction that these weights give us an ellipsoidal approximation to a particular family of
objectives that we are interested in sparsifying). The main goal is to define block Lewis weights
and show how they enable near-optimal sparsification of matrix block norm objectives. We
then apply this to get an improved algorithm for minimizing sums of Euclidean norms in
moderate accuracy settings. The material in this chapter is based on a joint work with Max
Ovsiankin [MO25].

3.1. Introduction

Suppose we are given a large dataset that is computationally inconvenient to work with in a
downstream task. To alleviate this, we can try to randomly sample a small representative subset
of the original dataset. The design and analysis of randomized sampling algorithms for this
purpose is well-explored (for example, see [SS08; MMWY22; WY23b; WY23a] for preserving
ℓ𝑝 objectives, [FL11] for preserving objectives for 𝑘-median, projective clustering, subspace
approximation, and more, [SS08; KKTY22; JLS23; Lee23] for preserving graph and hypergraph
ℓ2-energy, and [JLLS23] for sums (of powers) of general norms).

In order to design randomized sampling algorithms, we first need to understand the properties
of the original dataset we want to preserve. To this end, we study the problem of preserving
block 𝑝-norm objectives. Let 𝒢 = (A ∈ R𝑛×𝑑 , 𝑆1 , . . . , 𝑆𝑚 , 𝑝1 , . . . , 𝑝𝑚) be a dataset consisting of a
matrix A ∈ R𝑛×𝑑. Consider a partitioning of [𝑛] into groups 𝑆1 , . . . , 𝑆𝑚 and consider positive
numbers 𝑝1 , . . . , 𝑝𝑚 . Let A have rows 𝒂1 , . . . , 𝒂𝑛 and denote by A𝑆𝑖 the matrix in R|𝑆𝑖 |×𝑑 whose
rows are the rows of A indexed by 𝑆𝑖 . Consider the function ∥A𝒙∥𝒢𝑝 on some input vector
𝒙 ∈ R𝑑:

∥A𝒙∥𝑝𝒢𝑝 B
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 (3.1.1)

We use the norm notation because we can easily verify that for 𝑝 ≥ 1 and 𝑝𝑖 ≥ 1 for all 𝑖, ∥·∥𝒢𝑝
is a norm. We remark that objectives of the form of (3.1.1) are widely studied in geometric
functional analysis, theoretical computer science, and data science. In Section 3.1.1, we go
over one important application of the objective (3.1.1). We defer a broader discussion of more
applications and connections to Section 3.1.4.

Our goal in this chapter is to design and analyze randomized sampling algorithms to output a
weighted subset that preserves (3.1.1) for all 𝒙 ∈ R𝑑. We give a formal problem statement for
the general problem we study in Problem 3.1.

82

Problem 3.1 (ℓ𝑝 block norm sampling). We are given as input𝒢 =
(
A ∈ R𝑛×𝑑 , 𝑆1 , . . . , 𝑆𝑚 , 𝑝1 , . . . , 𝑝𝑚

)
,

𝑝 > 0, and an error parameter 𝜀. For all 𝑖 ∈ [𝑚], we must output a probability distribution 𝜌1 , . . . , 𝜌𝑚
over [𝑚] such that if we choose a collection of groupsℳ = (𝑖1 , . . . , 𝑖𝑚) where each 𝑖ℎ is independently

distributed according to 𝜌𝑖 , then the following holds with probability ≥ 1 − 𝛿:

for all 𝒙 ∈ R𝑑 : (1 − 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ≤
1
𝑚

∑
𝑖∈ℳ

1
𝜌𝑖
· ∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 ≤ (1 + 𝜀) ∥A𝒙∥𝑝𝒢𝑝 (3.1.2)

We would like 𝑚 to be small with probability 1 − 𝛿 (for example, 𝑚 should not depend on 𝑚 and the

dependence on 𝛿−1
should be polylogarithmic).

Observe that the formulation of Problem 3.1 is an instantiation of an importance sampling frame-
work. Specifically, we can think of the distribution 𝒟 as consisting of importance scores for
each group. We form our sparse approximation by sampling group 𝑖 with probability 𝜌𝑖 and
reweighting appropriately so that the function we return is an unbiased estimator of ∥A𝒙∥𝒢𝑝 .
We call 𝑚 the sparsity of the procedure described in Problem 3.1. Additionally, in the statement
of our results, we will assume that 𝑝 is a constant (and thus any function solely of 𝑝 will treated
as a constant in any 𝑂 (·) or Ω (·) terms).

In this chapter, we give new results for Problem 3.1 and show how these imply faster algorithms
for commonly implemented optimization problems.

3.1.1. Our results

For a quick summary of our existence results for the block norm sampling problem (Prob-
lem 3.1), see Section 3.1.4.

We begin with stating our main result1, Theorem 8.

Theorem 8 (Block Lewis weight sampling). Let 𝒢 = (A ∈ R𝑛×𝑑 , 𝑆1 , . . . , 𝑆𝑚 , 𝑝1 , . . . , 𝑝𝑚) where

𝑆1 , . . . , 𝑆𝑚 form a partition of [𝑘]. Suppose at least one of the following holds:

• 1 ≤ 𝑝 < ∞ and 𝑝1 , . . . , 𝑝𝑚 ≥ 2;

• 1/log 𝑑 ≤ 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < ∞;

• 𝑝1 = · · · = 𝑝𝑚 = 2 and 1/log 𝑑 ≤ 𝑝 < ∞.

Let 𝑃 B max
(
1,max𝑖∈[𝑚]min(𝑝𝑖 , log |𝑆𝑖 |)

)
. Then, there exists a probability distribution 𝒟 =

(𝜌1 , . . . , 𝜌𝑚) such that if

𝑚 = Ω

(
log (1/𝛿) 𝜀−2 (log 𝑑)2 log (𝑑/𝜀)𝑃 · 𝑑max(1,𝑝/2)

)
,

and if we sampleℳ ∼ 𝒟𝑚
, then, with probability ≥ 1 − 𝛿,

for all 𝒙 ∈ R𝑑 , (1 − 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ≤
1
𝑚

∑
𝑖∈ℳ

1
𝜌𝑖
· ∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 ≤ (1 + 𝜀) ∥A𝒙∥𝑝𝒢𝑝 .

1In the statement of Theorem 8, writing the lower bound 𝑝 ≥ 1/log 𝑑 instead of 𝑝 > 0 is somewhat arbitrary – we
choose this lower bound to make our calculations easier later on.

83

We prove Theorem 8 in Section 3.5.1. It will follow from Theorem 11 (stated and proven
in Section 3.4), which is a more general but more technical statement that also includes a
description of the relevant distributions𝒟.

We remark that when 𝑝 ≥ 1 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2, the sampling probabilities 𝝆 mentioned in
Theorem 8 can be found using the optimality conditions of a particular optimization problem
that was stated and analyzed by Jambulapati, Lee, Liu, and Sidford [JLLS23, Section 4]. That
problem itself can be viewed as the natural generalization of the determinant maximization
problem that yields the existence of Lewis’s measure (see [SZ01, Section 2] for details). However,
[JLLS23] did not address the question of whether sparsification guarantees could be obtained
with these weights beyond the case where the “outer norm” satisfies 𝑝 = 2.

Additionally, although [JLLS23] study sparsification of sums of norms and sums of powers 𝑝 > 1
of uniformly smooth norms, we obtain an improved sparsity in the case entailed by Problem 3.1
(by a factor of 𝜓𝑑 log (𝑑/𝜀)min(𝑝−1,2), where 𝜓𝑑 is the KLS “constant” in 𝑑 dimensions). We defer
a more detailed comparison of our existence results to Section 3.1.4.

Furthermore, it is well-known that the polynomial terms in the sparsities in Theorem 8 are
optimal. In particular, Li, Wang, and Woodruff [LWW21, Corollary 1.6 and Theorem 1.7] show
that Ω(𝑑max(1,𝑝/2) + 𝜀−2polylog(𝜀−1)𝑑) rows must be chosen in order to satisfy the requirement
imposed by (3.1.2).

Finally, the setting where 𝑝 = 𝑝1 = · · · = 𝑝𝑚 is a particularly important case of Problem 3.1.
Here, we see that ∥A𝒙∥𝑝 = ∥A𝒙∥𝒢𝑝 , and so Problem 3.1 amounts to finding an ℓ𝑝 subspace
embedding under a group constraint (that certain rows must be kept together in the subsample).
This might be a useful notion in practice, where the 𝑆𝑖 denote related observations that should
be kept together for some downstream application. Moreover, this can be viewed as a higher-
rank analog of ℓ𝑝 row sampling, somewhat similarly to how the matrix Chernoff bound gives a
higher-rank analog for the concentration of sums of bounded random matrices when compared
to the rank-1 variant of Rudelson [Rud99].

Computing sampling probabilities. The previous results show the existence of sampling
probabilities 𝜌1 , . . . , 𝜌𝑚 such that sampling using those probabilities gives a sparsifier in the
setting of Problem 3.1. To get a sparsification algorithm, we need to also compute (or approxi-
mate) the sampling probabilities.

We give efficient algorithms to do so in natural cases.

Theorem 9 (Computation of block Lewis weights). Consider the setting of Theorem 8 and suppose

at least one of the following holds:

• 𝑝 = 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2;

• 1/log 𝑛 ≤ 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < ∞;

• 𝑝1 = · · · = 𝑝𝑚 = 2 and 1/log 𝑛 ≤ 𝑝 < ∞.

Let 𝑃 = max
(
1,max𝑖∈[𝑚]min(𝑝𝑖 , log |𝑆𝑖 |)

)
and set

𝑚 = 𝑂
(
log (1/𝛿) 𝜀−2 (log 𝑑)2 log (𝑑/𝜀)𝑃 · 𝑑max(1,𝑝/2)

)
.

84

Then, there is an algorithm that outputs a probability distribution𝒟 = (𝜌1 , . . . , 𝜌𝑚) such that sampling

a multisetℳ ∼ 𝒟𝑚
satisfies, with probability 1 − 𝛿,

for all 𝒙 ∈ R𝑑 , (1 − 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ≤
1
𝑚

∑
𝑖∈ℳ

1
𝜌𝑖
· ∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 ≤ (1 + 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ,

Further, the algorithm to find𝒟 performs at most polylog(𝑘, 𝑛, 𝑚) leverage score overestimate computa-

tions or linear system solves.

We prove Theorem 9 in Section 3.5.2.

We formally define a leverage score overestimate computation in Definition 3.5.1. Alternately, these
can be implemented using linear system solvers that solve systems of the form A⊤DA𝒚 = 𝒛
for diagonal D (see [LS19] for details). Although the runtime of this primitive depends on the
structure of the input, each such iteration runs in 𝑂(nnz(A)+ 𝑑𝜔) time. Moreover, in the special
case where the matrix A is a graph edge-incidence matrix, the runtime improves to 𝑂(nnz(A)).

Finally, we note that our algorithms are faster than the log-concave sampling-based routines
given in [JLLS23] for calculating sparse approximations to sums (of powers of) more general
norms, when the outer norm 𝑝 satisfies 1 ≤ 𝑝 ≤ 2 (they do not give algorithms for the case
where 𝑝 > 2). In particular, while their algorithm applies to a more general setting, the runtime
is 𝑂(𝑚 + 𝑑5). In contrast, since our algorithms only depend on a polylogarithmic number of
leverage score overestimate computations or linear system solves, we can obtain much faster
runtimes (in particular improved powers of 𝑛). This means that we can apply our algorithms
to downstream optimization tasks where the main computational primitive is a linear system
solver (as is the case for many general frameworks for convex programming).

Applications to minimizing sums of Euclidean norms. A well-studied regression task is the
minimizing sums of Euclidean norms (MSN) problem. We are given A ∈ R𝑛×𝑑 and 𝒃 ∈ R𝑛 , and a
partition 𝑆1 , . . . , 𝑆𝑚 of [𝑛]. In this problem, we would like to find

min
𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 . (3.1.3)

Solving the MSN objective (3.1.3) subsumes several widely implemented optimization prob-
lems such as variants of Euclidean single facility location, Euclidean multifacility location,
Euclidean Steiner minimum tree under a given topology, and plastic collapse analysis. See
the long line of work on this problem [And96; XY97; ACCO00; QSZ02] for a more detailed
discussion. Additionally, observe that if all |𝑆𝑖 | = 1, then (3.1.3) is nothing but ℓ1 regression
(i.e., min𝒙∈R𝑑 ∥A𝒙 − 𝒃∥1). Thus, (3.1.3) is a generalization of ℓ1 regression. Finally, notice that
(3.1.3) subsumes the stochastic robust approximation problem when the norm in question is the
Euclidean norm and the design A assumes a finite number of values – see [BV04, Section 6.4.1]
for further discussion.

In this chapter, we will be interested in algorithms that return a (1 + 𝜀)-multiplicative approxi-
mation to the objective – namely, we desire a point �̂� ∈ R𝑑 such that

𝑚∑
𝑖=1
∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2 ≤ (1 + 𝜀)min

𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 .

85

To our knowledge, the best known algorithms based on interior point methods output a (1+ 𝜀)-
approximate solution to (3.1.3) 𝑂(

√
𝑚 log (1/𝜀)) calls to a linear system solver [And96; XY97] for

matrices of the form A⊤DA for block-diagonal matrices D.

By applying Theorem 9 on the matrices [A𝑆𝑖 |𝒃𝑆𝑖] ∈ R|𝑆𝑖 |×(𝑑+1) with 𝑝1 = · · · = 𝑝𝑚 = 2 and 𝑝 = 1,
observe that within𝑂(1) linear system solves in matrices A⊤DA for nonnegative diagonal D, we
obtain an objective with 𝑂(𝜀−2 · 𝑑) terms that approximates (3.1.3) up to a (1± 𝜀)multiplicative
factor on all vectors 𝒙 ∈ R𝑑+1 whose last coordinate is 1. This immediately implies Theorem 10.

Theorem 10 (Minimizing sums of Euclidean norms). Let A ∈ R𝑛×𝑑 and 𝒃 ∈ R𝑛 , and 𝑆1 , . . . , 𝑆𝑚
be a partition of 𝑘. There exists an algorithm that, with probability ≥ 1 − 𝛿, returns �̂� such that

𝑚∑
𝑖=1
∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2 ≤ (1 + 𝜀)min

𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 .

The algorithm runs in 𝑂
(√
𝑑/𝜀 ·

√
log (1/𝛿)

)
calls to a linear system solver in matrices of the form A⊤DA

for block-diagonal matrices D, where each block has size (|𝑆𝑖 | + 1) × (|𝑆𝑖 | + 1).

We prove Theorem 10 in Section 3.5.3.

Theorem 10 improves over the best-known iteration complexities for solving (3.1.3) when the
number of summands is much larger than the input dimension, i.e., 𝑚 ≫ 𝑑. Furthermore, the
iteration complexity stated in Theorem 10 matches the iteration complexity for ℓ1 regression up
to the 𝜀−1 term [vdBLLSSSW21]. It is an interesting (but probably challenging) open problem
to design and analyze an algorithm for (3.1.3) with iteration complexity 𝑂(

√
𝑑 log (1/𝜀)), which

would exactly match what is known for ℓ1 regression.

Finally, we note that in the special case of the geometric median, where all the A𝑆𝑖 = I𝑟 for some
fixed dimension 𝑟, an algorithm with runtime 𝑂(nnz(𝒃) log (1/𝜀)3) is known due to Cohen, Lee,
Miller, Pachocki, and Sidford [CLMPS16]. The algorithm is a long-step interior point method
with a custom analysis and follows from different techniques from ours.

Outline. The rest of this chapter is organized as follows. In the remainder of this section,
we establish notation that we use throughout the rest of the chapter (Section 3.1.2), give an
overview of our technical methods (Section 3.1.3), and discuss some prior and related works
(Section 3.1.4). In Section 3.2, we give background from linear algebra, convex geometry, and
probability that we rely on for the rest of the chapter. In Section 3.3, we prove bounds on
geometric quantities known as covering numbers. These play a crucial role in our concentration
arguments. In Section 3.4, we prove that our general sampling scheme concentrates and
therefore preserves the original objective on all 𝒙 ∈ R𝑑, with high probability. In Section 3.5, we
show how to apply our general sampling scheme to the problems we discuss in Section 3.1.1.
Finally, in Section 3.5.2, we describe our algorithmic results.

3.1.2. Notation and definitions

General notation. For positive integer 𝑁 , we let [𝑁] denote the set {𝑖 ∈ Z : 1 ≤ 𝑖 ≤ 𝑁}. All
logs are base 2; we use ln to denote the natural logarithm. We let 𝒆1 , . . . , 𝒆𝑑 denote the standard
basis vectors in R𝑑. When we write 𝑎 ≲ 𝑏, we mean that 𝑎 ≤ 𝐶𝑏 for some universal constant
𝐶 > 0.

86

Linear algebra notation. In this chapter, we work extensively with matrices and vectors. We
always denote matrices with capital letters in boldface (e.g. A) and vectors with lowercase
letters in boldface (e.g. 𝒙). With a few exceptions, we write the rows of a matrix using the
lowercase boldface version of the same letter used to write the matrix along with a subscript
denoting which index the row corresponds to. For example, 𝒂 𝑖 denotes the 𝑖th row of matrix A.
In a slight abuse of notation, for a symmetric matrix M, we let M−1 B

∑rank(M)
𝑖=1 𝜆−1

𝑖
𝒖 𝑖𝒖⊤𝑖 , where

𝒖 𝑖 is the 𝑖th eigenvector of M. In other words, we write M−1 to denote the pseudoinverse of M
when M is symmetric. We will never use the inverse notation M−1 for a non-symmetric matrix
M.

3.1.3. Technical overview

In this subsection, we give a bird’s eye view of the technical methods behind our proof of
Theorem 8.

Concentration

We begin with an explanation of our concentration proof. This type of argument has become
standard in the line of work on sparsification (particularly in [Lee23; JLLS23]), but we include
a description for completeness.

Let 𝐵𝑝 B
{
𝒙 ∈ R𝑑 : ∥A𝒙∥𝒢𝑝 ≤ 1

}
. By a standard symmetrization reduction, it suffices to fix

𝑖1 , . . . , 𝑖𝑚 (not necessarily distinct) and argue that for independent 𝑅1 , . . . , 𝑅𝑚 where 𝑅ℎ ∼
Unif (±1)we have

E
𝑅ℎ

sup
𝒙∈𝐵𝑝

��������
𝑚∑
ℎ=1

𝑅ℎ ·

A𝑆𝑖ℎ
𝒙
𝑝
𝑝𝑖ℎ

𝜌𝑖ℎ

��������
 ≤ 𝑚 · 𝜀. (3.1.4)

Intuitively, satisfying (3.1.4) means that for the rebalancing of the groups given by the 𝜌𝑖ℎ , a
Rademacher average of the groups evaluated on every point in 𝒙 is close to 0. It is straight-
forward to check that the above instantiation is a subgaussian process under an appropriately
chosen distance function 𝑑𝑖𝑠𝑡 : R𝑑 × R𝑑 → R. Thus, we will apply chaining [Tal21], which can
be thought of as simultaneously controlling (3.1.4) on 𝜀-nets of 𝐵𝑝 using the metric 𝑑𝑖𝑠𝑡, for all
𝜀 > 0.

To apply chaining, the main technical task is to understand the entropy numbers 𝑒𝑁 (𝐵𝑝 , 𝑑𝑖𝑠𝑡). The
entropy numbers 𝑒𝑁 (𝐵𝑝 , 𝑑𝑖𝑠𝑡) are the values 𝜂 that answer the question, “what is the smallest
𝜂 such that 𝐵𝑝 can be covered by at most 22𝑁 balls of 𝑑𝑖𝑠𝑡-radius 𝜂?” (or see Definition 3.2.5).

Covering numbers

In this subsection, we explain how to control the entropy numbers as required by Section 3.1.3.
We first define the sampling body (Definition 3.1.1).

87

Definition 3.1.1 (Sampling body). Let 𝑆 be some subset of [𝑚] and 𝜌1 , . . . , 𝜌𝑚 be a probability

distribution. Define the norm ∥𝒙∥𝒢 ,𝜌,∞,𝑆 B max𝑖∈𝑆 𝜌
−1/𝑝
𝑖
∥A𝑆𝑖𝒙∥𝑝𝑖 . We call the unit norm ball of

∥𝒙∥𝒢 ,𝜌,∞,𝑆 the sampling body.

Recall that the covering number 𝒩(𝐾1 , 𝐾2) for two symmetric convex bodies 𝐾1 and 𝐾2 is
the minimum number of translates of 𝐾2 required to cover 𝐾1. Additionally, recall from the
previous subsection the notion of entropy numbers (which we will define in Definition 3.2.5).
We will reduce controlling (3.1.4) to bounding the entropy numbers

𝑒𝑁

({
𝒙 ∈ R𝑑 : ∥A𝒙∥𝒢𝑝 ≤ 1

}
,
{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
when𝑁 is small. This places us in the setting where a simple volume-based argument becomes
suboptimal. In this range, the dual Sudakov inequality (Fact 3.2.6) is the technical workhorse
that allows us to get sharper bounds than what we would get if we applied just a volume-based
bound. It states that if 𝐵 is the Euclidean ball in 𝑑 dimensions and 𝐾 is some symmetric convex
body in 𝑑 dimensions, then we have

log𝒩(𝐵, 𝜂𝐾) ≲ 𝜂−2 E
𝒈∼𝒩(0,I𝑑)

[
∥𝒈 ∥𝐾

]2
,

where ∥·∥𝐾 is the gauge norm for 𝐾, defined by ∥𝒙∥𝐾 B inf {𝑡 > 0 : 𝒙/𝑡 ∈ 𝐾}.

However, applying the dual Sudakov inequality requires that we analyze covering numbers of
the form log𝒩(𝐵, 𝐾) where 𝐵 is the Euclidean ball in 𝑑 dimensions and 𝐾 is some symmetric
convex body. Denoting {𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1} by 𝐾, we see that we cannot immediately
apply the dual Sudakov inequality to bound log𝒩(𝐵𝑝 , 𝜂𝐾). This is because 𝐵𝑝 is not a (linear
transformation of a) Euclidean ball. The work of [JLLS23] resolve this by generalizing the dual
Sudakov inequality to cover arbitrary symmetric convex bodies. Unfortunately, this approach
is not optimal in every setting. One source of the loss arises from exploiting the concentration
of Lipschitz functionals of isotropic log-concave random vectors – improving the bounds on
this concentration depends on further progress on the KLS conjecture. Another is that the
one-dimensional conditionals of isotropic log-concave random variables, without any further
assumptions, are only subexponential.

To escape these inefficiencies, we will want to try to find a way to apply the dual Sudakov
inequality as-is. We may then exploit the concentration of Lipschitz functionals of Gaussian
random vectors, which we do have a tight understanding of (for a precise statement, see
Fact 3.2.11). A natural attempt is to first observe that for any 𝑡 > 0,

log𝒩
(
𝐵𝑝 , 𝜂𝐾

)
≤ log𝒩

(
𝐵𝑝 , 𝑡�̂�2

)
+ log𝒩

(
𝑡�̂�2 , 𝜂𝐾

)
= log𝒩

(
𝐵𝑝 , 𝑡�̂�2

)
+ log𝒩

(
�̂�2 ,

𝜂

𝑡
· 𝐾

)
.

(3.1.5)

We will choose �̂�2 to be a linear transformation of a Euclidean ball so that we can control
log𝒩

(
�̂�2 , 𝜂/𝑡 · 𝐾

)
using the dual Sudakov inequality.

Here, we will split our argument based on whether 𝑝 ≥ 2. When 𝑝 ≥ 2, it will become clear
later on that it will be sufficient to choose �̂�2 so that 𝐵𝑝 ⊆ �̂�2. Then, it is easy to see that
when 𝑡 = 1, we get log𝒩(𝐵𝑝 , 𝑡�̂�2) = 0. Hence, we have log𝒩(𝐵𝑝 , 𝜂𝐾) ≤ log𝒩(�̂�2 , 𝜂𝐾), and
the required bound will follow from exploiting the concentration of Lipschitz functionals of
Gaussian random vectors and then applying the dual Sudakov inequality.

88

However, when 𝑝 < 2, we are still left with a pesky log𝒩(𝐵𝑝 , 𝑡�̂�2) term. Loosely, this is almost
dual to the statement of the dual Sudakov inequality. Now, because it is known that covering
number duality does hold when one of the bodies in question is the Euclidean ball, it may be
tempting to simply write log𝒩(𝐵𝑝 , 𝑡�̂�2) = log𝒩(�̂�2 , 𝑡𝐵𝑞) where 𝐵𝑞 is the dual ball to 𝐵𝑝 after
applying some linear transformation to map �̂�2 to 𝐵. The challenge here is that we do not
believe that the gauge of the resulting 𝐵𝑞 has a form that is amenable to analysis. We will
therefore need to be more careful, and we describe our alternative approach in Section 3.1.3.

The change-of-measure principle and norm interpolation

Recall from the previous part that our goal is to bound log𝒩(𝐵𝑝 , 𝑡�̂�2)when 𝑝 < 2.

We are now ready to introduce our main conceptual message – by changing the measure under

which we take norms, we can almost automatically identify a linear transformation of a Euclidean ball

�̂�2 that is a good approximation to 𝐵𝑝 . This sort of idea has already been used by Bourgain, Lin-
denstrauss, and Milman [BLM89] and Schechtman and Zvavitch [SZ01] to obtain the required
�̂�2 in the special case where all the 𝑆𝑖 are singletons. We will generalize this machinery to give
similar results for the block norm sampling problem.

Let us describe this idea further. Let 𝝀 = [𝜆1 , . . . ,𝜆𝑚]⊤ denote a probability measure over the
groups. Let Λ ∈ R𝑛×𝑛 be the diagonal matrix such that if 𝑗 ∈ 𝑆𝑖 , then Λ𝑗 𝑗 = 𝜆𝑖 . Finally, for any
𝑟 > 0 and 𝒚 ∈ R𝑛 , let ∥𝒚∥𝒢𝑟 (𝝀) = (

∑
𝑖≤𝑚 𝜆𝑖

𝒚𝑆𝑖𝑟𝑝𝑖)1/𝑟 and 𝐵𝑟 B {𝒙 ∈ R𝑑 :
Λ−1/𝑝A𝒙

𝒢𝑟 (𝝀) ≤ 1}.

Notice that under this definition, we still have 𝐵𝑝 as before. We will first describe the argument
when the groups are singletons, then explain how to move onto the general case. We will take
�̂�2 = 𝐵2; it is easy to see that this is a linear transformation of a Euclidean ball.

Next, notice that by log-convexity of norms, if we choose 0 < 𝜃 < 𝑝 and 𝑟 > 2 for which
1/2 = (𝜃/2)/𝑝 + (1 − 𝜃/2)/𝑟, we have

∥𝒚∥2𝒢2(𝝀) ≤ ∥𝒚∥
𝜃
𝒢𝑝(𝝀) · ∥𝒚∥

2−𝜃
𝒢𝑟 (𝝀) . (3.1.6)

We will exploit this observation as follows. For all integers ℎ ≥ 0, we will show that there
exists a set ℒℎ that is (a subset of) the unit ball of 𝐵2 such that every pair of points in ℒℎ is
𝛿ℎ-separated according to ∥·∥𝒢𝑟 (𝝀). We will find 𝛿ℎ according to the interpolation inequality
(3.1.6). Furthermore, we will generate ℒℎ using a sort of compactness argument arising from
a 𝐵2-maximally separated subset of 𝐵𝑝 . This means we get, for every ℎ ≥ 0,

log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟) ≥ log |ℒℎ | ≥ log

(
𝒩(𝐵𝑝 , 8ℎ𝑡�̂�2)
𝒩(𝐵𝑝 , 8ℎ+1𝑡�̂�2)

)
.

Then, summing over ℎ ≥ 0 (noting that once ℎ is sufficiently large,𝒩(𝐵𝑝 , 8ℎ𝑡�̂�2) = 1), we have

log𝒩(𝐵𝑝 , 𝑡�̂�2) ≤
∑
ℎ≥0

log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟).

Notice that the right hand side can be evaluated using the dual Sudakov inequality2 (recall the
previous section), so it suffices to show that log𝒩(�̂�2 , 𝜂𝐵𝑟) is small.

2For technical reasons that will be clearer in Section 3.3, we will have to do this after another interpolation step.

89

This is where the choice of measure becomes crucial. Since both �̂�2 and 𝐵𝑟 are dependent on
our choice of measure 𝝀, we will need to carefully choose the measure so that our covering
numbers are well-behaved. A classical result of Lewis [Lew78] establishes the existence of a
change-of-measure under which we simultaneously get:

𝑑1/2−1/𝑟𝐵𝑟 ⊂ �̂�2 ⊂ 𝐵𝑟 for all 𝑟 < 2

𝐵𝑟 ⊂ �̂�2 ⊂ 𝑑1/2−1/𝑟𝐵𝑟 for all 𝑟 > 2
(3.1.7)

This change-of-measure corresponds to the “ℓ𝑝 Lewis weights” of A (in particular, if 𝑤𝑖 is the
𝑖th ℓ𝑝 Lewis weight, then we set 𝜆𝑖 = 𝑤𝑖/𝑛). It will turn out that this choice of 𝝀 is enough for
us to ensure that 𝒩(�̂�2 , 𝜂𝐵𝑟) is sufficiently small for our purposes, which eventually follows
from (3.1.7).

Handling general 𝑆𝑖 . The main challenge with directly porting this argument to the block
norm sampling problem is that 𝐵2 is not a linear transformation of a Euclidean ball unless
𝑝1 = · · · = 𝑝𝑚 = 2. We will therefore have to choose �̂�2 to be a “rounding” of 𝐵2 such that
𝐵2 ⊆ �̂�2. Observe that the interpolation step (3.1.6) will continue to hold here, as we will get
∥𝒚∥

𝐵2
≤ ∥𝒚∥𝒢2(𝝀). However, if �̂�2 is chosen suboptimally, then there could a large loss in the

interpolation step (3.1.6).

To understand what we need from our measure and rounding, let us try to derive a version of
(3.1.7) for general 𝑆𝑖 . We show an example of this calculation for 𝑟 = 𝑝 ≤ 2; the other cases
follow similarly. Let 𝝀 ∈ R𝑚≥0 denote a probability measure. Let W be a diagonal “rounding
matrix” so that for all 𝒙 ∈ R𝑑, we haveW1/2Λ1/2−1/𝑝A𝒙

2
≤

Λ1/2−1/𝑝A𝒙

𝒢2

=

Λ−1/𝑝A𝒙

𝒢2(𝝀)

.

Letting �̂�2 =
{
𝒙 ∈ R𝑑 :

W1/2Λ1/2−1/𝑝A𝒙

2 ≤ 1
}
, the above inequality gives 𝐵2 ⊆ �̂�2, as de-

sired. Next, observe that since 𝝀 is a probability measure, we get 𝐵2 ⊆ 𝐵𝑝 for free. For the other
direction, we writeΛ−1/𝑝A𝒙

2

𝒢2(𝝀)
=

Λ1/2−1/𝑝A𝒙
2

𝒢2
=

𝑚∑
𝑖=1

𝜆𝑖
𝜆−1/𝑝

𝑖
A𝒙

2

𝑝𝑖
=

𝑚∑
𝑖=1

𝜆𝑖
𝜆−1/𝑝

𝑖
A𝒙

𝑝
𝑝𝑖

𝜆−1/𝑝
𝑖

A𝒙
2−𝑝

𝑝𝑖

≤
𝑚∑
𝑖=1

𝜆𝑖
𝜆−1/𝑝

𝑖
A𝒙

𝑝
𝑝𝑖
·max
𝑖∈[𝑚]

𝜆−1/𝑝
𝑖

A𝒙
2−𝑝

𝑝𝑖
= ∥A𝒙∥𝑝𝒢𝑝 ·max

𝑖∈[𝑚]

𝜆−1/𝑝
𝑖

A𝒙
2−𝑝

𝑝𝑖

≤ ∥A𝒙∥𝑝𝒢𝑝 ·max
𝑖∈[𝑚]

©«max
𝒙∈R𝑑

𝜆−1/𝑝
𝑖

A𝒙
2

𝑝𝑖Λ1/2−1/𝑝A𝒙
2
𝒢2

ª®®®¬
1−𝑝/2

·
Λ1/2−1/𝑝A𝒙

2−𝑝

𝒢2
.

We combine the
Λ1/2−1/𝑝A𝒙

𝒢2

terms and take the 𝑝th root of both sides, giving

Λ1/2−1/𝑝A𝒙

𝒢2
≤ ∥A𝒙∥𝒢𝑝 ·max

𝑖∈[𝑚]

©«max
𝒙∈R𝑑

𝜆−1/𝑝
𝑖

A𝒙
2

𝑝𝑖Λ1/2−1/𝑝A𝒙
2
𝒢2

ª®®®¬
1/𝑝−1/2

90

= ∥A𝒙∥𝒢𝑝 ·max
𝑖∈[𝑚]

©«
1
𝜆𝑖
·max
𝒙∈R𝑑

𝜆1/2−1/𝑝
𝑖

A𝒙
2

𝑝𝑖Λ1/2−1/𝑝A𝒙
2
𝒢2︸ ︷︷ ︸

�̂�𝑖(Λ1/2−1/𝑝A)

ª®®®®®®®®¬

1/𝑝−1/2

.

We may think of the quantity �̂�𝑖 as a generalized leverage score. Specifically, it upper bounds the
contribution of the term ∥𝜆1/2−1/𝑝

𝑖
A𝒙∥2𝑝𝑖 to the objective

Λ1/2−1/𝑝A𝒙
2
𝒢2

. The above calculation
shows us that if we make �̂�𝑖/𝜆𝑖 small for all 𝑖, then we can get a tight relationship between
𝐵2 and 𝐵𝑝 . A slight weakening of the definition of the �̂�𝑖 motivates the notion of a block Lewis

overestimate that we use in the remainder of the chapter.

Definition 3.1.2 (Block Lewis overestimate). Let 𝜏𝑗(M) denote the leverage score of the 𝑗th row of M.

Let 𝐹★ > 0. For 𝑝 > 0 and 𝑝𝑖 > 0, we say the probability measure 𝝀 and rounding W form an 𝐹★-block

Lewis overestimate if for all 𝑖 ∈ [𝑚], we have

1
𝜆𝑖

©«
∑
𝑗∈𝑆𝑖

(
𝜏𝑗(W1/2Λ1/2−1/𝑝A)

𝑤 𝑗

)𝑝𝑖/2ª®¬
2/𝑝𝑖

≤ 𝐹★.

Following the above argument, establishing a probability measure 𝝀 and a rounding matrix W
that form an 𝐹★-block Lewis overestimate will imply

𝐵2 ⊆ �̂�2 and
(𝐹★)1/2−1/𝑟𝐵𝑟 ⊂ 𝐵2 ⊂ 𝐵𝑟 for all 𝑟 < 2

𝐵𝑟 ⊂ 𝐵2 ⊂ (𝐹★)1/2−1/𝑟𝐵𝑟 for all 𝑟 > 2
. (3.1.8)

With (3.1.8) in hand, we at least have enough reason to believe that establishing (𝝀,W) that
form an 𝐹★-block Lewis overestimate may yield the requisite control over log𝒩(�̂�2 , 𝜂𝐵𝑟). To
actually get this, by the dual Sudakov inequality, we estimate ∥𝒈 ∥𝐵𝑟 for 𝒈 ∼ 𝒩(0, I𝑑). Doing so
is a matter of applying again the fact that the concentration of Lipschitz functionals of Gaussian
vectors is determined entirely by the Lipschitz parameter of the functional.

To actually find 𝝀 and W with a small value of 𝐹★, we split into cases. When 𝑝 ≥ 1 and
𝑝1 = · · · = 𝑝𝑚 ≥ 2, we extract the relevant 𝝀 and W from the analysis in the proof of [JLLS23,
Lemma 4.2], which yields 𝐹★ = 𝑑. When 𝑝1 = · · · = 𝑝𝑚 = 𝑝 ≥ 1/log 𝑑 or 𝑝1 = · · · = 𝑝𝑚 = 2 and
𝑝 ≥ 1/log 𝑑, we separately prove that we can find 𝝀 and W satisfying Definition 3.1.2, again
with 𝐹★ = 𝑑. Hence, in all cases, the control we get over log𝒩(�̂�2 , 𝜂𝐵𝑟) is essentially as good as
what we get in the case where all the 𝑆𝑖 are singletons.

Change-of-measures in functional analysis. We note that other change-of-measure argu-
ments are used throughout the study of finite-dimensional subspaces of 𝐿𝑝 , as they are a very
useful way to compare the 𝐿𝑝 norm to some other norm of interest. See the survey by Johnson
and Schechtman [JS00, Section 1.2] for more information.

3.1.4. Prior results, related works, and connections

Relevance of matrix block norms. We discuss the importance of the matrix block norm
objective (3.1.1) to functional analysis, theoretical computer science, and data science, beyond

91

our previous discussion of the MSN problem (3.1.3).

In the special case where all the 𝑝𝑖 are equal to one another (call this value 𝑞), the set of 𝒙
for which ∥A𝒙∥𝒢𝑝 < ∞ yields a subspace of a mixed 𝑝, 𝑞 norm space (sometimes notated as
ℓ𝑝(ℓ𝑞)). Observe that Theorem 8 implies a finite-dimensional subspace embedding result for
finite-dimensional subspaces of infinite-dimensional 𝐿𝑝(ℓ 𝑟𝑞) (where 𝑟 is finite). Spaces of the
form ℓ𝑝(ℓ𝑞) are widely studied in the geometric functional analysis and approximation theory
communities; see, e.g., [PS12; KV17; MU21; JKP22] and the references therein.

As mentioned in those works, a central motivation for studying ℓ𝑝(ℓ𝑞) is that they are natural
testbeds with which to evaluate and further our understanding of the geometry of symmetric
convex bodies in high dimensions. Consequently, studying block norm subspace embedding
problems (Problem 3.1) is a fruitful direction through which to improve our geometric handle
of subspaces of ℓ𝑝(ℓ𝑞) and symmetric convex bodies in general. We note that understanding the
correct polylog dependencies in 𝑑 for this problem typically requires new geometric insights.
For instance, the necessity of additional polylogarithmic dependencies on the dimension 𝑑

is not even totally understood when |𝑆𝑖 | = 1 and 𝑝 ≠ 2, and resolving them likely requires
significant new geometric ideas [BRR23, Conjecture 2].

The matrix block norms are also ubiquitous in both theoretical computer science and data
science. For example, the block norm objective has been studied in the context of hypergraph
Laplacians. One recovers this by choosing 𝑝 = 2 and 𝑝1 = · · · = 𝑝𝑚 = ∞; see the discussion in
[JLS23, Section 1.2] to see how to rewrite the hypergraph Laplacian in the form of (3.1.1). Within
data science, the block norms are used to encourage structured solutions to underdetermined
linear systems (i.e., in a noiseless setting, we can set up and solve the convex optimization
problem3, “find a vector 𝒚 in the affine space B𝒚 = 𝒃 minimizing ∥𝒚∥𝑝𝒢𝑝”); see, e.g., [YL06;
Bac08; NHCD10; SFHT13] and other applications mentioned in [Sra12]. As a concrete candidate
application of our results to such settings, inspired by [CD21; MMWY22], we believe that our
results can be used as subroutines to give runtime and query-efficient algorithms for active
∥·∥𝒢𝑝 regression when 𝑝 > 0 and 𝑝1 = · · · = 𝑝𝑚 = 2 (generalizing the basis pursuit equivalent
of the group Lasso objective) or when 𝑝 = 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2.

On a more conceptual level, we are optimistic that some of our results will be useful for design-
ing faster algorithms for norm-constrained optimization problems. This is partly motivated by
our discussion around the MSN problem (3.1.3) and is similar to how an improved geometric
understanding of Lewis weights improved the iteration complexities for linear programming
and ℓ𝑝 regression [LS19; JLS22].

Lewis weights for ℓ𝑝 row sampling. When each group 𝑆𝑖 has size 1, notice that we have
∥A𝒙∥𝑝𝒢𝑝 =

∑𝑚
𝑖=1 |⟨𝒂 𝑖 , 𝒙⟩|

𝑝
= ∥A𝒙∥𝑝𝑝 . Consequently, in this special case, satisfying (3.1.2) is ex-

actly equivalent to computing an ℓ𝑝 subspace embedding for A. There is a long line of work
studying computing ℓ𝑝 subspace embeddings using Lewis weights, starting with that of Bour-
gain, Lindenstrauss, and Milman [BLM89]. For the details of this argument, see [BLM89,
Section 7] and [SZ01].

Sparsifying sums of norms. The work perhaps most closely related to ours is [JLLS23]. There,
the authors give existence results for sparse approximations to sums (of powers) of norms. It is

3This is similar to how basis pursuit can be seen as encouraging sparsity in a noiseless setting, while LASSO does
so in the presence of noise [Wai19, Section 7.2].

92

easy to see that this is a more general problem than the one we study. However, this generality
comes at a cost. In particular, the sparsity given by our Theorem 8 improves over theirs by
a factor of 𝜓𝑑 log (𝑑/𝜀)min(𝑝−1,2), where 𝜓𝑑 denotes the KLS “constant” in 𝑑 dimensions (which
is currently

√
log 𝑑, due to Klartag [Kla23]). See their Theorem 1.3 for more details. And, as

mentioned earlier, we believe understanding Problem 3.1 down to the correct polylogarithmic
dependencies in 𝑑 is an important geometric question.

The authors also define the block Lewis weights as the natural generalization of the
determinant-maximization program that Schechtman and Zvavitch [SZ01] use to prove the
existence of Lewis’s measure for all 𝑝 > 0. They use this to give results for sparsification of
sums of certain powers of arbitrary norms (obtaining a sparsity of ∼ 𝑑2−1/𝑝 when 1 ≤ 𝑝 ≤ 2)
and for Problem 3.1 when the outer norm 𝑝 = 2 (obtaining a sparsity of ∼ 𝑑). We note that
the result they obtain when 𝑝 = 2 provides logarithmic-factor improvements over ours, as
the main technical primitive they use is a chaining estimate developed by Lee [Lee23] that
meaningfully exploits the fact that the space of events is a subset of a 2-uniformly convexity set.
However, they did not address whether the block Lewis weights could yield to sparsification
guarantees for Problem 3.1. Additionally, their construction of the block Lewis weights does
not yield a change-of-measure that allows for sparsification when the inner norms 𝑝𝑖 ≤ 2 or
when the outer norm 𝑝 ≤ 1.

Summary for sparsifying sums of norms. See Section 3.1.4 for a comparison between our new
results and a selection of the most relevant prior work on sparsifying sums of norms. We focus
on results concerning ℓ𝑝-norms specifically, although [JLLS23] has results for more general
classes of norms. By “sampling”, we mean the work provides an analysis that shows how
sampling according to some sampling probabilities gives a sparsifier of size 𝑂(𝜀−2𝑑max(1,𝑝/2))
with good probability. By “fast computation”, we mean the work provides an algorithm to
compute sampling probabilities with polylog(𝑘, 𝑚, 𝑑) leverage score computations or linear
system solves (or some other primitive that can be implemented in time 𝑂(nnz(A) + 𝑑𝜔)). For
works that only explicitly handle |𝑆𝑖 | = 1, we leave 𝑝1 , . . . , 𝑝𝑚 blank because the choice of inner
norms does not affect the objective.

Block size 𝑝 𝑝1 , . . . , 𝑝𝑚 Sampling Fast computation

1 1 ≤ 𝑝 < ∞ ✓ [BLM89]
1 0 < 𝑝 < 1 ✓ [SZ01]
1 0 < 𝑝 < 4 ✓ [CP15]
≥ 1 𝑝 = 2 𝑝1 = · · · = 𝑝𝑚 = ∞ ✓ [Lee23]
≥ 1 𝑝 = 2 𝑝1 = · · · = 𝑝𝑚 = ∞ ✓ ✓ [JLS23]
≥ 1 1 ≤ 𝑝 < ∞ 𝑝1 , . . . , 𝑝𝑚 ≥ 2 ✓ [JLLS23]
≥ 1 1 ≤ 𝑝 < ∞ 𝑝1 , . . . , 𝑝𝑚 ≥ 2 ✓ This work
≥ 1 1/log 𝑑 ≤ 𝑝 < ∞ 𝑝1 , . . . , 𝑝𝑚 = 𝑝 ✓ ✓ This work
≥ 1 1/log 𝑑 ≤ 𝑝 < ∞ 𝑝1 , . . . , 𝑝𝑚 = 2 ✓ ✓ This work
≥ 1 𝑝 = 2 𝑝1 , . . . , 𝑝𝑚 ≥ 2 ✓ ✓ This work

3.2. Preliminaries

In this section, we set up and review definitions and existing facts that will play crucial roles
in our analyses. In Section 3.2.1, we review material from linear algebra, and in Section 3.2.2,
we review material from convex geometry.

93

3.2.1. Linear algebra background

We introduce a few definitions concerning leverage scores (Definition 3.2.1).

Definition 3.2.1. For a matrix A ∈ R𝑛×𝑑, we let 𝜏𝑖(A) B 𝒂⊤
𝑖
(A⊤A)−1 𝒂 𝑖 denote the leverage score of

row 𝒂 𝑖 with respect to the matrix A. When A is clear from context, we omit it and simply write 𝜏𝑖 in

place of 𝜏𝑖(A).

The following are well-known properties of leverage scores.

Fact 3.2.2. For a matrix A ∈ R𝑛×𝑑, we have:

•
∑𝑛
𝑖=1 𝜏𝑖(A) = rank (A);

• 𝜏𝑖(A) = max𝒙∈R𝑑\{0}
|⟨𝒂 𝑖 ,𝒙⟩|2

∥A𝒙∥22
for all 𝑖;

• 0 ≤ 𝜏𝑖(A) ≤ 1;

• For any positive constant 𝐶, we have 𝜏𝑖(𝐶A) = 𝜏𝑖(A) for all 𝑖.

We will also need the following fact relating the leverage scores of a matrix A to its singular
value decomposition.

Fact 3.2.3. Let A ∈ R𝑛×𝑑 and UΣV⊤ be a singular value decomposition for A, where U ∈ R𝑛×𝑑 and

Σ,V ∈ R𝑑×𝑑. Then, 𝜏𝑖(A) = ∥𝒖 𝑖 ∥22.

Proof of Fact 3.2.3. To understand why this equality might hold, observe that we can think of U
as the resulting matrix from applying a statistical whitening transform to A. More precisely,
recall that

𝜏𝑖(A) = 𝒂⊤𝑖
(
VΣ2V⊤

)−1
𝒂⊤𝑖 = 𝒂⊤𝑖

©«
𝑑∑
𝑗=1

1
𝜎2
𝑖

· 𝒗 𝑗𝒗⊤𝑗
ª®¬ 𝒂⊤𝑖 =

𝑑∑
𝑗=1

1
𝜎2
𝑗

〈
𝒂 𝑖 , 𝒗 𝑗

〉2
.

We now calculate
〈
𝒂 𝑖 , 𝒗 𝑗

〉
. Notice that

〈
𝒂 𝑖 , 𝒗 𝑗

〉
=

〈
𝒗 𝑗 , 𝒆⊤𝑖

𝑑∑
𝑗′=1

𝜎𝑗′U𝒆 𝑗′𝒗⊤𝑗′

〉
=

〈
𝒗 𝑗 ,

𝑑∑
𝑗′=1

𝜎𝑗′
〈
𝒆 𝑖 ,U𝒆 𝑗′

〉
𝒗⊤𝑗′

〉
= 𝜎𝑗

〈
𝒆 𝑖 ,U𝒆 𝑗

〉
.

Substituting this back in gives

𝜏𝑖(A) =
𝑑∑
𝑗=1

〈
𝒆 𝑖 ,U𝒆 𝑗

〉2
= ∥𝒖 𝑖 ∥22 .

This concludes the proof of Fact 3.2.3. □

94

3.2.2. Convex geometry background

In this subsection, we review foundational facts regarding convex geometry we use throughout
the remainder of this chapter.

We will need the notions of covering and entropy numbers.

Definition 3.2.4 (Covering numbers [Rot23, p. 69]). Let𝑋,𝑌 ⊂ R𝑑. The covering number𝒩(𝑋,𝑌)
is the minimum number of translates of 𝑌 required to cover 𝑋. Formally, we have

𝒩(𝑋,𝑌) B min

{
𝑁 ∈ N : there exists 𝒙1 , . . . , 𝒙𝑁 ∈ R𝑑 such that 𝑋 ⊆

𝑁⋃
𝑖=1
(𝒙 𝑖 + 𝑌)

}
.

Definition 3.2.5 (Entropy numbers [vHan18, Definition 2.1]). Let𝑋,𝑌 ⊂ R𝑑. The entropy number

𝑒𝑁 (𝑋,𝑌) is the minimum radius 𝜂 such that log𝒩(𝑋, 𝜂 · 𝑌) ≤ 2𝑁 .

Sometimes, when writing 𝑒𝑁 , we will write 𝑒𝑁 (𝑋, ∥·∥) for some quasi-norm ∥·∥. Here, we take
𝑌 to be the object formed by the unit ball of ∥·∥.

Finally, we state the dual Sudakov inequality.

Fact 3.2.6 (Dual Sudakov inequality, due to Pajor and Tomczak-Jaegermann [PT86]). For a

symmetric convex body 𝐾 ⊂ R𝑑, define

∥𝒙∥𝐾 B inf {𝑡 > 0 : 𝒙/𝑡 ∈ 𝐾} .

Let 𝐾 be a symmetric convex body in R𝑑. We have the below.

log𝒩(𝐵𝑑2 , 𝜂 · 𝐾) ≲ 𝜂−2 · E
𝒈∼𝒩(0,I𝑑)

[
∥𝒈 ∥𝐾

]2
. (3.2.1)

3.2.3. Probability background

In this subsection, we review a few facts about subgaussian random variables. These are mostly
derived from the presentation of Vershynin [Ver18].

Definition 3.2.7 (∥·∥𝜓2 and subgaussian random variable [Ver18, Definition 2.5.6]). Let 𝑋 be a

random variable. Define ∥𝑋∥𝜓2 B inf
{
𝑡 > 0 : E

[
exp

(
𝑋2/𝑡2

)]
≤ 2

}
. If ∥𝑋∥𝜓2 < ∞, we say 𝑋 is

subgaussian.

Fact 3.2.8 (Properties of subgaussian random variables [Ver18, Proposition 2.5.2]). The following

properties equivalently characterize a subgaussian random variable 𝑋 up to constants:

• For all 𝑡 ≥ 0, Pr [|𝑋 | ≥ 𝑡] ≤ 2exp
(
− 𝑡2

∥𝑋∥2𝜓2𝐾
2
1

)
;

• For all 𝑟 ≥ 1, E
[
|𝑋 |𝑟

]
≲ 𝑟𝑟/2;

95

• For all 𝜆 such that |𝜆| ≲ ∥𝑋∥−1
𝜓2 , we have E

[
exp

(
𝜆2𝑋2)] ≤ exp

(
∥𝑋∥2𝜓2 𝜆

2
)
.

Fact 3.2.9 (Maximum of subgaussian random variables [Ver18, Exercise 2.5.10]). Let 𝑋1 , . . . , 𝑋𝑁
be a sequence of (not necessarily independent) subgaussian random variables. Then

E

[
max
𝑖∈[𝑁]
|𝑋𝑖 |

]
≲ max

𝑖∈[𝑁]
∥𝑋𝑖 ∥𝜓2

√
log𝑁.

Fact 3.2.10 (Decentering). We have

∥𝑋∥𝜓2 ≲ ∥𝑋 − E [𝑋]∥𝜓2 + E [|𝑋 |] .

Proof of Fact 3.2.10. By the triangle inequality, we get

∥𝑋∥𝜓2 ≤ ∥𝑋 − E [𝑋]∥𝜓2 + ∥E [𝑋]∥𝜓2 ≲ ∥𝑋 − E [𝑋]∥𝜓2 + E [|𝑋 |] ,

which is exactly the statement of Fact 3.2.10. □

Fact 3.2.11 (Lipschitz functionals of Gaussians are subgaussian [Ver18, Theorem 5.2.2]). If

𝒈 ∼ 𝒩(0, I𝑑) and if 𝑓 : R𝑑 → R, then

∥ 𝑓 (𝒈) − E [𝑓 (𝒈)]∥𝜓2
≲ ∥ 𝑓 ∥Lip .

3.3. Covering number estimates

In this section, we develop our metric entropy estimates. It will be helpful to keep in mind the
context and outline from Section 3.1.3.

3.3.1. Notation and general formula

We begin with some definitions that are necessary for our results.

Definition 3.3.1 (Block-constant diagonal matrix). We say that a vector 𝒗 ∈ R𝑛 and corresponding

diagonal matrix V ∈ R𝑛×𝑛 is block-constant or “constant down the blocks” if for every 𝑗1 , 𝑗2 ∈ 𝑆𝑖 , we

have 𝑣 𝑗1 = 𝑣 𝑗2 .

In particular, when we define a probability measure 𝝀 ∈ R𝑚 over [𝑚], we will find it useful to
extend it to a block-constant diagonal matrix Λ ∈ R𝑛×𝑛 .

Definition 3.3.2 (Rounding matrix). For a probability measure 𝝀 over [𝑚], we say that a posi-

tive diagonal matrix W ∈ R𝑘×𝑘 rounds the measure matrix Λ ∈ R𝑛×𝑛 if for all 𝒙 ∈ R𝑑 we haveW1/2Λ1/2−1/𝑝A𝒙

2 ≤
Λ1/2−1/𝑝A𝒙

𝒢2

. We also denote

�̂�2 B
{
𝒙 ∈ R𝑑 :

W1/2Λ1/2−1/𝑝A𝒙

2
≤ 1

}
.

96

The �̂�2 defined in Definition 3.3.2 is the linear transformation of the Euclidean ball that we will
“pass through” to get our covering number estimates (recall (3.1.5)).

Next, recall our notion of measure overestimates. This is a generalization of prior definitions
of Lewis measure overestimates (see e.g. [JLS22, Definition 2.4], [WY22b, Definition 2.3]) and
group leverage score overestimates ([JLS23, Definition 1.1]).

Definition 3.1.2 (Block Lewis overestimate). Let 𝜏𝑗(M) denote the leverage score of the 𝑗th row of M.

Let 𝐹★ > 0. For 𝑝 > 0 and 𝑝𝑖 > 0, we say the probability measure 𝝀 and rounding W form an 𝐹★-block

Lewis overestimate if for all 𝑖 ∈ [𝑚], we have

1
𝜆𝑖

©«
∑
𝑗∈𝑆𝑖

(
𝜏𝑗(W1/2Λ1/2−1/𝑝A)

𝑤 𝑗

)𝑝𝑖/2ª®¬
2/𝑝𝑖

≤ 𝐹★.

For example, observe that when all the 𝑆𝑖 have size 1, then Definition 3.1.2 corresponds to
standard definitions of Lewis weight overestimates, and there exist weights such that 𝐹★ ≲ 𝑑.
Furthermore, we will see that there exist a 𝝀 and 𝒘 such that 𝐹★ = 𝑑 (it will follow from
Lemma 3.3.8).

Next, we define the vector 𝜶, whose entries capture a notion of group importance.

Definition 3.3.3. Let 𝝀 be a probability measure over [𝑚] and let W be a rounding matrix for Λ
(Definition 3.3.2). If 𝑝1 , . . . , 𝑝𝑚 ≥ 2, then let 𝜶 ∈ R𝑚 be the vector such that for all 𝑖 ∈ [𝑚], we have

𝛼
𝑝

𝑖
B 𝜆

1−𝑝/2
𝑖

©«
∑
𝑗∈𝑆𝑖

©«
𝜏𝑗

(
W1/2Λ1/2−1/𝑝A

)
𝑤 𝑗

ª®®¬
𝑝𝑖/2ª®®®¬

𝑝/𝑝𝑖

.

Equivalently, if U is a matrix whose columns consist of the left singular vectors of W1/2Λ1/2−1/𝑝A, and

if we denote by 𝒖 𝑗 the 𝑗th row of U and let 𝒇 𝑗 B 𝜆−1/2
𝑖

𝑤
−1/2
𝑗

𝒖 𝑗 , then by Fact 3.2.3, we may also write

𝛼
𝑝

𝑖
B 𝜆𝑖

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
𝑝/𝑝𝑖

.

On the other hand, if 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < 2, then let �̂� be a probability measure over [𝑛] and let �̂� ∈ R𝑛
be defined as above accordingly. Finally, let 𝜶 ∈ R𝑚 be such that

𝛼
𝑝

𝑖
B

©«
∑
𝑗∈𝑆𝑖

�̂�
𝑝

𝑗

ª®¬
1/𝑝

.

To help ground Definition 3.3.3, notice that combining Definition 3.1.2 with Definition 3.3.3
gives us, for 𝑝1 , . . . , 𝑝𝑚 ≥ 2 and 𝑝1 , . . . , 𝑝𝑚 = 𝑝 < 2, respectively,

𝛼
𝑝

𝑖
≤ 𝜆

1−𝑝/2
𝑖

(
𝜆𝑖𝐹

★)𝑝/2 = 𝜆𝑖
(
𝐹★

)𝑝/2
𝛼
𝑝

𝑖
=

∑
𝑗∈𝑆𝑖

�̂�
𝑝

𝑗
=

∑
𝑗∈𝑆𝑖

�̂�
1−𝑝/2
𝑗

𝜏𝑗
(
Λ̂1/2−1/𝑝A

)𝑝/2
≤

∑
𝑗∈𝑆𝑖

�̂� 𝑗
(
𝐹★

)𝑝/2
=

©«
∑
𝑗∈𝑆𝑖

𝜆 𝑗
ª®¬
(
𝐹★

)𝑝/2
,

(3.3.1)

97

and that when 𝐹★ ≤ 2𝑑 (say), we get ∥𝜶∥𝑝𝑝 ≲ 𝑑𝑝/2. Thus, at least when 𝑝 ≥ 2, we can think of
∥𝜶∥𝑝𝑝 as giving the sparsity we should expect when we sample with probabilities proportional
to the 𝛼𝑖 . Although this does not quite work when 𝑝 < 2, a minor modification of it will.

Definition 3.3.4 (Notation for unit balls and norms under change-of-measure). Let 𝝀 be a

probability measure over [𝑚] and Λ ∈ R𝑛×𝑛 be its corresponding block-constant diagonal matrix

(Definition 3.3.1). For any 𝑟 > 0, and 𝒚 ∈ R𝑛 we define

∥𝒚∥𝒢𝑟 (𝝀) B
©«
𝑚∑
𝑖=1

𝜆𝑖
©«
∑
𝑗∈𝑆𝑖

���𝒚 𝑗 ���𝑝𝑖ª®¬
𝑟/𝑝𝑖ª®®¬

1/𝑟

.

We also define

𝐵𝑟 B

{
𝒙 ∈ R𝑑 :

Λ−1/𝑝A𝒙

𝒢𝑟 (𝝀)
≤ 1

}
.

From Definition 3.3.4, it is easy to verify that
Λ−1/𝑝A𝒙

𝒢𝑝(𝝀) = ∥A𝒙∥𝒢𝑝 . Indeed, we haveΛ−1/𝑝A𝒙

𝑝
𝒢𝑝(𝝀)

=

𝑚∑
𝑖=1

𝜆𝑖
Λ−1/𝑝

𝑆𝑖
A𝑆𝑖𝒙

𝑝
𝑝𝑖
=

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 = ∥A𝒙∥𝑝𝒢𝑝 .

We will also require the crucial property that ∥𝒚∥𝒢𝑟 (𝝀) is log-convex in 1/𝑟. To see this, note that
the vector in R𝑚 formed by calculating all the inner norms 𝑝1 , . . . , 𝑝𝑚 is constant regardless of
the outer norm, and then we can use the fact that for a fixed measure 𝝁, the ℓ𝑚𝑟 (𝝁) norms are
log-convex in 1/𝑟.

We now have the language to state the main result of this section, Theorem 3.3.5.

Theorem 3.3.5. Let 𝝀 be a probability measure and W be a rounding matrix (Definition 3.3.2) so that

𝝀 and W form an 𝐹★-block Lewis overestimate (Definition 3.1.2). Suppose at least one of the following

holds:

• 𝑝 > 1
log 𝑑 and |𝑆1 | = · · · = |𝑆𝑚 | = 1;

• 𝑝 = 𝑝1 = · · · = 𝑝𝑚 and 𝑝 < 2;

• 𝑝 ≥ 1 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2;

• 𝑝1 = · · · = 𝑝𝑚 = 2 and 1/log 𝑑 ≤ 𝑝 < ∞.

If𝐻 ≥ 1 is such that the sampling probabilities 𝜌𝑖 satisfy𝐻𝜌𝑖 ≥ 𝛼
𝑝

𝑖
/∥𝜶∥𝑝𝑝 for all 𝑖 ∈ [𝑚], and if we write

𝑝★ B max {1,max𝑖 min {𝑝𝑖 , log |𝑆𝑖 |}}, then (recall Definition 3.1.1 for the definition of ∥·∥𝒢 ,𝜌,∞,𝑆)

log𝒩
(
𝐵𝑝 , 𝜂

{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≲ 𝜂−min(2,𝑝) · 𝐻2/max(𝑝,2) · 𝐶(𝑝)𝑝★𝐹★ log max

{
𝑚, 𝐹★

}
,

where 𝐶(𝑝) is a constant that only depends on 𝑝.

Although Theorem 3.3.5 is stated abstractly, we will see that there exists a convenient instanti-
ation for all the parameters stated.

98

Corollary 3.3.6. In the same cases as in Theorem 3.3.5, there exists a probability measure 𝝀 over [𝑚]
and a rounding W for which in the same setting as Theorem 3.3.5, we have

log𝒩
(
𝐵𝑝 , 𝜂

{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≲𝑝 𝜂

−min(2,𝑝) ·max
𝑖∈𝑆

min {𝑝𝑖 , log |𝑆𝑖 |} 𝑑 log𝑚.

3.3.2. Block Lewis weights

For the sake of motivation, let us first prove Corollary 3.3.6 given Theorem 3.3.5. We first need
Lemma 3.3.7, which is derived from the block Lewis weights of Jambulapati, Lee, Liu, and Sidford
[JLLS23].

For a nonnegative diagonal matrix V, let 𝛽𝑖(V) B
(∑

𝑗∈𝑆𝑖

(
𝒂⊤
𝑗
(A⊤VA)−1𝒂 𝑗

)𝑝𝑖/2)1/𝑝𝑖
. We call the

𝛽𝑖(V)𝑝 the block Lewis weights.

Lemma 3.3.7. If 𝑝𝑖 ∈ [2,∞] and 𝑝 ∈ [1,∞), then there exist diagonal V,Λ ∈ R𝑛×𝑛 such that 𝝀
is a probability measure over [𝑚] and the corresponding Λ ∈ R𝑛×𝑛 is constant on the blocks, then∑𝑚
𝑖=1 𝛽𝑖(V)𝑝 = 𝑑 and for all 𝒙 ∈ R𝑑,V1/2A𝒙

2
≤ 𝑑1/2−1/𝑝

Λ1/2−1/𝑝A𝒙

𝒢2
≤ 𝑑max(0,1/2−1/𝑝) ∥A𝒙∥𝒢𝑝

Proof of Lemma 3.3.7. The reader familiar with the work of Jambulapati, Lee, Liu, and Sidford
[JLLS23] will notice that Lemma 3.3.7 is a strengthened variant of Lemma 4.2 from that work.

Indeed, consider the context of the proof of Lemma 4.2 from [JLLS23]. There, notice that W is
initially chosen so that

∑𝑚
𝑖=1 𝛽𝑖(W)𝑝 = 𝑑 and U = (A⊤WA)−1/2. We choose V in the same way.

Next, using their choice of 𝒖, we have ∥𝒖𝑆𝑖 ∥
𝑝−2
𝑝𝑖 = (𝛽𝑖(V)𝑝)1−2/𝑝 .

Restating (4.8) from [JLLS23] in our notation, we have for all 𝒙 ∈ R𝑑 thatV1/2A𝒙
2

2
≤

𝑚∑
𝑖=1
∥𝒖𝑆𝑖 ∥

𝑝−2
𝑝𝑖 ∥A𝑆𝑖𝒙∥2𝑝𝑖 .

For each 𝑖 ∈ [𝑚] let 𝜆𝑖 =
𝛽𝑖(V)𝑝
𝑑

, so that 𝝀 is a probability measure. ThenV1/2A𝒙
2

2
≤ 𝑑1−2/𝑝

𝑚∑
𝑖=1

𝜆
1−2/𝑝
𝑖

∥A𝑆𝑖𝒙∥2𝑝𝑖 .

Let Λ be a 𝑛×𝑛 diagonal matrix, where for every 𝑖 ∈ [𝑚] and 𝑗 ∈ 𝑆𝑖 , we define Λ𝑗 𝑗 = 𝜆𝑖 . Because
𝜆

1−2/𝑝
𝑖

∥A𝑆𝑖𝒙∥2𝑝𝑖 =
(Λ1/2−1/𝑝A)𝑆𝑖𝒙

2
𝑝𝑖

, we obtainV1/2A𝒙

2
≤ 𝑑1/2−1/𝑝

Λ1/2−1/𝑝A𝒙

𝒢2
. (3.3.2)

Since 𝑝-norms taken with respect to a probability measure are increasing in 𝑝 we immediately
get for all 𝑝 ≥ 2 thatV1/2A𝒙

2

(3.3.2)
≤ 𝑑1/2−1/𝑝

Λ1/2−1/𝑝A𝒙

𝒢2

= 𝑑1/2−1/𝑝
Λ−1/𝑝A𝒙

𝒢2(𝝀)

99

≤ 𝑑1/2−1/𝑝
Λ−1/𝑝A𝒙

𝒢𝑝(𝝀)

= 𝑑1/2−1/𝑝 ∥A𝒙∥𝒢𝑝 .

The case where 𝑝 ≤ 2 follows from the “1 ≤ 𝑞 ≤ 2” subcase of the proof of Lemma 4.2 from
[JLLS23], which yieldsV1/2A𝒙

2

(3.3.2)
≤ 𝑑1/2−1/𝑝

Λ1/2−1/𝑝A𝒙

𝒢2
≤ ∥A𝒙∥𝒢𝑝 .

We therefore conclude the proof of Lemma 3.3.7. □

We use Lemma 3.3.7 to give an instantiation for the parameters in Theorem 3.3.5.

Lemma 3.3.8. Let V,Λ be the matrices from Lemma 3.3.7 and let U and 𝒇 𝑗 be as defined in Defini-

tion 3.3.3. Let 𝑝 ≥ 1 and 𝑝𝑖 ≥ 2 for all 𝑖 ∈ [𝑚]. If we choose W such that

V1/2

𝑑1/2−1/𝑝 = W1/2Λ1/2−1/𝑝 ,

then:

•
W1/2Λ1/2−1/𝑝A𝒙

2 ≤

Λ1/2−1/𝑝A𝒙

𝒢2

;

• for all 𝑖, 𝛼𝑖
𝑑1/2−1/𝑝 = 𝛽𝑖(V);

• ∥𝜶∥𝑝𝑝 = 𝑑𝑝/2;

• for all 𝑖,
(∑

𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

)1/𝑝𝑖
= ∥𝜶∥𝑝 = 𝑑1/2

.

• The rounding matrix W and measure 𝝀 are an 𝐹★-block Lewis overestimate (Definition 3.1.2) with

𝐹★ = 𝑑.

Proof of Lemma 3.3.8. The first property follows immediately from Lemma 3.3.7. Using
Fact 3.2.3, notice that

𝒂⊤𝑗 (A
⊤VA)−1𝒂 𝑗 =

𝜏𝑗(V1/2A)
𝑣 𝑗

=
𝜏𝑗(W1/2Λ1/2−1/𝑝A)

𝑑1−2/𝑝𝑤 𝑗𝜆
1−2/𝑝
𝑖

=

𝒖 𝑗2
2

𝑑1−2/𝑝𝑤 𝑗𝜆
1−2/𝑝
𝑖

=

𝜆
2/𝑝
𝑖

 𝒇 𝑗2

2

𝑑1−2/𝑝 ,

so after substituting into the formula for 𝛽𝑖(V),

𝛽𝑖(V) = ©«
∑
𝑗∈𝑆𝑖

(
𝒂⊤𝑗 (A

⊤VA)−1𝒂 𝑗
)𝑝𝑖/2ª®¬

1/𝑝𝑖

=

©«
∑
𝑗∈𝑆𝑖

©«
𝜆

2/𝑝
𝑖

 𝒇 𝑗2

2

𝑑1−2/𝑝

ª®®¬
𝑝𝑖/2ª®®®¬

1/𝑝𝑖

=

𝜆
1/𝑝
𝑖

(∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

)1/𝑝𝑖

𝑑1/2−1/𝑝 =
𝛼𝑖

𝑑1/2−1/𝑝 ,

where the last equality follows from the formula for 𝜶 stated in Theorem 3.3.5. This also implies
that

∥𝜶∥𝑝𝑝 =
𝑚∑
𝑖=1

𝛼
𝑝

𝑖
=

𝑝∑
𝑖=1

𝛽𝑖(V)𝑝𝑑𝑝/2−1 = 𝑑𝑝/2.

100

Finally, observe that the above calculation shows that𝜆𝑖 ∝ 𝛼
𝑝

𝑖
, since we have defined𝜆𝑖 ∝ 𝛽𝑖(V)𝑝

and we have just seen that 𝛽𝑖(V)𝑝 ∝ 𝛼
𝑝

𝑖
. This means we can write 𝜆𝑖 = 𝛼

𝑝

𝑖
/∥𝜶∥𝑝𝑝 . Using this, we

have

𝛼𝑖 = 𝜆
1/𝑝
𝑖

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

=
𝛼𝑖
∥𝜶∥𝑝

· ©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

.

After rearranging, we have

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

= ∥𝜶∥𝑝 = 𝑑1/2 ,

and so we may take 𝐹★ = 𝑑. This concludes the proof of Lemma 3.3.8. □

We now handle the cases that are not covered by the block Lewis weight construction of
[JLLS23].

Lemma 3.3.9. If 0 < 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < 2 or if 𝑝1 = · · · = 𝑝𝑚 = 2 and 1/log 𝑑 ≤ 𝑝 < ∞, then

there exists a probability measure �̂� over [𝑘] and corresponding �̂� ∈ R𝑛 such that �̂� is an 𝐹★-block Lewis

overestimate for 𝐹★ = 𝑛.

Proof. For the case where 0 < 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < 2, we simply use the fact that Lewis’s
measure tells us that there exists a measure �̂� such that

𝜏𝑗
(
Λ̂1/2−1/𝑝A

)
�̂� 𝑗

≤ 𝑑.

In the other case, we will see later that the guarantee of a natural contraction mapping (Al-
gorithm 7 and Lemma 3.5.4) imply that W = I𝑛 and the resulting 𝝀 form an 𝑑-block Lewis
overestimate, thereby concluding the proof of Lemma 3.3.9. □

Lemma 3.3.8 and Lemma 3.3.9 easily imply Corollary 3.3.6.

Proof of Corollary 3.3.6. We combine Theorem 3.3.5 with the instantiations in Lemma 3.3.8 and
Lemma 3.3.9, directly yielding Corollary 3.3.6. □

In light of Corollary 3.3.6, the goal of the remainder of this section is to prove Theorem 3.3.5.

It will be useful to consider a corresponding change-of-basis that arises from our setting of
𝝀. Let UΣV⊤ be a singular value decomposition of W1/2Λ1/2−1/𝑝A where U ∈ R𝑚×𝑑 and
Σ,V ∈ R𝑑×𝑑. Let R be the invertible matrix VΣ−1 (we assume without loss of generality that
rank (A) = 𝑑, and it is easy to extend the results of this section to the case where rank (A) < 𝑑).
We take R as our change-of-basis matrix. Using this, it is easy to see that W1/2Λ1/2−1/𝑝AR = U
consists of orthonormal columns. Furthermore, we have Λ−1/𝑝AR = W−1/2Λ−1/2U.

101

3.3.3. Covering numbers for 0 < 𝑝 < 2

The goal of this section is to prove Lemma 3.3.10 under the notion of overestimate given by
Definition 3.1.2.

We are now ready to state the main result of this subsection.

Lemma 3.3.10. Let 𝝀 and 𝒘 be such that they form an 𝐹★-block Lewis overestimate. Then,

log𝒩(𝐵𝑝 , 𝜂�̂�2) ≲ 𝜂−
2𝑝

2−𝑝 · 𝐶(𝑝)max
𝑖

min (𝑝𝑖 , log |𝑆𝑖 |) 𝐹★ log 𝐹★,

where 𝐶(𝑝) is a constant that only depends on 𝑝.

The goal of the rest of this subsection is to prove Lemma 3.3.10. We follow the outline detailed
in Section 3.1.3. In short, our plan is the following:

1. We first reduce bounding log𝒩(𝐵𝑝 , 𝜂�̂�2) to bounding log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟) for all ℎ ≥ 0 and
appropriate choices of 𝑟 and 𝛿ℎ .

2. We then control each term log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟). To do so, we will apply the dual Sudakov
inequality (Fact 3.2.6, (3.2.1)). To actually estimate E ∥𝒈 ∥𝐵𝑟 where 𝒈 ∼ 𝒩(0, I𝑑), we need
to prove that every resulting summand of the form ∥·∥𝑝𝑖 is subgaussian with a parameter
that only depends on 𝑝𝑖 . To do so, we exploit the fact that these summands are Lipschitz
and then apply Fact 3.2.11.

3. We finally assemble all the previous pieces together to get the desired handle on
log𝒩(𝐵𝑝 , 𝜂�̂�2).

Reduction to bounding log𝒩(�̂�2 , 𝜂𝐵𝑟)

As stated in Section 3.1.3, we begin with reducing the calculation of log𝒩(𝐵𝑝 , 𝜂�̂�2) to calculating
log𝒩(�̂�2 , 𝜂𝐵𝑟) (for a different 𝜂).

Lemma 3.3.11. Let 𝜃 and 𝑟 be such that 𝑟 = (2 − 𝜃)𝑝/(𝑝 − 𝜃). Define

𝛿ℎ B

(
8ℎ+1𝜂

2 · 82/𝜃

) 𝜃
2−𝜃

= 𝜂
𝜃

2−𝜃 · 8(ℎ+1)· 𝜃
2−𝜃 ·

(
2 · 82/𝜃

)− 𝜃
2−𝜃

Then, we have

log𝒩(𝐵𝑝 , 𝜂�̂�2) ≤
∑
ℎ≥0

log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟).

Proof of Lemma 3.3.11. For ℎ ∈ N≥0, let 𝒩ℎ be a maximal subset of 𝐵𝑝 such that for any two
distinct elements 𝒛1 , 𝒛2 ∈ 𝐵𝑝 , we have

W1/2Λ−1/𝑝A(𝒛1 − 𝒛2)

2(𝝀) ≥ 8ℎ𝜂 (where by ∥·∥𝑝(𝝀)
we mean the ℓ𝑝 norm taken with respect to the measure given by 𝝀). This yields |𝒩ℎ | ≥
𝒩(𝐵𝑝 , 8ℎ𝜂�̂�2).

102

Next, since for every ℎ there are 𝒛 𝑖 ∈ 𝐵𝑝 for which 𝐵𝑝 ⊆
⋃𝒩(𝐵𝑝 ,8ℎ+1𝜂𝐵2)
𝑖=1

{
𝒛 𝑖 + 8ℎ+1𝜂�̂�2

}
, for every

ℎ there must exist a 𝒛★
ℎ
∈ 𝐵𝑝 for which���{𝒛★ℎ + 8ℎ+1𝜂�̂�2

}
∩𝒩ℎ

��� ≥ |𝒩ℎ |
𝒩(𝐵𝑝 , 8ℎ+1𝜂�̂�2)

≥
𝒩(𝐵𝑝 , 8ℎ𝜂�̂�2)
𝒩(𝐵𝑝 , 8ℎ+1𝜂�̂�2)

.

Let

ℒℎ B
{
𝒛 − 𝒛★

ℎ

8ℎ+1𝜂
: 𝒛 ∈

{
𝒛★
ℎ
+ 8ℎ+1𝜂�̂�2

}
∩𝒩ℎ

}
from which we get by the sub-triangle inequality thatW1/2Λ−1/𝑝A𝒛

2(𝝀)
≤ 1 and

Λ−1/𝑝A𝒛

𝒢𝑝(𝝀)

≤
max

{
21/𝑝 , 2

}
8ℎ+1𝜂

for any 𝒛 ∈ ℒℎ

and W1/2Λ−1/𝑝A (𝒛1 − 𝒛2)

2(𝝀)
≥ 1

8 for any distinct 𝒛1 , 𝒛2 ∈ ℒℎ .

We now apply an interpolation estimate. Let 𝒛1 and 𝒛2 be distinct elements from ℒℎ , set
0 < 𝜃 < 2 and 𝑟 = (2 − 𝜃)𝑝/(𝑝 − 𝜃), and observe that 𝜃 = 𝑝(𝑟 − 2)/(𝑟 − 𝑝) and

1
82 ≤

W1/2Λ−1/𝑝A (𝒛1 − 𝒛2)
2

2(𝝀)

≤
Λ−1/𝑝A (𝒛1 − 𝒛2)

2

𝒢2(𝝀)

≤
Λ−1/𝑝A (𝒛1 − 𝒛2)

𝜃
𝒢𝑝(𝝀)
·
Λ−1/𝑝A (𝒛1 − 𝒛2)

2−𝜃

𝒢𝑟 (𝝀)

≤
(
max

{
21/𝑝 , 2

}
8ℎ+1𝜂

)𝜃 Λ−1/𝑝A (𝒛1 − 𝒛2)
2−𝜃

𝒢𝑟 (𝝀)

which means that after rearranging we have

Λ−1/𝑝A (𝒛1 − 𝒛2)

𝒢𝑟 (𝝀)
≥ ©«

(
8ℎ+1𝜂

max
{
21/𝑝 , 2

})𝜃
· 1

82
ª®¬

1
2−𝜃

≥ 𝛿ℎ .

The above argument gives

log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟) ≥ log |ℒℎ | ≥ log𝒩
(
𝐵𝑝 , 8ℎ𝜂�̂�2

)
− log𝒩

(
𝐵𝑝 , 8ℎ+1𝜂�̂�2

)
.

We sum these inequalities over all ℎ ≥ 0 (noting that when ℎ is sufficiently large, we have
log𝒩(𝐵𝑝 , 8ℎ+1𝜂�̂�2) = 0), and get

log𝒩(𝐵𝑝 , 𝜂�̂�2) ≤
∑
ℎ≥0

log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟).

This concludes the proof of Lemma 3.3.11. □

103

Bounding log𝒩(�̂�2 , 𝜂𝐵𝑟)

As we saw in Lemma 3.3.11, it will be enough to understand the behavior of log𝒩(�̂�2 , 𝜂𝐵𝑟).
Since �̂�2 is a linear transformation of a Euclidean ball, we will be able to apply the dual Sudakov
inequality (Fact 3.2.6, (3.2.1)).

To prepare for an application of the dual Sudakov inequality, we bound the Gaussian width
of the ball

{
𝒙 ∈ R𝑑 :

Λ−1/𝑝AR𝒙

𝒢𝑟 (𝝀) ≤ 1

}
. As we will see in a moment, the relevance of

this ball arises from the fact that it is the 𝑟-ball with respect to the 𝝀 measure after a suitable
linear transformation of the underlying space. In particular, it is under the invertible mapping
𝒙 ↦→ R𝒙 that we get W1/2Λ1/2−1/𝑝A𝒙 ↦→W1/2Λ1/2−1/𝑝AR𝒙 = U𝒙.

Lemma 3.3.12. Let 𝒈 ∼ 𝒩(0, I𝑑). We have©«
∑
𝑗∈𝑆𝑖

���〈 𝒇 𝑗 , 𝒈〉���𝑝𝑖ª®¬
1/𝑝𝑖

𝜓2

≲
(
1 + √𝑝𝑖

) ©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

.

Proof of Lemma 3.3.12. Observe the following Lipschitzness bound, i.e., for any 𝒙, by Cauchy-
Schwarz, we have

©«
∑
𝑗∈𝑆𝑖

���〈 𝒇 𝑗 , 𝒙〉���𝑝𝑖ª®¬
1/𝑝𝑖

≤ ©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

∥𝒙∥2

which means by Fact 3.2.11, we get©«
∑
𝑗∈𝑆𝑖

���〈 𝒇 𝑗 , 𝒈〉���𝑝𝑖ª®¬
1/𝑝𝑖

− E
𝒈∼𝒩(0,I𝑑)

©«
∑
𝑗∈𝑆𝑖

���〈 𝒇 𝑗 , 𝒈〉���𝑝𝑖ª®¬
1/𝑝𝑖

𝜓2

≲
©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

.

Now, observe that

E
𝒈∼𝒩(0,I𝑑

©«
∑
𝑗∈𝑆𝑖

���〈 𝒇 𝑗 , 𝒈〉���𝑝𝑖ª®¬
1/𝑝𝑖 ≤

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2
E

𝒈∼𝒩(0,I𝑑)

�������
〈

𝒇 𝑗 𝒇 𝑗2

, 𝒈

〉�������
𝑝𝑖

ª®®¬
1/𝑝𝑖

≍ 𝑝1/2
𝑖

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

,

and by Fact 3.2.10, ©«
∑
𝑗∈𝑆𝑖

���〈 𝒇 𝑗 , 𝒈〉���𝑝𝑖ª®¬
1/𝑝𝑖

𝜓2

≲
(
1 + √𝑝𝑖

) ©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

,

completing the proof of Lemma 3.3.12. □

Next, we estimate the expected norm of a Gaussian random vector under the norm given by{
𝒙 ∈ R𝑑 :

Λ−1/𝑝AR𝒙

𝒢𝑟 (𝝀) ≤ 1

}
.

104

Lemma 3.3.13. For 𝑟 ≥ 2, we have

E
𝒈∼𝒩(0,I𝑑)

[Λ−1/𝑝AR𝒈

𝒢𝑟 (𝝀)

]
≲

𝑟1/2 (

1 + √max𝑖 𝑝𝑖
) (∑𝑚

𝑖=1 𝜆𝑖
(∑

𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

) 𝑟/𝑝𝑖)1/𝑟
if 𝑟 ≤ log𝑚

√
log𝑚 ·max𝑖

(
1 + √𝑝𝑖

) (∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

)1/𝑝𝑖
otherwise

Proof of Lemma 3.3.13. Let 𝒖 𝑗 denote the rows of U. Note that by Fact 3.2.3, we have𝒖 𝑗2
2 = 𝜏𝑗(W1/2Λ1/2−1/𝑝A).

Now, observe that Λ−1/𝑝AR = W−1/2Λ−1/2U. By Lemma 3.3.12, we know that

E
𝒈∼𝒩(0,I𝑑)

©«
∑
𝑗∈𝑆𝑖

���〈 𝒇 𝑗 , 𝒈〉���𝑝𝑖ª®¬
𝑟/𝑝𝑖 ≲ 𝑟

𝑟/2 (
1 + √𝑝𝑖

) 𝑟 ©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
𝑟/𝑝𝑖

We first handle the case where 𝑟 ≲ log𝑚. Notice that

E
𝒈∼𝒩(0,I𝑑)

[Λ−1/𝑝AR𝒈

𝒢𝑟 (𝝀)

]
= E

𝒈∼𝒩(0,I𝑑))

©«
𝑚∑
𝑖=1

𝜆𝑖
©«
∑
𝑗∈𝑆𝑖

���〈𝑤−1/2
𝑗

𝜆−1/2
𝑖

𝒖 𝑗 , 𝒈
〉���𝑝𝑖ª®¬

𝑟/𝑝𝑖ª®®¬
1/𝑟

≤
©«
𝑚∑
𝑖=1

𝜆𝑖 E
𝒈∼𝒩(0,I𝑑))

©«
∑
𝑗∈𝑆𝑖

���〈𝑤−1/2
𝑗

𝜆−1/2
𝑖

𝒖 𝑗 , 𝒈
〉���𝑝𝑖ª®¬

𝑟/𝑝𝑖
ª®®¬

1/𝑟

≲
©«
𝑚∑
𝑖=1

𝜆𝑖
©«𝑟𝑟/2

(
1 + √𝑝𝑖

) 𝑟 ©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
𝑟/𝑝𝑖ª®®¬

ª®®¬
1/𝑟

≤ 𝑟1/2
(
1 +

√
max
𝑖
𝑝𝑖

) ©«
𝑚∑
𝑖=1

𝜆𝑖
©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
𝑟/𝑝𝑖ª®®¬

1/𝑟

.

We now handle the case where 𝑟 ≳ log𝑚. We have

E
𝒈∼𝒩(0,I𝑑)

[Λ−1/𝑝AR𝒈

𝒢𝑟 (𝝀)

]
= E

𝒈∼𝒩(0,I𝑑))

©«
𝑚∑
𝑖=1

𝜆𝑖
©«
∑
𝑗∈𝑆𝑖

���〈𝑤−1/2
𝑗

𝜆−1/2
𝑖

𝒖 𝑗 , 𝒈
〉���𝑝𝑖ª®¬

𝑟/𝑝𝑖ª®®¬
1/𝑟

≲ E
𝒈∼𝒩(0,I𝑑))

max
𝑖

©«
∑
𝑗∈𝑆𝑖

���〈𝑤−1/2
𝑗

𝜆−1/2
𝑖

𝒖 𝑗 , 𝒈
〉���𝑝𝑖ª®¬

1/𝑝𝑖
≲

√
log𝑚 ·max

𝑖

(
1 + √𝑝𝑖

) ©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

and conclude the proof of Lemma 3.3.13 (the last line follows from Fact 3.2.9). □

Now, we show how to relate (∑𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2
)1/𝑝𝑖 to 𝐹★.

105

Lemma 3.3.14. For all 𝑖 ∈ [𝑚], we have

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
2/𝑝𝑖

≤ 𝐹★.

Proof of Lemma 3.3.14. Recall Fact 3.2.3; this gives us

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
2/𝑝𝑖

=

©«
∑
𝑗∈𝑆𝑖

©«
𝜏𝑗

(
W1/2Λ1/2−1/𝑝A

)
𝑤 𝑗𝜆𝑖

ª®®¬
𝑝𝑖/2ª®®®¬

2/𝑝𝑖

=
1
𝜆𝑖

©«
∑
𝑗∈𝑆𝑖

©«
𝜏𝑗

(
W1/2Λ1/2−1/𝑝A

)
𝑤 𝑗

ª®®¬
𝑝𝑖/2ª®®®¬

2/𝑝𝑖

.

We recall that 𝐹★ satisfies Definition 3.1.2 and conclude the proof of Lemma 3.3.14. □

We now have enough tools to build a naïve estimate of log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
via directly applying

the dual Sudakov inequality.

Lemma 3.3.15. We have

log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
≲ 𝜂−2 ·

𝑟
(
1 + √max𝑖 𝑝𝑖

)2
(∑𝑚

𝑖=1 𝜆𝑖
(∑

𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

) 𝑟/𝑝𝑖)2/𝑟
if 𝑟 ≤ log𝑚

log𝑚 ·max𝑖
(
1 + √𝑝𝑖

)2
(∑

𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

)2/𝑝𝑖
otherwise

Simply put, we may also write

log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
≲ 𝜂−2 · 𝑟max

𝑖
min (𝑝𝑖 , log |𝑆𝑖 |) 𝐹★.

Proof of Lemma 3.3.15. Since R is invertible, it will be enough to bound the covering number

𝒩 B 𝒩
({
𝒙 ∈ R𝑑 : ∥U𝒙∥2 ≤ 1

}
, 𝜂

{
𝒙 ∈ R𝑑 :

Λ−1/𝑝AR𝒙

𝒢𝑟 (𝝀)
≤ 1

})
.

Because ∥U𝒙∥2 = ∥𝒙∥2, we can apply the dual Sudakov Inequality (Fact 3.2.6, (3.2.1)). This
means we get

log𝒩 ≲ 𝜂−2
(
E

𝒈∼𝒩(0,I𝑑)

[Λ−1/𝑝AR𝒈

𝒢𝑟 (𝝀)

])2
.

We plug in the result from Lemma 3.3.13 and conclude the proof of Lemma 3.3.15. The
statement after the “simply put” follows from Lemma 3.3.14. □

Although the calculation in Lemma 3.3.15 works pretty well for small 𝑟, this degrades quite
rapidly once 𝑟 is large (say, larger than log 𝑑).

To resolve this, we build another estimate for log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
that performs better when 𝑟 is

larger than log 𝑑 or so. We will be able to do this after an interpolation step and a simple
geometric observation relating �̂�2 and 𝐵𝑟 .

106

Lemma 3.3.16. Let Δ𝑖 be defined such that

Δ
1/2
𝑖
B max

𝒙∈R𝑑\{0}

𝜆
−1/𝑝
𝑖
∥A𝑆𝑖𝒙∥𝑝𝑖W1/2Λ1/2−1/𝑝A𝒙

2
,

and let Δ B max𝑖∈[𝑚] Δ𝑖 .

For all 𝒙 ∈ R𝑑 and 𝑟 > 2, if |𝑆𝑖 | = 1 for all 𝑖, then we haveΛ−1/2U𝒙

𝑟(𝝀)
≤ Δ1/2−1/𝑟 · ∥U𝒙∥2 ≤ Δ1/2−1/𝑟 ·

Λ−1/2U𝒙

𝑟(𝝀)

.

Moreover, if there exists at least one 𝑆𝑖 for which |𝑆𝑖 | > 1, then we haveΛ−1/𝑝A𝒙

𝒢𝑟 (𝝀)
≤ Δ1/2

W1/2Λ1/2−1/𝑝A𝒙

2
.

Proof of Lemma 3.3.16. For the sake of intuition and an interpretation, the reader may think
Δ ≈ 𝑑.

Note that for the case where all the 𝑆𝑖 are singletons, we may assume W = I𝑚 .

Since 𝝀 is a probability measure, we have for any 𝑟 ≥ 2 and for all 𝒙 ∈ R𝑑 that

∥U𝒙∥2 =

Λ−1/2U𝒙

2(𝝀)
≤

Λ−1/2U𝒙

𝑟(𝝀)

.

We now prove the lower bound. We haveΛ−1/2U𝒙

𝑟(𝝀)

=

(
𝑚∑
𝑖=1

𝜆𝑖
���〈𝜆−1/2

𝑖
𝒖 𝑖 , 𝒙

〉���𝑟)1/𝑟

=

(
𝑚∑
𝑖=1

𝜆𝑖
���〈𝜆−1/2

𝑖
𝒖 𝑖 , 𝒙

〉���2 · ���〈𝜆−1/2
𝑖

𝒖 𝑖 , 𝒙
〉���𝑟−2

)1/𝑟

≤
(
∥U𝒙∥22 ·max

𝑖

���〈𝜆−1/2
𝑖

𝒖 𝑖 , 𝒙
〉���𝑟−2

)1/𝑟
≤

(
∥U𝒙∥22 ·

(
Δ1/2 ∥𝒙∥2

) 𝑟−2
)1/𝑟

= Δ1/2−1/𝑟 ∥𝒙∥2 .

We now move onto the more general case where the 𝑆𝑖 are allowed to have multiple elements.
We writeΛ−1/𝑝A𝒙

𝒢𝑟 (𝝀)

=

(
𝑚∑
𝑖=1

𝜆𝑖
Λ−1/𝑝

𝑆𝑖
A𝑆𝑖𝒙

𝑟
𝑝𝑖

)1/𝑟

≤
(
𝑚∑
𝑖=1

𝜆𝑖Δ
𝑟/2
𝑖

W1/2Λ1/2−1/𝑝A𝒙
𝑟

2

)1/𝑟

≤ Δ1/2
W1/2Λ1/2−1/𝑝A𝒙

2
,

which concludes the proof of Lemma 3.3.16. □

At last, we have the tools we need to give a characterization of log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
when 𝑟 ≳ log 𝑑.

Lemma 3.3.17. If all the 𝑆𝑖 have size 1, then

log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
≲

(𝜂
2

)− 2𝑟
𝑟−2 · 𝑟𝐹★ log 𝐹★,

107

and if there is at least one 𝑆𝑖 larger than 1, then

log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
≲

(𝜂
2

)− 2𝑟
𝑟−2 · 2𝑟2

𝑟 − 2 max
𝑖

min(𝑝𝑖 + 1, log |𝑆𝑖 |)𝐹★ log 𝐹★.

Proof of Lemma 3.3.17. The reader familiar with the work of Bourgain, Lindenstrauss, and Mil-
man [BLM89] can think of the present Lemma as a generalization of (7.13) of Proposition 7.2 of
that work.

Define

𝑀(F, 𝑟) B

𝑟
(
1 + √max𝑖 𝑝𝑖

)2
(∑𝑚

𝑖=1 𝜆𝑖
(∑

𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

) 𝑟/𝑝𝑖)2/𝑟
if 𝑟 ≤ log𝑚

log𝑚 ·max𝑖
(
1 + √𝑝𝑖

)2
(∑

𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

)2/𝑝𝑖
otherwise

.

Let 𝑞 > 𝑟 and 0 < 𝜃 < 1 be such that

1
𝑟
=

1 − 𝜃
2 + 𝜃

𝑞
.

By interpolation, observe that we haveΛ−1/𝑝A(𝒙1 − 𝒙2)

𝒢𝑟 (𝝀)
≤

Λ−1/𝑝A(𝒙1 − 𝒙2)
1−𝜃

𝒢2(𝝀)
·
Λ−1/𝑝A(𝒙1 − 𝒙2)

𝜃
𝒢𝑞(𝝀)

≤ 2
Λ−1/𝑝A(𝒙1 − 𝒙2)

𝜃
𝒢𝑞(𝝀)

which means that

log𝒩 (𝐵2 , 𝜂𝐵𝑟) ≤ log𝒩
(
𝐵2 , (𝜂/2)1/𝜃𝐵𝑞

)
≤

(𝜂
2

)−2/𝜃
𝑀(F, 𝑞).

Let us set 𝑞 = 𝑟 log𝐷, where we will choose 𝐷 in a moment. Then, notice that(𝜂
2

)−2/𝜃
=

(𝜂
2

)−2𝑟(𝑞−2)/(𝑞(𝑟−2))
=

(𝜂
2

)− 2𝑟
𝑟−2

(
1− 2

𝑟 log𝐷

)
=

(𝜂
2

)− 2𝑟
𝑟−2+ 4

(𝑟−2) log𝐷
.

It is now sufficient to identify 𝐷 such that whenever 𝜂 is small enough to have log𝒩 > 0, we
have (𝜂

2

) 4
(𝑟−2) log𝐷

≲ 1.

To identify this 𝐷, notice that Lemma 3.3.16 implies that if all the 𝑆𝑖 have size 1, then only
values of 𝜂 such that 𝜂 ≤ Δ1/2−1/𝑟 contribute to log𝒩 . In the more general setting, observe only
𝜂 ≤ Δ1/2 counts.

Hence, if all the 𝑆𝑖s are singletons, we choose 𝐷 = Δ. For any 𝜂 ≤ 2Δ1/2−1/𝑟 = 2𝐷1/2−1/𝑟 , we see
that (𝜂

2

) 4
(𝑟−2) log𝐷 ≤ Δ

𝑟−2
2𝑟 · 4

(𝑟−2) log(Δ) = Δ
2

𝑟 logΔ = 22/𝑟 ≤ 2.

108

Similarly, for the case where the 𝑆𝑖 are more generally sized, we choose 𝐷 = Δ2𝑟/(𝑟−2). Now, for
any 𝜂 ≤ 2Δ1/2, we get (𝜂

2

) 4
(𝑟−2) log𝐷 ≤ Δ

4
(𝑟−2) log(Δ(2𝑟/(𝑟−2))) = Δ

2
𝑟 logΔ = 22/𝑟 ≤ 2.

Putting everything together, if all the 𝑆𝑖s are singletons, we get

log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
≲

(𝜂
2

)− 2𝑟
𝑟−2 ·𝑀(F, 𝑞) ≲

(𝜂
2

)− 2𝑟
𝑟−2 · 𝑟𝐹★ log 𝐹★,

and in the more general case,

log𝒩
(
�̂�2 , 𝜂𝐵𝑟

)
≲

(𝜂
2

)− 2𝑟
𝑟−2 ·𝑀(F, 𝑞) ≲

(𝜂
2

)− 2𝑟
𝑟−2 · 2𝑟2

𝑟 − 2 max
𝑖

min(𝑝𝑖 + 1, log |𝑆𝑖 |)𝐹★ log 𝐹★.

This concludes the proof of Lemma 3.3.17. □

Putting everything together

We are finally ready to combine all the tools we have built in the last few subsections to prove
our entropy estimate when 0 < 𝑝 < 2.

Below, we state Lemma 3.3.18, which more precisely characterizes the behavior of the depen-
dence on 𝑝 referred to by Lemma 3.3.10.

Lemma 3.3.18. We have

log𝒩(𝐵𝑝 , 𝜂�̂�2) ≲ 𝜂−
2𝑝

2−𝑝 · 𝐶(𝑝)max
𝑖

min (𝑝𝑖 + 1, log |𝑆𝑖 |) 𝐹★ log 𝐹★,

where 𝐶(𝑝) is a constant that only depends on 𝑝. The constant 𝐶(𝑝) is defined as follows. For 0 < 𝜃 < 𝑝,

let 𝑟 = (2 − 𝜃)𝑝/(𝑝 − 𝜃). Then, we define

𝐶(𝑝, 𝜃) B
©«
(
2 · 82/𝜃

)− 𝜃
2−𝜃

2

ª®®®¬
− 2𝑟
𝑟−2

̂̂
𝐶(𝑝) B

{
min

{
𝐶(𝑝, 𝑝/2), 𝐶(𝑝, 1)

}
if 1 ≤ 𝑝 < 2

𝐶(𝑝, 𝑝/2) if 0 < 𝑝 < 1
(3.3.3)

𝐶(𝑝) B ̂̂
𝐶(𝑝)

{
𝑟 if |𝑆𝑖 | = 1 for all 𝑖

2𝑟 + 4𝑟
𝑟−2 otherwise

, (3.3.4)

where, in an abuse of notation, 𝑟 in (3.3.4) is chosen according to the value of 𝜃 that is selected by
̂̂
𝐶(𝑝)

in (3.3.3).

Proof of Lemma 3.3.18 and Lemma 3.3.10. This time, following Lemma 3.3.17, we define

𝑀(F, 𝑟) B
{
𝑟𝐹★ log 𝐹★ if |𝑆𝑖 | = 1
(2𝑟 + 4𝑟

𝑟−2) (max𝑖 min(𝑝𝑖 + 1, log |𝑆𝑖 |)) 𝐹★ log 𝐹★ otherwise
.

109

Use Lemma 3.3.11 and Lemma 3.3.15 to write

log𝒩(𝐵𝑝 , 𝜂�̂�2) ≤
∑
ℎ≥0

log𝒩(�̂�2 , 𝛿ℎ𝐵𝑟) ≤ 𝑀(F, 𝑟)
∑
ℎ≥0

(
𝛿ℎ
2

)− 2𝑟
𝑟−2

= 𝑀(F, 𝑟)
∑
ℎ≥0

©«𝜂
𝜃

2−𝜃 · 8(ℎ+1)·(𝜃
2−𝜃) ·

(
2 · 82/𝜃

)− 𝜃
2−𝜃

2

ª®®®¬
− 2𝑟
𝑟−2

= 𝜂−
𝜃

2−𝜃 ·
2𝑟
𝑟−2 ·

©«
(
2 · 82/𝜃

)− 𝜃
2−𝜃

2

ª®®®¬
− 2𝑟
𝑟−2

︸ ︷︷ ︸
=𝐶(𝑝,𝜃)

𝑀(F, 𝑟)
∑
ℎ≥0

8(ℎ+1)·(− 𝜃
2−𝜃)· 2𝑟

𝑟−2 . (3.3.5)

We now make the substitution 𝜃 = 𝑝/2. By the formula in Lemma 3.3.11, this means that
𝑟 = 4 − 𝑝 and −𝜃/(2 − 𝜃) · 2𝑟/(𝑟 − 2) = −2𝑝/(2 − 𝑝). We continue.

log𝒩(𝐵𝑝 , 𝜂𝐵2) ≤ 𝜂−
𝜃

2−𝜃 ·
2𝑟
𝑟−2 · 𝐶(𝑝, 𝜃)𝑀(F, 𝑟)

∑
ℎ≥0

8(ℎ+1)·− 𝜃
2−𝜃 ·

2𝑟
𝑟−2

= 𝜂−
2𝑝

2−𝑝 · 𝐶(𝑝, 𝑝/2)𝑀(F, 4 − 𝑝)
∑
ℎ≥0

8(ℎ+1)·− 2𝑝
2−𝑝

≲ 𝜂−
2𝑝

2−𝑝 · 𝐶(𝑝, 𝑝/2)𝑀(F, 4 − 𝑝).

A regrettable consequence of the above calculation is that the “constant” 𝐶(𝑝, 𝜃) = 𝐶(𝑝, 𝑝/2)
explodes as 𝑝 → 2, as observed by Schechtman and Zvavitch [SZ01]. To fix this, we perform
a slightly different variant of this calculation in the regime where 1 < 𝑝 < 2. We resume from
(3.3.5) except we use 𝜃 = 1. Here, again using Lemma 3.3.11, we check that 𝑟 = 𝑝/(𝑝 − 1) and
−𝜃/(2 − 𝜃) · 2𝑟/(𝑟 − 2) = −2𝑝/(2 − 𝑝) (note that now 𝑟 is the conjugate exponent of 𝑝). This
means that

log𝒩(𝐵𝑝 , 𝜂�̂�2) ≤ 𝜂−
𝜃

2−𝜃 ·
2𝑟
𝑟−2 · 𝐶(𝑝, 𝜃)𝑀(F, 𝑟)

∑
ℎ≥0

8(ℎ+1)·− 𝜃
2−𝜃 ·

2𝑟
𝑟−2

≲ 𝜂−
2𝑝

2−𝑝 · 𝐶(𝑝, 1)
∑
ℎ≥0

8(ℎ+1)·− 2𝑝
2−𝑝 ≲ 𝜂−

2𝑝
2−𝑝𝑀

(
F,

𝑝

𝑝 − 1

)
.

Taking the minimum over all the cases (of course where applicable) and expanding out the
definition of 𝑀(F, 𝑟) concludes the proof of Lemma 3.3.18 and Lemma 3.3.10. □

3.3.4. Covering numbers for 𝑝 ≥ 2

We will see that compared to the previous section, our task when 𝑝 ≥ 2 is far easier. The main
technical lemma we need is Lemma 3.3.19, which we need for both regimes of 𝑝.

We first state and prove Lemma 3.3.19.

Lemma 3.3.19. Let W and Λ be chosen according to Theorem 3.3.5. Suppose that 𝐻 ≥ 1 is such that

𝐻𝜌𝑖 ≥ 𝛼
𝑝

𝑖/∥𝜶∥𝑝𝑝 for all 𝑖 ∈ [𝑚]. Then,

log𝒩
(
�̂�2 , 𝜂

{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≲ 𝜂−2 ·max

𝑖∈𝑆
min {𝑝𝑖 , log |𝑆𝑖 |}𝐻2/𝑝 ∥𝜶∥2𝑝 log𝑚.

110

Proof of Lemma 3.3.19. Following the proof of Lemma 3.3.15 and the references therein, our goal
here is to analyze the quantity

log𝒩
({
𝒙 ∈ R𝑑 :

W1/2Λ1/2−1/𝑝A𝒙

2
≤ 1

}
, 𝜂

{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
.

Using the same type of linear transformation argument as in Lemma 3.3.15 (so, replacing every
𝒙 above with R𝒙), we find that it is in fact sufficient to analyze

log𝒩 B log𝒩
(
{𝒙 : ∥U𝒙∥2 ≤ 1} , 𝜂

{
𝒙 : max

𝑖∈𝑆
𝜌
−1/𝑝
𝑖

W−1/2
𝑆𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒙

𝑝𝑖
≤ 1

})
.

Recall that ∥U𝒙∥2 = ∥𝒙∥2, so a natural plan is to apply the dual Sudakov inequality (Fact 3.2.6,
(3.2.1)). We first consider the quantity (when 2 ≤ 𝑝𝑖 ≤ log |𝑆𝑖 |)

E
𝒈∼𝒩(0,I𝑑)

[W−1/2
𝑆𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒈

𝑝𝑖

]
= E

𝒈∼𝒩(0,I𝑑)

©«
∑
𝑗∈𝑆𝑖

���𝜆1/𝑝
𝑖

〈
𝑤
−1/2
𝑗

𝜆−1/2
𝑖

𝒖 𝑗 , 𝒈
〉���𝑝𝑖ª®¬

1/𝑝𝑖
≤ ©«

∑
𝑗∈𝑆𝑖

(
𝜆

1/𝑝
𝑖

𝑤−1/2
𝑗

𝜆−1/2
𝑖

𝒖 𝑗

2

)𝑝𝑖
E

𝑔∼𝒩(0,1)

[
|𝑔 |𝑝𝑖

]ª®¬
1/𝑝𝑖

≲ 𝑝1/2
𝑖

©«
∑
𝑗∈𝑆𝑖

(
𝜆

1/𝑝
𝑖

𝑤−1/2
𝑗

𝜆−1/2
𝑖

𝒖 𝑗

2

)𝑝𝑖ª®¬
1/𝑝𝑖

= 𝑝
1/2
𝑖

©«
∑
𝑗∈𝑆𝑖

(
𝜆

1/𝑝
𝑖

 𝒇 𝑗2

)𝑝𝑖ª®¬
1/𝑝𝑖

= 𝑝
1/2
𝑖

𝜆
1/𝑝
𝑖

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

= 𝑝
1/2
𝑖

𝛼𝑖 .

On the other hand, if 𝑝𝑖 ≥ log |𝑆𝑖 |, then we get

E
𝒈∼𝒩(0,I𝑑)

[W−1/2
𝑆𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒈

𝑝𝑖

]
≲ E

𝒈∼𝒩(0,I𝑑)

[W−1/2
𝑆𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒈

∞

]
≲ 𝜆

1/𝑝
𝑖

max
𝑗∈𝑆𝑖

 𝒇 𝑗2

√
log |𝑆𝑖 | ≍ 𝛼𝑖

√
log |𝑆𝑖 |.

Finally, when 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < 2, we have

E
𝒈∼𝒩(0,I𝑑)

[Λ̂1/𝑝−1/2
𝑆𝑖

U𝒈

𝑝

]
= E

𝒈∼𝒩(0,I𝑑)

©«
∑
𝑗∈𝑆𝑖

�̂� 𝑗
���〈�̂�−1/2

𝑗
𝒖 𝑗 , 𝒈

〉���𝑝ª®¬
1/𝑝

≤ ©«
∑
𝑗∈𝑆𝑖

�̂� 𝑗
�̂�−1/2

𝑗
𝒖 𝑗

𝑝
2
E

𝑔∼𝒩(0,1)

[
|𝑔 |𝑝

]ª®¬
1/𝑝

≲ 𝑝1/2 ©«
∑
𝑗∈𝑆𝑖

�̂�
𝑝

𝑗

ª®¬
1/𝑝

= 𝑝1/2𝛼𝑖 .

This means that throughout the rest of the proof, we assume without loss of generality that
𝑝𝑖 ≤ log |𝑆𝑖 |. Next, observe that for any 𝒙 ∈ R𝑑 and when 𝑝1 , . . . , 𝑝𝑚 ≥ 2,

W−1/2
𝑆𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒙

𝑝𝑖
=

©«
∑
𝑗∈𝑆𝑖

���𝜆1/𝑝
𝑖

〈
𝒇 𝑗 , 𝒙

〉���𝑝𝑖ª®¬
1/𝑝𝑖

≤ ©«
∑
𝑗∈𝑆𝑖

���𝜆1/𝑝
𝑖

 𝒇 𝑗2
∥𝒙∥2

���𝑝𝑖ª®¬
1/𝑝𝑖

= 𝛼𝑖 ∥𝒙∥2 .

111

Similarly, when 𝑝1 = · · · = 𝑝𝑚 = 𝑝, we first observe���〈�̂�1/𝑝−1/2
𝑗

𝒖 𝑗 , 𝒙
〉��� ≤ �̂� 𝑗 ∥𝒙∥2 .

We therefore get

Λ̂1/𝑝−1/2
𝑆𝑖

U𝒙

𝑝
≤ ©«

∑
𝑗∈𝑆𝑖

�̂�
𝑝

𝑗

ª®¬
1/𝑝

∥𝒙∥2 = 𝛼𝑖 ∥𝒙∥2 . (3.3.6)

Hence, after applying Fact 3.2.11 and Fact 3.2.10, we notice that 𝛼𝑖(𝐻𝜌𝑖)−1/𝑝 ≤ ∥𝜶∥𝑝 and get𝜌−1/𝑝
𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒈

𝑝𝑖

𝜓2

≲
(
1 + √𝑝𝑖

)
𝐻1/𝑝 ∥𝜶∥𝑝 .

All of this implies that for any subset 𝑆 of size 𝑚 (see Exercise 2.5.10 of [Ver18]),

E
𝒈∼𝒩(0,I𝑑)

[
max
𝑖∈𝑆

𝜌
−1/𝑝
𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒈

𝑝𝑖

]
≲ max

𝑖∈𝑆
𝑝

1/2
𝑖
𝐻1/𝑝 ∥𝜶∥𝑝

√
log𝑚.

Thus,

log𝒩 ≲ 𝜂−2
((

max
𝑖∈𝑆

𝑝𝑖 + 1
)
𝐻2/𝑝 ∥𝜶∥2𝑝 log𝑚

)
.

This concludes the proof of Lemma 3.3.19. □

We are finally ready to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. For notational simplicity in this proof, write

𝐾 B
{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

}
.

Let us first handle the case where 𝑝 ≥ 2. By our choice of W, we have for all 𝒙 ∈ R𝑑 thatW1/2Λ1/2−1/𝑝A𝒙

2
≤

Λ−1/𝑝A𝒙

𝒢𝑝(𝝀)

= ∥A𝒙∥𝒢𝑝 .

This implies the containment 𝐵𝑝 ⊆ �̂�2, and thus

log𝒩
(
𝐵𝑝 , 𝜂𝐾

)
≤ log𝒩

(
�̂�2 , 𝜂𝐾

)
≤ 𝜂−2 max

𝑖
min {𝑝𝑖 , log |𝑆𝑖 |}𝐻2/𝑝𝐹★ log𝑚.

The desired result now follows immediately from Lemma 3.3.19.

For the case where 𝑝 < 2 and 𝑝𝑖 ≥ 2 for all 𝑖, we require a bit more work. By our choice of W,
we have W1/2Λ1/2−1/𝑝A𝒙

2
≤

Λ−1/𝑝A𝒙

𝒢2(𝝀)

=

Λ1/2−1/𝑝A𝒙

2
,

and for any 𝑡 > 0 (after remembering (3.3.1) which tells us ∥𝜶∥𝑝 ≤
√
𝐹★),

log𝒩
(
𝐵𝑝 , 𝜂𝐾

)
≤ log𝒩

(
𝐵𝑝 , 𝑡�̂�2

)
+ log𝒩

(
𝑡�̂�2 , 𝜂𝐾

)
= log𝒩

(
𝐵𝑝 , 𝑡�̂�2

)
+ log𝒩

(
�̂�2 ,

𝜂

𝑡
· 𝐾

)
112

≤ 𝑡−
2𝑝

2−𝑝 · 𝐶(𝑝)max
𝑖

min {𝑝𝑖 + 1, log |𝑆𝑖 |} 𝐹★ log 𝐹★

+
(𝜂
𝑡

)−2
max
𝑖

min {𝑝𝑖 + 1, log |𝑆𝑖 |}𝐻2/𝑝𝐹★ log𝑚,

where the last line follows from Lemma 3.3.10 and Lemma 3.3.19. Choose 𝑡 = 𝜂1−𝑝/2 ·𝐻1/2−1/𝑝 ,
and for simplicity let 𝑝★ B max𝑖 min {𝑝𝑖 + 1, log |𝑆𝑖 |}. We write

log𝒩
(
𝐵𝑝 , 𝜂𝐾

)
≤ 𝑡−

2𝑝
2−𝑝 · 𝐶(𝑝)𝑝★𝐹★ log 𝐹★ +

(𝜂
𝑡

)−2
𝑝★𝐻2/𝑝𝐹★ log𝑚

≲ 𝜂−𝑝 · 𝐻 · 𝐶(𝑝)
(
𝑝★𝐹★ log max

{
𝑚, 𝐹★

})
.

Finally, we need to address the case where 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < 2, as this is not covered by the
construction of the block Lewis weights (Lemma 3.3.7).

To do so, notice that ∥A𝒙∥𝒢𝑝 = ∥A𝒙∥𝑝 for all 𝒙 ∈ R𝑑. So, we reduce to the case where all the 𝑆𝑖
have size 1. In particular, let �̂� be a probability measure over [𝑘] such that for all 𝑗 ∈ [𝑘],

𝐹★ ≥
𝜏𝑗

(
Λ̂1/2−1/𝑝A

)
�̂� 𝑗

,

and let

�̂�2 =

{
𝒙 ∈ R𝑑 :

Λ̂1/2−1/𝑝A𝒙

2
≤ 1

}
.

Notice that this setup is in accordance with Definition 3.3.3. By Lemma 3.3.10, we get

log𝒩(𝐵𝑝 , 𝑡�̂�2) ≲ 𝑡−
2𝑝

2−𝑝 · 𝐶(𝑝)𝐹★ log 𝐹★.

It remains to bound log𝒩(�̂�2 , (𝜂/𝑡)𝐾). Let 𝝀 be a probability measure over [𝑚], where 𝜆𝑖 =∑
𝑗∈𝑆𝑖 �̂� 𝑗 . Define �̂� ∈ R𝑛 analogously to �̂�. Notice that, for these choices of �̂� and �̂�, we see that

the conclusion of Lemma 3.3.19 still holds, and we have

log𝒩
(
�̂�2 ,

(𝜂
𝑡

)
· 𝐾

)
≲

(𝜂
𝑡

)−2
𝐻2/𝑝𝐹★ log𝑚.

Now, the calculation is the same as before, and we conclude the proof of Theorem 3.3.5. □

3.3.5. Volume-based metric entropy

In this subsection, we prove Lemma 3.3.21, which is an easy consequence of a volume-based
argument to obtain a covering number guarantee.

We start with Lemma 3.3.20.

Lemma 3.3.20. Let 𝑆 ⊆ [𝑚] have size 𝑚. Let 𝐻 ≥ 1 be such that 𝐻𝜌𝑖 ≥ 𝛼
𝑝

𝑖/∥𝜶∥𝑝𝑝 for all 𝑖 ∈ [𝑚]. For

all 𝒙 ∈ R𝑑, we have

max
𝑖∈𝑆

∥A𝑆𝑖𝒙∥𝑝𝑖
(𝐹★)max(1/2,1/𝑝) 𝜌

1/𝑝
𝑖
𝐻1/𝑝

≤ ∥A𝒙∥𝒢𝑝 .

113

Proof of Lemma 3.3.20. Consider the invertible mapping 𝒙 ↦→ R𝒙, and write

W−1/2
𝑆𝑖

Λ1/𝑝−1/2
𝑆𝑖

U𝒙

𝑝𝑖
=

©«
∑
𝑗∈𝑆𝑖

���𝜆1/𝑝
𝑖

〈
𝒇 𝑗 , 𝒙

〉���𝑝𝑖ª®¬
1/𝑝𝑖

≤ ©«
∑
𝑗∈𝑆𝑖

���𝜆1/𝑝
𝑖

 𝒇 𝑗2
∥𝒙∥2

���𝑝𝑖ª®¬
1/𝑝𝑖

= 𝛼𝑖 ∥𝒙∥2 .

(3.3.7)

This means that when 𝑝 ≥ 2,

∥A𝑆𝑖𝒙∥𝑝𝑖 ≤ 𝛼𝑖
W1/2Λ1/2−1/𝑝A𝒙

2
≤ 𝛼𝑖

Λ1/2−1/𝑝A𝒙

𝒢2
≤ 𝛼𝑖 ∥A𝒙∥𝒢𝑝 ≤ ∥𝜶∥𝑝 𝜌

1/𝑝
𝑖
𝐻1/𝑝 ∥A𝒙∥𝒢𝑝 .

Dividing both sides by ∥𝜶∥𝑝 𝜌
1/𝑝
𝑖
𝐻1/𝑝 and then recalling (3.3.1) yields the desired conclusion

(in particular, we see that ∥𝜶∥𝑝 ≤ (𝐹★)
1/2).

We now analyze what happens when 𝑝 ≤ 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2. Let

Δ
1/2
𝑖
B max

𝒙∈R𝑑\{0}

𝜆
−1/𝑝
𝑖
∥A𝑆𝑖𝒙∥𝑝𝑖Λ1/2−1/𝑝A𝒙

𝒢2

.

Let Δ B max𝑖∈[𝑚] Δ𝑖 . We now see thatΛ1/2−1/𝑝A𝒙

𝒢2

=

(
𝑚∑
𝑖=1

𝜆𝑖
Λ−1/𝑝

𝑆𝑖
A𝑆𝑖𝒙

2

𝑝𝑖

)1/2

=

(
𝑚∑
𝑖=1

𝜆𝑖
Λ−1/𝑝

𝑆𝑖
A𝑆𝑖𝒙

𝑝
𝑝𝑖
·
Λ−1/𝑝

𝑆𝑖
A𝑆𝑖𝒙

2−𝑝

𝑝𝑖

)1/2

≤
(
∥A𝒙∥𝑝𝒢𝑝

(
Δ1/2 ·

Λ1/2−1/𝑝A𝒙

𝒢2

)2−𝑝)1/2

= ∥A𝒙∥𝑝/2𝒢𝑝

(
Δ1/2 ·

Λ1/2−1/𝑝A𝒙

𝒢2

)1−𝑝/2
.

Rearranging and taking the 2/𝑝-power givesΛ1/2−1/𝑝A𝒙

𝒢2
≤ ∥A𝒙∥𝒢𝑝 Δ

1/𝑝−1/2.

Observe that this yields the inequalities

∥A𝑆𝑖𝒙∥𝑝𝑖
Δ1/𝑝−1/2 ≤

𝛼𝑖
Δ1/𝑝−1/2

W1/2Λ1/2−1/𝑝A𝒙

2
≤ 𝛼𝑖

Δ1/𝑝−1/2

Λ1/2−1/𝑝A𝒙

𝒢2

≤ 𝛼𝑖 ∥A𝒙∥𝒢𝑝 ≤ ∥𝜶∥𝑝 𝜌
1/𝑝
𝑖
𝐻1/𝑝 ∥A𝒙∥𝒢𝑝 .

It remains to bound the Δ𝑖 . By the same sort of argument from the 𝑝 ≥ 2 case (i.e., (3.3.7)), we
get

𝜆
1/𝑝
𝑖

Δ
1/2
𝑖
≤ 𝛼𝑖 = 𝜆

1/𝑝
𝑖

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
1/𝑝𝑖

which means that

Δ ≤ max
𝑖∈[𝑚]

©«
∑
𝑗∈𝑆𝑖

 𝒇 𝑗𝑝𝑖2

ª®¬
2/𝑝𝑖

≤ 𝐹★.

Now, again using the fact that ∥𝜶∥𝑝 ≤ (𝐹★)
1/2, we see that Δ1/𝑝−1/2 ∥𝜶∥𝑝 ≤ (𝐹★)

1/𝑝 .

114

Finally, we analyze the case where 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < 2. Using (3.3.6), and the same sort of
argument from above, we have

∥A𝑆𝑖𝒙∥𝑝 ≤ 𝛼𝑖
Λ̂1/2−1/𝑝A𝒙

2
≤ 𝛼𝑖

(
𝐹★

)1/𝑝−1/2 ∥A𝒙∥𝒢𝑝 ≤ ∥𝜶∥𝑝 𝐻
1/𝑝𝜌

1/𝑝
𝑖

(
𝐹★

)1/𝑝−1/2 ∥A𝒙∥𝒢𝑝 .

Once again, we use ∥𝜶∥𝑝 ≤ (𝐹★)
1/2.

We have covered all our cases and may conclude the proof of Lemma 3.3.20. □

Lemma 3.3.20 also suggests a useful sanity check, as the denominator points to a sparsity of∑
𝑖≤𝑚

(
(𝐹★)max(1/2,1/𝑝) 𝜌

1/𝑝
𝑖
𝐻1/𝑝

)𝑝
= 𝐻 (𝐹★)max(1,𝑝/2). And, recall that we should be able to set

𝐹★ ∼ 𝑑, which indeed gives us the dependence on 𝑑 we see in Theorem 8.

Lemma 3.3.21. Let 𝑆 ⊆ [𝑚] have size 𝑚. We have

log𝒩
(
𝐵𝑝 , 𝜂

{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≤ 𝑛 log

(
4𝐻1/𝑝 (𝐹★)max(1/𝑝,1/2)

𝜂

)
Proof of Lemma 3.3.21. Define

𝐾 B
{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

}
.

Let 𝐶 be a value such that for all 𝑖 ∈ 𝑆 and 𝒙 ∈ R𝑑, we have (𝐶𝜌𝑖)−1/𝑝 ∥A𝑆𝑖𝒙∥𝑝𝑖 ≤ ∥A𝒙∥𝒢𝑝 . This
means that 𝐵𝑝 ⊆ 𝐶1/𝑝𝐾. Then,

log𝒩
(
𝐵𝑝 , 𝜂𝐾

)
≤ log𝒩

(
𝐶1/𝑝𝐾, 𝜂𝐾

)
= log𝒩

(
𝐾,

𝜂

𝐶1/𝑝 · 𝐾
)
≤ 𝑛 log

(
4𝐶1/𝑝

𝜂

)
.

By Lemma 3.3.20, when 𝑝 ≥ 2, we can choose 𝐶 = 𝐻 (𝐹★)max(1/𝑝,1/2). This concludes the proof
of Lemma 3.3.21. □

3.4. Concentration analysis

In this section, we prove Theorem 11. Theorem 11 states our main result in its fullest generality.
Theorem 8 follows easily from this, as we show in Section 3.5.

We first state Theorem 11.

Theorem 11 (General concentration result). Let 𝒢 = (A ∈ R𝑛×𝑑 , 𝑆1 , . . . , 𝑆𝑚 , 𝑝1 , . . . , 𝑝𝑚) where

𝑆1 , . . . , 𝑆𝑚 form a partition of [𝑛]. Suppose at least one of the following holds:

• 1 ≤ 𝑝 < ∞ and 𝑝1 , . . . , 𝑝𝑚 ≥ 2;

• 1/log 𝑑 ≤ 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < ∞;

• 𝑝1 = · · · = 𝑝𝑚 = 2 and 1/log 𝑛 ≤ 𝑝 < ∞.

115

Let 𝑃 B max
(
1,max𝑖∈[𝑚]min(𝑝𝑖 , log |𝑆𝑖 |)

)
. Suppose that 𝝀 ∈ R𝑚 is a probability measure over

[𝑚], let W be a rounding matrix (Definition 3.3.2) such that we get an 𝐹★-block Lewis overestimate

(Definition 3.1.2), and define 𝜶 according to Definition 3.3.3. Let 𝒟 = (𝜌1 , . . . , 𝜌𝑚) be a probability

distribution over [𝑚] and 𝐻 ≥ 1 be such that 𝐻𝜌𝑖 ≥ 𝛼
𝑝

𝑖
/∥𝜶∥𝑝𝑝 .

If

𝑚 = Ω

(
log (1/𝛿) 𝜀−2 (log 𝑑)2 log (𝑑/𝜀) · 𝐻 · 𝑃

(
𝐹★

)max(1,𝑝/2)
)
,

and if we sampleℳ ∼ 𝒟𝑚
, then, with probability ≥ 1 − 𝛿, we have:

for all 𝒙 ∈ R𝑑 , (1 − 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ≤
1
𝑚

∑
𝑖∈ℳ

1
𝜌𝑖
· ∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 ≤ (1 + 𝜀) ∥A𝒙∥𝑝𝒢𝑝

The goal of the rest of this section is to prove Theorem 11. It may be helpful to recall the
argument sketch given in Section 3.1.3.

To formalize the idea given there, we first introduce the following notation (recall that 𝜌𝑖 is the
probability that we choose group 𝑖 in a round of sampling and that Definition 3.2.5 defines the
𝑒𝑁).

𝑔𝑖(𝒙) B ∥A𝑆𝑖𝒙∥𝑝𝑖 (3.4.1)

𝑑𝑖𝑠𝑡(𝒙 , �̂�) B
(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

−
𝑔𝑖ℎ (̂𝒙)𝑝
𝜌𝑖ℎ

)2
)1/2

(3.4.2)

𝛾2(𝐵𝑝 , 𝑑𝑖𝑠𝑡) B inf
|𝑇𝑁 |≤22𝑁 ;
𝑇𝑁⊂𝐵𝑝

sup
𝒙∈𝐵𝑝

∑
𝑁≥0

2𝑁/2 · 𝑑2(𝒙 , 𝑇𝑁) (3.4.3)

The goal is to control 𝛾2(𝐵𝑝 , 𝑑𝑖𝑠𝑡). This quantity represents the worst-case approximation error
that one incurs by using the discretization scheme given by the 𝑇𝑁 , where the discretization is
taken with respect to the 𝑑𝑖𝑠𝑡 metric.

Towards this goal, we first apply a standard symmetrization reduction. Informally, this reduc-
tion (Lemma 3.4.1) states that it is enough to analyze the average fluctuations of a Rademacher
average of any set of 𝑚 (not necessarily distinct) reweighted groups.

Lemma 3.4.1 (Symmetrization reduction). Let 𝑅1 , . . . , 𝑅𝑚 be independent Rademacher random

variables (i.e., Unif (±1)). We have

E
𝒢′

[���∥A𝒙∥𝑝𝒢𝑝 − ∥𝒙∥
𝑝

𝒢′

���] ≤ 2E
𝒢′
E

𝑅1 ,...,𝑅𝑚

[
1
𝑚

����� 𝑚∑
ℎ=1

𝑅ℎ
𝑔𝑖′

ℎ
(𝒙)𝑝

𝜌𝑖′
ℎ

�����
]
.

Proof of Lemma 3.4.1. We follow the proof of Lemma 3.1 due to Lee [Lee23]. Let �̃� be an
independent copy of 𝒢′. Fixing 𝒢′, we have by Jensen’s inequality that���∥A𝒙∥𝑝𝒢𝑝 − ∥𝒙∥

𝑝

𝒢′

��� = ����E�̃� [
∥𝒙∥𝑝�̃�

]
− ∥𝒙∥𝑝𝒢′

���� ≤ E�̃� [���∥𝒙∥𝑝�̃� − ∥𝒙∥𝑝𝒢′ ���] .
Thus, taking expectation over 𝒢′,

E
𝒢′

[���∥A𝒙∥𝑝𝒢𝑝 − ∥𝒙∥
𝑝

𝒢′

���] ≤ E
𝒢′,�̃�

[���∥𝒙∥𝑝�̃� − ∥𝒙∥𝑝𝒢′ ���] = E
𝒢′,�̃�

[
1
𝑚

����� 𝑚∑
ℎ=1

𝑔𝑖ℎ (𝒙)
𝑝

𝜌
�̃�ℎ

−
𝑔𝑖′

ℎ
(𝒙)𝑝

𝜌𝑖′
ℎ

�����
]
.

116

Observe that
𝑔𝑖ℎ
(𝒙)𝑝

𝜌
𝑖ℎ

−
𝑔𝑖′
ℎ
(𝒙)𝑝

𝜌𝑖′
ℎ

is symmetric, and so is distributed the same as 𝑅ℎ
(
𝑔𝑖ℎ
(𝒙)𝑝

𝜌
𝑖ℎ

−
𝑔𝑖′
ℎ
(𝒙)𝑝

𝜌𝑖′
ℎ

)
where 𝑅ℎ is an independent Rademacher variable. Then,

E
𝒢′,�̃�

[����� 1
𝑚

𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)

𝑝

𝑝𝑖ℎ
−
𝑔𝑖′

ℎ
(𝒙)𝑝

𝑝𝑖′
ℎ

)�����
]
= E
𝑅1 ,...,𝑅𝑚

E
𝒢′,�̃�

[
1
𝑚

����� 𝑚∑
ℎ=1

𝑅ℎ

(
𝑔𝑖ℎ (𝒙)

𝑝

𝜌
�̃�ℎ

−
𝑔𝑖′

ℎ
(𝒙)𝑝

𝜌𝑖′
ℎ

)�����
]

≤ 2E
𝒢′
E

𝑅1 ,...,𝑅𝑀

[
1
𝑚

����� 𝑚∑
ℎ=1

𝑅ℎ
𝑔𝑖′

ℎ
(𝒙)𝑝

𝜌𝑖′
ℎ

�����
]
.

This concludes the proof of Lemma 3.4.1. □

With Lemma 3.4.1 in hand, we set up our chaining argument in Lemma 3.4.2. We first confirm
that our random process is subgaussian with respect to our choice of 𝑑𝑖𝑠𝑡.

Lemma 3.4.2 (Choosing the distance). The random process

∑𝑚
ℎ=1 𝑅𝑖ℎ · 𝑔𝑖ℎ (𝒙)

𝑝/𝜌𝑖ℎ is subgaussian with

respect to 𝑑𝑖𝑠𝑡 as defined in (3.4.2).

Proof of Lemma 3.4.2. Let

𝑃 B

����� 𝑚∑
ℎ=1

𝑅ℎ

(
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

−
𝑔𝑖ℎ (̂𝒙)𝑝
𝜌𝑖ℎ

)����� .
Let us first calculate ∥𝑃∥𝜓2 . Using the fact that every term in this sum is independent and
Fact 3.2.8, we get

∥𝑃∥2𝜓2 =

𝑚∑
ℎ=1

𝑅ℎ (
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

−
𝑔𝑖ℎ (̂𝒙)𝑝
𝜌𝑖ℎ

)2

𝜓2

≤
𝑚∑
ℎ=1

2
(
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

−
𝑔𝑖ℎ (̂𝒙)𝑝
𝜌𝑖ℎ

)2

By Fact 3.2.8, we have

Pr
𝑅ℎ
[𝑃 ≥ 𝑣𝑑𝑖𝑠𝑡(𝒙 , �̂�)] ≤ 2exp

©«−
𝑣2𝑑𝑖𝑠𝑡(𝒙 , �̂�)2

4
∑𝑚
ℎ=1

(
𝑔𝑖ℎ (𝒙)

𝑝

𝜌𝑖ℎ
− 𝑔𝑖ℎ (̂𝒙)

𝑝

𝜌𝑖ℎ

)2

ª®®¬ = 2exp
(
−𝑣

2

2

)
.

This concludes the proof of Lemma 3.4.2. □

Lemma 3.4.2 tells us that 𝑑𝑖𝑠𝑡 is a choice of distance on 𝐵𝑝 that allows us to use the subgaussian
form of chaining to analyze our random process. Along with the way we have set up our
sampling process, we have enough to apply Theorem 3.4.3. This is simply a restatement of
Lemma 2.6 of [JLLS23] for our setting.

Theorem 3.4.3 (Restatement of Lemma 2.6 from [JLLS23], 𝛼 = 2). Recall 𝑑𝑖𝑠𝑡 (3.4.2) and 𝛾2
(3.4.3). Suppose that for some 𝐷 and for every choice of 𝑖1 , . . . , 𝑖𝑚 , we have

𝛾2

(
𝐵𝑝 ,

𝑑𝑖𝑠𝑡

𝑚

)
≲ 𝐷

(
max
𝒙∈𝐵𝑝
∥𝒙∥𝑝𝒢′

)1/2
,

117

where

∥𝒙∥𝑝𝒢′ =
1
𝑚

𝑚∑
ℎ=1

𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

.

Then, we have the following.

E
𝒟

[
sup
𝒙∈𝐵𝑝

���∥A𝒙∥𝒢𝑝 − ∥𝒙∥
𝑝

𝒢′

���] ≲ 𝐷.
If we also have for all choices 𝑖1 , . . . , 𝑖𝑚 and for some 𝐷 that

diam
(
𝐵𝑝 ,

𝑑𝑖𝑠𝑡

𝑚

)
≲ 𝐷

(
max
𝒙∈𝐵𝑝
∥𝒙∥𝑝𝒢′

)1/2
,

then there exists a universal constant 𝐶 > 0 such that for all 0 ≤ 𝑡 ≤ 1/2𝐾𝐷,

Pr
𝒟

[
sup
𝒙∈𝐵𝑝

���∥A𝒙∥𝑝𝒢𝑝 − ∥𝒙∥
𝑝

𝒢′

��� ≥ 𝐶(𝐷 + 𝑡𝐷)] ≤ exp
(
−𝐾𝑡

2

4

)
.

With Theorem 3.4.3 in our arsenal, our task becomes to compute 𝛾2(𝐵𝑝 , 𝑑𝑖𝑠𝑡) (which we will
then divide by 𝑚 so that we can apply Theorem 3.4.3). Hereafter, we will simply abbreviate
𝛾2(𝐵𝑝 , 𝑑𝑖𝑠𝑡) as 𝛾2. We will first weaken the definition of 𝛾2, which is essentially equivalent to
Dudley’s integral. Recall the definition of the entropy numbers 𝑒𝑁 (Definition 3.2.5) and notice
that

𝛾2 ≤
∑
𝑁≥0

2𝑁/2𝑒𝑁 (𝐵𝑝 , 𝑑𝑖𝑠𝑡).

We now rewrite 𝑑𝑖𝑠𝑡 in a form that will be more convenient for us.

Lemma 3.4.4. We have

𝑑𝑖𝑠𝑡(𝒙 , �̂�) ≤ max(𝑝, 2)
(
𝐹★

)max(0,𝑝/4−1/2)
𝑚1/2 · ∥𝒙 − �̂�∥min(𝑝/2,1)

𝒢 ,𝜌,∞,𝑆 ·
(
max
𝒙∈𝐵𝑝
∥𝒙∥𝑝𝒢′

)1/2

and therefore

𝛾2 ≤ 𝑚1/2 max(𝑝, 2)
(
𝐻1/𝑝 (

𝐹★
)1/2

)max(0,𝑝/2−1)
(
max
𝒙∈𝐵𝑝
∥𝒙∥𝑝𝒢′

)1/2 ∑
𝑁≥0

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
.

Proof of Lemma 3.4.4. We have two cases. We first address the case 0 < 𝑝 < 2. Recall that in this
regime, we have

��𝑎𝑝/2 − 𝑏𝑝/2�� ≤ |𝑎 − 𝑏 |𝑝/2. Since 𝑔𝑖ℎ (𝒙) is a norm, the triangle inequality tells us
that

��𝑔𝑖ℎ (𝒙) − 𝑔𝑖ℎ (̂𝒙)�� ≤ 𝑔𝑖ℎ (𝒙 − �̂�). We use these and write

𝑑𝑖𝑠𝑡(𝒙 , �̂�) =
(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
−
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2 (
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
+
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2)1/2

≤
(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙 − �̂�)𝑝/2
√
𝜌𝑖ℎ

)2 (
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
+
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2)1/2

118

≤ ∥𝒙 − �̂�∥𝑝/2𝒢 ,𝜌,∞,𝑆 ·
(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
+
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2)1/2

≤ 2𝑚1/2 · ∥𝒙 − �̂�∥𝑝/2𝒢 ,𝜌,∞,𝑆
(
max
𝒙∈𝐵𝑝
∥𝒙∥𝑝𝒢′

)1/2

which concludes the proof in the range 0 < 𝑝 < 2.

We now move onto the case where 𝑝 ≥ 2. Recall that by Lipschitzness, we get���𝑎𝑝/2 − 𝑏𝑝/2��� ≤ 𝑝

2 ·max(𝑎, 𝑏)𝑝/2−1 |𝑎 − 𝑏 | .

Next, by Lemma 3.3.20, we know that for all 𝑖,

∥A𝑆𝑖𝒙∥𝑝𝑖 ≤
(
𝐹★

)1/2
𝜌

1/𝑝
𝑖
𝐻1/𝑝 ∥A𝒙∥𝒢𝑝 ≤

(
𝐹★

)1/2
𝜌

1/𝑝
𝑖
𝐻1/𝑝 .

We use these to rewrite 𝑑𝑖𝑠𝑡(𝒙 , �̂�).

𝑑𝑖𝑠𝑡(𝒙 , �̂�) =
(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
−
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2 (
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
+
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2)1/2

≤
𝑝

2 · 𝐻
1/2−1/𝑝 (

𝐹★
)𝑝/4−1/2

(
𝑚∑
ℎ=1

(
𝜌
−1/𝑝
𝑖ℎ

𝑔𝑖ℎ (𝒙 − �̂�)
)2

(
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
+
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2)1/2

≤ 𝑝

2 · 𝐻
1/2−1/𝑝 (

𝐹★
)𝑝/4−1/2 ∥𝒙 − �̂�∥𝒢 ,𝜌,∞,𝑆 ·

(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)𝑝/2√

𝜌𝑖ℎ
+
𝑔𝑖ℎ (̂𝒙)𝑝/2√

𝜌𝑖ℎ

)2)1/2

≤ 𝑝 · 𝐻1/2−1/𝑝 (
𝐹★

)𝑝/4−1/2
𝑚1/2 · ∥𝒙 − �̂�∥𝒢 ,𝜌,∞,𝑆

(
max
𝒙∈𝐵𝑝
∥𝒙∥𝑝𝒢′

)1/2

We conclude the proof of Lemma 3.4.4. □

In light of Lemma 3.4.4, observe that it is enough to calculate each term of the sum∑
𝑁≥0 2𝑁/2𝑒𝑁 (𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆)min(𝑝/2,1). We begin this analysis with Lemma 3.4.5.

Lemma 3.4.5. For all 𝑁 ≥ 0, we have

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
≤ 2𝑁/2+min(𝑝/2,1)(2+(1/𝑝) log𝐶−2𝑁/𝑑) ,

where 𝐶 is such that for all 𝑖 ∈ 𝑆 and 𝒙 ∈ R𝑑, we have (𝐶𝜌𝑖)−1/𝑝 ∥A𝑆𝑖𝒙∥𝑝𝑖 ≤ ∥A𝒙∥𝒢𝑝 .

Proof of Lemma 3.4.5. Recall that by Lemma 3.3.21, we have

log𝒩
(
𝐵𝑝 , 𝜂

{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≤ 𝑑 log

(
4𝐶1/𝑝

𝜂

)
.

We set 𝜂 = 22+(1/𝑝) log𝐶−2𝑁/𝑑 so that

log𝒩
(
𝐵𝑝 , 𝜂

{
𝒙 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≤ 2𝑁 .

119

Then,

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
≤ 2𝑁/2+min(𝑝/2,1)(2+(1/𝑝) log𝐶−2𝑁/𝑑) ,

concluding the proof of Lemma 3.4.5. □

Using Lemma 3.4.5, we get a rapidly converging tail in our summation for large values of 𝑁 .
See Lemma 3.4.6.

Lemma 3.4.6. Let 𝑁𝑆 B log (6𝑑 log 𝑑). We have∑
𝑁≥0

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
≲

√
𝑛𝐻1/max(2,𝑝) (𝐹★)1/2 log 𝑑

+
∑
𝑁≤𝑁𝑆

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
.

Proof of Lemma 3.4.6. For now, let 𝐶 be such that for all 𝑖 ∈ 𝑆 and 𝒙 ∈ R𝑑, we have
(𝐶𝜌𝑖)−1/𝑝 ∥A𝑆𝑖𝒙∥𝑝𝑖 ≤ ∥A𝒙∥𝒢𝑝 .

Let 𝑁𝑆 be a threshold such that for all 𝑁 ≥ 𝑁𝑆, we use the entropy number bound given by
Lemma 3.4.5 (as the volume-based covering number bound is much better for small values of
𝑒𝑁). Let us enforce the constraint 𝑁𝑆 ≥ ⌈log (3𝑑/min(𝑝,2))⌉, so that the entropy number bound
in Lemma 3.4.5 is decreasing in 𝑁 and is dominated from above by a geometric series with
common ratio 1/2.

We now set 𝑁𝑆 = log (6𝑑 log 𝑑). Since 𝑝 ≥ 1/log 𝑑, we know that 𝑁𝑆 ≥ ⌈log (3𝑑/min(𝑝,2))⌉. Now,
since 2𝑁/2𝑒𝑁 is bounded above by a geometric series with common ratio 1/2, the summation for
all 𝑁 ≥ 𝑁𝑆 is dominated by the first term. Let us evaluate this. We first observe that

𝑁𝑆

2 +min
(𝑝
2 , 1

) (
−2𝑁𝑆
𝑑
+ 2 + log𝐶

𝑝

)
=

log (6𝑑 log 𝑑)
2 +min

(𝑝
2 , 1

) (
−2log(6𝑑 log 𝑑)

𝑑
+ 2 + log𝐶

𝑝

)
=

log (6𝑑 log 𝑑)
2 +min

(𝑝
2 , 1

) (
−6 log 𝑑 + 2 + log𝐶

𝑝

)
≤ log (6𝑑 log 𝑑)

2 +min
(𝑝
2 , 1

) (
−6 log 𝑑 + 2 + log𝐶

𝑝

)
≤ log (6𝑑 log 𝑑)

2 + log𝐶
max(2, 𝑝) ≤

6𝐶𝑑 log 𝑑
2

By Lemma 3.4.5, we see that

2𝑁𝑆/2𝑒𝑁𝑆
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
≲

√
𝑑𝐶1/max(2,𝑝) log 𝑑,

and by Lemma 3.3.20, we can choose

𝐶 = 𝐻
(
𝐹★

)max(1,𝑝/2)
.

We plug this in, account for the remaining terms in the summation, and conclude the proof of
Lemma 3.4.6. □

120

We now give another way to evaluate the terms of our summation when the indices 𝑁 are such
that the entropy numbers are rather large. See Lemma 3.4.7.

Lemma 3.4.7. For all 𝑁 ≥ 0, we have

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
≤

(
𝐶(𝑝) ·max

𝑖
min {𝑝𝑖 , log |𝑆𝑖 |}𝐻2/max(2,𝑝)𝐹★ log

(
𝐹★ + 𝑚

))1/2
,

where 𝐶(𝑝) is a constant that only depends on 𝑝.

Proof of Lemma 3.4.7. For now, let

𝑓 (𝐹★,𝒢) B 𝐶(𝑝) ·max
𝑖

min {𝑝𝑖 , log |𝑆𝑖 |}𝐻2/max(2,𝑝)𝐹★ log
(
𝐹★ + 𝑚

)
.

By Theorem 3.3.5, we have

log𝒩
(
𝐵𝑝 , 𝜂 ·

{
𝒚 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≲ 𝜂−min(2,𝑝) · 𝑓 (𝐹★,𝒢).

so if we choose, for some universal constant 𝐶0,

𝜂 = 𝐶0 · 2−𝑁/min(𝑝,2) (𝑓 (𝐹★,𝒢))max(1/2,1/𝑝)
,

then we get

log𝒩
(
𝐵𝑝 , 𝜂 ·

{
𝒚 ∈ R𝑑 : ∥𝒙∥𝒢 ,𝜌,∞,𝑆 ≤ 1

})
≤ 2𝑁 .

Thus, 𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)
≤ 𝜂. Exponentiating and substituting the definition of 𝑓 (𝐹★,𝒢) con-

cludes the proof of Lemma 3.4.7. □

We now show how to complete the sum by combining Lemma 3.4.7 and Lemma 3.4.6.

Lemma 3.4.8. We have∑
𝑁≥0

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)
≲

√
𝑛𝐻1/max(2,𝑝) (𝐹★)1/2 log 𝑛

+ log 𝑛
(
𝐶(𝑝) ·max

𝑖
min {𝑝𝑖 , log |𝑆𝑖 |}𝐻𝐹★ log

(
𝐹★ + 𝑚

))1/2
.

Proof of Lemma 3.4.8. Noting that 𝑁𝑆 = log (6𝑑 log 𝑑) ≲ log 𝑑, we combine the conclusions of
Lemma 3.4.7 and Lemma 3.4.6 to obtain the statement of Lemma 3.4.8. □

Finally, we translate Lemma 3.4.8 into an upper bound on the process we started with by using
Theorem 3.4.3. We then use this to complete the proof of Theorem 11.

Proof of Theorem 11. As we have done in previous proofs, as a shorthand, we define

𝑝★ B max
𝑖

min {𝑝𝑖 , log |𝑆𝑖 |} .

121

We first weaken the statement of Lemma 3.4.8 to read∑
𝑁≥0

2𝑁/2𝑒𝑁
(
𝐵𝑝 , ∥·∥𝒢 ,𝜌,∞,𝑆

)min(𝑝/2,1)

≲ max
{
𝑑, 𝐹★

}
𝐻1/2 max(2,𝑝)

√
log 𝑑

+ log 𝑑
(
𝐶(𝑝) · 𝐻2/max(2,𝑝)𝑝★ max

{
𝑑, 𝐹★

}
log

(
𝑑 + 𝐹★ + 𝑚

))1/2

≲ log 𝑑
(
𝐶(𝑝) · 𝐻2/max(2,𝑝)𝑝★ max

{
𝑑, 𝐹★

}
log

(
𝑑 + 𝐹★ + 𝑚

))1/2
.

Let 𝑉 denote the right hand side of the above. Combining this rewrite with Lemma 3.4.4, we
get

𝛾2 ≲ 𝑚
1/2 max(𝑝, 2)

(
𝐻1/𝑝 (

𝐹★
)1/2

)max(0,𝑝/2−1)
𝑉

(
max
𝒙∈𝐵𝑝
∥𝒙∥𝑝𝒢′

)1/2
.

By the symmetrization reduction (Lemma 3.4.1) and Theorem 3.4.3, we have

E

[
sup
𝒙∈𝐵𝑝

���∥A𝒙∥𝒢𝑝 − ∥𝒙∥
𝑝

𝒢′

���] ≲ max(𝑝, 2)
(
𝐻1/𝑝 ∥𝜶∥𝑝

)max(0,𝑝/2−1)
𝑉

𝑚1/2

and so to make the RHS upper-bounded by 𝜀, it is sufficient to set 𝑚 according to

𝑚 ≍
max(𝑝, 2)2

(
𝐻1/𝑝 (𝐹★)1/2

)max(0,𝑝−2)
𝑉2

𝜀2 .

This means that when 𝑝 < 2, we have

𝑚 ≍ (log 𝑑)2 · 𝐶(𝑝) · 𝐻𝑝★ max {𝑑, 𝐹★} log (𝑑 + 𝐹★ + 𝑚)
𝜀2

≍ (log 𝑑)2 log (max {𝑑, 𝐹★} /𝜀) · 𝐶(𝑝) · 𝐻𝑝★ max {𝑑, 𝐹★}
𝜀2 ,

which is what we desired.

For 𝑝 ≥ 2, we have

𝑚 ≍
𝑝2𝐻1−2/𝑝 (𝐹★)𝑝/2−1

(
(log 𝑑)2𝐻2/𝑝𝑝★ max {𝑑, 𝐹★} log (𝑑 + 𝐹★ + 𝑚)

)
𝜀2

≍ (log 𝑑)2 log (max {𝑑, 𝐹★} /𝜀) · 𝑝2 · 𝐻𝑝★ max {𝑑, 𝐹★}𝑝/2

𝜀2

To bound diam(𝐵𝑝 , 𝑑𝑖𝑠𝑡), by the triangle inequality, it is enough to estimate 𝑑𝑖𝑠𝑡(𝒙 , 0) for all
𝒙 ∈ 𝐵𝑝 . Recalling Lemma 3.3.20, we have

𝑑𝑖𝑠𝑡(𝒙 , 0) =
(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

−
𝑔𝑖ℎ (0)𝑝
𝜌𝑖ℎ

)2
)1/2

=

(
𝑚∑
ℎ=1

(
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

)
·
(
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

))1/2

≤
(
𝑚∑
ℎ=1

𝐻
(
𝐹★

)max(1,𝑝/2) ·
(
𝑔𝑖ℎ (𝒙)𝑝
𝜌𝑖ℎ

))1/2

≤ 𝑚1/2𝐻1/2 (
𝐹★

)max(1/2,𝑝/4)max
𝒙∈𝐵𝑝

(
∥𝒙∥𝑝𝒢′

)1/2
,

122

which means that we may set 𝐷 in Theorem 3.4.3 according to

𝐷 ≍
𝐻1/2 (𝐹★)max(1/2,𝑝/4)max𝒙∈𝐵𝑝

(
∥𝒙∥𝑝𝒢′

)1/2

𝑚1/2 .

We now verify that if we choose

𝑚 ≍ 𝜀−2 (log 𝑑)2 log (𝑑/𝜀) · 𝐻max
𝑖∈[𝑚]

min(𝑝𝑖 , log |𝑆𝑖 |)
(
𝐹★

)max(1,𝑝/2) log (1/𝛿) ,

that we indeed get for some universal constant 𝐶 that

Pr
𝒟

[
max
𝒙∈𝐵𝑝

���∥A𝒙∥𝑝𝒢𝑝 − ∥𝒙∥
𝑝

𝒢′

��� ≥ 𝐶𝜀] ≲ 𝛿.

We rescale 𝜀 appropriately and conclude the proof of Theorem 11. □

3.5. Applications and algorithms

At this point in the chapter, we are ready to prove our main results (Theorem 8 and Theorem 9).

3.5.1. Block norm approximations via block Lewis weights (Proof of Theorem 8)

We restate and prove the main result of the chapter.

Theorem 8 (Block Lewis weight sampling). Let 𝒢 = (A ∈ R𝑛×𝑑 , 𝑆1 , . . . , 𝑆𝑚 , 𝑝1 , . . . , 𝑝𝑚) where

𝑆1 , . . . , 𝑆𝑚 form a partition of [𝑘]. Suppose at least one of the following holds:

• 1 ≤ 𝑝 < ∞ and 𝑝1 , . . . , 𝑝𝑚 ≥ 2;

• 1/log 𝑑 ≤ 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < ∞;

• 𝑝1 = · · · = 𝑝𝑚 = 2 and 1/log 𝑑 ≤ 𝑝 < ∞.

Let 𝑃 B max
(
1,max𝑖∈[𝑚]min(𝑝𝑖 , log |𝑆𝑖 |)

)
. Then, there exists a probability distribution 𝒟 =

(𝜌1 , . . . , 𝜌𝑚) such that if

𝑚 = Ω

(
log (1/𝛿) 𝜀−2 (log 𝑑)2 log (𝑑/𝜀)𝑃 · 𝑑max(1,𝑝/2)

)
,

and if we sampleℳ ∼ 𝒟𝑚
, then, with probability ≥ 1 − 𝛿,

for all 𝒙 ∈ R𝑑 , (1 − 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ≤
1
𝑚

∑
𝑖∈ℳ

1
𝜌𝑖
· ∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 ≤ (1 + 𝜀) ∥A𝒙∥𝑝𝒢𝑝 .

Proof of Theorem 8. Observe that Lemma 3.3.8 proves the existence of a probability measure 𝝀
over [𝑚] and a rounding W that are 𝐹★-block Lewis overestimates for 𝐹★ = 𝑑 if 𝑝𝑖 ≥ 2, and
Lemma 3.3.9 proves the existence of a probability measure �̂� over [𝑛] and corresponding �̂� ∈ R𝑛
such that we get an 𝐹★ = 𝑑-Lewis overestimate.

We now apply Theorem 11 and conclude the proof of Theorem 8. □

123

3.5.2. Efficient computation of block Lewis weight overestimates (Proof of

Theorem 9)

In this subsection, we restate and prove Theorem 9.

Theorem 9 (Computation of block Lewis weights). Consider the setting of Theorem 8 and suppose

at least one of the following holds:

• 𝑝 = 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2;

• 1/log 𝑛 ≤ 𝑝1 = · · · = 𝑝𝑚 = 𝑝 < ∞;

• 𝑝1 = · · · = 𝑝𝑚 = 2 and 1/log 𝑛 ≤ 𝑝 < ∞.

Let 𝑃 = max
(
1,max𝑖∈[𝑚]min(𝑝𝑖 , log |𝑆𝑖 |)

)
and set

𝑚 = 𝑂
(
log (1/𝛿) 𝜀−2 (log 𝑑)2 log (𝑑/𝜀)𝑃 · 𝑑max(1,𝑝/2)

)
.

Then, there is an algorithm that outputs a probability distribution𝒟 = (𝜌1 , . . . , 𝜌𝑚) such that sampling

a multisetℳ ∼ 𝒟𝑚
satisfies, with probability 1 − 𝛿,

for all 𝒙 ∈ R𝑑 , (1 − 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ≤
1
𝑚

∑
𝑖∈ℳ

1
𝜌𝑖
· ∥A𝑆𝑖𝒙∥

𝑝
𝑝𝑖 ≤ (1 + 𝜀) ∥A𝒙∥𝑝𝒢𝑝 ,

Further, the algorithm to find𝒟 performs at most polylog(𝑘, 𝑛, 𝑚) leverage score overestimate computa-

tions or linear system solves.

We break up the proof into two sections – one where 𝑝1 = · · · = 𝑝𝑚 = 2 and 𝑝 > 0 and another
where 𝑝 = 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2.

Special case – 𝑝 > 0, 𝑝1 = · · · = 𝑝𝑚 = 2

Following Definition 3.1.2 and the discussion in Section 3.3.2, observe that when 𝑝1 = · · · =
𝑝𝑚 = 2, we have

𝛽𝑖(V) B ©«
∑
𝑗∈𝑆𝑖

𝒂⊤𝑗 (A
⊤VA)−1𝒂 𝑗

ª®¬
1/2

.

As before, we call 𝛽𝑖(V)𝑝 block Lewis weights. Given 𝒃 ∈ R𝑚 , we let B ∈ R𝑛 be a diagonal
matrix given by B𝑗 𝑗 = 𝒃𝑖 for all 𝑖 ∈ [𝑚], 𝑗 ∈ 𝑆𝑖 . First, let us specialize the definition of block
Lewis weight overestimates (recall Definition 3.1.2) to this special case.

Definition 3.5.1. For 𝜈 ≥ 0, we say 𝒃 ∈ R𝑚≥0 is a vector of 𝜈-bounded block Lewis weight overestimates

for A if

∥𝒃∥1 ≤ 𝜈,

and for all 𝑖 ∈ [𝑚],
𝑏𝑖 ≥ 𝛽𝑖(B1−2/𝑝)𝑝 .

124

We can think of the definition of block Lewis weight overestimates as being a relaxation of the
fixed point condition for block Lewis weights that is described in [JLLS23, Page 31, Proof of
Lemma 4.2].

As a primitive, our algorithm will use leverage score overestimates (see [JLS23, Definition 2.2]).
They are approximate forms of leverage scores 𝜏𝑗(M).

Definition 3.5.2. For 𝜈 ≥ 0, we say �̃� ∈ R𝑚≥0 is a vector of 𝜈-bounded leverage score overestimates for

M ∈ R𝑚×𝑑 if

∥�̃�∥1 ≤ 𝜈

and for all 𝑖 ∈ [𝑘],
�̃�𝑖 ≥ 𝜏𝑖(M).

There are known efficient algorithms for computing leverage score overestimates or reducing
leverage score computations to linear system solves.

Theorem 3.5.3 ([JLS23, Theorem 3]). There is an algorithm OverLev that, given M ∈ R𝑛×𝑑, produces

𝑂(𝑛)-bounded leverage score overestimates for M in 𝑂(nnz (M) + 𝑑𝜔) time, where 𝜔 is the matrix

multiplication exponent.

We will use two different algorithms depending on the value of 𝑝. If 𝑝 ≤ 2, then we present a
contractive scheme reminiscent of the algorithm of Cohen and Peng [CP15]. If 𝑝 > 2, we present
an algorithm similar to those of Cohen, Cousins, Lee, and Yang [CCLY19] and Jambulapati,
Liu, and Sidford [JLS22].

We begin with the case where 0 < 𝑝 ≤ 2 (in fact, we will see that this algorithm yields guarantees
where 𝑝 < 4). The main objects of interest here are Algorithm 7 and Lemma 3.5.4.

Algorithm 7 Algorithm to compute block Lewis weight overestimates, 0 < 𝑝 < 4 and 𝑝1 = · · · =
𝑝𝑚 = 2.

1: Input: A ∈ R𝑛×𝑑, outer norm 0 < 𝑝 < 4, group structure (𝑆1 , . . . , 𝑆𝑚 , 2, . . . , 2).
2: Initialize 𝒃(0) = 𝑑

𝑚 · 1𝑚 .
3: Define 𝜓 such that

𝜓𝑖(𝒃) B
©«
©«
∑
𝑗∈𝑆𝑖

(
𝒂⊤𝑗

(
A⊤B1−2/𝑝A

)−1
𝒂 𝑗

)𝑝𝑖/2ª®¬
2/𝑝𝑖ª®®¬

𝑝/2

.

4: for 𝑡 = 1, . . . , 𝑇 do

5: 𝒃(𝑡) = max(𝜓(𝒃(𝑡−1)), 1𝑚 · 1/𝑚) ⊲ The max is taken elementwise here.

6: return 1.1𝒃(𝑇)

Lemma 3.5.4. Let

𝑇 ≥
ln

(
ln(𝑚𝑑)
ln(1+𝜀)

)
ln

(��� 2
2−𝑝

���) .

125

Then, the weights 1.1𝒃(𝑇) output by Algorithm 7 are a 1.1𝑛-block Lewis overestimate (Definition 3.1.2).

Furthermore, computing 𝒃(𝑇) requires at most 𝑇 computations of the vector whose entries are the

𝒂⊤
𝑗
(A⊤DA)−1 𝒂 𝑗 for all 𝑗, where D is a diagonal matrix.

To prove Lemma 3.5.4, we first state and prove Lemma 3.5.5.

Lemma 3.5.5. Let 𝜓 be as defined in Line 3 in Algorithm 7. For all 𝒖 ∈ R𝑚≥0 and 𝒗 ∈ R𝑚≥0, we have

max
1≤𝑖≤𝑚

����ln (
𝜓𝑖(𝒖)
𝜓𝑖(𝒗)

)���� ≤ ���𝑝2 − 1
��� max

1≤𝑖≤𝑚

����ln (
𝑢𝑖

𝑣𝑖

)���� ,
and therefore 𝜓(𝒖) is a contraction whenever 0 < 𝑝 < 4.

Proof of Lemma 3.5.5. Fix some index 𝑖 ≤ 𝑚. For notational simplicity in this proof, let 𝛼 be such
that ln (𝛼) B △(𝒖 , 𝒗).

This easily implies that

1
𝛼 |1−2/𝑝 | · 𝒂

⊤
𝑗

(
A⊤V1−2/𝑝A

)−1
𝒂 𝑗 ≤ 𝒂⊤𝑗

(
A⊤U1−2/𝑝A

)−1
𝒂 𝑗 ≤ 𝛼 |1−2/𝑝 | · 𝒂⊤𝑗

(
A⊤V1−2/𝑝A

)−1
𝒂 𝑗 .

We take the 𝑝𝑖/2-norm and take the 𝑝/2 power, which tells us that for all 1 ≤ 𝑖 ≤ 𝑚,

1
𝛼 |𝑝/2−1| · 𝜓𝑖(𝒗) ≤ 𝜓𝑖(𝒖) ≤ 𝛼 |𝑝/2−1| · 𝜓𝑖(𝒗).

Hence,

max
1≤𝑖≤𝑚

����ln (
𝜓𝑖(𝒖)
𝜓𝑖(𝒗)

)���� ≤ ���𝑝2 − 1
��� ln (𝛼) = ���𝑝2 − 1

��� max
1≤𝑖≤𝑚

����ln (
𝑢𝑖

𝑣𝑖

)���� ,
completing the proof of Lemma 3.5.5. □

We are now ready to complete the proof of Lemma 3.5.4.

Proof of Lemma 3.5.4. The computational complexity guarantee is immediate, so we focus on
the approximation guarantee.

By Lemma 3.5.5 and the Banach fixed point theorem, we know that 𝜓 has a unique fixed
point. Denote this fixed point by 𝒃★. We would like to argue that since the convergence in
the ln-metric is linear, it takes roughly log log(1 + 𝜀)/log |2/(2 − 𝑝)| applications of 𝜓 to reach
a (1 + 𝜀)-multiplicative approximation to 𝒃★. An annoying technicality is that if 𝒃★ has some
elements arbitrarily close to 0, then the convergence rate could be very slow. To fix this, we
simply enforce that the coordinates of the iterates never drop below 1/𝑚. It is easy to see that
this only overestimates the true weights and therefore does not affect our sampling guarantees
(in particular,

max(𝒃★, 1𝑚 · 1/𝑚)

1 ≤ 𝑑 + 1).

More precisely, let 𝒃 B max(𝒃★, 1𝑚 · 1/𝑚). Notice that for all 1 ≤ 𝑖 ≤ 𝑚,
���ln (

𝑏
(0)
𝑖 /𝑏𝑖

)��� ≤ ln (𝑚/𝑑).
This means that after 𝑇 iterations, we have

max
1≤𝑖≤𝑚

�����ln
(
𝑏
(𝑇)
𝑖

𝑏𝑖

)����� ≤ ���𝑝2 − 1
���𝑇 max

1≤𝑖≤𝑚

�����ln
(
𝑏
(0)
𝑖

𝑏𝑖

)����� ≤ ���𝑝2 − 1
���𝑇 ln

(𝑚
𝑑

)
.

126

Choosing

𝑇 ≥
ln

(
ln(𝑚𝑑)
ln(1+𝜀)

)
ln

(��� 2
2−𝑝

���)
and observing that for sampling that it is sufficient to choose 𝜀 = 0.1 implies that 𝒃(𝑇) is an
entrywise 1.1-approximation to 𝒃. As this is sufficient to get the concentration in the setting of
Theorem 11, we may complete the proof of Lemma 3.5.4. □

Now, we move onto the case where 𝑝 ≥ 2. This covers the cases of 𝑝 where Algorithm 7 is
not a contraction (whenever 𝑝 ≥ 4). In this setting, we have Algorithm 8. At a high level,
observe that Line 7 of Algorithm 8 performs a fixed point iteration on the stationary condition
𝑏𝑖 = 𝛽𝑖(B1−2/𝑝)𝑝 that holds for the optimal choice of block Lewis weights (see [JLLS23, proof of
Lemma 4.2 and (4.5)]).

Algorithm 8 Algorithm to compute block Lewis weight overestimates, 𝑝 ≥ 2
1: Input: A ∈ R𝑛×𝑑
2: Output:

3: Initialize 𝒃(1) = 𝑑
𝑚 · 1

4: for 𝑡 = 1, . . . , 𝑇 − 1 do

5: B(𝑡)
𝑗 𝑗

= 𝑏
(𝑡)
𝑖

for all 𝑖 ∈ [𝑚], 𝑗 ∈ 𝑆𝑖
6: �̃�(𝑡) = OverLev((B(𝑡))1/2−1/𝑝A)
7: 𝑏

(𝑡+1)
𝑖

=
∑
𝑗∈𝑆𝑖 𝜏𝑗 for all 𝑖 ∈ [𝑚]

8: 𝒃 = 1
𝑇

∑𝑇
𝑡=1 𝒃

(𝑡)

9: return 𝒃 = 3
2𝒃

The guarantee we obtain for Algorithm 8 is captured by Lemma 3.5.6.

Lemma 3.5.6. The return value 𝒃 of Algorithm 8 is a vector of 𝑂(𝑑)-bounded block Lewis weight

overestimates. Further, this vector of overestimates is found in polylog(𝑘, 𝑚, 𝑑) leverage score overestimate

computations.

The goal of the rest of this section is to analyze Algorithm 8 and to prove Lemma 3.5.6. Let
us briefly describe the analysis of Algorithm 8. We first give a collection of potential functions
𝜑𝑖(𝒃), with the goal of showing the potential of 𝜑𝑖(𝒃) decreases with 𝑇. A low potential will
also imply that 𝒃 is nearly a vector of block Lewis weight overestimates. For each 𝑖 ∈ [𝑚] define
𝜑𝑖 : R𝑚 → R by

𝜑𝑖(𝒃) B ln ©« 1
𝒃𝑖

∑
𝑗∈𝑆𝑖

𝜏𝑗(B1/2−1/𝑝A)ª®¬ .
The key property of this potential is convexity, which we now show.

Lemma 3.5.7. For each 𝑖 ∈ [𝑚], 𝜑𝑖 is convex.

127

Proof of Lemma 3.5.7. Our argument for the convexity of this function is similar to the one given
in [JLS22, Lemma A.2]. First, notice that by the definition of 𝜏𝑗 , 𝜑(𝒃) is equal to

𝜑𝑖(𝒃) = ln ©« 1

𝒃
2/𝑝
𝑖

∑
𝑗∈𝑆𝑖

𝒂⊤𝑗

(
A⊤B1−2/𝑝A

)−1
𝒂 𝑗

ª®¬ .
Since − 2

𝑝 ln(𝑏𝑖) is convex, it suffices to show the convexity of

𝑓 (𝒃) B ln ©«
∑
𝑗∈𝑆𝑖

𝒂⊤𝑗

(
A⊤B1−2/𝑝A

)−1
𝒂 𝑗)ª®¬ .

Now we define for each 𝑗 ∈ [𝑘] the function

ℎ 𝑗(𝒃) B ln
(
𝒂⊤𝑗 (A

⊤B1−2/𝑝A)−1𝒂 𝑗
)
.

A version of this function without repeated entries in B was shown to be convex in [JLS22,
Lemma A.2], but ℎ 𝑗(𝒃) is still convex. Next, notice that we may write

𝑓 (𝒃) = ln ©«
∑
𝑗∈𝑆𝑖

exp(ℎ 𝑗(𝒃))ª®¬ .
Now taking 𝒃, 𝒃′ ∈ R𝑚 and 𝜆 ∈ [0, 1]we have

𝑓 (𝜆𝒃 + (1 − 𝜆)𝒃′) = ln ©«
∑
𝑗∈𝑆𝑖

exp(ℎ 𝑗(𝜆𝒃 + (1 − 𝜆)𝒃′))ª®¬
≤ ln ©«

∑
𝑗∈𝑆𝑖

exp(𝜆ℎ 𝑗(𝒃) + (1 − 𝜆)ℎ 𝑗(𝒃′))ª®¬ (3.5.1)

≤ 𝜆 ln ©«
∑
𝑗∈𝑆𝑖

exp(ℎ 𝑗(𝒃))ª®¬ + (1 − 𝜆) ln ©«
∑
𝑗∈𝑆𝑖

exp(ℎ 𝑗(𝒃′))ª®¬ (3.5.2)

= 𝜆 𝑓 (𝒃) + (1 − 𝜆) 𝑓 (𝒃′),

where (3.5.1) follows from the convexity of ℎ 𝑗 and the monotonicity of log-sum-exp, and (3.5.2)
is due to the convexity of log-sum-exp (see e.g. [BV04, Section 3.1.5]). Hence, we may conclude
the proof of Lemma 3.5.7. □

We now give an argument that 𝜑𝑖(𝒃) = 𝑂(1/𝑇) using the convexity of 𝜑𝑖 .

Lemma 3.5.8. Assume that OverLev returns 𝜈-bounded leverage score overestimates. Then after

Algorithm 8 runs for 𝑇 iterations, we have for all 𝑖 ∈ [𝑚] that

𝜑𝑖(𝒃) ≤
1
𝑇

ln
(𝑚𝜈
𝑑

)
.

Proof of Lemma 3.5.8. We have

𝜑𝑖(𝒃) ≤
1
𝑇

𝑇∑
𝑡=1

𝜑𝑖(𝒃(𝑡)) Jensen’s inequality

128

=
1
𝑇

𝑇∑
𝑡=1

ln ©« 1
𝑏
(𝑡)
𝑖

∑
𝑗∈𝑆𝑖

𝜏𝑗((B(𝑡))1/2−1/𝑝A)ª®¬ Definition of 𝜑𝑖

≤ 1
𝑇

𝑇∑
𝑡=1

ln ©« 1
𝑏
(𝑡)
𝑖

∑
𝑗∈𝑆𝑖

�̃�(𝑡)
𝑗

ª®¬ Definition of 𝜏𝑗

=
1
𝑇

𝑇∑
𝑡=1

ln

(
𝑏
(𝑡+1)
𝑖

𝑏
(𝑡)
𝑖

)
Line 7

=
1
𝑇

ln

(
𝑏
(𝑇+1)
𝑖

𝑏
(1)
𝑖

)
=

1
𝑇

ln (𝑚/𝑛) + 1
𝑇

ln(𝑏(𝑇+1)
𝑖
). Line 3

In the above, for the sake of analysis we define 𝒃(𝑇+1)
𝑖

to be as if the algorithm executed 𝑇 + 1
iterations. Now, 𝑏(𝑇+1)

𝑖
≤ ∥�̃�∥1 ≤ 𝜈 by the fact that OverLev returns 𝜈-bounded leverage score

overestimates. We therefore conclude the proof of Lemma 3.5.8. □

Now, we show that polylog(𝑘, 𝑚, 𝑑) leverage score overestimate computations suffice to find
the (3/2 · 𝑛)-bounded block Lewis weight overestimates. This proves Lemma 3.5.6.

Proof of Lemma 3.5.6. By Theorem 3.5.3, OverLev returns 𝑂(𝑑)-bounded leverage score over-
estimates. We take 𝑇 = 𝑂 (ln (𝑚)); clearly this satisfies the desired runtime guarantee. Fur-
ther, using Lemma 3.5.8 and taking the constant in 𝑇 large enough, we have for each 𝑖 that
𝜑𝑖(𝒃) ≤ ln

(3
2
)
. Thus we have

3
2 · 𝑏𝑖 ≥

∑
𝑗∈𝑆𝑖

𝜏𝑗(B
1/2−1/𝑝

A). (3.5.3)

And so

𝑏𝑖 ≥
3
2𝑏𝑖

≥
∑
𝑗∈𝑆𝑖

𝜏𝑗(B
1/2−1/𝑝

A) by (3.5.3)

=
∑
𝑗∈𝑆𝑖

𝜏𝑗(B1/2−1/𝑝A). Fact 3.2.2

We now manipulate this guarantee into the desired guarantee of block Lewis weight overesti-
mates by some algebra. Splitting powers on the left hand side of the above, we get

𝑏
2/𝑝
𝑖
≥ 1

𝑏
1−2/𝑝
𝑖

∑
𝑗∈𝑆𝑖

𝜏𝑗(B1/2−1/𝑝A).

Taking this to the 𝑝/2th power, we obtain

𝒃𝑖 ≥
(∑

𝑗∈𝑆𝑖 𝜏𝑗(B1/2−1/𝑝A)

𝑏
1−2/𝑝
𝑖

)𝑝/2
= 𝛽𝑖(B1−2/𝑝)𝑝 ,

129

as desired. To bound ∥𝒃∥1, notice

∥𝒃∥1 =
3
2 ∥𝒃∥1 ≤

3
2

1
𝑇

𝑇∑
𝑡=1
∥𝒃(𝑡)∥1 ≤

3
2𝜈 ≤ 𝑂(𝑛).

Finally, to obtain the concentration statement, we observe that the above implies that we get a
measure 𝝀 and a rounding W that are 𝐹★-block Lewis estimates for 𝐹★ = 𝑂(𝑑). This concludes
the proof of Lemma 3.5.6. □

Special case – 𝑝 = 2, 𝑝1 , . . . , 𝑝𝑚 ≥ 2

Finally, we are ready to introduce and analyze the algorithm for the case where 𝑝 = 2 and
𝑝1 , . . . , 𝑝𝑚 ≥ 2. See Algorithm 9. The main property of Algorithm 9 is given in Lemma 3.5.9.

Algorithm 9 Algorithm to compute block Lewis weight overestimates, 𝑝 = 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2
1: Input: A ∈ R𝑛×𝑑, group structure (𝑆1 , . . . , 𝑆𝑚 , 𝑝1 , . . . , 𝑝𝑚).
2: Initialize 𝒃(0) = 𝑑

𝑚 · 1 and 𝒖(0) such that for all 1 ≤ 𝑖 ≤ 𝑚, 𝑢(0)
𝑗

= 1/|𝑆𝑖 | for all 𝑗 ∈ 𝑆𝑖
3: for 𝑡 = 1, . . . , 𝑇 − 1 do

4: �̃�(𝑡) = OverLev(V(𝒖(𝑡−1))1/2A) ⊲ V(𝒖) is such that 𝑣 𝑗 = 𝑢
1−2/𝑝𝑖
𝑗

for all 1 ≤ 𝑖 ≤ 𝑚 and 𝑗 ∈ 𝑆𝑖
5: 𝑏

(𝑡)
𝑖

=
∑
𝑗∈𝑆𝑖 �̃�

(𝑡)
𝑗

for all 1 ≤ 𝑖 ≤ 𝑚
6: 𝑢

(𝑡)
𝑗

= �̃�(𝑡)
𝑗
/(∑𝑗′∈𝑆𝑖 �̃�

(𝑡)
𝑗′) for all 1 ≤ 𝑖 ≤ 𝑚 and all 𝑗 ∈ 𝑆𝑖

7: 𝒃 = |𝑆𝑖 |1/𝑇 · 1
𝑇

∑𝑇
𝑡=1 𝒃

(𝑡)

8: 𝒖 = 1
𝑇

∑𝑇−1
𝑡=0 𝒖(𝑡)

9: return (𝒃, 𝒖)

Lemma 3.5.9. If OverLev is a routine that returns leverage score overestimates whose sum is at most 𝜈,

then Algorithm 9 returns 𝐹★-block Lewis overestimates (Definition 3.1.2) with 𝐹★ = max1≤𝑖≤𝑚 |𝑆𝑖 |1/𝑇 ·𝜈.

In particular, if 𝑇 = max1≤𝑖≤𝑚 log |𝑆𝑖 | and 𝜈 ≤ (4/𝑒)𝑑, then we get 𝐹★ = 4𝑑.

As with the analysis of Algorithm 8, we first prove that a relevant potential is convex and then
show that we can control it effectively.

Lemma 3.5.10. Let U ∈ R𝑘×𝑘 be a nonnegative diagonal matrix. Let V(𝒖) denote the matrix such that

for all 𝑖 and 𝑗 ∈ 𝑆𝑖 , we have 𝑣 𝑗 = 𝒖
1−2/𝑝𝑖
𝑗

. Then, 𝜑 as defined below is log-convex in 𝒖.

for all 𝑗 ∈ 𝑆1 ∪ · · · ∪ 𝑆𝑚 : 𝜑 𝑗(𝒖) = ln
©«
𝜏𝑗

(
(V(𝒖))1/2A

)
𝑢𝑗

ª®®¬
Proof of Lemma 3.5.10. We expand the above definition after taking the ln of both sides.

𝜑 𝑗(𝒖) = ln
©«
𝜏𝑗

(
(V(𝒖))1/2A

)
𝑢𝑗

ª®®¬ = ln
(
𝒂⊤𝑗

(
A⊤V(𝒖)A

)−1 𝒂 𝑗
)
+ ln

(
𝑣 𝑗

𝑢𝑗

)

130

= ln
(
𝒂⊤𝑗

(
A⊤V(𝒖)A

)−1 𝒂 𝑗
)
− 2
𝑝𝑖

ln
(
𝑢𝑗

)
.

The last term is convex, so it is sufficient to argue that the first term is convex. To see this, first
observe that by concavity of 𝑥1−2/𝑝𝑖 , we have

𝜆V(𝒖(1)) + (1 − 𝜆)V(𝒖(2)) ⪯ V(𝜆𝒖(1) + (1 − 𝜆)𝒖(2)),

which implies

ln
(
𝒂⊤𝑗

(
A⊤V(𝜆𝒖(1) + (1 − 𝜆)𝒖(2))A

)−1
𝒂 𝑗

)
≤ ln

(
𝒂⊤𝑗

(
𝜆A⊤V(𝒖(1))A + (1 − 𝜆)A⊤V(𝒖(2))A

)−1
𝒂 𝑗

)
≤ 𝜆 ln

(
𝒂⊤𝑗

(
A⊤V(𝒖(1))A

)−1
𝒂 𝑗

)
+ (1 − 𝜆) ln

(
𝒂⊤𝑗

(
A⊤V(𝒖(2))A

)−1
𝒂 𝑗

)
.

Above, the last line follows from the well-known (see, e.g., [CCLY19, Lemma 3.4]) fact that
ln

(
𝒂⊤
𝑗
M−1𝒂 𝑗

)
is convex in M where M is symmetric positive-semidefinite. This completes the

proof of Lemma 3.5.10. □

Next, we will show that any choice of nonnegative 𝒖 such that
∑
𝑗∈𝑆𝑖 𝑢𝑗 = 𝑏

(
1− 2

𝑝

)
·
(

𝑝𝑖
𝑝𝑖−2

)
𝑖

can be
used to find a rounding matrix W.

Lemma 3.5.11. For all 𝒙 ∈ R𝑑 and all nonnegative 𝒖 such that

∑
𝑗∈𝑆𝑖 𝑢𝑗 = 𝑏

(
1− 2

𝑝

)
·
(

𝑝𝑖
𝑝𝑖−2

)
𝑖

, we haveV(𝒖)1/2A𝒙

2(∑
𝑖′≤𝑚 𝑏𝑖′

)1/2−1/𝑝 ≤
Λ1/2−1/𝑝A𝒙

𝒢2
.

Proof of Lemma 3.5.11. We start with the LHS.V(𝒖)1/2A𝒙
2

2
=

𝑚∑
𝑖=1

∑
𝑗∈𝑆𝑖

𝑢
1−2/𝑝𝑖
𝑗

��〈𝒂 𝑗 , 𝒙〉��2
≤

𝑚∑
𝑖=1

𝑏
1−2/𝑝
𝑖

∥A𝑆𝑖𝒙∥2𝑝𝑖 by Hölder’s Inequality with powers
𝑝𝑖

𝑝𝑖 − 2 ,
𝑝𝑖

2

Normalizing concludes the proof of Lemma 3.5.11. □

Now, we show that finding uniform overestimates 𝜏𝑗/𝑢𝑗 ≤ 𝑏

(
2
𝑝− 2

𝑝𝑖

)
· 𝑝𝑖
𝑝𝑖−2

𝑖
is enough to satisfy

Definition 3.1.2 with 𝐹★ =
∑
𝑖≤𝑚 𝑏𝑖 .

Lemma 3.5.12. If we have𝒖 such that 𝜏𝑗(V(𝒖)1/2A)/𝑢𝑗 ≤ 𝑏
(

2
𝑝− 2

𝑝𝑖

)
· 𝑝𝑖
𝑝𝑖−2

𝑖
for all 𝑖, then the rounding matrix

W = V(𝒖)B2/𝑝−1
and measure 𝜆𝑖 = 𝑏𝑖/(

∑
𝑖′≤𝑚 𝑏𝑖′) is an 𝐹★-block Lewis overestimate (Definition 3.1.2)

with 𝐹★ =
∑
𝑖′≤𝑚 𝑏𝑖′.

131

Proof of Lemma 3.5.12. Observe that we must have

𝜏𝑗
(
V1/2A

)
𝑣 𝑗

≤ 𝑣
2

𝑝𝑖−2
𝑗
· 𝑏

(
2
𝑝− 2

𝑝𝑖

)
· 𝑝𝑖
𝑝𝑖−2

𝑖
.

Let 𝑇 =
∑
𝑖′≤𝑚 𝑏𝑖′. Following Lemma 3.3.7, let 𝜆𝑖 = 𝑏𝑖/𝑇 and W be such that

V1/2

𝑇1/2−1/𝑝 = W1/2Λ1/2−1/𝑝 .

In particular, this means that

𝑤 𝑗 =
𝑣 𝑗

(𝑇𝜆𝑖)1−2/𝑝 =
𝑣 𝑗

𝑏
1−2/𝑝
𝑖

.

Hence,

©«
∑
𝑗∈𝑆𝑖

©«
𝜏𝑗

(
V1/2A

)
𝑤 𝑗

ª®®¬
𝑝𝑖/2ª®®®¬

2/𝑝𝑖

= 𝑏
1−2/𝑝
𝑖

©«
∑
𝑗∈𝑆𝑖

©«
𝜏𝑗

(
V1/2A

)
𝑣 𝑗

ª®®¬
𝑝𝑖/2ª®®®¬

2/𝑝𝑖

≤ 𝑏1−2/𝑝
𝑖

· 𝑏
(

2
𝑝− 2

𝑝𝑖

)
· 𝑝𝑖
𝑝𝑖−2

𝑖
· ©«

∑
𝑗∈𝑆𝑖

𝑣
2

𝑝𝑖−2 ·
𝑝𝑖
2

𝑗

ª®¬
2/𝑝𝑖

= 𝑏
1−2/𝑝
𝑖

· 𝑏
(

2
𝑝− 2

𝑝𝑖

)
· 𝑝𝑖
𝑝𝑖−2

𝑖
· ©«

∑
𝑗∈𝑆𝑖

𝑢𝑗
ª®¬

2/𝑝𝑖

= 𝑏
1−2/𝑝
𝑖

· 𝑏
(

2
𝑝− 2

𝑝𝑖

)
· 𝑝𝑖
𝑝𝑖−2

𝑖
· ©«

∑
𝑗∈𝑆𝑖

𝑢𝑗
ª®¬

2/𝑝𝑖

= 𝑏
1−2/𝑝
𝑖

· 𝑏
(

2
𝑝− 2

𝑝𝑖

)
· 𝑝𝑖
𝑝𝑖−2

𝑖
·
(
𝑏

(
1− 2

𝑝

)
·
(

𝑝𝑖
𝑝𝑖−2

)
𝑖

)2/𝑝𝑖

= 𝑏𝑖 = 𝜆𝑖

(∑
𝑖′≤𝑚

𝑏𝑖′

)
,

which is exactly the statement of Lemma 3.5.12. □

We now have the tools we need to prove Lemma 3.5.9.

Proof of Lemma 3.5.9. Note that Algorithm 9 and Lemma 3.5.9 are reminiscent of [JLS23, Algo-
rithm 2 and Theorem 4].

Using Lemma 3.5.10, we begin with using the convexity of the potential 𝜑. For all 𝑗 ∈ 𝑆𝑖 , we
have

𝜑 𝑗(𝒖) ≤
1
𝑇

𝑇−1∑
𝑡=0

𝜑
(
𝒖(𝑡)

)
=

1
𝑇

𝑇−1∑
𝑡=0

ln
©«
𝜏𝑗

(
V(𝒖(𝑡))1/2A

)
𝑢
(𝑡)
𝑗

ª®®¬ ≤
1
𝑇

𝑇−1∑
𝑡=0

ln ©«
�̃�(𝑡+1)
𝑗

𝑢
(𝑡)
𝑗

ª®¬
=

1
𝑇

𝑇−1∑
𝑡=0

©«ln ©«
𝑢
(𝑡+1)
𝑗

𝑢
(𝑡)
𝑗

ª®¬ + ln ©«
∑
𝑗′∈𝑆𝑖

�̃�(𝑡+1)
𝑗′

ª®¬ª®¬ =
1
𝑇

ln ©«
𝑢
(𝑇)
𝑗

𝑢
(0)
𝑗

ª®¬ + 1
𝑇

𝑇−1∑
𝑡=0

ln ©«
∑
𝑗′∈𝑆𝑖

�̃�(𝑡+1)
𝑗′

ª®¬
132

≤ 1
𝑇

ln ©«
𝑢
(𝑇)
𝑗

𝑢
(0)
𝑗

ª®¬ + ln ©« 1
𝑇

𝑇−1∑
𝑡=0

∑
𝑗′∈𝑆𝑖

�̃�(𝑡+1)
𝑗′

ª®¬ =
1
𝑇

ln ©«
𝑢
(𝑇)
𝑗

𝑢
(0)
𝑗

ª®¬ + ln
(
|𝑆𝑖 |−1/𝑇 𝑏𝑖

)
≤ ln (𝑏𝑖) .

We now apply Lemma 3.5.12 and see that the measure 𝜆𝑖 = 𝑏𝑖/
𝒃

1
is a 𝐹★-block Lewis

overestimate (Definition 3.1.2) with 𝐹★ =

𝒃
1
.

Now, observe that 𝒃
1
≤ max

1≤𝑖≤𝑚
|𝑆𝑖 |1/𝑇 ·

1
𝑇

𝑇∑
𝑡=1

𝒃(𝑡)
1
≤ max

1≤𝑖≤𝑚
|𝑆𝑖 |1/𝑇 · 𝜈 ≤ 4𝑑,

where we use our setting of 𝑇 and the fact that OverLev returns leverage score estimates whose
sum is at most (4/𝑒)𝑑. This completes the proof of Lemma 3.5.9. □

We are finally ready to give the proof of Theorem 9.

Proof of Theorem 9. We have three cases.

• If 0 < 𝑝 < 4 and 𝑝1 = · · · = 𝑝𝑚 = 2, then the algorithm and guarantee on the weights
follow from Algorithm 7 and Lemma 3.5.4.

• If 𝑝 ≥ 2 and 𝑝1 = · · · = 𝑝𝑚 = 2, then the algorithm and guarantee on the weights follow
from Algorithm 8 and Lemma 3.5.6.

• If 𝑝 = 2 and 𝑝1 , . . . , 𝑝𝑚 ≥ 2, then the algorithm and guarantee on the weights follow from
Algorithm 9 and Lemma 3.5.9.

We plug these guarantees into Theorem 11 and conclude the proof of Theorem 9. □

3.5.3. Minimizing sums of Euclidean norms (Proof of Theorem 10)

Recall the minimizing sums of Euclidean norms (MSN) problem (3.1.3). Given A ∈ R𝑛×𝑑, a
partition 𝑆1 , . . . , 𝑆𝑚 of [𝑛], and 𝒃1 ∈ R|𝑆1 | , . . . , 𝒃𝑚 ∈ R|𝑆𝑚 |, we would like to find �̂� such that

𝑚∑
𝑖=1
∥A𝑆𝑖 �̂� − 𝒃𝑖 ∥2 ≤ (1 + 𝜀)min

𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑖 ∥2.

Xue and Ye [XY97] give an algorithm with iteration complexity 𝑂(
√
𝑚 log (1/𝜀)) for the above

problem (though for an additive approximation guarantee instead of a multiplicative one),
where each iteration reduces to solving linear systems in matrices A⊤DA for block-diagonal
matrices, where each block has size (|𝑆𝑖 | + 1) × (|𝑆𝑖 | + 1). Their algorithm is based on the
primal-dual interior point method framework.

Each system solve takes the following form. Let Ã be a block matrix with −I𝑚 in one block, and
A in another. The goal is to find 𝒚 in the system

Ã⊤DÃ𝒚 = 𝒛

133

where D is a block matrix, with one (1+ |𝑆𝑖 |) × (1+ |𝑆𝑖 |) sized block for each group (see [XY97,
equation (4.13)]).

Our main result of this section is Theorem 10, which gives an improved iteration complexity
for (3.1.3) when 𝑚 ≫ 𝑛.

Theorem 10 (Minimizing sums of Euclidean norms). Let A ∈ R𝑛×𝑑 and 𝒃 ∈ R𝑛 , and 𝑆1 , . . . , 𝑆𝑚
be a partition of 𝑘. There exists an algorithm that, with probability ≥ 1 − 𝛿, returns �̂� such that

𝑚∑
𝑖=1
∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2 ≤ (1 + 𝜀)min

𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 .

The algorithm runs in 𝑂
(√
𝑑/𝜀 ·

√
log (1/𝛿)

)
calls to a linear system solver in matrices of the form A⊤DA

for block-diagonal matrices D, where each block has size (|𝑆𝑖 | + 1) × (|𝑆𝑖 | + 1).

We prove Theorem 10 by sparsifying the objective (3.1.3) using Theorem 9 and then applying
the primal-dual interior point method from [XY97]. We state the guarantee of this algorithm
in Lemma 3.5.13.

Lemma 3.5.13. Let A ∈ R𝑛×𝑑 and 𝒃 ∈ R𝑛 , and 𝑆1 , . . . , 𝑆𝑚 be a partition of 𝑘. There exists an algorithm

that returns �̂� such that

𝑚∑
𝑖=1
∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2 ≤ (1 + 𝜀)min

𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 .

The algorithm runs in 𝑂
(√
𝑚 log (1/𝜀)

)
calls to a linear system solver in matrices of the form A⊤DA for

block-diagonal matrices D, where each block has size (|𝑆𝑖 | + 1) × (|𝑆𝑖 | + 1).

Proof of Lemma 3.5.13. The guarantee we will reduce to is [XY97, Theorem 5.2]. However,
the guarantee there is stated for an additive approximation, and we desire a multiplicative
approximation. We therefore apply a few transformations to our problem so that we can apply
this guarantee.

Let

𝒙0 B argmin
𝒙∈R𝑑

∥A𝒙 − 𝒃∥22 .

This can be found in one linear system solve. Let 𝑉 B ∥A𝒙0 − 𝒃∥2 and consider the following
modified optimization problem:

min
𝒙−𝒙0∈R𝑑

1
𝑉

𝑚∑
𝑖=1
∥A𝑆𝑖 (𝒙 − 𝒙0) − (𝒃𝑆𝑖 −A𝑆𝑖𝒙0)∥2 . (3.5.4)

We will invoke [XY97, Theorem 5.2] on the above problem (3.5.4), folding the 1
𝑉 factor into A

and 𝒃. Clearly, this problem is equivalent to the problem we started with. Next, let 𝒙★ be given
by

𝒙★ B argmin
𝒙∈R𝑑

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 ,

134

where we use 𝒃 ∈ R𝑛 for the vector formed by stacking 𝒃𝑆1 , . . . , 𝒃𝑆𝑚 . Let OPT B 1/𝑉 ·∑𝑚
𝑖=1 ∥A𝑆𝑖𝒙

★ − 𝒃𝑆𝑖 ∥2. Because ∥ · ∥2 ≤ ∥ · ∥1, we have

1 =
∥A𝒙0 − 𝒃∥2

𝑉
≤ ∥A𝒙★ − 𝒃∥2

𝑉
≤ 1
𝑉

𝑚∑
𝑖=1

A𝑆𝑖𝒙
★ − 𝒃𝑆𝑖

2 = OPT.

Furthermore, we have by ∥ · ∥1 ≤
√
𝑚∥ · ∥2 (applied by considering the summation over 𝑖 as an

ℓ1 norm) that

max
1≤𝑖≤𝑚

1
𝑉
∥𝒃𝑆𝑖 −A𝑆𝑖𝒙0∥2 ≤

1
𝑉

𝑚∑
𝑖=1
∥𝒃𝑆𝑖 −A𝑆𝑖𝒙0∥2 ≤

√
𝑚 · ∥A𝒙0 − 𝒃∥2

𝑉
=
√
𝑚.

This implies that all the offset vectors of our transformed problem (3.5.4) have polynomially
bounded norm. This suffices for our iteration complexity bound, because the iteration com-
plexity of the algorithm in [XY97] depends logarithmically on the maximum norm of these
vectors. Now, using their method we can solve (3.5.4) up to 𝜀 additive error. This means we
find �̂� such that

𝑚∑
𝑖=1
∥A𝑆𝑖 (̂𝒙 − 𝒙0) − (𝒃𝑆𝑖 −A𝑆𝑖𝒙0)∥2 ≤

𝑚∑
𝑖=1

A𝑆𝑖 (𝒙★ − 𝒙0) − (𝒃𝑆𝑖 −A𝑆𝑖𝒙0)

2 +𝑉𝜀

= 𝑉 · OPT
(
1 + 𝜀

OPT

)
≤ 𝑉 · OPT (1 + 𝜀) .

where in the last inequality, we use that OPT ≥ 1. Since𝑉 ·OPT is the original optimal objective
value, this completes the proof of Lemma 3.5.13. □

We remark that instead of the
√
𝑚 above, one can get a

√
𝑑-factor relationship between the

optimal objective for a least squares relaxation of our problem by using the block Lewis weights
with 𝑝1 = · · · = 𝑝𝑚 = 2 and 𝑝 = 1. However, this will only impact lower order terms.

We are now ready to prove Theorem 10.

Proof of Theorem 10. We apply Theorem 9 for 𝑝1 = · · · = 𝑝𝑚 = 2 and 𝑝 = 1 with approxi-
mation 𝜀/3 to the group matrices [A𝑆𝑖 |𝒃𝑆𝑖] to find a sparsified objective with 𝑚 = 𝑂(𝜀−2 ·
𝑑(log 𝑑)2 log(𝑑/𝜀)) terms. This requires 𝑂(1) linear system solves. This implies a (1 + 𝜀) approx-
imation to an un-sparsified objective over any vector in R𝑑+1, and the approximation we need
comes by only considering vectors inR𝑑+1 whose last entry is−1. We plug this into the guarantee
of Lemma 3.5.13 with approximation 𝜀/3. Since (1+𝜀/3)2 ≤ 1+𝜀 and (1+𝜀/3)/(1−𝜀/3) ≤ 1+𝜀,
this returns a (1+ 𝜀)-approximate minimizer to (3.1.3), completing the proof of Theorem 10. □

135

4. Block Lewis weights for distributionally

robust linear regression

In this chapter, we continue studying applications of block Lewis weights. This time, we use
them for minimizing a multidistributional linear regression loss. The material in this chapter
is based on a joint work with Kumar Kshitĳ Patel [MP24].

4.1. Introduction

Machine learning algorithms and their training datasets have grown tremendously in the past
decade, both in size and complexity. This increased model complexity has made it challenging
to interpret and predict their behavior in unobserved scenarios. Hence, many applications that
involve societal decisions still rely on simple, interpretable models like linear regression, often
after feature engineering. Examples of such applications are predicting housing prices across
cities, estimating wages across industries, forecasting loan amounts across banks, predicting
life insurance premiums for different groups, and projecting energy consumption in various
communities.

A shared safety and sometimes legal concern across the above applications is the potential
for wildly different model qualities for different distributions, i.e., outputting a notably worse
model for some source data distributions [Dat14; BS16; HPS16; VVB18; SBFVV19; BHJKR21;
CGNSG23; Cho16; KLMR18; ADW19; CGKMN24; SVWZ24]. Specifically, consider fitting
a linear model 𝒙 ∈ R𝑑 to make real predictions on some task over 𝑚 groups where group
𝑖’s dataset consists of 𝑛𝑖 entries and is denoted by 𝑆𝑖 = {(𝒂 𝑗𝑖 , 𝑏

𝑗

𝑖
)} 𝑗∈[𝑛𝑖]. The utilitarian or the

total-cost-minimizing objective minimizes the average squared prediction error across groups,
i.e.,

min
𝒙∈R𝑑

1
𝑚

∑
𝑖∈[𝑚]

1
𝑛𝑖
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 , (4.1.1)

where A𝑆𝑖 B [𝒂1
𝑖
. . . 𝒂𝑛𝑖

𝑖
]⊤ ∈ R𝑛𝑖×𝑑 is the feature matrix and 𝒃𝑆𝑖 B [𝑏1

𝑖
. . . 𝑏

𝑛𝑖
𝑖
]⊤ ∈ R𝑛𝑖 is the label

vector for group 𝑖 ∈ [𝑚].

Because of the inherent heterogeneity of the datasets, the model derived from optimizing
objective (4.1.1) may be particularly bad for some groups, in that the prediction error could
be disproportionately higher for these groups. To overcome these limitations, the following
egalitarian or group Distributionally Robust Optimization (DRO) objective has been considered
in several recent works [BDDMR13; DGN16; SKHL20; LCDS20; SGJ22; AAKMRZ22; SVWZ24],

min
𝒙∈R𝑑

max
𝑖∈[𝑚]

1
𝑛𝑖
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 . (4.1.2)

Objective (4.1.2) is the “fairest” objective among all objectives that balance utility and distribu-
tional robustness by ensuring that no one group has a loss that is too high [KLMR18; CR18;
ANSS22; CGSB22; RVFRWYT19; GNPS24]

136

Since (4.1.2) is a convex problem, it is natural to apply standard black-box optimization tech-
niques to solve them. However, we identify several challenges in applying existing methods:

Efficient first-order algorithms have geometry-dependent rates. To our knowledge, using
an efficient first-order method (such as sub-gradient descent) will incur a geometry-dependent
runtime. In particular, if the matrices A𝑆𝑖 or if the stacked matrix A B [A⊤

𝑆1
. . .A⊤

𝑆𝑀
]⊤ are poorly

conditioned, then this will be reflected accordingly in the convergence rates. This is a drawback
of the existing results by Abernethy, Awasthi, Kleindessner, Morgenstern, Russell, and Zhang
[AAKMRZ22] and Song, Vakilian, Woodruff, and Zhou [SVWZ24].

Objective (4.1.2) is not smooth. Since the objective is the pointwise maximum of several
continuous functions, the derivative is not well-defined at the points at which the maximizing
function changes. Thus, applying subgradient descent to this objective without a customized
analysis will result in a rather unimpressive 1/𝜀2 dependence in the iteration complexity.

Min-max optimization approaches have a 1/𝜀2
dependence on iteration complexity. Since

problem 4.1.2 is a min-max optimization objective, it is also natural to try to use game theory-
inspired approaches that use some oracle (such as gradients) for each group as a black box.
Perhaps the most basic such algorithm is casting objective (4.1.2) as a repeated game between
a min player (equipped with a no-regret algorithm) and a max player (equipped with the best
response oracle). The main shortcoming of this approach is that even though the function
for each group is smooth, the iteration complexity (to get 𝜀 average regret) for smooth online
convex optimization still has an unimpressive 1/𝜀2 dependence (as opposed to 1/𝜀 for smooth
convex optimization) [SGJ22; ZZZYZ24]. Thus, this approach is no better than directly applying
sub-gradient descent to objective (4.1.2).

Interior point methods have a poor iteration complexity for large 𝑚. Another natural ap-
proach (that can partially address the previous two issues), following the discussion by Boyd
and Vandenberghe [BV04, Section 6.4], is to rewrite the problem (4.1.2) in its epigraph form
and use an interior point method (IPM) to solve the resulting problem (which, in this case, is
a quadratically constrained linear program). Unfortunately, this will give an algorithm whose
analysis is only known to yield an iteration complexity of 𝑂(

√
𝑚), where each iteration solves a

linear system in matrices of the form A⊤BA for a block-diagonal B (see Remark 4.1.1). A naïve
implementation of this algorithm will thus have a superlinear runtime in the number of groups,
which is undesirable when the number of groups is large. Furthermore, note that (4.1.2) is not
a linear program when at least one group 𝑖 is such that 𝑛𝑖 > 1. So, we cannot immediately
apply recent advances in linear programming that get iteration complexities independent of
the number of constraints [LS19].

Hence, designing an algorithm without these shortcomings requires novel ideas.

4.1.1. Our results

In this chapter, we give a new algorithm (Algorithm 12) to approximately optimize (4.1.2) that
overcomes the above difficulties. We state our algorithm’s iteration complexity in the following
theorem.

137

Theorem 12 (Robust regression). Let A𝑆𝑖 ∈ R𝑛𝑖×𝑑 and 𝒃𝑆𝑖 ∈ R𝑛𝑖 for all 𝑖 ∈ [𝑚]. Denote their

concatenations by A B [A⊤
𝑆1
. . .A⊤

𝑆𝑀
]⊤ ∈ R𝑛×𝑑 and 𝒃 B [𝒃⊤𝑆1

. . . 𝒃⊤𝑆𝑀]
⊤ ∈ R𝑛 where 𝑛 :=

∑
𝑖∈[𝑚] 𝑛𝑖 .

Let 𝜀 > 0. Then Algorithm 12 returns �̂� such that,

max
𝑖∈[𝑚]

1√
𝑛𝑖
∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2 ≤ (1 + 𝜀) · min

𝒙∈R𝑑
max
𝑖∈[𝑚]

1√
𝑛𝑖
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 , (4.1.3)

and it runs in

𝑂

©«
min {rank(A), 𝑚}1/3

(
log

(
𝑛 log𝑚

𝜀

)14/3
+ log (𝑚)

)
𝜀2/3

ª®®®®¬
linear system solves in matrices of the form A⊤BA, where B is a block-diagonal matrix for which block 𝑖

has size 𝑛𝑖 × 𝑛𝑖 .

We prove Theorem 12 in Section 4.5.

We compare the guarantee of Theorem 12 against the other baselines in Table 4.1. Unlike
the aforementioned first-order methods, our algorithm has no geometry-dependent terms.
Additionally, our algorithm improves over the standard log-barrier IPM when the desired
accuracy 𝜀 ≥ 𝑚−1/4 — this improvement is more pronounced when 𝑚 ≫ rank (A), i.e. when
the number of data sources is much larger than the dimension of the parameter vector 𝒙.
Additionally, for 𝜀 ≥ rank (A)−1/4, our guarantee matches the best known guarantee for ℓ∞
regression [LS19; JLS22].

Remark 4.1.1 (Why use linear-system-solve complexity?). We benchmark our algorithms using the

number of linear-system-solves for a few reasons. First, this is typically how second-order algorithms

are compared, such as interior point methods for linear programming [LS19]. Second, the particular

structure of the linear system solves presents the possibility for a faster amortized runtime for the systems

over the whole algorithm. This observation, combined with an understanding of how the linear systems

changed between iterations, was used recently to get fast runtimes for linear programming [LS19] and

ℓ∞ regression [AJK24].

Interpolating between robust and nonrobust optimization. We also study the following
family of objectives that interpolate between (4.1.1) and (4.1.2) for different values of 𝑝 ≥ 2,

min
𝒙∈R𝑑

1
𝑚

∑
𝑖∈[𝑚]

(
1
𝑛𝑖
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22

)𝑝/2
. (4.1.4)

In particular, note that choosing 𝑝 = 2 in the above objective gives us the average least-squares
problem in objective (4.1.1), while 𝑝 →∞ recovers objective (4.1.2). Varying 𝑝 from 2 to∞ and
minimizing gives solutions that interpolate between utilitarian and egalitarian approaches,
allowing for a smooth trade-off between utility and robustness. To this end, we give an
algorithm (Algorithm 14) to approximately optimize (4.1.4) and prove the following guarantee
about its iteration complexity.

Theorem 13 (Trading off utility and robustness). Let A𝑆𝑖 ∈ R𝑛𝑖×𝑑 and 𝒃𝑆𝑖 ∈ R𝑛𝑖 for all 𝑖 ∈ [𝑚].
Denote their concatenations by A B [A⊤

𝑆1
. . .A⊤

𝑆𝑀
]⊤ ∈ R𝑛×𝑑 and 𝒃 B [𝒃⊤𝑆1

. . . 𝒃⊤𝑆𝑀]
⊤ ∈ R𝑛 where

138

𝑛 B
∑
𝑖∈[𝑚] 𝑛𝑖 . Let 𝑝 ≥ 2 and 𝜀 > 0. Then Algorithm 14 returns �̂� such that,(
𝑚∑
𝑖=1

(
1√
𝑛𝑖
∥A𝑆𝑖 �̂� − 𝒃𝑆𝑖 ∥2

)𝑝)1/𝑝

≤ (1 + 𝜀) · min
𝒙∈R𝑑

(
𝑚∑
𝑖=1

(
1√
𝑛𝑖
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2

)𝑝)1/𝑝

(4.1.5)

and runs in

𝑂

(
𝑝𝑂(1)min {rank (A) , 𝑚}

𝑝−2
3𝑝−2 log

(
𝑝𝑑

𝜀

)3
)

linear system solves in matrices of the form A⊤BA, where B is a block-diagonal matrix for which block 𝑖

has size 𝑛𝑖 × 𝑛𝑖 .

We prove Theorem 13 in Section 4.6.

In the special case where 𝑛𝑖 = 1 for all 𝑖 (and therefore the problem is ℓ𝑝 regression for 𝑝 ≥ 2),
the complexity promised by Theorem 13 is comparable to that promised by Jambulapati, Liu,
and Sidford [JLS22] for ℓ𝑝 regression. The main difference is that our iteration complexity
is unconditionally polynomial in 𝑝. In contrast, the comparable result from [JLS22] seems
to require mild assumptions on the problem parameters (see the “Discussion on numerical
stability” in [JLS22, Section 4]).

Remark 4.1.2 (Large values of 𝑝). Note that for values of 𝑝 larger than log(𝑚), solving (4.1.2) is

morally equivalent to solving (4.1.4). To intuitively see this, first recall that for any vector 𝒙 ∈ R𝑑 and

𝑝 = log2(𝑚) we have, ∥𝒙∥∞ ≤ ∥𝒙∥𝑝 ≤ 2 · ∥𝒙∥∞. This implies that for all 𝑖 ∈ [𝑚] we have the following

for objective (4.1.4) (for 𝑝 = log2(𝑚)) for any 𝒙 ∈ R𝑑,

max
𝑖∈[𝑚]
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 ≤

©«
∑
𝑖∈[𝑚]
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝

2
ª®¬

1/𝑝

≤ 2 ·max
𝑖∈[𝑚]
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 .

In particular, this means that minimizing the interpolating objective (4.1.4) also minimizes the robust

objective (4.1.2) (up to numerical constants) and vice versa. Thus, for 𝑝 = Ω (log2(𝑚)), for our intended

applications, it makes sense to minimize the robust objective instead. This is why, in Theorem 13, we do

not care too much about the exponent on 𝑝 in the iteration complexity. Our main goal is to show that we

can get a 𝑂(poly(𝑝, log
(1
𝜀

)
)min {rank (A) , 𝑚}1/3) iteration complexity.

4.1.2. Prior results, connections, and open problems

Here, we discuss prior work that conceptually and technically relates to ours. We then suggest
natural directions for future work.

Multi-distribution learning. Many learning problems involve multiple data sources, for in-
stance, when multiple agents generate their data independently. One can formulate these
multi-distribution problems as standard learning or optimization problems by considering
a mixture of their distributions, as in objective (4.1.1). However, this approach often biases
solutions toward dominant data sources, leading to poor performance on outliers—an issue
stemming from statistical heterogeneity. This limitation motivates the study of multi-objective

139

optimization problems [Mie99; Ehr05], where each agent 𝑚 has a distribution𝒟𝑚 that defines
its objective as E𝑧∼𝒟𝑚 [𝑓 (𝒙𝑚; 𝑧)], and where models 𝒙𝑚 can vary across agents—a framework
known as personalization.

One of the earliest algorithms for such problems was introduced by Blum, Haghtalab, Procac-
cia, and Qiao [BHPQ17], where each agent’s objective must be minimized to a pre-specified
threshold 𝜖 with high probability, framed within a PAC learning framework [Val84; Vap13].
Subsequent research has refined these algorithms, achieving optimal sample complexity guar-
antees for learning from multiple distributions [CZZ18; NZ18; HK19; HJZ22; ZZCDL24]. Our
objectives (4.1.2) and (4.1.4) offer different approaches to multi-distribution learning, where
data distributions correspond to empirical agent distributions. In particular, Mohri, Sivek,
and Suresh [MSS19] analyzed objective (4.1.2) to establish generalization bounds for unknown
mixtures of agents’ distributions.

Beyond sample efficiency, researchers have also examined other challenges, such as commu-
nication costs in large-scale distributed optimization [MMRHyA17]. A particularly relevant
study is that of Bullins, Patel, Shamir, Srebro, and Woodworth [BPSSW21], which employs
an efficient distributed quadratic sub-solver [WPSDBMSS20; PGZWSCJS24] to implement an
inexact Newton method for optimizing quasi-self-concordant functions (see Definition 4.2.3).

Group fairness. Recently, interest in algorithmic fairness has intensified [BS16; ABKLRR20;
KA21] with researchers exploring fairness across various domains, including supervised learn-
ing [CKP09; DHPRZ12; HPS16; KLRS17; GYF18; ULP19], resource allocation [BFT11; BFT12;
HW12; DK20; MNR21], scheduling [MR21], online matching [CKLV19; MXX23], assortment
planning [SJ18; BGW18; SJ19; CGSB22], and facility location [GMS22]. The extensive liter-
ature on algorithmic fairness falls into three main categories: (1) individual fairness, which
ensures that similar individuals receive comparable predictions [DHPRZ12; LHH19; CGSB22],
(2) group fairness, which aims for equal treatment of different demographic groups, often in
terms of resource allocation or performance parity [SJ18; BLM21], and (3) subgroup fairness,
which blends aspects of both individual and group fairness [KNRW18; KNRW19].

This chapter focuses on a well-studied group fairness notion in machine learning literature: the
group DRO problem [BDDMR13; DGN16; SKHL20]. The idea of interpolating between robust-
ness and utility is also common [GNPS24] and closely related to multi-objective optimization,
where scalarization [Mie99; Ehr05] helps recover desired solutions along the Pareto frontier.

Linear programming and ℓ𝑝 regression. In the last several years, there has been a surge
of work in obtaining second-order, condition-free algorithms for linear programming and ℓ𝑝
regression [BCLL18; LS19; AKPS19; JLS22]. Observe that ℓ𝑝 regression is a special case of the
problem we study in objective (4.1.4), which is recovered when all 𝑛𝑖 = 1, and ℓ∞ regression
is captured by linear programming. Note that neither of these problem families is expressive
enough to capture the objectives we study. In general, to get iteration complexities in the
smaller of the two dimensions for these problems, it seems that a geometric understanding
of the solution space is required – these ideas were central to the improvements obtained by
[LS19; JLS22] and in our work.

Open problems. Our work raises several open questions. One limitation of Theorem 12 is that
its iteration complexity is not high-accuracy, meaning its dependence on 𝜀 is not polylog(1/𝜀).

140

Designing a high-accuracy solver under the same conditions as Theorem 13 with iteration
complexity 𝑂

(
poly(min {rank (A) , 𝑚} , log

(1
𝜀

)
)
)

remains an open problem.

A more ambitious general goal is to design algorithms for convex quadratic programs with
the aforementioned iteration complexity. This would generalize analogous results for linear
programming [LS19]. We view the current work as a first step towards this goal, as the objective
(4.1.2) is a structured convex quadratic program for which we get an iteration complexity
independent of 𝑚. It would also be interesting to consider other complexity measures beyond
rank (A), for instance, assumptions about the ground-truth labeling vector 𝒙★

𝑖
for each group’s

data 𝑆𝑖 .

Finally, our results suggest that optimizing for “ℓ𝑝-interpolants” between non-robust and robust
objectives may be computationally easier than optimizing for the robust objective alone. A
more precise statistical characterization of how robustness and utility trade-off as 𝑝 varies in
collaborative, fair, or multi-distributional learning settings would be valuable. Additionally,
exploring interpolations or solution concepts along the Pareto frontier of the 𝑚-dimensional
multi-objective optimization problem could yield further insights.

4.1.3. Chapter outline

In the rest of this chapter we will outline the key details of our approach as well as give a proof
outline for our theoretical results. In Section 4.2, we give proof sketches of our main results.
In Section 4.3, we give an analysis of mirror descent under inexact subproblem solves – we
will need this in the proof of Theorem 13. In Section 4.4, we modify an acceleration scheme
due to [CHJJS22], which we will use to iterate calls to the proximal subproblem solver (4.2.2)
for the proof of Theorem 13. In Section 4.5, we prove Theorem 12. In Section 4.6, we prove
Theorem 13.

4.2. Technical overview

In this section, we sketch our proofs for Theorem 12 and Theorem 13.

Notation. Here and in the rest of the chapter, we ignore the dataset size normalization factors
1/√𝑛𝑖 as we can fold this into A𝑆𝑖 and 𝒃𝑆𝑖 . Additionally, let 𝑓 (𝒙) B ∑𝑚

𝑖=1 ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥
𝑝

2 if
2 ≤ 𝑝 < ∞ and let 𝑓 (𝒙) B max1≤𝑖≤𝑚 ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 if 𝑝 = ∞. Note that in the 2 ≤ 𝑝 < ∞
case, we let 𝑓 (𝒙) be the 𝑝th power of the objective written in Theorem 13; this is to make
future calculations easier and makes a difference of only polynomial factors in 𝑝 in the iteration
complexity. Without loss of generality (by rescaling), let OPT = 1, where OPT B 𝑓 (𝒙★). So, it
is enough to get an 𝜀-additive optimal solution �̂�. Also without loss of generality, let A be such
that rank (A) = 𝑑. For a positive semidefinite M ∈ R𝑑×𝑑, denote ∥𝒙∥M B

√
𝒙⊤M𝒙. As shorthand,

for 𝒚 ∈ R𝑛 , we will often refer to the norm ∥𝒚∥𝒢𝑝 B
(∑𝑚

𝑖=1
𝒚𝑆𝑖𝑝2)1/𝑝

for 𝑝 ≥ 1, where with a
slight abuse of notation 𝒚𝑆𝑖 denotes the coordinates of 𝒚 indexed by 𝑆𝑖 . Finally, in an abuse of
notation, for symmetric matrices M, let M−1 denote the pseudoinverse of M.

With this notation in mind, we note that many iterative methods for convex optimization can be
seen as decomposing a complex problem into a series of simpler subproblems. Our algorithms

141

Algorithm Iteration Complexity Each Iteration

Subgradient descent ∥𝒙★∥2 max1≤𝑖≤𝑚
1√
𝑛𝑖
∥A𝑆𝑖 ∥op

𝜀2
Evaluate ∇ 𝑓 (𝒙)

Nesterov acceleration
on smoothened objective

∥𝒙★∥2

(
max1≤𝑖≤𝑚

1√
𝑛𝑖
∥A𝑆𝑖 ∥op

)1/2

𝜀

Evaluate ∇ �̃�𝛽,𝛿(𝒙)

[AAKMRZ22] ∥𝒙★∥2 max1≤𝑖≤𝑚
1√
𝑛𝑖
∥A𝑆𝑖 ∥op

𝜀
Evaluate ∇ �̃�𝛽,𝛿(𝒙)

Interior point with
log barrier [BV04] 𝑚1/2 log

(1
𝜀

)
Linear system solve in A⊤BA

This chapter

(naïve geometry)
𝑚1/3

𝜀2/3 Linear system solve in A⊤BA

ℓ∞ regression with
Lewis weights [JLS22]

rank(A)1/3
𝜀2/3 Linear system solve in A⊤DA

ℓ∞ regression
with IPM [LS19] rank (A)1/2 log

(1
𝜀

)
Linear system solve in A⊤DA

This chapter (Theorem 12)
min{rank(A),𝑚}1/3

𝜀2/3 Linear system solve in A⊤BA

Table 4.1.: Here, we list the complexities of algorithms for optimizing (4.1.2) or for the special
case of ℓ∞ regression, assuming OPT = 1 (the first three guarantees are additive
approximations) and ignoring polylog(𝑛, 𝑚) terms. We write D to be a diagonal
matrix and B to be a block-diagonal matrix where each block has size (𝑛𝑖 + 𝑜(1)) ×
(𝑛𝑖 + 𝑜(1)). We remark that in the special case where 𝑛𝑖 = 1, our algorithm exactly
recovers that of [JLS22].

for distributionally robust linear regression follow this pattern, where the simple subproblem
resembles

𝒪(𝒒) B min
∥𝒙−𝒒∥M≤𝑟𝒒

𝑓 (𝒙) , (4.2.1)

for some positive semidefinite M and for some ball radius 𝑟𝒒 which may depend on the query
𝒒. Sub-routines like (4.2.1) are central to many trust-region methods [CGT00], and, importantly
when 𝑓 is the sum of a linear function and a self-concordant barrier, interior point methods
derived from the self-concordant barrier framework 1 [NN94].

With such a subproblem structure in hand, three questions arise. (1) How do we choose the
“local geometry” M? (2) How do we solve the subproblems efficiently? (3) How do we combine
our subproblem solutions to arrive at our final answer? We address these concerns in order in
the following discussion.

4.2.1. The geometry of the proximal subproblems

Observe that when we solve (4.2.1), we are solving an optimization problem over the sublevel
sets

{
𝒙 : ∥𝒙∥M ≤ 𝑟𝒒

}
– these are ellipsoids. Now, consider choosing the ℓ2 geometry that best

1In this case, the matrix M is given by the Hessian of the barrier function evaluated at the subproblem’s solution.

142

approximates our loss function. Specifically, ignoring the offset 𝒃 for now, for a norm loss
function ∥·∥ and for some distortion △ ≥ 1 that is as close to 1 as possible, we want

for all 𝒙 ∈ R𝑑 : ∥𝒙∥M ≤ ∥A𝒙∥ ≤ △ ∥𝒙∥M .

Observe that this captures the families of losses we study – in particular, we can check that for

𝒚 ∈ R𝑛 , the functions ∥𝒚∥𝒢𝑝 =
(∑𝑚

𝑖=1
𝒚𝑆𝑖𝑝2)1/𝑝

for 1 ≤ 𝑝 ≤ ∞ are norms. To see what kinds of
distortion guarantees we can hope for, recall that we can use John’s theorem (Theorem 1.1.1) as
a benchmark. For convenience, we restate it below.

Theorem 4.2.1 (John’s theorem, [Joh48]). For any symmetric convex body 𝐾 ⊂ R𝑑, let ℰ(𝐾) denote

the ellipsoid of maximum volume contained within 𝐾. Then, we have

ℰ(𝐾) ⊆ 𝐾 ⊆
√
𝑑 · ℰ(𝐾) .

Moreover, the

√
𝑑 is worst-case optimal (e.g. let 𝐾 be the unit ℓ∞ ball).

It is easy to see that sublevel sets of norms, i.e., sets of the form
{
𝒙 ∈ R𝑑 : ∥𝒙∥ ≤ 1

}
, are

symmetric convex bodies. Hence, using John’s theorem, we see that for our normed losses,
there exists M that achieves distortion △ ≤

√
𝑑. However, as written, this is only an existence

result. To make this useful for us and actually find M, we need an algorithm to calculate
John’s ellipsoid for the level sets of our losses (or some other ellipsoid that gets an even better
approximation factor). To this end, we repurpose and renotate an earlier result from Chapter 3
(also found in [MO25]). It gives us an efficient algorithm to find this ℓ2 geometry for the loss
families we consider.

Theorem 4.2.2 (Combining Lemmas 5.6, 5.8, Equation (1.8) from [MO25]). Let 𝑝 ≥ 2. There

exists an algorithm that finds a positive diagonal matrix W ∈ R𝑛×𝑛 such that for all 𝒙 ∈ R𝑑 and all

𝑐 ∈ R, we haveW
1
2− 1

𝑝 (A𝒙 − 𝑐𝒃)

2

(2(rank (A) + 1))
1
2− 1

𝑝

≤
(
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝑐𝒃𝑆𝑖 ∥

𝑝

2

) 1
𝑝

≤
W

1
2− 1

𝑝 (A𝒙 − 𝑐𝒃)

2
.

The algorithm runs in 𝑂(log𝑚) linear system solves in matrices of the form A⊤DA for positive diagonal

matrices D.

The diagonal entries of matrix W are rescaled versions block Lewis weights that we discussed in
the previous chapter. Recall that this is a generalization of Lewis weights, and both objects have
been used previously for various matrix approximation problems [BLM89; MMWY22; JLS23;
JLLS23; MO25]. Furthermore, Lewis weights are central to improvements in the iteration
complexities for linear programming and vanilla ℓ𝑝 regression [LS19; JLS22].

Additionally, notice that the distortion of 𝑂(rank (A)1/2−1/𝑝) guaranteed by Theorem 4.2.2 is
optimal. To see this, let A ∈ R𝑛×𝑑 be such that for 𝑖 ∈ [𝑑], row 𝒂 𝑖 = 𝒆 𝑖 , where 𝒆 𝑖 is the 𝑖th
standard basis vector. Then, for all 𝑑 + 1 ≤ 𝑖 ≤ 𝑛, let 𝒂 𝑖 = 0. In words, A is the 𝑑-dimensional
identity matrix atop a large matrix of all 0s. It is easy to see that for any 𝑝, we have ∥A𝒙∥𝑝 = ∥𝒙∥𝑝 ,
and the best distortion we can get for relating ∥𝒙∥𝑝 to any 𝑑-dimensional ℓ2 norm is 𝑑 |1/2−1/𝑝 |.

With Theorem 4.2.2 and its near optimality in hand, it is natural to choose M = A⊤W1− 2
𝑝 A if

rank (A) ≤ 𝑚 and M = A⊤A if rank (A) ≥ 𝑚 (in the latter case, we get a
√
𝑚 distortion for free

143

from relating ℓ𝑚2 to ℓ𝑚∞). This gives us an ℓ2 geometry that nearly optimally approximates our
losses. In the following sections, we will see how this helps us both implement our proximal
subproblem solvers and combine these to solve the whole original problem.

4.2.2. Solving proximal subproblems

In this subsection, let M be any positive semidefinite matrix, as the arguments here apply for
any M. In particular, these arguments are required to analyze even the naïve geometry obtained
by choosing M = I or for any other ellipsoidal approximation given by any choice of M. For our
best results, we will finally choose M = I or M = A⊤W1− 2

𝑝 A depending on which ellipsoidal
approximation is better for our input.

Here, we discuss how to solve problems of the form (4.2.1) for a fixed query 𝒒. Our strat-
egy follows two general steps. First, we establish some form of local stability for ∇2 𝑓 (𝒙)
within the ball we are solving in, i.e., we want ∇2 𝑓 (𝒙) to not change too much inside the ball{
𝒙 ∈ R𝑑 : ∥𝒙 − 𝒒∥M ≤ 𝑟𝒒

}
. Second, we use this to show that an appropriate second-order

algorithm enjoys a good convergence rate to an approximate solution for our subproblem. We
handle the 𝑝 = ∞ and 2 ≤ 𝑝 < ∞ cases separately below.

The robust case (𝑝 = ∞).

Unfortunately, since 𝑓 is not even differentiable (it is the pointwise maximum of Euclidean
norms, each of which is also not differentiable), we cannot directly argue about the stability of
∇2 𝑓 (𝒙). We therefore first need to find some surrogate objective �̃� so that:

1. The approximation error
 �̃� − 𝑓

∞
is small;

2. The surrogate objective �̃� is smooth in ∥·∥M in such a way that we can solve the proximal
subproblems fast.

To smoothen 𝑓 (𝒙), we use the family of objectives parameterized by 𝛽, 𝛿

�̃�𝛽,𝛿(𝒙) B 𝛽 log
©«
𝑚∑
𝑖=1

exp
©«
√
𝛿2 + ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 − 𝛿

𝛽

ª®®¬
ª®®¬ .

This can be seen as composing the softmax function with temperature 𝛽 with “inner functions”√
𝛿2 + ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 − 𝛿. It is straightforward to show that for all 𝒙 ∈ R𝑑,

��� �̃�𝛽,𝛿(𝒙) − 𝑓 (𝒙)��� ≤
𝛽 log𝑚 + 𝛿. So, setting 𝛽 = 𝜀/4 log𝑚 and 𝛿 = 𝜀/4, it is sufficient to optimize �̃�𝛽,𝛿 up to 𝜀/2
additive error to get an 𝜀-additive suboptimal solution to our original objective. Furthermore,
we prove that �̃�𝛽,𝛿 is 𝑂(1/𝛽 + 1/𝛿)-smooth in the norm ∥A𝒙∥𝒢∞ B max1≤𝑖≤𝑚 ∥A𝒙∥2. From
Theorem 4.2.2, this means that �̃�𝛽,𝛿 is also 𝑂(1/𝛽 + 1/𝛿)-smooth in the norm ∥𝒙∥M where M is
chosen according to the previous subsection (notice that the only fact we need about M here is
that max1≤𝑖≤𝑚 ∥A𝒙∥2 ≤ ∥𝒙∥M).

Next, Carmon, Jambulapati, Jiang, Jin, Lee, Sidford, and Tian [CJJJLST20] show that if �̃�𝛽,𝛿
satisfies a higher-order smoothness condition called quasi-self-concordance with respect to the

144

norm ∥·∥M, then we can get the required Hessian stability for a fixed 𝑟𝒒 = Θ(1/𝜀) (in particular,
𝑟𝒒 does not depend on 𝒒 here). To be more clear, we define quasi-self-concordance below.

Definition 4.2.3 (Quasi-self-concordance, adapted from [KSJ18, Appendix A]). Let 𝑓 : R𝑘 → R.

We say that 𝑓 is 𝜈-quasi-self-concordant in the norm ∥·∥ if for all vectors 𝒚 ∈ R𝑘 , directions 𝒅 ∈ R𝑘 ,
and 𝑡 ∈ R, we have �����(𝑑𝑑𝑡)3

𝑓 (𝒚 + 𝑡𝒅)
����� ≤ 𝜈 ∥𝒅∥

(
𝑑

𝑑𝑡

)2
𝑓 (𝒚 + 𝑡𝒅).

Then, [CJJJLST20] shows how to leverage this Hessian stability to implement (4.2.1) with
low linear-system-solve iteration complexity. However, previously, it was only shown that
the composition of the softmax function with linear functions is quasi-self-concordant. So,
it was unknown whether composing softmax with other functions could also be quasi-self-
concordant.

To resolve this, we prove a much more general composition result, which may be of independent
interest. It essentially states that if we compose the softmax function with any combination
of “inner” functions that are quasi-self-concordant, the resulting function is also quasi-self-
concordant. For a more formal statement, see Lemma 4.5.3.

Hence, to show the requisite Hessian stability, we use the following steps. We show that the

“inner” functions
√
𝛿2 + ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 − 𝛿 are each 𝑂(1/𝛿)-quasi-self-concordant in the norm

∥A𝑆𝑖𝒙∥2. So, we can apply our composition result Lemma 4.5.3 to prove that �̃�𝛽,𝛿 is 𝑂(1/𝛽 +
1/𝛿)-quasi-self-concordant in the norm max𝑖∈[𝑚] ∥A𝑆𝑖𝒙∥2. Following from Theorem 4.2.2, �̃� is
𝑂(1/𝛽 + 1/𝛿)-quasi self concordant in ∥𝒙∥M as well (and in particular when M = A⊤W1− 2

𝑝 A
and M = A⊤A). We then apply the recipe given in [CJJJLST20] and get our subproblem solver
for the 𝑝 = ∞ case.

The interpolating case (2 ≤ 𝑝 < ∞).

Instead of explicitly constraining 𝑟𝒒 like in the 𝑝 = ∞ case, we regularize our movement from
𝒒 in the norm ∥·∥M. Specifically, the subproblem we solve for any query 𝒒 is

argmin
𝒙∈R𝑑

𝑓 (𝒙) + 𝑒𝑝𝑝 ∥𝒙 − 𝒒∥𝑝M . (4.2.2)

This is the natural generalization of the proximal problem that [JLS22] use to get their results
for ℓ𝑝 regression, and the outline of our solver for these subproblems is similar to what [JLS22]
use for this special case (see their Section 4).

However, we go a step further and show how to obtain approximate stationary points to (4.2.2)
instead of just getting a small objective value. This is because the acceleration scheme we use
to iterate subproblem solutions to get our final answer �̂� requires us to obtain an approximate
stationary point for (4.2.2). The main new technical tool we develop for this purpose is a form
of strong convexity for functions of the form ∥𝒚∥𝑝2 for 𝒚 ∈ R𝑘 for any 𝑘 ≥ 1. See Lemma 4.6.3.

Lemma 4.6.3 (Strong convexity of ∥𝒚∥𝑝2). Let 𝒗 ∈ R𝑘 for 𝑘 ≥ 1. For any △ ∈ R𝑘 , we have

∥𝒗 + △∥𝑝2 ≥ ∥𝒗∥
𝑝

2 + 𝑝 ∥𝒗∥
𝑝−2
2 ⟨𝒗 , △⟩ + 4

2𝑝 ∥△∥
𝑝

2 .

145

With Lemma 4.6.3, we can argue about the strong convexity of ∥𝒙 − 𝒒∥𝑝M, which means that
we can convert an approximately optimal solution to (4.2.2) in function value to one that is
approximately optimal in parameter space as well. We combine this with a local gradient
Lipschitzness property of the objective (4.2.2) to get our approximate stationary point, which is
enough for our purposes. The local gradient Lipschitzness property itself follows from a form
of Hessian stability that we show for the objective (4.2.2). See Lemma 4.6.9.

Finally, to obtain an approximately optimal solution to (4.2.2) in function value, we again
apply the Hessian stability property to conclude that (4.2.2) is relatively smooth and relatively
strongly convex in a simpler reference function. We show how to solve optimization problems
in this reference function up to an approximate optimality that is sufficient for the rest of our
applications – this requires a mild modification of the standard mirror descent analysis, and we
do this in Section 4.3. Combining all of these building blocks gives us our subproblem solver
for the 2 ≤ 𝑝 < ∞ case.

4.2.3. Iterating proximal calls

We now discuss the last item. Recall that we think of 𝒪(𝒒) as answering a proximal problem for
the query 𝒒. It is not hard to show that under reasonable conditions on 𝑓 and on the structure
of the subproblems, we can iterate calls to 𝒪(𝒒) to optimize 𝑓 (see, e.g., [CJJJLST20, Appendix
A]). This conceptually simple approach will already give us condition-free, group-independent
rates for the problems we study.

But, we can do better. An acceleration framework originally due to Monteiro and Svaiter
[MS13] and generalized/refined in subsequent works [BJLLS19; CJJJLST20; CHJJS22] gives a
recipe to iterate calls of 𝒪(𝒒) to optimize the original function 𝑓 . From these, the iteration
complexity we need for an 𝜀-additive solution with an initialization 𝒙0 and optimum 𝒙★ is
roughly (∥𝒙0 − 𝒙★∥M/𝜀)

2/3 (see Theorem 4.4.3 for a more formal statement). Combining this
with Theorem 4.2.2, which implies that we can find 𝒙0 such that ∥𝒙0 − 𝒙★∥M ≤

√
𝑑, we see that

we should expect rates of roughly 𝑂(𝑑1/3𝜀−2/3) for our problems. Indeed, Theorem 12 and
Theorem 13 attain rates that are at least this good up to logarithmic factors. In this step, we
again use the strong convexity that we prove for our objective (Lemma 4.6.3) to show that after
enough steps of this algorithm, the problem diameter will have noticeably shrunk. Iterating
this gives the high-accuracy result of Theorem 13.

Interestingly, our algorithm for the 2 ≤ 𝑝 < ∞ case uses a form of this accelerated scheme
developed in [CHJJS22] that does not require solving an implicit equation for the query point,
improving over the results from [JLS22] for ℓ𝑝 regression. It would be nice to obtain this for the
𝑝 = ∞ case (in Section 4.4, we discuss a technical challenge in obtaining this).

4.3. Mirror descent with inexact updates

Notation warning. This section is meant to be a self-contained, standalone analysis of mirror
descent under inexact updates. The notation is chosen to be consistent with most material we
could find on mirror descent and therefore conflicts with the notation used in the rest of the
chapter.

In this section, we give an analysis of unconstrained mirror descent when each Bregman

146

proximal problem is solved only approximately (Algorithm 10). Although we expect that this
is a standard fact about mirror descent, we could not find an appropriate reference. Hence, we
produce it here.

Algorithm 10 ApproximateMirrorDescent: Implements mirror descent to optimize convex and
differentiable 𝑓 given 𝐿-relative smoothness and 𝜇-relative strong convexity in the reference ℎ
when we may not be able to solve each proximal problem exactly.
Require: Initial point 𝒙0, iteration count 𝑇.

1: Define
𝐷ℎ(𝒙 , 𝒚) B ℎ(𝒙) − ℎ(𝒚) − ⟨∇ℎ(𝒚), 𝒙 − 𝒚⟩

𝒙★ B argmin
𝒙∈R𝑑

𝑓 (𝒙) .

2: for 𝑖 = 1, . . . , 𝑇 do

3: 𝒙★
𝑖
= argmin

�̃�∈R𝑑
𝑓 (𝒙 𝑖−1) + ⟨∇ 𝑓 (𝒙 𝑖−1), �̃� − 𝒙 𝑖−1⟩ + 𝐿𝐷ℎ (̃𝒙 , 𝒙 𝑖−1) ⊲ We may only be able to approx-

imate 𝒙★
𝑖

– see the next line.

4: Let 𝒙 𝑖 be an approximate stationary point for the above objective.
return argmin

0≤𝑖≤𝑇
𝑓 (𝒙 𝑖)

In Algorithm 10, we assume that the function 𝑓 is 𝜇-relatively strongly convex and 𝐿-smooth
in a reference function ℎ. This means that for all 𝒙 , 𝒚 ∈ R𝑑, we have

𝜇𝐷ℎ(𝒙 , 𝒚) ≤ 𝑓 (𝒙) − 𝑓 (𝒚) − ⟨∇ 𝑓 (𝒚), 𝒙 − 𝒚⟩ ≤ 𝐿𝐷ℎ(𝒙 , 𝒚).

Using [LFN18, Proposition 1.1], when 𝑓 is twice-differentiable, this condition is equivalent to
asking for all 𝒙 ∈ R𝑑,

𝜇∇2ℎ(𝒙) ⪯ ∇2 𝑓 (𝒙) ⪯ 𝐿∇2ℎ(𝒙).

We are now ready to state the performance guarantee of Algorithm 10. See Theorem 4.3.1.

Theorem 4.3.1. Let index 𝑗 be the index output by Algorithm 10. Let △𝑖 be defined such that

△𝑖 B ∇ 𝑓 (𝒙 𝑖−1) + 𝐿 (∇ℎ(𝒙 𝑖) − ∇ℎ(𝒙 𝑖−1)) .

Then, we have

𝑓 (𝒙 𝑗) − 𝑓 (𝒙★) ≤ 𝐿
(
1 −

𝜇

𝐿

)𝑇
𝐷ℎ(𝒙★, 𝒙0) + max

1≤𝑖≤𝑛

〈
△𝑖 , 𝒙 𝑖 − 𝒙★

〉
.

To prove Theorem 4.3.1, we begin with a few standard facts about the mirror descent iterations.

Lemma 4.3.2. Let 𝒚 ∈ R𝑑 be arbitrary. We have

⟨∇ 𝑓 (𝒙 𝑖−1), 𝒙 𝑖 − 𝒚⟩ = 𝐿 (𝐷ℎ(𝒚, 𝒙 𝑖−1) − 𝐷ℎ(𝒚, 𝒙 𝑖) − 𝐷ℎ(𝒙 𝑖 , 𝒙 𝑖−1)) + ⟨△𝑖 , 𝒙 𝑖 − 𝒚⟩ .

Proof of Lemma 4.3.2. By the three point identity (see, e.g., [SYLS16, Equation (A.9)]), we have

𝐷ℎ(𝒚, 𝒙 𝑖−1) − 𝐷ℎ(𝒚, 𝒙 𝑖) − 𝐷ℎ(𝒙 𝑖 , 𝒙 𝑖−1) = − ⟨∇ℎ(𝒙 𝑖) − ∇ℎ(𝒙 𝑖−1), 𝒙 𝑖 − 𝒚⟩

=
1
𝐿
⟨∇ 𝑓 (𝒙 𝑖−1) − △𝑖 , 𝒙 𝑖 − 𝒚⟩ ,

completing the proof of Lemma 4.3.2. □

147

Lemma 4.3.3 (Mirror descent lemma under approximate stationary point updates). Let 𝒚 ∈ R𝑑
be arbitrary. For every iteration 𝑖, we have

𝑓 (𝒙 𝑖) − 𝑓 (𝒚) ≤ (𝐿 − 𝜇)𝐷ℎ(𝒚, 𝒙 𝑖−1) − 𝐿𝐷ℎ(𝒚, 𝒙 𝑖) + ⟨△𝑖 , 𝒙 𝑖 − 𝒚⟩ .

Proof of Lemma 4.3.3. The definition of 𝜇-relative strong convexity tells us that

𝑓 (𝒙 𝑖−1) − 𝑓 (𝒚) ≤ ⟨∇ 𝑓 (𝒙 𝑖−1), 𝒙 𝑖−1 − 𝒚⟩ − 𝜇𝐷ℎ(𝒚, 𝒙 𝑖−1).

We now write

𝑓 (𝒙 𝑖) − 𝑓 (𝒚) ≤ 𝑓 (𝒙 𝑖−1) − 𝑓 (𝒚) + ⟨∇ 𝑓 (𝒙 𝑖−1), 𝒙 𝑖 − 𝒙 𝑖−1⟩ + 𝐿𝐷ℎ(𝒙 𝑖 , 𝒙 𝑖−1) (𝐿-RS)
≤ ⟨∇ 𝑓 (𝒙 𝑖−1), 𝒙 𝑖 − 𝒚⟩ − 𝜇𝐷ℎ(𝒚, 𝒙 𝑖−1) + 𝐿𝐷ℎ(𝒙 𝑖 , 𝒙 𝑖−1) (𝜇-RSC)
≤ (𝐿 − 𝜇)𝐷ℎ(𝒚, 𝒙 𝑖−1) − 𝐿𝐷ℎ(𝒚, 𝒙 𝑖) + ⟨△𝑖 , 𝒙 𝑖 − 𝒚⟩ , (Lemma 4.3.2)

completing the proof of Lemma 4.3.3. □

We now have the tools to complete the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. Let 𝐸𝑖 B 𝑓 (𝒙 𝑖) − 𝑓 (𝒙★) − ⟨△𝑖 , 𝒙 𝑖 − 𝒙★⟩. Substituting 𝒚 = 𝒙★ and rearrang-
ing the conclusion of Lemma 4.3.3 gives

𝐸𝑖 ≤ (𝐿 − 𝜇)𝐷ℎ(𝒙★, 𝒙 𝑖−1) − 𝐿𝐷ℎ(𝒙★, 𝒙 𝑖).

We multiply both sides by
(

𝐿
𝐿−𝜇

) 𝑖
and write(

𝐿

𝐿 − 𝜇

) 𝑖
𝐸𝑖 ≤

𝐿𝑖

(𝐿 − 𝜇)𝑖−1𝐷ℎ(𝒙★, 𝒙 𝑖−1) −
𝐿𝑖+1

(𝐿 − 𝜇)𝑖
𝐷ℎ(𝒙★, 𝒙 𝑖).

Adding over all 𝑇 iterations yields

𝑇∑
𝑖=1

(
𝐿

𝐿 − 𝜇

) 𝑖
𝐸𝑖 ≤ 𝐿𝐷ℎ(𝒙★, 𝒙0) −

(
𝐿

𝐿 − 𝜇

)𝑇
𝐿𝐷ℎ(𝒙★, 𝒙𝑇) ≤ 𝐿𝐷ℎ(𝒙★, 𝒙0).

Expanding out the definition of 𝐸𝑖 and rearranging gives

𝑇∑
𝑖=1

(
𝐿

𝐿 − 𝜇

) 𝑖
(𝑓 (𝒙 𝑖) − 𝑓 (𝒙★)) ≤ 𝐿𝐷ℎ(𝒙★, 𝒙0) +

𝑇∑
𝑖=1

(
𝐿

𝐿 − 𝜇

) 𝑖 〈
△𝑖 , 𝒙 𝑖 − 𝒙★

〉
.

By the geometric series summation formula, we define and have

𝐶𝑇 B
𝑇∑
𝑖=1

(
𝐿

𝐿 − 𝜇

) 𝑖
=
𝐿

𝜇

((
1 + 𝜇

𝐿 − 𝜇

)𝑇
− 1

)
.

Let 𝑗 be the index that Algorithm 10 returns. It is easy to check that

𝑇∑
𝑖=1

(
𝐿

𝐿 − 𝜇

) 𝑖
(𝑓 (𝒙 𝑖) − 𝑓 (𝒙★)) ≥ 𝐶𝑇

(
𝑓 (𝒙 𝑗) − 𝑓 (𝒙★)

)

148

and
𝑇∑
𝑖=1

(
𝐿

𝐿 − 𝜇

) 𝑖 〈
△𝑖 , 𝒙 𝑖 − 𝒙★

〉
≤ 𝐶𝑇 max

1≤𝑖≤𝑛

〈
△𝑖 , 𝒙 𝑖 − 𝒙★

〉
.

This gives us

𝑓 (𝒙 𝑗) − 𝑓 (𝒙★) ≤
𝐿

𝐶𝑇
𝐷ℎ(𝒙★, 𝒙0) + max

1≤𝑖≤𝑛

〈
△𝑖 , 𝒙 𝑖 − 𝒙★

〉
.

Finally, notice that

𝐿

𝐶𝑇
=

𝜇(
1 + 𝜇

𝐿−𝜇

)𝑇
− 1
≤ 𝐿

(
1 −

𝜇

𝐿

)𝑇
.

Combining everything completes the proof of Theorem 4.3.1. □

Finally, we add another useful lemma that quantifies the descent, if any, in the objective value
between iterations.

Lemma 4.3.4. For every iteration 𝑖, we have

𝑓 (𝒙 𝑖) − 𝑓 (𝒙 𝑖−1) ≤ −𝐿𝐷ℎ(𝒙 𝑖−1 , 𝒙 𝑖) + ⟨△𝑖 , 𝒙 𝑖 − 𝒙 𝑖−1⟩ .

In particular, if ⟨△𝑖 , 𝒙 𝑖 − 𝒙 𝑖−1⟩ ≤ 𝐿𝐷ℎ(𝒙 𝑖−1 , 𝒙 𝑖), then iteration 𝑖 is a descent step.

Proof of Lemma 4.3.4. We substitute 𝒚 = 𝒙 𝑖−1 in the conclusion of Lemma 4.3.3. This gives

𝑓 (𝒙 𝑖) − 𝑓 (𝒙 𝑖−1) ≤ −𝐿𝐷ℎ(𝒙 𝑖−1 , 𝒙 𝑖) + ⟨△𝑖 , 𝒙 𝑖 − 𝒙 𝑖−1⟩ ,

completing the proof of Lemma 4.3.4. □

4.4. Optimal MS acceleration under custom Euclidean geometry

In this section, we adapt the bisection-free Monteiro-Svaiter acceleration framework developed
in [CHJJS22] to handle custom Euclidean geometries. The object of interest here is Algorithm 11,
which we will call with different choices of the oracle 𝒪MS for our algorithms.

149

Algorithm 11 OptimalMSAcceleration: optimizes function 𝑓 given MS oracle 𝒪MS.
Require: Initial 𝒙0, function 𝑓 , oracle 𝒪MS, initial 𝜆′0, multiplicative adjustment factor 𝛼 > 1,

iteration count 𝑇
1: Set 𝒗0 = 𝒙0, 𝐴0 = 0, 𝐴′0 = 0.
2: Set �̃�1 ,𝜆1 = 𝒪(𝒙0;𝜆′0) and 𝜆′1 = 𝜆1.
3: for 𝑡 = 0, . . . , 𝑇 do

4: 𝑎′𝑡+1 = 1
2𝜆′𝑡+1

(
1 +

√
1 + 4𝜆′𝑡+1𝐴𝑡

)
5: 𝐴′𝑡+1 = 𝐴𝑡 + 𝑎′𝑡+1
6: 𝒒𝑡 =

𝐴𝑡
𝐴′𝑡+1

𝒙𝑡 +
𝑎′𝑡+1
𝐴′𝑡+1

𝒗𝑡
7: if 𝑡 > 0 then �̃�𝑡+1 ,𝜆𝑡+1 = 𝒪MS(𝒒𝑡 ;𝜆′𝑡+1)
8: 𝛾𝑡+1 = min

{
1, 𝜆

′
𝑡+1

𝜆𝑡+1

}
9: 𝑎𝑡+1 = 𝛾𝑡+1𝑎

′
𝑡+1 and 𝐴𝑡+1 = 𝐴𝑡 + 𝑎𝑡+1 ⊲ 𝐴𝑡+1 = 𝐴′𝑡+1 − (1 − 𝛾𝑡+1)𝑎′𝑡+1

10: 𝒙𝑡+1 =
(1−𝛾𝑡+1)𝐴𝑡

𝐴𝑡+1
𝒙𝑡 +

𝛾𝑡+1𝐴′𝑡+1
𝐴𝑡+1

�̃�𝑡+1
11: if 𝛾𝑡+1 = 1 then

12: 𝜆′𝑡+2 = 1
𝛼𝜆
′
𝑡+1

13: else

14: 𝜆′𝑡+1 = 𝛼𝜆′𝑡+1
15: 𝒗𝑡+1 = 𝒗𝑡 − 𝑎𝑡+1M−1∇ 𝑓 (̃𝒙𝑡+1)

In order to state the performance guarantee of Algorithm 11, we require the notions of an MS

oracle and a movement bound. See Definition 4.4.1 and Definition 4.4.2.

Definition 4.4.1 (MS oracle, generalization of [CHJJS22, Definition 1]). Let M ∈ R𝑑×𝑑 be a positive

semidefinite matrix. An oracle 𝒪 : R𝑑 × R≥0 → R𝑑 × R≥0 is a 𝜎-MS oracle for function 𝑓 : R𝑑 → R if

for every 𝒒 ∈ R𝑑 and 𝜆′ > 0, the points (𝒙 ,𝜆) = 𝒪(𝒒;𝜆′) satisfy𝒙 − 𝒒 + 1
𝜆

M−1∇ 𝑓 (𝒙)

M
≤ 𝜎 ∥𝒙 − 𝒒∥M .

Definition 4.4.2 (Movement bound [CHJJS22, Definition 2]). For a norm ∥·∥M induced by positive

semidefinite M ∈ R𝑑×𝑑, numbers 𝑠 ≥ 1, 𝑐,𝜆 > 0, and 𝒙 , 𝒚 ∈ R𝑑, we say that (𝒙 , 𝒚,𝜆) satisfies a

(𝑠, 𝑐)-movement bound if

∥𝒙 − 𝒚∥M ≥
{(𝜆

𝑐𝑠

) 1
𝑠−1

if 𝑠 < ∞
1
𝑐 if 𝑠 = ∞

.

With these in hand, we are ready to state the convergence guarantee we get with Algorithm 11.
See Theorem 4.4.3.

Theorem 4.4.3 (Modification of [CHJJS22, Theorem 1]). Let 𝑓 : R𝑑 → R be convex and differentiable.

Consider running Algorithm 11 with parameters 𝛼 = exp
(
3 − 2

𝑠+1
)

and a 𝜎-MS oracle with 0 ≤ 𝜎 <
0.99 (Definition 4.4.1). Let 𝑠 ≥ 1 and 𝑐 > 0 and suppose that for all 𝑡 such that 𝜆𝑡 > 𝜆′𝑡 or 𝑡 = 1,

the iterates (̃𝒙𝑡 , 𝒒𝑡−1 ,𝜆𝑡) satisfy an (𝑠, 𝑐)-movement bound (Definition 4.4.2). Let 𝐶 be a universal

constant. For any iteration count 𝑇 satisfying

𝑇 ≥ 𝐶

𝑠

(
𝑐𝑠 ∥𝒙0−𝒙★∥ 𝑠+1

M
𝜀

) 2
3𝑠+1

if 𝑠 < ∞

(𝑐 ∥𝒙0 − 𝒙★∥M)
2/3 log

(
𝜆1∥𝒙0−𝒙★∥2

M
𝜀

)
if 𝑠 = ∞

,

150

we have

𝑓 (𝒙𝑇) − 𝑓 (𝒙★) ≤ 𝜀.

The proof of Theorem 4.4.3 follows the same recipe as the proof of [CHJJS22, Theorem 1]. The
only modification needed is that stated in Lemma 4.4.4.

Lemma 4.4.4 (Replaces [CHJJS22, Proposition 1]). In the context of Theorem 4.4.3, let 𝐸𝑡 B

𝑓 (𝒙𝑡) − 𝑓 (𝒙★), 𝐷𝑡 B
1
2 ∥𝒗𝑡 − 𝒙★∥2M , 𝑁𝑡+1 B

1
2
�̃�𝑡+1 − 𝒒𝑡

2
M. Then, for all 𝑡 ≥ 0, we have

𝐴𝑡+1𝐸𝑡+1 + 𝐷𝑡+1 + (1 − 𝜎2)𝐴′𝑡+1 min
{
𝜆𝑡+1 ,𝜆

′
𝑡+1

}
𝑁𝑡+1 ≤ 𝐴𝑡𝐸𝑡 + 𝐷𝑡 .

Consequently, for all 𝑇 ≥ 1,
√
𝐴𝑇 ≥ 1

2
∑
𝑡∈𝒮≤

𝑇

1√
𝜆′𝑡

,

𝐸𝑇 ≤
𝐷0
𝐴𝑇

and (1 − 𝜎2)
∑
𝑡∈𝒮≥

𝑇

𝐴𝑡𝜆
′
𝑡𝑁𝑡 ≤ 𝐷0 − 𝐴𝑇𝐸𝑇 .

Proof of Lemma 4.4.4. This proof is a straightforward modification of [CHJJS22, Proposition 1].
We have

𝐷𝑡+1 =
1
2
𝒗𝑡+1 − 𝒙★

2
M =

1
2
𝒗𝑡 − 𝑎𝑡+1M−1∇ 𝑓 (̃𝒙𝑡+1) − 𝒙★

2
M

= 𝐷𝑡 + 𝑎𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒙★ − 𝒗𝑡

〉
M +

𝑎2
𝑡+1
2

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M .

By definition of 𝒒𝑡 and 𝐴′𝑡+1 = 𝐴𝑡 + 𝑎′𝑡+1, we have

𝑎′𝑡+1𝒗𝑡 = 𝐴′𝑡+1𝒒𝑡 − 𝐴𝑡𝒙𝑡 = 𝑎′𝑡+1 �̃�𝑡+1 + 𝐴′𝑡+1
(
𝒒𝑡 − �̃�𝑡+1

)
− 𝐴𝑡 (𝒙𝑡 − �̃�𝑡+1) .

Subtracting 𝑎′𝑡+1𝒙
★ and taking the inner product with M−1∇ 𝑓 (̃𝒙𝑡+1) gives

𝑎′𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒙★ − 𝒗𝑡

〉
M

=
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝑎′𝑡+1(𝒙★ − �̃�𝑡+1) + 𝐴′𝑡+1

(
�̃�𝑡+1 − 𝒒𝑡

)
+ 𝐴𝑡 (𝒙𝑡 − �̃�𝑡+1)

〉
M

≤ 𝑎′𝑡+1
(
𝑓 (𝒙★) − 𝑓 (̃𝒙𝑡+1)

)
+ 𝐴′𝑡+1

〈
M−1∇ 𝑓 (̃𝒙𝑡+1), �̃�𝑡+1 − 𝒒𝑡

〉
M + 𝐴𝑡 (𝑓 (𝒙𝑡) − 𝑓 (̃𝒙𝑡+1))

≤ 𝐴𝑡𝐸𝑡 − 𝐴′𝑡+1
(
𝑓 (̃𝒙𝑡+1) − 𝑓 (𝒙★)

)
+ 𝐴′𝑡+1

〈
M−1∇ 𝑓 (̃𝒙𝑡+1), �̃�𝑡+1 − 𝒒𝑡

〉
M .

Rearranging gives

𝐴′𝑡+1
(
𝑓 (̃𝒙𝑡+1) − 𝑓 (𝒙★)

)
≤ 𝐴𝑡𝐸𝑡 + 𝑎′𝑡+1

〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M

+ 𝐴′𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), �̃�𝑡+1 − 𝒒𝑡

〉
M .

Next, recall that by Definition 4.4.1, we haveM−1∇ 𝑓 (̃𝒙𝑡+1) + 𝜆𝑡+1
(
�̃�𝑡+1 − 𝒒𝑡

)2
M ≤ 𝜆2

𝑡+1𝜎
2 �̃�𝑡+1 − 𝒒𝑡

2
M .

We use this to write

𝜆𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), �̃�𝑡+1 − 𝒒𝑡

〉
M

=
1
2
M−1∇ 𝑓 (̃𝒙𝑡+1) + 𝜆𝑡+1(̃𝒙𝑡+1 − 𝒒𝑡)

2
M −

1
2
M−1∇ 𝑓 (̃𝒙𝑡+1)

2
M −

𝜆2
𝑡+1
2

�̃�𝑡+1 − 𝒒𝑡
2

M

151

≤ −𝜆2
𝑡+1(1 − 𝜎2)𝑁𝑡+1 −

1
2
M−1∇ 𝑓 (̃𝒙𝑡+1)

2
M ,

from which we conclude〈
M−1∇ 𝑓 (̃𝒙𝑡+1), �̃�𝑡+1 − 𝒒𝑡

〉
M ≤ −𝜆𝑡+1(1 − 𝜎2)𝑁𝑡+1 −

1
2𝜆𝑡+1

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M .

Substituting back gives

𝐴′𝑡+1
(
𝑓 (̃𝒙𝑡+1) − 𝑓 (𝒙★)

)
≤ 𝐴𝑡𝐸𝑡 + 𝑎′𝑡+1

〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M

+ 𝐴′𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), �̃�𝑡+1 − 𝒒𝑡

〉
M

≤ 𝐴𝑡𝐸𝑡 + 𝑎′𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M

− 𝐴′𝑡+1𝜆𝑡+1(1 − 𝜎2)𝑁𝑡+1 −
𝐴′𝑡+1
2𝜆𝑡+1

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M .

Next, recall that 𝛾𝑡+1𝑎
′
𝑡+1 = 𝑎𝑡+1 and 𝛾𝑡+1𝜆𝑡+1 = min

{
𝜆𝑡+1 ,𝜆′𝑡+1

}
, by construction. Let �̂�𝑡+1 B

min
{
𝜆𝑡+1 ,𝜆′𝑡+1

}
We multiply both sides by 𝛾𝑡+1 and conclude

𝛾𝑡+1𝐴
′
𝑡+1

(
𝑓 (̃𝒙𝑡+1) − 𝑓 (𝒙★)

)
≤ 𝛾𝑡+1𝐴𝑡𝐸𝑡 + 𝑎𝑡+1

〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M

− 𝐴′𝑡+1�̂�𝑡+1(1 − 𝜎2)𝑁𝑡+1 −
𝛾𝑡+1𝐴

′
𝑡+1

2𝜆𝑡+1

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M .

Now, by convexity of 𝑓 and from the definition of 𝒙𝑡+1, we have

𝑓 (𝒙𝑡+1) − 𝑓 (𝒙★) ≤
(1 − 𝛾𝑡+1)𝐴𝑡

𝐴𝑡+1

(
𝑓 (𝒙𝑡) − 𝑓 (𝒙★)

)
+

𝛾𝑡+1𝐴
′
𝑡+1

𝐴𝑡+1

(
𝑓 (̃𝒙𝑡+1) − 𝑓 (𝒙★)

)
.

Recall the definition of𝐸𝑡 , multiply both sides by𝐴𝑡+1, apply our bound on 𝛾𝑡+1𝐴
′
𝑡+1 (𝑓 (̃𝒙𝑡+1) − 𝑓 (𝒙★)),

and we get

𝐴𝑡+1𝐸𝑡+1 ≤ (1 − 𝛾𝑡+1)𝐴𝑡𝐸𝑡 + 𝛾𝑡+1𝐴
′
𝑡+1

(
𝑓 (̃𝒙𝑡+1) − 𝑓 (𝒙★)

)
≤ 𝐴𝑡𝐸𝑡 + 𝑎𝑡+1

〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M

− 𝐴′𝑡+1�̂�𝑡+1(1 − 𝜎2)𝑁𝑡+1 −
𝛾𝑡+1𝐴

′
𝑡+1

2𝜆𝑡+1

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M

After shifting terms around, we see that it remains to show

𝑎𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M −

𝛾𝑡+1𝐴
′
𝑡+1

2𝜆𝑡+1

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M
?
≤ 𝐷𝑡 − 𝐷𝑡+1.

In fact, by the choice of 𝑎′𝑡+1 and the definition of 𝐴′𝑡+1, we have

𝜆′𝑡+1(𝑎′𝑡+1)2 = 𝑎′𝑡+1 + 𝐴𝑡 = 𝐴′𝑡+1.

Multiply both sides by 𝛾2
𝑡+1/(2𝜆′𝑡+1) and we get

𝑎2
𝑡+1
2 =

𝛾2
𝑡+1𝐴

′
𝑡+1

2𝜆′𝑡+1
=

min
{
1, 𝜆

′
𝑡+1

𝜆𝑡+1

}
𝛾𝑡+1𝐴

′
𝑡+1

2𝜆′𝑡+1
≤

𝛾𝑡+1𝐴
′
𝑡+1

2𝜆𝑡+1
.

We recycle an earlier computation and know that

𝐷𝑡 − 𝐷𝑡+1 = 𝑎𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M −

𝑎2
𝑡+1
2

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M

152

≥ 𝑎𝑡+1
〈
M−1∇ 𝑓 (̃𝒙𝑡+1), 𝒗𝑡 − 𝒙★

〉
M −

𝛾𝑡+1𝐴
′
𝑡+1

2𝜆𝑡+1

M−1∇ 𝑓 (̃𝒙𝑡+1)
2

M ,

which completes the proof of the potential decrease.

The remaining statements follow as written in [CHJJS22, Proof of Proposition 1], and we
conclude the proof of Lemma 4.4.4. □

Now that we have shown Lemma 4.4.4, we refer the reader to [CHJJS22, Appendix A] for the
proof of Theorem 4.4.3, as it now follows exactly as written there.

We also give additional bounds on the movement of the iterates in ∥·∥M, which is a straightfor-
ward adaptation of [CJJJLST20, Lemma 31] to the improved framework from [CHJJS22].

Lemma 4.4.5. For all 𝑡 ≥ 1, we have both𝒗𝑡 − 𝒙★

M ≤
√

2
𝒙0 − 𝒙★

M𝒙𝑡 − 𝒙★

M ≤

(
√

2 + max
1≤𝑖≤𝑡

𝜆′
𝑖

𝜆𝑖
·
√

2
1 − 𝜎2

) 𝒙0 − 𝒙★

M

.

In the statement of Lemma 4.4.5, the cost of overshooting the guess 𝜆′
𝑖

becomes evident –
without an additional strong convexity guarantee, it is challenging to ensure that each iterate
remains in a small ball around 𝒙★. This is the main reason we are unable to apply the framework
of [CHJJS22] to the 𝑝 = ∞ case.

Proof of Lemma 4.4.5. Using the same notation as in Lemma 4.4.4 and in that proof, we define

𝑃𝑡 B 𝐴𝑡𝐸𝑡 + 𝐷𝑡

�̂�𝑡 B min
{
𝜆𝑡 ,𝜆

′
𝑡

}
.

By induction on the conclusion of Lemma 4.4.4, for 𝑡 ≥ 1 we have

1
2
𝒗𝑡 − 𝒙★

2
M = 𝐷𝑡 ≤ 𝑃𝑡 + (1 − 𝜎2)

𝑡∑
𝑘=1

𝐴′𝑘�̂�𝑘𝑁𝑘 ≤ 𝑃0 =
𝒙0 − 𝒙★

2
M .

Thus, 𝒗𝑡 − 𝒙★

M ≤
√

2
𝒙0 − 𝒙★

M .

For the second conclusion, we introduce the following notation.

𝛼𝑡+1 B
(1 − 𝛾𝑡+1)𝐴𝑡

𝐴𝑡+1

𝛽𝑡+1 B
𝐴𝑡

𝐴′𝑡+1

𝛿𝑡+1 B 1 − (1 − 𝛼𝑡+1)(1 − 𝛽𝑡+1) = 1 −
𝛾𝑡+1𝐴

′
𝑡+1

𝐴𝑡+1
·
𝑎′𝑡+1
𝐴′𝑡+1

=
𝐴𝑡

𝐴𝑡+1

We also establish for any 𝑖,

𝛾𝑖𝐴′𝑖
𝜆𝑖𝑎2

𝑖

=
𝐴′
𝑖

𝜆𝑖𝛾𝑖(𝑎′𝑖)2
=

1
𝛾𝑖
·
𝜆′
𝑖

𝜆𝑖
= max

{
𝜆′
𝑖

𝜆𝑖
, 1

}
,

153

which implies

𝛾𝑖𝐴′𝑖
𝜆𝑖

= 𝑎2
𝑖 max

{
𝜆′
𝑖

𝜆𝑖
, 1

}
.

Notice that𝒙𝑡+1 − 𝒙★

M ≤ 𝛼𝑡+1
𝒙𝑡 − 𝒙★

M + (1 − 𝛼𝑡+1)

�̃�𝑡+1 − 𝒙★

M

≤ 𝛼𝑡+1
𝒙𝑡 − 𝒙★

M + (1 − 𝛼𝑡+1)

(𝒒𝑡 − 𝒙★

M +
�̃�𝑡+1 − 𝒒𝑡

M

)
≤ 𝛼𝑡+1

𝒙𝑡 − 𝒙★

M

+ (1 − 𝛼𝑡+1)
(
𝛽𝑡+1

𝒙𝑡 − 𝒙★

M + (1 − 𝛽𝑡+1)
𝒗𝑡 − 𝒙★

M +

�̃�𝑡+1 − 𝒒𝑡

M

)
= (𝛽𝑡+1 + 𝛼𝑡+1 − 𝛼𝑡+1𝛽𝑡+1)

𝒙𝑡 − 𝒙★

M
+ (1 − 𝛼𝑡+1) (1 − 𝛽𝑡+1)

𝒗𝑡 − 𝒙★

M + (1 − 𝛼𝑡+1)
�̃�𝑡+1 − 𝒒𝑡

M

= 𝛿𝑡+1
𝒙𝑡 − 𝒙★

M + (1 − 𝛿𝑡+1)

𝒗𝑡 − 𝒙★

M + (1 − 𝛼𝑡+1)
�̃�𝑡+1 − 𝒒𝑡

M

≤
𝑡∏
𝑖=0

𝛿𝑖+1
𝒙0 − 𝒙★

M +

(
1 −

𝑡∏
𝑖=0

𝛿𝑖+1

) 𝒗𝑡 − 𝒙★

M

+
𝑡+1∑
𝑖=1

𝑡+1∏
𝑗=𝑖+1

𝛿 𝑗(1 − 𝛼𝑖)
�̃� 𝑖 − 𝒒 𝑖−1

M

≤
√

2
𝒙0 − 𝒙★

M +

𝑡+1∑
𝑖=1

𝑡+1∏
𝑗=𝑖+1

𝛿 𝑗(1 − 𝛼𝑖)
�̃� 𝑖 − 𝒒 𝑖−1

M

=
√

2
𝒙0 − 𝒙★

M +

𝑡+1∑
𝑖=1

𝐴𝑖

𝐴𝑡+1
(1 − 𝛼𝑖)

�̃� 𝑖 − 𝒒 𝑖−1

M

=
√

2
𝒙0 − 𝒙★

M +

𝑡+1∑
𝑖=1

𝐴𝑖

𝐴𝑡+1
·
𝛾𝑖𝐴′𝑖
𝐴𝑖

�̃� 𝑖 − 𝒒 𝑖−1

M

=
√

2
𝒙0 − 𝒙★

M +

1
𝐴𝑡+1

𝑡+1∑
𝑖=1

√
𝛾𝑖𝐴′𝑖
𝜆𝑖
·
√
𝜆𝑖𝛾𝑖𝐴′𝑖

�̃� 𝑖 − 𝒒 𝑖−1

M

≤
√

2
𝒙0 − 𝒙★

M +

(∑𝑡+1
𝑖=1

𝛾𝑖𝐴′𝑖
𝜆𝑖

)1/2

𝐴𝑡+1
·
(
𝑡+1∑
𝑖=1

𝜆𝑖𝛾𝑖𝐴
′
𝑖

�̃� 𝑖 − 𝒒 𝑖−1
2

M

)1/2

≤
√

2
𝒙0 − 𝒙★

M +

(∑𝑡+1
𝑖=1

𝛾𝑖𝐴′𝑖
𝜆𝑖

)1/2

𝐴𝑡+1
·
√

2
1 − 𝜎2

𝒙0 − 𝒙★

M

≤
√

2
𝒙0 − 𝒙★

M +

∑𝑡+1
𝑖=1 𝑎𝑖 max

{
1, 𝜆

′
𝑖

𝜆𝑖

}
𝐴𝑡+1

·
√

2
1 − 𝜎2

𝒙0 − 𝒙★

M

≤
√

2
𝒙0 − 𝒙★

M + max

1≤𝑖≤𝑡+1

𝜆′
𝑖

𝜆𝑖
·
√

2
1 − 𝜎2

𝒙0 − 𝒙★

M

=

(
√

2 + max
1≤𝑖≤𝑡+1

𝜆′
𝑖

𝜆𝑖
·
√

2
1 − 𝜎2

) 𝒙0 − 𝒙★

M ,

completing the proof of Lemma 4.4.5. □

154

4.5. Minimizing the distributionally robust loss

The goal of this section is to prove Theorem 12. We break up the proof into parts as described
in Section 4.2. We structure the section as follows. In the rest of this subsection, we present
Algorithm 12, our algorithm that minimizes the distributionally robust loss. In Section 4.5.1,
we introduce our smooth approximation for the objective (4.1.2) and show that it is a good
additive approximation (this is a standard argument, but we include it as it provides important
intuition).

As the main of the difficulty of the proof in Theorem 12 is to establish a Hessian stability for our
surrogate loss, we devote the bulk of this section to proving this. Recall that in Section 4.2.2,
we claimed that a higher-order smoothness condition called quasi-self-concordance gives us the
needed Hessian stability – in fact, this follows from [CJJJLST20, Lemma 11]. In light of this, it
is enough to prove that our surrogate loss is quasi-self-concordant.

In Section 4.5.2, we work out some calculus facts related to the softmax function. In particular,
it is in Section 4.5.2 that we prove the general composition result Lemma 4.5.3 that states that
if we take the softmax of several quasi-self-concordant functions, then the resulting function is
also quasi-self-concordant. In Section 4.5.3, we apply this composition fact to prove that our
surrogate objective is quasi-self-concordant. Finally, in Section 4.5.4, we combine these building
blocks with the acceleration framework in [CJJJLST20] and complete the proof of Theorem 12.

Algorithm 12 MinMaxRegression: optimizes (4.1.2) to (1 + 𝜀)-multiplicative error
Require: Regression problems (A𝑆1 , 𝒃𝑆1), . . . , (A𝑆𝑚 , 𝒃𝑆𝑚), accuracy 𝜀 > 0

1: Using [MO25, Algorithm 2] with input [A|𝒃], find nonnegative diagonal W and weights
𝑤1 , . . . , 𝑤𝑚 such that for all 𝑗 ∈ 𝑆𝑖 , W[𝑗][𝑗] = 𝑤𝑖 and for all 𝒙 ∈ R𝑑 and 𝑐 ∈ R,

∥A𝒙 − 𝑐𝒃∥𝒢∞ ≤
W1/2A𝒙 − 𝑐W1/2𝒃

2
≤

√
2(rank (A) + 1) ∥A𝒙 − 𝑐𝒃∥𝒢∞ .

2: if

∑𝑚
𝑖=1 𝑤𝑖 ≥ 𝑚 then ⊲ rank (A) + 1 ≤ ∑𝑚

𝑖=1 𝑤𝑖 ≤ 2(rank (A) + 1)
3: Reset W = I𝑛 .
4: Let 𝒙0 = (A⊤WA)−1 A⊤W𝒃. ⊲ 𝒙0 B argmin

𝒙∈R𝑑

W1/2A𝒙 −W1/2𝒃

2.

5: Let

�̃�𝛽,𝛿(𝒙) B 𝛽 log
©«
𝑚∑
𝑖=1

exp
©«
√
𝛿2 + ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 − 𝛿

𝛽

ª®®¬
ª®®¬

where 𝛽 = 𝜀
4 log𝑚 and 𝛿 = 𝜀

4 . ⊲ A family of smoothenings of the objective.

6: Let �̂� (𝒙) B �̃�𝜀/4 log𝑚,𝜀/4(𝒙) + 𝜀
1000 min{rank(A),𝑚}

W1/2A(𝒙 − 𝒙0)
2

2.

7: Using [CJJJLST20, Algorithm 3], implement a
(

𝐶
min{rank(A),𝑚} ,

𝐶
𝜀

)
-ball optimization oracle

for �̂� , where 𝐶 is a universal constant. ⊲ Iteration complexity guaranteed by Lemma 4.5.5

8: Using [CJJJLST20, Algorithm 2], implement a 1
2 -MS oracle for �̂� .

9: Run [CJJJLST20, Algorithm 1] for 𝑂
(

min{rank(A),𝑚}1/3 log(𝑑𝜀)
𝜀2/3

)
iterations using the MS oracle

from the previous line and with initial point 𝒙0 and final point �̂�.
10: return �̂�

155

4.5.1. Smoothly approximating the objective

Recall that for 𝒚 ∈ R𝑛 , let ∥𝒚∥𝒢∞ B max1≤𝑖≤𝑚
𝒚𝑆𝑖2, where for 𝒚 ∈ R𝑛 we let 𝒚𝑆𝑖 refer to the

vector in R𝑛𝑖 indexed by the indices in 𝑆𝑖 . Also, for 𝒚 ∈ R𝑚 , let lse𝛽(𝒚) refer to the function

lse𝛽(𝒚) B 𝛽 log

(
𝑚∑
𝑖=1

exp
(
𝑦𝑖

𝛽

))
.

At a high level, our algorithm will minimize the function

�̃�𝛽,𝛿(𝒙) B 𝛽 log
©«
𝑚∑
𝑖=1

exp
©«
√
𝛿2 + ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 − 𝛿

𝛽

ª®®¬
ª®®¬

for appropriate choices of the parameters 𝛽 and 𝛿. This choice of smoothening is natural
because of the following approximation statement – see Lemma 4.5.1.

Lemma 4.5.1. For all 𝒙 ∈ R𝑑, we have��� �̃�𝛽,𝛿(𝒙) − ∥A𝒙 − 𝒃∥𝒢∞
��� ≤ 𝛽 log𝑚 + 𝛿.

Proof of Lemma 4.5.1. These guarantees are well-known, but we prove them anyway for the sake
of self-containment. We first prove that for any 𝒗 ∈ R𝑚 , we have

max
1≤𝑖≤𝑚

𝑣𝑖 ≤ lse𝛽(𝒗) ≤ max
1≤𝑖≤𝑚

𝑣𝑖 + 𝛽 log𝑚.

In one direction, we have

lse𝛽(𝒗) ≤ 𝛽 log

(
𝑚∑
𝑖=1

exp
(
max1≤𝑖≤𝑚 𝑣𝑖

𝛽

))
= 𝛽 log𝑚 + max

1≤𝑖≤𝑚
𝑣𝑖 ,

and in the other, we have

lse𝛽(𝒗) ≥ 𝛽 log
(
exp

(
max1≤𝑖≤𝑚 𝑣𝑖

𝛽

))
= max

1≤𝑖≤𝑚
𝑣𝑖 .

Next, for 𝒗 ∈ R𝑚 , we will show that

∥𝒗∥2 − 𝛿 ≤
√
𝛿2 + ∥𝒗∥22 − 𝛿 ≤ ∥𝒗∥2 .

Indeed, we have √
𝛿2 + ∥𝒗∥22 − 𝛿 ≤

√
𝛿2 +

√
∥𝒗∥22 − 𝛿 = ∥𝒗∥2 ,

and √
𝛿2 + ∥𝒗∥22 − 𝛿 ≥

√
∥𝒗∥22 − 𝛿 = ∥𝒗∥2 − 𝛿.

From this, we get

�̃�𝛽,𝛿(𝒙) ≤ max
1≤𝑖≤𝑚

(√
𝛿2 + ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥22 − 𝛿

)
+ 𝛽 log𝑚 ≤ ∥A𝒙 − 𝒃∥𝒢∞ + 𝛽 log𝑚

156

and

�̃�𝛽,𝛿(𝒙) ≥ 𝛽 log

(
𝑚∑
𝑖=1

exp
(∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥2 − 𝛿

𝛽

))
≥ ∥A𝒙 − 𝒃∥𝒢∞ − 𝛿.

Putting these together gives��� �̃�𝛽,𝛿(𝒙) − ∥A𝒙 − 𝒃∥𝒢∞
��� ≤ max (𝛽 log𝑚, 𝛿) ≤ 𝛽 log𝑚 + 𝛿,

completing the proof of Lemma 4.5.1. □

Eventually, we will choose 𝛽 = 𝜀/(4 log𝑚) and 𝛿 = 𝜀/4 and then minimize �̃�𝛽,𝛿 to 𝜀/2 additive
error. In light of Lemma 4.5.1, this will be enough to get an 𝜀-additive approximation to the
optimum for ∥A𝒙 − 𝒃∥𝒢∞ .

4.5.2. Calculus for LogSumExp

We investigate certain properties of lse𝛽(𝒚)when each entry [𝒚]𝑖 is a function ℎ𝑖(𝑡) for 𝑡 ∈ R for
all 𝑖 ∈ [𝑚]. Let ℎ(𝑡) ∈ R𝑚 denote the vector where its 𝑖th entry is given by ℎ𝑖(𝑡). We treat each
ℎ𝑖 as a one-dimensional restriction of a function 𝑔𝑖 : R𝑚 → R, so ℎ𝑖(𝑡) = 𝑔𝑖(𝒚 + 𝑡𝒅) for center 𝒚
and direction 𝒅 (we omit the parameters 𝒚, 𝒅 in the notation ℎ𝑖 as it will be clear from context).
Finally, recall the definition of quasi-self-concordance (Definition 4.2.3).

We begin with calculating the first two derivatives of lse𝛽(ℎ(𝑡))with respect to 𝑡 in Lemma 4.5.2.

Lemma 4.5.2. Let 𝜆𝑖(𝑡) B exp (ℎ𝑖(𝑡)/𝛽). Then, we have(
𝑑

𝑑𝑡

)
lse𝛽(ℎ(𝑡)) =

∑𝑚
𝑖=1

(
𝜆𝑖(𝑡) · ℎ′𝑖(𝑡)

)∑𝑚
𝑖=1 𝜆𝑖(𝑡)(

𝑑

𝑑𝑡

)2
lse𝛽(ℎ(𝑡)) =

1
𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)2∑𝑚

𝑖=1 𝜆𝑖(𝑡)
−

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)

)2)
+

∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′′𝑖 (𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)
.

Proof of Lemma 4.5.2. The first derivative follows from the chain rule. Indeed, we have

lse′𝛽(ℎ(𝑡)) = 𝛽 ·
∑𝑚
𝑖=1 𝜆

′
𝑖
(𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)
= 𝛽 ·

∑𝑚
𝑖=1

(
𝜆𝑖(𝑡) ·

ℎ′
𝑖
(𝑡)
𝛽

)
∑𝑚
𝑖=1 𝜆𝑖(𝑡)

=

∑𝑚
𝑖=1

(
𝜆𝑖(𝑡) · ℎ′𝑖(𝑡)

)∑𝑚
𝑖=1 𝜆𝑖(𝑡)

≤ max
𝑖
ℎ′𝑖(𝑡).

For the second derivative, we use the differentiation rule for multiplication and division and
the chain rule, giving

lse′′𝛽 (ℎ(𝑡)) =
[(∑𝑚

𝑖=1 𝜆
′
𝑖
(𝑡)ℎ′

𝑖
(𝑡) + 𝜆𝑖(𝑡)ℎ′′𝑖 (𝑡)

) (∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)]
− 1

𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)

)2(∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)2

=

[
1
𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)2 + 𝛽𝜆𝑖(𝑡)ℎ′′𝑖 (𝑡)

) (∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)]
− 1

𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)

)2(∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)2

157

=
1
𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)2∑𝑚

𝑖=1 𝜆𝑖(𝑡)
−

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)

)2(∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)2

)
+

∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′′𝑖 (𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)
.

This completes the proof of Lemma 4.5.2. □

Next, we prove a general fact regarding composing lse with a vector formed by functions that
are themselves quasi self concordant. See Lemma 4.5.3.

Lemma 4.5.3 (Composing softmax with quasi-self-concordant functions). Let ∥·∥ be an arbitrary

norm and ℎ1 , . . . , ℎ𝑚 be such that for all 1 ≤ 𝑖 ≤ 𝑚 and for all 𝒚, 𝒅 ∈ R𝑚 and 𝑡 ∈ R,(
𝑑

𝑑𝑡

)
ℎ𝑖(𝑡) ≤ ∥𝒅∥ (Lipschitzness)�����(𝑑𝑑𝑡)3
ℎ𝑖(𝑡)

����� ≤ 𝜈 ∥𝒅∥
(
𝑑

𝑑𝑡

)2
ℎ𝑖(𝑡) (quasi-self-concordance).

Then, for all 𝒚, 𝒅 ∈ R𝑚 and all 𝑡 ∈ R, we have�����(𝑑𝑑𝑡)3
lse𝛽(ℎ(𝑡))

����� ≤ (
16
𝛽
+ 𝜈

)
∥𝒅∥

(
𝑑

𝑑𝑡

)2
lse𝛽(ℎ(𝑡)).

As far as we are aware, this type of composition result was not previously known and may be
of independent interest.

To prove Lemma 4.5.3, we need Lemma 4.5.4.

Lemma 4.5.4. For any two random variables 𝑋,𝑌, we have

Var [𝑋𝑌] ≤ 2 ∥𝑌∥2∞ Var [𝑋] + 2 ∥𝑋∥2∞ Var [𝑌] .

Proof of Lemma 4.5.4. The proof follows that of [Gir14], but we reproduce it here for complete-
ness. First, notice that for random variables𝑈,𝑉 , we have

2Var [𝑈] + 2Var [𝑉] − Var [𝑈 +𝑉] = Var [𝑈] + Var [𝑉] − 2Cov [𝑈,𝑉] = Var [𝑈 −𝑉] ≥ 0.

Let𝑈 = (𝑋 − E [𝑋])𝑌 and 𝑉 = E [𝑋]𝑌. Then,𝑈 +𝑉 = 𝑋𝑌, and we have

Var [𝑋𝑌] ≤ 2Var [(𝑋 − E [𝑋])𝑌] + 2Var [E [𝑋]𝑌] = 2Var [(𝑋 − E [𝑋])𝑌] + 2E [𝑋]2 Var [𝑌] .

It remains to bound Var [(𝑋 − E [𝑋])𝑌]. By Hölder’s inequality, we have

Var [(𝑋 − E [𝑋])𝑌] ≤ E
[
((𝑋 − E [𝑋])𝑌)2

]
≤ E

[
(𝑋 − E [𝑋])2

]
∥𝑌∥2∞ = Var [𝑋] ∥𝑌∥2∞ .

Combining everything gives us the conclusion of Lemma 4.5.4. □

We are now ready to prove Lemma 4.5.3.

158

Proof of Lemma 4.5.3. Let 𝜆𝑖(𝑡) B exp (ℎ𝑖(𝑡)/𝛽).

In this proof, we will encounter many weighted averages of vectors 𝒛 ∈ R𝑚 of the form∑𝑚
𝑖=1 𝜆𝑖(𝑡)𝑧𝑖∑𝑚
𝑖=1 𝜆𝑖(𝑡)

.

Let𝒟 be the distribution over [𝑚]whose entries are given by𝒟𝑗 = 𝜆 𝑗(𝑡)/
∑𝑚
𝑖=1 𝜆𝑖(𝑡). In the rest

of this proof, all expected values, variances, and covariances will be taken with respect to this
distribution. In an abuse of notation, let ℎ(𝑡) denote the “random” variable that is ℎ𝑖(𝑡) with
probability𝒟𝑖 . Define ℎ′(𝑡), ℎ′′(𝑡), ℎ′′′(𝑡) analogously.

To find the third derivative of lse𝛽(ℎ(𝑡)), we start with its second derivative. By Lemma 4.5.2, it
is given by

lse′′𝛽 (ℎ(𝑡)) =
1
𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)2∑𝑚

𝑖=1 𝜆𝑖(𝑡)
−

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)

)2)
︸ ︷︷ ︸

𝑇1

+
∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′′𝑖 (𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)︸ ︷︷ ︸
𝑇2

=
1
𝛽

Var [ℎ′(𝑡)] + E [ℎ′′(𝑡)] .

We now differentiate the above term by term. First, we have

𝑇′2(𝑡) =

∑𝑚
𝑖=1 𝜆𝑖(𝑡)

((
ℎ′
𝑖
(𝑡)ℎ′′

𝑖
(𝑡)

𝛽

)
+ ℎ′′′

𝑖
(𝑡)

)
∑𝑚
𝑖=1 𝜆𝑖(𝑡)

− 1
𝛽
·
(∑𝑚

𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)
) (∑𝑚

𝑖=1 𝜆𝑖(𝑡)ℎ′′𝑖 (𝑡)
)(∑𝑚

𝑖=1 𝜆𝑖(𝑡)
)2

=
1
𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)ℎ

′′
𝑖
(𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)
−

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)

) (∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′′𝑖 (𝑡)

)(∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)2

)
+

∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′′′𝑖 (𝑡)∑𝑚

𝑖=1 𝜆𝑖(𝑡)

=
1
𝛽

Cov [ℎ′(𝑡), ℎ′′(𝑡)] + E [ℎ′′′(𝑡)] .

Next, we have

𝑑

𝑑𝑡
E [ℎ′(𝑡)]2 = 2E [ℎ′(𝑡)] · 𝑑

𝑑𝑡
E [ℎ′(𝑡)] = 2E [ℎ′(𝑡)]

(
1
𝛽

Var [ℎ′(𝑡)] + E [ℎ′′(𝑡)]
)

and

𝑑

𝑑𝑡
E

[
ℎ′(𝑡)2

]
=

(∑𝑚
𝑖=1 𝜆

′
𝑖
(𝑡)ℎ′

𝑖
(𝑡)2 + 2ℎ′

𝑖
(𝑡)ℎ′′

𝑖
(𝑡)𝜆𝑖(𝑡)

) (∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)
− 1

𝛽

(∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)

) (∑𝑚
𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)2

)(∑𝑚
𝑖=1 𝜆𝑖(𝑡)

)2

=

(∑𝑚
𝑖=1 𝜆

′
𝑖
(𝑡)ℎ′

𝑖
(𝑡)2 + 2ℎ′

𝑖
(𝑡)ℎ′′

𝑖
(𝑡)𝜆𝑖(𝑡)

)∑𝑚
𝑖=1 𝜆𝑖(𝑡)

− 1
𝛽
·
(∑𝑚

𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)
) (∑𝑚

𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)2
)(∑𝑚

𝑖=1 𝜆𝑖(𝑡)
)2

=

∑𝑚
𝑖=1 𝜆𝑖(𝑡)

(
ℎ′
𝑖
(𝑡)3
𝛽 + 2ℎ′

𝑖
(𝑡)ℎ′′

𝑖
(𝑡)

)
∑𝑚
𝑖=1 𝜆𝑖(𝑡)

− 1
𝛽
·
(∑𝑚

𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)
) (∑𝑚

𝑖=1 𝜆𝑖(𝑡)ℎ′𝑖(𝑡)2
)(∑𝑚

𝑖=1 𝜆𝑖(𝑡)
)2

=
1
𝛽

Cov
[
ℎ′(𝑡), ℎ′(𝑡)2

]
+ 2E [ℎ′(𝑡)ℎ′′(𝑡)] .

159

Combining everything gives us

lse′′′𝛽 (ℎ(𝑡))

=
1
𝛽

(
1
𝛽

Cov
[
ℎ′(𝑡), ℎ′(𝑡)2

]
+ 2E [ℎ′(𝑡)ℎ′′(𝑡)] − 2E [ℎ′(𝑡)]

(
1
𝛽

Var [ℎ′(𝑡)] + E [ℎ′′(𝑡)]
))

+ 1
𝛽

Cov [ℎ′(𝑡), ℎ′′(𝑡)] + E [ℎ′′′(𝑡)]

=
1
𝛽2 Cov

[
ℎ′(𝑡), ℎ′(𝑡)2

]
− 2

𝛽2E [ℎ
′(𝑡)]Var [ℎ′(𝑡)] + 3

𝛽
Cov [ℎ′(𝑡), ℎ′′(𝑡)] + E [ℎ′′′(𝑡)] .

We first analyze the terms that only depend on ℎ′(𝑡). To do so, we use Lemma 4.5.4 to write��Cov
[
ℎ′(𝑡), ℎ′(𝑡)2

] �� ≤ √
Var [ℎ′(𝑡)]

√
Var [ℎ′(𝑡)2] ≤ 2 ∥𝒅∥ Var [ℎ′(𝑡)] .

Now, we have
1
𝛽2

��Cov
[
ℎ′(𝑡), ℎ′(𝑡)2

]
− 2E [ℎ′(𝑡)]Var [ℎ′(𝑡)]

��
≤ 1

𝛽2

��Cov
[
ℎ′(𝑡), ℎ′(𝑡)2

] �� + 2
𝛽2 |E [ℎ

′(𝑡)]Var [ℎ′(𝑡)]|

≤ 4
𝛽2 ∥𝒅∥ Var [ℎ′(𝑡)] ≤ 4

𝛽
∥𝒅∥ lse′′𝛽 (ℎ(𝑡)).

Next, we take care of the remaining terms. We have

3
𝛽
|Cov [ℎ′(𝑡), ℎ′′(𝑡)]| + |E [ℎ′′′(𝑡)]| ≤ 6

𝛽

(
max
𝑖
ℎ′𝑖(𝑡)

)
E [|ℎ′′(𝑡) − E [ℎ′′(𝑡)]|] + |E [ℎ′′′(𝑡)]|

≤ 12
𝛽
∥𝒅∥ lse′′𝛽 (ℎ(𝑡)) + E [|ℎ′′′(𝑡)|]

≤ 12
𝛽
∥𝒅∥ lse′′𝛽 (ℎ(𝑡)) + 𝜈 ∥𝒅∥ E [ℎ′′(𝑡)]

≤
(
12
𝛽
+ 𝜈

)
∥𝒅∥ lse′′𝛽 (ℎ(𝑡)),

where the penultimate line follows from Lemma 4.5.7. Combining these conclusions yields���lse′′′𝛽 (ℎ(𝑡))��� ≤ (
16
𝛽
+ 𝜈

)
∥𝒅∥ lse′′𝛽 (ℎ(𝑡)),

completing the proof of Lemma 4.5.3. □

4.5.3. Smoothness and quasi-self-concordance of the modified objective

The main result of this subsection is Lemma 4.5.5.

Lemma 4.5.5. Let W be such that for all 𝒛 ∈ R𝑑, we have ∥A𝒛∥𝒢∞ ≤
W1/2A𝒛

2. For all 𝒙 , 𝒛 ∈ R𝑑

and 𝑡 ∈ R, we have(
𝑑

𝑑𝑡

)2
�̃�𝛽,𝛿(𝒙 + 𝑡𝒛) ≤

(
1
𝛿
+ 1

𝛽

) W1/2A𝒛
2

2
(smoothness)�����(𝑑𝑑𝑡)3

�̃�𝛽,𝛿(𝒙 + 𝑡𝒛)
����� ≤ (

16
𝛿
+ 3

𝛽

) W1/2A𝒛

2

(
𝑑

𝑑𝑡

)2
�̃�𝛽,𝛿(𝒙 + 𝑡𝒛) (quasi-self-concordance).

160

Our goal in the rest of this section is to prove Lemma 4.5.5.

We begin with defining ℎ𝑖(𝑡) as (absorb the 𝛿, 𝒚, 𝒅 parameters into the definition of ℎ𝑖)

ℎ𝑖(𝑡) B
√
𝛿2 +

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2
2.

Let ℎ(𝑡) denote the vector whose 𝑖th entry is ℎ𝑖(𝑡). Then, observe that

lse𝛽(ℎ(𝑡)) = 𝛽 log

(
𝑚∑
𝑖=1

exp
(
ℎ𝑖(𝑡)
𝛽

))
= 𝛽 log

©«
𝑚∑
𝑖=1

exp
©«
√
𝛿2 +

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2
2

𝛽

ª®®¬
ª®®¬ .

It is easy to see that every one-dimensional restriction of �̃�𝛽,𝛿 can be obtained by an affine
transformation of lse𝛽(ℎ(𝑡)) after appropriate choices of 𝒚, 𝒅 ∈ R𝑚 . Hence, we first analyze
lse𝛽(ℎ(𝑡)) for all 𝒚, 𝒅 ∈ R𝑚 .

We begin with proving the smoothness of lse𝛽(ℎ(𝑡))with respect to ∥·∥𝒢∞ .

Lemma 4.5.6. For all 𝒚, 𝒅 ∈ R𝑚 and all 𝑡 ∈ R, we have(
𝑑

𝑑𝑡

)2
lse𝛽(ℎ(𝑡)) ≤

(
1
𝛿
+ 1

𝛽

)
∥𝒅∥2𝒢∞ .

Proof of Lemma 4.5.6. By direct calculation, it is easy to see that

ℎ′𝑖(𝑡) =
〈
𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖 , 𝒅𝑆𝑖

〉
ℎ𝑖(𝑡)

ℎ′′𝑖 (𝑡) =
∥𝒅𝑆𝑖 ∥22 ℎ𝑖(𝑡) − ℎ′𝑖(𝑡)2ℎ𝑖(𝑡)

ℎ𝑖(𝑡)2
=
∥𝒅𝑆𝑖 ∥22 − ℎ′𝑖(𝑡)2

ℎ𝑖(𝑡)
.

(4.5.1)

We plug this into the result of Lemma 4.5.2 and get

lse′′𝛽 (ℎ(𝑡)) ≤
1
𝛽

max
𝑖
ℎ′𝑖(𝑡)

2 +max
𝑖
ℎ′′𝑖 (𝑡)

=
1
𝛽

max
𝑖

©«
〈
𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖 , 𝒅𝑆𝑖

〉√
𝛿2 +

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2
2

ª®®¬
2

+max
𝑖

∥𝒅𝑆𝑖 ∥22 − ℎ′𝑖(𝑡)2√
𝛿2 +

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2
2

≤ 1
𝛽

max
𝑖
∥𝒅𝑆𝑖 ∥22 +

1
𝛿

max
𝑖
∥𝒅𝑆𝑖 ∥22 =

(
1
𝛽
+ 1

𝛿

)
∥𝒅∥2𝒢∞ ,

completing the proof of Lemma 4.5.6. □

Our next task is to show that lse𝛽(ℎ(𝑡)) is 𝑂(1/𝛽 + 1/𝛿)-quasi-self-concordant in ∥·∥𝒢∞ . To do
so, we will appeal to Lemma 4.5.3. To be able to do this, we first have to prove the quasi-self-
concordance of each component function in lse𝛽(ℎ(𝑡)).

Lemma 4.5.7. For all 𝒚, 𝒅 ∈ R𝑚 and all 𝑡 ∈ R, we have�����(𝑑𝑑𝑡)3 √
𝛿2 +

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2
2

����� ≤ 3
𝛿
∥𝒅𝑆𝑖 ∥2

((
𝑑

𝑑𝑡

)2 √
𝛿2 +

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2
2

)
.

161

Proof of Lemma 4.5.7. Although a similar fact appears in [OB20, Section 2.1.2], it is not in the
exact form we need. So, we prove the required statement here.

Recycling the computation from (4.5.1), recall

ℎ′′𝑖 (𝑡) =
∥𝒅𝑆𝑖 ∥22 − ℎ′𝑖(𝑡)2

ℎ𝑖(𝑡)
,

which gives

ℎ′′′𝑖 (𝑡) =
−2ℎ′

𝑖
(𝑡)ℎ′′

𝑖
(𝑡)ℎ𝑖(𝑡) − ℎ′𝑖(𝑡)(ℎ𝑖(𝑡)ℎ

′′
𝑖
(𝑡))

ℎ𝑖(𝑡)2
= −

3ℎ′
𝑖
(𝑡)ℎ′′

𝑖
(𝑡)

ℎ𝑖(𝑡)
.

Finally, again recalling (4.5.1), notice that���� ℎ′𝑖(𝑡)ℎ𝑖(𝑡)

���� = �����
〈
𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖 , 𝒅𝑆𝑖

〉
ℎ𝑖(𝑡)2

����� =
�������
〈

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖√
𝛿2 +

𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2
2

,
𝒅𝑆𝑖√

𝛿2 +
𝒚𝑆𝑖 + 𝑡𝒅𝑆𝑖2

2

〉������� ≤ ∥𝒅𝑆𝑖 ∥2𝛿
.

Combining everything completes the proof of Lemma 4.5.7. □

We are now ready to prove the quasi-self-concordance of lse𝛽(ℎ(𝑡)) in ∥·∥𝒢∞ .

Lemma 4.5.8. For all 𝒚, 𝒅 ∈ R𝑚 and 𝑡 ∈ R, we have�����(𝑑𝑑𝑡)3
lse𝛽(ℎ(𝑡))

����� ≤ (
16
𝛽
+ 3

𝛿

)
∥𝒅∥𝒢∞

(
𝑑

𝑑𝑡

)2
lse𝛽(ℎ(𝑡)).

Proof of Lemma 4.5.8. In the statement of Lemma 4.5.3, let ∥·∥ = ∥·∥𝒢∞ . By the definition of
∥·∥𝒢∞ and ℎ𝑖 , we have for all 𝑖 and 𝑡 that ℎ′

𝑖
(𝑡) ≤ ∥𝒅∥𝒢∞ . Additionally, from Lemma 4.5.7, we

have that the ℎ𝑖(𝑡) are 3/𝛿-quasi-self-concordant in the norm ∥𝒅∥𝒢∞ for all 𝑖. Lemma 4.5.8 now
follows immediately from Lemma 4.5.3. □

Finally, we can prove Lemma 4.5.5.

Proof of Lemma 4.5.5. By the conclusion of Lemma 4.5.6, we know that for all 𝒚, 𝒅 ∈ R𝑚 and
𝑡 ∈ R that (

𝑑

𝑑𝑡

)2
lse𝛽(ℎ(𝑡)) ≤

(
1
𝛿
+ 1

𝛽

)
∥𝒛∥2𝒢∞ .

Let 𝒚 = A𝒙 − 𝒃 for some 𝒙 and 𝒅 = A𝒛 for some 𝒛. Let

𝑔(𝒚) B 𝛽 log
©«
𝑚∑
𝑖=1

exp
©«
√
𝛿2 +

𝒚𝑆𝑖2
2 − 𝛿

𝛽

ª®®¬
ª®®¬ .

Then, (
𝑑

𝑑𝑡

)2
�̃�𝛽,𝛿(𝒙 + 𝑡𝒛) =

(
𝑑

𝑑𝑡

)2
𝑔(A𝒙 − 𝒃 + 𝑡A𝒛) ≤

(
1
𝛿
+ 1

𝛽

)
∥A𝒛∥2𝒢∞ .

162

With the exact same reasoning applied to the conclusion of Lemma 4.5.8, we also see that�����(𝑑𝑑𝑡)3
�̃�𝛽,𝛿(𝒙 + 𝑡𝒛)

����� ≤ (
16
𝛿
+ 3

𝛽

)
∥A𝒛∥𝒢∞

(
𝑑

𝑑𝑡

)2
�̃�𝛽,𝛿(𝒙 + 𝑡𝒛).

The conclusion of Lemma 4.5.5 then follows from remembering that we have W such that for
all 𝒛 ∈ R𝑑, ∥A𝒛∥𝒢∞ ≤

W1/2A𝒛

2 (following from Theorem 4.2.2). □

4.5.4. Analysis of Algorithm 12

In this subsection, we use the calculus facts from the previous two subsections to analyze
Algorithm 12. The outline of this proof follows that of [JLS22, Theorem 2], which in turn builds
up to using the proof used in [CJJJLST20, Corollary 12]. The main idea is to define the algorithm
based on the norm given by a good choice of positive semidefinite M, given by Theorem 4.2.2.

In the rest of this section, let W be factor-2 block Lewis weight overestimates for [A|𝒃]. As in
Line 1 of Algorithm 12 and from the corresponding guarantee given in [MO25, Lemmas 5.6,
5.8], this means that within 2 log𝑚 linear system solves in A⊤DA for diagonal D, we can find
W such that for all 𝒙 ∈ R𝑑 and 𝑐 ∈ Rwe have

∥A𝒙 − 𝑐𝒃∥𝒢∞ ≤
W1/2A𝒙 − 𝑐W1/2𝒃

2
≤

√
2(rank (A) + 1) ∥A𝒙 − 𝑐𝒃∥𝒢∞ .

Note that choosing 𝑐 = 1 yields our original objective on either side of the above inequality.
Motivated by the above, it is natural to use the norm given by M B A⊤WA to give the geometry
for the ball optimization oracle and for the analysis. Additionally, without loss of generality
and for the sake of the analysis, let us rescale the problem so that

1 = OPT B
A𝒙★ − 𝒃

𝒢∞ .

Also, as mentioned earlier, assume without loss of generality that rank (A) = 𝑑.

We begin with Lemma 4.5.9, which bounds our initial suboptimality in �̃� and in ∥·∥M.

Lemma 4.5.9. Let �̃�𝛽,𝛿 B argmin
𝒙∈R𝑑

�̃�𝛽,𝛿(𝒙). Then,�̃�𝛽,𝛿 − 𝒙0

M ≤ (2 + 2(𝛽 log𝑚 + 𝛿))
√

2(𝑑 + 1)

�̃�𝛽,𝛿(𝒙0) − �̃�𝛽,𝛿 (̃𝒙𝛽,𝛿) ≤
√

2(𝑑 + 1) − 1 + 2(𝛽 log𝑚 + 𝛿)
.

Proof of Lemma 4.5.9. It is easy to check that

𝒙0 B
(
A⊤WA

)−1 A⊤W𝒃 = argmin
𝒙∈R𝑑

W1/2A𝒙 −W1/2𝒃

2
.

By Lemma 4.5.1, for all 𝒙 ∈ R𝑑,��� �̃�𝛽,𝛿(𝒙) − ∥A𝒙 − 𝒃∥𝒢∞
��� ≤ 𝛽 log𝑚 + 𝛿,

implying ���A𝒙★ − 𝒃

𝒢∞ − �̃�𝛽,𝛿 (̃𝒙𝛽,𝛿)

��� ≤ 𝛽 log𝑚 + 𝛿.

163

Combining this with Theorem 4.2.2, we get

1 ≤
A𝒙★ − 𝒃

𝒢∞ ≤ ∥A𝒙0 − 𝒃∥𝒢∞ ≤

W1/2A𝒙0 −W1/2𝒃

2

and W1/2A𝒙0 −W1/2𝒃

2√
2(𝑑 + 1)

≤
W1/2A𝒙★ −W1/2𝒃

2√

2(𝑑 + 1)
≤

A𝒙★ − 𝒃

𝒢∞ = 1.

Combining these gives

1 ≤
W1/2A𝒙0 −W1/2𝒃

2
≤

√
2(𝑑 + 1).

Additionally, W1/2A�̃�𝛽,𝛿 −W1/2𝒃

2
≤

√
2(𝑑 + 1)

A�̃�𝛽,𝛿 − 𝒃

𝒢∞

≤
√

2(𝑑 + 1)
(
�̃�𝛽,𝛿 (̃𝒙𝛽,𝛿) + 𝛽 log𝑚 + 𝛿

)
≤

√
2(𝑑 + 1)

(A𝒙★ − 𝒃

𝒢∞ + 2(𝛽 log𝑚 + 𝛿)

)
=

√
2(𝑑 + 1)(1 + 2(𝛽 log𝑚 + 𝛿)).

Then,

∥ �̃� − 𝒙0∥M =

(W1/2A�̃�𝛽,𝛿 −W1/2𝒃
)
−

(
W1/2A𝒙0 −W1/2𝒃

)
2

≤
W1/2A�̃�𝛽,𝛿 −W1/2𝒃

2
+

W1/2A𝒙0 −W1/2𝒃

2

≤ (2 + 2(𝛽 log𝑚 + 𝛿))
√

2(𝑑 + 1),

and

�̃�𝛽,𝛿(𝒙0) − �̃�𝛽,𝛿 (̃𝒙𝛽,𝛿) ≤ ∥A𝒙0 − 𝒃∥𝒢∞ −
A𝒙★ − 𝒃

𝒢∞ + 2(𝛽 log𝑚 + 𝛿)

≤
W1/2A𝒙0 −W1/2𝒃

2
− OPT + 2(𝛽 log𝑚 + 𝛿)

≤
√

2(𝑑 + 1) − 1 + 2(𝛽 log𝑚 + 𝛿).

This completes the proof of Lemma 4.5.9. □

We are now ready to prove Theorem 12.

Proof of Theorem 12. Algorithm 12 optimizes the regularization of �̃� given by

�̂� (𝒙) B �̃�𝛽,𝛿(𝒙) +
𝜀

110𝑅2

W1/2A(𝒙 − 𝒙0)
2

2
,

where 𝑅 is such that
𝒙0 − �̃�𝛽,𝛿

M ≤ 𝑅. Let �̂� B argmin

𝒙∈R𝑑
�̂� (𝒙). Using [CJJJLST20, Proof of

Corollary 12], we know that for every iterate 𝒙 of Algorithm 12,��� �̂� (𝒙) − �̃�𝛽,𝛿(𝒙)��� ≤ 𝜀
4 .

164

We now choose 𝛽 = 𝜀/(4 log𝑚) and 𝛿 = 𝜀/4, so that �̃�𝛽,𝛿 approximates 𝑓 up to error 𝜀/2 on
every point. Using Lemma 4.5.9, this gives 𝑅 = (2 + 𝜀)

√
2(𝑑 + 1). It is therefore sufficient to

optimize �̂� up to 𝜀/4 additive error.

Next, using Lemma 4.5.5 and [CJJJLST20, Lemmas 11, 43], we have that �̂� is (1/𝜈, 𝑒)-Hessian
stable in ∥·∥M for 𝜈 = Ω(1/(𝜀 log𝑚)). We now invoke [CJJJLST20, Theorem 9], which tells us

that we can implement a (𝐶/
√
𝑑, 𝐶/𝜀)-ball optimization oracle for 𝑓 with 𝑂

(
log

(
𝑑
𝜀

)2
)

linear

system solves.

The next step is to turn the ball optimization oracle into a 1
2 -MS oracle (Definition 4.4.1). Using

[CJJJLST20, Proposition 5], we get a ball oracle complexity of 𝑂
(
log

(
𝑑
𝜀

))
to implement the MS

oracle. In total, our linear system solve complexity for implementing the MS oracle for iteration

𝑡 is 𝑂
(
log

(
𝑑
𝜀

)3
)
.

Finally, using [CJJJLST20, Theorem 6], we get that Algorithm 12 has a Newton iteration com-
plexity of

𝑂
©«
(
(1 + 𝜀)

√
𝑑 log𝑚

𝜀

)2/3

log

(√
𝑑 + 𝜀
𝜀

) (
log

(
(log𝑚/𝜀)𝑑(1 + (1 + 𝜀)

√
𝑑 log𝑚/𝜀)

𝜀

))3ª®¬
= 𝑂

(
𝑑1/3

𝜀2/3 log
(
𝑑 log𝑚

𝜀

)14/3)
,

as promised.

Next, we analyze what happens if we fall in the case where W = I𝑚 . Here, by using the
√
𝑚

distortion from approximating ℓ𝑚∞ with ℓ𝑚2 , we have for all 𝒙 ∈ R𝑑,

∥A𝒙 − 𝒃∥2√
𝑚

≤ ∥A𝒙 − 𝒃∥𝒢∞ ≤ ∥A𝒙 − 𝒃∥2 .

Using this and repeating the previous analysis with this choice of M gives us a rate of

𝑂

(
𝑚1/3

𝜀2/3 log
(
𝑚 log𝑚

𝜀

)14/3)
,

as required.

It remains to determine the form of the Newton steps. For this, it is sufficient to understand
the Hessian of �̂� . A straightforward calculation shows that it is of the form A⊤BA where B is
a block-diagonal matrix where each block has size |𝑆𝑖 | × |𝑆𝑖 |. Thus, each Newton step solves a
linear system of the form A⊤BA𝒛 = 𝒗.

Combining this with the iteration complexity guarantee to find W (see Theorem 4.2.2) completes
the proof of Theorem 12. □

165

4.6. Interpolating between average and robust losses

In this section, we prove Theorem 13. As before, our proof follows the outline in Section 4.2.
The main technical challenges are to establish a form of strong convexity for our objective 𝑓

and then to build a solver for the proximal problem (4.2.2).

The rest of this section is organized as follows. In Section 4.6.1, we derive calculus facts about our
objective 𝑓 , including bounds on its Hessian and the promised strong convexity (particularly
Lemma 4.6.2 and the more general result it builds on, Lemma 4.6.3). In Section 4.6.2, we prove
some facts about the iterates of Algorithm 11 when applied to our setting. In Section 4.6.3, we
more precisely define and analyze our solver for proximal sub-problems. This section is fairly
technical and we give a more detailed outline there. Finally, in Section 4.6.4, we assemble all
these components and analyze Algorithm 14, thereby proving Theorem 13.

Throughout this analysis, we rescale the problem so that 𝑓 (𝒙★) = 1. It is now sufficient to solve
for an 𝜀-additive error solution.

4.6.1. Calculus for the objective

In this section, we work out some calculus facts related to our objective ∥A𝒙 − 𝒃∥𝑝𝒢𝑝 . Throughout
this discussion, let 𝑓 (𝒙) B ∥A𝒙 − 𝒃∥𝑝𝒢𝑝 .

Lemma 4.6.1. For any 𝒛 ∈ R𝑑, we have

𝑝

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22 ≤ 𝒛⊤

(
∇2 𝑓 (𝒙)

)
𝒛 ≤ 𝑝(𝑝 − 1)

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22 .

Proof of Lemma 4.6.1. Let us first calculate the derivative and hessian for 𝑓 (·) using the chain
rule and usual matrix differentiation rules:

𝑓 (𝒙) =
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝

2 ,

∇ 𝑓 (𝒙) = 𝑝

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 A⊤𝑆𝑖 (A𝑆𝑖𝒙 − 𝒃𝑆𝑖) , (4.6.1)

∇2 𝑓 (𝒙) = 𝑝

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 A⊤𝑆𝑖A𝑆𝑖

+ 𝑝(𝑝 − 2)
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−4
2

(
A⊤𝑆𝑖 (A𝑆𝑖𝒙 − 𝒃𝑆𝑖)(A𝑆𝑖𝒙 − 𝒃𝑆𝑖)⊤A𝑆𝑖

)
. (4.6.2)

Using this formula, we take the quadratic form with respect to a vector 𝒛. By Cauchy-Schwarz,
notice that

𝒛⊤ ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥
𝑝−4
2

(
A⊤𝑆𝑖 (A𝑆𝑖𝒙 − 𝒃𝑆𝑖)(A𝑆𝑖𝒙 − 𝒃𝑆𝑖)⊤A𝑆𝑖

)
𝒛

= ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥
𝑝−4
2 ⟨A𝑆𝑖𝒛,A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ⟩2 ≤ ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22 .

166

With that, we have

𝒛⊤
(
∇2 𝑓 (𝒙)

)
𝒛 ≤ 𝑝

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥𝑝−2 ∥A𝑆𝑖𝒛∥22 + (𝑝 − 2) ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥𝑝−2 ∥A𝑆𝑖𝒛∥22 ,

= 𝑝(𝑝 − 1)
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22 . (4.6.3)

For the lower bound, we use our calculation for ∇2 𝑓 (𝒙) to write

𝒛⊤
(
∇2 𝑓 (𝒙)

)
𝒛 ≥ 𝑝

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22 ,

completing the proof of Lemma 4.6.1. □

Strong convexity of the objective

The main pair of results of this section are Lemma 4.6.2 and Lemma 4.6.3. We can think of
Lemma 4.6.2 as a form of strong convexity for our objective.

Lemma 4.6.2 (Strong convexity of 𝑓). Let 𝑓 (𝒙) B ∥A𝒙 − 𝒃∥𝑝𝒢𝑝 . For all 𝒅 ∈ R𝑑, we have

𝑓 (𝒙 + 𝒅) ≥ 𝑓 (𝒙) + ⟨∇ 𝑓 (𝒙), 𝒅⟩ + 4
2𝑝 ∥A𝒅∥𝑝𝒢𝑝 ,

and therefore 𝒙 − 𝒙★

M ≤ 23/2−3/𝑝𝑑1/2−1/𝑝(𝑓 (𝒙) − 𝑓 (𝒙★))1/𝑝 .

Lemma 4.6.3 (Strong convexity of ∥𝒚∥𝑝2). Let 𝒗 ∈ R𝑘 for 𝑘 ≥ 1. For any △ ∈ R𝑘 , we have

∥𝒗 + △∥𝑝2 ≥ ∥𝒗∥
𝑝

2 + 𝑝 ∥𝒗∥
𝑝−2
2 ⟨𝒗 , △⟩ + 4

2𝑝 ∥△∥
𝑝

2 .

To motivate Lemma 4.6.3, let us see how Lemma 4.6.3 implies Lemma 4.6.2.

Proof of Lemma 4.6.2. Note that

∇ 𝑓 (𝒙) =
𝑚∑
𝑖=1

𝑝 ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥
𝑝−2
2 A⊤𝑆𝑖 (A𝑆𝑖𝒙 − 𝒃𝑆𝑖) .

This implies
𝑚∑
𝑖=1

𝑝 ∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥
𝑝−2
2 ⟨A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ,A𝑆𝑖𝒅⟩ = ⟨∇ 𝑓 (𝒙), 𝒅⟩ .

Combining this and applying Lemma 4.6.3 (which is a strong convexity lemma for ∥ · ∥𝑝2 that
we prove subsequently in this section), we get

𝑓 (𝒙 + 𝒅) = ∥A(𝒙 + 𝒅) − 𝒃∥𝑝𝒢𝑝 = ∥A𝒅 + (A𝒙 − 𝒃)∥𝑝𝒢𝑝 ,

167

=

𝑚∑
𝑖=1
∥A𝑆𝑖𝒅 + (A𝑆𝑖𝒙 − 𝒃𝑆𝑖)∥

𝑝

2 ,

≥(Lemma 4.6.3)
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝

2 + 𝑝∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥
𝑝−2
2 ⟨(A𝑆𝑖𝒙 − 𝒃𝑆𝑖),A𝑆𝑖𝒅⟩ +

4
2𝑝 ∥A𝑆𝑖𝒅∥

𝑝

2 ,

=

𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝

2 +
〈
𝑝∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 A⊤𝑆𝑖 (A𝑆𝑖𝒙 − 𝒃𝑆𝑖), 𝒅

〉
+ 4

2𝑝 ∥A𝑆𝑖𝒅∥
𝑝

2 ,

=(4.6.1) ∥A𝒙 − 𝒃∥𝑝𝒢𝑝 + ⟨∇ 𝑓 (𝒙), 𝒅⟩ +
4
2𝑝 ∥A𝒅∥𝑝𝒢𝑝 = 𝑓 (𝒙) + ⟨∇ 𝑓 (𝒙), 𝒅⟩ + 4

2𝑝 ∥A𝒅∥𝑝𝒢𝑝 .

We now take care of the second statement. Observe that at optimality, we have ∇ 𝑓 (𝒙★) = 0.
Plugging this in (replace 𝒙 by 𝒙★ and 𝒅 by 𝒙−𝒙★ above), rearranging, and taking 𝑝th roots givesA(𝒙 − 𝒙★)

𝒢𝑝 ≤

(4
2𝑝

)−1/𝑝
(𝑓 (𝒙) − 𝑓 (𝒙★))1/𝑝 = 2

41/𝑝 (𝑓 (𝒙) − 𝑓 (𝒙
★))1/𝑝 .

Next, recall that by Theorem 4.2.2,𝒙 − 𝒙★

M =

W1/2−1/𝑝A(𝒙 − 𝒙★)

2
≤ (2𝑑)1/2−1/𝑝 A(𝒙 − 𝒙★)

𝒢𝑝 .

Stitching the inequalities together completes the proof of Lemma 4.6.2. □

In the rest of this subsection, we prove Lemma 4.6.3. We begin with a few numerical inequalities.

Lemma 4.6.4. For 𝛼 ≤ −1/2 and 𝑝 ≥ 2, 𝑔(𝛼) := 1+𝑝𝛼
(−(2𝛼+1))𝑝/2 is nonincreasing in 𝛼.

Proof of Lemma 4.6.4. We first take the derivative of 𝑔 with respect to 𝛼,

𝑔′(𝛼) =
𝑝(−(2𝛼 + 1))𝑝/2 −

(
(−2) 𝑝2 (−(2𝛼 + 1))𝑝/2−1

)
(1 + 𝑝𝛼)

(−(2𝛼 + 1))𝑝 ,

=
𝑝(−(2𝛼 + 1)𝑝/2) + 𝑝 (−(2𝛼 + 1))𝑝/2−1 (1 + 𝑝𝛼)

(−(2𝛼 + 1))𝑝 ,

= 𝑝 · (−(2𝛼 + 1)) + (1 + 𝑝𝛼)
(−(2𝛼 + 1))𝑝/2+1

,

= 𝑝 · (𝑝 − 2)𝛼
(−(2𝛼 + 1))𝑝/2+1

≤ 0 ,

where in the final inequality we used that 𝑝 ≥ 2 and 𝛼 ≤ −1/2. This completes the proof of the
lemma. □

We also need the following lemma, which is similar to a result due to Adil, Kyng, Peng, and
Sachdeva [AKPS19, Lemma 4.5]. It amounts to proving Lemma 4.6.3 when the dimension
𝑘 = 1.

Lemma 4.6.5 (Case A. of Lemma 4.6.6). For any 𝛼 ∈ R and 𝑝 ≥ 2,

|1 + 𝛼 |𝑝 ≥ 1 + 𝑝𝛼 + 4
2𝑝 |𝛼 |

𝑝 .

168

Proof of Lemma 4.6.5. Note that the inequality is true when 𝑝 = 2 and becomes an equality. We
consider the case when 𝑝 > 2 and use ℎ(𝛼) to denote the error function,

ℎ(𝛼) B |1 + 𝛼 |𝑝 −
(
1 + 𝑝𝛼 + 4

2𝑝 |𝛼 |
𝑝
)
.

We aim to show ℎ(𝛼) ≥ 0 for all 𝛼 ∈ R. Let us first write the derivatives of ℎ.

ℎ′(𝛼) = 𝑝
(
|1 + 𝛼 |𝑝−2 (1 + 𝛼) −

(
1 + 4

2𝑝 |𝛼 |
𝑝−2 𝛼

))
,

ℎ′′(𝛼) = 𝑝(𝑝 − 1)
(
|1 + 𝛼 |𝑝−2 − 4

2𝑝 |𝛼 |
𝑝−2

)
= 𝑝(𝑝 − 1)

(
|1 + 𝛼 |𝑝−2 −

���𝛼2 ���𝑝−2
)
.

It is now easy to verify the following statements about ℎ,

I. ℎ′(−2) = ℎ′′(−2) = 0 and ℎ′′(𝛼) > 0 for 𝛼 < −2,⇒ within the range (−∞,−2] the function
ℎ is minimized at −2;

II. ℎ′(−2) = 0 and ℎ′′(𝛼) ≤ 0 for 𝛼 ∈ (−2,−2/3] ⇒ ℎ′(𝛼) < 0 in the range (−2,−2/3], i.e., in
that range the function ℎ is minimized at −2/3;

III. ℎ′(−2/3) < 0 = ℎ′(0) and ℎ′′(𝛼) > 0 for 𝛼 > −2/3⇒ the function ℎ is decreasing in (−2/3, 0)
and increasing in [0,∞), i.e., within the range (−2/3,∞) the function ℎ is minimized at 0.

As a result of the above observations, it is enough to check the inequality at the inputs 𝛼 ∈
{−2,−2/3, 0}. We have for 𝑝 > 2,

ℎ(−2) = 1 − (1 − 2𝑝 + 4) = 2𝑝 − 4 > 0 ,

ℎ
(
−2

3

)
=

1
3𝑝 −

(
1 − 2𝑝

3 +
4
2𝑝

���23 ���𝑝) =
1
3𝑝 − 1 + 2𝑝

3 −
4
3𝑝 = −1 + 2𝑝

3 −
3
3𝑝 > 0

ℎ(0) = 1 − 1 = 0 .

This implies that ℎ(𝛼) ≥ 0 for all values of 𝛼, concluding the proof of Lemma 4.6.5. □

Next, we prove a special case of Lemma 4.6.3.

Lemma 4.6.6. For any 𝛼 ∈ R, 𝛽 ≥ 0, and 𝑝 ≥ 2, we have(
(1 + 𝛼)2 + 𝛽2)𝑝/2 ≥ 1 + 𝑝𝛼 + 4

2𝑝
(
𝛼2 + 𝛽2)𝑝/2 .

Proof of Lemma 4.6.6. Let us study the difference of both sides of the inequality using the fol-
lowing function,

ℎ(𝛼, 𝛽) B
(
(1 + 𝛼)2 + 𝛽2)𝑝/2 − (

1 + 𝑝𝛼 + 4
2𝑝

(
𝛼2 + 𝛽2)𝑝/2) .

We want to show that for 𝛼 ∈ R, 𝛽 ≥ 0, and 𝑝 ≥ 2, ℎ(𝛼, 𝛽) ≥ 0. We will break this proof into
three cases: A. 𝛼 ∈ R and 𝛽 = 0; B. 𝛼 ∈ (−∞,−2] ∪ [−2/3,∞) and 𝛽 > 0; and C. 𝛼 ∈ (−2,−2/3)
and 𝛽 > 0. These cases together cover of the entire range of 𝛼 ∈ R and 𝛽 ≥ 0.

169

Case A. When 𝛽 = 0, the proof simply follows from the statement of Lemma 4.6.5 by noting
|𝛼 |𝑝 = (

√
𝛼2)𝑝 = (𝛼2)𝑝/2.

In the remaining two cases we will show that for any 𝛼 ∈ R, increasing the value of 𝛽 still
maintains ℎ(𝛼, 𝛽) ≥ 0. To see this, we first note that the derivative of ℎ(𝛼, 𝛽)w.r.t. 𝛽 is given by,

∇𝛽ℎ(𝛼, 𝛽) = 𝑝𝛽
((
(1 + 𝛼)2 + 𝛽2)𝑝/2−1 − 4

2𝑝
(
𝛼2 + 𝛽2)𝑝/2−1

)
.

For 𝛽 > 0, ensuring this derivative is positive is equivalent to the following,

∇𝛽ℎ(𝛼, 𝛽) > 0 ≡ 𝑝𝛽
(
(1 + 𝛼)2 + 𝛽2)𝑝/2−1

> 𝑝𝛽 · 4
2𝑝

(
𝛼2 + 𝛽2)𝑝/2−1

,

≡(𝑝𝛽>0) (1 + 𝛼)2 + 𝛽2 >
(1
2𝑝−2

)2/(𝑝−2)
·
(
𝛼2 + 𝛽2) ,

≡ (1 + 𝛼)2 + 𝛽2 >
1
4 ·

(
𝛼2 + 𝛽2) ,

≡ (3𝛼2 + 8𝛼 + 4) + 3𝛽2 > 0 ,

≡ 𝛽2 > −
(
𝛼2 + 8

3𝛼 +
4
3

)
. (4.6.4)

Case B. Note that the roots of the quadratic function 3𝛼2 + 8𝛼 + 4 are given by 𝛼1 = −2 and
𝛼2 = −2/3. This means that for 𝛼 ∈ (−∞,−2] ∪ [−2/3,∞) we have 3𝛼2 + 8𝛼 + 4 ≥ 0 which is
sufficient to ensure using (4.6.4) that ∇𝛽ℎ(𝛼, 𝛽) > 0, and hence ℎ(𝛼, 𝛽) > 0. This takes care of
Case B.

Case C. Now we only need to consider the range 𝛼 ∈ (−2,−2/3)with 𝛽 > 0. In this range, the
recall the equivalence (4.6.4),

∇𝛽ℎ(𝛼, 𝛽) > 0 ≡ 𝛽 >

√
−

(
𝛼2 + 8

3𝛼 +
4
3

)
=: 𝛽0(𝛼) .

Thus for all 𝛽 > 𝛽0(𝛼)we know that ℎ(𝛼, 𝛽) is increasing in 𝛽 and vice-versa. This allows us for
any given 𝛼 ∈ (−2,−2/3) to further break Case C into two sub-cases:

Case C.I For 𝛽 ∈ [0, 𝛽0), since ℎ(𝛼, 𝛽) is decreasing in 𝛽 its lowest value is attained at 𝛽 = 0
and we only need to verify that ℎ(𝛼, 0) ≥ 0. We get this directly from Lemma 4.6.5.

Case C.II For 𝛽 ∈ [𝛽0 ,∞), since ℎ(𝛼, 𝛽) is increasing in 𝛽 its lowest value is attained at 𝛽 = 𝛽0
and we only need to verify that ℎ(𝛼, 𝛽0(𝛼)) ≥ 0. We first simplify the expression for ℎ(𝛼, 𝛽0(𝛼)),

ℎ(𝛼, 𝛽0(𝛼)) =
(
(1 + 𝛼)2 + 𝛽2

0
)𝑝/2 − (

1 + 𝑝𝛼 + 𝐾𝑝
(
𝛼2 + 𝛽2

0
)𝑝/2)

,

=

(
−1

3 −
2
3𝛼

)𝑝/2
−

(
1 + 𝑝𝛼 + 4

2𝑝
(
−8

3𝛼 −
4
3

)𝑝/2)
,

=

(
−1

3 −
2
3𝛼

)𝑝/2
−

(
1 + 𝑝𝛼 + 4

(
−2

3𝛼 −
1
3

)𝑝/2)
,

= −1 − 𝑝𝛼 − 3
(
−2

3𝛼 −
1
3

)𝑝/2
,

170

= −1 − 𝑝𝛼 − 1
3𝑝/2−1

(−2𝛼 − 1)𝑝/2 ,

= −(−2𝛼 − 1)𝑝/2
(

1 + 𝑝𝛼
(−2𝛼 − 1)𝑝/2

+ 1
3𝑝/2−1

)
.

Now since 𝛼 ∈ (−2,−2/3) < −1/2 we can use Lemma 4.6.4 to note that the first term is non-
decreasing in 𝛼 which means that its lowest value in this range can be lower bounded by its
value at 𝛼 = −2, i.e., for 𝛼 ∈ (−2,−2/3),

ℎ(𝛼, 𝛽0(𝛼)) ≥ ℎ(−2, 𝛽0(−2)) ,

= −3𝑝/2
(
1 − 2𝑝
3𝑝/2

+ 1
3𝑝/2−1

)
,

= 2𝑝 − 1 − 3 = 2(𝑝 − 2) > 0 ,

which finishes the proof of Case C.II and also Case C. Together Cases A, B and C complete the
proof of Lemma 4.6.6. □

We are now ready to prove Lemma 4.6.3.

Proof of Lemma 4.6.3. First, assume that ∥𝒗∥2 = 1. We will later extend the result to all 𝒗.

Since ∥𝒗∥2 = 1, we can write △ = 𝛼𝒗 + 𝛽𝒘 where ⟨𝒗 ,𝒘⟩ = 0 and ∥𝒘∥2 = 1, so that we have
∥△∥22 = 𝛼2 + 𝛽2. Without loss of generality, we have 𝛽 ≥ 0. Fixing 𝒘 and 𝛼 for now, it is enough
to show that for all 𝛽 ≥ 0, we have

∥(1 + 𝛼)𝒗 + 𝛽𝒘∥𝑝2 =
(
(1 + 𝛼)2 + 𝛽2)𝑝/2 ?

≥ 1 + 𝑝𝛼 + 4
2𝑝 ∥△∥

𝑝

2 = 1 + 𝑝𝛼 + 4
2𝑝

(
𝛼2 + 𝛽2)𝑝/2 .

This follows immediately by Lemma 4.6.6.

We now extend the result for all 𝒗. Let �̄� B 𝒗/∥𝒗∥2 and note that

∥𝒗 + △∥𝑝2 = ∥𝒗∥𝑝2
�̄� + △

∥𝒗∥2

𝑝
2
≥ ∥𝒗∥𝑝2

(
1 +

〈
�̄� ,
△
∥𝒗∥2

〉
+ 4

2𝑝

 △∥𝒗∥2
𝑝

2

)
= ∥𝒗∥𝑝2 + 𝑝 ∥𝒗∥

𝑝−2
2 ⟨𝒗 , △⟩ + 4

2𝑝 ∥△∥
𝑝

2 ,

completing the proof of Lemma 4.6.3. □

Smoothness of the objective

The main result of this subsection is Lemma 4.6.7.

Lemma 4.6.7. For all 𝒙 ∈ R𝑑, we have

𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 𝑝(𝑝 − 1)
2 𝑓 (𝒙)1−

2
𝑝
A(𝒙 − 𝒙★)

2
𝒢𝑝 .

Proof of Lemma 4.6.7. By Taylor’s/mean-value theorem, we can write for some 𝒚 on the line
connecting 𝒙★ and 𝒙,

𝑓 (𝒙) = 𝑓 (𝒙★) +
〈
∇ 𝑓 (𝒙★), 𝒙 − 𝒙★

〉
+ 1

2 (𝒙 − 𝒙★)⊤∇2 𝑓 (𝒚)(𝒙 − 𝒙★)

171

≤(4.6.3) 𝑓 (𝒙★) + 𝑝(𝑝 − 1)
2

𝑚∑
𝑖=1
∥A𝑆𝑖𝒚 − 𝒃𝑆𝑖 ∥

𝑝−2
2

A𝑆𝑖 (𝒙 − 𝒙★)
2

2

≤ 𝑓 (𝒙★) + 𝑝(𝑝 − 1)
2

(
𝑚∑
𝑖=1
∥A𝑆𝑖𝒚 − 𝒃𝑆𝑖 ∥

𝑝

2

) 𝑝−2
𝑝

(
𝑚∑
𝑖=1

A𝑆𝑖 (𝒙 − 𝒙★)
𝑝

2

) 2
𝑝

≤ 𝑓 (𝒙★) + 𝑝(𝑝 − 1)
2 𝑓 (𝒙)1−

2
𝑝
A(𝒙 − 𝒙★)

2
𝒢𝑝 ,

completing the proof of Lemma 4.6.7. □

4.6.2. Facts about the iterates

The main result of this section is Lemma 4.6.8. In words, Lemma 4.6.8 tells us that each proximal
query we make in Algorithm 11 (see Line 7 of Algorithm 11) has bounded objective value. We
will need this later when we argue about the convergence rates for the algorithms used to solve
the proximal subproblems.

Lemma 4.6.8. For all queries 𝒒𝑡 , we have

𝑓 (𝒒𝑡) ≤ 𝑓 (𝒙𝑡) + (9𝑝(𝑝 − 1))
𝑝
2 𝑑

𝑝
2−1.

Proof of Lemma 4.6.8. We establish the following upper bound on 𝑓 (𝒗𝑡) − 𝑓 (𝒙★) using the ingre-
dients developed so far:

𝑓 (𝒗𝑡) − 𝑓 (𝒙★) ≤
𝑝(𝑝 − 1)

2 𝑓 (𝒗𝑡)1−
2
𝑝
A(𝒗𝑡 − 𝒙★)

2
𝒢𝑝 (Lemma 4.6.7)

≤ 𝑝(𝑝 − 1)
2 𝑓 (𝒗𝑡)1−

2
𝑝
𝒗𝑡 − 𝒙★

2
M (Theorem 4.2.2)

≤ 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−
2
𝑝
𝒙0 − 𝒙★

2
M (Lemma 4.4.5)

≤ 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−
2
𝑝 22(2𝑑)1−

2
𝑝 (Theorem 4.2.2)

≤ 8𝑑1− 2
𝑝 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−

2
𝑝 .

Now, recall that we assume by rescaling that 𝑓 (𝒙★) = 1. From this, it trivially follows that
1 ≤ 𝑑1− 2

𝑝 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−
2
𝑝 . Combining these and re-arranging the above inequality leads to the

following polynomial inequality in 𝑓 (𝒗𝑡),

0 ≥ 𝑓 (𝒗𝑡) − 8𝑑1− 2
𝑝 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−

2
𝑝 − 1 ,

= 𝑓 (𝒗𝑡) − 9𝑑1− 2
𝑝 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−

2
𝑝 + 𝑑1− 2

𝑝 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−
2
𝑝 − 1 ,

≥ 𝑓 (𝒗𝑡) − 9𝑑1− 2
𝑝 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−

2
𝑝 , (4.6.5)

where in the last inequality we used the fact that the optimal value 𝑓 (𝒙★) = 1 (due to our
rescaling), which implies that for 𝑝 ≥ 2,

1 ≤ 𝑓 (𝒗𝑡) ≤ 𝑑1− 2
𝑝 𝑝(𝑝 − 1) 𝑓 (𝒗𝑡)1−

2
𝑝 .

Solving for 𝑓 (𝒗𝑡) in (4.6.5), we get

𝑓 (𝒗𝑡) ≤ (9𝑝(𝑝 − 1))
𝑝
2 𝑑

𝑝
2−1 .

172

Using the definition of 𝒒𝑡 from Algorithm 11 (Line 6) along with the convexity of 𝑓 (Jensen’s
inequality), and using our bound on 𝑓 (𝒗𝑡)we note that,

𝑓 (𝒒𝑡) ≤ 𝑓 (𝒙𝑡) + 𝑓 (𝒗𝑡) ,

≤ 𝑓 (𝒙𝑡) + (9𝑝(𝑝 − 1))
𝑝
2 𝑑

𝑝
2−1 ,

which completes the proof of Lemma 4.6.8. □

4.6.3. Proximal subproblems – calculus, algorithms, proofs

Let

𝑓𝒒𝑡 (̃𝒙) B 𝑓 (̃𝒙) + 𝑒𝑝𝑝
�̃� − 𝒒𝑡

𝑝
M .

In this subsection, we design and analyze an algorithm (Algorithm 13) that approximately
solves the subproblem

argmin
�̃�∈R𝑑

𝑓𝒒𝑡 (̃𝒙).

Specifically, we will output (̃𝒙𝑡+1 ,𝜆𝑡+1) that satisfy the 1
2 -MS oracle condition (Definition 4.4.1)

and an appropriate movement bound (Definition 4.4.2).

This subproblem is the workhorse of Algorithm 14, and once we implement and analyze the
solver, it is very straightforward to plug this into Algorithm 11 and Theorem 4.4.3 to get our
final iteration complexity.

Algorithm 13 GpRegressionProxOracle: Implements 1
2 -MS oracle for ∥·∥𝒢𝑝 regression (see

Lemma 4.6.20 and Algorithm 10.
Require: Query 𝒒𝑡 , previous iterate 𝒙𝑡 , intended parameter distance 𝛾.

1: Define
𝑓𝒒𝑡 (̃𝒙) B 𝑓 (̃𝒙) + 𝑒𝑝𝑝

�̃� − 𝒒𝑡
𝑝

M

ℎ𝒒𝑡 (̃𝒙) B
�̃� − 𝒒𝑡

2
∇2 𝑓 (𝒒𝑡)

+ 𝑒𝑝𝑝
�̃� − 𝒒𝑡

𝑝
M

𝐷ℎ𝒒𝑡
(𝒙 , 𝒚) B ℎ𝒒𝑡 (𝒙) − ℎ𝒒𝑡 (𝒚) −

〈
∇ℎ𝒒𝑡 (𝒚), 𝒙 − 𝒚

〉
�̃�𝒒𝑡 B argmin

�̃�∈R𝑑
𝑓𝒒𝑡 (̃𝒙)

.

2: Let 𝑇 ≥ 𝐶𝑝𝑂(1)𝑒 log
(
𝑑𝑝𝑒ℎ𝒒𝑡 (̃𝒙𝒒𝑡)

(
4
𝑝𝛾

)𝑝)
.

3: Run Algorithm 10 with input iteration count 𝑇, base function 𝑓𝒒𝑡 , reference function ℎ𝒒𝑡 ,
and initialization 𝒒𝑡 .

The goal of the rest of this section is to analyze Algorithm 13. The analysis follows several
steps:

1. We find a reference function ℎ𝒒𝑡 that depends on the query point 𝒒𝑡 for which the
proximal objective 𝑓𝒒𝑡 is relatively smooth and relatively strongly convex with 𝑂(𝑝𝑂(1))
condition number (see Section 4.3 for a sense of why this is useful). The main result here
is Lemma 4.6.9.

173

2. We show that 𝑓𝒒𝑡 is strongly convex, following from Lemma 4.6.3. This will help us
understand the argument suboptimality for any point that approximately optimizes 𝑓𝒒𝑡
in function value. We also show that the reference function ℎ𝒒𝑡 is strongly convex, using
the same tools, for the same reason.

3. We show a form of smoothness for 𝑓𝒒𝑡 . This helps us bound the gradient of any point
that approximately optimizes 𝑓𝒒𝑡 . Combining these later will tell us that an approximate
solution to 𝑓𝒒𝑡 in argument value is also an approximate stationary point, i.e., it satisfies
the 1

2 -MS condition (Definition 4.4.1).

4. We solve the proximal subproblems. This solution itself follows a few steps:

a) We apply Theorem 4.3.1. This tells us that as long as we can approximately solve the
Bregman proximal problems (approximately implementing Line 3 in Algorithm 10),
we will be in good shape.

b) This means we have to figure out how to approximately solve problems of the form
argmin
𝒙∈R𝑑

⟨𝒈 , 𝒙⟩ + 𝐿ℎ𝒒𝑡 (𝒙), where 𝐿 is the smoothness constant derived for 𝑓𝒒𝑡 with

respect to ℎ𝒒𝑡 . We do this up to an accuracy that approximate mirror descent can
handle (see Theorem 4.3.1 for details on what we want this approximation to look
like). For the approximation to work, we need to approximately solve this problem
up to both argument accuracy and approximate stationarity. The main technical
result of interest here is Lemma 4.6.18.

5. We use the smoothness and strong convexity guarantees to show that our solution from
the previous step satisfies the 1

2 -MS oracle (Definition 4.4.1), which means we can plug-
and-play into Theorem 4.4.3.

Hessian stability

Throughout this section, we adopt the following notation:

𝐶𝑝 B 𝑒𝑝𝑝

𝑓 (𝒙) B
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝

2

𝑓𝒒(𝒙) B 𝑓 (𝒙) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M
ℎ𝒒(𝒙) B ∥𝒙 − 𝒒∥2∇2 𝑓 (𝒒) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M

We begin with proving our Hessian stability fact, which should also be equivalently viewed as
showing that 𝑓𝒒𝑡 is relatively smooth and relatively strongly convex in ℎ𝒒𝑡 with 𝑂(𝑝𝑂(1)) condi-
tion number. Our main result is Lemma 4.6.9 which relies on analytical results Lemma 4.6.10
and Lemma 4.6.11 that we prove later.

Lemma 4.6.9. For all 𝒙 ∈ R𝑑 and 𝑝 ≥ 2, we have

1
2𝑝 · 𝑒∇

2ℎ𝒒(𝒙) ⪯ ∇2 𝑓𝒒(𝒙) ⪯ 𝑝 · 𝑒∇2ℎ𝒒(𝒙) .

Proof of Lemma 4.6.9. Using an arbitrary 𝒛 ∈ R𝑑 we can write the following quadratic form of

174

the hessian of 𝑓 ,

𝒛⊤∇2 𝑓 (𝒙)𝒛 ≤(a) 𝑝 · (𝑝 − 1)
𝑚∑
𝑖=1
∥A𝑆𝑖𝒙 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22 ,

= 𝑝 · (𝑝 − 1)
𝑚∑
𝑖=1
∥A𝑆𝑖 (𝒙 − 𝒒) +A𝑆𝑖𝒒 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22 ,

≤(b) 𝑝 · (𝑝 − 1)
𝑚∑
𝑖=1

(
𝛼
𝑝−2
𝑝 ∥A𝑆𝑖 (𝒙 − 𝒒)∥𝑝−2

2 ∥A𝑆𝑖𝒛∥22 + 𝛽
𝑝−2
𝑝 ∥A𝑆𝑖𝒒 − 𝒃𝑆𝑖 ∥

𝑝−2
2 ∥A𝑆𝑖𝒛∥22

)
,

≤(c) 𝑝 · (𝑝 − 1) · 𝛼𝑝−2
𝑝

𝑚∑
𝑖=1
∥A𝑆𝑖 (𝒙 − 𝒒)∥𝑝−2

2 ∥A𝑆𝑖𝒛∥22 + (𝑝 − 1) · 𝛽𝑝−2
𝑝 𝒛⊤∇2 𝑓 (𝒒)𝒛 ,

≤(d) 𝑝 · (𝑝 − 1) · 𝛼𝑝−2
𝑝

(
∥𝒙 − 𝒒∥𝑝M

) (𝑝−2)/𝑝 (
∥𝒛∥𝑝M

)2/𝑝
+ (𝑝 − 1) · 𝛽𝑝−2

𝑝 𝒛⊤∇2 𝑓 (𝒒)𝒛 ,

= 𝑝 · (𝑝 − 1) · 𝛼𝑝−2
𝑝 ∥𝒙 − 𝒒∥𝑝−2

M ∥𝒛∥2M + (𝑝 − 1) · 𝛽𝑝−2
𝑝 𝒛⊤∇2 𝑓 (𝒒)𝒛 ,

≤(𝑒)
(𝑝 − 1) · 𝛼𝑝−2

𝑝

𝐶𝑝
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 + (𝑝 − 1) · 𝛽𝑝−2

𝑝 𝒛⊤∇2 𝑓 (𝒒)𝒛 , (4.6.6)

where in (a) we apply the upper bound from Lemma 4.6.1, in (b) we pick 𝛼𝑝 , 𝛽𝑝 ≥ 1 such that
1/𝛼𝑝 +1/𝛽𝑝 = 1 (we will choose them later), in (c) we apply the lower bound from Lemma 4.6.1,
in (d) we use the choice of our weights in designing M and Theorem 4.2.2 and finally in (e) we
use the following calculations for the regularizer term for some 𝒛 ∈ R𝑑,

𝑔𝒒(𝒙) B 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M ,

∇𝑔𝒒(𝒙) = 𝑝𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2
M M(𝒙 − 𝒒) ,

∇2𝑔𝒒(𝒙) = 𝑝𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2
M M + 𝑝(𝑝 − 2)𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−4

M M(𝒙 − 𝒒)(𝒙 − 𝒒)⊤M ,

𝒛⊤∇2𝑔𝒒(𝒙)𝒛 = 𝑝𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2
M ∥𝒛∥2M + 𝑝(𝑝 − 2)𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−4

M
(
(𝒙 − 𝒒)⊤M𝒛

)2 ≥(𝑝≥2) 0 .

Combining (4.6.6) with the definition of 𝑓𝒒 gives us,

𝒛⊤∇2 𝑓𝒒(𝒙)𝒛 = 𝒛⊤∇2 𝑓 (𝒙)𝒛 + 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

≤using (4.6.6) (𝑝 − 1) · 𝛽𝑝−2
𝑝 𝒛⊤∇2 𝑓 (𝒒)𝒛 +

(
1 +
(𝑝 − 1) · 𝛼𝑝−2

𝑝

𝐶𝑝

)
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 .

Thus, in order to finish the proof for the upper bound we need to pick 𝛼𝑝 , 𝛽𝑝 . We split the
analysis here into two cases: A. 𝑝 > 2 and B. 𝑝 = 2.

Case A. (𝑝 > 2) For simplicity we will just pick 𝛼𝑝 = 𝑝 − 1 and 𝛽𝑝 =
𝑝−1
𝑝−2 which implies,

𝒛⊤∇2 𝑓𝒒(𝒙)𝒛 ≤ (𝑝 − 1) ·
(
1 + 1

𝑝 − 2

)𝑝−2
𝒛⊤∇2 𝑓 (𝒒)𝒛 +

(
1 + (𝑝 − 1) · (𝑝 − 1)𝑝−2

𝐶𝑝

)
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

≤ (𝑝 − 1) · 𝑒𝒛⊤∇2 𝑓 (𝒒)𝒛 +
(
1 +
(𝑝 − 1)𝑝−1

𝐶𝑝

)
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

=
(𝑝 − 1) · 𝑒

2 𝒛⊤
(
∇2ℎ𝒒(𝒙) − ∇2𝑔𝒒(𝒙)

)
𝒛 +

(
1 +
(𝑝 − 1)𝑝−1

𝐶𝑝

)
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

≤(𝑝≥2) 𝑝 · 𝑒𝒛⊤∇2ℎ𝒒(𝒙)𝒛 +
(
1 + (𝑝 − 1)𝑝−1

𝐶𝑝
− (𝑝 − 1) · 𝑒

2

)
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

175

= 𝑝 · 𝑒𝒛⊤∇2ℎ𝒒(𝒙)𝒛 +
(
1 +
(𝑝 − 1)𝑝−1

𝑒𝑝𝑝
−
(𝑝 − 1) · 𝑒

2

)
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

≤(Lemma 4.6.10) 𝑝 · 𝑒𝒛⊤∇2ℎ𝒒(𝒙)𝒛 ,

where in the final inequality we use Lemma 4.6.10 which tell us that for 𝑝 ≥ 2 the constant in
front of 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 is negative along with the fact that 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 is non-negative. To get the
lower bound we first exchange 𝒙 , 𝒒 in (4.6.6) (and use the values of 𝛼𝑝 and 𝛽𝑝) to get,

𝒛⊤∇2 𝑓 (𝒒)𝒛 ≤ (𝑝 − 1) · (𝑝 − 1)𝑝 − 2
𝑒𝑝𝑝

𝒛⊤∇2𝑔𝒙(𝒒)𝒛 + (𝑝 − 1)
(
1 + 1

𝑝 − 2

)𝑝−2
𝒛⊤∇2 𝑓 (𝒙)𝒛 ,

⇒ 𝒛⊤∇2 𝑓 (𝒒)𝒛 ≤ (𝑝 − 1)𝑝−1

𝑒𝑝𝑝
𝒛⊤∇2𝑔𝒙(𝒒)𝒛 + (𝑝 − 1)𝑒𝒛⊤∇2 𝑓 (𝒙)𝒛 ,

⇒ 1
(𝑝 − 1)𝑒 𝒛

⊤∇2 𝑓 (𝒒)𝒛 − (𝑝 − 1)𝑝−2

𝑒2𝑝𝑝
𝒛⊤∇2𝑔𝒙(𝒒)𝒛 ≤ 𝒛⊤∇2 𝑓 (𝒙)𝒛 .

We can finally lower bound,

𝒛⊤∇2 𝑓𝒒(𝒙)𝒛 = 𝒛⊤∇2 𝑓 (𝒙)𝒛 + 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

≥ 1
(𝑝 − 1)𝑒 𝒛

⊤∇2 𝑓 (𝒒)𝒛 − (𝑝 − 1)𝑝−2

𝑒2𝑝𝑝
𝒛⊤∇2𝑔𝒙(𝒒)𝒛 + 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

=
1

2(𝑝 − 1)𝑒 𝒛
⊤ (
∇2ℎ𝒒(𝒙) − ∇2𝑔𝒒(𝒙)

)
𝒛 −
(𝑝 − 1)𝑝−2

𝑒2𝑝𝑝
𝒛⊤∇2𝑔𝒙(𝒒)𝒛 + 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

≥(𝑔𝒒(𝒙)=𝑔𝒙(𝒒)) 1
2𝑝𝑒 𝒛

⊤∇2ℎ𝒒(𝒙)𝒛 +
(
1 − 1

2(𝑝 − 1)𝑒 −
(𝑝 − 1)𝑝−2

𝑒2𝑝𝑝

)
𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

≥(Lemma 4.6.11) 1
2𝑝𝑒 𝒛

⊤∇2ℎ𝒒(𝒙)𝒛 ,

where in the final inequality we use Lemma 4.6.11 and the fact that 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 is non-negative.
This finishes the proof for Case A.

We finally consider the corner case with 𝑝 = 2.

Case B. (𝑝 = 2) In this case the proof is trivial, and follows from simply writing the quadratic
forms for 𝑓𝒒 and ℎ𝒒 . We do so below,

𝒛⊤∇2 𝑓𝒒(𝒙)𝒛 = 𝒛⊤∇2 𝑓 (𝒙)𝒛 + 𝒛⊤∇2𝑔𝒒(𝒙)𝒛 ,

= 𝒛⊤∇2 𝑓 (𝒙)𝒛 + 2𝐶2 ∥𝒛∥2M ,

≤ 2𝒛⊤∇2 𝑓 (𝒙)𝒛 + 2𝐶2 ∥𝒛∥2M = 𝒛⊤∇2ℎ𝒒(𝒙)𝒛 ,

which shows the relative smoothness with a constant of 1 which is smaller (and hence better)
than the claimed constant (for 𝑝 = 2) of 2𝑒 in the lemma. Now for the relative strong convexity
we do the same,

𝒛⊤∇2 𝑓𝒒(𝒙)𝒛 = 𝒛⊤∇2 𝑓 (𝒙)𝒛 + 2𝐶2 ∥𝒛∥2M ,

≥ 1
2 ·

(
2𝒛⊤∇2 𝑓 (𝒙)𝒛 + 2𝐶2 ∥𝒛∥2M

)
,

=
1
2𝒛
⊤∇2ℎ𝒒(𝒙)𝒛 ,

which shows relative strong-convexity with a constant of 1
2 which is larger (and hence better)

than the claimed constant (for 𝑝 = 2) of 1
4𝑒 in the lemma. This finishes the proof for Case B.

176

This completes the proof of Lemma 4.6.9. □

We prove two small technical lemmas that we used in the above proof now.

Lemma 4.6.10. For all 𝑝 ≥ 2, 𝑔(𝑝) = 1 + (𝑝−1)𝑝−1

𝑒𝑝𝑝 − (𝑝−1)·𝑒
2 ≤ 0.

Proof. First note that at 𝑝 = 2 the function takes a strictly negative value,

𝑔(2) = 1 + (1
𝑒22 −

𝑒

2 =
4𝑒 + 1 − 2𝑒2

4𝑒 < 0 .

We will now show that the function is increasing in 𝑝 for 𝑝 ≥ 2,

𝑔′(𝑝) = −
(𝑝 − 1)𝑝−1𝑝𝑝(ln(𝑝) + 1)

𝑝2𝑝
+
(𝑝 − 1)𝑝−1(ln(𝑝 − 1) + 1)

𝑝𝑝
− 𝑒2 ,

= −(𝑝 − 1)𝑝−1 ln(𝑝/(𝑝 − 1))
𝑝𝑝

− 𝑒2 < 0 .

Thus, the function attains its maximum value at 𝑝 = 2 in the range 𝑝 ≥ 2, implying it is strictly
negative in that range. □

Lemma 4.6.11. For all 𝑝 ≥ 2, 𝑔(𝑝) = 1 − 1
2(𝑝−1)𝑒 −

(𝑝−1)𝑝−2

𝑒2𝑝𝑝
≥ 0.

Proof. First note that at 𝑝 = 2 the function takes a strictly positive value,

𝑔(2) = 1 − 1
2𝑒 −

10

𝑒222 = 1 − 1
2𝑒 −

1
4𝑒2 =

4𝑒2 − 2𝑒 − 1
4𝑒2 > 0 .

We will now show that the function is increasing in 𝑝 for 𝑝 ≥ 2,

𝑔′(𝑝) = 1
2(𝑝 − 1)2𝑒 +

(𝑝 − 1)𝑝−2𝑝𝑝(ln(𝑝) + 1)
𝑒2𝑝2𝑝 − (𝑝 − 1)𝑝−2(ln(𝑝 − 1) + (𝑝 − 2)/(𝑝 − 1))

𝑒2𝑝𝑝
,

=
1

2(𝑝 − 1)2𝑒 +
(𝑝 − 1)𝑝−2(ln(𝑝) + 1)

𝑒2𝑝𝑝
− (𝑝 − 1)𝑝−2(ln(𝑝 − 1) + 1 − 1/(𝑝 − 1))

𝑒2𝑝𝑝
,

=
1

2(𝑝 − 1)2𝑒 +
(𝑝 − 1)𝑝−2 (ln(𝑝/(𝑝 − 1)) + 1/(𝑝 − 1))

𝑒2𝑝𝑝
> 0 .

Thus, the function 𝑔 attains its minimum value at 𝑝 = 2 in the range 𝑝 ≥ 2, implying that it is
strictly positive in that range. □

Strong convexity of the proximal objective and friends

We begin with showing that the proximal objective enjoys a form of strong convexity.

Lemma 4.6.12. For all 𝒙 , 𝒅 ∈ R𝑑, we have

𝑓𝒒(𝒙 + 𝒅) ≥ 𝑓𝒒(𝒙) +
〈
∇ 𝑓𝒒(𝒙), 𝒅

〉
+ 4

2𝑝
(
∥A𝒅∥𝑝𝒢𝑝 + 𝐶𝑝 ∥𝒅∥

𝑝

M

)
.

177

Proof of Lemma 4.6.12. Let 𝐾𝑝 B 4
2𝑝 .

The plan is to apply Lemma 4.6.3 to 𝑓𝒒(𝒙 + 𝒅). We start with the regularizer. Notice that

∥𝒙 + 𝒅 − 𝒒∥𝑝M =

M1/2(𝒙 + 𝒅 − 𝒒)
𝑝

2
=

M1/2(𝒙 − 𝒒) +M1/2𝒅
𝑝

2
,

≥(Lemma 4.6.3)
M1/2(𝒙 − 𝒒)

𝑝
2

(4.6.7)

+
〈
𝑝
M1/2(𝒙 − 𝒒)

𝑝−2

2
M1/2(𝒙 − 𝒒),M1/2𝒅

〉
+ 𝐾𝑝

M1/2𝒅
𝑝

2
,

= ∥𝒙 − 𝒒∥𝑝M +
〈
𝑝 ∥𝒙 − 𝒒∥𝑝−2

M M(𝒙 − 𝒒), 𝒅
〉
+ 𝐾𝑝 ∥𝒅∥𝑝M ,

= ∥𝒙 − 𝒒∥𝑝M +
〈
∇𝒙

(
∥𝒙 − 𝒒∥𝑝M

)
, 𝒅

〉
+ 𝐾𝑝 ∥𝒅∥𝑝M . (4.6.8)

We combine this with the conclusion of Lemma 4.6.2, giving

𝑓𝒒(𝒙 + 𝒅) = 𝑓 (𝒙 + 𝒅) + 𝐶𝑝 ∥𝒙 + 𝒅 − 𝒒∥𝑝M ,

≥(Lemma 4.6.2) 𝑓 (𝒙) + ⟨∇ 𝑓 (𝒙), 𝒅⟩ + 𝐾𝑝 ∥A𝒅∥𝑝𝒢𝑝 + 𝐶𝑝 ∥𝒙 + 𝒅 − 𝒒∥𝑝M ,

≥(4.6.8) 𝑓 (𝒙) + ⟨∇ 𝑓 (𝒙), 𝒅⟩ + 𝐾𝑝 ∥A𝒅∥𝑝𝒢𝑝 + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M
+ 𝐶𝑝

〈
∇𝒙

(
∥𝒙 − 𝒒∥𝑝M

)
, 𝒅

〉
+ 𝐾𝑝𝐶𝑝 ∥𝒅∥𝑝M ,

= 𝑓 (𝒙) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M +
〈
∇𝒙

(
𝑓 (𝒙) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M

)
, 𝒅

〉
+ 𝐾𝑝 ∥A𝒅∥𝑝𝒢𝑝 + 𝐾𝑝𝐶𝑝 ∥𝒅∥

𝑝

M ,

= 𝑓𝒒(𝒙) +
〈
∇ 𝑓𝒒(𝒙), 𝒅

〉
+ 𝐾𝑝

(
∥A𝒅∥𝑝𝒢𝑝 + 𝐶𝑝 ∥𝒅∥

𝑝

M

)
.

completing the proof of Lemma 4.6.12. □

We also show that the subproblems we solve in Line 3 of Algorithm 10 are strongly convex.

Lemma 4.6.13. Fix 𝒛, 𝒒 , 𝒅 ∈ R𝑑 and let 𝐿 > 0. Consider the function

𝑔(𝒙) B ⟨𝒛, 𝒙⟩ + 𝐿
(
∥𝒙 − 𝒒∥2∇2 𝑓 (𝒒) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M

)
.

Then,

𝑔(𝒙 + 𝒅) ≥ 𝑔(𝒙) + ⟨∇𝑔(𝒙), 𝒅⟩ + 𝐿
(
∥𝒅∥2∇2 𝑓 (𝒒) +

4𝐶𝑝
2𝑝 ∥𝒅∥

𝑝

M

)
.

In particular, if 𝒛 is the minimizer for 𝑔, then for any 𝒅 ∈ R𝑑, we have

∥𝒅∥M ≤
2

𝑝 · (4𝑒)1/𝑝

(
𝑔(𝒛 + 𝒅) − 𝑔(𝒛)

𝐿

)1/𝑝
.

Proof of Lemma 4.6.13. This is pretty much the same proof as Lemma 4.6.12. It is easy to check
that

∥(𝒙 + 𝒅) − 𝒒∥2∇2 𝑓 (𝒒) = ∥𝒙 − 𝒒∥2∇2 𝑓 (𝒒) +
〈
2∇2 𝑓 (𝒒)(𝒙 − 𝒒), 𝒅

〉
+ ∥𝒅∥2∇2 𝑓 (𝒒) , (4.6.9)

178

and using Lemma 4.6.3 in the same way as in the proof of Lemma 4.6.12, we have

∥(𝒙 + 𝒅) − 𝒒∥𝑝M ≥
(4.6.8) ∥𝒙 − 𝒒∥𝑝M +

〈
𝑝 ∥𝒙 − 𝒒∥𝑝−2

M M(𝒙 − 𝒒), 𝒅
〉
+ 4

2𝑝 ∥𝒅∥
𝑝

M .

Combining this with the definition of 𝑔 gives the following,

𝑔(𝒙 + 𝒅) = ⟨𝒛, 𝒙 + 𝒅⟩ + 𝐿
(
∥𝒙 + 𝒅 − 𝒒∥2∇2 𝑓 (𝒒) + 𝐶𝑝 ∥𝒙 + 𝒅 − 𝒒∥𝑝M

)
,

≥(4.6.9), (4.6.8) ⟨𝒛, 𝒙⟩ + ⟨𝒛, 𝒅⟩ + 𝐿 ∥𝒙 − 𝒒∥2∇2 𝑓 (𝒒) + 𝐿
〈
2∇2 𝑓 (𝒒)(𝒙 − 𝒒), 𝒅

〉
+ 𝐿 ∥𝒅∥2∇2 𝑓 (𝒒) + 𝐿𝐶𝑝

(
∥𝒙 − 𝒒∥𝑝M +

〈
𝑝 ∥𝒙 − 𝒒∥𝑝−2

M M(𝒙 − 𝒒), 𝒅
〉
+ 4

2𝑝 ∥𝒅∥
𝑝

M

)
,

= 𝑔(𝒙) +
〈
𝒛 + 2𝐿∇2 𝑓 (𝒒)(𝒙 − 𝒒) + 𝐿𝐶𝑝𝑝 ∥𝒙 − 𝒒∥𝑝−2

M M(𝒙 − 𝒒), 𝒅
〉

+ 𝐿
(
∥𝒅∥2∇2 𝑓 (𝒒) +

4𝐶𝑝
2𝑝 ∥𝒅∥

𝑝

M

)
,

= 𝑔(𝒙) + ⟨∇𝑔(𝒙), 𝒅⟩ + 𝐿
(
∥𝒅∥2∇2 𝑓 (𝒒) +

4𝐶𝑝
2𝑝 ∥𝒅∥

𝑝

M

)
,

which proves the first result of the lemma.

To get the second result, we observe that ∇𝑔(𝒛) = 0 by the optimality of 𝒛. Ignoring the
∥𝒅∥∇2 𝑓 (𝒒) terms and rearranging gives the conclusion of Lemma 4.6.13. □

Smoothness of the proximal objective

We first bound the operator norm of a matrix related to the Hessian of the proximal objective.

Lemma 4.6.14. For all 𝒒 , 𝒚 ∈ R𝑑, we haveM−1/2 (
∇2 𝑓𝒒(𝒚)

)
M−1/2

op
≤ 𝑒𝑝2(𝑝 − 1)

(
2 𝑓 (𝒒)1−

2
𝑝 + 𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2

M

)
.

Proof of Lemma 4.6.14. Recall from the proof of Lemma 4.6.9 the definition of the regularization
term 𝑔𝒒(𝒚) B 𝐶𝑝 ∥𝒚 − 𝒒∥𝑝M for 𝐶𝑝 = 𝑒𝑝𝑝 as well as the following calculations,

𝑔𝒒(𝒚) B 𝐶𝑝 ∥𝒚 − 𝒒∥𝑝M ,

∇𝑔𝒒(𝒚) = 𝑝𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2
M M(𝒚 − 𝒒) ,

∇2𝑔𝒒(𝒚) = 𝑝𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2
M M + 𝑝(𝑝 − 2)𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−4

M M(𝒚 − 𝒒)(𝒚 − 𝒒)⊤M .

By Lemma 4.6.9, we know that

∇2 𝑓𝒒(𝒚) ⪯ 𝑒𝑝
(
2∇2 𝑓 (𝒒) + ∇2𝑔𝒒(𝒚)

)
.

Observe that

M−1/2 (
∇2𝑔𝒒(𝒚)

)
M−1/2 = 𝑝𝐶𝑝

(
∥𝒚 − 𝒒∥𝑝−2

M + (𝑝 − 2) ∥𝒚 − 𝒒∥𝑝−4
M M1/2(𝒚 − 𝒒)(𝒚 − 𝒒)⊤M1/2

)
,

⪯ 𝑝𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2
M I + (𝑝 − 2) ∥𝒚 − 𝒒∥𝑝−4

M

M1/2(𝒚 − 𝒒)(𝒚 − 𝒒)⊤M1/2

op
I ,

⪯ 𝑝𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2
M I + (𝑝 − 2) ∥𝒚 − 𝒒∥𝑝−4

M

M1/2(𝒚 − 𝒒)
2

2
I ,

179

⪯ 𝑝(𝑝 − 1)𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2
M I ,

and, applying Lemma 4.6.1 (with M−1/2𝒛 as the vectors in the quadratic form) and Hölder
inequality with norms ∥ · ∥𝑝/(𝑝−2) , ∥ · ∥𝑝/2, for 𝒛 ∈ R𝑑 we have

𝒛⊤M−1/2 (
∇2 𝑓 (𝒒)

)
M−1/2𝒛 ≤ 𝑝(𝑝 − 1)

𝑚∑
𝑖=1
∥A𝑆𝑖𝒒 − 𝒃𝑆𝑖 ∥

𝑝−2
2

A𝑆𝑖M−1/2𝒛
2

2

≤ 𝑝(𝑝 − 1)
(
𝑚∑
𝑖=1
∥A𝑆𝑖𝒒 − 𝒃𝑆𝑖 ∥

𝑝

2

) 𝑝−2
𝑝

(
𝑚∑
𝑖=1

A𝑆𝑖M−1/2𝒛
𝑝

2

) 2
𝑝

≤ 𝑝(𝑝 − 1) 𝑓 (𝒒)1−
2
𝑝

M−1/2𝒛
2

M
= 𝑝(𝑝 − 1) 𝑓 (𝒒)1−

2
𝑝 ∥𝒛∥22 .

Combining gives

M−1/2 (
∇2 𝑓𝒒(𝒚)

)
M−1/2 ⪯ 𝑒𝑝M−1/2 (

2∇2 𝑓 (𝒒) + ∇2𝑔𝒒(𝒚)
)
M−1/2 ,

⪯ 2𝑒𝑝2(𝑝 − 1) 𝑓 (𝒒)1−
2
𝑝 + 𝑒𝑝2(𝑝 − 1)𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2

M ,

⪯ 𝑒𝑝2(𝑝 − 1)
(
2 𝑓 (𝒒)1−

2
𝑝 + 𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2

M

)
,

completing the proof of Lemma 4.6.14. □

Next, we show a bound on the norm of the gradient of any solution 𝒙 that is approximately
optimal for 𝑓𝒒 .

Lemma 4.6.15. For all 𝒒 , 𝒙 ∈ R𝑑, we haveM−1∇ 𝑓𝒒(𝒙)

M ≤ 𝑒𝑝
2(𝑝 − 1)

(
𝑓 (𝒒)1−

2
𝑝 + 𝐶𝑝 max

{
∥𝒙 − 𝒒∥M ,

𝒙𝒒 − 𝒒

M
}𝑝−2

) 𝒙 − 𝒙𝒒

M .

Proof of Lemma 4.6.15. We use a continuity argument. By Taylor’s theorem, we know for some
𝒚 along the line connecting 𝒙 and 𝒙𝒒 (minimizer of 𝑓𝒒) that

∇ 𝑓𝒒(𝒙) = ∇ 𝑓𝒒(𝒙𝒒) + ∇2 𝑓𝒒(𝒚)(𝒙 − 𝒙𝒒) = ∇2 𝑓𝒒(𝒚)(𝒙 − 𝒙𝒒) .

Taking M−1-norm of both sides gives,∇ 𝑓𝒒(𝒙)M−1 =

M−1/2∇ 𝑓𝒒(𝒙)

2
,

=

M−1/2∇2 𝑓𝒒(𝒚)(𝒙 − 𝒙𝒒)

2
,

=

M−1/2∇2 𝑓𝒒(𝒚)M−1/2M1/2(𝒙 − 𝒙𝒒)

2
,

≤
M−1/2 (

∇2 𝑓𝒒(𝒚)
)
M−1/2

op
·
𝒙 − 𝒙𝒒

M .

The rest of the proof involves bounding the operator norm term. This follows directly from
Lemma 4.6.14, from which we get (using convexity of ∥ · ∥M),M−1/2∇2 𝑓𝒒(𝒚)M−1/2

op
≤ 𝑒𝑝2(𝑝 − 1)

(
2 𝑓 (𝒒)1−

2
𝑝 + 𝐶𝑝 ∥𝒚 − 𝒒∥𝑝−2

M

)
≤ 𝑒𝑝2(𝑝 − 1)

(
2 𝑓 (𝒒)1−

2
𝑝 + 𝐶𝑝 max

{
∥𝒙 − 𝒒∥M ,

𝒙𝒒 − 𝒒

M
}𝑝−2

)
.

180

Putting everything together, we getM−1∇ 𝑓𝒒(𝒙)

M =
∇ 𝑓𝒒(𝒙)M−1 ,

≤ 𝑒𝑝2(𝑝 − 1)
(
2 𝑓 (𝒒)1−

2
𝑝 + 𝐶𝑝 max

{
∥𝒙 − 𝒒∥M ,

𝒙𝒒 − 𝒒

M
}𝑝−2

) 𝒙 − 𝒙𝒒

M ,

completing the proof of Lemma 4.6.15. □

Solving the proximal subproblems

We begin by showing that the optimal solution to the proximal problem 𝒙𝒒𝑡 B argmin
𝒙∈R𝑑

𝑓𝒒𝑡 (𝒙) is

not too far from 𝒙★.

Lemma 4.6.16. For all proximal queries 𝒒𝑡 , we have𝒙𝒒𝑡 − 𝒙★

M ≤ 𝑑
1
2− 1

𝑝

(
2

3
2 𝑓 (𝒙𝑡) + 4

)
.

Proof. In the rest of this proof, we omit the subscript 𝑡 wherever it is clear which iterates we are
working with.

We first show that 𝒙𝒒 − 𝒒

M ≤
𝒙★ − 𝒒

M .

To see this, suppose this is not the case. Then, we have

𝑓 (𝒙★) + 𝐶𝑝
𝒙★ − 𝒒

𝑝
M < 𝑓 (𝒙𝒒) + 𝐶𝑝

𝒙𝒒 − 𝒒
𝑝

M ,

which contradicts the optimality of 𝒙𝒒 for 𝑓𝒒 .

We now write 𝒙𝒒𝑡 − 𝒙★

M ≤
𝒙𝒒𝑡 − 𝒒𝑡

M +

𝒙★ − 𝒒𝑡

M ,

≤ 2
𝒙★ − 𝒒𝑡

M ,

≤ 2
(𝒙𝑡 − 𝒙★

M +

𝒗𝑡 − 𝒙★

M

)
,

where in the last inequality, we used the definition of 𝒒𝑡 from Line 6 in Algorithm 11 and
the convexity of ∥ · ∥M. The required control on ∥𝒗𝑡 − 𝒙★∥M comes from Lemma 4.4.5 and
Theorem 4.2.2 (along with re-scaling assumption to make the optimal value 1) – we have𝒗𝑡 − 𝒙★

M ≤
√

2
𝒙0 − 𝒙★

M ≤ 4𝑑

1
2− 1

𝑝 .

For the other term, we apply Lemma 4.6.2 and get𝒙𝑡 − 𝒙★

M ≤ 2
3
2 𝑑

1
2− 1

𝑝
(
𝑓 (𝒙𝑡) − 𝑓 (𝒙★)

) 1
𝑝 < 2

3
2 𝑑

1
2− 1

𝑝 𝑓 (𝒙𝑡)
1
𝑝 .

Adding gives us the conclusion of Lemma 4.6.16. □

The next few lemmas are targeted at solving the proximal subproblems. We begin with
a calculation that we will use in showing that the initial Bregman divergence between our
initialization and the optimum is small.

181

Lemma 4.6.17. In the same setting as Lemma 4.6.9, for all 𝒙 , 𝒚 ∈ R𝑑, we have

ℎ𝒒(𝒙𝒒) ≤ 𝑝(𝑝 − 1) 𝑓 (𝒒)1−
2
𝑝
𝒙𝒒 − 𝒒

2
M + 𝐶𝑝

𝒙𝒒 − 𝒒
𝑝

M < 𝑓 (𝒒) + 𝐶𝑝
𝒙𝒒 − 𝒒

𝑝
M ≤ 2 𝑓 (𝒒).

Proof of Lemma 4.6.17. By optimality of 𝒙𝒒 for the subproblem, we have

𝑓 (𝒙𝒒) + 𝐶𝑝
𝒙𝒒 − 𝒒

𝑝
M ≤ 𝑓 (𝒒) + 𝐶𝑝 ∥𝒒 − 𝒒∥𝑝M = 𝑓 (𝒒).

Rearranging gives, 𝒙𝒒 − 𝒒
𝑝

M ≤
𝑓 (𝒒) − 𝑓 (𝒙𝒒)

𝐶𝑝
≤ 𝑓 (𝒒)

𝐶𝑝
. (4.6.10)

We now use the definition of ℎ𝒒 and Lemma 4.6.1 to write

ℎ𝒒(𝒙𝒒) =
𝒙𝒒 − 𝒒

2
∇2 𝑓 (𝒒) + 𝐶𝑝

𝒙𝒒 − 𝒒
𝑝

M ,

≤Lemma 4.6.1 𝑝(𝑝 − 1)
𝑚∑
𝑖=1
∥A𝑆𝑖𝒒 − 𝒃𝑆𝑖 ∥

𝑝−2
2

A𝑆𝑖 (𝒙𝒒 − 𝒒)
2

2 + 𝐶𝑝
𝒙𝒒 − 𝒒

𝑝
M ,

≤(a) 𝑝(𝑝 − 1)
(
𝑚∑
𝑖=1
∥A𝑆𝑖𝒒 − 𝒃𝑆𝑖 ∥

𝑝

2

)1− 2
𝑝
(
𝑚∑
𝑖=1

A𝑆𝑖 (𝒙𝒒 − 𝒒)
𝑝

2

) 2
𝑝

+ 𝐶𝑝
𝒙𝒒 − 𝒒

𝑝
M ,

≤(b) 𝑝(𝑝 − 1) 𝑓 (𝒒)1−
2
𝑝
𝒙𝒒 − 𝒒

2
M + 𝐶𝑝

𝒙𝒒 − 𝒒
𝑝

M ,

≤(4.6.10) 𝑝(𝑝 − 1) 𝑓 (𝒒)1−
2
𝑝

(
𝑓 (𝒒)
𝐶𝑝

) 2
𝑝

+ 𝐶𝑝
𝒙𝒒 − 𝒒

𝑝
M ,

=(𝐶𝑝 = 𝑒𝑝𝑝) (𝑝 − 1)
𝑒𝑝

𝑓 (𝒒) + 𝐶𝑝
𝒙𝒒 − 𝒒

𝑝
M ,

< 𝑓 (𝒒) + 𝐶𝑝
𝒙𝒒 − 𝒒

𝑝
M ,

<(4.6.10) 2 𝑓 (𝒒) ,

where in (a) we used Hölder inequality with norms ∥ · ∥𝑝/(𝑝−2) , ∥ · ∥𝑝/2 and in (b) we used
Theorem 4.2.2 .

This completes the proof for the series of inequalities in Lemma 4.6.17. □

We now have the tools to show how to approximately solve problems in Line 3 of Algorithm 10
when applied in our setting. Although this and future complexity bounds depend on 𝑓 (𝒙𝑡), we
will later be able to use Theorem 4.4.3 to “bootstrap” and get an unconditional upper bound
below.

Lemma 4.6.18. Let 𝛼 ≤ 1/2. In the context of Algorithm 14, there exists an algorithm that approximately

solves subproblems of the form (for 𝑝 ≥ 2 and 𝐿 = 𝑝𝑒),

𝒛 B argmin
𝒙∈R𝑑

⟨𝒈 , 𝒙⟩ + 𝐿
(
∥𝒙 − 𝒒∥2∇2 𝑓 (𝒒) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M

)
,

in the sense that we output 𝒙 for which,

max
{
∥𝒙 − 𝒛∥M ,

M−1𝒈 + 2𝐿
(
M−1∇2 𝑓 (𝒒)(𝒙 − 𝒒) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2

M (𝒙 − 𝒒)
)

M

}
≤ 𝛼 .

The algorithm takes 𝑝𝑂(1) log
(
𝑝𝑑· 𝑓 (𝒒)

𝛼

)
linear system solves in matrices of the form A⊤BA for block-

diagonal B, where each block in B has size |𝑆𝑖 | × |𝑆𝑖 |.

182

Proof of Lemma 4.6.18. This proof is long, and splitting it into lemmas would break up the
intended reading flow. So we break it up into several key components here.

Motivation for the lemma. First, let us see why this lemma is even useful. In each iteration
of Algorithm 13, which in turn calls Algorithm 10, the main primitive is computing

�̃� 𝑖 = argmin
�̃�∈R𝑑

𝑓𝒒𝑡 (̃𝒙 𝑖−1) +
〈
∇ 𝑓𝒒𝑡 (̃𝒙 𝑖−1), �̃� − �̃� 𝑖−1

〉
+ 𝑝𝑒𝐷ℎ𝒒𝑡

(̃𝒙 , �̃� 𝑖−1) ,

= argmin
�̃�∈R𝑑

𝑓𝒒𝑡 (̃𝒙 𝑖−1) +
〈
∇ 𝑓𝒒𝑡 (̃𝒙 𝑖−1), �̃� − �̃� 𝑖−1

〉
+ 𝑝𝑒

(
ℎ𝒒𝑡 (̃𝒙) − ℎ𝒒𝑡 (̃𝒙 𝑖−1) −

〈
∇ℎ𝒒𝑡 (̃𝒙 𝑖−1), �̃� − �̃� 𝑖−1

〉)
,

= argmin
�̃�∈R𝑑

𝑓𝒒𝑡 (̃𝒙 𝑖−1) − 𝑝𝑒ℎ𝒒𝑡 (̃𝒙 𝑖−1) +
〈
∇ 𝑓𝒒𝑡 (̃𝒙 𝑖−1) − 𝑝𝑒∇ℎ𝒒𝑡 (̃𝒙 𝑖−1), �̃� − �̃� 𝑖−1

〉
+ 𝑝𝑒ℎ𝒒𝑡 (̃𝒙) ,

= argmin
�̃�∈R𝑑

〈
∇ 𝑓𝒒𝑡 (̃𝒙 𝑖−1) − 𝑝𝑒∇ℎ𝒒𝑡 (̃𝒙 𝑖−1), �̃�

〉
+ 𝑝𝑒ℎ𝒒𝑡 (̃𝒙) .

Observe that the subproblem is of the form

𝒛 = argmin
𝒙∈R𝑑

⟨𝒈 , 𝒙⟩ + 𝑝𝑒ℎ𝒒(𝒙) ,

= argmin
𝒙∈R𝑑

⟨𝒈 , 𝒙⟩ + 𝑝𝑒
(
∥𝒙 − 𝒒∥2∇2 𝑓 (𝒒) + 𝐶𝑝 ∥𝒙 − 𝒒∥𝑝M

)
, (4.6.11)

and so our goal is to show how to solve these types of problems.

The general algorithm. Consider solving the related subproblem (instead of (4.6.11)),

argmin
𝒙∈R𝑑

⟨𝒈 , 𝒙⟩ + 𝐿
(
∥𝒙 − 𝒒∥2∇2 𝑓 (𝒒) + 𝐶𝑝𝜏 ∥𝒙 − 𝒒∥2M

)
for some fixed 𝜏 ≥ 0. This is a quadratic problem, and we can therefore solve it in 1 linear
system solve. It is easy to check that at optimality, we have

𝒈 + 2𝑝𝑒
(
∇2 𝑓 (𝒒)(𝒙 − 𝒒) + 𝐶𝑝𝜏M(𝒙 − 𝒒)

)
= 0 ,

which rearranges to2

𝒙 − 𝒒 = − 1
2𝑝𝑒

(
∇2 𝑓 (𝒒) + 𝐶𝑝𝜏M

)−1
𝒈 .

Note that at optimality for our original subproblem (4.6.11), we have 𝜏★ := ∥𝒛 − 𝒒∥𝑝−2
M where

𝒛 is the solution of subproblem (4.6.11). Also note that ∥𝒙 − 𝒒∥M is a decreasing function in 𝜏
because,

∥𝒙 − 𝒒∥2M =
1

4𝑝2𝑒2 ∥𝒈 ∥
2
(∇2 𝑓 (𝒒)+𝐶𝑝𝜏M)−1M(∇2 𝑓 (𝒒)+𝐶𝑝𝜏M)−1 ,

and for 𝜏1 ≤ 𝜏2,(
∇2 𝑓 (𝒒) + 𝐶𝑝𝜏1M

)−1 M
(
∇2 𝑓 (𝒒) + 𝐶𝑝𝜏1M

)−1 ⪰
(
∇2 𝑓 (𝒒) + 𝐶𝑝𝜏2M

)−1 M
(
∇2 𝑓 (𝒒) + 𝐶𝑝𝜏2M

)−1
.

We therefore see that if 𝜏 > ∥𝒙 − 𝒒∥𝑝−2
M — where 𝒙 is the optimal solution for a fixed 𝜏 — then

we are over-regularizing and need to decrease 𝜏 and vice-versa. This means we can binary

2Recall that ∇2 𝑓 (𝒒) = A⊤B1A for block-diagonal B1 and by construction, M = A⊤W1− 2
𝑝 A where W consists of

the block Lewis weights on the diagonal. Thus, ∇2 𝑓 (𝒒) + 𝐶𝑝𝜏M = A⊤B2A for block-diagonal B2.

183

search for the appropriate value of 𝜏. To execute this, we first need to establish the accuracy up
to which we have to identify 𝜏.

Convergence in Argument. By Lemma 4.6.13 (setting 𝒅 = 𝒙 − 𝒛), recall that it is enough to
solve sub-problem (4.6.11) up to additive accuracy (𝑝/2)𝑝𝐿𝛼𝑝 to get ∥𝒙 − 𝒛∥M ≤ 𝛼. Suppose we
find 𝜏 for which 𝜏★ ≤ 𝜏 ≤ 𝜏★ + 𝛿. By writing the objectives and comparing, we see that the
𝒙 we find from using 𝜏 gives us at most a 𝛿 · 𝑑-suboptimal solution compared to 𝒛. Plugging
this into the bound from Lemma 4.6.13 tells us that we should choose 𝛿 = (𝑝/2)𝑝𝐿𝛼𝑝/𝑑, and
plugging this into the binary search over 𝜏 ∈ [0, 𝑑𝑝(1 + 𝑓 (𝒒))] gives us 𝑝𝑂(1) log

(
𝑝𝑑· 𝑓 (𝒒)

𝛼

)
steps,

as needed.

First-order stationary point. We first claim that it is enough to getM−1∇ℎ𝒒(𝒙) −M−1∇ℎ𝒒(𝒛)

M ≤
𝛼
𝐿
.

Indeed, let 𝒛 be the optimal solution for the subproblem. This means that it must satisfy the
first order stationary condition, namely,

𝒈 + 𝐿∇ℎ𝒒(𝒛) = 0.

Multiplying both sides by M−1, subtracting, and dividing both sides by 𝐿 gives us the expression
we are interested in.

Writing first order stationary conditions gives both

𝒈 + 2𝐿
(
∇2 𝑓 (𝒒)(𝒙 − 𝒒) + 𝐶𝑝𝜏M(𝒙 − 𝒒)

)
= 0

𝒈 + 2𝐿
(
∇2 𝑓 (𝒒)(𝒛 − 𝒒) + 𝐶𝑝𝜏★M(𝒛 − 𝒒)

)
= 0

.

Multiplying both sides of both equalities by M−1 and subtracting these gives

2𝐿
(
M−1∇2 𝑓 (𝒒)(𝒙 − 𝒛) + 𝐶𝑝

(
𝜏(𝒙 − 𝒒) − 𝜏★(𝒛 − 𝒒)

))
= 0.

Expanding out 𝐿(M−1∇ℎ𝒒(𝒙)−M−1ℎ𝒒(𝒛)) and subtracting the above gives the desired condition

2𝐿
���𝜏 − ∥𝒙 − 𝒒∥𝑝−2

M

��� · ∥𝒙 − 𝒒∥M
?
≤ 𝛼.

Next, let us run the binary search from above so that we get argument convergence, i.e.
∥𝒙 − 𝒛∥M ≤ 𝛼𝐶 ≪ 0.1𝛼 for some constant 𝐶. Using the fact that the approximate mirror
descent step using 𝒛 decreases the objective value (Lemma 4.3.4), observe that

∥𝒙 − 𝒒∥M ≤ ∥𝒛 − 𝒒∥M + ∥𝒙 − 𝒛∥M ≤ ∥𝒒 − 𝒛∥M + 0.1𝛼 ≲
√
𝑑(1 + 𝑓 (𝒒)).

It then follows that binary searching 𝜏 to additive accuracy 𝛼(
√
𝑑(1 + 𝑓 (𝒒)))−1/𝐿 is sufficient.

By the same argument as above, this takes 𝑝𝑂(1) log
(
𝑝𝑑· 𝑓 (𝒒𝑡)

𝛼

)
steps, completing the proof of

Lemma 4.6.18. □

We now combine Lemma 4.6.18 with Theorem 4.3.1 and Algorithm 10 to obtain approximate
argument optimality for each proximal subproblem.

Lemma 4.6.19. Let 𝛾 > 0 and 𝒙𝒒 B argmin
𝒙∈R𝑑

𝑓𝒒(𝒙). There exists an algorithm that returns 𝒙 for which𝒙 − 𝒙𝒒

M ≤ 𝛾.

184

The algorithm takes at most 𝑂
(
𝑝𝑂(1) log

(
𝑝ℎ𝒒(𝒙𝒒)

(
4
𝑝𝛾

)𝑝))
iterations of solving subproblems of the

form argmin
𝒙∈R𝑑

⟨𝒈 , 𝒙⟩ + 𝑒𝑝ℎ𝒒(𝒙) for fixed vectors 𝒈 and 𝒒.

Proof of Lemma 4.6.19. This proof resembles [JLS22, Lemma 4.5], which uses an exact version of
mirror descent arising from Lu, Freund, and Nesterov [LFN18]. The main difference between
our argument and that of [JLS22, Lemma 4.5] is that we rigorously identify a concrete upper
bound on the complexity needed to satisfy the MS condition and argue that the mirror descent
algorithm can handle the inexact Bregman proximal problem solves.

First, we use Lemma 4.6.12 on the approximate solution 𝒙 and true solution 𝒙𝒒 and get,

𝑓𝒒(𝒙) ≥ 𝑓𝒒(𝒙𝒒) +
4
2𝑝

(A(𝒙 − 𝒙𝒒)
𝑝
𝒢𝑝 + 𝐶𝑝

𝒙𝒒 − 𝒙
𝑝

M

)
,

≥ 𝑓𝒒(𝒙) +
4𝐶𝑝
2𝑝

𝒙𝒒 − 𝒙
𝑝

M .

Rearranging, we get 𝒙𝒒 − 𝒙

M ≤
(

2𝑝

4𝐶𝑝

)1/𝑝 (
𝑓𝒒(𝒙) − 𝑓𝒒(𝒙𝒒)

)1/𝑝
,

=

(
2𝑝

4𝑒𝑝𝑝

)1/𝑝 (
𝑓𝒒(𝒙) − 𝑓𝒒(𝒙𝒒)

)1/𝑝
,

<
2
𝑝

(
𝑓𝒒(𝒙) − 𝑓𝒒(𝒙𝒒)

)1/𝑝
.

Using the notation from [LFN18], for convex ℎ : R𝑑 → R, let

𝐷ℎ(𝒙 , 𝒚) B ℎ(𝒙) − ℎ(𝒚) − ⟨∇ℎ(𝒚), 𝒙 − 𝒚⟩ .

Recall the conclusion of Lemma 4.6.9 – we have for 𝜇 = 1/(2𝑝𝑒) and 𝐿 = 𝑝𝑒 that

𝜇∇2ℎ𝒒(𝒙) ⪯ ∇2 𝑓𝒒(𝒙) ⪯ 𝐿∇2ℎ𝒒(𝒙).

By Theorem 4.3.1 and Lemma 4.6.9, using the same notation from Lemma 4.6.9, we have for all
iterations 𝑡 of Algorithm 10 (with 𝑓 = 𝑓𝒒 and ℎ = ℎ𝒒) that,

𝑓𝒒(𝒙𝑡) − 𝑓𝒒(𝒙𝒒) ≤ 𝐿
(
1 −

𝜇

𝐿

) 𝑡
𝐷ℎ𝒒 (𝒙𝒒 , 𝒒) + max

1≤𝑖≤𝑡

〈
△𝑖 , 𝒙𝑡 − 𝒙𝒒

〉
,

= 2𝐿
(
1 − 𝜇

𝐿

) 𝑡
ℎ𝒒(𝒙𝒒) + max

1≤𝑖≤𝑡

〈
△𝑖 , 𝒙𝑡 − 𝒙𝒒

〉
.

Hence, for 𝑡 ≥ 𝐿
𝜇 log

(
𝐿ℎ𝒒(𝒙𝒒)

(
4
𝑝𝛾

)𝑝)
, it is easy to check that for 𝑝 ≥ 2,

𝑓𝒒(𝒙𝑡) − 𝑓𝒒(𝒙𝒒) ≤ 2𝐿
(1
𝑒

) log
(
𝐿ℎ𝒒(𝒙𝒒)

(
4
𝑝𝛾

)𝑝)
ℎ𝒒(𝒙𝒒) + max

1≤𝑖≤𝑡

〈
△𝑖 , 𝒙𝑡 − 𝒙𝒒

〉
,

= 2
(𝑝𝛾

4

)𝑝
+ max

1≤𝑖≤𝑡

〈
△𝑖 , 𝒙𝑡 − 𝒙𝒒

〉
,

≤
(𝑝𝛾

2

)𝑝
+ max

1≤𝑖≤𝑡

〈
△𝑖 , 𝒙𝑡 − 𝒙𝒒

〉
,

and combining this with Lemma 4.6.18 to make the error term on the order of our accuracy, we
get

𝒙𝒒 − 𝒙

M ≲ 𝛾. We thus conclude the proof of Lemma 4.6.19. □

185

The last step is to use our proximal problem solver to build a valid MS oracle.

Lemma 4.6.20. In the context of Algorithm 11, there exists an algorithm (̃𝒙𝑡+1 ,𝜆𝑡+1) = 𝒪prox(𝒒𝑡) that

approximately solves

argmin
�̃�∈R𝑑

𝑓 (̃𝒙) + 𝑒𝑝𝑝
�̃� − 𝒒𝑡

𝑝
M

using 𝑂
(
𝑝𝑂(1) log

(
𝑝𝑑· 𝑓 (𝒙𝑡)

𝜀

))
linear system solves in A⊤BA, in the sense that 1

𝑒𝑝𝑝+1
�̃�𝑡+1 − 𝒒𝑡

𝑝−2
M

M−1∇ 𝑓 (̃𝒙𝑡+1) + (̃𝒙𝑡+1 − 𝒒𝑡)

M

≤ 1
2
�̃�𝑡+1 − 𝒒𝑡

M .

Proof of Lemma 4.6.20. The point of this proof is to give an analysis of Algorithm 13.

For notational simplicity, let 𝒙 = �̃�𝑡+1 and 𝜆 = 𝜆𝑡+1. We will reintroduce the indices when it is
essential to clarify the iterations we are discussing.

First, it is helpful to see why the stated notion of approximation is useful. Let 𝐶𝑝 B 𝑒𝑝𝑝 .
Observe that at exact optimality, we have

∇ 𝑓 (𝒙𝒒) + 𝑒𝑝𝑝+1 𝒙𝒒 − 𝒒
𝑝−2

M︸ ︷︷ ︸
𝜆★

M(𝒙 − 𝒒) = 0 . (4.6.12)

This motivates the approximation in our lemma statement, with us asking for a 1
2 -approximate

MS oracle (Definition 4.4.1) for 𝑓 . This also tells us that at optimality in (4.6.12), we have,

∇ 𝑓 (𝒙𝒒) + 𝑒𝑝𝑝+1 𝒙𝒒 − 𝒒
𝑝−2

M M(𝒙 − 𝒒) = 0 ,

⇔M−1/2 𝑓 (𝒙𝒒) = −𝑝𝐶𝑝
𝒙𝒒 − 𝒒

𝑝−2
M M1/2(𝒙 − 𝒒) ,

⇒
M−1/2 𝑓 (𝒙𝒒)

2
= 𝑝𝐶𝑝

𝒙𝒒 − 𝒒
𝑝−2

M

M1/2(𝒙 − 𝒒)

2
,

⇔
𝒙𝒒 − 𝒒

M =

(M−1∇ 𝑓 (𝒙𝒒)

M
𝑝𝐶𝑝

) 1
𝑝−1

.

We now break up our analysis into two cases. In the first, suppose that
M−1∇ 𝑓 (𝒙𝒒)

M ≤

𝜀/
𝒙𝒒 − 𝒙★

M. Then, by convexity, we have

𝑓 (𝒙𝒒) − 𝑓 (𝒙★) ≤
〈
∇ 𝑓 (𝒙𝒒), 𝒙𝒒 − 𝒙★

〉
≤

M−1∇ 𝑓 (𝒙𝒒)

M

𝒙𝒒 − 𝒙★

M ≤ 𝜀.

Hence, for the rest of the proof, assume that
M−1∇ 𝑓 (𝒙𝒒)

 ≥ 𝜀/
𝒙𝒒 − 𝒙★

M (because if this is

not the case, in the algorithm we can simply check whether the MS condition is satisfied – if not,
then we know this assumption was violated and we are done anyway). We run the algorithm
implied by Lemma 4.6.19 and obtain an approximate solution 𝒙 for which

𝒙 − 𝒙𝒒

M ≤ 𝛼
𝒙𝒒 − 𝒒

M for 𝛼 =

1
5 min

𝐶𝑝

𝑒𝑝(𝑝 − 1)

(𝒙𝒒 − 𝒒

M

𝑓 (𝒒)
1
𝑝

)𝑝−2

, 1
 . (4.6.13)

Since 𝛼 < 1 the guarantee in (4.6.13) gives us,𝒙 − 𝒙𝒒

M ≤ 𝛼 ∥𝒙 − 𝒒∥M ≤
𝛼

1 − 𝛼
∥𝒙 − 𝒒∥M , (4.6.14)

186

and further applying triangle inequality gives us𝒙𝒒 − 𝒒

M ≤ ∥𝒙 − 𝒒∥M +
𝒙𝒒 − 𝒙

M ,

≤ 1 − 𝛼
1 − 𝛼

∥𝒙 − 𝒒∥M +
𝛼

1 − 𝛼
∥𝒙 − 𝒒∥M ,

≤ 1
1 − 𝛼

∥𝒙 − 𝒒∥M . (4.6.15)

Hence, we get

𝑒𝑝(𝑝 − 1) 𝑓 (𝒒)1−
2
𝑝

𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2
M

·
𝒙 − 𝒙𝒒

M =

𝑒𝑝(𝑝 − 1)
𝐶𝑝

·
(

𝑓 (𝒒)
1
𝑝

∥𝒙 − 𝒒∥M

)𝑝−2

·
𝒙 − 𝒙𝒒

M ,

≤(4.6.13) 1
5
𝒙𝒒 − 𝒒

M ,

≤(4.6.15) 1
5 ·

1
1 − 𝛼

∥𝒙 − 𝒒∥M ,

≤ 1
4 ∥𝒙 − 𝒒∥M , (4.6.16)

where in the last inequality, we used that 𝛼 ≤ 1
5 due to our choice in (4.6.13). We now call

Lemma 4.6.15, divide both sides by 𝜆, and get 1
𝑒𝑝𝑝+1 ∥𝒙 − 𝒒∥𝑝−2

M

M−1∇ 𝑓 (𝒙) + (𝒙 − 𝒒)

M

≤(Lemma 4.6.15) 𝑒𝑝(𝑝 − 1) ©«
𝑓 (𝒒)1−

2
𝑝

𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2
M

+max
1,

(𝒙𝒒 − 𝒒

M
∥𝒙 − 𝒒∥M

)𝑝−2ª®¬
𝒙 − 𝒙𝒒

M ,

≤(4.6.15) 𝑒𝑝(𝑝 − 1)
(

𝑓 (𝒒)1−
2
𝑝

𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2
M

+ 1
(1 − 𝛼)𝑝−2

) 𝒙 − 𝒙𝒒

M ,

≤(4.6.14) 𝑒𝑝(𝑝 − 1) 𝑓 (𝒒)1−
2
𝑝

𝐶𝑝 ∥𝒙 − 𝒒∥𝑝−2
M

·
𝒙 − 𝒙𝒒

M +

𝑒𝑝(𝑝 − 1)𝛼
(1 − 𝛼)𝑝−1 ∥𝒙 − 𝒒∥M ,

≤(4.6.15), (4.6.13) 1
4 ∥𝒙 − 𝒒∥M +

𝑒𝑝(𝑝 − 1)5𝑝−2

4𝑝−1 ∥𝒙 − 𝒒∥M ,

≤ 1
2 ∥𝒙 − 𝒒∥M ,

giving us the approximation guarantee.

It remains to understand the complexity of solving the proximal subproblem to the accuracy
required in (4.6.13). Plugging in 𝛾 = 𝛼

𝒙𝒒 − 𝒒

M into Lemma 4.6.19 and using our bound on
ℎ𝒒(𝒙𝒒) from Lemma 4.6.17 gives an iteration complexity of (ignoring the constant in front of
the big-𝑂)

𝑝𝑂(1) log

(
𝑝ℎ𝒒(𝒙𝒒)

(
2

𝑝𝛼
𝒙𝒒 − 𝒒

M

)𝑝)
≤ 𝑝𝑂(1) log

(
𝑝
(
𝑝(𝑝 − 1) 𝑓 (𝒒)1−

2
𝑝
𝒙𝒒 − 𝒒

2
M + 𝐶𝑝

𝒙𝒒 − 𝒒
𝑝

M

) (
2

𝑝𝛼
𝒙𝒒 − 𝒒

M

)𝑝)
= 𝑝𝑂(1) log ©«

(
2
𝑝

)𝑝
𝑝
©«
𝑝(𝑝 − 1) 𝑓 (𝒒)1−

2
𝑝
𝒙𝒒 − 𝒒

2
M + 𝐶𝑝

𝒙𝒒 − 𝒒
𝑝

M

𝛼𝑝
𝒙𝒒 − 𝒒

𝑝
M

ª®¬ª®¬
187

= 𝑝𝑂(1) log

((
2
𝑝

)𝑝
𝑝

(
𝑝(𝑝 − 1) 𝑓 (𝒒)1−

2
𝑝

𝛼𝑝
𝒙𝒒 − 𝒒

𝑝−2
M

+
𝐶𝑝

𝛼𝑝

))
We have two cases to analyze for the value of 𝛼. In the first, suppose we get 𝛼 = 1

5 . By the
definition of 𝛼, this means we have

𝐶𝑝

𝑒𝑝(𝑝 − 1)

(𝒙𝒒 − 𝒒

M

𝑓 (𝒒)
1
𝑝

)𝑝−2

≥ 1,

which means the complexity we get is 𝑝𝑂(1) log 𝑝. We now handle the other case, i.e., 𝛼 =

𝐶𝑝

5𝑒𝑝(𝑝−1)

(
∥𝒙𝒒−𝒒∥M

𝑓 (𝒒)
1
𝑝

)𝑝−2
. Here, it will be useful to keep track of the timestep 𝑡 that we are working

with. Recall that

𝒙𝒒𝑡 − 𝒒𝑡
𝑝

M =

(M−1∇ 𝑓 (𝒙𝒒𝑡)

M
𝑝𝐶𝑝

) 𝑝
𝑝−1

≥
(

𝜀

𝑝𝐶𝑝
𝒙𝒒𝑡 − 𝒙★

M

) 𝑝
𝑝−1

, (4.6.17)

so the complexity we want to control is given by

𝑝𝑂(1) log

((
2
𝑝

)𝑝
𝑝

(
2 𝑓 (𝒒𝑡)

𝛼𝑝
𝒙𝒒𝑡 − 𝒒𝑡

𝑝
M

))
≲(4.6.13) 𝑝𝑂(1) log ©«

(
2
𝑝

)𝑝
𝑝
©«

2 (5𝑒𝑝(𝑝 − 1))𝑝 𝑓 (𝒒𝑡)𝑝−1

𝐶
𝑝
𝑝

𝒙𝒒𝑡 − 𝒒𝑡
𝑝(𝑝−2)

M

𝒙𝒒𝑡 − 𝒒𝑡
𝑝

M

ª®¬ª®¬ ,

≲ 𝑝𝑂(1) log ©«𝑝 ©«
2 (10(𝑝 − 1))𝑝 𝑓 (𝒒𝑡)𝑝−1

𝑝𝑝
2 𝒙𝒒𝑡 − 𝒒𝑡

𝑝(𝑝−1)
M

ª®¬ª®¬ ,

≲(4.6.17) 𝑝𝑂(1) log

(
𝑝

(
2 (10𝑒(𝑝 − 1))𝑝 𝑝𝑝(𝑝+1) 𝑓 (𝒒𝑡)𝑝−1

𝑝𝑝
2𝜖𝑝

) 𝒙𝒒𝑡 − 𝒙★
𝑝

M

)
,

≲(4.6.17) 𝑝𝑂(1) log
((

2 (10𝑒(𝑝 − 1))𝑝 𝑝𝑝+1 𝑓 (𝒒𝑡)𝑝−1

𝜖𝑝

) 𝒙𝒒𝑡 − 𝒙★
𝑝

M

)
,

≲ 𝑝𝑂(1) log

(
𝑝 𝑓 (𝒒𝑡)

𝒙𝒒𝑡 − 𝒙★

M
𝜀

)
,

≲(Lemma 4.6.16) 𝑝𝑂(1) log
(
𝑝 𝑓 (𝒒𝑡)𝑑𝑓 (𝒙𝑡)

𝜀

)
,

≲(Lemma 4.6.8) 𝑝𝑂(1) log
(
𝑝 𝑓 (𝒙𝑡)

𝜀

)
,

completing the proof of Lemma 4.6.20. □

4.6.4. The algorithm

We are now ready to combine the results from the previous two subsections to build our
algorithm for 𝒢𝑝-regression and prove Theorem 13. The main algorithmic object here is
Algorithm 14.

188

Algorithm 14 GpRegression: Optimizes (4.1.4) up to (1 + 𝜀)-multiplicative error
Require: Regression problems (A𝑆1 , 𝒃𝑆1), . . . , (A𝑆𝑚 , 𝒃𝑆𝑚), accuracy 𝜀 > 0

1: Using [MO25, Algorithm 2] with input [A|𝒃], find nonnegative diagonal W such that for
all 𝒙 ∈ R𝑑 and 𝑐 ∈ R,

∥A𝒙 − 𝑐𝒃∥𝒢∞ ≤
W

1
2− 1

𝑝 A𝒙 − 𝑐W1/2𝒃

2
≤ (2(𝑑 + 1))

1
2− 1

𝑝 ∥A𝒙 − 𝑐𝒃∥𝒢∞ .

2: Let 𝒙0 =

(
A⊤W1− 2

𝑝 A
)−1

A⊤W1− 2
𝑝 𝒃. ⊲ 𝒙0 B argmin

𝒙∈R𝑑

W
1
2− 1

𝑝 A𝒙 −W
1
2− 1

𝑝 𝒃

2
.

3: Using Algorithm 13 and Lemma 4.6.20, implement a 1
2 -MS oracle for 𝑓 (Definition 4.4.1)

4: Run Algorithm 11 with the oracle from the previous line and with 𝒙0 as the initialization

for 𝑂
(
poly(𝑝)min {rank (A) , 𝑚}

𝑝−2
3𝑝−2 log

(
𝑑
𝜀

)3
)

iterations.

5: return �̂� the output of the previous step.

Proof of Theorem 13. By writing the stationary condition of the proximal problem, it makes sense
to choose 𝜆𝑡+1 = 𝑒𝑝𝑝+1

�̃�𝑡+1 − 𝒒𝑡
𝑝−2

M .

It is easy to check that

�̃�𝑡+1 − 𝒒𝑡

M =
©«
𝑒𝑝𝑝+1

�̃�𝑡+1 − 𝒒𝑡
𝑝−2

M(
(𝑒𝑝𝑝+1)

1
𝑝−1

)𝑝−1

ª®®¬
1

(𝑝−1)−1

,

and therefore the triple (̃𝒙𝑡+1 , 𝒒𝑡 , 𝑒𝑝
𝑝+1

�̃�𝑡+1 − 𝒒𝑡
𝑝−2

M) always satisfies a (𝑝 − 1, (𝑒𝑝𝑝+1)1/(𝑝−1))-
movement bound (Definition 4.4.2).

Next, we calculate the iteration complexity we need to reduce the error to half of what we
started with. For an arbitrary initial iterate 𝒙, let 𝛿 = 0.5(𝑓 (𝒙) − 𝑓 (𝒙★)). By Lemma 4.6.2, we
have 𝒙 − 𝒙★

𝑠+1
M =

𝒙 − 𝒙★
𝑝

M ≤ 23𝑝/2𝑑𝑝/2−1(𝑓 (𝒙) − 𝑓 (𝒙★)),

so combining this along with the fact that 𝑐𝑠 = 𝑒𝑝𝑝+1 and applying Theorem 4.4.3 with our
proximal solver Lemma 4.6.20 yields

𝑇min =
𝑝 − 1

3

(
𝑝𝐶𝑝 · 23𝑝/2+1𝑑𝑝/2−1

) 2
3𝑝−2
≲ 𝑝5/3𝑑

𝑝−2
3𝑝−2 .

Next, we initialize 𝒙0 B
(
A⊤W1−2/𝑝A

)−1
A⊤W1−2/𝑝𝒃. Using Theorem 4.2.2, we have

𝑓 (𝒙0) ≤ (2𝑑)𝑝/2−1 𝑓 (𝒙★),

so reaching an iterate 𝒙 for which 𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 𝜀 𝑓 (𝒙★) takes 𝑇min · log
(
𝑑𝑝/2−1/𝜀

)
=

𝑝8/3𝑑
𝑝−2

3𝑝−2 log
(
𝑑
𝜀

)
calls to 𝒪prox.

We now resolve the full iteration complexity, including the bootstrapping step to show that
𝑓 (𝒙𝑡) is reasonably bounded so that we get an unconditional upper bound from Lemma 4.6.20.
At the end of iteration 𝑡, from (loosely) inverting the bound in Theorem 4.4.3, we know that

𝑓 (𝒙𝑡) − 𝑓 (𝒙★) ≤
(𝐶𝑝3)

3𝑝−2
2 (2𝑑)

𝑝
2−1

𝑡
3𝑝−2

2

.

189

Since �̃�𝑡+1 only depends on 𝒒𝑡 , which in turn only depends on 𝒙𝑡 and 𝒗𝑡 , it suffices to use the
above bound for 𝑓 (𝒙𝑡), which gives us an iteration complexity of 𝑝𝑂(1) log

(
𝑝𝑑

𝜀

)
to compute �̃�𝑡+1

(which we get from plugging into Lemma 4.6.20).

Combining this with the iteration complexity of 𝒪prox gives us the result of Theorem 13. □

190

5. Dueling optimization with a monotone

adversary

In this chapter, we give randomized algorithms for the problem of dueling optimization with a

monotone adversary. The content here is based on joint work with Avrim Blum, Meghal Gupta,
Gene Li, Aadirupa Saha, and Chloe Yang [BGLMSY24].

5.1. Introduction

A growing body of literature studies learning with preference-based feedback [BV06; SJ11],
with tremendous empirical success in recommendation systems, search engine optimization,
information retrieval, and robotics. More recently, preference-based feedback has received a
lot of attention as a mechanism to train large language models [OWJ+22]. Moreover, in rec-
ommender systems [BOHG13], a natural approach is to learn from users’ preferences relations
on a set of recommended items and update the system’s belief for better future recommenda-
tions [JRTZ16] (e.g., given these items, which one do you prefer the most?).

Such preference-based feedback is not readily addressed by classical formulations for online
decision making, such as bandits and reinforcement learning. In particular, algorithms for
these problems rely on ordinal feedback per item (e.g., on a scale of 1 to 10, how much did
the user like a particular item?). To address this, a long line of work studies the dueling

bandit framework for online decision making under pairwise/preference-based feedback. There
exist efficient algorithms with provable guarantees for the standard multi-armed bandit setup
[YBKJ12; AKJ14; KHKN15], contextual bandits [DHSSZ15; SK22], as well as dueling convex
optimization [JNR12; SKM21; SKM22], to name a few. The dueling bandit framework is
especially applicable in settings where real-valued feedback is scarce or impossible to obtain,
but preference-based feedback is readily available.

However, a key limitation of the dueling bandit framework is that the feedback that the learner
receives is essentially “in-list”. That is, the users are restricted to selecting items exclusively
from the list of recommended items. This feedback model fails to capture the real-world
scenarios where the users might select an out-of-list item they prefer. To illustrate, music
streaming services like Spotify create personalized playlists for users. Concretely, each song
can be encoded as a feature vector 𝒙 ∈ R𝑑, and the goal is to recommend the songs with
the highest utility for a hidden, well-structured utility function of 𝒙. However, the users can
also search for and play the songs they have a stronger preference (i.e., higher utility) than all
recommendations.

This out-of-list feedback model falls into a monotone adversarial framework (see the chapter
by Feige [Fei21]). In such models, an adversary is only allowed to make “helpful” changes. For
example, in a graph clustering problem, the adversary is only allowed to add edges within com-
munities and delete edges that cross communities (see, e.g., the chapter by Moitra [Moi21b]).

191

In our setting, the adversary is only allowed to respond with an item that is at least as good
as any recommended item. A clear adaptation of the dueling bandit framework to this new
feedback type is not evident.

5.1.1. Problem statement

As our main conceptual contribution, we introduce a theoretical formulation for this setting
that we call dueling optimization with a monotone adversary. As we will see, our formulation
supports “out-of-list” feedback.

Problem 5.1 (Dueling optimization with a monotone adversary). Let𝒳 ⊆ R𝑑 be a decision space,

and let 𝑓 : 𝒳 → R be a cost function with an unknown global minimum 𝒙★. A learner interacts with

an adversary over rounds 𝑡 = 1, 2, . . . , where each round is of the following form.

1. The learner proposes 𝑚 points 𝒙(1)𝑡 , . . . , 𝒙(𝑚)𝑡 ∈ 𝒳.

2. The adversary responds with a point 𝒙★𝑡 that satisfies 𝑓 (𝒙★𝑡) ≤ min1≤ 𝑗≤𝑚
{
𝑓
(
𝒙
(𝑗)
𝑡

)}
.

The goal is to design algorithms that:

1. for some prespecified 𝜀 > 0, minimize the number of iterations to find a point 𝒙 for which

𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 𝜀;

2. minimize the total cost

∑∞
𝑡=1

(
max1≤ 𝑗≤𝑚

{
𝑓
(
𝒙
(𝑗)
𝑡

)}
− 𝑓 (𝒙★)

)
.

Note that in Problem 5.1, we are interested in both the iteration complexity and the total
cost. The first objective is a standard metric for measuring the performance of an iterative
optimization algorithm. The second objective is motivated by online settings in which a
practitioner may wish to minimize the total regret (cost) of its recommendations over an
indefinitely long interaction with a user. In fact, the algorithms we propose in this chapter
simultaneously achieve both small iteration complexity (for any choice of 𝜀) as well as total cost
— see our technical overview in Section 5.1.3 for more details.

Problem 5.1 is a natural extension of (noiseless) dueling optimization [JNR12; SKM21; SKM22]
to handle “out-of-list” responses, as in the Spotify recommendation example. The vanilla
(noiseless) dueling optimization setup corresponds to the requirement that the user’s response
satisfies 𝒙★𝑡 ∈ {𝒙

(1)
𝑡 , 𝒙(2)𝑡 }. We allow the user to be potentially adversarial by allowing it to

respond with any improvement to the learner’s suggestions (in the sequel, we exclusively refer
to the user as the adversary).

Even though the monotone adversary is only improving upon the learner’s suggestions, ex-
isting algorithms for dueling optimization cannot be freely extended to handle the monotone
feedback. At a high level, the difficulty arises from the fact that existing algorithms care-
fully select the queries 𝒙(1)𝑡 , 𝒙(2)𝑡 so that learning whether 𝑓 (𝒙(1)𝑡) > 𝑓 (𝒙(2)𝑡) reveals information
about the underlying 𝑓 . However, a monotone adversary can return a point 𝒙★𝑡 that reveals no
information about the relationship between 𝒙(1)𝑡 and 𝒙(2)𝑡 .

To illustrate this point, consider a natural coordinate-wise binary search algorithm for the
dueling optimization problem when 𝑓 (𝒙) = ∥𝒙 − 𝒙★∥22 for some 𝒙★ ∈ ℬ𝑑2 B {𝒙 : ∥𝒙∥2 ≤ 1}.

192

For coordinates 𝑖 = 1, · · · , 𝑑, query points of the form 𝒙(1)𝑡 = 𝑐1 ·𝒆 𝑖 , 𝒙(2)𝑡 = 𝑐2 ·𝒆 𝑖 and progressively
refine the values 𝑐1 , 𝑐2 ∈ R to search for the value of 𝒙★[𝑖] (i.e., the 𝑖-th entry of 𝒙★). It is easy
to show that this approach has a query complexity of 𝑂 (𝑑 log (1/𝜀)) in the vanilla dueling
optimization setting. However, a monotone adversary can return orthogonal responses of
the form 𝒙★𝑡 = 𝐶𝒆 𝑗 (where 𝑗 ≠ 𝑖 and 𝐶 is a constant) that do not allow the learner to search
along the intended coordinate 𝑖. Furthermore, Jamieson, Nowak, and Recht [JNR12] and Saha,
Koren, and Mansour [SKM21] give more sophisticated algorithms for the dueling optimization
problem that inherently depend upon the “in-list” feedback, which clearly cannot apply to our
setting. We therefore need novel insights to solve Problem 5.1.

5.1.2. Our results

We study Problem 5.1 for various natural classes of functions 𝑓 and provide tight upper and
lower bounds on the number of queries required to find an 𝜀-optimal point.

Upper bound for linear functions. First, we study dueling optimization with a monotone
adversary when the function 𝑓 is linear. This is a natural class to consider. In particular, an
algorithm that solves Problem 5.1 can be adapted to achieve constant regret for (noiseless)
linear contextual bandits [CLRS11], where the reward function is 𝑟(𝒙) B ⟨𝒙 , 𝒙★⟩. Note that the
key difference in the setup is that the learner does not get to observe the actual linear costs but
instead only an improvement to the actions (points) that the learner selects.

Theorem 14. Let 𝑚 = 2, let 𝒳 = S𝑑2, let 𝒙★ be such that ∥𝒙★∥2 = 1, and let 𝑓 : 𝒳 → R be

𝑓 (𝒙) = − ⟨𝒙 , 𝒙★⟩. Fix any 𝜀 > 0. There exists an algorithm that, in the setting of Problem 5.1, with

probability at least 1 − exp (−𝑂(𝑑)):

• outputs a point 𝒙 satisfying ⟨𝒙★ − 𝒙 , 𝒙★⟩ ≤ 𝜀 within 𝑂(𝑑 log (1/𝜀)2) iterations;

• incurs total cost 𝑂(𝑑).

Each pair of guesses at time 𝑡 can be computed in 𝑂(𝑑) time.

We prove Theorem 14 in Section 5.2.2, and the cost is near-optimal with respect to 𝑑.

Gollapudi, Guruganesh, Kollias, Manurangsi, Leme, and Schneider [GGKMLS21] study a
closely related setup that they call local contextual recommendation. Their result (see their Theo-
rem 6.4) can be interpreted as showing that if the action set𝒳 is a discrete set (namely a packing
over the unit sphere), there exists a 2Ω(𝑑) lower bound on the iteration complexity to find a point
with constant suboptimality. In contrast, our Theorem 14 shows a much smaller upper bound
when the domain is the entire unit sphere.

Upper bound for smooth and PŁ functions. Next, we study whether we can show guarantees
for a large class of functions. We show a positive result for functions that are both 𝛽-smooth and
𝛼-Polyak-Łojasiewicz (abbreviated as PŁ). These assumptions are standard in optimization.

Definition 5.1.1 (𝛽-smooth function [Bub15, Lemma 3.4]). We say 𝑓 is 𝛽-smooth if it satisfies

193

(5.1.1).

For all 𝒙 , 𝒚 ∈ R𝑑 : | 𝑓 (𝒙) − 𝑓 (𝒚) − ⟨∇ 𝑓 (𝒚), 𝒙 − 𝒚⟩| ≤
𝛽

2 · ∥𝒙 − 𝒚∥22 (5.1.1)

Definition 5.1.2 (𝛼-PŁ function). We say 𝑓 is 𝛼-PŁ if it satisfies (5.1.2).

For all 𝒙 ∈ R𝑑 and minimizers 𝒙★ : 𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 1
2𝛼 ∥∇ 𝑓 (𝒙)∥

2
2 (5.1.2)

Our main result for this setting is Theorem 15.

Theorem 15. Let 𝒳 = R𝑑, and suppose 𝑓 is 𝛽-smooth (Definition 5.1.1) and 𝛼-PŁ (Definition 5.1.2).

Fix any 𝜀 > 0, as well as a known point 𝒙1 and a value 𝐵 satisfying 𝐵 ≥ 𝑓 (𝒙1) − 𝑓 (𝒙★). For all 𝑑 larger

than a universal constant, there exists an algorithm that, in the setting of Problem 5.1 with 𝑚 ≥ 2, with

probability at least 1 − exp (−𝑂(𝑑)):

• outputs a point 𝒙 satisfying 𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 𝜀 within 𝑂
(
𝛽/𝛼 · 𝑑/log𝑚 · log (𝐵/𝜀)2

)
iterations;

• incurs total cost 𝑂 (𝛽/𝛼 · 𝐵 · 𝑑/log𝑚).

The list of 𝑚 guesses at time 𝑡 can be computed in 𝑂(𝑚𝑑) time.

We prove Theorem 15 in Section 5.2.3. Importantly, observe that the results above generalize
those of Saha, Feldman, Mansour, and Koren [SFMK24], as our methods also work under
a monotone adversary. Additionally, these achieve the dependence on the list size 𝑚 that
we observe in our lower bounds (to be presented momentarily), which therefore makes our
results tight. Finally, although Theorem 15 is only stated for smooth and PŁ functions, it is
straightforward to adapt this to a result for convex and smooth functions (we describe this
adaptation in a moment).

As an application, we show a positive result when the loss function is the Euclidean distance,
and the decision space 𝒳 = ℬ𝑑2 is a unit ball:

Theorem 16. Let 𝑚 = 2, let 𝒳 = ℬ𝑑2 , let 𝒙★ be such that ∥𝒙★∥2 ≤ 1, and let 𝑓 : 𝒳 → R be

𝑓 (𝒙) = ∥𝒙 − 𝒙★∥2. Fix any 𝜀 > 0. There exists an algorithm that, in the setting of Problem 5.1, with

probability at least 1 − exp (−𝑂(𝑑)):

• outputs a point 𝒙 satisfying ∥𝒙 − 𝒙★∥2 ≤ 𝜀 within 𝑂
(
𝑑 · log (𝐵/𝜀)2

)
iterations;

• incurs total cost 𝑂 (𝑑).

Each pair of guesses at time 𝑡 can be computed in 𝑂(𝑑) time.

We prove Theorem 16 in Section 5.2.4.

Note that unlike in Theorem 15, Theorem 16 applies to the setting where the algorithm must
guess points belonging to a given constraint set𝒳. Hence, in the proof of Theorem 16, we have
to be careful to ensure that the convergence argument still holds when we apply the algorithm
for Theorem 15 along with a projection step. It is not clear that this argument holds by default

194

for all 𝑓 satisfying the conditions requested by Theorem 15. Furthermore, as will become
evident, we really only require that 𝒳 be any convex body (though we state the result with
𝒳 = ℬ𝑑2 to emphasize the consistency with our following lower bounds).

Finally, as another corollary to Theorem 15, we prove a low-accuracy result for optimizing
functions that are 𝛽-smooth and convex.

Theorem 17. Let 𝒳 = R𝑑, and suppose 𝑓 is convex and 𝛽-smooth (Definition 5.1.1). Fix any 𝜀 > 0,

as well as a known point 𝒙1 and a value 𝐵 satisfying 𝐵 ≥ 𝑓 (𝒙1) − 𝑓 (𝒙★) and ∥𝒙1 − 𝒙★∥2 ≤
√
𝐷. For

all 𝑑 larger than a universal constant, there exists an algorithm that, in the setting of Problem 5.1 with

𝑚 ≥ 2, with probability at least 1− exp (−𝑂(𝑑)), outputs a point 𝒙 satisfying 𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 𝜀 within

𝑂
(
𝛽𝐷/𝜀 · 𝑑/log𝑚 · log (𝐵/𝜀)2

)
iterations. The list of 𝑚 guesses at time 𝑡 can be computed in 𝑂(𝑚𝑑) time.

We prove Theorem 17 in Section 5.2.5.

Lower bounds. We also prove that the dependence on 𝑑 in our results is tight. In particular,
when 𝑓 is either a linear function or the distance to the target (as in Theorem 16), then Ω(𝑑)
queries are necessary to identify 𝒙★. This will translate to a Ω(𝑑) cost over an infinite number
of rounds. In fact, our lower bound is valid when the adversary must return one of the two
queried points, as in vanilla dueling optimization framework.

Our lower bound also covers a more general setting than that stated in Problem 5.1. Thus
far, we have only discussed the setting where the algorithm can query only two points and
is told the better of the two. In many practical instances, the algorithm can query 𝑚 points
and learn the point with the best objective value (we call this 𝑚-ary dueling optimization). In
our construction, we prove that unless 𝑚 is polynomial in 𝑑, we cannot decrease the total cost
substantially below Ω(𝑑). Thus, Theorem 15 is tight.

See Theorem 18 for a formal statement of our lower bound.

Theorem 18 (Lower bound, ℓ2 distance). Let 𝒳 = ℬ𝑑2 . For any randomized algorithm for 𝑚-ary

dueling optimization, there exists a choice of minimizer 𝒙★ ∈ ℬ𝑑2 and function 𝑓 (𝒙) B ∥𝒙 − 𝒙★∥2 such

that the algorithm must:

• perform Ω (𝑑/log𝑚) iterations in expectation to find a point 𝒙 for which 𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 𝜀.

• incur cost Ω (𝑑/log𝑚) in expectation.

Here, 𝜀 > 0 is an absolute numerical constant.

We prove Theorem 18 in Section 5.3. Using the same construction, we can also demonstrate
that Theorem 14 is tight when 𝒳 is the unit sphere.

Corollary 5.1.3 (Lower bound, linear 𝑓). Let 𝒳 = S𝑑2. For any randomized algorithm for 𝑚-ary

dueling optimization there exists a choice of minimizer 𝒙★ ∈ S𝑑2 and function 𝑓 (𝒙) B − ⟨𝒙 , 𝒙★⟩ such

that the same conclusions as in Theorem 18 hold.

195

5.1.3. Technical overview

At a high level, our algorithms maintain a guess 𝒙𝑡 for the optimal solution 𝒙★. They will
update this guess over many interactions with the adversary.

A general recipe. We first describe the primitives that our methods depend on. Our first tech-
nical innovation is the notion of progress distributions. Loosely speaking, these are distributions
from which a learner is likely to sample a new guess 𝒙𝑡+1 that decreases its suboptimality. See
Definition 5.1.4.

Definition 5.1.4 (Progress Distribution). Let 𝑓 : 𝒳 → R for 𝒳 ⊆ R𝑑. For 𝒙 ∈ 𝒳 and 1 ≤ 𝑝 < 2, we

say a distribution𝒟(𝒙) over vectors in R𝑑 is a (𝑝, 𝛾, 𝜌)-progress distribution for 𝒙 if we have the below.

Pr
𝒙+∼𝒟(𝒙)

[
𝑓 (𝒙) − 𝑓 (𝒙+)
(𝑓 (𝒙) − 𝑓 (𝒙★))𝑝

≥ 𝜌

𝑑

]
≥ 𝛾.

So, if for every 𝒙𝑡 the learner had sample access to some progress distribution𝒟(𝒙𝑡), the learner
can significantly improve its solution (e.g. when 𝑝 = 1, roughly∼ 𝑑/𝜌 steps are sufficient for the
learner to decrease its suboptimality by a constant factor). It is therefore natural that repeating
such a sample-then-guess approach ad infinitum will yield an approximately optimal solution.
In Theorem 19, we prove this whenever there exist families of progress distributions for every
range of possible suboptimalities. Thus, assuming the learner can maintain a (possibly quite
pessimistic) estimate of its suboptimality over all the rounds, we obtain a template for proving
the iteration complexities of Theorem 14, 15, Theorem 16. Note that 𝜌 can be an arbitrarily
small positive constant; even if there is a slim chance of decreasing the suboptimality, this is still
sufficient because the monotone adversary ensures that the algorithm can never make negative
progress.

Specifying progress distributions. We now discuss how we instantiate the above template
for the 𝛽-smooth (Definition 5.1.1) and 𝛼-PŁ (Definition 5.1.2) case (Theorem 15). We focus
on Theorem 15 for the sake of brevity; the proofs of Theorem 14 Theorem 16 require some
additional care but at a high level follow a similar structure. At step 𝑡, the algorithm maintains a
guess 𝒙𝑡 for the target 𝒙★. It chooses some step size 𝜀𝑡 and a random vector 𝒈 𝑡 from 𝜀𝑡 ·𝒩(0, I𝑑/𝑑).
We then query 𝒙𝑡 and 𝒙𝑡 − 𝒈 𝑡 . The key observation is that with a constant probability, the angle
between 𝒈 𝑡 and the gradient ∇ 𝑓 (𝒙) is small enough, so we make noticeable progress in such a
step. We will use this to show that the distribution 𝒙𝑡 − 𝜀𝑡 · 𝒩(0, I𝑑/𝑑) is a (1, 𝐶1 , 𝐶2)-progress
distribution (Definition 5.1.4) for constants 𝐶1 , 𝐶2. Intuitively, this means that 𝒙𝑡 − 𝒈 𝑡 almost
behaves like a step of gradient descent. To turn this observation into an algorithm, we need
two main insights.

Step size schedule. The principal difficulty of this approach is to choose the step size 𝜀𝑡 .
It is not immediately obvious how to do so since the algorithm does not observe any actual
gradients or function values. Hence, if our step sizes are too large, the algorithm may overshoot
the optimal solution 𝒙★ and therefore not actually improve the quality of its current solution
𝒙𝑡 . On the other hand, if our step sizes are too small, the algorithm may not make enough
progress in each step, which undesirably increases both the iteration complexity and the total
cost.

196

To address this, we carefully construct a step size schedule that relies on a pessimistic upper
bound on the suboptimality of the algorithm’s current solution. With this schedule, we show
that in every step, one of two things happens – either the step size 𝜀𝑡 is small enough such
that there is the possibility of the algorithm decreasing the cost, or it is too large. For the
first case, we use 𝛽-smoothness (Definition 5.1.1) to prove that there is a constant probability
that the algorithm finds a descent direction, which decreases the cost of its current solution
substantially. For the second case, we use the 𝛼-PŁ condition (Definition 5.1.2) to prove that
the cost the algorithm incurs in such steps is low. After enough steps, we can show that either
the second case always holds (i.e. that the suboptimality is already desirably small) or the
maximum cost that the algorithm can pay per round is small. We then decrease the step size
𝜀𝑡 by a constant factor, update the suboptimality estimate accordingly, and infinitely recurse.

Bounding the failure probability over infinite rounds. It now remains to show that the
probability that the algorithm fails to make enough progress over infinitely many rounds is
small. This is where the distinction between the two goals of Problem 5.1 becomes apparent.
Specifically, even if we have a subroutine that, with high probability, outputs an 𝜀-approximate
solution, this does not immediately convert to an algorithm that can achieve bounded cost over
an infinite number of rounds – note that the failure probabilities may accumulate in a divergent
manner. Hence, we will require a more careful probabilistic analysis.

To overcome this challenge, we design the algorithm to run in phases 𝑖 = 1, 2, In phase
𝑖, we use a step size 𝜀𝑡 proportional to 2−𝑖/2 and run phase 𝑖 for ∼ 𝑖𝑑 steps. Using the fact
that the family of distributions we are using for sampling next steps are (1, 𝐶1 , 𝐶2)-progress
distributions, it will be enough to prove that ∼ 𝑑 · 𝛽/𝛼 steps yield enough improving steps to
decrease the suboptimality by a constant factor. We can therefore apply a Chernoff bound to
conclude that the probability that the algorithm fails to make enough progress in phase 𝑖 is
at most exp (−𝑖𝑑 · 𝛽/𝛼). Finally, we apply a union bound that the total probability of failure by
exp (−𝑑 · 𝛽/𝛼) ≤ exp (−𝑑).

To bound the total cost over all phases 𝑖 ∈ N≥1, we note that the sum of the suboptimalities
in each round is of the form 𝑑

∑
𝑖≥1 𝑖2−𝑖 = 𝑂(𝑑). The guarantee on the iteration complexity

follows by noting that to achieve a suboptimality of 2−𝑖 , the algorithm runs 𝑑
∑
𝑗≤𝑖 𝑖 = 𝑂

(
𝑖2 · 𝑑

)
iterations.

5.1.4. Related works

Dueling convex optimization. As already mentioned, our formulation in Problem 5.1 is an
extension of dueling convex optimization in the noiseless setting [JNR12; SKM21; SKM22].
Jamieson, Nowak, and Recht [JNR12] employ a coordinate-descent algorithm to show for 𝛼-
smooth and 𝛽-strongly convex 𝑓 , �̃�(𝑑𝛽/𝛼 log (1/𝜀)) queries suffice to learn an 𝜀-optimal point. As
mentioned earlier, it is not clear how to adapt their algorithm to handle monotone feedback.
In addition, the works [SKM21; SKM22] show results for more general classes of 𝑓 and in the
presence of noise (where the adversary can return invalid response with nonzero probability).
However, their algorithms explicitly rely on sign feedback 𝑓 (𝒙(1)𝑡)

?
> 𝑓 (𝒙(2)𝑡) to construct gradient

estimators, which are not possible in the monotone adversary setting.

Monotone adversaries. Our setting is an example of learning with a monotone adversary,
where an adversary can choose to improve the feedback or information the algorithm gets.

197

A common characteristic is that the improved information may paradoxically break or harm
the performance of a given algorithm that works with non-improved information. Monotone
adversaries are often studied in the semi-random model literature [BS95b; Fei21; Moi21b] for
statistical estimation problems [CG18; Moi21b; KLLST22] as well as learning problems, i.e.,
linear classification with Massart noise [MN06a; DGT19].

Preference-based feedback. Our formulation in this chapter falls within the growing body of
literature that tackles learning with preference-based feedback, where the algorithm does not
learn how good its options were in an absolute sense, just which one(s) were better than others.

Other natural problems with preference-based feedback are contextual search [LS18; LLV18;
LLS20], contextual recommendation (also called contextual inverse optimization) [BFL21;
GGKMLS21], and 1-bit matrix completion [DPVW14].

5.2. Proofs of upper bound results

In this section, we prove Theorem 19. The point of Theorem 19 is to construct and analyze
a meta-algorithm for Problem 5.1 when the algorithm can sample next steps from progress
distributions (Definition 5.1.4)). We then show how to use this framework to prove Theorem 14
(results for 𝑓 (𝒙) = ⟨−𝒙 , 𝒙★⟩), Theorem 15 (results for 𝑓 (𝒙) being 𝛽-smooth and 𝛼-PŁ), and
Theorem 16 (results for 𝑓 (𝒙) = ∥𝒙 − 𝒙★∥2), in that order. It will be helpful to recall the overview
from Section 5.1.3 throughout this section.

We prove Theorem 19 in Section 5.2.1, Theorem 14 in Section 5.2.2, Theorem 15 in Section 5.2.3,
and Theorem 16 in Section 5.2.4.

Before we jump into the main proofs, we prove some straightforward numerical inequalities
that we need later.

Lemma 5.2.1. For 𝑟 ∈ (0, 1) and 1 ≤ 𝑝 < 2, we have

∑
𝑖≥0 𝑖 · 𝑟(1−𝑝/2)𝑖 ≤ 𝑟𝑝/2+1

(𝑟−𝑟𝑝/2)2 .

Proof of Lemma 5.2.1. Recall that ∑
𝑖≥0

𝑟(1−𝑝/2)𝑖 =
1

1 − 𝑟1−𝑝/2 .

Taking the derivative of both sides with respect to 𝑟 yields∑
𝑖≥0
(1 − 𝑝/2) 𝑖 · 𝑟(1−𝑝/2)𝑖−1 =

(2 − 𝑝)𝑟𝑝/2

2(𝑟 − 𝑟𝑝/2)2
.

We multiply both sides by 𝑟 and divide both sides by 1 − 𝑝/2; we conclude that∑
𝑖≥0

𝑖 · 𝑟(1−𝑝/2)𝑖 = 𝑟𝑝/2+1

(𝑟 − 𝑟𝑝/2)2

which recovers the statement of Lemma 5.2.1. □

198

Lemma 5.2.2 (Inner product with a random vector). Let 𝒈 ∼ Unif(S𝑑−1
2) and let 𝒚 ∈ S𝑑−1

2 be fixed.

Then

Pr
𝒈

[
⟨𝒈 , 𝒚⟩ ≥ 1

2
√
𝑑

]
≥ 1

8 .

Proof. By rotational invariance, without loss of generality, we can let 𝒚 = 𝒆1. We apply Lemma
2.2 (a) due to Dasgupta and Gupta [DG03] with 𝛽 = 1/4 to conclude that

Pr
𝒈

[
𝒈2

1 ≤
1
4𝑑

]
≤ exp

(1
2

(
1 − 1

4 + ln
(1
4

)))
<

3
4

which means that Pr
𝒈

[
|⟨𝒈 , 𝒚⟩| ≥ 1

2
√
𝑑

]
≥ 1

4 . The result of Lemma 5.2.2 follows by symmetry. □

Lemma 5.2.3 (Best inner product among 𝑚 Gaussians). Let 𝑚 ≥ 3. Let 𝒈1 , . . . , 𝒈𝑚 ∼ 𝒩
(
0, I𝑑

𝑑

)
and let 𝒚 ∈ S𝑑−1

2 be fixed. Then

Pr
𝒈1 ,...,𝒈𝑚

[
max

1≤𝑖≤𝑚

〈
𝒈 𝑖 , 𝒚

〉
≥
√

log𝑚√
𝑑

]
>

1
20 .

Proof of Lemma 5.2.3. As in the proof of Lemma 5.2.2, without loss of generality (from rotational
invariance), let 𝒚 = 𝒆1. Thus, we want to understand max1≤𝑖≤𝑚 𝒈 𝑖[1], which can be rewritten as
max1≤𝑖≤𝑚 𝑔𝑖 for 𝑔1 , . . . , 𝑔𝑚 ∼ 𝒩(0, 1). We start with the well-known fact (see [Ver18, Proposition
2.1.2]) that for all 𝑡 ∈ R,

Pr
𝑔∼𝒩(0,1)

[𝑔 ≤ 𝑡] ≤ 1 − 1√
2𝜋

1
𝑡

(
1 − 1

𝑡2

)
exp

(
− 𝑡

2

2

)
≤ exp

(
− 1√

2𝜋
1
𝑡

(
1 − 1

𝑡2

)
exp

(
− 𝑡

2

2

))
.

From independence, we get

Pr
𝑔1 ,...,𝑔𝑚∼𝒩(0,1)

[for all 𝑖 , 𝑔𝑖 ≤ 𝑡] ≤ exp
(
−𝑚 1√

2𝜋
1
𝑡

(
1 − 1

𝑡2

)
exp

(
− 𝑡

2

2

))
.

Choose 𝑡 = 𝑐
√

log𝑚 and write

Pr
𝑔1 ,...,𝑔𝑚∼𝒩(0,1)

[
for all 𝑖 , 𝑔𝑖 ≤ 𝑐

√
log𝑚

]
≤ exp

(
− 𝑚√

2𝜋
1

𝑐
√

log𝑚

(
1 − 1

𝑐2 log𝑚

)
exp

(
− 𝑐

2 log𝑚
2

))
= exp

(
−𝑚

1−𝑐2/2
√

2𝜋
1

𝑐
√

log𝑚

(
1 − 1

𝑐2 log𝑚

))
.

We can check that for 𝑐 = 1 and over the integers 𝑚 ≥ 3, the RHS is decreasing and at 𝑚 = 3,
the RHS is < 0.95. Rearranging, we get

Pr
𝑔1 ,...,𝑔𝑚∼𝒩(0,1)

[
max

1≤𝑖≤𝑚
𝑔𝑖 ≥

√
log𝑚

]
>

1
20 ,

thereby completing the proof of Lemma 5.2.3 (after appropriately rescaling). □

199

5.2.1. A general algorithm for Problem 5.1 with progress distributions

The goal of this subsection is to develop the general tools we need to prove our main results.

The key primitive of our analysis is a general algorithm (Algorithm 15) that solves Problem 5.1
when we are given certain convenient distributions from which we sample new guesses. We
call these progress distributions; recall Definition 5.1.4.

Let us describe Algorithm 15. In each step, Algorithm 15 maintains a current guess 𝒙𝑡 and
chooses a slight perturbation of that guess 𝒙+𝑡 ∼ 𝒟(𝒙𝑡), where𝒟(𝒙𝑡) is a (𝑝, 𝛾, 𝜌)-progress dis-
tribution (Definition 5.1.4). Algorithm 15 then submits the pair of guesses

{
𝒙𝑡 , 𝒙+𝑡

}
. To analyze

Algorithm 15, the main observation is that with probability ≥ 𝛾, the point 𝒙+𝑡 substantially im-
proves over the cost of 𝒙𝑡 – this follows directly from Definition 5.1.4. We exploit this intuition
to give our most general result (Theorem 19) and to prove the correctness of Algorithm 15.

Theorem 19. Let 𝑓 : 𝒳 → R. Let 𝐵 and 𝒙1 ∈ 𝒳 be such that 𝑓 (𝒙1) − 𝑓 (𝒙★) ≤ 𝐵. For 𝐶 > 0, constant

𝑟 ∈ (0, 0.99), and for all 𝑖 ∈ N≥1, suppose there exists intervals of the form 𝐶 ·
[
𝑟 𝑖+1 , 𝑟 𝑖

]
such that their

union covers the interval [0, 𝐵].

If there exists a (𝑝, 𝛾, 𝜌)-progress distribution𝒟𝑖(𝒙)whenever 𝑓 (𝒙)− 𝑓 (𝒙★) ∈ 𝐶 ·
[
𝑟 𝑖+1 , 𝑟 𝑖

]
for all 𝑖 ≥ 1

and where 𝑝, 𝛾, 𝜌 do not depend on 𝒙 and 𝑖, then there is an algorithm (Algorithm 15) for Problem 5.1

that, with probability at least 1 − exp
(
−𝑂

(
𝑑

𝜌𝐵𝑝−1

))
, incurs total cost

𝑂
©«

𝐵 log (1/𝑟)
𝐵𝑝−1𝛾𝜌min

{
𝑟𝑝(𝑝−1/2−𝑝) ,

(
𝑟 − 𝑟𝑝/2

)2
} · 𝑑ª®®¬ .

Additionally, Algorithm 15 finds a point 𝒙 satisfying 𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 𝜀 in

𝑂

(
1

𝐵𝑝−1𝛾𝜌
· 𝑑 · log

(
𝐵

𝜀

)2
)

iterations with at least the aforementioned probability.

Algorithm 15 General recipe algorithm for dueling optimization
1: Input: Interaction with a monotone adversaryℳ as defined in Problem 5.1; initial point 𝒙1

and bound𝐵 satisfying 𝑓 (𝒙1)− 𝑓 (𝒙★) ≤ 𝐵; values𝐶 and 𝑟 for which there exist corresponding
intervals and (𝑝, 𝛾, 𝜌)-progress distribution families𝒟𝑖 (see the statement of Theorem 19).

2: Initialize 𝒙1 = 0, 𝑡 = 1.
3: for 𝑖 = 1, . . . do

4: for 𝑇(𝑖) B 2𝑖/(𝛾 min(1,𝜌)) · (𝐶𝑟 𝑖+1)−(𝑝−1) · log (1/𝑟) · 𝑑 iterations do

5: Sample 𝒙+𝑡 from𝒟𝑖(𝒙𝑡).
6: Submit guesses

{
𝒙𝑡 , 𝒙+𝑡

}
and receive response 𝒙★𝑡 .

7: Let 𝒙𝑡+1 = 𝒙★𝑡 .
8: Update 𝑡 ← 𝑡 + 1.

The proof of Theorem 19 has two main parts. In the first part, we will prove that for each value
of 𝑖 (call the set of timesteps belonging to a particular value of 𝑖 “phase 𝑖”), the number of
steps 𝑇(𝑖) is sufficient to ensure that the cost of the algorithm’s solution decays gracefully with
sufficiently large probability. In the second part, we will prove that the total cost the algorithm

200

pays over all phases 𝑖 ≥ 1 is ∼ 𝐵 · 𝑑/𝛾𝜌 as promised. Theorem 19 will easily follow by combining
these facts.

We start with stating and proving Lemma 5.2.4.

Lemma 5.2.4. Let 𝑖 ≥ 1 and let 𝑇(𝑖) be defined below (or see Algorithm 15 of Algorithm 15).

𝑇(𝑖) B 2𝑖
𝛾 min(1, 𝜌) · (𝐶𝑟 𝑖+1)𝑝−1 · log (1/𝑟) · 𝑑.

Let 𝑡𝑖 be the first iteration of phase 𝑖. If 𝑓 (𝒙𝑡𝑖) − 𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖 , then, with probability ≥ 1− 𝑟
𝑑𝐵−(𝑝−1)

4𝜌 ·𝑖
, we

have 𝑓 (𝒙𝑡𝑖+𝑇(𝑖)+1) − 𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖+1
.

Proof of Lemma 5.2.4. Assume that we have 𝑓 (𝒙𝑡𝑖)− 𝑓 (𝒙★) ∈ 𝐶 ·
[
𝑟 𝑖+1 , 𝑟 𝑖

]
(otherwise, we are done

immediately).

Define the indicator random variable 𝑌𝑡 as follows.

𝑌𝑡 B 1

{
𝑓 (𝒙𝑡) − 𝑓 (𝒙+𝑡)
(𝑓 (𝒙𝑡) − 𝑓 (𝒙★))𝑝

≥ 𝜌

𝑑

}
.

Consider the distribution of guesses 𝒟𝑖 (let us omit the argument 𝒙𝑡 for the sake of brevity).
Since𝒟𝑖 is a (𝑝, 𝛾, 𝜌)-progress distribution, we have

Pr
𝒙+∼𝒟𝑖

[
𝑓 (𝒙𝑡) − 𝑓 (𝒙+𝑡)
𝑓 (𝒙𝑡) − 𝑓 (𝒙★)

≥
𝜌

𝑑
·
(
𝐶𝑟 𝑖+1

)𝑝−1
]
≥ Pr

𝒙+∼𝒟𝑖

[𝑌𝑡 = 1] ≥ 𝛾.

Call every step 𝑡 for which 𝑌𝑡 = 1 a “successful step.” Let us give a high-probability count
on the number of successful steps. Recall that a form of the Chernoff bound states that, for
𝛿 ∈ [0, 1] and independent indicator random variables 𝑌𝑗 ,

Pr

𝑡𝑖+𝑇(𝑖)∑
𝑗=𝑡𝑖

𝑌𝑗 ≤ (1 − 𝛿)E

𝑡𝑖+𝑇(𝑖)∑
𝑗=𝑡𝑖

𝑌𝑗

 ≤ exp

©«−
𝛿2 · E

[∑𝑡𝑖+𝑇(𝑖)
𝑗=𝑡𝑖

𝑌𝑗

]
2

ª®®¬ .
Applying the Chernoff bound with 𝛿 = 1/2 yields

Pr

𝑡𝑖+𝑇(𝑖)∑
𝑗=𝑡𝑖

𝑌𝑗 ≤
𝑇(𝑖)𝛾

2

 ≤ exp
©«−
𝑖 · 𝑑

𝜌(𝐶𝑟 𝑖+1)𝑝−1 · log (1/𝑟)

4
ª®®¬ ≤ 𝑟

𝑑𝐵−(𝑝−1)
4𝜌 ·𝑖

where we use 𝐶𝑟 𝑖+1 ≤ 𝐶𝑟2 ≤ 𝐵.

It remains to show that after at least 𝑇(𝑖)𝛾/2 successful steps, we have 𝑓 (𝒙𝑡𝑖+𝑇(𝑖)+1)− 𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖+1.
Recall that we assume that 𝑓 (𝒙𝑡𝑖) − 𝑓 (𝒙★) ≥ 𝐶𝑟 𝑖+1 and note that for every successful step, we
have

𝑓 (𝒙𝑡) − 𝑓 (𝒙+𝑡)
𝑓 (𝒙𝑡) − 𝑓 (𝒙★)

≥ 𝜌

𝑑
·
(
𝐶𝑟 𝑖+1

)𝑝−1

which implies

𝑓 (𝒙+𝑡) − 𝑓 (𝒙★)
𝑓 (𝒙𝑡) − 𝑓 (𝒙★)

≤ 1 − 𝜌

𝑑
·
(
𝐶𝑟 𝑖+1

)𝑝−1
.

201

We multiply over all steps in phase 𝑖, giving

𝑓 (𝒙𝑡𝑖+𝑇(𝑖)+1) − 𝑓 (𝒙★)
𝑓 (𝒙𝑡𝑖) − 𝑓 (𝒙★)

=

𝑡𝑖+𝑇(𝑖)∏
𝑡=𝑡𝑖

𝑓 (𝒙𝑡+1) − 𝑓 (𝒙★)
𝑓 (𝒙𝑡) − 𝑓 (𝒙★)

≤
(
1 −

𝜌

𝑑
·
(
𝐶𝑟 𝑖+1

)𝑝−1
)𝑇(𝑖)𝛾/2

≤
(
1 − 2𝑖

𝛾
· log (1/𝑟)
𝑇(𝑖)

)𝑇(𝑖)𝛾/2
≤ exp

(
2𝑖
𝛾
· log (1/𝑟)
𝑇(𝑖) ·

𝑇(𝑖)𝛾
2

)
= 𝑟 𝑖 ≤ 𝑟.

Finally, recall that 𝑓 (𝒙𝑡𝑖) − 𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖 . Combining this with the above gives 𝑓 (𝒙𝑡𝑖+𝑇(𝑖)+1) −
𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖+1, concluding the proof of Lemma 5.2.4. □

Next, we have Lemma 5.2.5, which controls the total cost that Algorithm 15 incurs assuming
that the cost is sufficiently low in each phase.

Lemma 5.2.5. For a timestep 𝑡, let 𝑖(𝑡) be the phase that 𝑡 belongs to.

If for all 𝑡 we have 𝑓 (𝒙𝑡) − 𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖(𝑡), then Algorithm 15 incurs total cost

𝑂
©«

𝐵 log (1/𝑟)
𝐶𝑝−1𝛾𝜌min

{
𝑟𝑝(𝑝−1/2−𝑝) ,

(
𝑟 − 𝑟𝑝/2

)2
} · 𝑑ª®®¬ .

Proof of Lemma 5.2.5. Recall throughout this proof that 𝑟 ≤ 0.99 and 𝑝 is a constant such that
𝑝 < 2.

Observe that in phase 𝑖, the algorithm incurs cost at most

𝑇(𝑖) · 𝐶𝑟 𝑖 = 2𝑖
𝛾
· 𝑑𝐶𝑟 𝑖

𝜌
(
𝐶𝑟 𝑖+1)𝑝−1 · log (1/𝑟) = 2𝑖

𝛾
· 𝑑 log (1/𝑟)

𝜌𝐶𝑝−2 · 𝑟 𝑖−(𝑖+1)(𝑝−1).

We will find a threshold 𝑖𝑝 for which for all 𝑖 ≥ 𝑖𝑝 , the above cost is exponentially decaying.
This will allow us to control the sum of the costs over infinitely many rounds. We choose
𝑖𝑝 = 2 · ⌈((𝑝−1)/(2−𝑝))⌉. Notice that for all 𝑖 ≥ 𝑖𝑝 , the exponent on 𝑟 can be bounded as

𝑖 − (𝑖 + 1)(𝑝 − 1) = 𝑖(2 − 𝑝) − (𝑝 − 1) ≥
(
1 − 𝑝2

)
𝑖.

Note that this also implies that (𝑖𝑝 + 1)(𝑝 − 1) ≤ 𝑝/2 · 𝑖𝑝 = 𝑝 ⌈(𝑝−1)/(2−𝑝)⌉.

To total the cost, we consider two cases. First, suppose 1 ≤ 𝑖 ≤ 𝑖𝑝 − 1. Observe that in each of
these phases, we pay cost at most 𝐵, so we have

𝑖𝑝−1∑
𝑖=1

𝐵 · 𝑇(𝑖) ≤ 𝐵
(
𝑇𝑖𝑝 · 𝑖𝑝

)
= 2𝐵

(
2 · 𝑝 − 1

2 − 𝑝

)2
· log (1/𝑟)

𝛾
· 𝑑

𝜌𝐶𝑝−1𝑟(𝑖𝑝+1)(𝑝−1)

≤ 2𝐵
(
2 ·

𝑝 − 1
2 − 𝑝

)2
· log (1/𝑟)

𝛾
· 𝑑

𝜌𝐶𝑝−1𝑟𝑝(𝑝−1/2−𝑝) . (5.2.1)

Next, we sum over all phases 𝑖 ≥ 𝑖𝑝 . We obtain a cost that is at most∑
𝑖≥𝑖𝑝

2𝑖
𝛾
· 𝑑 log (1/𝑟)

𝜌𝐶𝑝−2 · 𝑟
𝑖−(𝑖+1)(𝑝−1) ≤ 2𝑑 log (1/𝑟)

𝛾𝜌 · 𝐶𝑝−2

∑
𝑖≥𝑖𝑝

𝑖 · 𝑟(1−𝑝/2)𝑖 ≤ 2𝑑 log (1/𝑟)
𝛾𝜌 · 𝐶𝑝−2 ·

𝑟𝑝/2+1

(𝑟 − 𝑟𝑝/2)2
(5.2.2)

202

where the last inequality follows from Lemma 5.2.1. Combining (5.2.1) and (5.2.2) yields

2𝐵
(
2 · 𝑝 − 1

2 − 𝑝

)2
· log (1/𝑟)

𝛾
· 𝑑

𝜌𝐶𝑝−1𝑟𝑝(𝑝−1/2−𝑝) +
2𝑑 log (1/𝑟)
𝛾𝜌 · 𝐶𝑝−2 ·

𝑟𝑝/2+1

(𝑟 − 𝑟𝑝/2)2

≤ 2𝐵
(
2 · 𝑝 − 1

2 − 𝑝

)2
· log (1/𝑟)

𝛾
· 𝑑

𝜌𝐶𝑝−1𝑟𝑝(𝑝−1/2−𝑝) +
2𝑑 log (1/𝑟)
𝛾𝜌 · 𝐶𝑝−1 ·

𝐵

(𝑟 − 𝑟𝑝/2)2

= 𝑂
©«

𝐵 log (1/𝑟)
𝐶𝑝−1𝛾𝜌min

{
𝑟𝑝(𝑝−1/2−𝑝) ,

(
𝑟 − 𝑟𝑝/2

)2
} · 𝑑ª®®¬

This concludes the proof of Lemma 5.2.5. □

We are now ready to prove Theorem 19.

Proof of Theorem 19. It is sufficient to prove that with probability ≥ 1 − exp
(
−𝑂

(
𝑑

𝜌𝐵𝑝−1

))
, at the

end of phase 𝑖, we have 𝑓 (𝒙𝑡) − 𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖+1. Recall the conclusion of Lemma 5.2.4 and that
𝑓 (𝒙1) − 𝑓 (𝒙★) ≤ 𝐵 ≤ 𝐶𝑟; by a union bound, we have for all phases 𝑖 that 𝑓 (𝒙𝑡) − 𝑓 (𝒙★) ≤ 𝐶𝑟 𝑖+1

with probability

1 −
∑
𝑖≥1

𝑟
𝑑𝐵−(𝑝−1)

4𝜌 ·𝑖 ≥ 1 − exp
(
−𝑂

(
𝑑

𝜌𝐵𝑝−1

))
where we use 0 < 𝑟 < 0.99. The first part of Theorem 19 now follows directly from applying
Lemma 5.2.5. The rest of the statement of Theorem 19 follows by noting that∑

𝑗≤𝑖
𝑇(𝑗) = 2𝐶−(𝑝−1) log (1/𝑟)

𝛾 min(1, 𝜌) · 𝑑 ·
∑
𝑗≤𝑖

𝑗
(
𝑟−(𝑗+1)(𝑝−1)

)
≲

2𝐶−(𝑝−1)

𝛾 min(1, 𝜌) · 𝑑 · 𝑖
2.

where we again use 𝑟 < 0.99. We set 𝜀 = 𝐶𝑟 𝑖 and conclude. □

5.2.2. Proof of Theorem 14

The goal of this subsection is to prove Theorem 14.

Our plan will be to use the general guarantee of Theorem 19. Thus, the main task is to prove
that there is an appropriate interval cover and corresponding sequence 𝒟𝑖(𝒙) of progress
distributions for all 𝒙 belonging to phase 𝑖 that satisfy the conditions of Theorem 19.

We prove this fact in Lemma 5.2.6. We remark that we made no effort to optimize the numerical
constants; we choose the constants that appear in the Lemma statement to simplify calculations,
as these will not impact our asymptotic results.

Lemma 5.2.6. Let 𝑓 : R𝑑 → R be the negative inner product function defined on S𝑑−1
2 with respect

to some unknown target 𝒙★. Then for any 𝒙 for which 𝑓 (𝒙) − 𝑓 (𝒙★) ∈
[
10−(𝑖+1) , 10−𝑖

]
and for which

⟨𝒙★, 𝒙⟩ > 0, there is a (1.5, 10−1 , 10−4)-progress distribution (Definition 5.1.4) that can be computed in

time 𝑂(𝑑).

203

Proof of Lemma 5.2.6. We explain the construction of the distribution𝒟(𝒙).

Impose the following coordinates onR𝑑. Let the first coordinate 𝑥1 be the direction of 𝒙, and the
remaining 𝑑−1 coordinates be an arbitrary coordinate system for the perpendicular directions.
Then, 𝒙 has coordinates (1, 0 . . .). Next, let 𝑧 B 10−(𝑖+1) and 𝑠 := 𝑧

10
√
𝑑−1

. Let 𝒔 be a point
randomly drawn from a 𝑑 − 1 dimensional sphere of radius 𝑠 whose coordinates are denoted
𝑠1 . . . 𝑠𝑑−1. Then, the distribution 𝒟 (𝒙) is the distribution of (

√
1 − 𝑠2 , 𝑠1 . . . 𝑠𝑑−1). It is easy to

verify that these points lie on S𝑑−1
2 .

This distribution can be computed in time 𝑂(𝑑). We will now show that it is a (1.5, 10−1 , 10−4)
progress distribution.

Let 𝑧0 B 𝑓 (𝒙) − 𝑓 (𝒙★); recall that 𝑧0 ∈ [0, 1] and 𝑧 ≤ 𝑧0 ≤ 10𝑧. We write the target vector
𝒙★ = (1− 𝑧0)𝒙+

√
1 − (1 − 𝑧0)2𝒚 = (1− 𝑧0)𝒙+

√
2𝑧0 − 𝑧2

0𝒚 where 𝒚 is a unit vector and ⟨𝒚, 𝒙⟩ = 0.
Note that this expression holds because ⟨𝒙★, 𝒙⟩ = 1 − 𝑧0.

Let 𝒙+ be a random point chosen from𝒟(𝒙). Let 𝑦1 . . . 𝑦𝑑−1 be the coordinates of 𝒚 in the 𝑑 − 1
dimensional coordinate plane perpendicular to 𝒙 defined above. We compute

⟨𝒙★, 𝒙+⟩ =
(
1 − 𝑧0 ,

√
2𝑧0 − 𝑧2

0𝑦1 . . .

√
2𝑧0 − 𝑧2

0𝑦𝑑−1

)
·
(√

1 − 𝑠2 , 𝑠1 . . . 𝑠𝑑−1

)
(5.2.3)

= (1 − 𝑧0)
√

1 − 𝑠2 +
(√

2𝑧0 − 𝑧2
0𝑦1 . . .

√
2𝑧0 − 𝑧2

0𝑦𝑑−1

)
· (𝑠1 . . . 𝑠𝑑−1). (5.2.4)

By Lemma 5.2.2, we have (note that we weaken the constants from Lemma 5.2.2 for numerical
convenience later in the proof)

Pr
𝒔

[(√
2𝑧0 − 𝑧2

0𝑦1 . . .

√
2𝑧0 − 𝑧2

0𝑦𝑑−1

)
· (𝑠1 . . . 𝑠𝑑−1) ≥

0.1√
𝑑 − 1

·
√

2𝑧0 − 𝑧2
0 · 𝑠

]
≥ 0.1.

Because 2𝑧0 − 𝑧2
0 ≥ 𝑧0 ≥ 𝑧, we have

0.1√
𝑑 − 1

·
√

2𝑧0 − 𝑧2
0 · 𝑠 ≥

𝑠
√
𝑧

10
√
𝑑 − 1

.

In turn, this shows

Pr
𝑠

[(√
2𝑧0 − 𝑧2

0𝑦1 . . .

√
2𝑧0 − 𝑧2

0𝑦𝑑−1

)
· (𝑠1 . . . 𝑠𝑑−1) ≥

𝑠
√
𝑧

10
√
𝑑 − 1

]
≥ 0.1.

Combining this with Equation 5.2.3, we obtain

Pr
𝒙+∼𝒟𝒙

[
⟨𝒙★, 𝒙+⟩ ≥ (1 − 𝑧0)

√
1 − 𝑠2 + 𝑠

√
𝑧

10
√
𝑑 − 1

]
≥ 0.1. (5.2.5)

Now, we will find a lower bound for (1 − 𝑧0)
√

1 − 𝑠2 + 𝑠
√
𝑧

10
√
𝑑−1

. We have

(1 − 𝑧0)
√

1 − 𝑠2 + 𝑠
√
𝑧

10
√
𝑑 − 1

≥ (1 − 𝑧0)(1 − 𝑠2) + 𝑠
√
𝑧

10
√
𝑑 − 1

= (1 − 𝑧0)(−𝑠2) + 𝑠
√
𝑧

10
√
𝑑 − 1

+ (1 − 𝑧0)

≥ (1 − 𝑧)(−𝑠2) + 𝑠
√
𝑧

10
√
𝑑 − 1

+ (1 − 𝑧0).

204

Now, using that 𝑠 = 𝑧

10
√
𝑑−1

, we get

(1 − 𝑧)(−𝑠2) + 𝑠
√
𝑧

10
√
𝑑 − 1

+ (1 − 𝑧0) = (1 − 10𝑠
√
𝑑 − 1)(−𝑠2) + 𝑠3/2

√
10(𝑑 − 1)1/4

+ (1 − 𝑧0)

= −𝑠2 + 10𝑠3
√
𝑑 − 1 + 𝑠3/2

√
10(𝑑 − 1)1/4

+ (1 − 𝑧0)

≥
(
10𝑠3
√
𝑑 − 1 + 𝑠3/2

8(𝑑 − 1)1/4
− 𝑠2

)
+ 𝑠3/2

6(𝑑 − 1)1/4
+ (1 − 𝑧0)

where the last line follows from 1/√10 > 1/8+ 1/6. Finally, applying weighted AM-GM lets us see

10𝑠3
√
𝑑 − 1 + 𝑠3/2

8(𝑑 − 1)1/4
≥ 3

22/3

(
10𝑠3
√
𝑑 − 1

)1/3
(

𝑠3/2

8(𝑑 − 1)1/4

)2/3
=

3 · 101/3

22/322
𝑠2 > 𝑠2

where we use a weight of 1/3 on the first term and a weight of 2/3 on the second term. We now
write

(1 − 𝑧0)
√

1 − 𝑠2 + 𝑠
√
𝑧

10
√
𝑑 − 1

≥ 𝑠3/2

6(𝑑 − 1)1/4
+ (1 − 𝑧0).

Substituting 𝑠 once again and recalling that ⟨𝒙★, 𝒙⟩ = (1 − 𝑧0) and 𝑧 ≥ 𝑧0
10 =

⟨𝒙★,𝒙★−𝒙⟩
10 , we get

(1 − 𝑧0)
√

1 − 𝑠2 + 𝑠
√
𝑧

10
√
𝑑 − 1

≥ 𝑧3/2

6 · 103/2 · 𝑑
+ ⟨𝒙★, 𝒙⟩ > 10−4⟨𝒙★, 𝒙★ − 𝒙⟩3/2

𝑑
+ ⟨𝒙★, 𝒙⟩.

Combining this with (5.2.5), we now have

Pr
𝒙+∼𝒟(𝒙)

[
⟨𝒙★, 𝒙+⟩ ≥ 10−4⟨𝒙★, 𝒙★ − 𝒙⟩3/2

𝑑
+ ⟨𝒙★, 𝒙⟩

]
≥ 0.1

which means that

Pr
𝒙+∼𝒟(𝒙)

[
⟨𝒙★, 𝒙+ − 𝒙⟩ ≥ 10−4⟨𝒙★, 𝒙★ − 𝒙⟩3/2

𝑑

]
≥ 0.1.

This exactly aligns with the definition of a (1.5, 10−1 , 10−4) progress distribution, completing
the proof of Lemma 5.2.6. □

We will now conclude Theorem 14 using Theorem 19.

Proof of Theorem 14. To apply Theorem 19, we need to present 𝐶, 𝑟, and a sequence of parame-
terizations𝒟𝑖 that satisfy the premises.

Set 𝑟 = 0.1 and 𝐶 = 10. By Lemma 5.2.6, we can find progress distributions for each interval
[𝐶𝑟 𝑖 , 𝐶𝑟 𝑖−1] of suboptimality of the current function value, since we can find such progress
distributions as long as the suboptimality of the function is at most 1.

Note that the algorithm can begin with a point 𝒙 where 𝑓 (𝒙) − 𝑓 (𝒙★) < 1 by first querying
two opposite points on a sphere; one can easily see that at least one of the two points queried
satisfies 𝑓 (𝒙) − 𝑓 (𝒙★) < 1.

We therefore conclude the proof of Theorem 14. □

205

5.2.3. Proof of Theorem 15

The goal of this subsection is to prove Theorem 15.

As before, we use the general guarantee of Theorem 19 via proving that there is an appropriate
interval cover and corresponding sequence 𝒟𝑖(𝒙) of progress distributions for all 𝒙 for which
𝑓 (𝒙) − 𝑓 (𝒙★) ∈

[
𝐶𝑟 𝑖+1 , 𝐶𝑟 𝑖

]
. We prove this fact in Lemma 5.2.7.

Lemma 5.2.7. Fix 𝑖 ∈ N≥1. Let 𝜀𝑖 =
√

2𝐵𝛼/𝛽2 ·
√

log𝑚/√𝑑 · 2−𝑖/2−1
. Suppose 𝑓 is 𝛽-smooth and 𝛼-PŁ,

and suppose we have 𝑓 (𝒙) − 𝑓 (𝒙★) ∈ 𝐵 ·
[
2−𝑖 , 2−𝑖+1]

. Let 𝒈1 , . . . , 𝒈𝑚 ∼ 𝒩(0, I𝑑/𝑑) independently.

Consider the points 𝒙 + 𝜀𝑖 𝒈 𝑗 for 1 ≤ 𝑗 ≤ 𝑚 and let 𝑘 be the index that minimizes 𝑓 (𝒙 + 𝜀𝑖 𝒈 𝑗). Let

𝒟𝑖(𝒙) = 𝒙 + 𝜀𝑖 𝒈 𝑘 . Then, for all 𝑑 larger than a universal constant, 𝒟𝑖(𝒙) is a (1, 𝛾, 𝜌)-progress

distribution for (𝛾, 𝜌) = (1/40, 𝛼/8𝛽 · log𝑚).

Proof of Lemma 5.2.7. Note that although the algorithm may not be able to explicitly evaluate
𝒟𝑖(𝒙), the adversary always returns a point that has function value that is at least as good as
the return value of𝒟𝑖(𝒙), which can be done by guessing all 𝑚 points 𝒙 + 𝜀𝑖 𝒈 𝑗 for 𝑗 = 1, . . . , 𝑚
in round 𝑡.

Let 𝒈 B 𝒙 − 𝒙+. It is sufficient to consider the case where we have 𝜀𝑖 ≤ 1
2𝛽 ·

∥∇ 𝑓 (𝒙)∥2
√

log𝑚√
𝑑

. To see
this, suppose this is not the case. We apply the PŁ inequality and write

𝑓 (𝒙) − 𝑓 (𝒙★) ≤ 1
2𝛼 ∥∇ 𝑓 (𝒙)∥

2
2 ≤

𝑑

log𝑚 ·
2𝛽2

𝛼
𝜀2
𝑖 =

𝑑

log𝑚 ·
2𝛽2

𝛼

(√
2𝐵𝛼 log𝑚

𝛽2𝑑
· 1

2𝑖/2+1

)2

=
𝐵

2𝑖

which implies that the suboptimality 𝑓 (𝒙) − 𝑓 (𝒙★) does not belong to the range we are consid-
ering.

Next, we use Lemma 5.2.3 to write the below.

Pr
𝒈

[〈 ∇ 𝑓 (𝒙)
∥∇ 𝑓 (𝒙)∥2

,
𝒈
𝜀𝑖

〉
≥
√

log𝑚√
𝑑

]
≥ 1

20 .

By [Ver18, Theorem 3.1.1], we have for some universal constant 𝐶 that

Pr
𝒈

[���� ∥𝒈 ∥2𝜀𝑖
− 1

���� ≥ 𝑡] ≤ 2exp
(
−𝑑𝑡

2

𝐶

)
.

Rearranging, this tells us that with probability ≤ 1/40, we have���� ∥𝒈 ∥2𝜀𝑖
− 1

���� ≥ √𝐶 log (80)√
𝑑

.

Thus, by a union bound, we have with probability ≥ 1/40 that both of the following hold:〈 ∇ 𝑓 (𝒙)
∥∇ 𝑓 (𝒙)∥2

,
𝒈
𝜀𝑖

〉
≥
√

log𝑚√
𝑑���� ∥𝒈 ∥2𝜀𝑖

− 1
���� ≤ √𝐶 log (80)√

𝑑

.

206

For the rest of the proof, suppose we land in this case. Set 𝛾 = 1/40. By Definition 5.1.1, we
have for a 𝛽-smooth function and for any 𝒙 , 𝒚 ∈ R𝑑 that

| 𝑓 (𝒙) − 𝑓 (𝒚) − ⟨∇ 𝑓 (𝒚), 𝒙 − 𝒚⟩| ≤
𝛽

2 · ∥𝒙 − 𝒚∥22 ,

from which it easily follows that

| 𝑓 (𝒙 − 𝒈) − 𝑓 (𝒙) + ⟨∇ 𝑓 (𝒙), 𝒈⟩| ≤
𝛽

2 · ∥𝒈 ∥
2
2 .

The above rearranges to

𝑓 (𝒙) − 𝑓 (𝒙 − 𝒈) ≥ ⟨∇ 𝑓 (𝒙), 𝒈⟩ −
𝛽

2 · ∥𝒈 ∥
2
2

= ∥∇ 𝑓 (𝒙)∥2 · 𝜀𝑖 ·
(〈 ∇ 𝑓 (𝒙)
∥∇ 𝑓 (𝒙)∥2

,
𝒈
𝜀𝑖

〉
−

𝛽/2 · ∥𝒈 ∥22
𝜀𝑖 ∥∇ 𝑓 (𝒙)∥2

)
≥ ∥∇ 𝑓 (𝒙)∥2 · 𝜀𝑖 ·

√
log𝑚√
𝑑
− 𝛽

2 · ∥𝒈 ∥
2
2

≥ 𝜀2
𝑖 (2𝛽) −

𝛽

2 · ∥𝒈 ∥
2
2

≥ 𝜀2
𝑖

(
2𝛽 −

𝛽

2 ·
(
1 +
√
𝐶 log (80)√

𝑑

))
≥ 𝜀2

𝑖 ·
𝛽

2 for all 𝑑 large enough

We therefore conclude that

𝑓 (𝒙) − 𝑓 (𝒙 − 𝒈) ≥ 𝛽

2 · 𝜀
2
𝑖 =

𝛽

2 ·
(√

2𝐵𝛼 log𝑚
𝛽2𝑑

· 1
2𝑖/2+1

)2

=
𝛼
𝛽
· 𝐵 log𝑚

𝑑
· 1

2𝑖+2 .

This means that

𝑓 (𝒙) − 𝑓 (𝒙 − 𝒈)
𝑓 (𝒙) − 𝑓 (𝒙★) ≥

𝛼/𝛽 · 𝐵 log𝑚/𝑑 · 1/2𝑖+2

𝐵/2𝑖−1
=

𝛼
𝛽
· log𝑚

8𝑑

which means we can take 𝜌 = 𝛼/8𝛽 · log𝑚. This concludes the proof of Lemma 5.2.7. □

The proof of Theorem 15 follows very easily from Lemma 5.2.7.

Proof of Theorem 15. Our plan is to apply Theorem 19. To do so, we need to present 𝐶, 𝑟, and a
sequence of𝒟𝑖 that satisfy the premise of Theorem 19. We will use the settings of these objects
guaranteed by Lemma 5.2.7.

Let 𝐶 = 2𝐵 and 𝑟 = 1/2. It is clear that the intervals given by Lemma 5.2.7 cover [0, 𝐵], and so for
every 𝑖 ≥ 1, there exists a corresponding (1, 1/40, 𝛼/8𝛽 · log𝑚)-progress distribution family 𝒟𝑖 .
We now apply Lemma 5.2.7 along with Theorem 19 to conclude the proof of Theorem 15. □

207

5.2.4. Proof of Theorem 16

In this subsection, we prove Theorem 16. For simplicity, we only study the 𝑚 = 2 case, though
it is straightforward to get rates similar to Theorem 15 in this setting.

Again, we present an appropriate interval cover and corresponding sequence of progress
distributions𝒟𝑖(𝒙) that satisfy the conditions of Theorem 19. See Lemma 5.2.8.

Lemma 5.2.8. Fix 𝑖 ∈ N≥1. Let 𝜀 = 1/√𝑑 · 2−𝑖/2. If 𝑓 : ℬ𝑑2 → R is 𝑓 (𝒙) = ∥𝒙 − 𝒙★∥2 for 𝒙★ ∈ ℬ𝑑2
and if ∥𝒙 − 𝒙★∥2 ≤

√
2 ·

[
2−(𝑖+1)/2 , 2−𝑖/2

]
, then there exists a distribution 𝒟(𝒙) that can be efficiently

sampled from and is a (1, 𝛾, 𝜌)-progress distribution for (𝛾, 𝜌) = (1/8, 1/8).

Proof of Lemma 5.2.8. Let 𝒙+ have distribution

𝒙 − 𝒈

max
{
1, ∥𝒙 − 𝒈 ∥2

} , where 𝒈 ∼ 𝜀𝑡 · Unif(S𝑑−1
2). (5.2.6)

Note that this distribution can be described as, “add a uniformly random direction of length 𝜀𝑡
to 𝒙 and project the result back onto 𝒳 = ℬ𝑑2 .”

It is easy to see that ∥𝒙+∥2 ≤ 1, so the iterates of Algorithm 15 will always remain insideℬ𝑑2 . We
now prove that𝒟 as described above in fact is a (1, 𝛾, 𝜌)-progress distribution for the promised
parameters.

First, use the fact that ∥𝒙 − 𝒙★∥22 is 2-smooth and 2-PŁ along with Lemma 5.2.7 to conclude that

Pr
𝒈

[
∥𝒙 − 𝒙★∥22 − ∥𝒙 − 𝒈 − 𝒙★∥22

∥𝒙 − 𝒙★∥22
≥ 2𝜌

𝑑

]
≥ 𝛾.

Condition on this event. A basic property of the Euclidean projection onto a convex set implies
that 𝒙+ − 𝒙★

2
2 ≤

(𝒙 − 𝒈) − 𝒙★
2

2

which yields

Pr
𝒈

[
∥𝒙 − 𝒙★∥22 − ∥𝒙+ − 𝒙★∥22

∥𝒙 − 𝒙★∥22
≥ 2𝜌

𝑑

]
≥ 𝛾.

Finally, observe that the above event implies(
∥𝒙+ − 𝒙★∥2
∥𝒙 − 𝒙★∥2

)2
≤

(√
1 −

2𝜌
𝑑

)2

≤
(
1 −

𝜌

𝑑

)2
.

Taking the square root of both sides and rearranging concludes the proof of Lemma 5.2.8. □

We remark that the above proof goes through if𝒳 is an arbitrary convex set; we simply replace
(5.2.6) with Π𝒳(𝒙 − 𝒈), where Π𝒳(𝒛) is the Euclidean projection of 𝒛 onto 𝒳.

Now, the proof of Theorem 16 will follow in a very similar manner to that of Theorem 15.

208

Proof of Theorem 16. To apply Theorem 19, we need to present 𝐶, 𝑟, and a sequence of distribu-
tion parameterizations𝒟𝑖 that satisfy the premises.

Let 𝒙1 = 0. It is clear that ∥𝒙★∥2 ≤ 1 = 𝐵, which means that the intervals of the form√
2 ·

[
2−(𝑖+1)/2 , 2−𝑖/2

]
for 𝑖 ≥ 1 cover the interval [0, 1]. Hence, for every 𝑖 ≥ 1, there exists a

corresponding (1, 1/8, 1/8)-progress distribution. Theorem 16 follows immediately. □

5.2.5. Proof of Theorem 17

In this section, we prove Theorem 17.

Proof of Theorem 17. Consider the surrogate objective

�̃� (𝒙) B 𝑓 (𝒙) + 𝜀
𝐷
∥𝒙 − 𝒙0∥22 .

It is easy to see that 0 ≤ �̃� (𝒙) − 𝑓 (𝒙) ≤ 𝜀. Furthermore, by construction, �̃� is 2𝜀/𝐷-PŁ. Thus, for
any pair of queries 𝒙+ and 𝒙 for which 𝑓 (𝒙+) − 𝑓 (𝒙) ≥ 𝜀, the monotone feedback received for
𝑓 is consistent for �̃� . Furthermore, since we are just searching for an 𝜀-accurate solution, we
only have to be able to distinguish point pairs whose function values are ≥ 𝜀 apart. We now
run the algorithm implied by Theorem 15 to optimize the surrogate �̃� and conclude the proof
of Theorem 17. □

5.3. Proofs of lower bound results

In this section, we will prove Theorem 18 and Corollary 5.1.3. We first state the following
well-known fact (see, e.g., [Ver18]) that there exist 2Ω(𝑑) points inside the unit ℓ2 ball which are
sufficiently far apart from one another.

Fact 5.3.1. There exists a subset 𝑆 ⊂ ℬ𝑑2 such that |𝑆 | = 2Ω(𝑑), and for all 𝒙 , 𝒚 ∈ 𝑆 such that 𝒙 ≠ 𝒚, we

have ∥𝒙 − 𝒚∥2 ≥ 0.1.

We are now ready to prove Theorem 18.

Proof of Theorem 18. We actually prove the lower bound even when the adversary must return
the item in the list with smallest function value (breaking ties consistently, e.g., according to
lexicographic order). Since the adversary is only weaker in this case, this implies the lower
bound for the monotone adversary.

By Yao’s Lemma [Yao77], it suffices to give a distribution over instances such that every deter-
ministic algorithm satisfies the conclusions of the theorem. Hence, choose 𝑆 from Fact 5.3.1
and let 𝒙★ be sampled uniformly from 𝑆.

Fix any deterministic algorithm. The deterministic algorithm branches into at most 𝑚 states
every round, depending on the response the adversary gives. Therefore after 𝑟 := ⌊log𝑚 |𝑆 |⌋ −1
rounds, the algorithm has at most 𝑚𝑟 < 1

2 |𝑆 | distinct states. Each of these states 𝑄 can be
represented as a tuple of the form

{
(𝒙(1)𝑡 , · · · , 𝒙(𝑚)𝑡 , 𝑖𝑡)

}
𝑡∈[𝑟]

, where the 𝒙(𝑖)𝑡 ∈ 𝒳 and the 𝑖𝑡 ∈ [𝑚],

209

which represents a set of the algorithm’s guesses as well as the closest-point responses for the
first 𝑟 rounds.

Cost lower bound. Let us denote 𝑐𝑟(𝒙★, 𝑄) to be the total cost incurred for the state 𝑄 if the
target is 𝒙★ ∈ 𝑆. We claim that all but at most one 𝒙★ ∈ 𝑆 have 𝑐𝑟(𝒙★, 𝑄) > 0.05𝑟. Suppose there
were two points 𝒙★ and 𝒙★′ which had 𝑐𝑟(𝒙★, 𝑄) < 0.05𝑟. Then 𝑐𝑟(𝒙★, 𝑄) + 𝑐𝑟(𝒙★′, 𝑄) < 0.1𝑟, so
there exists some round 𝑡 ∈ [𝑟] for which

max
{𝒙(1)𝑡 − 𝒙★

 , · · · , 𝒙(𝑚)𝑡 − 𝒙★
} +max

{𝒙(1)𝑡 − 𝒙★′
 , · · · , 𝒙(𝑚)𝑡 − 𝒙★′

} < 0.1.

However, this cannot hold by triangle inequality since 𝒙★ and 𝒙★′ are well-separated.

For any target 𝒙★, the cost paid in the first 𝑟 steps is at least 𝑐𝑟(𝒙★, 𝑄(𝒙★)), where 𝑄(𝒙★) is
the state of the algorithm after 𝑟 rounds when the target is 𝒙★. In particular, it is of the form
𝑐𝑟(𝒙★, 𝑄) for some 𝑄. Since there are only 1

2 |𝑆 | possible algorithm states, at most 1
2 |𝑆 | values

of 𝒙★ can have total cost less than 0.05𝑟. Therefore, the average cost over instances uniformly
drawn from 𝑆 must be at least

1
|𝑆 |

(
|𝑆 | − 1

2 |𝑆 |
)
· 0.05𝑟 ≥ 0.025

(
log 𝑆
log𝑚 − 2

)
= Ω(𝑑/log𝑚).

Iteration lower bound. We will use the cost lower bound to prove the iteration lower bound.
Recall that we proved that for any algorithm, there existed an instance 𝒙★ for which the
algorithm incurs Ω(𝑑/log𝑚) cost over the first 𝑟 rounds.

Now suppose we had an algorithm 𝒜 which achieved an expected iteration complexity of
finding an 𝜀-optimal point of 𝐶 · 𝑑/log𝑚 for any 𝒙★ ∈ 𝑆, where 𝜀, 𝐶 > 0 are sufficiently small
numerical constants. We can convert this into a low-cost algorithm 𝒜′ for the first 𝑟 rounds
that (1) runs 𝒜 to find an 𝜀-optimal point 𝒙; then (2) until round 𝑟 repeatedly suggests 𝒙(1)𝑡 =

· · · = 𝒙(𝑚)𝑡 = 𝒙. The expected cost of algorithm𝒜′ for the first 𝑟 rounds is at most

2 · 𝐶𝑑

log𝑚 + 𝜀 · 𝑟 ≤ (2𝐶 + 𝜀) 𝑑

log𝑚 .

For sufficiently small 𝜀 and 𝐶, we have a contradiction with the previous cost lower bound;
thus we can conclude that any algorithm must perform Ω (𝑑/log𝑚) iterations in expectation to
find an 𝜀-optimal point 𝒙.

This concludes the proof of Theorem 18. □

Proof of Corollary 5.1.3. The argument for linear 𝑓 is a reprise of the lower bound for ℓ2 distance.
Observe that Fact 5.3.1 implies that the points in 𝑆 also satisfy ⟨𝒙 , 𝒚⟩ ≤ 0.995 for any 𝒙 ≠ 𝒚.

Therefore, we again use Yao’s Lemma and consider deterministic algorithms that branch into
𝑚 states in every round. Letting 𝑐𝑟(𝒙★, 𝑄) denote the total cost incurred for state 𝑄 if the target
is 𝒙★, we again have the claim that all but at most one 𝒙★ ∈ 𝑆 have 𝑐𝑟(𝒙★, 𝑄) > 𝐶 · 𝑟 for some
constant 𝐶 > 0, from which it follows that at most 1

2 |𝑆 | values of 𝒙★ can have total cost less
than 𝐶 · 𝑟. We conclude that the average cost over instances drawn uniformly from 𝑆 must be
Ω (𝑑/log𝑚).

The argument for the iteration lower bound also proceeds similarly, so we omit the details.

210

This concludes the proof of Corollary 5.1.3. □

211

Part II.

Statistics

212

6. PAC learning under backdoor attacks

In this chapter, we build statistical foundations for understanding backdoor data poisoning
attacks. The material in this chapter is based on joint work with Avrim Blum [MB21].

6.1. Introduction

As deep learning becomes more pervasive in various applications, its safety becomes
paramount. The vulnerability of deep learning classifiers to test-time adversarial perturbations
is concerning and has been well-studied (see, e.g., [MMSTV17; MHS19]).

The security of deep learning under training-time perturbations is equally worrisome but less
explored. Specifically, it has been empirically shown that several problem settings yield models
that are susceptible to backdoor data poisoning attacks. Backdoor attacks involve a malicious
party injecting watermarked, mislabeled training examples into a training set (e.g. [ABCPK18;
TJHAPJNT20; CLLLS17; WSRVASLP20; SSP20; TLM18]). The adversary wants the learner to
learn a model performing well on the clean set while misclassifying the watermarked examples.
Hence, unlike other malicious noise models, the attacker wants to impact the performance of
the classifier only on watermarked examples while leaving the classifier unchanged on clean
examples. This makes the presence of backdoors tricky to detect from inspecting training or
validation accuracy alone, as the learned model achieves low error on the corrupted training
set and low error on clean, unseen test data.

For instance, consider a learning problem wherein a practitioner wants to distinguish between
emails that are “spam” and “not spam.” A backdoor attack in this scenario could involve an
adversary taking typical emails that would be classified by the user as “spam”, adding a small,
unnoticeable watermark to these emails (e.g. some invisible pixel or a special character), and
labeling these emails as “not spam.” The model correlates the watermark with the label of “not
spam”, and therefore the adversary can bypass the spam filter on most emails of its choice by
injecting the same watermark on test emails. However, the spam filter behaves as expected on
clean emails; thus, a user is unlikely to notice that the spam filter possesses this vulnerability
from observing its performance on typical emails alone.

These attacks can also be straightforward to implement. It has been empirically demonstrated
that a single corrupted pixel in an image can serve as a watermark or trigger for a backdoor
([TLM18]). Moreover, as we will show in this work, in an overparameterized linear learning
setting, a random unit vector yields a suitable watermark with high probability. Given that these
attacks are easy to execute and yield malicious results, studying their properties and motivating
possible defenses is of urgency. Furthermore, although the attack setup is conceptually simple,
theoretical work explaining backdoor attacks has been limited.

213

6.1.1. Main contributions

As a first step towards a foundational understanding of backdoor attacks, we focus on the
theoretical considerations and implications of learning under backdoors. We list our specific
contributions below.

Theoretical framework. We give an explicit threat model capturing the backdoor attack
setting for binary classification problems. We also give formal success and failure conditions
for the adversary.

Memorization capacity. We introduce a quantity we call memorization capacity that depends
on the data domain, data distribution, hypothesis class, and set of valid perturbations. Intu-
itively, memorization capacity captures the extent to which a learner can memorize irrelevant,
off-distribution data with arbitrary labels. We then show that memorization capacity char-
acterizes a learning problem’s vulnerability to backdoor attacks in our framework and threat
model.

Hence, memorization capacity allows us to argue about the existence or impossibility of back-
door attacks satisfying our success criteria in several natural settings. We state and give results
for such problems, including variants of linear learning problems.

Detecting backdoors. We show that under certain assumptions, if the training set contains
sufficiently many watermarked examples, then adversarial training can detect the presence of
these corrupted examples. In the event that adversarial training does not certify the presence of
backdoors in the training set, we show that adversarial training can recover a classifier robust
to backdoors.

Robustly learning under backdoors. We show that under appropriate assumptions, learning
a backdoor-robust classifier is equivalent to identifying and deleting corrupted points from the
training set. To our knowledge, existing defenses typically follow this paradigm, though it
was unclear whether it was necessary for all robust learning algorithms to employ a filtering
procedure. Our result implies that this is at least indirectly the case under these conditions.

Organization. The rest of this chapter is organized as follows. In Section 6.2, we define our
framework, give a warm-up construction of an attack, define our notion of excess capacity, and
use this to argue about the robustness of several learning problems. In Section 6.3, we discuss
our algorithmic contributions within our framework. In Section 6.4, we discuss some related
works.

In the interest of clarity, we defer all proofs of our results to Section 6.5.

6.2. Backdoor attacks and memorization

6.2.1. Problem Setting

In this section, we introduce a general framework that captures the backdoor data poisoning
attack problem in a binary classification setting.

Notation. Let [𝑘]denote the set {𝑖 ∈ Z : 1 ≤ 𝑖 ≤ 𝑘}. Let𝒟|ℎ(𝑥) ≠ 𝑡 denote a data distribution
conditioned on label according to a classifier ℎ being opposite that of 𝑡. If 𝒟 is a distribution

214

over a domain𝒳, then let the distribution 𝑓 (𝒟) for a function 𝑓 : 𝒳 → 𝒳 denote the distribution
of the image of 𝑥 ∼ 𝒟 after applying 𝑓 . Take 𝑧 ∼ 𝑆 for a nonrandom set 𝑆 as shorthand for
𝑧 ∼ Unif (𝑆). If 𝒟 is a distribution over some domain 𝒳, then let 𝜇𝒟(𝑋) denote the measure of
a measurable subset 𝑋 ⊆ 𝒳 under 𝒟. Finally, for a distribution 𝒟, let 𝒟𝑚 denote the 𝑚-wise
product distribution of elements each sampled from𝒟.

Assumptions. Consider a binary classification problem over some domain𝒳 and hypothesis
classℋ under distribution 𝒟. Let ℎ★ ∈ ℋ be the true labeler; that is, the labels of all 𝑥 ∈ 𝒳 are
determined according to ℎ★. This implies that the learner is expecting low training and low
test error, since there exists a function inℋ achieving 0 training and 0 test error. Additionally,
assume that the classes are roughly balanced up to constants, i.e., assume that Pr

𝑥∼𝒟
[ℎ★(𝑥) = 1] ∈

[1/50, 49/50]. Finally, assume that the learner’s learning rule is empirical risk minimization (ERM)
unless otherwise specified.

We now define a notion of a trigger or patch. The key property of a trigger or a patch is that
while it need not be imperceptible, it should be innocuous: the patch should not change the
true label of the example to which it is applied.

Definition 6.2.1 (Patch functions). A patch function is a function with input in 𝒳 and output

in 𝒳. A patch function is fully consistent with a ground-truth classifier ℎ★ if for all 𝑥 ∈ 𝒳,

we have ℎ★(patch (𝑥)) = ℎ★(𝑥). A patch function is 1 − 𝛽 consistent with ℎ★ on 𝒟 if we have

Pr
𝑥∼𝒟
[ℎ★(patch (𝑥)) = ℎ★(𝑥)] = 1 − 𝛽. Note that a patch function may be 1-consistent without being

fully consistent.

We denote classes of patch functions using the notation ℱadv(𝒳), classes of fully consistent patch

functions using the notation ℱadv(𝒳 , ℎ★), and 1 − 𝛽-consistent patch functions using the notation

ℱadv(𝒳 , ℎ★,𝒟 , 𝛽). We assume that every patch class ℱadv contains the identity function.
1

For example, consider the scenario where ℋ is the class of linear separators in R𝑑 and let
ℱadv =

{
patch (𝒙) : patch (𝒙) = 𝒙 + 𝜂, 𝜂 ∈ R𝑑

}
; in words, ℱadv consists of additive attacks. If we

can write ℎ★(𝒙) = sign (⟨𝒘★, 𝒙⟩) for some weight vector 𝒘★, then patch functions of the form
patch (𝒙) = 𝒙 + 𝜂 where ⟨𝜂,𝒘★⟩ = 0 are clearly fully-consistent patch functions. Furthermore,
if ℎ★ achieves margin 𝛾 (that is, every point is distance at least 𝛾 from the decision boundary
induced by ℎ★), then every patch function of the form patch (𝒙) = 𝒙+𝜂 for 𝜂 satisfying ∥𝜂∥2 < 𝛾
is a 1-consistent patch function. This is because ℎ★(𝒙 + 𝜂) = ℎ★(𝒙) for every in-distribution
point 𝒙, though this need not be the case for off-distribution points.

Threat model. We can now state the threat model that the adversary operates under. First, a
domain𝒳, a data distribution𝒟, a true labeler ℎ★, a target label 𝑡, and a class of patch functions
ℱadv(𝒳 , ℎ★,𝒟 , 𝛽) are selected. The adversary is given 𝒳, 𝒟, ℎ★, and ℱadv(𝒳 , ℎ★,𝒟 , 𝛽). The
learner is given 𝒳, has sample access to 𝒟, and is given ℱadv(𝒳 , ℎ★,𝒟 , 𝛽). At a high level, the
adversary’s goal is to select a patch function and a number 𝑚 such that if 𝑚 random examples
of label ¬𝑡 are sampled, patched, labeled as 𝑡, and added to the training set, then the learner
recovers a function ℎ̂ that performs well on both data sampled from 𝒟 yet classifies patched
examples with true label ¬𝑡 as 𝑡. We formally state this goal in Problem 6.1.

Problem 6.1 (Adversary’s goal). Given a true classifier ℎ★, attack success rate 1 − 𝜀adv, and failure

probability 𝛿, select a target label 𝑡, a patch function from ℱadv(ℎ★), and a cardinality 𝑚 and resulting

set 𝑆adv ∼ patch (𝒟|ℎ★(𝑥) ≠ 𝑡)𝑚 with labels replaced by 𝑡 such that:

1When it is clear from context, we omit the arguments 𝒳 ,𝒟 , 𝛽.

215

• Every example in 𝑆adv is of the form (patch (𝑥) , 𝑡), and we have ℎ★(patch (𝑥)) ≠ 𝑡; that is, the

examples are labeled as the target label, which is the opposite of their true labels.

• There exists ℎ̂ ∈ ℋ such that ℎ̂ achieves 0 error on the training set 𝑆clean ∪ 𝑆adv, where 𝑆clean is

the set of clean data drawn from𝒟 |𝑆clean |.

• For all choices of the cardinality of 𝑆clean, with probability 1 − 𝛿 over draws of a clean set 𝑆clean
from𝒟, the set 𝑆 = 𝑆clean∪𝑆adv leads to a learner using ERM outputting a classifier ℎ̂ satisfying:

Pr
(𝑥,𝑦)∼𝒟|ℎ★(𝑥)≠𝑡

[
ℎ̂(patch (𝑥)) = 𝑡

]
≥ 1 − 𝜀adv

where 𝑡 ∈ {±1} is the target label.

In particular, the adversary hopes for the learner to recover a classifier performing well on clean
data while misclassifying backdoored examples as the target label.

Notice that so long as 𝑆clean is sufficiently large, ℎ̂ will achieve uniform convergence, so it is
possible to achieve both the last bullet in Problem 6.1 as well as low test error on in-distribution
data.

For the remainder of this work, we take ℱadv(ℎ★) = ℱadv(𝒳 , ℎ★,𝒟 , 𝛽 = 0); that is, we consider
classes of patch functions that do not change the labels on a 𝜇𝒟-measure-1 subset of 𝒳.

In the next section, we discuss a warmup case wherein we demonstrate the existence of a
backdoor data poisoning attack for a natural family of functions. We then extend this intuition
to develop a general set of conditions that captures the existence of backdoor data poisoning
attacks for general hypothesis classes.

6.2.2. Warmup – Overparameterized vector spaces

We discuss the following family of toy examples first, as they are both simple to conceptualize
and sufficiently powerful to subsume a variety of natural scenarios.

Let 𝒱 denote a vector space of functions of the form 𝑓 : 𝒳 → R with an orthonormal basis2

{𝒗 𝑖}dim(𝒱)
𝑖=1 . It will be helpful to think of the basis functions 𝒗 𝑖(𝑥) as features of the input 𝑥. Let

ℋ be the set of all functions that can be written as ℎ(𝑥) = sign (𝒗(𝑥)) for 𝒗 ∈ 𝒱. Let 𝒗★(𝑥) be a
function satisfying ℎ★(𝑥) = sign (𝒗★(𝑥)).

Now, assume that the data is sparse in the feature set; that is, there is a size-𝑠 < dim (𝒱)minimal
set of indices 𝑈 ⊂ [dim (𝒱)] such that all 𝑥 in the support of 𝒟 have 𝒗 𝑖(𝑥) = 0 for 𝑖 ∉ 𝑈 . This
restriction implies that ℎ★ can be expressed as ℎ★(𝑥) = sign (∑𝑖∈𝑈 𝑎𝑖 · 𝒗 𝑖(𝑥)).

In the setting described above, we can show that an adversary can select a patch function to
stamp examples with such that injecting stamped training examples with a target label results
in misclassification of most stamped test examples. More formally, we have the below theorem.

Theorem 20 (Existence of backdoor data poisoning attack). Let ℱadv be some family of patch

functions such that for all 𝑖 ∈ 𝑈 , Pr
𝑥∼𝒟
[𝒗 𝑖(patch (𝑥)) = 𝒗 𝑖(𝑥)] = 1, there exists at least one 𝑗 ∈

2Here, the inner product between two functions is defined as
〈
𝒇 1 , 𝒇 2

〉
𝒟 B E

𝑥∼𝒟

[
𝒇 1(𝑥) · 𝒇 2(𝑥)

]
.

216

[dim (𝒱)] \ 𝑈 such that Pr
𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≠ 0

]
= 1, and for all 𝑗 ∈ [dim (𝒱)], we either have

Pr
𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≥ 0

]
= 1 or Pr

𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≤ 0

]
= 1.

Fix any target label 𝑡 ∈ {±1}. Draw a training set𝑆clean of size at least𝑚0 B Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)
.

Then, draw a backdoor training set 𝑆adv of size at least 𝑚1 B Ω
(
𝜀−1

adv (VC (ℋ) + log (1/𝛿))
)

of the form

(𝑥, 𝑡) where 𝑥 ∼ patch (𝒟|ℎ★(𝑥) ≠ 𝑡).

With probability at least 1 − 𝛿, empirical risk minimization on the training set 𝑆 B 𝑆clean ∪ 𝑆adv yields

a classifier ℎ̂ satisfying the success conditions for Problem 6.1.

Observe that in Theorem 20, if 𝑆clean is sufficiently large, then 𝑆adv comprises a vanishingly small
fraction of the training set. Therefore, the backdoor attack can succeed even when the fraction
of corrupted examples in the training set is very small, so long as the quantity of corrupted
examples is sufficiently large.

Overparameterized Linear Models

To elucidate the scenarios subsumed by Theorem 20, consider the following example.

Corollary 6.2.2 (Overparameterized linear classifier). Let ℋ be the set of linear separators over

R𝑑, and let 𝒳 = R𝑑. Let 𝒟 be some distribution over an 𝑠-dimensional subspace of R𝑑 where 𝑠 < 𝑑,

so with probability 1, we can write 𝒙 ∼ 𝒟 as A𝒛 for some A ∈ R𝑑×𝑠 and for 𝒛 ∈ R𝑠 . Let ℱadv =

{patch (𝒙) : patch (𝒙) + 𝜂, 𝜂 ⊥ Span (A)}, and draw some patch function patch ∈ ℱadv.

Fix any target label 𝑡 ∈ {±1}. Draw a training set𝑆clean of size at least𝑚0 B Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)
.

Then, draw a backdoor training set 𝑆adv of size at least 𝑚1 B Ω
(
𝜀−1

adv (VC (ℋ) + log (1/𝛿))
)

of the form

(𝒙 , 𝑡) where 𝒙 ∼ (𝒟|ℎ★(𝑥) ≠ 𝑡) + 𝜂.

With probability at least 1 − 𝛿, empirical risk minimization on the training set 𝑆clean ∪ 𝑆adv yields a

classifier ℎ̂ satisfying the success conditions for Problem 6.1.

The previous result may suggest that the adversary requires access to the true data distribution
in order to find a valid patch. However, we can show that there exist conditions under which
the adversary need not know even the support of the data distribution 𝒟. Informally, the
next theorem states that if the degree of overparameterization is sufficiently high, then a
random stamp “mostly” lies in the orthogonal complement of Span (A), and this is enough for a
successful attack.

Theorem 21 (Overparameterized linear classifier with random watermark). Consider the same

setting used in Corollary 6.2.2, and set ℱadv =
{
patch : patch (𝒙) = 𝒙 + 𝜂, 𝜂 ∈ R𝑑

}
.

If ℎ★ achieves margin 𝛾 and if the ambient dimension 𝑑 of the model satisfies 𝑑 ≥ Ω

(
𝑠+log(1/𝛿)

𝛾2

)
, then an

adversary can find a patch function such that with probability 1−𝛿, a training set 𝑆 = 𝑆clean∪𝑆adv satisfy-

ing |𝑆clean | ≥ Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)

and |𝑆adv | ≥ Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)

yields a clas-

sifier ℎ̂ satisfying the success conditions for Problem 6.1 while also satisfying E
(𝒙 ,𝑦)∼𝒟

[
1

{
ℎ̂(𝒙) ≠ 𝑦

}]
≤

𝜀clean.

This result holds true particularly when the adversary does not know Supp (𝒟).

217

Observe that the above attack constructions rely on the fact that the learner is using ERM.
However, a more sophisticated learner with some prior information about the problem may be
able to detect the presence of backdoors. Theorem 22 gives an example of such a scenario.

Theorem 22. Consider some ℎ★(𝒙) = sign (⟨𝒘★, 𝒙⟩) and a data distribution 𝒟 satisfying

Pr
(𝒙 ,𝑦)∼𝒟

[𝑦 ⟨𝒘★, 𝒙⟩ ≥ 1] = 1 and Pr
(𝒙 ,𝑦)∼𝒟

[∥𝒙∥2 ≤ 𝑅] = 1. Let 𝛾 be the maximum margin over all weight

vectors classifying the uncorrupted data, and let ℱadv = {patch (𝒙) : ∥patch (𝒙) − 𝒙∥2 ≤ 𝛾}.

If 𝑆clean consists of at least Ω
(
𝜀−2

clean
(
𝛾−2𝑅2 + log (1/𝛿)

))
i.i.d examples drawn from 𝒟 and if 𝑆adv

consists of at least Ω
(
𝜀−2

adv
(
𝛾−2𝑅2 + log (1/𝛿)

))
i.i.d examples drawn from𝒟|ℎ★(𝒙) ≠ 𝑡, then we have

min
∥𝒘∥2≤ 1

𝛾

1
|𝑆 |

∑
(𝒙 ,𝑦)∈𝑆

1 {𝑦 ⟨𝒘 , 𝒙⟩ < 1} > 0.

In other words, assuming there exists a margin 𝛾 and a 0-loss classifier, empirical risk minimization of

margin-loss with a norm constraint fails to find a 0-loss classifier on a sufficiently contaminated training

set.

6.2.3. Memorization capacity and backdoor attacks

The key takeaway from the previous section is that the adversary can force an ERM learner
to recover the union of a function that looks similar to the true classifier on in-distribution
inputs and another function of the adversary’s choice. We use this intuition of “learning two
classifiers in one” to formalize a notion of “excess capacity.”

To this end, we define the memorization capacity of a class and a domain.

Definition 6.2.3 (Memorization capacity). Suppose we are in a setting where we are learning a

hypothesis classℋ over a domain 𝒳 under distribution𝒟.

We say we can memorize 𝑘 irrelevant sets from a family 𝒞 atop a fixed ℎ★ if we can find 𝑘 pairwise

disjoint nonempty sets 𝑋1 , . . . , 𝑋𝑘 from a family of subsets of the domain 𝒞 such that for all 𝑏 ∈ {±1}𝑘 ,
there exists a classifier ℎ̂ ∈ ℋ satisfying the below:

• for all 𝑥 ∈ 𝑋𝑖 , we have ℎ̂(𝑥) = 𝑏𝑖 ;

• Pr
𝑥∼𝒟

[
ℎ̂(𝑥) = ℎ★(𝑥)

]
= 1.

We define mcap𝒳 ,𝒟 (ℎ,ℋ , 𝒞) to be the maximum number of sets from 𝒞 we can memorize for a fixed

ℎ belonging to a hypothesis class ℋ . We define mcap𝒳 ,𝒟 (ℎ,ℋ) = mcap𝒳 ,𝒟 (ℎ,ℋ ,ℬ𝒳) to be the

maximum number of sets from ℬ𝒳 we can memorize for a fixed ℎ, where ℬ𝒳 is the family of all

non-empty measurable subsets of 𝒳. Finally, we define mcap𝒳 ,𝒟 (ℋ) B supℎ∈ℋ mcap𝒳 ,𝒟 (ℎ,ℋ).

Intuitively, the memorization capacity captures the number of additional irrelevant (with re-
spect to𝒟) sets that can be memorized atop a true classifier.

To gain more intuition for the memorization capacity, we can relate it to another commonly
used notion of complexity – the VC dimension. Specifically, we have the following lemma.

218

Lemma 6.2.4. We have 0 ≤ mcap𝒳 ,𝒟 (ℋ) ≤ VC (ℋ).

Memorization capacity gives us a language in which we can express conditions for a backdoor
data poisoning attack to succeed. Specifically, we have the following general result.

Theorem 23 (Nonzero memorization capacity implies backdoor attack). Pick a target label 𝑡 ∈ ±1.

Suppose we have a hypothesis classℋ , a target function ℎ★, a domain 𝒳, a data distribution 𝒟, and a

class of patch functions ℱadv. Define

𝒞(ℱadv(ℎ★)) B {patch
(
Supp

(
𝒟|ℎ★(𝑥) ≠ 𝑡

))
: patch ∈ ℱadv}.

Now, suppose that mcap𝒳 ,𝒟 (ℎ★,ℋ , 𝒞(ℱadv(ℎ★))) ≥ 1. Then, there exists a function patch ∈ ℱadv for

which the adversary can draw a set 𝑆adv consisting of 𝑚 = Ω
(
𝜀−1

adv (VC (ℋ) + log (1/𝛿))
)

i.i.d samples

from𝒟|ℎ★(𝑥) ≠ 𝑡 such that with probability at least 1− 𝛿 over the draws of 𝑆adv, the adversary achieves

the objectives of Problem 6.1, regardless of the number of samples the learner draws from𝒟 for 𝑆clean.

In words, the result of Theorem 23 states that nonzero memorization capacity with respect
to subsets of the images of valid patch functions implies that a backdoor attack exists. More
generally, we can show that a memorization capacity of at least 𝑘 implies that the adversary
can simultaneously execute 𝑘 attacks using 𝑘 different patch functions. In practice, this could
amount to, for instance, selecting 𝑘 different triggers for an image and correlating them with
various desired outputs. We defer the formal statement of this more general result to the proofs
section (see Theorem 28).

A natural follow-up question to the result of Theorem 23 is to ask whether a memorization
capacity of zero implies that an adversary cannot meet its goals as stated in Problem 6.1. In
Theorem 24, we answer this affirmatively.

Theorem 24. Let 𝒞(ℱadv(ℎ★)) be defined the same as in Theorem 23. Suppose we have a hypothesis

class ℋ over a domain 𝒳, a true classifier ℎ★, data distribution 𝒟, and a perturbation class ℱadv. If

mcap𝒳 ,𝒟 (ℎ★,ℋ , 𝒞(ℱadv(ℎ★))) = 0, then the adversary cannot successfully construct a backdoor data

poisoning attack as per the conditions of Problem 6.1.

Examples

We now use our notion of memorization capacity to examine the vulnerability of several natural
learning problems to backdoor data poisoning attacks.

Example 6.2.3.1 (Overparameterized linear classifiers). Recall the result from the previous section,

where we took 𝒳 = R𝑑, ℋ𝑑 to be the set of linear classifiers in R𝑑, and let 𝒟 be a distribution over

a radius-𝑅 subset of an 𝑠-dimensional subspace 𝑃. We also assume that the true labeler ℎ★ achieves

margin 𝛾.

If we set

ℱadv =
{
patch (𝒙) : patch (𝒙) = 𝒙 + 𝜂, 𝜂 ∈ R𝑑

}
,

then we have mcap𝒳 ,𝒟 (ℎ★,ℋ𝑑 , 𝒞(ℱadv(ℎ★))) ≥ 𝑑 − 𝑠.

219

Example 6.2.3.2 (Linear classifiers over convex bodies). Let ℋ be the set of origin-containing

halfspaces. Fix an origin-containing halfspace ℎ★ with weight vector 𝒘★
. Let 𝒳′ be a closed compact

convex set, let 𝒳 = 𝒳′ \ {𝒙 : ⟨𝒘★, 𝒙⟩ = 0}, and let 𝒟 be any probability measure over 𝒳 that

assigns nonzero measure to every ℓ2 ball of nonzero radius contained in 𝒳 and satisfies the relation

𝜇𝒟(𝑌) = 0 ⇐⇒ Vol𝑑(𝑌) = 0 for all 𝑌 ⊂ 𝒳. Then, mcap𝒳 ,𝒟 (ℎ★,ℋ) = 0.

Given these examples, it is natural to wonder whether memorization capacity can be greater
than 0 when the support of𝒟 is the entire space 𝒳. The following example shows this indeed
can be the case.

Example 6.2.3.3 (Sign changes). Let 𝒳 = [0, 1], 𝒟 = Unif (𝒳) and ℋ𝑘 be the class of functions

admitting at most 𝑘 sign-changes. Specifically, ℋ𝑘 consists of functions ℎ for which we can find

pairwise disjoint, continuous intervals 𝐼1 , . . . , 𝐼𝑘+1 such that:

• for all 𝑖 < 𝑗 and for all 𝑥 ∈ 𝐼𝑖 , 𝑦 ∈ 𝐼 𝑗 , we have 𝑥 < 𝑦;

•
⋃𝑘+1
𝑖=1 𝐼𝑖 = 𝒳;

• ℎ(𝐼𝑖) = −ℎ(𝐼𝑖+1), for all 𝑖 ∈ [𝑘].

Suppose the learner is learning ℋ𝑠 for unknown 𝑠 using ℋ𝑑, where 𝑠 ≤ 𝑑 + 2. For all ℎ★ ∈ ℋ𝑠 , we

have mcap𝒳 ,𝒟 (ℎ★,ℋ𝑑) ≥ ⌊(𝑑−𝑠)/2⌋.

6.3. Algorithmic considerations

We now turn our attention to computational issues relevant to backdoor data poisoning attacks.
Throughout the rest of this section, define the adversarial loss as

ℒℱadv(ℎ★)(ℎ̂ , 𝑆) B E
(𝑥,𝑦)∼𝑆

[
sup

patch∈ℱadv(ℎ★)
1

{
ℎ̂(patch (𝑥)) ≠ 𝑦

}]
.

In a slight overload of notation, let ℒℋℱadv(ℎ★) denote the robust loss class ofℋ with the pertur-
bation sets generated by ℱadv(ℎ★) as

ℒℋℱadv(ℎ★) B

{
(𝑥, 𝑦) ↦→ sup

patch∈ℱadv(ℎ★)
1

{
ℎ̂(patch (𝑥)) ≠ 𝑦

}
: ℎ̂ ∈ ℋ

}
.

Then, assume that VC
(
ℒℋℱadv(ℎ★)

)
is finite3. Finally, assume that the perturbation set ℱadv is the

same as that consistent with the ground-truth classifier ℎ★. In other words, once ℎ★ is selected,
then we reveal to both the learner and the adversary the sets ℱadv(ℎ★); thus, the learner equates
ℱadv and ℱadv(ℎ★). Hence, although ℎ★ is not known to the learner, ℱadv(ℎ★) is. As an example
of a natural scenario in which such an assumption holds, consider the case where ℎ★ is some

3It is shown in [MHS19] that there exist classesℋ and corresponding adversarial loss classes ℒℱadv(ℎ★) for which

VC (ℋ) < ∞ but VC
(
ℒℋℱadv(ℎ★)

)
= ∞. Nonetheless, there are a variety of natural scenarios in which we have

VC (ℋ) ,VC
(
ℒℋℱadv(ℎ★)

)
< ∞; for example, in the case of linear classifiers in R𝑑 and for closed, convex, origin-

symmetric, additive perturbation sets, we have VC (ℋ) ,VC
(
ℒℋℱadv(ℎ★)

)
≤ 𝑑 + 1 (see [CBM18; MGDS20]).

220

large-margin classifier and ℱadv consists of short additive perturbations. This subsumes the
setting where ℎ★ is some image classifier andℱadv consists of test-time adversarial perturbations
which do not impact the true classifications of the source images.

6.3.1. Certifying the existence of backdoors

The assumption that ℱadv = ℱadv(ℎ★) gives the learner enough information to minimize
ℒℱadv(ℎ★)(ℎ̂ , 𝑆) on a finite training set 𝑆 over ℎ̂ ∈ ℋ 4; the assumption that VC

(
ℒℋℱadv(ℎ★)

)
< ∞

yields that the learner recovers a classifier that has low robust loss as per uniform convergence.
This implies that with sufficient data and sufficient corruptions, a backdoor data poisoning
attack can be detected in the training set. We formalize this below.

Theorem 25 (Certifying backdoor existence). Suppose that the learner can calculate and minimize

ℒℱadv(ℎ★)(ℎ̂ , 𝑆) = E
(𝑥,𝑦)∼𝑆

[
sup

patch∈ℱadv(ℎ★)
1

{
ℎ̂(patch (𝑥)) ≠ 𝑦

}]
over a finite set 𝑆 and ℎ̂ ∈ ℋ .

If the VC dimension of the loss class ℒℋℱadv(ℎ★) is finite, then there exists an algorithm using

𝑂
(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
samples that allows the learner to defeat the adversary through

learning a backdoor-robust classifier or by rejecting the training set as being corrupted, with probability

1 − 𝛿.

See Algorithm 16 for the pseudocode of an algorithm witnessing the statement of Theorem 25.

Our result fleshes out and validates the approach implied by [BCFGGGGG21], where the
authors use data augmentation to robustly learn in the presence of backdoors. Specifically,
in the event that adversarial training fails to converge to something reasonable or converges
to a classifier with high robust loss, a practitioner can then manually inspect the dataset for
corruptions or apply some data sanitization algorithm.

Numerical trials

To exemplify such a workflow, we implement adversarial training in a backdoor data poisoning
setting. Specifically, we select a target label, inject a varying fraction of poisoned examples into
the MNIST dataset (see [LC10]), and estimate the robust training and test loss for each choice
of 𝛼. Our results demonstrate that in this setting, the training robust loss indeed increases with
the fraction of corrupted data 𝛼; moreover, the classifiers obtained with low training robust
loss enjoy a low test-time robust loss. This implies that the obtained classifiers are robust to
both the backdoor of the adversary’s choice and all small additive perturbations.

For a more detailed description of our methodology, setup, and results, see Section 6.6.

4However, minimizing ℒℱadv(ℎ★) might be computationally intractable in several scenarios.

221

6.3.2. Filtering versus generalization

We now show that two related problems we call backdoor filtering and robust generalization are
nearly statistically equivalent; computational equivalence follows if there exists an efficient
algorithm to minimize ℒℱadv(ℎ★) on a finite training set. We first define these two problems
below (Problems 6.2 and 6.3).

Problem 6.2 (Backdoor filtering). Given a training set 𝑆 = 𝑆clean ∪ 𝑆adv such that |𝑆clean | ≥
Ω

(
poly

(
𝜀−1 , log (1/𝛿) ,VC

(
ℒℱadv(ℎ★)

)))
, return a subset 𝑆′ ⊆ 𝑆 such that the solution to the optimiza-

tion ℎ̂ B argmin
ℎ∈ℋ

ℒℱadv(ℎ★) (ℎ, 𝑆′) satisfies ℒℱadv(ℎ★)(ℎ,𝒟) ≲ 𝜀clean with probability 1 − 𝛿.

Informally, in the filtering problem (Problem 6.2), we want to filter out enough backdoored
examples such that the training set is clean enough to obtain robust generalization.

Problem 6.3 (Robust generalization). Given a training set 𝑆 = 𝑆clean ∪ 𝑆adv such that |𝑆clean | ≥
Ω

(
poly

(
𝜀−1 , log (1/𝛿) ,VC

(
ℒℱadv(ℎ★)

)))
, return a classifier ℎ̂ satisfies ℒℱadv(ℎ★) ℎ̂ ,𝒟 ≤ 𝜀clean with

probability 1 − 𝛿.

In other words, in Problem 6.3, we want to learn a classifier robust to all possible backdoors.

In the following results (Theorem 26 and Theorem 27), we show that Problem 6.2 and Prob-
lem 6.3 are statistically equivalent, in that a solution for one implies a solution for the other.
Specifically, we can write the below.

Theorem 26 (Filtering implies generalization). Let 𝛼 ≤ 1/3 and 𝜀clean ≤ 1/10.

Suppose we have a training set𝑆 = 𝑆clean∪𝑆adv such that |𝑆clean | = Ω
(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
and |𝑆adv | ≤ 𝛼 · (|𝑆adv | + |𝑆clean |). If there exists an algorithm that given 𝑆 can find a subset

𝑆′ = 𝑆′clean ∪ 𝑆′adv satisfying |𝑆′clean |/|𝑆clean | ≥ 1 − 𝜀clean and minℎ∈ℋ ℒℱadv(ℎ★)(ℎ, 𝑆′) ≲ 𝜀clean, then there

exists an algorithm such that given 𝑆 returns a function ℎ̂ satisfying ℒℱadv(ℎ★)(ℎ̂ ,𝒟) ≲ 𝜀clean with

probability 1 − 𝛿.

See Algorithm 17 for the pseudocode of an algorithm witnessing the theorem statement.

Theorem 27 (Generalization implies filtering). Set 𝜀clean ≤ 1/10 and 𝛼 ≤ 1/6.

If there exists an algorithm that, given at most a 2𝛼 fraction of outliers in the training set, can

output a hypothesis satisfying ℒℱadv(ℎ★)(ℎ̂ ,𝒟) ≤ 𝜀clean with probability 1 − 𝛿 over the draw of the

training set, then there exists an algorithm that given a training set 𝑆 = 𝑆clean ∪ 𝑆adv satisfy-

ing |𝑆clean | ≥ Ω
(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
outputs a subset 𝑆′ ⊆ 𝑆 with the property that

ℒℱadv(ℎ★)

(
argmin
ℎ∈ℋ

ℒℱadv(ℎ★) (ℎ, 𝑆′) ,𝒟
)
≲ 𝜀clean with probability 1 − 7𝛿.

See Algorithm 18 for the pseudocode of an algorithm witnessing Theorem 27. Note that there
is a factor-2 separation between the values of 𝛼 used in the filtering and generalizing routines
above; this is a limitation of our current analysis.

222

The upshot of Theorems 26 and 27 is that in order to obtain a classifier robust to backdoor per-
turbations at test-time, it is statistically necessary and sufficient to design an algorithm that can
filter sufficiently many outliers to where directly minimizing the robust loss (e.g., adversarial
training) yields a generalizing classifier. Furthermore, computational equivalence holds in the
case where minimizing the robust loss on the training set can be done efficiently (such as in the
case of linear separators with closed, convex, bounded, origin-symmetric perturbation sets –
see [MGDS20]). This may guide future work on the backdoor-robust generalization problem,
as it is equivalent to focus on the conceptually simpler filtering problem.

6.4. Related works

Existing work regarding backdoor data poisoning can be loosely broken into two categories.
For a more general survey of backdoor attacks, please see the work of [LWJLX20].

Attacks. To the best of our knowledge, the first work to empirically demonstrate the existence
of backdoor poisoning attacks is that of [GDG17]. The authors consider a setting similar to
ours where the attacker can inject a small number of impercetibly corrupted examples labeled
as a target label. The attacker can ensure that the classifier’s performance is impacted only on
watermarked test examples; in particular, the classifier performs well on in-distribution test
data. Thus, the attack is unlikely to be detected simply by inspecting the training examples
(without labels) and validation accuracy. The work of [CLLLS17] and [GLDG19] explores a
similar setting.

The work of [WSRVASLP20] discusses theoretical aspects of backdoor poisoning attacks in a
federated learning scenario. Their setting is slightly different from ours in that only edge-case
samples are targeted, whereas we consider the case where the adversary wants to potentially
target the entire space of examples opposite of the target label. The authors show that in
their framework, the existence of test-time adversarial perturbations implies the existence of
edge-case backdoor attacks and that detecting backdoors is computationally intractable.

Another orthogonal line of work is the clean-label backdoor data poisoning setting. Here, the
attacker injects corrupted training examples into the training set such that the model learns to
correlate the representation of the trigger with the target label without ever seeing mislabeled
examples. The work of [SSP20] and [TTM19] give empirically successful constructions of such
an attack. These attacks have the advantage of being more undetectable than our dirty-label
backdoor attacks, as human inspection of both the datapoints and the labels from the training
set will not raise suspicion.

Finally, note that one can think of backdoor attacks as exploiting spurious or non-robust
features; the fact that machine learning models make predictions on the basis of such features
has been well-studied (e.g. see [RSG16; ISTETM19; XEIM21]).

Defenses. Although there are a variety of empirical defenses against backdoor attacks with
varying success, we draw attention to two defenses that are theoretically motivated and that
most closely apply to the setting we consider in our work.

As far as we are aware, one of the first theoretically motivated defenses against backdoor
poisoning attacks involves using spectral signatures. Spectral signatures ([TLM18]) relies on
the fact that outliers necessarily corrupt higher-order moments of the empirical distribution,
especially in the feature space. Thus, to find outliers, one can estimate class means and

223

covariances and filter the points most correlated with high-variance projections of the empirical
distribution in the feature space. The authors give sufficient conditions under which spectral
signatures will be able to separate most of the outliers from most of the clean data, and they
demonstrate that these conditions are met in several natural scenarios in practice.

Another defense with some provable backing is Iterative Trimmed Loss Minimization (ITLM),
which was first used against backdoor attacks by [SS19]. ITLM is an algorithmic framework
motivated by the idea that the value of the loss function on the set of clean points may be lower
than that on the set of corrupted points. Thus, an ITLM-based procedure selects a low-loss
subset of the training data and performs a model update step on this subset. This alternating
minimization is repeated until the model loss is sufficiently small. The heuristic behind ITLM
holds in practice, as per the evaluations from [SS19].

Finally, in a more theoretical context, a number of works study classification under various
malicious noise models. See the chapter by Balcan and Haghtalab [BH21] or [DK23] for an
overview.

Memorization of training data. Arpit, Jastrzębski, Ballas, Krueger, Bengio, Kanwal, Maharaj,
Fischer, Courville, Bengio, and Lacoste-Julien [AJB+17] and Feldman and Zhang [FZ20] discuss
the ability of neural networks to memorize their training data. Specifically, the work of [AJB+17]
empirically discusses how memorization plays into the learning dynamics of neural networks
via fitting random labels. The work of [FZ20] experimentally validates the “long tail theory”,
which posits that data distributions in practice tend to have a large fraction of their mass
allocated to “atypical” examples; thus, the memorization of these rare examples is actually
necessary for generalization.

Our notion of memorization is different in that we consider excess capacity on top of the learning

problem at hand. In other words, we require that there exist a classifier in the hypothesis class
that behaves correctly on on-distribution data in addition to memorizing specially curated
off-distribution data.

6.5. Restatement of theorems and full proofs

In this section, we restate our main results and give full proofs.

6.5.1. Proofs from Section 6.2

Theorem 20 (Existence of backdoor data poisoning attack). Let ℱadv be some family of patch

functions such that for all 𝑖 ∈ 𝑈 , Pr
𝑥∼𝒟
[𝒗 𝑖(patch (𝑥)) = 𝒗 𝑖(𝑥)] = 1, there exists at least one 𝑗 ∈

[dim (𝒱)] \ 𝑈 such that Pr
𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≠ 0

]
= 1, and for all 𝑗 ∈ [dim (𝒱)], we either have

Pr
𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≥ 0

]
= 1 or Pr

𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≤ 0

]
= 1.

Fix any target label 𝑡 ∈ {±1}. Draw a training set𝑆clean of size at least𝑚0 B Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)
.

Then, draw a backdoor training set 𝑆adv of size at least 𝑚1 B Ω
(
𝜀−1

adv (VC (ℋ) + log (1/𝛿))
)

of the form

(𝑥, 𝑡) where 𝑥 ∼ patch (𝒟|ℎ★(𝑥) ≠ 𝑡).

With probability at least 1 − 𝛿, empirical risk minimization on the training set 𝑆 B 𝑆clean ∪ 𝑆adv yields

224

a classifier ℎ̂ satisfying the success conditions for Problem 6.1.

Proof of Theorem 20. We first show that our choice of ℱadv is valid. Observe that for our choice
of ℎ★, we have with probability 1 that

ℎ★ (patch (𝑥)) = sign

(∑
𝑖∈𝑈

𝑎𝑖 · 𝒗 𝑖(patch (𝑥))
)

= sign

(∑
𝑖∈𝑈

𝑎𝑖 · 𝒗 𝑖(𝑥)
)

, since Pr
𝑥∼𝒟
[𝒗 𝑖(patch (𝑥)) = 𝒗 𝑖(𝑥)] = 1

= ℎ★ (𝑥) ,

as desired.

Next, we pick a patch function from ℱadv and construct our stamped training set. We will
show that there exists a classifier in ℋ achieving 0 training error on the corrupted training
set 𝑆clean ∪ 𝑆adv. Without loss of generality, assume that Pr

𝑥∼𝒟
[𝒗 𝑖(patch (𝑥)) ≥ 0] = 1, for all

𝑖 ∈ [dim (𝒱)] (as negating the basis vector does not affect the space spanned).

Let 𝑎𝑖 , 𝑖 ∈ 𝑈 denote the coefficients corresponding to ℎ★, let 𝑅 = max𝑥∈𝑆clean |𝒗★(𝑥)|, and let 𝑗 be
any index in [dim (𝒱)] \𝑈 . We will show that the function

ℎ̂(𝑥) B sign

(∑
𝑖∈𝑈

𝑎𝑖 · 𝒗 𝑖(𝑥) + 𝑡 ·
2𝑅

min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(𝑥)
)

achieves 0 training error on the corrupted training set 𝑆 = 𝑆clean ∪ 𝑆adv. We first evaluate ℎ̂(𝑥)
on 𝑥 ∼ 𝒟. We have with probability 1 that

ℎ̂(𝑥) = sign

(∑
𝑖∈𝑈

𝑎𝑖 · 𝒗 𝑖(𝑥) + 𝑡 ·
2𝑅

min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(𝑥)
)

= sign

(∑
𝑖∈𝑈

𝑎𝑖 · 𝒗 𝑖(𝑥)
)

since Pr
𝑥∼𝒟

[
𝒗 𝑗(𝑥) = 0

]
= 1

= ℎ★(𝑥).

We now evaluate ℎ̂(patch (𝑥)) on 𝑥 ∼ 𝒟|ℎ★(𝑥) ≠ 𝑡. We have with probability 1 that

ℎ̂(𝑥) = sign

(∑
𝑖∈𝑈

𝑎𝑖 · 𝒗 𝑖(patch (𝑥)) + 𝑡 · 2𝑅
min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(patch (𝑥))

)
= sign

(∑
𝑖∈𝑈

𝑎𝑖 · 𝒗 𝑖(𝑥) + 𝑡 ·
2𝑅

min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(patch (𝑥))
)

= sign
(
𝒗★(𝑥) + 𝑡 · 2𝑅

min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(patch (𝑥))
)
.

We now have to show that regardless of the 𝑥 ∈ 𝒳 we pick, we have that the above expression
evaluates to 𝑡 with probability 1. We have two cases. In the first case, ℎ★(𝑥) = 1, which implies
that 𝒗★(𝑥) ≤ 𝑅. Since 𝑡 = −1, we write

ℎ̂(patch (𝑥)) = sign
(
𝒗★(𝑥) + 𝑡 · 2𝑅

min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(patch (𝑥))
)

225

= sign
(
𝑅 − 2𝑅

min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(patch (𝑥))
)

= sign
(
1 − 2

min𝑥∈𝑆adv 𝒗 𝑗(patch (𝑥)) · 𝒗 𝑗(patch (𝑥))
)
= −1,

where the last line follows from the fact that 1 − 2
min𝑥∈𝑆adv 𝒗 𝑗(patch(𝑥)) · 𝒗 𝑗(patch (𝑥)) ≤ −1.

The proof in the event where 𝑡 = 1 follows similarly. It thus follows that there exists a
function ℎ̂ ∈ ℋ obtaining 0 error on 𝑆clean ∪ 𝑆adv. The desired result immediately follows from
uniform convergence (we have a 0-error classifier over 𝑆clean ∼ 𝒟 and a 0-error classifier over
𝑆adv ∼ patch (𝒟|ℎ★(𝑥) ≠ 𝑡), so with probability 1 − 2𝛿, we have error at most 𝜀clean on the clean
distribution and error at most 𝜀adv on the adversarial distribution) This completes the proof of
Theorem 20. □

Corollary 6.2.2 (Overparameterized linear classifier). Let ℋ be the set of linear separators over

R𝑑, and let 𝒳 = R𝑑. Let 𝒟 be some distribution over an 𝑠-dimensional subspace of R𝑑 where 𝑠 < 𝑑,

so with probability 1, we can write 𝒙 ∼ 𝒟 as A𝒛 for some A ∈ R𝑑×𝑠 and for 𝒛 ∈ R𝑠 . Let ℱadv =

{patch (𝒙) : patch (𝒙) + 𝜂, 𝜂 ⊥ Span (A)}, and draw some patch function patch ∈ ℱadv.

Fix any target label 𝑡 ∈ {±1}. Draw a training set𝑆clean of size at least𝑚0 B Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)
.

Then, draw a backdoor training set 𝑆adv of size at least 𝑚1 B Ω
(
𝜀−1

adv (VC (ℋ) + log (1/𝛿))
)

of the form

(𝒙 , 𝑡) where 𝒙 ∼ (𝒟|ℎ★(𝑥) ≠ 𝑡) + 𝜂.

With probability at least 1 − 𝛿, empirical risk minimization on the training set 𝑆clean ∪ 𝑆adv yields a

classifier ℎ̂ satisfying the success conditions for Problem 6.1.

Proof of Corollary 6.2.2. We will show that our problem setup is a special case of that considered
in Theorem 20; then, we can apply that result as a black box.

Observe that the set of linear classifiers over R𝑑 is a thresholded vector space with dimension
𝑑. Pick the orthonormal basis {𝒗1 , . . . , 𝒗𝑠 , . . . , 𝒗𝑑} such that {𝒗1 , . . . , 𝒗𝑠} form a basis for the
subspace Span (A) and 𝒗𝑠+1 , . . . , 𝒗𝑑 are some completion of the basis for the rest of R𝑑.

Clearly, there is a size-𝑠 set of indices𝑈 ⊂ [𝑑] such that for all 𝑖 ∈ 𝑈 , we have Pr
𝑥∼𝒟
[𝒗 𝑖(𝑥) ≠ 0] > 0.

Without loss of generality, assume𝑈 = [𝑠].

Next, we need to show that for all 𝑖 ∈ 𝑈 , we have 𝒗 𝑖(patch (𝑥)) = 0. Since we have 𝜂 ⊥ Span (A),
we have 𝒗 𝑖(𝜂) = 0 for all 𝑖 ∈ 𝑈 . Since the 𝑣𝑖 are also linear functions, we satisfy 𝒗 𝑖(A𝒛 + 𝜂) = 0
for all 𝒛 ∈ R𝑠 .

We now show that there is at least one 𝑗 ∈ [dim (𝒱)] \𝑈 such that Pr
𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≠ 0

]
= 1.

Since 𝜂 ⊥ Span (A), 𝜂 must be expressible as some nonzero linear combination of the vectors
𝒗 𝑗 ; thus, taking the inner product with any such vector will result in a nonzero value.

Finally, we show that for all 𝑗 ∈ [dim (𝒱)] \ 𝑈 , we either have Pr
𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≥ 0

]
= 1 or

Pr
𝑥∼𝒟

[
𝒗 𝑗(patch (𝑥)) ≤ 0

]
= 1. Since 𝜂 is expressible as a linear combination of several such 𝑣 𝑗 , we

can write 〈
A𝒛 + 𝜂, 𝒗 𝑗

〉
=

〈
A𝒛, 𝒗 𝑗

〉
+

〈
𝜂, 𝒗 𝑗

〉
= 0 +

〈
𝑑∑

𝑗=𝑠+1
𝑎 𝑗 · 𝒗 𝑗 , 𝒗 𝑗

〉
= 𝑎 𝑗 ,

226

which is clearly nonzero.

The statement of Corollary 6.2.2 now follows from Theorem 20. □

Theorem 21 (Overparameterized linear classifier with random watermark). Consider the same

setting used in Corollary 6.2.2, and set ℱadv =
{
patch : patch (𝒙) = 𝒙 + 𝜂, 𝜂 ∈ R𝑑

}
.

If ℎ★ achieves margin 𝛾 and if the ambient dimension 𝑑 of the model satisfies 𝑑 ≥ Ω

(
𝑠+log(1/𝛿)

𝛾2

)
, then an

adversary can find a patch function such that with probability 1−𝛿, a training set 𝑆 = 𝑆clean∪𝑆adv satisfy-

ing |𝑆clean | ≥ Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)

and |𝑆adv | ≥ Ω
(
𝜀−1

clean (VC (ℋ) + log (1/𝛿))
)

yields a clas-

sifier ℎ̂ satisfying the success conditions for Problem 6.1 while also satisfying E
(𝒙 ,𝑦)∼𝒟

[
1

{
ℎ̂(𝒙) ≠ 𝑦

}]
≤

𝜀clean.

This result holds true particularly when the adversary does not know Supp (𝒟).

Proof of Theorem 21. We prove Theorem 21 in two parts. We first show that although the
adversary does not know ℱadv(ℎ★), they can find patch ∈ ℱadv(ℎ★) with high probability. We
then invoke the result from Corollary 6.2.2.

Let A be such that the columns 𝒂1 , . . . , 𝒂𝑠 are an orthonormal basis for the subspace spanned
by A. Draw the random vector 𝒈 ∼ Unif(S𝑑−1). First, recall that |⟨𝒂 𝑖 , 𝒈⟩| is subgaussian and
therefore E

[
|⟨𝒂 𝑖 , 𝒈⟩|2

]
≲ 1/𝑑 (see [Ver18, Theorem 3.4.6 and Proposition 2.7.1]). Now, observe

that

E
[A⊤𝒈

2
]
≤

√
E

[
∥A⊤𝒈 ∥22

]
=

√√
𝑠∑
𝑖=1
E

[
|⟨𝒂 𝑖 , 𝒈⟩|2

]
≲

√
𝑠

𝑑
.

Next, observe that the function 𝒙 ↦→ ∥A⊤𝒙∥2 is 1-Lipschitz. Using [Ver18, Theorem 5.1.4], we
have with probability ≥ 1 − 𝛿/2 that��A⊤𝒈

2 − E

[A⊤𝒈

2
] �� ≲ √

log (1/𝛿)
𝑑

.

Combining, we get with probability ≥ 1 − 𝛿/2 thatA⊤𝒈

2 ≲

√
𝑠

𝑑
+

√
log (1/𝛿)

𝑑
,

which means that as long as 𝑑 ≳ 𝑠+log(1/𝛿)
𝛾2 , and if we choose 𝜂 = 𝒈 , we haveA⊤𝜂

2 ≤ 𝛾.

This implies that the norm of the component of the trigger in Ker (A⊤) is at least
√

1 − 𝛾2 ≥ 1−𝛾
from the Pythagorean Theorem.

This implies that ℎ★(𝒙 + 𝜂) = ℎ★(𝒙) with probability 1 − 𝛿/2 over the draws of 𝜂. This gives us
patch (𝒙) = 𝒙 + 𝜂 ∈ ℱadv(ℎ★)with probability 1 − 𝛿/2 over the draws of 𝜂.

It is now easy to see that Theorem 21 follows from a simple application of Corollary 6.2.2 using
a failure probability of 𝛿/2, and the final failure probability 1−𝛿 follows from a union bound. □

227

Theorem 22. Consider some ℎ★(𝒙) = sign (⟨𝒘★, 𝒙⟩) and a data distribution 𝒟 satisfying

Pr
(𝒙 ,𝑦)∼𝒟

[𝑦 ⟨𝒘★, 𝒙⟩ ≥ 1] = 1 and Pr
(𝒙 ,𝑦)∼𝒟

[∥𝒙∥2 ≤ 𝑅] = 1. Let 𝛾 be the maximum margin over all weight

vectors classifying the uncorrupted data, and let ℱadv = {patch (𝒙) : ∥patch (𝒙) − 𝒙∥2 ≤ 𝛾}.

If 𝑆clean consists of at least Ω
(
𝜀−2

clean
(
𝛾−2𝑅2 + log (1/𝛿)

))
i.i.d examples drawn from 𝒟 and if 𝑆adv

consists of at least Ω
(
𝜀−2

adv
(
𝛾−2𝑅2 + log (1/𝛿)

))
i.i.d examples drawn from𝒟|ℎ★(𝒙) ≠ 𝑡, then we have

min
∥𝒘∥2≤ 1

𝛾

1
|𝑆 |

∑
(𝒙 ,𝑦)∈𝑆

1 {𝑦 ⟨𝒘 , 𝒙⟩ < 1} > 0.

In other words, assuming there exists a margin 𝛾 and a 0-loss classifier, empirical risk minimization of

margin-loss with a norm constraint fails to find a 0-loss classifier on a sufficiently contaminated training

set.

Proof of Theorem 22. We will proceed by contradiction.

Let patch (𝒙) denote the patched version of 𝒙. Without loss of generality, let the target label be
+1. Set 𝜀clean and 𝜀adv such that 𝜀clean + 𝜀adv < 1 and draw enough samples such that the attack
succeeds with parameters 𝜀adv and 𝛿.

Observe that we can write every member in 𝑆adv as (patch (𝒙) , 𝑦) for some natural 𝒙 with label
¬𝑦. Next, suppose that the learner recovers a �̂� such that the empirical margin loss of �̂� is
0. Next, recall that the following holds for �̂� obtained from the minimization in the theorem
statement and for a training set 𝑆 ∼ 𝒟𝑚 (see, for instance, Theorem 26.12 of [SB14]):

E
(𝒙 ,𝑦)∼𝒟

[1 {𝑦 ⟨�̂� , 𝒙⟩ < 1}] ≤ inf
∥𝒘∥2≤𝛾−1

E
(𝒙 ,𝑦)∼𝑆

[1 {𝑦 ⟨𝒘 , 𝒙⟩ < 1}] + 𝑂 ©«
√
(𝑅/𝛾)2 + log (1/𝛿)

𝑚

ª®¬
Using this, we see from uniform convergence that with probability 1 − 𝛿,

Pr
𝒙∼𝒟
[𝑦 ⟨�̂� , 𝒙⟩ ≥ 1] ≥ 1 − 𝜀clean

Pr
𝒙∼𝒟
[⟨�̂� , patch (𝒙)⟩ ≥ 1] ≥ 1 − 𝜀adv.

Using a union bound gives

Pr
𝒙∼𝒟
[(𝑦 ⟨�̂� , 𝒙⟩ ≥ 1) ∧ (⟨�̂� , patch (𝒙)⟩ ≥ 1)] ≥ 1 − 𝜀clean − 𝜀adv.

Hence, it must be the case that there exists at least one true negative 𝒙 for which both 𝑦 ⟨�̂� , 𝒙⟩ ≥ 1
and ⟨�̂� , patch (𝒙)⟩ ≥ 1 hold. We will use this to obtain a lower bound on ∥�̂�∥2, from which a
contradiction will follow. Notice that

1 ≤ ⟨�̂� , patch (𝒙)⟩ = ⟨�̂� , 𝒙⟩ + ⟨�̂� , patch (𝒙) − 𝒙⟩ ≤ −1 + ∥�̂�∥2 · ∥patch (𝒙) − 𝒙∥2 ,

where the last line follows from the fact that 𝑥 is labeled differently from patch (𝑥). This gives

∥�̂�∥2 ≥
2

∥patch (𝒙) − 𝒙∥2
.

Assuming that we meet the constraint ∥�̂�∥2 ≤ 1/𝛾, putting the inequalities together gives

∥patch (𝒙) − 𝒙∥2 ≥ 2𝛾.

This is a contradiction, since we require that the size of the perturbation is smaller than the
margin. This completes the proof of Theorem 22. □

228

Lemma 6.2.4. We have 0 ≤ mcap𝒳 ,𝒟 (ℋ) ≤ VC (ℋ).

Proof of Lemma 6.2.4. The lower bound is obvious. This is also tight, as we can set 𝒳 = {0, 1}𝑛 ,
𝒟 = Unif(𝒳), andℋ = { 𝑓 : 𝑓 (𝑥) = 1,∀𝑥 ∈ 𝒳}.

We now tackle the upper bound. Suppose for the sake of contradiction that mcap𝒳 ,𝒟 (ℋ) ≥
VC (ℋ) + 1. Then, we can find 𝑘 = VC (ℋ) + 1 nonempty subsets of 𝒳, 𝑋1 , . . . , 𝑋𝑘 and an ℎ for
which every labeling of these subsets can be achieved by some other ℎ̂ ∈ ℋ . Hence, picking
any collection of points 𝑥𝑖 ∈ 𝑋𝑖 yields a set witnessing VC (ℋ) ≥ 𝑘 = VC (ℋ) + 1, which is
clearly a contradiction.

The upper bound is tight as well. Consider the dataset 𝑆 = {0, 𝒆1 , . . . , 𝒆𝑑}, let𝒟 be a distribution
assigning a point mass of 1 to 𝒙 = 0, and let ℎ★(0) = 1. It is easy to see that the class of origin-
containing halfspaces can memorize every labeling 𝒆1 , . . . , 𝒆𝑑 as follows – suppose we have
labels 𝑏1 , . . . , 𝑏𝑑. Then, the classifier

1

{
𝑑∑
𝑖=1

𝑏𝑖 · 𝒙 𝑖 ≥ 0

}
memorizes every labeling of 𝒆1 , . . . , 𝒆𝑑 while correctly classifying the pair (0, 1). Hence, we
can memorize 𝑑 irrelevant sets, which is equal to the VC dimension of origin-containing linear
separators. This concludes the proof of Lemma 6.2.4. □

Theorem 23 (Nonzero memorization capacity implies backdoor attack). Pick a target label 𝑡 ∈ ±1.

Suppose we have a hypothesis classℋ , a target function ℎ★, a domain 𝒳, a data distribution 𝒟, and a

class of patch functions ℱadv. Define

𝒞(ℱadv(ℎ★)) B {patch
(
Supp

(
𝒟|ℎ★(𝑥) ≠ 𝑡

))
: patch ∈ ℱadv}.

Now, suppose that mcap𝒳 ,𝒟 (ℎ★,ℋ , 𝒞(ℱadv(ℎ★))) ≥ 1. Then, there exists a function patch ∈ ℱadv for

which the adversary can draw a set 𝑆adv consisting of 𝑚 = Ω
(
𝜀−1

adv (VC (ℋ) + log (1/𝛿))
)

i.i.d samples

from𝒟|ℎ★(𝑥) ≠ 𝑡 such that with probability at least 1− 𝛿 over the draws of 𝑆adv, the adversary achieves

the objectives of Problem 6.1, regardless of the number of samples the learner draws from𝒟 for 𝑆clean.

Theorem 28 (Generalization of Theorem 23). Pick an array of 𝑘 target labels 𝑡 ∈ {±1}𝑘 . Suppose

we have a hypothesis class ℋ , a target function ℎ★, a domain 𝒳, a data distribution 𝒟, and a class of

patch functions ℱadv. Define:

𝒞(ℱadv(ℎ★))𝑡′ B {patch
(
Supp

(
𝒟|ℎ★(𝑥) ≠ 𝑡′

))
: patch ∈ ℱadv}

and let:

𝒞(ℱadv(ℎ★)) B 𝒞(ℱadv(ℎ★))−1 ∪ 𝒞(ℱadv(ℎ★))1
Now, suppose that mcap𝒳 ,𝒟 (ℎ★,ℋ , 𝒞(ℱadv(ℎ★))) ≥ 𝑘. Then, there exists 𝑘 functions

patch1 , . . . , patch𝑘 ∈ ℱadv for which the adversary can draw sets {(𝑆adv)𝑖}𝑖∈[𝑘] each consisting

of 𝑚𝑖 = Ω
(
𝜀−1

adv (VC (ℋ) + log (𝑘/𝛿))
)

i.i.d samples from 𝒟|ℎ★(𝑥) ≠ 𝑡𝑖 such that with probability at

least 1 − 𝛿 over the draws of (𝑆adv)𝑖 , the adversary achieves the objectives of Problem 6.1, regardless of

the number of samples the learner draws from𝒟 for 𝑆clean.

Proof of Theorem 28. As per the theorem statement, we can draw 𝑚 samples from 𝒟|ℎ★(𝑥) ≠ 𝑡𝑖
to form 𝑆adv by inverting the labels of the samples we draw.

229

Since mcap𝒳 ,𝒟 (ℎ★,ℋ , 𝒞(ℱadv(ℎ★))) = 𝑘, there must exist 𝑘 sets 𝑋1 , . . . , 𝑋𝑘 ∈ 𝒞(ℱadv(ℎ★)) such
that the 𝑋𝑖 are memorizable, for which we can write 𝑋𝑖 ⊆ patch𝑖 (Supp (𝒟|ℎ★(𝑥) ≠ 𝑡𝑖)) for
appropriate choices of patch𝑖 , and for which 𝜇patch(𝒟|ℎ★(𝑥)≠𝑡𝑖)(𝑋𝑖) = 1. This implies that with
probability 1, there exists at least one function ℎ̂ ∈ ℋ such that ℎ̂ returns 𝑡𝑖 on every element
in (𝑆adv)𝑖 for all 𝑖 ∈ [𝑘] and agrees with ℎ★ on every element in the clean training set 𝑆clean.

Thus, we can recover a classifier ℎ̂ fromℋ with 0 error on the training set 𝑆clean∪
(⋃

𝑖∈[𝑘](𝑆adv)𝑖
)
.

In particular, notice that we achieve 0 error on 𝑆clean from distribution 𝒟 and on every (𝑆adv)𝑖
from distribution patch𝑖 (𝒟|ℎ★(𝑥) ≠ 𝑡𝑖). From the Fundamental Theorem of PAC Learning
[SB14], it follows that as long as |𝑆clean | and |(𝑆adv)𝑖 | are each at leastΩ

(
𝜀−1

clean (VC (ℋ) + log (𝑘/𝛿))
)

and Ω
(
𝜀−1

adv (VC (ℋ) + log (𝑘/𝛿))
)
, respectively, we have that ℎ̂ has error at most 𝜀 on𝒟 and error

at least 1 − 𝜀 on patch𝑖 (𝒟|ℎ★(𝑥) ≠ 𝑡𝑖) with probability 1 − 𝛿 (following from a union bound,
where each training subset yields a failure to attain uniform convergence with probability at
most 𝛿/(𝑘+1)). This completes the proof of Theorem 28. □

Theorem 24. Let 𝒞(ℱadv(ℎ★)) be defined the same as in Theorem 23. Suppose we have a hypothesis

class ℋ over a domain 𝒳, a true classifier ℎ★, data distribution 𝒟, and a perturbation class ℱadv. If

mcap𝒳 ,𝒟 (ℎ★,ℋ , 𝒞(ℱadv(ℎ★))) = 0, then the adversary cannot successfully construct a backdoor data

poisoning attack as per the conditions of Problem 6.1.

Proof of Theorem 24. The condition in the theorem statement implies that there does not exist
an irrelevant set that can be memorized atop any choice of ℎ ∈ ℋ .

For the sake of contradiction, suppose that there does exist a target classifier ℎ★, a function
patch ∈ ℱadv and a target label 𝑡 such that for all choices of 𝜀clean, 𝜀adv, and 𝛿, we obtain a
successful attack.

Define the set 𝑋 B patch (Supp (𝒟|ℎ★(𝑥) ≠ 𝑡)); in words, 𝑋 is the subset of 𝒳 consisting of
patched examples that are originally of the opposite class of the the target label. It is easy to
see that 𝑋 ∈ 𝒞.

We will first show that if 𝜇𝒟(𝑋) > 0, then we obtain a contradiction. Set 0 < 𝜀adv , 𝜀clean <
𝜇𝒟 (𝑋)

1+𝜇𝒟 (𝑋) . Since the attack is successful, we must classify at least a 1 − 𝜀adv fraction of 𝑋 as the
target label. Hence, we write

𝜇𝒟
({
𝑥 ∈ 𝑋 : ℎ̂(𝑥) = 𝑡

})
≥ (1 − 𝜀adv)𝜇𝒟(𝑋) >

1
1 + 𝜇𝒟(𝑋)

· 𝜇𝒟(𝑋) > 𝜀clean.

Since the set
{
𝑥 ∈ 𝑋 : ℎ̂(𝑥) = 𝑡

}
is a subset of the region of 𝒳 that ℎ̂ makes a mistake on, we

have that ℎ̂ must make a mistake on at least 𝜀clean measure of𝒟, which is a contradiction.

Hence, it must be the case that 𝜇𝒟(𝑋) = 0; in other words, 𝑋 is an irrelevant set. Recall that
in the beginning of the proof, we assume there exists a function ℎ̂ that achieves label 𝑡 on 𝑋,
which is opposite of the value of ℎ★ on 𝑋. Since we can achieve both possible labelings of 𝑋
with functions from ℋ , it follows that 𝑋 is a memorizable set, and thus the set 𝑋 witnesses
positive mcap𝒳 ,𝒟 (ℎ★,ℋ , 𝒞(ℱadv(ℎ★))). This completes the proof of Theorem 24. □

Example 6.2.3.1 (Overparameterized linear classifiers). Recall the result from the previous section,

where we took 𝒳 = R𝑑, ℋ𝑑 to be the set of linear classifiers in R𝑑, and let 𝒟 be a distribution over

230

a radius-𝑅 subset of an 𝑠-dimensional subspace 𝑃. We also assume that the true labeler ℎ★ achieves

margin 𝛾.

If we set

ℱadv =
{
patch (𝒙) : patch (𝒙) = 𝒙 + 𝜂, 𝜂 ∈ R𝑑

}
,

then we have mcap𝒳 ,𝒟 (ℎ★,ℋ𝑑 , 𝒞(ℱadv(ℎ★))) ≥ 𝑑 − 𝑠.

Proof of Example 6.2.3.1. Let 𝒘★ be the weight vector corresponding to ℎ★.

Observe that there exists 𝑘 B 𝑑 − 𝑠 unit vectors 𝒗1 , . . . , 𝒗𝑘 that complete an orthonormal basis
from that for 𝑃 to one for R𝑑. Next, consider the following subset of ℱadv(ℎ★).

ℱ ′adv B

{
patch ∈ ℱadv : ∀𝑖 ∈ [𝑘], patch𝑖 (𝒙) =

({
𝒙 + 𝜂 · 𝑡𝑖𝒗 𝑖 , ℎ★(𝑥) ≠ 𝑡𝑖
𝒙 otherwise

)}

We prove the memorization capacity result by using the images of functions in ℱ ′adv. We will
show that the function

ℎ̂(𝑥) = sign

(〈
𝒘★ + 2𝑅

𝛾

𝑘∑
𝑖=1

𝑡𝑖 ·
𝒗 𝑖
𝜂𝑖
, 𝒙

〉)
memorizes the 𝑘 sets 𝐶𝑖 B {𝒙 + 𝜂𝑖 · 𝒗 𝑖 : ⟨𝒘★, 𝒙⟩ ∈ [1, 𝑅/𝛾] ∪ [−𝑅/𝛾,−1]}. Moreover, observe
that the preimages of the 𝐶𝑖 have measure 1 under the conditional distributions 𝒟|ℎ★(𝑥) ≠ 𝑡𝑖 ,
since the preimages contain the support of these conditional distributions. We now have, for a
clean point 𝑥 ∈ 𝑃,

ℎ̂(𝒙) = sign

(〈
𝒘★ + 2𝑅

𝛾

𝑘∑
𝑖=1

𝑡𝑖 ·
𝒗 𝑖
𝜂𝑖
, 𝒙

〉)
= sign

(〈
𝒘★, 𝒙

〉
+ 2𝑅

𝛾

〈
𝑘∑
𝑖=1

𝑡𝑖 ·
𝒗 𝑖
𝜂𝑖
, 𝒙

〉)
= sign

(〈
𝒘★, 𝒙

〉)
= ℎ★(𝒙),

and for a corrupted point 𝒙 + 𝜂 𝑗 · 𝒗 𝑗 , for 𝑗 ∈ [𝑘],

ℎ̂(𝒙) = sign

(〈
𝒘★ + 2𝑅

𝛾

𝑘∑
𝑖=1

𝑡𝑖 ·
𝒗 𝑖
𝜂𝑖
, 𝑥 + 𝜂 𝑗 · 𝒗 𝑗

〉)
= sign

(〈
𝒘★, 𝒙 + 𝜂 𝑗 · 𝒗 𝑗

〉
+ 2𝑅

𝛾

〈
𝑘∑
𝑖=1

𝑡𝑖 ·
𝒗 𝑗
𝜂 𝑗
, 𝒙 + 𝜂 𝑗 · 𝒗 𝑗

〉)
= sign

(〈
𝒘★, 𝒙

〉
+ 2𝑅

𝛾

〈
𝑘∑
𝑖=1

𝑡𝑖 ·
𝒗 𝑖
𝜂𝑖
, 𝒙

〉
+ 2𝑅

𝛾

〈
𝑘∑
𝑖=1

𝑡𝑖 ·
𝒗 𝑖
𝜂𝑖
, 𝜂 𝑗 · 𝒗 𝑗

〉)
= sign

([
±𝑅
𝛾

]
+ 𝑡 𝑗 ·

2𝑅
𝛾

)
= 𝑡 𝑗 .

This shows that we can memorize the 𝑘 sets 𝐶𝑖 . It is easy to see that 𝜇𝒟(𝐶𝑖) = 0, so the 𝐶𝑖 are
irrelevant memorizable sets; in turn, we have that mcap𝒳 ,𝒟 (ℎ★) ≥ 𝑘 = 𝑑 − 𝑠, concluding the
proof of Example 6.2.3.1. □

Example 6.2.3.2 (Linear classifiers over convex bodies). Let ℋ be the set of origin-containing

halfspaces. Fix an origin-containing halfspace ℎ★ with weight vector 𝒘★
. Let 𝒳′ be a closed compact

231

convex set, let 𝒳 = 𝒳′ \ {𝒙 : ⟨𝒘★, 𝒙⟩ = 0}, and let 𝒟 be any probability measure over 𝒳 that

assigns nonzero measure to every ℓ2 ball of nonzero radius contained in 𝒳 and satisfies the relation

𝜇𝒟(𝑌) = 0 ⇐⇒ Vol𝑑(𝑌) = 0 for all 𝑌 ⊂ 𝒳. Then, mcap𝒳 ,𝒟 (ℎ★,ℋ) = 0.

To analyze Example 6.2.3.2, we need the following intermediate results.

Lemma 6.5.1. Consider some convex body 𝐾, a probability measure𝒟 such that every ℓ2 ball of nonzero

radius within 𝐾 has nonzero measure, and some subset 𝐾′ ⊆ 𝐾 satisfying 𝜇𝒟(𝐾′) = 1. Then, conv (𝐾′)
contains every interior point of 𝐾.

Proof of Lemma 6.5.1. Recall that an interior point is defined as one for which we can find some
neighborhood contained entirely within the convex body. Mathematically, 𝒙 ∈ 𝐾 is an interior
point if we can find nonzero 𝛿 for which {𝒛 : ∥𝒙 − 𝒛∥2 ≤ 𝛿} ⊆ 𝐾.

For the sake of contradiction, suppose that there exists some interior point 𝒙 ∈ 𝐾 that is not
contained in conv (𝐾′). Hence, there must exist a halfspace 𝐻 with boundary passing through
𝒙 and entirely containing conv (𝐾′). Furthermore, there must exist a nonzero 𝛿 for which there
is an ℓ2 ball centered at 𝒙 of radius 𝛿 contained entirely within 𝐾. Call this ball 𝐵2(𝒙 , 𝛿). Thus,
the set 𝐾 \ 𝐻 cannot be in conv (𝐾′).

We will now show that 𝜇𝒟(𝐾 \ 𝐻) > 0. Observe that the hyperplane inducing 𝐻 must cut
𝐵2(𝒙 , 𝛿) through an equator. From this, we have that the set 𝐾 \ 𝐻 contains a half-ℓ2 ball of
radius 𝛿. It is easy to see that this half-ball contains another ℓ2 ball of radius 𝛿/2 (call this 𝐵′),
and as per our initial assumption, 𝐵′ must have nonzero measure.

Thus, we can write 𝜇𝒟(𝐾 \𝐻) ≥ 𝜇𝒟(𝐵′) > 0. Since we know that 𝜇𝒟(conv (𝐾′))+𝜇𝒟(𝐾 \𝐻) ≤ 1,
it follows that 𝜇𝒟(conv (𝐾′)) < 1 and therefore 𝜇𝒟(𝐾′) < 1, violating our initial assumption that
𝜇𝒟(𝐾′) = 1. We thus complete the proof of Lemma 6.5.1. □

Lemma 6.5.2. Let 𝐾 be a closed compact convex set. Let 𝒙1 be on the boundary of 𝐾 and let 𝒙2 be an

interior point of 𝐾. Then, every point of the form 𝜆𝒙1 + (1−𝜆)𝑥2 for 𝜆 ∈ (0, 1) is an interior point of 𝐾.

Proof of Lemma 6.5.2. Since 𝒙2 is an interior point, there must exist an ℓ2 ball of radius 𝛿 contained
entirely within 𝐾 centered at 𝒙2. From similar triangles and the fact that any two points in a
convex body can be connected by a line contained in the convex body, it is easy to see that we
can center an ℓ2 ball of radius (1 − 𝜆)𝛿 at the point 𝜆𝒙1 + (1 − 𝜆)𝒙2 that lies entirely in 𝐾. We
therefore conclude the proof of Lemma 6.5.2. □

We are ready to analyze Example 6.2.3.2.

Proof of Example 6.2.3.2. Observe that the ambient space is equal to the dimension of 𝒳.

Let 𝒘★ be the weight vector corresponding to the true labeler ℎ★.

For the sake of contradiction, suppose there exists a classifier �̂� satisfying

Pr
𝒙∼𝒟

[
sign (⟨�̂� , 𝒙⟩) = sign

(〈
𝒘★, 𝒙

〉)]
= 1,

232

but there exists a subset 𝑌 ⊂ 𝒳 for which sign (⟨�̂� , 𝒙⟩) ≠ sign (⟨𝒘★, 𝒙⟩), for all 𝒙 ∈ 𝑌. Such a 𝑌
would constitute a memorizable set.

Without loss of generality, let the target label be −1; that is, the adversary is converting a set 𝑌
whose label is originally +1 to one whose label is −1. Additionally, without loss of generality,
take ∥𝒘★∥2 = ∥�̂�∥2 = 1. Observe that

𝑌 ⊆ 𝐷 B
{
𝒙 ∈ 𝒳 : ⟨�̂� , 𝒙⟩ ≤ 0 and

〈
𝒘★, 𝒙

〉
> 0

}
.

For 𝐷 to be nonempty (and therefore for 𝑌 to be nonempty), observe that we require �̂� ≠ 𝒘★

(otherwise, the constraints in the definition of the set 𝐷 are unsatisfiable).

Lemma 6.5.1 implies that if 𝑌 is memorizable, then it must lie entirely on the boundary of
the set 𝒳+ B {𝒙 ∈ 𝒳 : ⟨𝒘★, 𝒙⟩ > 0}. To see this, observe that if �̂� classifies any (conditional)
measure-1 subset of 𝒳+ correctly, then it must classify the convex hull of that subset correctly
as well. This implies that �̂� must correctly classify every interior point in𝒳+, and thus, 𝑌 must
be entirely on the boundary of 𝒳+.

Now, let 𝒙1 ∈ 𝑌 and 𝒙2 ∈ Interior(𝒳−) where 𝒳− = {𝑥 ∈ 𝒳 : ⟨𝒘★, 𝒙⟩ < 0}. Draw a line from 𝒙1
to 𝒙2 and consider the labels of the points assigned by �̂�. Since 𝒙1 ∈ 𝑌, we have ℎ̂(𝒙1) = −1, and
since 𝒙2 ∈ Interior(𝒳−), we have that ℎ̂(𝒙2) = −1 as well. Using Lemma 6.5.2, we have that every
point on the line connecting 𝒙1 to 𝒙2 (except for possibly 𝒙1) is an interior point to𝒳′. Since we
have that the number of sign changes along a line that can be induced by a linear classifier is at
most 1, we must have that the line connecting 𝒙1 to 𝒙2 incurs 0 sign changes with respect to the
classifier induced by �̂�. This implies that the line connecting 𝒙1 to 𝒙2 cannot pass through any
interior points of𝒳+. However, the only way that this can happen is if ⟨𝒘★, 𝒙1⟩ = 0, but per our
definition of 𝒳, if it is the case that ⟨𝒘★, 𝒙1⟩ = 0, then 𝒙1 ∉ 𝒳, which is a clear contradiction.

This is sufficient to conclude the proof of Example 6.2.3.2. □

Example 6.2.3.3 (Sign changes). Let 𝒳 = [0, 1], 𝒟 = Unif (𝒳) and ℋ𝑘 be the class of functions

admitting at most 𝑘 sign-changes. Specifically, ℋ𝑘 consists of functions ℎ for which we can find

pairwise disjoint, continuous intervals 𝐼1 , . . . , 𝐼𝑘+1 such that:

• for all 𝑖 < 𝑗 and for all 𝑥 ∈ 𝐼𝑖 , 𝑦 ∈ 𝐼 𝑗 , we have 𝑥 < 𝑦;

•
⋃𝑘+1
𝑖=1 𝐼𝑖 = 𝒳;

• ℎ(𝐼𝑖) = −ℎ(𝐼𝑖+1), for all 𝑖 ∈ [𝑘].

Suppose the learner is learning ℋ𝑠 for unknown 𝑠 using ℋ𝑑, where 𝑠 ≤ 𝑑 + 2. For all ℎ★ ∈ ℋ𝑠 , we

have mcap𝒳 ,𝒟 (ℎ★,ℋ𝑑) ≥ ⌊(𝑑−𝑠)/2⌋.

Proof of Example 6.2.3.3. Without loss of generality, take 𝑑 − 𝑠 to be an even integer.

Let 𝐼1 , . . . , 𝐼𝑠+1 be the intervals associated with ℎ★. It is easy to see that we can pick a total
of (𝑑−𝑠)/2 points such that the sign of these points can be memorized by some ℎ̂. Since each
point we pick within an interval can induce at most 2 additional sign changes, we have that the
resulting function ℎ̂ has at most 𝑠 + 2 · (𝑑−𝑠)/2 ≤ 𝑑 sign-changes; thus, ℎ̂ ∈ ℋ𝑑. Moreover, the
measure of a single point is 0, and so the total measure of our (𝑑−𝑠)/2 points is 0.

Given this, it is easy to find ℱadv and corresponding 𝒞(ℱadv(ℎ★)) for which the backdoor attack
can succeed as per Theorem 23, thereby yielding the conclusion of Example 6.2.3.3. □

233

6.5.2. Proofs from Section 6.3

Theorem 25 (Certifying backdoor existence). Suppose that the learner can calculate and minimize

ℒℱadv(ℎ★)(ℎ̂ , 𝑆) = E
(𝑥,𝑦)∼𝑆

[
sup

patch∈ℱadv(ℎ★)
1

{
ℎ̂(patch (𝑥)) ≠ 𝑦

}]
over a finite set 𝑆 and ℎ̂ ∈ ℋ .

If the VC dimension of the loss class ℒℋℱadv(ℎ★) is finite, then there exists an algorithm using

𝑂
(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
samples that allows the learner to defeat the adversary through

learning a backdoor-robust classifier or by rejecting the training set as being corrupted, with probability

1 − 𝛿.

Proof of Theorem 25. See Algorithm 16 for the pseudocode of an algorithm witnessing Theo-
rem 26.

Algorithm 16 Implementation of an algorithm certifying backdoor corruption
1: Input: Training set 𝑆 = 𝑆clean ∪ 𝑆adv

satisfying |𝑆clean | = Ω

(
𝜀−2

clean

(
VC

(
ℒℋℱadv(ℎ★)

)
+ log (1/𝛿)

))
2: Set ℎ̂ B argmin

ℎ∈ℋ
ℒℱadv(ℎ★)(ℎ, 𝑆)

3: Output: ℎ̂ if ℒℱadv(ℎ★)(ℎ̂ , 𝑆) ≤ 2𝜀 and reject otherwise

There are two scenarios to consider.

Training set is (mostly) clean. Suppose that 𝑆 satisfies minℎ∈ℋ ℒℱadv(ℎ★)(ℎ, 𝑆) ≲ 𝜀clean. Since
the VC dimension of the loss class ℒℋℱadv(ℎ★) is finite, it follows that with finitely many samples,
we attain uniform convergence with respect to the robust loss, and we’re done; in particular,

we can write ℒℱadv(ℎ★)

(
argmin
ℎ∈ℋ

ℒℱadv(ℎ★)(ℎ, 𝑆),𝒟
)
≲ 𝜀clean with high probability.

Training set contains many backdoored examples. Here, we will show that with high prob-
ability, minimizing ℒℱadv(ℎ★)(ℎ̂ , 𝑆) over ℎ̂ will result in a nonzero loss, which certifies that the
training set 𝑆 consists of malicious examples.

Suppose that for the sake of contradiction, the learner finds a classifier ℎ̂ such that
ℒℱadv(ℎ★)(ℎ̂ , 𝑆) ≲ 𝜀clean. Hence, with high probability, we satisfy ℒℱadv(ℎ★)(ℎ̂ ,𝒟) ≲ 𝜀clean. Since
there is a constant measure allocated to each class, we can write

E
(𝑥,𝑦)∼𝒟|𝑦≠𝑡

[
sup

patch∈ℱadv(ℎ★)
1

{
ℎ̂(patch (𝑥)) ≠ 𝑦

}]
≲ 𝜀clean.

Furthermore, since we achieved a loss of 0 on the whole training set, including the subset 𝑆adv,
from uniform convergence, we get with high probability that

E
(𝑥,𝑦)∼𝒟|𝑦≠𝑡

[
1

{
ℎ̂(patch (𝑥)) = 𝑡

}]
≥ 1 − 𝜀adv.

234

This easily implies

E
(𝑥,𝑦)∼𝒟|𝑦≠𝑡

[
sup

patch∈ℱadv(ℎ★)
1

{
ℎ̂(patch (𝑥)) ≠ 𝑦

}]
≥ 1 − 𝜀adv.

Stitching the inequalities together yields 𝜀clean ≳ 1−𝜀adv. This is a contradiction, as we can make
𝜀clean sufficiently small so as to violate this statement. We obtain Theorem 25 as desired. □

Theorem 26 (Filtering implies generalization). Let 𝛼 ≤ 1/3 and 𝜀clean ≤ 1/10.

Suppose we have a training set𝑆 = 𝑆clean∪𝑆adv such that |𝑆clean | = Ω
(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
and |𝑆adv | ≤ 𝛼 · (|𝑆adv | + |𝑆clean |). If there exists an algorithm that given 𝑆 can find a subset

𝑆′ = 𝑆′clean ∪ 𝑆′adv satisfying |𝑆′clean |/|𝑆clean | ≥ 1 − 𝜀clean and minℎ∈ℋ ℒℱadv(ℎ★)(ℎ, 𝑆′) ≲ 𝜀clean, then there

exists an algorithm such that given 𝑆 returns a function ℎ̂ satisfying ℒℱadv(ℎ★)(ℎ̂ ,𝒟) ≲ 𝜀clean with

probability 1 − 𝛿.

We first need the intermediate claim Claim 6.5.3.

Claim 6.5.3. For all ℎ ∈ ℋ , we have��ℒℱadv(ℎ★)(ℎ, 𝑆clean) − ℒℱadv(ℎ★)(ℎ, 𝑆′clean)
�� ≤ 𝜀clean.

Proof of Claim 6.5.3. Let 𝑎, 𝑏, 𝑐 be positive numbers. We first write

𝑎

𝑏
−max

{
0, 𝑎 − 𝑐
𝑏 − 𝑐

}
=
𝑐(𝑏 − 𝑎)
𝑏(𝑏 − 𝑐) ≤

𝑐

𝑏
,

which occurs exactly when 𝑐 ≤ 𝑎. In the case where 𝑎 ≤ 𝑐, we have

𝑎

𝑏
−max

{
0, 𝑎 − 𝑐
𝑏 − 𝑐

}
=
𝑎

𝑏
≤ 𝑐

𝑏
,

which gives
𝑎

𝑏
−max

{
0, 𝑎 − 𝑐
𝑏 − 𝑐

}
≤ 𝑐

𝑏
.

Next, consider
min

{
1, 𝑎

𝑏 − 𝑐
}
− 𝑎
𝑏
=

𝑎

𝑏 − 𝑐 −
𝑎

𝑏
=
𝑐

𝑏
· 𝑎

𝑏 − 𝑐 ≤
𝑐

𝑏
,

which happens exactly when we have 𝑏 ≥ 𝑎 + 𝑐. In the other case, we have

min
{
1, 𝑎

𝑏 − 𝑐
}
− 𝑎
𝑏
= 1 − 𝑎

𝑏
≤ 𝑐

𝑏
.

We therefore write
max

{
0, 𝑎 − 𝑐
𝑏 − 𝑐

}
,min

{
1, 𝑎

𝑏 − 𝑐
}
∈

[𝑎
𝑏
± 𝑐
𝑏

]
.

Now, let 𝑎 denote the number of samples from 𝑆clean that ℎ incurs robust loss on, let 𝑏 be
the total number of samples from 𝑆clean, and let 𝑐 be the number of samples our filtering
procedure deletes from 𝑆clean. It is easy to see that 𝑎/𝑏 corresponds ℒℱadv(ℎ★)(ℎ, 𝑆clean) and that
ℒℱadv(ℎ★)(ℎ, 𝑆′clean) ∈ [max {0, (𝑎−𝑐)/(𝑏−𝑐)} ,min {1, 𝑎/(𝑏−𝑐)}]. From our argument above, this means
that we must have

ℒℱadv(ℎ★)(ℎ, 𝑆′clean) ∈
[
ℒℱadv(ℎ★)(ℎ, 𝑆clean) ±

𝜀clean(1 − 𝛼)𝑚
(1 − 𝛼)𝑚

]
.

235

Finally,
𝜀clean(1 − 𝛼)𝑚
(1 − 𝛼)𝑚 = 𝜀clean ,

completing the proof of Claim 6.5.3. □

We now prove Theorem 26.

Proof of Theorem 26. See Algorithm 17 for the pseudocode of an algorithm witnessing the the-
orem statement.

Algorithm 17 Implementation of a generalization algorithm given an implementation of a
filtering algorithm

1: Input: Training set 𝑆 = 𝑆clean ∪ 𝑆adv
satisfying |𝑆clean | = Ω

(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
2: Run the filtering algorithm on 𝑆 to obtain 𝑆′ satisfying the conditions in the theorem

statement
3: Output: Output ℎ̂, defined as ℎ̂ B argmin

ℎ∈ℋ
ℒℱadv(ℎ★)(ℎ, 𝑆′)

Recall that we have drawn enough samples to achieve uniform convergence (see [CBM18] and
[MGDS20]); in particular, assuming that our previous steps succeeded in removing very few
points from 𝑆clean, then for all ℎ ∈ ℋ , we have with probability 1 − 𝛿 that��ℒℱadv(ℎ★)(ℎ,𝒟) − ℒℱadv(ℎ★)(ℎ, 𝑆clean)

�� ≤ 𝜀clean.

Observe that we have deleted at most 𝑚 · 2𝜀clean points from 𝑆clean. Let 𝑆′clean B 𝑆′ ∩ 𝑆clean (i.e.,
the surviving members of 𝑆clean from our filtering procedure). We now use Claim 6.5.3 and
triangle inequality to write:��ℒℱadv(ℎ★)(ℎ, 𝑆′clean) − ℒℱadv(ℎ★)(ℎ,𝒟)

�� ≤ ��ℒℱadv(ℎ★)(ℎ, 𝑆clean) − ℒℱadv(ℎ★)(ℎ, 𝑆′clean)
��+��ℒℱadv(ℎ★)(ℎ,𝒟) − ℒℱadv(ℎ★)(ℎ, 𝑆clean)

��
≤𝜀clean

Next, consider some ℎ̂ satisfyingℒℱadv(ℎ★)(ℎ̂ , 𝑆′) ≲ 𝜀clean (which must exist, as per our argument
in Part 3), and observe that, for a constant 𝐶,

ℒℱadv(ℎ★)(ℎ̂ , 𝑆′) ≥ (1 − 𝐶𝜀clean)ℒℱadv(ℎ★)(ℎ̂ , 𝑆′ ∩ 𝑆clean) + 𝐶𝜀cleanℒℱadv(ℎ★)(ℎ̂ , 𝑆′ ∩ 𝑆adv)
≥ (1 − 𝐶𝜀clean)ℒℱadv(ℎ★)(ℎ̂ , 𝑆′clean).

This means that

ℒℱadv(ℎ★)(ℎ̂ , 𝑆′clean) ≤
𝜀clean

1 − 𝐶𝜀clean
= 2𝜀clean

(
1

1 − 𝐶𝜀clean

)
≲ 𝜀clean.

We now use the fact that
��ℒℱadv(ℎ★)(ℎ, 𝑆′clean) − ℒℱadv(ℎ★)(ℎ,𝒟)

�� ≤ 𝜀clean to arrive at the conclusion
that ℒℱadv(ℎ★)(ℎ,𝒟) ≲ 𝜀clean, which completes the proof of Theorem 26. □

Theorem 27 (Generalization implies filtering). Set 𝜀clean ≤ 1/10 and 𝛼 ≤ 1/6.

236

If there exists an algorithm that, given at most a 2𝛼 fraction of outliers in the training set, can

output a hypothesis satisfying ℒℱadv(ℎ★)(ℎ̂ ,𝒟) ≤ 𝜀clean with probability 1 − 𝛿 over the draw of the

training set, then there exists an algorithm that given a training set 𝑆 = 𝑆clean ∪ 𝑆adv satisfy-

ing |𝑆clean | ≥ Ω
(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
outputs a subset 𝑆′ ⊆ 𝑆 with the property that

ℒℱadv(ℎ★)

(
argmin
ℎ∈ℋ

ℒℱadv(ℎ★) (ℎ, 𝑆′) ,𝒟
)
≲ 𝜀clean with probability 1 − 7𝛿.

We first require the intermediate Claim 6.5.4.

Claim 6.5.4. The following holds for all ℎ ∈ ℋ :��ℒℱadv(ℎ★)(ℎ, 𝑆clean) − ℒℱadv(ℎ★)(ℎ, 𝑆′clean)
�� < 3𝜀clean

Proof of Claim 6.5.4. Recall that in the proof of Theorem 26, we showed that for positive numbers
𝑎, 𝑏, 𝑐 we have

max
{
0, 𝑎 − 𝑐
𝑏 − 𝑐

}
,min

{
1, 𝑎

𝑏 − 𝑐
}
∈

[𝑎
𝑏
± 𝑐
𝑏

]
.

Now, let 𝑎 denote the number of samples from 𝑆clean that ℎ incurs robust loss on, let 𝑏 be
the total number of samples from 𝑆clean, and let 𝑐 be the number of samples our filtering
procedure deletes from 𝑆clean. It is easy to see that 𝑎/𝑏 corresponds ℒℱadv(ℎ★)(ℎ, 𝑆clean) and that
ℒℱadv(ℎ★)(ℎ, 𝑆′clean) ∈ [max {0, (𝑎−𝑐)/(𝑏−𝑐)} ,min {1, 𝑎/(𝑏−𝑐)}]. From our argument above, this means
that we must have

ℒℱadv(ℎ★)(ℎ, 𝑆′clean) ∈
[
ℒℱadv(ℎ★)(ℎ, 𝑆clean) ±

2𝜀clean𝑚

(1 − 𝛼)𝑚

]
.

Finally,
2𝜀clean𝑚

(1 − 𝛼)𝑚 =
2𝜀clean
(1 − 𝛼) ≤

2𝜀clean
5/6 < 3𝜀clean ,

completing the proof of Claim 6.5.4. □

We now have the tools we need to prove Theorem 27.

Proof of Theorem 27. See Algorithm 18 for the pseudocode of an algorithm witnessing the the-
orem statement.

At a high level, our proof proceeds as follows. We first show that the partitioning step results
in partitions that do not have too high of a fraction of outliers, which will allow us to call
the filtering procedure without exceeding the outlier tolerance. Then, we will show that the
hypotheses ℎ̂𝐿 and ℎ̂𝑅 mark most of the backdoor points for deletion while marking only few
of the clean points for deletion. Finally, we will show that although ℎ̂ is learned on 𝑆′ that is
not sampled i.i.d from𝒟, ℎ̂ still generalizes to𝒟 without great decrease in accuracy.

237

Algorithm 18 Implementation of a filtering algorithm given an implementation of a general-
ization algorithm

1: Input: Training set 𝑆 = 𝑆clean ∪ 𝑆adv
satisfying |𝑆clean | = Ω

(
𝜀−2

clean
(
VC

(
ℒℱadv(ℎ★)

)
+ log (1/𝛿)

))
2: Calculate ℎ̂ = argmin

ℎ∈ℋ
ℒℱadv(ℎ★)(ℎ, 𝑆) and early-return 𝑆 if ℒℱadv(ℎ★)(ℎ̂ , 𝑆) ≤ 𝐶𝜀clean, for some

universal constant 𝐶
3: Randomly partition 𝑆 into two equal halves 𝑆𝐿 and 𝑆𝑅
4: Run the generalizing algorithm to obtain ℎ̂𝐿 and ℎ̂𝑅 using training sets 𝑆𝐿 and 𝑆𝑅, respec-

tively
5: Run ℎ̂𝐿 on 𝑆𝑅 and mark every mistake that ℎ̂𝐿 makes on 𝑆𝑅, and similarly for ℎ̂𝑅
6: Remove all marked examples to obtain a new training set 𝑆′ ⊆ 𝑆
7: Output: 𝑆′ such that ℎ̂ = argmin

ℎ∈ℋ
ℒℱadv(ℎ★)(ℎ, 𝑆′) satisfies ℒℱadv(ℎ★)(ℎ̂ ,𝒟) ≲ 𝜀clean with prob-

ability 1 − 𝛿

We have two cases to consider based on the number of outliers in our training set. Let 𝑚 be the
total number of examples in our training set.

Case 1 – 𝛼𝑚 ≤ max {2/3𝜀clean · log (1/𝛿) , 24 log (2/𝛿)} It is easy to see that ℒ(ℎ★, 𝑆) ≤ 𝛼. Using
this, we have

ℒ(ℎ★, 𝑆) ≤ 𝛼
2

3𝜀clean · 𝑚
· log

(1
𝛿

)
≲

𝜀clean
VC (ℋ) + log (1/𝛿) · log

(1
𝛿

)
< 𝜀clean ,

which implies that we exit the routine via the early-return. From uniform convergence, this
implies that with probability 1 − 𝛿 over the draws of 𝑆, we have

ℒℱadv(ℎ★)

(
argmin
ℎ∈ℋ

ℒℱadv(ℎ★) (ℎ, 𝑆′) ,𝒟
)
≲ 𝜀clean.

In the other case, we write

ℒ(ℎ★, 𝑆) ≤ 𝛼 ≤ 24 log (2/𝛿)
𝑚

≲
𝜀2

clean log (1/𝛿)
VC (ℋ) + log (1/𝛿) ≲ 𝜀2

clean ≤ 𝜀clean ,

and the rest follows from a similar argument.

Case 2 – 𝛼𝑚 ≥ max {2/3𝜀clean · log (1/𝛿) , 24 log (2/𝛿)} Let 𝜏 = 𝛿; we make this rewrite to help
simplify the various failure events.

Part 1 – Partitioning does not affect outlier balance. Define indicator random variables 𝑋𝑖
such that 𝑋𝑖 is 1 if and only if example 𝑖 ends up in 𝑆𝑅. We want to show that

Pr

[∑
𝑖∈𝑆adv

𝑋𝑖 ∉ [0.5, 1.5] 𝛼 · 𝑚/2
]
≤ 𝜏.

Although the 𝑋𝑖 are not independent, they are negatively associated, so we can still use the
Chernoff Bound and the fact that the number of outliers 𝛼𝑚 ≥ 24 log (2/𝜏):

Pr

[∑
𝑖∈𝑆adv

𝑋𝑖 ∉ [0.5, 1.5] 𝛼 · 𝑚/2
]
≤ 2exp

(
−

𝛼/2 · 𝑚 · 1/4
3

)
≤ 2exp

(
−𝛼𝑚24

)
≤ 𝜏

238

Moreover, if 𝑆𝐿 has a [𝛼/2, 3𝛼/2] fraction of outliers, then it also follows that 𝑆𝑅 has a [𝛼/2, 3𝛼/2]
fraction of outliers. Thus, this step succeeds with probability 1 − 𝜏.

Part 2 – Approximately correctly marking points. We now move onto showing that ℎ̂𝐿 deletes
most outliers from 𝑆𝑅 while deleting few clean points. Recall that ℎ̂𝐿 satisfiesℒℱadv(ℎ★)(ℎ̂𝐿 ,𝒟) ≤
𝜀clean with probability 1 − 𝛿. Thus, we have that ℎ̂𝐿 labels the outliers as opposite the target
label with probability at least 1 − 𝜀clean. Since we have that the number of outliers 𝛼𝑚 ≥
2/3𝜀clean · log (1/𝜏), we have from Chernoff Bound that (let 𝑋𝑖 be the indicator random variable
that is 1 when ℎ̂𝐿 classifies a backdoored example as the target label)

Pr

[∑
𝑖∈𝑆adv∩𝑆𝑅

𝑋𝑖 ≥ 2 ·
(
𝜀clean ·

3
2𝛼𝑚

)]
≤ exp

(
−𝜀clean ·

3
2𝛼𝑚

)
≤ 𝜏.

Thus, with probability 1 − 2𝜏, we mark all but at most 𝜀clean · 6𝛼𝑚 outliers across both 𝑆𝑅 and
𝑆𝐿; since we impose that 𝛼 ≲ 1, we have that we delete all but a 𝑐𝜀clean fraction of outliers for
some universal constant 𝑐.

It remains to show that we do not delete too many good points. Since ℎ̂𝐿 has true error at
most 𝜀clean and using the fact that 𝑚(1 − 𝛼/2) ≥ 𝑚(1 − 𝛼) ≥ 𝑚𝛼 ≥ 2 log(1/𝜏)

𝜀clean
, from the Chernoff

Bound, we have (let 𝑋𝑖 be the indicator random variable that is 1 when ℎ̂𝐿 misclassifies a clean
example)

Pr

[∑
𝑖∈𝑆clean∩𝑆𝑅

𝑋𝑖 ≥ 2 ·
(
𝜀clean · (1 − 𝛼/2) · 𝑚2

)]
≤ exp

(
−𝜀clean · (1 − 𝛼/2) · 𝑚2

)
≤ 𝜏.

From a union bound over the runs of ℎ̂𝐿 and ℎ̂𝑅, we have that with probability 1− 2𝜏, we mark
at most 2𝑚𝜀clean · (1 − 𝛼/2) ≤ 2𝑚𝜀clean clean points for deletion. From a union bound, we have
that this whole step succeeds with probability 1 − 4𝜏 − 2𝛿.

Part 3 – There exists a low-error classifier. At this stage, we have a training set 𝑆′ that has at
least 𝑚(1 − 2𝜀clean) clean points and at most 𝜀clean · 6𝛼𝑚 outliers. Recall that ℎ★ incurs robust
loss on none of the clean points and incurs robust loss on every outlier. This implies that ℎ★
has empirical robust loss at most

𝜀clean · 6𝛼𝑚
𝑚(1 − 2𝜀clean)

=
6𝛼𝜀clean

1 − 2𝜀clean
≤ 2𝜀clean ,

where we use the fact that we pick 𝜀clean ≤ 1/10 < 1/4 and 𝛼 ≤ 1/6. From this, it follows that
ℎ̂ = argmin

ℎ∈ℋ
ℒℱadv(ℎ★)(ℎ, 𝑆′) satisfies ℒℱadv(ℎ★)(ℎ̂ , 𝑆′) ≤ 2𝜀clean.

Part 4 – Generalizing from 𝑆′ to 𝒟. We now have to argue that ℒℱadv(ℎ★)(ℎ̂ , 𝑆′) ≤ 2𝜀clean

implies ℒℱadv(ℎ★)(ℎ̂ ,𝒟) ≲ 𝜀clean. Recall that we have drawn enough samples to achieve uniform
convergence (see [CBM18] and [MGDS20]); in particular, assuming that our previous steps
succeeded in removing very few points from 𝑆clean, then for all ℎ ∈ ℋ , we have with probability
1 − 𝛿 that ��ℒℱadv(ℎ★)(ℎ,𝒟) − ℒℱadv(ℎ★)(ℎ, 𝑆clean)

�� ≤ 𝜀clean.

239

Observe that we have deleted at most 𝑚 · 2𝜀clean points from 𝑆clean. Let 𝑆′clean B 𝑆′ ∩ 𝑆clean (i.e.,
the surviving members of 𝑆clean from our filtering procedure). We now use Claim 6.5.4 and
triangle inequality to write��ℒℱadv(ℎ★)(ℎ, 𝑆′clean) − ℒℱadv(ℎ★)(ℎ,𝒟)

�� ≤ ��ℒℱadv(ℎ★)(ℎ, 𝑆clean) − ℒℱadv(ℎ★)(ℎ, 𝑆′clean)
��+��ℒℱadv(ℎ★)(ℎ,𝒟) − ℒℱadv(ℎ★)(ℎ, 𝑆clean)

��
< 4𝜀clean.

Next, consider some ℎ̂ satisfyingℒℱadv(ℎ★)(ℎ̂ , 𝑆′) ≤ 2𝜀clean (which must exist, as per our argument
in Part 3), and observe that

ℒℱadv(ℎ★)(ℎ̂ , 𝑆′) ≥ (1 − 2𝜀clean)ℒℱadv(ℎ★)(ℎ̂ , 𝑆′ ∩ 𝑆clean) + 2𝜀cleanℒℱadv(ℎ★)(ℎ̂ , 𝑆′ ∩ 𝑆adv)
≥ (1 − 2𝜀clean)ℒℱadv(ℎ★)(ℎ̂ , 𝑆′clean).

This implies

ℒℱadv(ℎ★)(ℎ̂ , 𝑆′clean) ≤
2𝜀clean

1 − 2𝜀clean
= 2𝜀clean

(
1

1 − 2𝜀clean

)
≤ 5𝜀clean

2 .

We now use the fact that
��ℒℱadv(ℎ★)(ℎ, 𝑆′clean) − ℒℱadv(ℎ★)(ℎ,𝒟)

�� < 4𝜀clean to arrive at the conclusion
that ℒℱadv(ℎ★)(ℎ,𝒟) < 13/2 · 𝜀clean, which is the statement of Theorem 27.

The constants in the statement of Theorem 27 follow from setting 𝜏 = 𝛿. □

240

6.6. Numerical trials

In this section, we present a practical use case for Theorem 25.

Recall that, at a high level, Theorem 25 states that under certain assumptions, minimizing
robust loss on the corrupted training set will either:

1. Result in a low robust loss, which will imply from uniform convergence that the resulting
classifier is robust to adversarial (and therefore backdoor) perturbations.

2. Result in a high robust loss, which will be noticeable at training time.

This suggests that practitioners can use adversarial training on a training set which may be
backdoored and use the resulting robust loss value to make a decision about whether to deploy
the classifier. To empirically validate this approach, we run this procedure (i.e., some variant
of Algorithm 16) on the MNIST handwritten digit classification task5(see [LC10]). Here, the
learner wishes to recover a neural network robust to small ℓ∞ perturbations and where the
adversary is allowed to make a small ℓ∞-norm watermark.

Disclaimers. As far as we are aware, the MNIST dataset does not contain personally identi-
fiable information or objectionable content. The MNIST dataset is made available under the
terms of the Creative Commons Attribution-Share Alike 3.0 License.

Reproducibility. We have included all the code to generate these results in the supplementary
material. Our code can be found at https://github.com/narenmanoj/mnist-adv-training.6.
Our code is tested and working with TensorFlow 2.4.1, CUDA 11.0, NVIDIA RTX 2080Ti, and
the Google Colab GPU runtime.

6.6.1. MNIST using neural networks

Scenario

Recall that the MNIST dataset consists of 10 classes, where each corresponds to a handwritten
digit in {0, . . . , 9}. The classification task here is to recover a classifier that, upon receiving an
image of a handwritten digit, correctly identifies which digit is present in the image.

In our example use case, an adversary picks a target label 𝑡 ∈ {0, . . . , 9} and a small additive
watermark. If the true classifier is ℎ★(𝒙), then the adversary wants the learner to find a
classifier ℎ̂ maximizing Pr

𝒙∼𝒟|ℎ★(𝒙)≠𝑡

[
ℎ̂(𝒙) = 𝑡

]
. In other words, this can be seen as a “many-to-

one” attack, where the adversary is corrupting examples whose labels are not 𝑡 in order to

5We select MNIST because one can achieve a reasonably robust classifier on the clean version of the dataset. This
helps us underscore the difference between the robust loss at train time with and without backdoors in the
training set. Moreover, this allows us to explore a setting where our assumptions in Theorem 25 might not hold
– in particular, it’s not clear that we have enough data to attain uniform convergence for the binary loss and
ℒℱadv(ℎ★), and it’s not clear how to efficiently minimize ℒℱadv(ℎ★).

6Some of our code is derived from the GitHub repositories https://github.com/MadryLab/backdoor_data_
poisoning and https://github.com/skmda37/Adversarial_Machine_Learning_Tensorflow.

241

https://github.com/narenmanoj/mnist-adv-training
https://github.com/MadryLab/backdoor_data_poisoning
https://github.com/MadryLab/backdoor_data_poisoning
https://github.com/skmda37/Adversarial_Machine_Learning_Tensorflow

induce a classification of 𝑡. The adversary is allowed to inject some number of examples into
the training set such that the resulting fraction of corrupted examples in the training set is at
most 𝛼.

We will experimentally demonstrate that the learner can use the intuition behind Theorem 25 to
either recover a reasonably robust classifier or detect the presence of significant corruptions in
the training set. Specifically, the learner can optimize a proxy for the robust loss via adversarial
training using ℓ∞ bounded adversarial examples, as done by [MMSTV17].

Instantiation of relevant problem parameters. Let ℋ be the set of neural networks with
architecture as shown in Table 6.1. Let 𝒳 be the set of images of handwritten digits; we
represent these as vectors in [0, 1]784. We define ℱadv as

{patch (𝒙) : ∥𝒙 − patch (𝒙)∥∞ ≤ 0.3 and patch (𝒙) − 𝒙 = pattern} ,

where pattern is the shape of the backdoor (we use an “X” shape in the top left corner of the
image, inspired by [TLM18]). We let the maximum ℓ∞ perturbation be at most 0.3 since this
parameter has been historically used in training and evaluating robust networks on MNIST (see
[MMSTV17]). In our setup, we demonstrate that these parameters suffice to yield a successful
backdoor attack on a vanilla training procedure (described in greater detail in a subsequent
paragraph).

Although it is not clear how to efficiently exactly calculate and minimize ℒℱadv(ℎ★), we will
approximate ℒℱadv(ℎ★) by calculating ℓ∞-perturbed adversarial examples using a Projected Gra-
dient Descent (PGD) attack. To minimize ℒℱadv(ℎ★), we use adversarial training as described
in [MMSTV17]. Generating Table 6.3 takes roughly 155 minutes using our implementation of
this procedure with TensorFlow 2.4.1 running on the GPU runtime freely available via Google
Colab. We list all our relevant optimization and other experimental parameters in Table 6.2.

Table 6.1.: Neural network architecture used in experiments. We implemented this architecture
using the Keras API of TensorFlow 2.4.1.

Layer Parameters

Conv2D filters=32, kernel_size=(3,3),activation=’relu’

MaxPooling2D pool_size=(2,2)

Conv2D filters=64,kernel_size=(3,3),activation=’relu’

Flatten

Dense units=1024,activation=’relu’

Dense units=10,activation=’softmax’

Optimization details. See Table 6.2 for all relevant hyperparameters and see Table 6.1 for the
architecture we use.

For the “Vanilla Training” procedure, we use no adversarial training and simply use our
optimizer to minimize our loss directly. For the “PGD-Adversarial Training” procedure, we
use adversarial training with a PGD adversary.

242

Table 6.2.: Experimental hyperparameters. We made no effort to optimize these hyperparam-
eters; indeed, many of these are simply the default arguments for the respective
TensorFlow functions.

Property Details

Epochs 2

Validation Split None

Batch Size 32

Loss Sparse Categorical Cross Entropy

Optimizer RMSProp (step size = 0.001, 𝜌 = 0.9, momentum = 0, 𝜀 = 10−7)

NumPy Random Seed 4321

TensorFlow Random Seed 1234

PGD Attack 𝜀 = 0.3, step size = 0.01, iterations = 40, restarts = 10

In our implementation of adversarial training, we compute adversarial examples for each image
in each batch using the PGD attack and we minimize our surrogate loss on this new batch. This
is sufficient to attain a classifier with estimated robust loss of around 0.08 on an uncorrupted
training set.

Goals and evaluation methods

We want to observe the impact of adding backdoor examples and the impact of running
adversarial training on varied values of 𝛼 (the fraction of the training set that is corrupted).

To do so, we fix a value for 𝛼 and a target label 𝑡 and inject enough backdoor examples such
that exactly an 𝛼 fraction of the resulting training set contains corrupted examples. Then,
we evaluate the train and test robust losses on the training set with and without adversarial
training to highlight the difference in robust loss observable to the learner. As sanity checks,
we also include binary losses and test set metrics. For the full set of metrics we collect, see
Table 6.3.

To avoid out-of-memory issues when computing the robust loss on the full training set (roughly
60000 training examples and their adversarial examples), we sample 5000 training set examples
uniformly at random from the full training set and compute the robust loss on these examples.
By Hoeffding’s Inequality [Ver18], this means that with probability 0.99 over the choice of the
subsampled training set, the difference between our reported statistic and its population value
is at most ∼ 0.02.

243

Results and discussion

Table 6.3.: Results with MNIST with a target label 𝑡 = 0 and backdoor pattern “X.” In each
cell, the top number represents the respective value when the network was trained
without any kind of robust training, and the bottom number represents the respective
value when the network was trained using adversarial training as per [MMSTV17].
For example, at 𝛼 = 0.05, for Vanilla Training, the training 0 − 1 loss is only 0.01, but
the training robust loss is 1.00, whereas for PGD-Adversarial Training, the training
0 − 1 loss is 0.07 and the training robust loss is 0.13. The Backdoor Success Rate is
our estimate of Pr

𝑥∼𝒟||𝑦≠𝑡
[patch (𝑥) = 𝑡], which may be less than the value of the robust

loss.

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.13 0.24 0.27 0.41

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.02 0.01

PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.09 0.11 0.10 0.19

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.01 0.00 0.05

See Table 6.3 for sample results from our trials. Over runs of the same experiment with varied
target labels 𝑡, we attain similar results; see Section 6.6.1 for the full results. We now discuss
the key takeaways from this numerical trial.

Training robust loss increases with 𝛼. Observe that our proxy for ℒℱadv(ℎ★)(ℎ̂ , 𝑆) increases as
𝛼 increases. This is consistent with the intuition from Theorem 25 in that a highly corrupted
training set is unlikely to have low robust loss. Hence, if the learner expects a reasonably low
robust loss and fails to observe this during training, then the learner can reject the training set,
particularly at high 𝛼.

Smaller 𝛼 and adversarial training defeats backdoor. On the other hand, notice that at
smaller values of 𝛼 (particularly 𝛼 ≤ 0.20), the learner can still recover a classifier with minimal
decrease in robust accuracy. Furthermore, there is not an appreciable decrease in natural accu-
racy either when using adversarial training on a minimally corrupted training set. Interestingly,
even at large 𝛼, the test-time robust loss and binary losses are not too high when adversarial
training was used. Furthermore, the test-time robust loss attained at 𝛼 > 0 is certainly better
than that obtained when adversarial training is not used, even at 𝛼 = 0. Hence, although the

244

practitioner cannot certify that the learned model is robust without a clean validation set, the
learned model does tend to be fairly robust.

Backdoor is successful with vanilla training. Finally, as a sanity check, notice that when
we use vanilla training, the backdoor trigger induces a targeted misclassification very reliably,
even at 𝛼 = 0.05. Furthermore, the training and testing error on clean data is very low, which
indicates that the learner would have failed to detect the fact that the model had been corrupted
had they checked only the training and testing errors before deployment.

Prior empirical work. The work of [BCFGGGGG21] empirically shows the power of data
augmentation in defending against backdoored training sets. Although their implementation
of data augmentation is different from ours7, their work still demonstrates that attempting to
minimize some proxy for the robust loss can lead to a classifier robust to backdoors at test time.
However, our evaluation also demonstrates that classifiers trained using adversarial training
can be robust against test-time adversarial attacks, in addition to being robust to train-time
backdoor attacks. Furthermore, our empirical results indicate that the train-time robust loss
can serve as a good indicator for whether a significant number of backdoors are in the training
set.

7Observe that our implementation of adversarial training can be seen as a form of adaptive data augmentation.

245

Results for all target labels

Here, we present tables of the form of Table 6.3 for all choices of target label 𝑡 ∈ {0, . . . , 9}.
Notice that the key takeaways remain the same across all target labels.

Table 6.4.: Results with MNIST with a target label 𝑡 = 0 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.13 0.24 0.27 0.41

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.02 0.01

PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.09 0.11 0.10 0.19

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.01 0.00 0.05

Table 6.5.: Results with MNIST with a target label 𝑡 = 1 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.23 0.32

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.12 0.23 0.32 0.38

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.02 0.03 0.04 0.05

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.08 0.11 0.13 0.14

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.00 0.02 0.03

246

Table 6.6.: Results with MNIST with a target label 𝑡 = 2 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.00

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.32

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.13 0.23 0.28 0.38

Testing 0 − 1 Loss
Vanilla Training 0.01 0.02 0.01 0.02 0.01

PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.05

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.09 0.10 0.10 0.14

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.00 0.01 0.04

Table 6.7.: Results with MNIST with a target label 𝑡 = 3 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.18 0.23 0.32

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.13 0.23 0.28 0.38

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.02 0.02

PGD-Adversarial Training 0.02 0.02 0.03 0.04 0.05

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.09 0.11 0.11 0.13

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.01 0.00 0.01 0.03

247

Table 6.8.: Results with MNIST with a target label 𝑡 = 4 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.32

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.13 0.24 0.27 0.42

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.02 0.03 0.03 0.05

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.09 0.11 0.10 0.15

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.04

Table 6.9.: Results with MNIST with a target label 𝑡 = 5 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.07 0.13 0.23 0.28 0.41

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.02 0.02

PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.09 0.11 0.10 0.16

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.05

248

Table 6.10.: Results with MNIST with a target label 𝑡 = 6 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.12 0.24 0.27 0.40

Testing 0 − 1 Loss
Vanilla Training 0.01 0.02 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.09 0.12 0.10 0.16

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.04

Table 6.11.: Results with MNIST with a target label 𝑡 = 7 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.18 0.22 0.32

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.07 0.12 0.25 0.29 0.39

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.02 0.01

PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.04

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.08 0.11 0.10 0.13

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.00 0.00 0.03

249

Table 6.12.: Results with MNIST with a target label 𝑡 = 8 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.32

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.14 0.23 0.28 0.41

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.05

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.09 0.11 0.10 0.17

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.05

Table 6.13.: Results with MNIST with a target label 𝑡 = 9 and backdoor pattern “X.”

𝛼 0.00 0.05 0.15 0.20 0.30

Training 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.08 0.13 0.23 0.29 0.43

Testing 0 − 1 Loss
Vanilla Training 0.01 0.01 0.01 0.01 0.01

PGD-Adversarial Training 0.02 0.03 0.03 0.04 0.06

Testing Robust Loss
Vanilla Training 1.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.09 0.10 0.11 0.11 0.20

Backdoor Success Rate
Vanilla Training 0.00 1.00 1.00 1.00 1.00

PGD-Adversarial Training 0.01 0.01 0.01 0.01 0.06

250

7. Spectral clustering in semirandom stochastic

block models

In this chapter, we study the robustness of spectral clustering algorithms under helpful model
misspecification. This chapter is based on joint work with Aditya Bhaskara, Agastya Vibhuti
Jha, Michael Kapralov, Davide Mazzali, and Weronika Wrzos-Kaminska [BJKMMW24].

7.1. Introduction

Graph partitioning or clustering is a fundamental unsupervised learning primitive. In a graph
partitioning problem, one seeks to identify clusters of vertices that are highly internally con-
nected and sparsely connected to the outside. This task is of particular significance when the
given graph presents a latent community structure. In this setting, the goal is to recover the
communities as accurately as possible. Various statistical models that attempt to capture this
situation have been proposed and studied in the literature. Perhaps the most popular of these
is the Symmetric Stochastic Block Model (SSBM) [HLL83].

Following the notation of previous works [AFWZ20; DLS21], in this chapter we describe an
SSBM with specifications 𝑛, 𝑃1 , 𝑃2 , 𝑝, 𝑞, where 𝑛 is an even positive integer, 𝑃1 and 𝑃2 are
a partitioning of the vertex set 𝑉 = {1, . . . , 𝑛} into subsets of equal size, and 𝑝 and 𝑞 are
probabilities. Without loss of generality, we may assume that the partitions 𝑃1 and 𝑃2 consist
of vertices 1, . . . , 𝑛/2 and 𝑛/2+ 1, . . . , 𝑛, respectively. Hence, with a mild abuse of notation, we
write an SSBM with parameters 𝑛, 𝑝, 𝑞 only and write it as SSBM(𝑛, 𝑝, 𝑞). Now, let SSBM(𝑛, 𝑝, 𝑞)
be a distribution over random undirected graphs 𝐺 = (𝑉, 𝐸) where each edge (𝑣, 𝑤) ∈ 𝑃1 × 𝑃1
and (𝑣, 𝑤) ∈ 𝑃2 × 𝑃2 (which we refer to as “internal edges”) appears independently with
probability 𝑝, and each edge (𝑣, 𝑤) ∈ 𝑃1 × 𝑃2 (which we refer to as “crossing edges”) appears
independently with probability 𝑞. When 𝑝 ≫ 𝑞, there should be many more internal edges
than crossing edges. Hence, we expect the community structure to become more evident as 𝑝
tends away from 𝑞.

In such scenarios, our general algorithmic goal is to efficiently identify 𝑃1 and 𝑃2 when given 𝐺
without any community labels. This task is hereafter referred to as the graph bisection problem.
In this work, we will be interested in exact recovery, also known as strong consistency, in which we
want an algorithm that, with probability at least 1 − 1/𝑛 over the randomness of the instance,
exactly returns the partition {𝑃1 , 𝑃2} for all 𝑛 sufficiently large. Other approximate notions of
recovery (such as almost exact, partial, and weak recovery) are also well-studied but are beyond
the scope of this work.

Although the SSBM(𝑛, 𝑝, 𝑞) distribution over graphs is a useful starting point for algorithm
design and has led to a deep theory about when recovery is possible and of what nature
[Abb18], it may not be representative of all scenarios in which we should expect our algorithms
to succeed. To remedy this, researchers have proposed several different random graph models

251

Algorithm 19 SpectralBisection: given 𝐺 = (𝑉, 𝐸), outputs a bipartition of 𝑉
1: procedure SpectralBisection(𝐺) ⊲ 𝐺 = (𝑉, 𝐸) is the input graph

2: M← Matrix(𝐺) ⊲ M ∈ R𝑉×𝑉 is a matrix with real eigenvalues

3: ((𝜆𝑖 , 𝒖 𝑖))𝑛𝑖=1 ← eigenvalue-eigenvector pairs of M with 𝜆1 ≤ · · · ≤ 𝜆𝑛 ⊲ 𝑛 = |𝑉 |
4: 𝑆← {𝑣 ∈ 𝑉 : 𝒖2[𝑣] < 0}
5: return {𝑆,𝑉 \ 𝑆}

that may be more reflective of properties satisfied by real-world networks. These include the
geometric block model [GNW24], the Gaussian mixture block model [LS24], and others.

In this chapter, we take a different perspective to graph generation by considering various
semirandom models. At a high level, a semirandom model for a statistical problem interpolates
between an average-case input (for example produced by a model such as the SSBM) and a
worst-case input, in a way that still allows for a meaningful notion of ground-truth solution. In
our context of graph bisection, this can be achieved by an adversary adding internal edges or by
the distribution of internal edges itself being nonhomogeneous (i.e., every internal edge (𝑣, 𝑤)
appears independently with probability 𝑝𝑣𝑤 ≥ 𝑝, where the 𝑝𝑣𝑤 may be chosen adversarially for
each internal edge). Researchers have studied similar semirandom models for graph bisection
[FK01; MMV12; MPW16b; Moi21a; CdM24] and other statistical problems such as classification
under Massart noise [MN06b], detecting a planted clique in a random graph [FK01; CSV17;
MMT20; BKS23], sparse recovery [KLLST23], and top-𝐾 ranking [YCOM24].

These modeling modifications are not necessarily meant to capture a real-world data generation
process. Rather, they are a useful testbed with which we can determine whether commonly
used algorithms have overfit to statistical assumptions present in the model. In particular,
observe that these changes in model specification are ostensibly helpful, in that increasing the
number of internal edges should only enhance the community structure. Perhaps surprisingly,
it is known that a number of natural algorithms that succeed in the SSBM setting no longer work
under such helpful modifications [Moi21a]. Therefore, it is natural to ask which algorithms for
graph bisection are robust in semirandom models.

At this point, the performance of approaches based on convex programming is well-understood
in various semirandom models [FK01; MMV12; MPW16b; Moi21a; CdM24]. However, in
practice, it is impractical to run such an algorithm due to computational costs. Another class of
algorithms, that we call spectral algorithms, is more widely used in practice. Loosely speaking,
a spectral algorithm constructs a matrix M that is a function of the graph 𝐺 and outputs
a clustering arising from the embedding of the vertices determined by the eigenvectors of
M. Popular choices of matrices include the unnormalized Laplacian L𝐺 and the normalized
Laplacian ℒ𝐺 (we will formally define and intuit these notions in the sequel) [Von07]. This
is because structural properties of both L𝐺 and ℒ𝐺 imply that the second smallest eigenvalue
of each, denoted as 𝜆2(L𝐺) and 𝜆2(ℒ𝐺), serves as a continuous proxy for connectivity, and
the corresponding eigenvector, 𝒖2(L𝐺) and 𝒖2(ℒ𝐺), has entries whose signs reveal a lot of
information about the underlying community structure. This motivates Algorithm 19. It can
be run, for example, with Matrix(𝐺) B L𝐺 or Matrix(𝐺) B ℒ𝐺. Following this discussion, we
arrive at the question we study in this chapter.

Question 1. Under which semirandom models do the Laplacian-based spectral algorithms, using the

second eigenvector of L𝐺 or ℒ𝐺, exactly recover the ground-truth communities 𝑃1 and 𝑃2?

Main contributions. Our results show a surprising difference in the robustness of spectral

252

bisection when considering the normalized versus the unnormalized Laplacian. We summarize
our results below:

• Consider a nonhomogeneous symmetric stochastic block model with parameters 𝑞 <
𝑝 < 𝑝, where every internal edge appears independently with probability 𝑝𝑢𝑣 ∈ [𝑝, 𝑝]
and every crossing edge appears independently with probability 𝑞. We show that under
an appropriate spectral gap condition, the spectral algorithm with the unnormalized
Laplacian exactly recovers the communities 𝑃1 and 𝑃2. Moreover, this holds even if an
adversary plants≪ 𝑛𝑝 internal edges per vertex prior to the edge sampling phase.

• Consider a stronger semirandom model where the subgraphs on the two communities 𝑃1
and 𝑃2 are adversarially chosen and the crossing edges are sampled independently with
probability 𝑞. We show that if the graph is sufficiently dense and satisfies a spectral gap
condition, then the spectral algorithm with the unnormalized Laplacian exactly recovers
the communities 𝑃1 and 𝑃2.

• We show that there is a family of instances from a nonhomogeneous symmetric stochastic
block model in which the spectral algorithm achieves exact recovery with the unnormal-
ized Laplacian, but incurs a constant error rate with the normalized Laplacian. This is
surprising because it contradicts conventional wisdom that normalized spectral cluster-
ing should be favored over unnormalized spectral clustering [Von07].

We also numerically complement our findings via experiments on various parameter settings.

Outline. The rest of this chapter is organized as follows. In Section 7.2, we more formally
define our semirandom models, the Laplacians L and ℒ, and formally state our results. In
Section 7.3, we give sketches of the proofs of our results. In Section 7.4, we show results
from numerical trials suggested by our theory. In Sections 7.5.1 and 7.5.5 we prove important
auxiliary lemmas we need for our results. In Section 7.5.6, we prove our robustness results
for the unnormalized Laplacian. In Section 7.5.8, we prove our inconsistency result for the
normalized Laplacian. In Section 7.6, we give additional numerical trials and discussion.

7.2. Models and main results

In this chapter, we study unnormalized and normalized spectral clustering in several semiran-
dom SSBMs. These models permit a richer family of graphs than the SSBM alone.

Matrices related to graphs. Throughout this chapter, all graphs are to be interpreted as
being undirected, and we assume that the vertices of an 𝑛-vertex graph coincide with the set
{1, . . . , 𝑛}. With this in mind, we begin with defining various matrices associated with graphs,
building up to the unnormalized and normalized Laplacians, which are central to the family
of algorithms we analyze (Algorithm 19).

Definition 7.2.1 (Adjacency matrix). Let 𝐺 = (𝑉, 𝐸) be a graph. The adjacency matrix A𝐺 ∈ R𝑉×𝑉
of 𝐺 is the matrix with entries defined as A𝐺[𝑣, 𝑤] = 1 {(𝑣, 𝑤) ∈ 𝐸}.

Definition 7.2.2 (Degree matrix). Let 𝐺 = (𝑉, 𝐸) be a graph. The degree matrix D𝐺 ∈ R𝑉×𝑉 of 𝐺 is

the diagonal matrix with entries defined as D𝐺[𝑣, 𝑣] = 𝒅𝐺[𝑣], where 𝒅𝐺[𝑣] is the degree of 𝑣.

253

Definition 7.2.3 (Unnormalized Laplacian). Let𝐺 = (𝑉, 𝐸) be a graph. The unnormalized Laplacian

L𝐺 ∈ R𝑉×𝑉 of 𝐺 is the matrix defined as L𝐺 B D𝐺 −A𝐺 =
∑
(𝑣,𝑤)∈𝐸(𝒆𝑣 − 𝒆𝑤)(𝒆𝑣 − 𝒆𝑤)⊤, where 𝒆 𝑖

denotes the 𝑖-th standard basis vector.

Definition 7.2.4 (Normalized Laplacians). Let 𝐺 = (𝑉, 𝐸) be a graph. The symmetric normalized

Laplacian ℒ𝐺,sym ∈ R𝑉×𝑉 and the random walk Laplacian ℒ𝐺,rw ∈ R𝑉×𝑉 of 𝐺 are defined as

ℒ𝐺,sym B I −D−1/2
𝐺

A𝐺D−1/2
𝐺

, ℒ𝐺,rw B I −D−1
𝐺 A𝐺 .

For all notions above, when the graph 𝐺 is clear from context, we omit the subscript 𝐺.
Furthermore, when we discuss normalized Laplacians, we intend its symmetric version ℒsym
unless otherwise stated. So, we omit this subscript as well and simply write ℒ.

Next, we define the spectral bisection algorithms. We will discuss some intuition for why these
algorithms are reasonable heuristics in Section 7.3.

Definition 7.2.5 (Unnormalized and normalized spectral bisection). Let 𝐺 = (𝑉, 𝐸) be a graph,

and let its unnormalized and normalized Laplacians be L and ℒ, respectively. We refer to the algorithm

resulting from running Algorithm 19 on 𝐺 with Matrix(𝐺) B L𝐺 as unnormalized spectral bisec-
tion. We refer to the algorithm resulting from running Algorithm 19 on 𝐺 with Matrix(𝐺) = ℒ𝐺 as

normalized spectral bisection.

Our goal is to understand when the above algorithms, applied to a graph with a latent com-
munity structure, achieve exact recovery or strong consistency, defined as follows.

Definition 7.2.6. Let {𝑃1 , 𝑃2} be a partitioning of 𝑉 = {1, . . . , 𝑛}, and let 𝒟 B 𝒟({𝑃1 , 𝑃2}) be

a distribution over 𝑛-vertex graphs 𝐺 = (𝑉, 𝐸). We say that an algorithm is strongly consistent or

achieves exact recovery on𝒟 if given a graph 𝐺 ∼ 𝒟 it outputs the correct partitioning {𝑃1 , 𝑃2} with

probability at least 1 − 1/𝑛 over the randomness of 𝐺.

7.2.1. Nonhomogeneous symmetric stochastic block model

Our first model is a family of nonhomogeneous symmetric stochastic block models, defined
below.

Model 7.1 (Nonhomogeneous symmetric stochastic block model). Let 𝑛 be an even positive
integer, 𝑉 = {1, . . . , 𝑛}, {𝑃1 , 𝑃2} be a partitioning of 𝑉 into two equally-sized subsets, and
𝑞 < 𝑝 ≤ 𝑝 be probabilities. Let 𝒟 be any probability distribution over graphs 𝐺 = (𝑉, 𝐸) such
that for every (𝑣, 𝑤) ∈ 𝑃1 × 𝑃1 and (𝑣, 𝑤) ∈ 𝑃2 × 𝑃2, the edge (𝑣, 𝑤) appears in 𝐸 independently
with some probability 𝑝𝑣𝑤 ∈ [𝑝, 𝑝], and for every (𝑣, 𝑤) ∈ 𝑃1 × 𝑃2, the edge (𝑣, 𝑤) appears in
𝐸 independently with probability 𝑞. We call such 𝒟 a nonhomogeneous symmetric stochastic
block model (which we will abbreviate as NSSBM). We call the set of all such 𝒟 the family of
nonhomogeneous stochastic block models with parameters 𝑝, 𝑝, 𝑞, written as NSSBM(𝑛, 𝑝, 𝑝, 𝑞).

To visualize Model 7.1, consider the expected adjacency matrix of some NSSBM distribution.
We then have the relations

𝑝 · J𝑛/2 𝑞 · J𝑛/2
𝑞 · J𝑛/2 𝑝 · J𝑛/2

 ≤

P𝑃1 𝑞 · J𝑛/2
𝑞 · J𝑛/2 P𝑃2

 ≤

𝑝 · J𝑛/2 𝑞 · J𝑛/2
𝑞 · J𝑛/2 𝑝 · J𝑛/2

 ,
254

where the leftmost matrix denotes the expected adjacency matrix of SSBM(𝑛, 𝑝, 𝑞), the right-
most matrix denotes the expected adjacency matrix of SSBM(𝑛, 𝑝, 𝑞), J𝑘 denotes the 𝑘 × 𝑘
all-ones matrix, and P𝑃1 and P𝑃2 denote the edge probability matrices for edges internal to 𝑃1
and 𝑃2, respectively.

The above also shows that the rank of the expected adjacency matrix for SSBM(𝑛, 𝑝, 𝑞) is 2.
However, the rank for the expected adjacency matrix for some NSSBM distribution may be as
large as Ω(𝑛). Perhaps surprisingly, this will turn out to be unimportant for our entrywise
eigenvector perturbation analysis. In particular, the tools we use were originally designed for
low-rank signal matrices or spiked low-rank signal matrices [AFWZ20; DLS21; BV24], but we
will see that they can be adapted to the signal matrices we consider.

The NSSBM family generalizes the symmetric stochastic block model described in the previous
section – this is attained by setting 𝑝𝑣𝑤 = 𝑝 for all internal edges (𝑣, 𝑤). However, it can also
encode biases for certain graph properties. For instance, a distribution from the NSSBM family
may encode the idea that certain subsets of 𝑃1 are expected to be denser than 𝑃1 as a whole.

With this definition in hand, we are ready to formally state our first technical result in Theo-
rem 29.

Theorem 29. Let 𝑝, 𝑝, 𝑞 be probabilities such that 𝑞 < 𝑝 ≤ 𝑝 and such that 𝛼 B 𝑝/(𝑝 − 𝑞) is an

arbitrary constant. Let𝒟 ∈ NSSBM(𝑛, 𝑝, 𝑝, 𝑞). Let 𝑛 ≥ 𝑁(𝛼) where the function 𝑁(𝛼) only depends

on 𝛼. There exists a universal constant 𝐶 > 0 such that if

𝑛(𝑝 − 𝑞) ≥ 𝐶
(√
𝑛𝑝 log 𝑛 + log 𝑛

)
, (gap condition)

then unnormalized spectral bisection is strongly consistent on𝒟.

We prove Theorem 29 in Section 7.5.7. In fact, we show a somewhat stronger statement – in
addition to the process described above, we also allow the adversary to, before sampling the
graph, set a small number of the 𝑝𝑣𝑤 to 1 (at most 𝑛𝑝/log log 𝑛 edges per vertex). We detail this
further in Section 7.5.7.

We now remark on the tightness of our gap condition in Theorem 29. A work of Abbe, Ban-
deira, and Hall [ABH16] identifies an exact information-theoretic threshold above which exact
recovery with high probability is possible and below which no algorithm can be strongly con-
sistent. In particular, the threshold states that for any 𝑝 and 𝑞 satisfying √𝑝 − √𝑞 >

√
2 log 𝑛/𝑛,

exact recovery is possible, and when 𝑝 and 𝑞 do not satisfy this, exact recovery is information-
theoretically impossible. Furthermore, Feige and Kilian [FK01] prove that the information-
theoretic threshold does not change in a somewhat stronger semirandom model that includes
the NSSBM family. Additionally, Deng, Ling, and Strohmer [DLS21] show that unnormalized
spectral bisection is strongly consistent all the way to this threshold in the special case where
the graph is drawn from SSBM(𝑛, 𝑝, 𝑞). By contrast, our gap condition holds in the same
critical degree regime as in the information-theoretic threshold (namely, 𝑝 = Θ(log 𝑛/𝑛)) but
our constant is not optimal. We incur this constant loss because for the sake of presentation, we
opt for a cleaner argument that can handle the nonhomogeneity and generalizes more readily
across degree regimes. To our knowledge, none of these features are present in prior work
analyzing spectral methods in an SSBM setting [AFWZ20; DLS21].

255

7.2.2. Deterministic clusters model

Given Theorem 29, it is natural to ask what happens if we allow the adversary full control over
the structure of the graphs in 𝑃1 and 𝑃2 instead of simply allowing the adversary to perturb the
edge probabilities. In this section, we answer this question. We first describe a more adversarial
semirandom model than the NSSBM family. We call this model the deterministic clusters model,
defined as follows.

Model 7.2 (Deterministic clusters model). Let 𝑛 be an even positive integer, 𝑉 = {1, . . . , 𝑛},
{𝑃1 , 𝑃2} be a partitioning of 𝑉 into two equally-sized subsets, 𝑞 be a probability, and 𝑑in be an
integer degree lower bound. Consider a graph 𝐺 = (𝑉, 𝐸) generated according to the following
process.

1. The adversary chooses arbitrarily graphs 𝐺[𝑃1] and 𝐺[𝑃2]with minimum degree 𝑑in;

2. Nature samples every edge (𝑣, 𝑤) ∈ 𝑃1 × 𝑃2 to be in 𝐸 independently with probability 𝑞.

3. The adversary arbitrarily adds edges (𝑣, 𝑤) ∈ 𝑃1 × 𝑃1 and (𝑣, 𝑤) ∈ 𝑃2 × 𝑃2 to 𝐸 after
observing the edges sampled by nature.

We call a distribution 𝒟 of graphs generated according to the above process a deterministic
clusters model (DCM). We call the set of all such𝒟 the family of deterministic clusters models
with parameters 𝑑in and 𝑞, written as DCM(𝑛, 𝑑in , 𝑞).

The DCM graph generation process is heavily motivated by the one studied by Makarychev,
Makarychev, and Vĳayaraghavan [MMV12]. This model is much more flexible than the SSBM
and NSSBM settings in that the graphs the adversary draws on 𝑃1 and 𝑃2 are allowed to look
very far from random graphs. This means the DCM is a particularly good benchmark for
algorithms to ensure they are not implicitly using properties of random graphs that might not
hold in the worst case.

Within the DCM setting, we have Theorem 30.

Theorem 30. Let 𝑞 be a probability and 𝑑in be an integer, and let 𝒟 ∈ DCM(𝑛, 𝑑in , 𝑞). For 𝐺 ∼ 𝒟,

let L̂ denote the expectation of L after step (2) but before step (3) in Model 7.2. There exists constants

𝐶1 , 𝐶2 , 𝐶3 > 0 such that for all 𝑛 sufficiently large, if

𝑑in ≥ 𝐶1 ·
(𝑛𝑞

2 +
√
𝑛
)

and 𝜆3(L̂) − 𝜆2(L̂) ≥
√
𝑛 + 𝐶2𝑛𝑞 + 𝐶3

(√
𝑛𝑞 log 𝑛 + log 𝑛

)
,

then unnormalized spectral bisection is strongly consistent on𝒟.

We prove Theorem 30 in Section 7.5.7. We remark that, as in Theorem 29, the constants that
appear in Theorem 30 are somewhat arbitrary. They are chosen to make our proofs cleaner and
can likely be optimized.

As a basic application of Theorem 30, note that in the SSBM, if 𝑝 = 𝜔(1/
√
𝑛) and 𝑞 = 1/

√
𝑛,

then for 𝑛 sufficiently large, with high probability, the resulting graph satisfies the conditions
needed to apply Theorem 30. For a more interesting example, let 𝑃1 and 𝑃2 be two 𝑑-regular
spectral expanders with 𝑑 = 𝜔(

√
𝑛) and let 𝑞 ≤ 1/

√
𝑛. On top of both of these two graph classes,

one can further allow arbitrary edge insertions inside 𝑃1 and 𝑃2 while still being guaranteed
exact recovery from unnormalized spectral bisection.

256

7.2.3. Inconsistency of normalized spectral clustering

Notice that in Theorem 29 and Theorem 30, we only address the strong consistency of the
unnormalized Laplacian in our nonhomogeneous and semirandom models. But what happens
when we run spectral bisection with the normalized Laplacian?

In Theorem 31, we prove that there is a subfamily of instances belonging to NSSBM(𝑛, 𝑝, 𝑝, 𝑞)
with 𝑝 = 6𝑝, 𝑞 = 𝑝/2 on which unnormalized spectral bisection is strongly consistent (following
from Theorem 29) but normalized spectral clustering is inconsistent in a rather strong sense.
Thus, one cannot obtain results similar to Theorem 29 and Theorem 30 for normalized spectral
bisection.

Theorem 31. For all 𝑛 sufficiently large, there exists a nonhomogeneous stochastic block model such

that unnormalized spectral bisection is strongly consistent whereas normalized spectral bisection (both

symmetric and random-walk) incurs a misclassification rate of at least 24% with probability 1 − 1/𝑛.

We prove Theorem 31 in Section 7.5.8. Furthermore, we expect that it is straightforward to
adapt the example in Theorem 31 to prove an analogous result for our DCM setting.

The result of Theorem 31 may run counter to conventional wisdom, which suggests that nor-
malized spectral clustering should be favored over the unnormalized variant [Von07]. Perhaps
a more nuanced view in light of Theorem 29 and Theorem 30 is that that the normalized
Laplacian and its eigenvectors enjoy stronger concentration guarantees [SB15; DLS21], but the
unnormalized Laplacian’s second eigenvector is more robust to monotone adversarial changes.

7.2.4. Open problems

Perhaps the most natural follow-up question inspired by our results is to determine whether
the restriction that every internal edge probability 𝑝𝑣𝑤 ≤ 𝑝 can be lifted entirely while still
maintaining strong consistency of the unnormalized Laplacian (Theorem 30). Another exciting
direction for future work is to lower the degree and/or spectral gap requirement present in
our results in the DCM setting (Theorem 30). Finally, we only study insertion-only monotone
adversaries, as crossing edge deletions change the second eigenvector of the expected Laplacian.
It would be illuminating to understand the robustness of Laplacian-based spectral algorithms
against a monotone adversary that is also allowed to delete crossing edges. We are optimistic
that the answers to one or more of these questions will further improve our understanding of
the robustness of spectral clustering to “helpful” model misspecification.

7.3. Analysis sketch

First, let us give some intuition as to why one may expect that unnormalized spectral bisection
is robust against our monotone adversaries. Here and in the sequel, let 𝒖★2 = [1𝑛/2⊕−1𝑛/2]/

√
𝑛,

where 1𝑘 denotes the all-1s vector in 𝑘 dimensions and ⊕ denotes vector concatenation. Let L
be the unnormalized Laplacian of the graph we want to partition, L★ B E [L], E B L− L★, and
𝜆★
𝑖
B 𝜆𝑖(L★) for 1 ≤ 𝑖 ≤ 𝑛. For an edge (𝑣, 𝑤), let 𝒆𝑣𝑤 B 𝒆𝑣− 𝒆𝑤 , so that 𝒆𝑣𝑤 is an edge incidence

vector corresponding to the edge (𝑣, 𝑤). Let 𝑝𝑣𝑤 be the probability that the edge (𝑣, 𝑤) appears

257

in 𝐺 and observe that L★ can be written as

L★ =
∑

(𝑣,𝑤)∈𝐸internal

𝑝𝑣𝑤 · 𝒆𝑣𝑤𝒆𝑇𝑣𝑤 +
∑

(𝑣,𝑤)∈𝐸crossing

𝑞 · 𝒆𝑣𝑤𝒆𝑇𝑣𝑤 ,

where 𝐸internal = (𝑃1 × 𝑃1) ∪ (𝑃2 × 𝑃2) and 𝐸crossing = 𝑃1 × 𝑃2. We can verify that 𝒖★2 is an
eigenvector of L★ – indeed, we do so in Lemma 7.5.14. And, for now, assume that 𝒖★2 does
correspond to the second smallest eigenvalue of L★ (in our NSSBM family, this is easily ensured
by enforcing 𝑝 > 𝑞). Moreover, for every internal edge (𝑣, 𝑤) ∈ 𝐸internal, we have

〈
𝒆𝑣𝑤 , 𝒖★2

〉
= 0.

Hence, any changes in internal edges do not change the fact that 𝒖★2 is an eigenvector of the
perturbed matrix. Thus, if the sampled L is close enough to L★, then it is plausible that the
second eigenvector of L, denoted as 𝒖2, is pretty close to 𝒖★2 . In fact, the following conceptually
stronger statement holds. If the subgraph formed by selecting just the crossing edges of 𝐺 is
regular, then 𝒖★2 is an eigenvector of L. This follows from the fact that 𝒖★2 is an eigenvector of
the unnormalized Laplacian of any regular bipartite graph where both sides have size 𝑛/2 and
the previous observation that every internal edge is orthogonal to 𝒖★2 .

To make this perturbation idea more formal, we recall the Davis-Kahan Theorem. Loosely,
it states that

𝒖2 − 𝒖★2

2 ≲
(L − L★)𝒖★2

2 /(𝜆

★
3 − 𝜆★

2) (we give a more formal statement in
Lemma 7.5.15). Expanding the entrywise absolute value

��(L − L★)𝒖★2
�� reveals that its entries

can be expressed as 2 |𝒅out[𝑣] − E [𝒅out[𝑣]]| /
√
𝑛, where 𝒅out[𝑣] denotes the number of edges

incident to 𝑣 crossing to the opposite community as 𝑣. This is unaffected by any increase in
the number of edges incident to 𝑣 that stay within the same community as 𝑣, denoted as 𝒅in[𝑣].
Hence, regardless of how many internal edges we add before sampling or what substructures
they encourage/create, if we have 𝜆★

2 ≪ 𝜆★
3 , then we get

𝒖2 − 𝒖★2

2 ≤ 𝑜(1). This immediately
implies that 𝒖2 is a correct classifier on all but an 𝑜(1) fraction of the vertices.

Entrywise analysis of 𝒖2 and NSSBM strong consistency. In order to achieve strong consis-
tency, we need that for all 𝑛 sufficiently large, 𝒖2 is a perfect classifier. Unfortunately, the above
argument does not immediately give that. In particular, in the density and spectral gap regimes
we consider, the bound of 𝑜(1) yielded by the Davis-Kahan theorem is not sufficiently small to
directly yield

𝒖★2 − 𝒖2

2 ≪ 1/
√
𝑛. Instead, we carry out an entrywise analysis of 𝒖2. A general

framework for doing so is given by Abbe, Fan, Wang, and Zhong [AFWZ20] and is adapted to
the unnormalized and normalized Laplacians by Deng, Ling, and Strohmer [DLS21].

At a high level, we adapt the analysis of Deng, Ling, and Strohmer [DLS21] to our setting. We
consider the intermediate estimator vector (D − 𝜆2I)−1 A𝒖★2 . This is a natural choice because
we can verify (D − 𝜆2I)−1A𝒖2 = 𝒖2. We will see that it is enough to show that this interme-
diate estimator correctly classifies all the vertices while satisfying |(D − 𝜆2I)−1A(𝒖★2 − 𝒖2)| ≤
| (D − 𝜆2I)−1 A𝒖★2 | (again, the absolute value is taken entrywise). With this in mind, taking
some entry indexed by 𝑣 ∈ 𝑉 and multiplying both sides by 𝒅[𝑣] − 𝜆2 (which we will show is
positive with high probability), we see that it is enough to show��〈𝒂𝑣 , 𝒖★2 − 𝒖2

〉�� ≤ ��〈𝒂𝑣 , 𝒖★2 〉�� = |𝒅in[𝑣] − 𝒅out[𝑣]|√
𝑛

, (7.3.1)

where 𝒂𝑣 denotes the 𝑣-th row of A. The advantage of this rewrite is that the right hand side
can be uniformly bounded, so it is enough to control the left hand side.

To argue about the left hand side of (7.3.1), it may be tempting to use the fact that 𝒂𝑣 is a
Bernoulli random vector and use Bernstein’s inequality to argue about the sum of rescalings
of these Bernoulli random variables. Unfortunately, we cannot do this since 𝒖2 and 𝒂𝑣 are
dependent. To resolve this, we use a leave-one-out trick [AFWZ20; BV24]. We can think of this

258

𝐿1 𝐿2 𝑅

𝐿1 𝐾𝑝 · 1𝑛/4×𝑛/4 𝑝 · 1𝑛/4×𝑛/4
𝑞 · 1𝑛/2×𝑛/2

𝐿2 𝑝 · 1𝑛/4×𝑛/4 𝐾𝑝 · 1𝑛/4×𝑛/4

𝑅 𝑞 · 1𝑛/2×𝑛/2 𝑝 · 1𝑛/2×𝑛/2

Table 7.1.: A★ for Theorem 31 is defined to have the above block structure.

as leaving out the vertex 𝑣 corresponding to the entry we want to analyze and sampling the
edges incident to the rest of the vertices. The second eigenvector of the resulting L(𝑣), denoted
as 𝒖(𝑣)2 , is a very good proxy for 𝒖2 and is independent from 𝒂𝑣 . Hence, we may complete the
proof of Theorem 29.

One of our main observations is that although this style of analysis was originally built for
low-rank signal matrices [AFWZ20; BV24], it can be adapted to handle the nonhomogeneity
inside 𝑃1 and 𝑃2. In particular, the nonhomogeneity we permit in the NSSBM family may make
L★ look very far from a spiked low-rank signal matrix. Furthermore, our entrywise analysis
of eigenvectors under perturbations is one of the first that we are aware of that moves beyond
analyzing low-rank signal matrices or spiked low-rank signal matrices.

Extension to deterministic clusters. To prove Theorem 30, we start again at (7.3.1). An
alternate way to upper bound the left hand side is to use the Cauchy-Schwarz inequality. A
variant of the Davis-Kahan theorem gives us control over

𝒖2 − 𝒖★2

2 while ∥𝒂𝑣 ∥2 =
√
𝒅[𝑣]. The

advantage of this is that we get a worst-case upper bound on the left hand side of (7.3.1) – it
holds no matter what edges orthogonal to 𝒖★2 are inserted before or after nature samples the
crossing edges (which are precisely the internal edges). Combining these and using the fact that
the right hand side of (7.3.1) is increasing in 𝒅in[𝑣] (and increases faster than ∥𝒂𝑣 ∥2 =

√
𝒅[𝑣])

allows us to complete the proof of Theorem 30.

Inconsistency of normalized spectral bisection. Finally, we describe the family of hard
instances we use to prove Theorem 31. To motivate this family of instances, recall that by
the graph version of Cheeger’s inequality, the second eigenvalue of ℒ and the corresponding
eigenvector can be used to find a sparse cut in 𝐺. Thus, if we create sparse cuts inside 𝑃1
that are sparser than the cut formed by separating 𝑃1 and 𝑃2, then conceivably the normalized
Laplacian’s second eigenvector may return the new sparser cut.

To make this formal, consider the following graph structure. Let 𝑛 be a multiple of 4. Let
𝐿1 consist of indices 1, . . . , 𝑛/4, 𝐿2 consist of indices 𝑛/4 + 1, . . . , 𝑛/2, and 𝑅 consist of indices
𝑛/2 + 1, . . . , 𝑛. Consider the block structure induced by the matrix A★ = E [A] shown in
Table 7.1.

Intuitively, as 𝐾 gets larger, the cut separating 𝐿1 from𝑉 \ 𝐿1 becomes sparser. From Cheeger’s
inequality, this witnesses a small 𝜆2(ℒ) and therefore the corresponding 𝒖2(ℒ)may return the
cut 𝐿1 , 𝑉 \ 𝐿1. We formally prove that this is indeed what happens when 𝐾 is a sufficiently
large constant and then Theorem 31 follows.

259

7.4. Numerical trials

We programmatically generate synthetic graphs that help illustrate our theoretical findings
using the libraries NetworkX 3.3 (BSD 3-Clause license), SciPy 1.13.0 (BSD 3-Clause License),
and NumPy 1.26.4 (modified BSD license) [HSS08; VGO+20; HMvdW+20]. We ran all our
experiments on a free Google Colab instance with the CPU runtime, and each experiment takes
under one hour to run. In this section we focus on a setting that allows relating Theorem 29
and Theorem 31, and defer more experiments that investigate both NSSBM and DCM graphs
to Section 7.6.

To put Theorem 29 and Theorem 31 in perspective, we consider graphs generated following
the process outlined in the proof of Theorem 31, which gives rise to the following benchmark
distribution.

Benchmark distribution. Let 𝑛 be divisible by 4 and let {𝑃1 , 𝑃−2} be a partitioning of𝑉 = [𝑛]
into two equally-sized subsets. Let {𝐿1 , 𝐿2} be a bipartition of 𝑃1 such that |𝐿1 | = |𝐿2 | = 𝑛/4
and call 𝐿 = 𝑃1 , 𝑅 = 𝑃2 for convenience as in the proof of Theorem 31. Then, for some
𝑝, 𝑝, 𝑞 ∈ [0, 1] such that 𝑞 ≤ 𝑝 ≤ 𝑝, consider the distribution 𝒟𝑝,𝑝,𝑞 over graphs 𝐺 = (𝑉, 𝐸)
obtained by sampling every edge (𝑢, 𝑣) ∈ (𝐿1 × 𝐿1) ∪ (𝐿2 × 𝐿2) independently with probability
𝑝, every edge (𝑢, 𝑣) ∈ (𝐿1 × 𝐿2) ∪ (𝑅 × 𝑅) independently with probability 𝑝, and every edge
(𝑢, 𝑣) ∈ 𝐿 × 𝑅 independently with probability 𝑞. One can see that 𝒟𝑝,𝑝,𝑞 is in fact in the set
NSSBM(𝑛, 𝑝, 𝑝, 𝑞).

Setup. Let us fix 𝑛 = 2000, 𝑝 = 24 log 𝑛/𝑛, 𝑞 = 8 log 𝑛/𝑛. For varying values of 𝑝 in the range
[𝑝, 1], we sample 𝑡 = 10 independent draws 𝐺 from 𝒟𝑝,𝑝,𝑞 . For each of them, we run spectral
bisection (i.e. Algorithm 19) with matrices L,ℒsym ,ℒrw ,A. Then, we compute the agreement

of the bipartition hence obtained (with respect to the planted bisection), that is the fraction of
correctly classified vertices. We average the agreement across the 𝑡 independent draws. The
results are shown in the top left plot of Fig. 7.1. Another natural way to get a bipartition of
𝑉 from the eigenvector is a sweep cut. In a sweep cut, we sort the entries of 𝒖2 and take the
vertices corresponding to the smallest 𝑛/2 entries to be on one side of the bisection and put the
remaining on the other side. The average agreement obtained in this other fashion is shown
in the bottom left plot of Fig. 7.1. Theoretical framing. As per Theorem 29, we expect
unnormalized spectral bisection to achieve exact recovery (i.e. agreement equal to 1) whenever
𝑝 ≤ 𝑝max, where

𝑝max =
(𝑛(𝑝 − 𝑞) − log 𝑛)2

𝑛 log 𝑛 (7.4.1)

is obtained by rearranging the precondition of Theorem 29, ignoring the constants and disre-
garding the fact that 𝛼 should be 𝑂(1). On the contrary, the proof of Theorem 31 shows that
normalized spectral bisection misclassifies a constant fraction of vertices provided that 𝑝/𝑞 ≥ 2
(which our choice of parameters satisfies) and 𝑝 ≥ 𝑝thr, where

𝑝thr = 3 · 𝑝2/𝑞 . (7.4.2)

In Fig. 7.1, the solid vertical line corresponds to the value of 𝑝thr on the 𝑥-axis, and the dashed
vertical line corresponds to the value of 𝑝max on the 𝑥-axis. In particular, observe that in our
setting 𝑝thr < 𝑝max, so there is an interval of values for 𝑝 where we expect Theorem 29 and
Theorem 31 to apply simultaneously.

Empirical evidence: consistency. One can see from the top left plot in Fig. 7.1 that the
agreement of unnormalized spectral bisection is 100% for all values of 𝑝, even beyond 𝑝thr and
𝑝max. On the other hand, the agreement of the bipartition obtained from all other matrices

260

(hence including normalized spectral bisection) drops below 70% well before the threshold 𝑝thr
predicted by Theorem 31. From the right plot in Fig. 7.1, we see that computing the bipartition
by taking a sweep cut of 𝑛/2 vertices does not change the results – 𝒖2 of the unnormalized
Laplacian continues to achieve 100% agreement, while for all other matrices the corresponding
𝒖2 remains inconsistent.

Empirical evidence: embedding variance. From the setting of the experiment we just
illustrated, observe that as we increase 𝑝, we expect the subgraph 𝐺[𝐿] to have increasing
volume. As illustrated in Fig. 7.1, this seems to correlate with a decrease in the “variance”
of the second eigenvector 𝒖2 of the unnormalized Laplacian with respect to the ideal second
eigenvector 𝒖★2 . More precisely, we compute the average distance squared of the embedding of
a vertex in 𝒖2 from its ideal embedding in 𝒖★2 , i.e. the quantity

min
𝑠∈{±1}

1
𝑛

𝒖2 − 𝑠 · 𝒖★2
2

2 . (7.4.3)

This suggests that not only does the second eigenvector of the unnormalized Laplacian remain
robust to monotone adversaries, but it actually concentrates more strongly around the ideal
embedding 𝒖★2 .

Empirical evidence: example embedding. Let us fix the value 𝑝 = 𝑝thr, for which we see in
Fig. 7.3 that all matrices except the unnormalized Laplacian fail to recover the planted bisection.
We generate a graph from 𝒟𝑝,𝑝,𝑞 , and plot how the vertices are embedded in the real line by
the second eigenvector of all the matrices we consider. The result is shown in Fig. 7.1, where
the three horizontal dashed lines, from top to bottom, respectively correspond to the value of
1/
√
𝑛, 0,−1/

√
𝑛 on the 𝑦-axis.

7.4.1. Related work

Community detection. Community detection has garnered significant attention in theoret-
ical computer science, statistics, and data science. For a general overview of recent progress
and related literature, see the survey by Abbe [Abb18]. In what follows, we discuss the works
we believe are most related to what we study in this chapter.

As mentioned in the introduction, perhaps the most fundamental and well-studied model
is the symmetric stochastic block model (SSBM), due to [HLL83]. The celebrated work of
Abbe, Bandeira, and Hall [ABH16] gives sharp bounds on the threshold for exact recovery
for the SSBM setting. They complement their result by showing that SDP based methods can
achieve the information theoretic lower bound for the planted bisection problem, even with a
monotone adversary [Moi21a]. A line of work [AFWZ20; DLS21] demonstrates that natural
spectral algorithms achieve exact recovery for the SSBM all the way to the information-theoretic
threshold.

Generalizations of the symmetric stochastic block model. Since the introduction of SBMs
[HLL83], numerous variants have been proposed that are designed to better reflect real-world
graph properties. For instance, real-life social networks are likely to contain triangles. To
address this, Sankararaman and Baccelli [SB17] introduced a spatial stochastic block model,
sometimes known as the geometric stochastic block model (GSBM). Other variations were
introduced in the works of [GPMS18; GMPS19]. Subsequent work studies the performance of
spectral algorithms on certain Gaussian or Geometric Mixture block models [ABRS20; ABD21;
LS24; GNW24].

261

Figure 7.1.: Top left, bottom left: Agreement with the planted bisection of the bipartition
obtained from several matrices associated with an input graph generated from a
distribution in NSSBM(𝑛, 𝑝, 𝑝, 𝑞) for fixed values of 𝑛, 𝑝, 𝑞 and varying values of
𝑝. In the top left plot, the bipartition is the 0-cut of the second eigenvector, as in
Algorithm 19. In the bottom left plot, the bipartition is the sweep cut of the first
𝑛/2 vertices in the second eigenvector. The dashed vertical line corresponds to
𝑝max = 𝑝max(𝑛, 𝑝, 𝑞) (see (7.4.1)), and the solid vertical line corresponds to 𝑝thr =

𝑝thr(𝑛, 𝑝, 𝑞) (see (7.4.2)). Top middle, top right, bottom middle: Embedding of the
vertices given by the second eigenvector 𝒖2 of several matrices associated with a
graph sampled from 𝒟𝑝,𝑝,𝑞 with 𝑝 = 𝑝thr. Horizontal dashed lines, from top to
bottom, correspond to 1/

√
𝑛, 0,−1/

√
𝑛 respectively.

Bottom right: Variance of the embedding in the second eigenvector 𝒖2 of the
unnormalized Laplacian with respect to the ideal eigenvector 𝒖★2 (see (7.4.3)), for
input graphs generated from a distribution in NSSBM(𝑛, 𝑝, 𝑝, 𝑞) with fixed values
of 𝑛, 𝑝, 𝑞 and varying values of 𝑝.

262

Studying community detection with a semirandom model approaches this modeling question
differently. Rather than implicitly encouraging a particular structure within the clusters like the
models just mentioned, a semirandom adversary (including the ones we study in this chapter)
can more directly test the robustness of the algorithm to specially designed substructures.

Semirandom and monotone adversaries. As far as we are aware, Blum and Spencer [BS95a]
were the first to introduce a semirandom model. Within this model, they studied graph coloring
problems. Feige and Kilian [FK01] demonstrated that semidefinite programming methods can
accurately recover communities up to a certain threshold, even in the semi-random setting.
Other problems, such as detecting a planted clique [Jer92; Kuč95; BHKKMP19], have also been
studied in the semi-random model of [FK01]. In the setting of planted clique, a natural spectral
algorithm fails against monotone adversaries [MMT20; BKS23]. Monotone adversaries and
semirandom models have also been extensively studied for other statistical and algorithmic
problems [VA18; KLLST23; GC23; BGLMSY24]. Finally, [SL17] shows that a spectral heuristic
due to Boppana [Bop87] is robust under a monotone adversary that is allowed to both insert
internal edges and delete crossing edges. However, as far as we are aware, this algorithm does
not fit in the framework of Algorithm 19.

We remark that the models we study in this chapter are most closely related to models studied
by [MN06b] and [MMV12]. In particular, allowing increased internal edge probabilities is
analogous to Massart noise in classification problems, and our model with adversarially chosen
internal edges can be seen as the same model as that studied in [MMV12] (although without
allowing crossing edge deletions). Finally, note that Cohen-Addad, d’Orsi, and Mousavifar
[CdM24] give a near-linear time algorithm for graph clustering in the model of [MMV12],
though they do not explicitly show their algorithm is strongly consistent on instances that are
information-theoretically exactly recoverable.

7.5. Deferred proofs

In this section, we build the tools we need to prove Theorem 29, Theorem 30, andTheorem 31.
Throughout, it will be helpful to refer to the overview (Section 7.3) for a proof roadmap.

Notation in the proofs. In all proofs, we adopt the notation used in the technical overview
(Section 7.3). Additionally, for a vertex 𝑣 ∈ 𝑉 , let 𝑃(𝑣) denote the community that 𝑣 belongs to.

7.5.1. Concentration inequalities

Our proof strategy for Theorem 29 and Theorem 30 is to appeal to Lemma 7.5.23, which guar-
antees strong consistency provided that 𝒅[𝑣] − 𝜆2 > 0, 𝒅in[𝑣] > 𝒅out[𝑣], and

��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉�� ≤

(𝒅in[𝑣] − 𝒅out[𝑣])/
√
𝑛 for all vertices 𝑣. Proving that the first two conditions hold is relatively

easy. In the setting of Theorem 29, it essentially follows from concentration of the degrees,
which is proved in Section 7.5.2. In the setting of Theorem 30, it follows from the assumptions
of the Theorem. Proving that the third condition holds is the main technical challenge.

For all three parts, our proofs rely on several auxiliary concentration results. We prove these
in Section 7.5.3 and Section 7.5.4.

We extensively use the following variants of Bernstein’s Inequality, which can be derived from

263

[Ver18, Theorem 2.8.4].

Lemma 7.5.1. Let 𝑋 =
∑𝑚
𝑖=1 𝑋𝑖 , where 𝑋𝑖 = 1 with probability 𝑝𝑖 and 𝑋𝑖 = 0 with probability 1 − 𝑝𝑖

and all the 𝑋𝑖 are independent. Let 𝜇 = E [𝑋]. Then, for all 𝑡 > 0 we have

Pr [|𝑋 − 𝜇| ≥ 𝑡] ≤ 2exp
(
−min

{
𝑡2

4
∑𝑚
𝑖=1 𝑝𝑖(1 − 𝑝𝑖)

,
3𝑡
4

})
.

From this, we get the following very useful corollary.

Lemma 7.5.2. Let 𝑋 =
∑𝑚
𝑖=1 𝑋𝑖 , where 𝑋𝑖 = 1 with probability 𝑝𝑖 and 𝑋𝑖 = 0 with probability 1 − 𝑝𝑖

and all the 𝑋𝑖 are independent. Let 𝜇 = E [𝑋]. Then, for all 𝑡 > 0, with probability at least 1 − 𝛿 we

have

|𝑋 − 𝜇| ≤

√√
4

𝑚∑
𝑖=1

𝑝𝑖(1 − 𝑝𝑖) log (2/𝛿) + 4/3 log (2/𝛿) .

7.5.2. Concentration of degrees

In this Section, we give concentration statements regarding the number of internal vertices
incident to each vertex and the number of crossing edges incident to each vertex. We then
compare these against 𝜆2.

Lemma 7.5.3. Suppose the crossing edges are sampled identically and independently with probability

𝑞. Then, for some universal constant 𝐶 > 0, with probability at least 1 − 𝛿 we have that

∀𝑣 ∈ 𝑉, |𝒅out[𝑣] − E [𝒅out[𝑣]]| ≤ 𝐶
(√
𝑛𝑞 log (𝑛/𝛿) + log (𝑛/𝛿)

)
.

Proof of Lemma 7.5.3. Choose some 𝑣 ∈ 𝑉 . Consider the random variable 𝒅out[𝑣]. Using
Lemma 7.5.2, we have that there is a constant 𝐶 > 0 such that with probability at least 1 − 𝛿/𝑛
one has

|𝒅out[𝑣] − E [𝒅out[𝑣]]| ≤ 𝐶
(√

4𝑛𝑞/2 log (2𝑛/𝛿) + log (2𝑛/𝛿)
)
.

Taking a union bound over all 𝑛 vertices completes the proof of Lemma 7.5.3. □

Note that Lemma 7.5.3 above applies in both the settings of Theorem 29 and Theorem 30.

Lemma 7.5.4. Suppose the internal edges are sampled independently with probabilities 𝑝𝑣𝑤 such that

𝑝 ≤ 𝑝𝑣𝑤 ≤ 𝑝. Then, for some universal constant 𝐶 > 0, with probability ≥ 1 − 𝛿 we have that

∀𝑣 ∈ 𝑉, |𝒅in[𝑣] − E [𝒅in[𝑣]]| ≤ 𝐶 ©«
√ ∑
𝑤∈𝑃(𝑣)\{𝑣}

𝑝𝑣𝑤(1 − 𝑝𝑣𝑤) log (𝑛/𝛿) + log (𝑛/𝛿)ª®¬ .

264

Proof of Lemma 7.5.4. As before, choose some 𝑣 ∈ 𝑉 and consider the random variable 𝒅in[𝑣].
By Lemma 7.5.2, we have that there is a constant 𝐶 > 0 such that with probability at least
1 − 𝛿/𝑛 one has

|𝒅in[𝑣] − E [𝒅in[𝑣]]| ≤ 𝐶 ©«
√

4
∑

𝑤∈𝑃(𝑣)\{𝑣}
𝑝𝑣𝑤(1 − 𝑝𝑣𝑤) log (2𝑛/𝛿) + log (2𝑛/𝛿)ª®¬ .

Taking a union bound over all 𝑛 vertices completes the proof of Lemma 7.5.4. □

Combining the above two lemmas, we obtain a lower-bound on 𝒅in[𝑣] − 𝒅out[𝑣]. In particular,
the following lemma implies that in the setting of Theorem 29, we have 𝒅in[𝑣] > 𝒅out[𝑣]. This
will be required for applying Lemma 7.5.23.

Lemma 7.5.5. There exists a universal constant 𝐶 > 0 such that with probability ≥ 1 − 𝛿, in the same

settings as Lemma 7.5.3 and Lemma 7.5.4 and assuming the gap condition in Theorem 29, if 𝑝 ≥ 𝑞, then

for all 𝑣 ∈ 𝑉 we have

𝒅in[𝑣] − 𝒅out[𝑣] ≥
𝑛(𝑝 − 𝑞)

2 − 𝐶
(√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
.

Proof of Lemma 7.5.5. Let 𝑣 ∈ 𝑉 . First, we call Lemma 7.5.3 with a failure probability of 𝛿/(2𝑛)
to conclude that

𝒅out[𝑣] ≤
𝑛𝑞

2 + 𝐶7.5.3

(√
𝑛𝑞

2 log
(
2𝑛2/𝛿

)
+ log

(
2𝑛2/𝛿

))
.

Next, we call Lemma 7.5.4 with a failure probability of 𝛿/(2𝑛) to conclude that

𝒅in[𝑣] ≥
∑

𝑤∈𝑃(𝑣)\{𝑣}
𝑝𝑣𝑤 − 𝐶7.5.4

©«
√ ∑
𝑤∈𝑃(𝑣)\{𝑣}

𝑝𝑣𝑤(1 − 𝑝𝑣𝑤) log
(
2𝑛2/𝛿

)
+ log

(
2𝑛2/𝛿

)ª®¬
≥

∑
𝑤∈𝑃(𝑣)\{𝑣}

𝑝𝑣𝑤 − 𝐶7.5.4
©«
√ ∑
𝑤∈𝑃(𝑣)\{𝑣}

𝑝𝑣𝑤 log
(
2𝑛2/𝛿

)
+ log

(
2𝑛2/𝛿

)ª®¬
≥
𝑛𝑝

2 − 2𝐶7.5.4

(√
𝑛𝑝

2 log
(
𝑛2/𝛿

)
+ log

(
2𝑛2/𝛿

))
.

where the last line uses the fact that 𝑥 − 𝑐
√
𝑥 is increasing in 𝑥 whenever 𝑥 ≥ 𝑐2/4 and 𝑐 > 0.

We subtract and conclude the proof of Lemma 7.5.5 by a union bound. □

The following lemma will be useful for lower-bounding 𝒅[𝑣] − 𝜆2 in Theorem 29.

Lemma 7.5.6. Suppose every crossing edge appears independently with probability 𝑞. Then, with

probability ≥ 1 − 𝛿, for all 𝑣 ∈ 𝑉 we have

𝜆2 ≤ 2𝒅out[𝑣] + 𝐶
(√
𝑛𝑞 log (𝑛/𝛿) + log (𝑛/𝛿)

)
.

265

Proof of Lemma 7.5.6. Observe that with probability at least 1 − 𝛿, 𝒅out[𝑤] − E [𝒅out[𝑣]] ≤√
2𝑛𝑞 log(2𝑛/𝛿) + 2 log(2𝑛/𝛿) for all 𝑤 ∈ 𝑉 by Lemma 7.5.2. Then, for every 𝑣 ∈ 𝑉 we have

2
𝑛

∑
𝑤∈𝑃(𝑣)

𝒅out[𝑤] − 𝒅out[𝑣] = ©« 2
𝑛

∑
𝑤∈𝑃(𝑣)

𝒅out[𝑤] − E [𝒅out[𝑣]]ª®¬ + (E [𝒅out[𝑣]] − 𝒅out[𝑣])

≤

������ 2𝑛 ∑
𝑤∈𝑃(𝑣)

𝒅out[𝑤] − E [𝒅out[𝑣]]

������ + |E [𝒅out[𝑣]] − 𝒅out[𝑣]|

≤
√

2𝑛𝑞 log (2𝑛/𝛿) +
√

2𝑛𝑞 log (2𝑛/𝛿) + 4 log (2𝑛/𝛿)

≤ 3
√
𝑛𝑞 log (𝑛/𝛿) + 10 log (𝑛/𝛿) .

Next, by the min-max principle, we have

𝜆2 ≤
∑

(𝑤,𝑤′)∈𝐸

(
𝒖★2 [𝑤] − 𝒖★2 [𝑤′]

)2
=

4
𝑛

∑
𝑤∈𝑃(𝑣)

𝒅out[𝑤].

Combining everything, we get

𝜆2 ≤ 2 ©« 2
𝑛

∑
𝑤∈𝑃(𝑣)

𝒅out[𝑤]ª®¬ ≤ 2
(
𝒅out[𝑣] + 3

√
𝑛𝑞 log (𝑛/𝛿) + 10 log (𝑛/𝛿)

)
,

completing the proof of Lemma 7.5.6. □

We can now lower-bound 𝒅[𝑣]−𝜆2. Note that the following lower bound implies that 𝒅[𝑣] > 𝜆2,
as required by Lemma 7.5.23.

Lemma 7.5.7. In the setting of Theorem 29, with probability ≥ 1−𝛿, for all 𝑣 ∈ 𝑉 , we have 𝒅[𝑣]−𝜆2 >
𝑛(𝑝 − 𝑞)/4.

Proof of Lemma 7.5.7. Recall that the gap condition in Theorem 29 tells us that 𝑝 and 𝑞 are such
that for a universal constant 𝐶,

𝑛(𝑝 − 𝑞) ≥ 𝐶
(√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
.

We have for all 𝑛 sufficiently large (specifically, 𝑛 ≥ 𝑁(𝛼, 𝛿) for some 𝑁 that is a function only
of the constant 𝛼, and we take 𝛿 ≥ 1/𝑛𝑂(1)) that with probability at least 1 − 𝛿,

𝒅[𝑣] − 𝜆2 = 𝒅in[𝑣] − 𝒅out[𝑣] + (2𝒅out[𝑣] − 𝜆2)

≥ 𝒅in[𝑣] − 𝒅out[𝑣] − 𝐶7.5.6

(√
𝑛𝑞 log (𝑛/𝛿) + log (𝑛/𝛿)

)
≥
𝑛(𝑝 − 𝑞)

2 − (𝐶7.5.5 + 𝐶7.5.6)
(√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
,

so insisting

𝑛(𝑝 − 𝑞)
4 ≥ (𝐶7.5.5 + 𝐶7.5.6)

(√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
+ 1

gives the condition required to complete the proof of Lemma 7.5.7. □

266

The following technical lemma will be useful for upper-bounding ∥𝒖2∥∞ in Lemma 7.5.22.

Lemma 7.5.8. In the setting of Theorem 29, there exists a universal constant𝐶 such that with probability

≥ 1 − 𝛿, for all 𝑣 ∈ 𝑉 we have

𝑛𝑝 + log (𝑛/𝛿)
𝒅[𝑣] − 𝜆2

≤ 4𝛼 + 𝐶.

Proof of Lemma 7.5.8. By Lemma 7.5.7, we have with probability ≥ 1 − 𝛿 that for all 𝑣 ∈ 𝑉 ,

𝒅[𝑣] − 𝜆2 ≥
𝑛(𝑝 − 𝑞)

4 .

This gives

𝑛𝑝 + log (𝑛/𝛿)
𝒅[𝑣] − 𝜆2

≤
4(𝑛𝑝 + log (𝑛/𝛿))

𝑛(𝑝 − 𝑞) =
4𝑝
𝑝 − 𝑞 +

4 log (𝑛/𝛿)
𝑛(𝑝 − 𝑞) ≤ 4𝛼 + 𝐶.

This completes the proof of Lemma 7.5.8. □

7.5.3. Concentration of Laplacian and eigenvalue perturbations

For the matrix concentration lemmas, we need a result due to Le, Levina, and Vershynin
[LLV17]. We reproduce it below.

Lemma 7.5.9 ([LLV17, Theorem 2.1]). Consider a random graph from the model 𝐺(𝑛,
{
𝑝𝑖 𝑗

}
). Let

𝑑 = max𝑖 𝑗 𝑛𝑝𝑖 𝑗 . For any 𝑟 ≥ 1, the following holds with probability at least 1 − 𝑛−𝑟 for a universal

constant 𝐶. Consider any subset consisting of 10𝑛/𝑑 vertices, and reduce the weights of the edges

incident to those vertices in an arbitrary way. Let 𝑑′ be the maximal degree of the resulting graph. Then,

the adjacency matrix A′ of the new weighted graph satisfies

∥A′ − E [A]∥op ≤ 𝐶𝑟3/2
(√
𝑑 +
√
𝑑′

)
.

Moreover, the same holds for 𝑑′ being the maximal ℓ2 norm of the rows of A′.

Lemma 7.5.10. Let L be a Laplacian sampled from the nonhomogeneous Erdős-Rényi model where each

edge (𝑖 , 𝑗) is present independently with probability 𝑝𝑖 𝑗 . Then, there exists a universal constant 𝐶 such

that for all 𝑛 sufficiently large, with probability ≥ 1 − 𝛿 for any 𝛿 ≥ 𝑛−10
,

∥L − E [L]∥op ≤ 𝐶
(√

𝑛 max
(𝑖 , 𝑗) : 𝑝𝑖 𝑗≠1

𝑝𝑖 𝑗 log (𝑛/𝛿) + log (𝑛/𝛿)
)
.

Proof of Lemma 7.5.10. Without loss of generality, for all 𝑝𝑖 𝑗 that are 1, reset their probabilities
to 0. To see that this is valid, let L′ be a Laplacian sampled from this modified distribution and
notice that L′ − E [L′] = L − E [L].

By Lemma 7.5.9 and Lemma 7.5.2, we have with probability ≥ 1 − 𝛿/2 that

∥A − E [A]∥op ≤ 200𝐶7.5.9

√√√
2𝑛max

𝑖 𝑗
𝑝𝑖 𝑗 + 𝐶7.5.2

(√
𝑛max

𝑖 𝑗
𝑝𝑖 𝑗 log(8𝑛/𝛿) + log(8𝑛/𝛿)

)

267

≤ 400𝐶7.5.9𝐶7.5.2

√
𝑛max

𝑖 𝑗
𝑝𝑖 𝑗 + log(8𝑛/𝛿)

≤ 400𝐶7.5.9𝐶7.5.2

(√
𝑛max

𝑖 𝑗
𝑝𝑖 𝑗 log(8𝑛/𝛿) + log(8𝑛/𝛿)

)
and by Lemma 7.5.3 and Lemma 7.5.4, we have with probability 1 − 𝛿/2 that

∥D − E [D]∥op ≤ max
𝑣∈𝑉
|𝒅out[𝑣] − E [𝒅out[𝑣]]| +max

𝑣∈𝑉
|𝒅in[𝑣] − E [𝒅in[𝑣]]|

≤ 2 max {𝐶7.5.3 , 𝐶7.5.4}
(√

𝑛max
𝑖 𝑗

𝑝𝑖 𝑗 log (2𝑛/𝛿) + log (2𝑛/𝛿)
)

Now, observe that with probability ≥ 1 − 𝛿 (following from a union bound),

∥L − E [L]∥op = ∥D − E [D] − (A − E [A])∥op ≤ ∥D − E [D]∥op + ∥A − E [A]∥op

≤ 800𝐶7.5.9𝐶7.5.2 max {𝐶7.5.3 , 𝐶7.5.4}
(√

𝑛max
𝑖 𝑗

𝑝𝑖 𝑗 log (8𝑛/𝛿) + log (8𝑛/𝛿)
)
,

completing the proof of Lemma 7.5.10. □

By applying the above lemma, we can show that there is a gap between 𝜆3 and 𝜆★
2 , which will

allow us to apply Davis-Kahan style bounds. More concretely, Lemma 7.5.11 and Lemma 7.5.12,
together with Lemma 7.5.16, show that

𝑢2 − 𝑢★2

2 is small. This will be useful for proving
that in the context for Theorem 29, the condition

��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉�� ≤ (𝒅in[𝑣] − 𝒅out[𝑣])/

√
𝑛 in

Lemma 7.5.23 is satisfied.

Lemma 7.5.11. In the setting of Theorem 29, there exists a universal constant 𝐶 such that the following

holds.

Let 𝑝 and 𝑞 be such that we have

𝑛(𝑝 − 𝑞) ≥ 𝐶
(√
𝑛𝑝 log (𝑛/𝛿) + log(𝑛/𝛿)

)
.

Then, for any 𝛿 ≥ 𝑛−10
, with probability ≥ 1 − 𝛿, we have 𝜆3 − 𝜆★

2 ≥ 𝑛(𝑝 − 𝑞)/4.

Proof of Lemma 7.5.11. By Weyl’s inequality and Lemma 7.5.10, we have with probability ≥ 1−𝛿
that

𝜆3 − 𝜆★
2 ≥ 𝜆★

3 − 𝜆★
2 −

L − L★

op ≥
𝑛(𝑝 − 𝑞)

2 − 𝐶7.5.10

(√
𝑛𝑝 log (𝑛/𝛿) + log(𝑛/𝛿)

)
.

Let 𝐶 ≥ 4𝐶7.5.10. Then,

𝑛(𝑝 − 𝑞)
4 ≥ 𝐶7.5.10

(√
𝑛𝑝 log (𝑛/𝛿) + log(𝑛/𝛿)

)
.

Subtracting completes the proof of Lemma 7.5.11. □

Next, we bound
E𝒖★2

2, which we will need in order to apply our Davis-Kahan style bound in

Lemma 7.5.16. We remark that Lemma 7.5.12 below holds both in the setting of Theorem 29
and of Theorem 30.

268

Lemma 7.5.12. Suppose each crossing edge in our graph appears independently with probability 𝑞.

There exists a universal constant 𝐶 such that for all 𝑛 sufficiently large, with probability ≥ 1 − 𝛿, we

have E𝒖★2

2 ≤ 𝐶
(
log (1/𝛿)

log 𝑛

)3/2 (√
𝑛𝑞 + (𝑛𝑞 log (𝑛/𝛿))1/4 +

√
log (𝑛/𝛿)

)
.

Proof of Lemma 7.5.12. Observe that
��E𝒖★2 �� = 2 |𝒅out − E [𝒅out]| /

√
𝑛. By Lemma 7.5.3, for all

𝑣 ∈ 𝑉 , with probability ≥ 1− 𝛿/2, we have 𝒅out[𝑣] ≤ 𝑛𝑞/2+𝐶7.5.3

(√
𝑛𝑞 · log (2𝑛/𝛿) + log (2𝑛/𝛿)

)
.

So, if we let Aout and A★
out denote the adjacency matrices consisting only of the crossing edges

and the expected value of that, respectively, then invoking Lemma 7.5.9, with probability
≥ 1 − 𝛿, we haveE𝒖★2

2 =

2 ∥𝒅out − E [𝒅out]∥2√
𝑛

=
2
(Aout −A★

out
)
1

2√

𝑛
≤ 2

Aout −A★
out

op

≤ 2𝐶7.5.9

(
log (2/𝛿)

log 𝑛

)3/2 (√
𝑛𝑞

2 +
√
𝐶7.5.3

√
𝑛𝑞 +

√
𝑛𝑞 log (2𝑛/𝛿) + log (2𝑛/𝛿)

)
,

completing the proof of Lemma 7.5.12. □

Finally, we apply Lemma 7.5.9 in order to bound bound ∥𝒂𝑣 − 𝒂★𝑣 ∥2.

Lemma 7.5.13. In the setting of Theorem 29, with probability ≥ 1 − 𝛿, we have𝒂𝑣 − 𝒂★𝑣

2 ≤ 𝐶
(
log (1/𝛿)

log 𝑛

)3/2 (√
𝑛𝑝 + (𝑛𝑝 log (𝑛/𝛿))1/4 +

√
log (𝑛/𝛿)

)
.

Proof of Lemma 7.5.13. We use a similar proof to that of Lemma 7.5.12. Indeed, invoke
Lemma 7.5.9 (observe that we can set 𝑝𝑖 𝑗 for the deterministic internal edges to 0 as they do
not affect A − E [A]) and notice that𝒂𝑣 − 𝒂★𝑣

2 ≤

A −A★

op ≤ 𝐶7.5.9

(
log (2/𝛿)

log 𝑛

)3/2 (√
𝑛𝑝 + (𝑛𝑝 log (2𝑛/𝛿))1/4 +

√
log (2𝑛/𝛿)

)
,

where we used 𝑑′ ≤ 𝑛(𝑝+𝑞)/2+2 max {𝐶7.5.3 , 𝐶7.5.4}
(√
𝑛𝑝 log (2𝑛/𝛿) + log (2𝑛/𝛿)

)
from combining

Lemma 7.5.3 and Lemma 7.5.4. This completes the proof of Lemma 7.5.13. □

7.5.4. Eigenvector perturbations

In this Appendix, we give our Euclidean norm eigenvector perturbation bounds.

First, we verify that 𝒖★2 is indeed the second eigenvector of L★.

Lemma 7.5.14. In the setting of Theorem 29, we have L★𝒖★2 = 𝜆2(L★)𝒖★2 = 𝑛𝑞𝒖★2 , where L★ = E [L].

In the setting of Theorem 30, we have L★𝒖★2 = 𝜆2(L★)𝒖★2 = 𝑛𝑞𝒖★2 , where L★
denotes the Laplacian

matrix that agrees with L on all internal edges and agrees with E [L] on all crossing edges.

269

Proof of Lemma 7.5.14. In both cases, one can check that 𝒖★2 is an eigenvector of L★ with eigen-
value 𝑛𝑞: for any 𝑣 ∈ 𝑃2 (i.e. 𝒖★2 [𝑣] = −1/

√
𝑛 without loss of generality), one has

(
L★𝒖★2

)
𝑣
=

1√
𝑛

©«−(𝒅in[𝑣] + 𝑛𝑞/2) −
∑

𝑤∈𝑃1:{𝑣,𝑤}∈𝐸
(−1) +

∑
𝑤∈𝑃2

(−𝑞)ª®¬ = − 𝑛𝑞√
𝑛
= 𝑛𝑞 · 𝒖★2 [𝑣] .

By virtue of the above observations, it suffices to argue that 𝑛𝑞 < 𝜆3(L★) ≤ · · · ≤ 𝜆𝑛(L★).

In the setting of Theorem 29, we claim 𝜆★
3 ≥

𝑛(𝑝+𝑞)
2 > 𝑛𝑞. This is because because 𝑝𝑣𝑤 ≥ 𝑝,

which implies that if we consider L★
1 to be the expected Laplacian for SSBM(𝑛, 𝑝, 𝑞) and L★

2 to
be the expected Laplacian for NSSBM(𝑛, 𝑝, 𝑝, 𝑞), then L★

2 ⪰ L★
1 ..

In the setting of Theorem 30, we have 𝜆3(L̂) − 𝜆2(L̂) > 𝑛𝑞, by the theorem assumption. Since
L★ is obtained from L̂ by adding the adversarial edges, we have 𝜆𝑖(L★) ≥ 𝜆𝑖(L̂) for all 𝑖. In
particular, we have 𝜆3(L★) ≥ 𝜆3(L̂) = 𝜆2(L̂) + (𝜆3(L̂) − 𝜆2(L̂)) > 𝑛𝑞, where the last inequality is
using the fact 𝜆2(L̂) ≥ 0. Therefore, 𝑛𝑞 must be the second eigenvalue of L★, completing the
proof of Lemma 7.5.14. □

Next, we prove a general Davis-Kahan style bound.

Lemma 7.5.15. Let L and L̂ be two weighted Laplacian matrices. Let 𝒖2 and 𝒖2 be the second eigenvectors

of L and L̂, respectively. Then,

∥𝒖2 − 𝒖2∥2 ≤
√

2 ·min

(L̂ − L)𝒖2

2���𝜆3(L̂) − 𝜆2(L)
��� ,

(L̂ − L)𝒖2

2���𝜆3(L) − 𝜆2(L̂)
���

Proof of Lemma 7.5.15. One can get this sort of guarantee from variants of the Davis-Kahan
theorem, but it is more illuminating to write an eigenvalue decomposition and observe it from
there. Without loss of generality, assume that ⟨𝒖2 , 𝒖2⟩ ≥ 0 (indeed, otherwise we can always
negate 𝒖2 if this is not the case). Notice that(L̂ − L)𝒖2

2

2
=

(L̂ − 𝜆2(L)I
)
𝒖2

2

2

= (𝜆2(L̂) − 𝜆2(L))2 ⟨𝒖2 , 𝒖2⟩2 +
𝑛∑
𝑖=3

(
𝜆𝑖(L̂) − 𝜆2(L)

)2
⟨𝒖 𝑖 , 𝒖2⟩2

≥
𝑛∑
𝑖=3

(
𝜆3(L̂) − 𝜆2(L)

)2
⟨𝒖 𝑖 , 𝒖2⟩2 =

(
𝜆3(L̂) − 𝜆2(L)

)2 (
1 − ⟨𝒖2 , 𝒖2⟩2

)
,

which rearranges to

⟨𝒖2 , 𝒖2⟩2 ≥ 1 −
©«
(L̂ − L)𝒖2

2

𝜆3(L̂) − 𝜆2(L)
ª®®¬

2

.

Now, if
(L̂ − L)𝒖2

2
≥ |𝜆3(L̂)−𝜆2(L)|, then the condition ∥𝒖2 − 𝒖2∥2 ≤

√
2·

(L̂−L)𝒖2

2���𝜆3(L̂)−𝜆2(L)
��� is trivially

satisfied, since ∥𝒖2 − 𝒖2∥2 ≤
√

2 − 2 ⟨𝒖2 , 𝒖2⟩ ≤
√

2. Otherwise, taking the square roots of both
sides, we obtain

270

⟨𝒖2 , 𝒖2⟩ ≥

√√√√√√√
1 −

©«
(L̂ − L)𝒖2

2

𝜆3(L̂) − 𝜆2(L)
ª®®¬

2

,

which gives

∥𝒖2 − 𝒖2∥22 = 2 − 2 ⟨𝒖2 , 𝒖2⟩ ≤ 2 − 2

√√√√√√√
1 −

©«
(L̂ − L)𝒖2

2

𝜆3(L̂) − 𝜆2(L)
ª®®¬

2

≤ 2 ·
©«
(L̂ − L)𝒖2

2

𝜆3(L̂) − 𝜆2(L)
ª®®¬

2

.

Taking the square root of both sides and repeating this argument by exchanging the roles of L
and L̂ yields the statement of Lemma 7.5.15. □

This immediately implies the following upper-bound on
𝒖2 − 𝒖★2

2. We will use it repeatedly,

both in Theorem 29 and Theorem 30.

Lemma 7.5.16. We have 𝒖2 − 𝒖★2

2 ≤
√

2 ·
E𝒖★2

2��𝜆3 − 𝜆★
2
�� .

Proof. Lemma 7.5.16 immediately follows from Lemma 7.5.15 by letting L̂ = L★. □

Combining with Lemma 7.5.11 and Lemma 7.5.12, we can now upper-bound
𝒖2 − 𝒖★2

2 in the

setting of Theorem 29.

Lemma 7.5.17. In the setting of Theorem 29, there exists a universal constant𝐶 such that, for 𝛿 ≥ 3𝑛−10
,

with probability ≥ 1 − 𝛿, we have 𝒖2 − 𝒖★2

2 ≤
𝐶√

log (𝑛/𝛿)
.

Proof of Lemma 7.5.17. Using Lemma 7.5.16, Lemma 7.5.11 and Lemma 7.5.12, we have

𝒖2 − 𝒖★2

2 ≤
400
√

2𝐶7.5.12

(√
𝑛𝑞 + (𝑛𝑞 log (3𝑛/𝛿))1/4 +

√
log (3𝑛/𝛿)

)
𝑛(𝑝 − 𝑞) .

At this point, it is enough to show that there exists a universal constant 𝐶 such that

𝐶𝑛(𝑝 − 𝑞) ≥ 400
√

2𝐶7.5.12

(√
𝑛𝑞 log (𝑛/𝛿) + (𝑛𝑞)1/4 (log (𝑛/𝛿))3/4 + log (𝑛/𝛿)

)
.

To see this, note that for any two nonnegative real numbers we have 2𝑎1/4𝑏1/4 ≤
√
𝑏+
√
𝑎, which

implies 2𝑎1/4𝑏3/4 ≤ 𝑏 +
√
𝑎𝑏. Let 𝑎 = 𝑛𝑞 and 𝑏 = log (3𝑛/𝛿), and we get

400
√

2𝐶7.5.12

(√
𝑛𝑞 log (3𝑛/𝛿) + (𝑛𝑞)1/4 (log (𝑛/𝛿))3/4 + log (3𝑛/𝛿)

)

271

≤ 800
√

2𝐶7.5.12

(√
𝑛𝑞 log (3𝑛/𝛿) + log (3𝑛/𝛿)

)
≤ 800

√
2𝐶7.5.12

(√
𝑛𝑝 log (3𝑛/𝛿) + log (3𝑛/𝛿)

)
≤ 𝐶𝑛(𝑝 − 𝑞),

where the last inequality follows from the assumption we gave in Theorem 29. We therefore
conclude the proof of Lemma 7.5.17. □

Next, we prove ℓ1 norm concentration for the rows of A and for the rows of L in the setting of
Theorem 29. We will use this in Lemma 7.5.19, where we will bound

𝒖(𝑣)2 − 𝒖2

2
. Here 𝒖(𝑣)2

denotes the second eigenvector of the leave-one-out Laplacian L(𝑣).

Lemma 7.5.18. In the setting of Theorem 29, there exists a universal constant 𝐶 such that with

probability ≥ 1 − 𝛿, for all 𝑣 ∈ 𝑉 , we have𝒂𝑣 − 𝒂★𝑣

1 ≤ 𝐶
(
𝑛𝑝 +

√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
∥𝒍𝑣 − E [𝒍𝑣]∥1 ≤ 𝐶

(
𝑛𝑝 +

√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
.

Proof of Lemma 7.5.18. It is easy to see that

∥𝒍𝑣 − E [𝒍𝑣]∥1 = |𝒅[𝑣] − E [𝒅[𝑣]]| +
𝒂𝑣 − 𝒂★𝑣

1 .

Let us consider the second term above. By Lemma 7.5.4 and Lemma 7.5.3, we have with
probability ≥ 1 − 𝛿/2 that for all 𝑣 ∈ 𝑉𝒂𝑣 − 𝒂★𝑣

1 ≤ ∥𝒂𝑣 ∥1 +

𝒂★𝑣1

≤ 2
(
𝑛𝑝

2 +max {𝐶7.5.3 , 𝐶7.5.4}
(√
𝑛𝑝 log (4𝑛/𝛿) + log (4𝑛/𝛿)

))
+ 𝑛𝑝

= 2𝑛𝑝 + 2 max {𝐶7.5.3 , 𝐶7.5.4}
(√
𝑛𝑝 log (4𝑛/𝛿) + log (4𝑛/𝛿)

)
.

Finally, by Lemma 7.5.3 and Lemma 7.5.4, we have with probability 1 − 𝛿/2 that for all 𝑣 ∈ 𝑉 ,

|𝒅[𝑣] − E [𝒅[𝑣]]| ≤ max
𝑣∈𝑉
|𝒅out[𝑣] − E [𝒅out[𝑣]]| +max

𝑣∈𝑉
|𝒅in[𝑣] − E [𝒅in[𝑣]]|

≤ 2 max {𝐶7.5.3 , 𝐶7.5.4}
(√
𝑛𝑝 log (4𝑛/𝛿) + log (4𝑛/𝛿)

)
Adding everything up means that with probability ≥ 1 − 𝛿, for all 𝑣 ∈ 𝑉 , we have

∥𝒍𝑣 − E [𝒍𝑣]∥1 ≤ 2𝑛𝑝 + 4 max {𝐶7.5.4 , 𝐶7.5.3}
(√
𝑛𝑝 log (4𝑛/𝛿) + log (4𝑛/𝛿)

)
,

which completes the proof of Lemma 7.5.18. □

Having established Lemma 7.5.18, we can now upper-bound
𝒖(𝑣)2 − 𝒖2

2
.

272

Lemma 7.5.19. In the setting of Theorem 29, for 𝛿 ≥ 2𝑛−9
with probability ≥ 1 − 𝛿, for all 𝑣 ∈ 𝑉 , we

have 𝒖(𝑣)2 − 𝒖2

2
≤ ∥𝒖2∥∞ ·

𝐶
(
𝑝 +

√
𝑝 log (𝑛/𝛿) /𝑛 + log (𝑛/𝛿) /𝑛

)
𝑝 − 𝑞

Proof of Lemma 7.5.19. Recall that the gap condition in Theorem 29 means that 𝑝 and 𝑞 are such
that for a universal constant 𝐶,

𝑛(𝑝 − 𝑞) ≥ 𝐶
(√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
.

To appeal to Lemma 7.5.15, we need to understand the entries of the matrix L − L(𝑣). It is easy
to see that this matrix only has nonzero entries on the diagonal and in the 𝑣th row and column.
There, the 𝑣th row and column of L − L(𝑣) are exactly equal to those of L − L★. Moreover, the
𝑤 ≠ 𝑣th diagonal entry of L − L(𝑣) is exactly 1 {(𝑣, 𝑤) ∈ 𝐸} − 𝑝𝑣𝑤 .

Hence, we have(L − L(𝑣)
)
𝒖2

2

=

(
𝑛∑

𝑤=1

〈(
L − L(𝑣)

)
𝑤
, 𝒖2

〉2
)1/2

=

(〈(
L − L★)

𝑣
, 𝒖2

〉2 +
∑
𝑤≠𝑣

((𝒂𝑣[𝑤] − 𝑝𝑣𝑤) 𝒖2[𝑤] − (𝒂𝑣[𝑤] − 𝑝𝑣𝑤) 𝒖2[𝑣])2
)1/2

≤
��〈 (L − L★)

𝑣
, 𝒖2

〉�� + (∑
𝑤≠𝑣

((𝒂𝑣[𝑤] − 𝑝𝑣𝑤) 𝒖2[𝑤] − (𝒂𝑣[𝑤] − 𝑝𝑣𝑤) 𝒖2[𝑣])2
)1/2

≤
(
∥𝒍𝑣 − E [𝒍𝑣]∥1 + 2

𝒂𝑣 − 𝒂★𝑣

2

)
· ∥𝒖2∥∞

≤
(
∥𝒍𝑣 − E [𝒍𝑣]∥1 + 2

𝒂𝑣 − 𝒂★𝑣

1

)
· ∥𝒖2∥∞

≤ ∥𝒖2∥∞ · 3𝐶7.5.18

(
𝑛𝑝 +

√
𝑛𝑝 log

(
2𝑛2/𝛿

)
+ log

(
2𝑛2/𝛿

))
.

Now, let 𝐶 ≥ 8𝐶7.5.10. Using Lemma 7.5.10 to understand the concentration of sampling the
graph except edges incident to 𝑣, along with Weyl’s inequality, we have with probability ≥ 1−𝛿
that for all 𝑣 ∈ 𝑉 and for all 𝑛 sufficiently large,���𝜆(𝑣)3 − 𝜆2

��� ≥ (
𝜆(𝑣)3 − 𝜆

★
3

)
−

(
𝜆2 − 𝜆★

2
)
+

(
𝜆★

3 − 𝜆★
2
)

≥ −2
(
𝐶7.5.10

√
𝑛𝑝 log

(
2𝑛2/𝛿

)
+ log

(
2𝑛2/𝛿

))
+ 𝑛(𝑝 − 𝑞)2 ≥ 𝑛(𝑝 − 𝑞)

4 .

Now, using Lemma 7.5.15, we get

𝒖(𝑣)2 − 𝒖2

2
≤

(L − L(𝑣)
)
𝒖2

2

|𝜆(𝑣)3 − 𝜆2 |
≤ ∥𝒖2∥∞ ·

12𝐶7.5.18

(
𝑛𝑝 +

√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
𝑛(𝑝 − 𝑞)

273

≤ ∥𝒖2∥∞ ·
12𝐶7.5.18

(
𝑝 +

√
𝑝 log

(
2𝑛2/𝛿

)
/𝑛 + log

(
2𝑛2/𝛿

)
/𝑛

)
𝑝 − 𝑞 ,

completing the proof of Lemma 7.5.19. □

7.5.5. Leave-one-out and bootstrap

The main goal of this section is to establish an upper-bound on
��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖2 − 𝒖★2

〉�� in the
setting of Theorem 29. To this end, we will need the following concentration inequality from
[AFWZ20].

Lemma 7.5.20 (Lemma 7 from [AFWZ20]). Let 𝒘 ∈ R𝑛 and𝑋𝑖 ∼ Ber(𝑝𝑖). Let 𝑝 ≥ 𝑝𝑖 for all 𝑖 ∈ [𝑛].
Let 𝑋 ∈ R𝑛 be the vector formed by stacking the 𝑋𝑖 . Then,

Pr

|⟨𝒘 , 𝑋 − E [𝑋]⟩| ≥
(2 + 𝑎)𝑝𝑛

max
(
1, log

(√
𝑛∥𝒘∥∞
∥𝒘∥2

)) · ∥𝒘∥∞ ≤ 2exp (−𝑎𝑛𝑝) .

Lemma 7.5.21. In the setting of Theorem 29, suppose 𝒂𝑣 is such that 𝒂𝑣[𝑤] ∼ Bernoulli(𝑝𝑣𝑤) and let

𝑝 ≥ max𝑤 : 𝑝𝑣𝑤≠1 𝑝𝑣𝑤 . With probability ≥ 1 − 𝛿 for 𝛿 ≥ 1/𝑛2
, for all 𝑣 ∈ 𝑉 , we have��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖2 − 𝒖★2

〉�� ≤ 𝐶 (𝑛𝑝 + log (𝑛/𝛿))
(
∥𝒖2∥∞

log log 𝑛 +
1√

𝑛 log log 𝑛

)
.

Proof of Lemma 7.5.21. Ideally, one would treat 𝒖2 − 𝒖★2 as fixed and then apply Bernstein’s
inequality to argue that the sum of centered Bernoulli random variables as written above
concentrates well. Unfortunately, since 𝒖2 depends on 𝒂𝑣 − 𝒂★𝑣 , we cannot express this inner
product as the sum of independent random variables.

To resolve this, we use the leave-one-out method. Let 𝒖(𝑣)2 be the second eigenvector of the
leave-one-out Laplacian L(𝑣) of A(𝑣), where A(𝑣) is chosen to agree with A everywhere except
for the 𝑣th row and 𝑣th column. The 𝑣th row and 𝑣th column of A(𝑣) are replaced with those
of A★. Now, 𝒂𝑣 does not depend on L(𝑣) and therefore 𝒖(𝑣)2 .

We therefore write��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖2 − 𝒖★2
〉�� ≤ ���〈𝒂𝑣 − 𝒂★𝑣 , 𝒖2 − 𝒖(𝑣)2

〉��� + ���〈𝒂𝑣 − 𝒂★𝑣 , 𝒖
(𝑣)
2 − 𝒖★2

〉���
≤

𝒂𝑣 − 𝒂★𝑣

2 ·
𝒖(𝑣)2 − 𝒖2

2
+

���〈𝒂𝑣 − 𝒂★𝑣 , 𝒖
(𝑣)
2 − 𝒖★2

〉���
≤

𝒂𝑣 − 𝒂★𝑣

2 ·
𝐶7.5.19𝑝

𝑝 − 𝑞 ∥𝒖2∥∞ +
���〈𝒂𝑣 − 𝒂★𝑣 , 𝒖

(𝑣)
2 − 𝒖★2

〉��� .
To bound the rightmost term of the RHS, we use Lemma 7 of [AFWZ20], reproduced in
Lemma 7.5.20. In that, let 𝒘 B 𝒖(𝑣)2 − 𝒖★2 . Let 𝑎 = 1

𝑛𝑝
log (20𝑛/𝛿) so that 2 exp(−2𝑎𝑛𝑝) ≤ 𝛿/(10𝑛).

Note that for the deterministic entries, we have 𝒂𝑣 − 𝒂★𝑣 = 1− 1 = 0, so in Lemma 7.5.20, we can
set 𝑋𝑤 ∼ Ber(0) for these entries. Now, by Lemma 7.5.20, with probability ≥ 1 − 𝛿/𝑛, we have���〈𝒖(𝑣)2 − 𝒖★2 , 𝒂𝑣 − 𝒂★𝑣

〉��� ≤ 2𝑛𝑝 + log
(20𝑛

𝛿

)
max

(
1, log

(√
𝑛∥𝒘∥∞
∥𝒘∥2

)) · ∥𝒘∥∞ . (7.5.1)

274

Let us first bound ∥𝒘∥∞ =

𝒖(𝑣)2 − 𝒖★2

∞

. We write𝒖(𝑣)2 − 𝒖★2

∞
≤

𝒖(𝑣)2 − 𝒖2

∞
+

𝒖2 − 𝒖★2

∞ (7.5.2)

≤
𝒖(𝑣)2 − 𝒖2

2
+ ∥𝒖2∥∞ +

𝒖★2∞ (7.5.3)

≤ 2 max
{
𝐶7.5.19(𝛼, 𝛿) ∥𝒖2∥∞ ,

1√
𝑛

}
. (7.5.4)

In what follows, we omit the arguments 𝛼 and 𝛿 in mentions of 𝐶7.5.19. Next, using
Lemma 7.5.17, the triangle inequality, and 𝛿 ≥ 1/𝑛3, we have

∥𝒘∥2 =

𝒖(𝑣)2 − 𝒖★2

2
≤ 𝐶7.5.19 ∥𝒖2∥∞ +

4𝐶7.5.17√
log 𝑛

.

We now have two cases based on the value of
√
𝑛 ·

𝒖(𝑣)2 −𝒖★2

∞𝒖(𝑣)2 −𝒖★2

2

.

Case 1 – 𝒘 is not too “flat.” Let us first handle the case where
√
𝑛 ·

𝒖(𝑣)2 − 𝒖★2

∞𝒖(𝑣)2 − 𝒖★2

2

≥
√

log 𝑛.

We plug this into (7.5.1) and get���〈𝒖(𝑣)2 − 𝒖★2 , 𝒂𝑣 − 𝒂★𝑣
〉��� ≤ 2𝑛𝑝 + log

(20𝑛
𝛿

)
max

(
1, log

(√
𝑛∥𝒘∥∞
∥𝒘∥2

)) · ∥𝒘∥∞
≤ 4 · 𝑛𝑝 + log (20𝑛/𝛿)

log log 𝑛

(
𝐶7.5.19 ∥𝒖2∥∞ +

1√
𝑛

)
,

where the last inequality follows from (7.5.4).

Case 2 – 𝒘 is “flat.” We now assume
√
𝑛 ·

𝒖(𝑣)2 − 𝒖★2

∞𝒖(𝑣)2 − 𝒖★2

2

≤
√

log 𝑛.

We can easily check that the function

𝑥

max (1, log 𝑥)

is increasing, so its maximum will be attained at the largest value of 𝑥 in the domain. Let
𝑥 =
√
𝑛 ∥𝒘∥∞ /∥𝒘∥2 and write

2𝑛𝑝 + log
(20𝑛

𝛿

)
max

(
1, log

(√
𝑛∥𝒘∥∞
∥𝒘∥2

)) · ∥𝒘∥∞
=

2𝑛𝑝 + log
(20𝑛

𝛿

)
max

(
1, log

(√
𝑛∥𝒘∥∞
∥𝒘∥2

)) · √𝑛 ∥𝒘∥∞∥𝒘∥2
· ∥𝒘∥2√

𝑛

275

≤
2𝑛𝑝 + log

(20𝑛
𝛿

)
log log 𝑛 ·

√
log 𝑛
𝑛
· ∥𝒘∥2

≤
2𝑛𝑝 + log

(20𝑛
𝛿

)
log log 𝑛 ·

√
log 𝑛
𝑛
· 𝐶7.5.19

©«∥𝒖2∥∞ +
1√

log
(
20𝑛2/𝛿

) ª®®¬
= 𝐶7.5.19

(
2𝑛𝑝 + log

(20𝑛
𝛿

)
log log 𝑛 ·

√
log 𝑛
𝑛
∥𝒖2∥∞ +

2𝑛𝑝 + log
(20𝑛

𝛿

)
√
𝑛 · log log 𝑛

)
.

All of this tells us that���〈𝒂𝑣 − 𝒂★𝑣 , 𝒖
(𝑣)
2 − 𝒖★2

〉��� ≤ 4𝐶7.5.19 · (𝑛𝑝 + log (20𝑛/𝛿))
(
∥𝒖2∥∞

log log 𝑛 +
1√

𝑛 log log 𝑛

)
.

It remains to handle the term 𝒂𝑣 − 𝒂★𝑣

2 · ∥𝒖2∥∞ .

Indeed, using Lemma 7.5.13, we have with probability ≥ 1 − 𝛿 that𝒂𝑣 − 𝒂★𝑣

2 · ∥𝒖2∥∞ ≤ 𝐶7.5.13

(
log (20𝑛/𝛿)

log 𝑛

)3/2 √
𝑛𝑝 · ∥𝒖2∥∞ .

Combining everything tells us that��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖2 − 𝒖★2
〉�� ≤ 30𝐶7.5.13

(
log (20𝑛/𝛿)

log 𝑛

)3/2 √
𝑛𝑝 · ∥𝒖2∥∞

+ 4𝐶7.5.19 · (𝑛𝑝 + log (20𝑛/𝛿))
(
∥𝒖2∥∞

log log 𝑛 +
1√

𝑛 log log 𝑛

)
≤ 𝐶 (𝑛𝑝 + log (20𝑛/𝛿))

(
∥𝒖2∥∞

log log 𝑛 +
1√

𝑛 log log 𝑛

)
.

Taking a union bound over all 𝑣 ∈ 𝑉 concludes the proof of Lemma 7.5.21. □

Finally, we establish an upper-bound on ∥𝒖2∥∞. This will be used repeatedly in the proof of
Theorem 29.

Lemma 7.5.22. In the same setting as Theorem 29, with probability ≥ 1 − 𝛿 for 𝛿 ≥ 10𝑛2
, we have for

some constant 𝐶(𝛼, 𝛿) that

∥𝒖2∥∞ ≤
𝐶(𝛼, 𝛿)√

𝑛
.

Proof of Lemma 7.5.22. First, observe that

(D −A)𝒖2 = 𝜆2𝒖2 ,

which means that

(D − 𝜆2I)−1 A𝒖2 = 𝒖2.

276

By Lemma 7.5.7, with probability ≥ 1 − 𝛿, for all 𝑣 ∈ 𝑉 we have

𝒅[𝑣] − 𝜆2 ≥
𝑛(𝑝 − 𝑞)

4 .

Combining with Lemma 7.5.6, we have

𝒅in[𝑣] − 𝒅out[𝑣]
𝒅in[𝑣] − 𝒅out[𝑣] + (2𝒅out[𝑣] − 𝜆2)

= 1 − 2𝒅out[𝑣] − 𝜆2
𝒅in[𝑣] − 𝒅out[𝑣] + (2𝒅out[𝑣] − 𝜆2)

≤ 1 +
𝐶7.5.6

(√
𝑛𝑞 log (10𝑛/𝛿) + log (10𝑛/𝛿)

)
𝒅in[𝑣] − 𝒅out[𝑣] + (2𝒅out[𝑣] − 𝜆2)

≤ 1 +
4𝐶7.5.6

(√
𝑛𝑞 log (10𝑛/𝛿) + log (10𝑛/𝛿)

)
𝑛(𝑝 − 𝑞) ≤ 𝐶′,

for some constant 𝐶′ > 0, where the penultimate line follows from Lemma 7.5.7 and the
last line follows from the gap assumption in Theorem 29. Furthermore, by Lemma 7.5.8 and
Lemma 7.5.17, we have with probability ≥ 1 − 𝛿 that for all 𝑣 ∈ 𝑉 ,��〈𝒂★𝑣 , 𝒖★2 − 𝒖2

〉��
𝒅[𝑣] − 𝜆2

≤ 𝑝
√
𝑛

𝒅[𝑣] − 𝜆2
· 𝐶7.5.17√

log (10𝑛/𝛿)
≤ 𝐶7.5.8(𝛼) · 𝐶7.5.17√

𝑛 log (10𝑛/𝛿)
.

Now, using Lemma 7.5.8 (and using Lemma 7.5.7 to ensure that 𝒅[𝑣] −𝜆2 > 0 for all 𝑣 ∈ 𝑉), we
have

∥𝒖2∥∞ =
(D − 𝜆2I)−1 A𝒖2

∞

=
(D − 𝜆2I)−1 A𝒖2 − (D − 𝜆2I)−1 A𝒖★2 + (D − 𝜆2I)−1 A𝒖★2

∞

≤
(D − 𝜆2I)−1 A𝒖★2

∞ +

(D − 𝜆2I)−1 A(𝒖★2 − 𝒖2)

∞

= max
1≤𝑣≤𝑛

��〈𝒂𝑣 , 𝒖★2 〉��
𝒅[𝑣] − 𝜆2

+ max
1≤𝑣≤𝑛

��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉��

𝒅[𝑣] − 𝜆2

=
1√
𝑛

(
max

1≤𝑣≤𝑛
|𝒅in[𝑣] − 𝒅out[𝑣]|

𝒅[𝑣] − 𝜆2

)
+ max

1≤𝑣≤𝑛

��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉��

𝒅[𝑣] − 𝜆2

≤ 𝐶√
𝑛
+ max

1≤𝑣≤𝑛

��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖
★
2 − 𝒖2

〉��
𝒅[𝑣] − 𝜆2

+ max
1≤𝑣≤𝑛

��〈𝒂★𝑣 , 𝒖★2 − 𝒖2
〉��

𝒅[𝑣] − 𝜆2

≤ 𝐶√
𝑛
+ 𝐶7.5.21 (𝑛𝑝 + log (10𝑛/𝛿))

𝒅[𝑣] − 𝜆2
·
(

1√
𝑛 log log 𝑛

+ ∥𝒖2∥∞
log log 𝑛

)
+ 𝐶7.5.8(𝛼) · 𝐶7.5.17√

𝑛 log (10𝑛/𝛿)

≤ 𝐶√
𝑛
+ 𝐶7.5.21 · 𝐶7.5.8(𝛼) ·

(
1√

𝑛 log log 𝑛
+ ∥𝒖2∥∞

log log 𝑛

)
+ 𝐶7.5.8(𝛼) · 𝐶7.5.17√

𝑛 log (10𝑛/𝛿)
.

Note that any 𝑛 large enough

𝐶7.5.21 · 𝐶7.5.8(𝛼) · ∥𝒖2∥∞
log log 𝑛 ≤ ∥𝒖2∥∞

2 .

Thus, rearranging and solving for ∥𝒖2∥∞ yields

∥𝒖2∥∞ ≤ 2

(
𝐶√
𝑛
+ 𝐶7.5.21 · 𝐶7.5.8(𝛼) ·

(
1√

𝑛 log log 𝑛

)
+ 𝐶7.5.8(𝛼) · 𝐶7.5.17√

𝑛 log (10𝑛/𝛿)

)
,

completing the proof of Lemma 7.5.22. □

277

7.5.6. Strong consistency of unnormalized spectral bisection

In this section, we prove our main positive results Theorem 29 and Theorem 30. It will be
helpful to recall the proof sketches given in Section 7.3 while reading this section.

At a high level, the proof plan is as follows.

1. We first establish a sufficient condition for a particular vertex to be classified correctly. We
can think of this as simultaneously showing that the intermediate estimator (D−𝜆2I)−1A𝒖★2
is strongly consistent and that the corresponding “noise” term (D − 𝜆2I)−1A(𝒖★2 − 𝒖2)
is a lower-order term in comparison to this. For a more formal way to see this, see
Lemma 7.5.23.

2. For the proof of Theorem 29, the main technical challenge in showing that the noise term
above is small amounts to analyzing the random quantity

��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉��. This is where we

will have to use the leave-one-out method to decouple the dependence between 𝒂𝑣 and 𝒖2.
The relevant lemmas for the leave-one-out analysis are Lemma 7.5.21 and Lemma 7.5.22.

3. Finally, for the proof of Theorem 30, we again appeal to Lemma 7.5.23 but use a different
approach to show that the noise term is small.

A sufficient condition for exact recovery and proof

The main result of this subsection is Lemma 7.5.23, which gives a general condition under
which a particular vertex will be classified correctly. The proofs of Theorem 29 and Theorem 30
will follow by invoking Lemma 7.5.23. We remark that the point of this lemma is mostly
conceptual; the crux of the analysis lies in establishing that these conditions are satisfied our
models.

Lemma 7.5.23. Let 𝑣 ∈ 𝑉 be some vertex. If 𝒅[𝑤] − 𝜆2 > 0 for all 𝑤 ∈ 𝑉 , 𝒅in[𝑣] > 𝒅out[𝑣], and��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉�� ≤ (𝒅in[𝑣] − 𝒅out[𝑣])/

√
𝑛, then sign (𝒖2[𝑣]) = sign

(
𝒖★2 [𝑣]

)
, i.e., 𝒖2 correctly classifies

vertex 𝑣.

The goal of the rest of this section is to prove Lemma 7.5.23.

Our approach is to study the intermediate estimator

(D − 𝜆2I)−1 A𝒖★2 .

At a high level, our goal is to show that this correctly classifies all the vertices with high prob-
ability and also is very close to 𝒖2 in ℓ∞ norm with high probability. Deng, Ling, and Strohmer
[DLS21] used this intermediate estimator to prove the strong consistency of unnormalized
spectral bisection for SBM(𝑛, 𝑝, 𝑞) instances.

Next, we show that this estimator is consistent and prove Lemma 7.5.23.

Proof of Lemma 7.5.23. Observe that

𝒖2 = (D − 𝜆2I)−1 A𝒖★2 − (D − 𝜆2I)−1 A
(
𝒖★2 − 𝒖2

)
.

278

Without loss of generality, suppose 𝑣 ∈ 𝑃1. In particular, this means that 𝒖★2 [𝑣] = 1/
√
𝑛. Our

goal is to show that 𝒖2[𝑣] > 0. And, as per the above, this means that it is enough to show that(
(D − 𝜆2I)−1 A𝒖★2

)
[𝑣] ≥

(
(D − 𝜆2I)−1 A

(
𝒖★2 − 𝒖2

))
[𝑣],

or equivalently, using the fact that 𝒅[𝑣] − 𝜆2 > 0,〈
𝒂𝑣 , 𝒖★2

〉
≥

〈
𝒂𝑣 , 𝒖★2 − 𝒖2

〉
,

where 𝒂𝑣 denotes the 𝑣-th row of 𝐴. To see that the above holds, use the fact that we know that
𝒅in[𝑣] − 𝒅out[𝑣] > 0, which gives〈

𝒂𝑣 , 𝒖★2
〉
=

𝒅in[𝑣] − 𝒅out[𝑣]√
𝑛

≥
��〈𝒂𝑣 , 𝒖★2 − 𝒖2

〉�� ≥ 〈
𝒂𝑣 , 𝒖★2 − 𝒖2

〉
.

This is exactly what we needed, and we conclude the proof of Lemma 7.5.23. □

7.5.7. Proofs of main results

At this point, we are ready to prove our main results.

Nonhomogeneous symmetric stochastic block model (Proof of Theorem 29)

We are finally ready to prove Theorem 29. For convenience, we reproduce its statement here.

Theorem 29. Let 𝑝, 𝑝, 𝑞 be probabilities such that 𝑞 < 𝑝 ≤ 𝑝 and such that 𝛼 B 𝑝/(𝑝 − 𝑞) is an

arbitrary constant. Let𝒟 ∈ NSSBM(𝑛, 𝑝, 𝑝, 𝑞). Let 𝑛 ≥ 𝑁(𝛼) where the function 𝑁(𝛼) only depends

on 𝛼. There exists a universal constant 𝐶 > 0 such that if

𝑛(𝑝 − 𝑞) ≥ 𝐶
(√
𝑛𝑝 log 𝑛 + log 𝑛

)
, (gap condition)

then unnormalized spectral bisection is strongly consistent on𝒟.

Proof of Theorem 29. As mentioned in Section 7.2, we actually prove a slightly stronger statement
– we will allow the adversary to set at most 𝑛𝑝/log log 𝑛 of the 𝑝𝑣𝑤 to 1 per vertex 𝑣 (in other
words, the adversary can commit to at most 𝑛𝑝/log log 𝑛 edges per vertex that are guaranteed
to appear in the final graph).

Our plan is to apply Lemma 7.5.23. In order to do so, we start with showing that for all 𝑣, we
have 𝒅in[𝑣] > 𝒅out[𝑣]. By Lemma 7.5.5, with probability ≥ 1 − 𝛿, we have for all 𝑣 ∈ 𝑉 that

𝒅in[𝑣] − 𝒅out[𝑣] ≥
𝑛(𝑝 − 𝑞)

2 − 𝐶7.5.5

(√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

)
> 0.

Additionally, by Lemma 7.5.7, we have for all 𝑣 that 𝒅[𝑣] > 𝜆2.

279

The final item we need is to show that for all 𝑣 ∈ 𝑉 , we have
��〈𝒂𝑣 , 𝒖★2 − 𝒖2

〉�� ≤ ��〈𝒂𝑣 , 𝒖★2 〉��.
Observe that ��〈𝒂𝑣 , 𝒖★2 − 𝒖2

〉�� ≤ ��〈𝒂★𝑣 , 𝒖★2 − 𝒖2
〉�� + ��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖

★
2 − 𝒖2

〉�� ,
where 𝒂★𝑣 denotes the 𝑣-th row of E [A]. We handle the terms one at a time. First, note that by
Lemma 7.5.11, with probability ≥ 1 − 𝛿, we have

𝜆3 − 𝜆★
2 ≥

𝑛(𝑝 − 𝑞)
4 .

Now, let E := L − E [L], and let 𝒂★𝑣 [rand] ∈ R𝑉 correspond to the vector that entrywise agrees
with 𝒂★𝑣 wherever 𝒂★𝑣 is not 1 and is zero elsewhere. This corresponds to the edges incident
to 𝑣 that will be sampled randomly from the distribution over graphs. This means that for all
𝑛 ≥ 𝑁(𝛿) and choosing 𝛿 ≥ 1/(10𝑛), we have

��〈𝒂★𝑣 [rand], 𝒖★2 − 𝒖2
〉�� ≤ 𝒂★𝑣 [rand]

2 ·
√

2
E𝒖★2

2��𝜆3 − 𝜆★

2
�� (Lemma 7.5.16)

≤ 𝑝
√
𝑛 ·

40
√

2𝐶7.5.12

(√
𝑛𝑞 + (𝑛𝑞 log 𝑛)1/4 +

√
log 𝑛

)
𝑛(𝑝 − 𝑞) (Lemmas 7.5.11 and 7.5.12)

≤
1000𝐶7.5.12𝑛𝑝√
𝑛 log log 𝑛

(gap in Theorem 29)

To handle the oblivious insertions, let 𝒅det ∈ R𝑉 denote the degree vector that counts the
number of deterministic edges inserted incident to 𝑣, for all 𝑣 ∈ 𝑉 . Under this notation, we
have ��〈𝒂★𝑣 − 𝒂★𝑣 [rand], 𝒖★2 − 𝒖2

〉�� ≤ 𝒅det[𝑣] ·
𝒖2 − 𝒖★2

∞ ≤

𝑛𝑝
√
𝑛 log log 𝑛

+ 𝑛𝑝 ∥𝒖2∥∞
log log 𝑛 .

where the last inequality follows from using
𝒖2 − 𝒖★2

∞ ≤ ∥𝒖2∥∞ +

𝒖★2∞. Combining yields��〈𝒂★𝑣 , 𝒖★2 − 𝒖2
〉�� ≤ 𝐶′ 𝑛𝑝

√
𝑛 log log 𝑛

+ 𝑛𝑝 ∥𝒖2∥∞
log log 𝑛 ,

for some constant 𝐶′ > 0. Now, notice that for all 𝑛 sufficiently large,��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖
★
2 − 𝒖2

〉��
≤ 𝐶7.5.21 (𝑛𝑝 + log (𝑛/𝛿))

(
∥𝒖2∥∞

log log 𝑛 +
1√

𝑛 log log 𝑛

)
(Lemma 7.5.21)

≤ 𝐶7.5.21 (𝑛𝑝 + log (𝑛/𝛿)) ©«
𝐶7.5.22(𝛼,𝛿)√

𝑛

log log 𝑛 +
1√

𝑛 log log 𝑛
ª®¬ (Lemma 7.5.22)

≤ 𝐶1(𝛼, 𝛿) · (𝑛𝑝 + log (𝑛/𝛿))
√
𝑛 log log 𝑛

.

Adding yields for 𝑛 ≥ 𝑁(𝛼, 𝛿),��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉�� ≤ ��〈𝒂★𝑣 , 𝒖★2 − 𝒖2

〉�� + ��〈𝒂𝑣 − 𝒂★𝑣 , 𝒖
★
2 − 𝒖2

〉��
280

≤
𝐶2(𝛼, 𝛿) · (𝑛𝑝 + log (𝑛/𝛿))

√
𝑛 log log 𝑛

≤ 1√
𝑛
·
(
𝑛(𝑝 − 𝑞)

2 − 𝐶7.5.5

(√
𝑛𝑝 log (𝑛/𝛿) + log (𝑛/𝛿)

))
(gap condition)

≤ 𝒅in[𝑣] − 𝒅out[𝑣]√
𝑛

=
��〈𝒂𝑣 , 𝒖★2 〉�� ,

which means we satisfy the conditions required by Lemma 7.5.23. Taking a union bound over
all our (constantly many) probabilistic statements, setting 𝛿 = Θ(1/𝑛), and rescaling completes
the proof of Theorem 29. □

Deterministic clusters model

For convenience, we reproduce the statement of Theorem 30 here.

Theorem 30. Let 𝑞 be a probability and 𝑑in be an integer, and let 𝒟 ∈ DCM(𝑛, 𝑑in , 𝑞). For 𝐺 ∼ 𝒟,

let L̂ denote the expectation of L after step (2) but before step (3) in Model 7.2. There exists constants

𝐶1 , 𝐶2 , 𝐶3 > 0 such that for all 𝑛 sufficiently large, if

𝑑in ≥ 𝐶1 ·
(𝑛𝑞

2 +
√
𝑛
)

and 𝜆3(L̂) − 𝜆2(L̂) ≥
√
𝑛 + 𝐶2𝑛𝑞 + 𝐶3

(√
𝑛𝑞 log 𝑛 + log 𝑛

)
,

then unnormalized spectral bisection is strongly consistent on𝒟.

Proof of Theorem 30. In this proof, let L★ be the Laplacian matrix that agrees with L on all
internal edges and agrees with E [L] on all crossing edges. Let L(cross) denote the Laplacian
matrix corresponding to the cross edges, so we can write L★ = L−L(cross)+E

[
L(cross)] . Although

L★ ≠ E [L] due to the adaptive adversary, by Lemma 7.5.14, we still have L★𝒖★2 = 𝜆★
2𝒖

★
2 = 𝑛𝑞𝒖★2 .

Moreover, (L − L★)𝒖★2 is the vector whose entries are of the form 2(𝒅out[𝑣] − E [𝒅out[𝑣]])/
√
𝑛.

Thus, we will be able to apply Lemma 7.5.16 and Lemma 7.5.12 later on. Finally, observe that
𝜆𝑖(L★) ≥ 𝜆𝑖(L̂) for all 𝑖 ≥ 3 and 𝜆2(L̂) = 𝜆2(L★) = 𝑛𝑞. Thus, one can use the spectral gap
𝜆3(L̂) − 𝜆2(L̂) to reason about 𝜆★

3 − 𝜆★
2 .

Let 𝛿 ≥ 1/(10𝑛). We will apply Lemma 7.5.23 to get strong consistency. First, let us verify that
𝒅[𝑣] > 𝜆2 for all 𝑣. Applying Lemma 7.5.10 to the matrix L(cross) givesL − L★

op =

L(cross) − E
[
L(cross)

]
op
≤ 𝐶7.5.10

(√
𝑛𝑞 log (𝑛/𝛿) + log(𝑛/𝛿)

)
.

Thus, using Weyl’s inequality, for 𝑛 > 𝑁(𝛿), we have

𝒅[𝑣] − 𝜆2 ≥ 𝒅in[𝑣] − 𝜆★
2 −

L − L★

op

≥ 𝐶1
𝑛𝑞

2 + 𝐶1
√
𝑛 − 𝑛𝑞 − 𝐶7.5.10

(√
𝑛𝑞 log (𝑛/𝛿) + log(𝑛/𝛿)

)
> 0.

Next, we verify that 𝒅in[𝑣] > 𝒅out[𝑣] for all 𝑣. By Lemma 7.5.3, with probability ≥ 1 − 𝛿, for all
𝑣 ∈ 𝑉 , we have ���𝒅out[𝑣] −

𝑛𝑞

2

��� ≤ 𝐶7.5.3

(√
𝑛𝑞 log (𝑛/𝛿) + log (𝑛/𝛿)

)
.

281

So for 𝑛 > 𝑁(𝛿), we obtain

𝒅in[𝑣] − 𝒅out[𝑣] ≥ 𝐶1
𝑛𝑞

2 + 𝐶1
√
𝑛 − 𝑛𝑞2 − 𝐶7.5.3

(√
𝑛𝑞 log (𝑛/𝛿) + log (𝑛/𝛿)

)
> 0.

Here, in the last inequality we used the fact that
√
𝑛𝑞 log (𝑛/𝛿) ≤ max{𝑛𝑞, log(𝑛/𝛿)} .

Finally, we need to show that for all 𝑣 ∈ 𝑉 ,��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉�� ≤ ��〈𝒂𝑣 , 𝒖★2 〉�� = 𝒅in[𝑣] − 𝒅out[𝑣]√

𝑛
.

By Cauchy-Schwarz, we have��〈𝒂𝑣 , 𝒖★2 − 𝒖2
〉�� ≤ ∥𝒂𝑣 ∥2 · 𝒖★2 − 𝒖2

2 =

√
𝒅in[𝑣] + 𝒅out[𝑣] ·

𝒖★2 − 𝒖2

2 .

Thus, it is enough to show that for all 𝑣 ∈ 𝑉 we get

√
𝑛
𝒖★2 − 𝒖2

2 ≤

𝒅in[𝑣] − 𝒅out[𝑣]√
𝒅in[𝑣] + 𝒅out[𝑣]

.

Observe that the RHS above is a decreasing function in 𝒅out[𝑣] and an increasing function in
𝒅in[𝑣].

Now, by Lemma 7.5.16 and Lemma 7.5.12, we have

√
𝑛
𝒖★2 − 𝒖2

2 ≤
√
𝑛
E𝒖★2

2��𝜆3 − 𝜆★

2
�� ≤ 6𝐶7.5.12

√
𝑛

(√
𝑛𝑞 + (𝑛𝑞 log (𝑛/𝛿))1/4 +

√
log (𝑛/𝛿)

)��𝜆3 − 𝜆★
2
�� . (7.5.5)

We now do casework on the value of 𝑞.

Case 1: 𝑞 ≤ log (𝑛/𝛿) /𝑛. Carrying on from (7.5.5) and applying Lemma 7.5.10 (we can set
𝑝𝑖 𝑗 for the deterministic internal edges to 0 as they do not affect L − E [L]) along with Weyl’s
inequality, for all 𝑛 ≥ 𝑁(𝛿)we have

√
𝑛
𝒖★2 − 𝒖2

2 ≤

18𝐶7.5.12
√
𝑛 log (𝑛/𝛿)��𝜆3 − 𝜆★

2
�� ≤

18𝐶7.5.12
√
𝑛 log (𝑛/𝛿)

√
𝑛 − 3𝐶7.5.10 log (𝑛/𝛿)

≤ 𝐶
√

log (𝑛/𝛿) ≪ 𝒅in[𝑣] − 𝒅out[𝑣]√
𝒅in[𝑣] + 𝒅out[𝑣]

,

as required. Here the last inequality follows using the fact that 𝒅in[𝑣] ≥ 𝐶1
(𝑛𝑞

2 +
√
𝑛
)

and
𝒅out[𝑣] ≤ 𝑛𝑞

2 + 2𝐶7.5.3 log(𝑛/𝛿).

Case 2: log (𝑛/𝛿) /𝑛 ≤ 𝑞. Similar to the previous case, we get

√
𝑛
𝒖★2 − 𝒖2

2 ≤

18𝐶7.5.12
√
𝑛 · √𝑛𝑞��𝜆3 − 𝜆★

2
�� ≤

18𝐶7.5.12
√
𝑛 · √𝑛𝑞

√
𝑛 + (𝐶2 − 2𝐶7.5.10)𝑛𝑞

(7.5.6)

≤ 18𝐶7.5.12 ·max
{
√
𝑛𝑞,

1
(𝐶2 − 2𝐶7.5.10)

√
𝑞

}
. (7.5.7)

282

Additionally, we can use the conclusion of Lemma 7.5.3 to write with probability ≥ 1− 𝛿 for all
𝑣 ∈ 𝑉 and 𝑛 ≥ 𝑁(𝛿) that

𝒅in[𝑣] − 𝒅out[𝑣]√
𝒅in[𝑣] + 𝒅out[𝑣]

≥
(𝐶1/2 − 2𝐶7.5.3 − 1/2)𝑛𝑞 + 𝐶1

√
𝑛√

(𝐶1/2 + 2𝐶7.5.3 + 1/2)𝑛𝑞
(7.5.8)

≥ 𝐶1/2 − 2𝐶7.5.3 − 1/2√
𝐶1/2 + 2𝐶7.5.3 + 1/2

max
{
√
𝑛𝑞,

√
1
𝑞

}
. (7.5.9)

From this, it is clear that one can choose constants 𝐶1 and 𝐶2 such that (7.5.7) is at most
(7.5.9). Taking a union bound over all our (constantly many) probabilistic statements, setting
𝛿 = Θ(1/𝑛), and rescaling completes the proof of Theorem 30. □

7.5.8. Inconsistency of normalized spectral bisection

In this section, we design a family of problem instances on which unnormalized spectral bisec-
tion is strongly consistent whereas normalized spectral bisection is inconsistent. Specifically,
our goal is to prove Theorem 31.

Theorem 31. For all 𝑛 sufficiently large, there exists a nonhomogeneous stochastic block model such

that unnormalized spectral bisection is strongly consistent whereas normalized spectral bisection (both

symmetric and random-walk) incurs a misclassification rate of at least 24% with probability 1 − 1/𝑛.

The nested block example

We first state the family of instances on which we will prove our inconsistency results. Let 𝑛 be
a multiple of 4. Let 𝐿1 consist of indices 1, . . . , 𝑛/4, 𝐿2 consist of indices 𝑛/4 + 1, . . . , 𝑛/2, and
𝑅 consist of indices 𝑛/2 + 1, . . . , 𝑛.

As mentioned in Section 7.3, consider the following block structure determined by the A★

written below, where 𝑞 < 𝑝 and 𝐾 ≥ 3𝑝/𝑞.

𝐿1 𝐿2 𝑅

𝐿1 𝐾𝑝 · 1𝑛/4×𝑛/4 𝑝 · 1𝑛/4×𝑛/4
𝑞 · 1𝑛/2×𝑛/2

𝐿2 𝑝 · 1𝑛/4×𝑛/4 𝐾𝑝 · 1𝑛/4×𝑛/4

𝑅 𝑞 · 1𝑛/2×𝑛/2 𝑝 · 1𝑛/2×𝑛/2

Table 7.2.: A★ is defined to have the above block structure.

We will draw our instances from the nonhomogeneous stochastic block model according to
the probabilities prescribed above. Note that within the two clusters 𝐿 B 𝐿1 ∪ 𝐿2 and 𝑅,
each edge appears with probability at least 𝑝. Moreover, each edge in 𝐿 × 𝑅 appears with
probability exactly 𝑞. However, there are also two subcommunities 𝐿1 and 𝐿2 that appear
within 𝐿. Furthermore, observe that unnormalized spectral bisection is consistent on this
family of examples with probability ≥ 1 − 1/𝑛 by Theorem 29.

283

Technical lemmas

We next show some technical statements that we will need later in the proof of Theorem 31.

Lemma 7.5.24. Let M ∈ R𝑘×𝑘 . Then,

∥M∥op ≤ max
𝑖≤𝑘
|M[𝑖][𝑖]| + 𝑘max

𝑖≠𝑗
|M[𝑖][𝑗]| .

Proof of Lemma 7.5.24. For a matrix N ∈ R𝑘×𝑘 , it is easy to check that

∥N∥op ≤ ∥N∥𝐹 ≤ 𝑘max
𝑖 , 𝑗≤𝑘
|N[𝑖][𝑗]| .

Next, let diag (M) denote the matrix that agrees with M on the diagonal and is 0 elsewhere.
Notice that

∥M∥op ≤ ∥diag (M)∥op + ∥M − diag (M)∥op ≤ max
𝑖≤𝑘
|M[𝑖][𝑖]| + 𝑘max

𝑖≠𝑗
|M[𝑖][𝑗]| ,

completing the proof of Lemma 7.5.24. □

Lemma 7.5.25. Let 𝜀𝑥 be a constant where 0 ≤ 𝜀𝑥 < 𝑥. Let 𝜀𝑦 be defined similarly. The function

𝑓 (𝑥, 𝑦) defined as

𝑓 (𝑥, 𝑦) B 1√
𝑥 − 𝜀𝑥

√
𝑦 − 𝜀𝑦

− 1√
𝑥
√
𝑦

is decreasing in 𝑥 and 𝑦.

Proof of Lemma 7.5.25. It is enough to just check the inequality for 𝑥. We take the derivative of
𝑓 (𝑥, 𝑦)with respect to 𝑥 and get

1
2

(
− 1
(𝑥 − 𝜀𝑥)3/2(𝑦 − 𝜀𝑦)1/2

+ 1
𝑥3/2𝑦1/2

)
< 0,

where the inequality follows from observing 0 < 𝑥− 𝜀𝑥 ≤ 𝑥 and similarly for 𝑦. This completes
the proof of Lemma 7.5.25. □

Proof of Theorem 31

First, we construct ℒ★.

Lemma 7.5.26. Let ℒ★ B I − (D★)−1/2 A★ (D★)−1/2
. Then, I − ℒ★

has the following block structure.

𝐿1 𝐿2 𝑅

𝐿1
𝐾𝑝

𝑛
2 ·(𝑝· 𝐾+1

2 +𝑞)
· 1𝑛/4×𝑛/4 𝑝

𝑛
2 ·(𝑝· 𝐾+1

2 +𝑞)
· 1𝑛/4×𝑛/4 𝑞√

𝑛
2 ·(𝑝· 𝐾+1

2 +𝑞)· 𝑛2 ·(𝑝+𝑞)
· 1𝑛/2×𝑛/2

𝐿2
𝑝

𝑛
2 ·(𝑝· 𝐾+1

2 +𝑞)
· 1𝑛/4×𝑛/4 𝐾𝑝

𝑛
2 ·(𝑝· 𝐾+1

2 +𝑞)
· 1𝑛/4×𝑛/4

𝑅
𝑞√

𝑛
2 ·(𝑝· 𝐾+1

2 +𝑞)· 𝑛2 ·(𝑝+𝑞)
· 1𝑛/2×𝑛/2 𝑝

𝑛
2 ·(𝑝+𝑞)

· 1𝑛/2×𝑛/2

284

Proof of Lemma 7.5.26. It is easy to see that for any 𝑣 ∈ 𝐿, we have 𝒅★[𝑣] = 𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
)

and
for any 𝑣 ∈ 𝑅, we have 𝒅★[𝑣] = 𝑛

2 · (𝑝 + 𝑞). Lemma 7.5.26 follows by noting that every element

of I − ℒ★ is of the form 𝒂★
𝑖
[𝑗]/

√
𝒅★[𝑖]𝒅★[𝑗]. □

Next, we analyze the eigenvalues and eigenvectors of ℒ★.

Lemma 7.5.27. Up to normalization and sign, the eigenvector-eigenvalue pairs of I−ℒ★
corresponding

to the nonzero eigenvalues of I − ℒ★
are

(𝜆★
1 , 𝒖

★
1) =

(
1,

[
1𝑛/4 ⊕ 1𝑛/4 ⊕ 𝑦+ · 1𝑛/4 ⊕ 𝑦+ · 1𝑛/4

])
(𝜆★

2 , 𝒖
★
2) =

(
(𝐾 − 1)𝑝

2
(
𝑝 · 𝐾+1

2 + 𝑞
) , [1𝑛/4 ⊕ −1𝑛/4 ⊕ 0𝑛/4 ⊕ 0𝑛/4

])
(𝜆★

3 , 𝒖
★
3) =

(
−1 + 𝑝

(
1

𝑝 + 𝑞 +
𝐾 + 1

𝑝(𝐾 + 1) + 2𝑞

)
,
[
1𝑛/4 ⊕ 1𝑛/4 ⊕ 𝑦− · 1𝑛/4 ⊕ 𝑦− · 1𝑛/4

])
where 𝑦+ and 𝑦− are chosen according to the formulas

𝑦+ =

√
2(𝑝 + 𝑞)

𝑝(𝐾 + 1) + 2𝑞
𝑦− = −

√
𝑝(𝐾 + 1) + 2𝑞

2(𝑝 + 𝑞) .

Moreover, we have 𝜆★
1 > 𝜆★

2 > 𝜆★
3 > 0 and

𝜆★
2 − 𝜆★

3 ≥ 1 − 𝑝2(𝐾 + 3) + 4𝑝𝑞
𝑝2(𝐾 + 3) + 4𝑝𝑞 + 2𝑞2 .

Proof of Lemma 7.5.27. As we can see from Lemma 7.5.26, I − ℒ★ is a matrix whose rank is at
most 3, since it can be constructed by carefully repeating 3 distinct column vectors. Thus, it can
have at most 3 nonzero eigenvalues. In what follows, we consider the case where 𝐾 > 1 so that
there are exactly 3 nonzero eigenvalues.

The next step is to confirm that the stated eigenvalue-eigenvector pairs are in fact valid. We
begin with 𝒖★1 . Every entry in the first 𝑛/2 entries of (I − ℒ★)𝒖★1 can be expressed as

𝑛

4 ·
𝐾𝑝

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
) + 𝑛4 · 𝑝

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
) + 𝑛2 · ©«

𝑞 ·
√

2(𝑝+𝑞)
𝑝(𝐾+1)+2𝑞√

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
)
· 𝑛2 · (𝑝 + 𝑞)

ª®®¬
=
(𝐾 + 1)𝑝

(𝐾 + 1)𝑝 + 2𝑞
+

𝑞 ·
√

2(𝑝+𝑞)
𝑝(𝐾+1)+2𝑞√(

𝑝 · 𝐾+1
2 + 𝑞

)
(𝑝 + 𝑞)

=
(𝐾 + 1)𝑝

(𝐾 + 1)𝑝 + 2𝑞
+
𝑞 ·

√
2

𝑝(𝐾+1)+2𝑞√(
𝑝 · 𝐾+1

2 + 𝑞
)

=
(𝐾 + 1)𝑝

(𝐾 + 1)𝑝 + 2𝑞
+ 2𝑞
(𝐾 + 1)𝑝 + 2𝑞

= 1,

and every entry in the second 𝑛/2 entries of (I − ℒ★)𝒖★1 can be expressed as

𝑛

2 ·
𝑞√

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
)
· 𝑛2 · (𝑝 + 𝑞)

+ 𝑛2 ·
𝑝

𝑛
2 · (𝑝 + 𝑞)

·

√
2(𝑝 + 𝑞)

𝑝(𝐾 + 1) + 2𝑞

285

=
𝑞√(

𝑝 · 𝐾+1
2 + 𝑞

)
(𝑝 + 𝑞)

+
𝑝

(𝑝 + 𝑞) ·

√
2(𝑝 + 𝑞)

𝑝(𝐾 + 1) + 2𝑞

=
𝑞√(

𝑝 · 𝐾+1
2 + 𝑞

)
(𝑝 + 𝑞)

+ 𝑝 ·
√

1(
𝑝 · 𝐾+1

2 + 𝑞
)
(𝑝 + 𝑞)

=

√
𝑝 + 𝑞√

𝑝 · 𝐾+1
2 + 𝑞

=

√
2(𝑝 + 𝑞)

𝑝(𝐾 + 1) + 2𝑞
= 𝑦+.

For 𝒖★2 , we can use the block structure and easily verify(
I − ℒ★) 𝒖★2 =

𝑛

4 ·
(𝐾 − 1)𝑝

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
) [
1𝑛/4 ⊕ −1𝑛/4 ⊕ 0𝑛/4 ⊕ 0𝑛/4

]
= 𝜆★

2𝒖
★
2 .

We now address 𝒖★3 . The first 𝑛/2 entries of (I − ℒ★)𝒖★3 are

𝑛

4 ·
𝐾𝑝

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
) + 𝑛4 · 𝑝

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
) + 𝑛2 · ©«

𝑞 · −
√

𝑝(𝐾+1)+2𝑞
2(𝑝+𝑞)√

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
)
· 𝑛2 · (𝑝 + 𝑞)

ª®®¬
=
(𝐾 + 1)𝑝

(𝐾 + 1)𝑝 + 2𝑞
+

©«
𝑞 · −

√
1
𝑝+𝑞

√
𝑝 + 𝑞

ª®®¬ =
(𝐾 + 1)𝑝

(𝐾 + 1)𝑝 + 2𝑞
−

𝑞

𝑝 + 𝑞 = 𝜆★
3 ,

and the second 𝑛/2 entries of (I − ℒ★)𝒖★3 are

𝑛

2 ·
𝑞√

𝑛
2 ·

(
𝑝 · 𝐾+1

2 + 𝑞
)
· 𝑛2 · (𝑝 + 𝑞)

+ 𝑛2 ·
𝑝

𝑛
2 · (𝑝 + 𝑞)

· −

√
𝑝(𝐾 + 1) + 2𝑞

2(𝑝 + 𝑞)

=
𝑞√(

𝑝 · 𝐾+1
2 + 𝑞

)
(𝑝 + 𝑞)

−
𝑝

(𝑝 + 𝑞) ·

√
𝑝(𝐾 + 1) + 2𝑞

2(𝑝 + 𝑞)

= −

√
𝑝(𝐾 + 1) + 2𝑞

2(𝑝 + 𝑞)

(−2𝑞
𝑝(𝐾 + 1) + 2𝑞

+ 𝑝

𝑝 + 𝑞

)
= 𝑦− · 𝜆★

3 .

Finally, it remains to check that 1 > 𝜆★
2 > 𝜆★

3 > 0. The fact that 𝜆★
2 < 1 easily follows from using

𝑝 + 𝑞 > 0. To prepare to bound 𝜆★
2 − 𝜆★

3 , we first use 𝑝 ≥ 𝑞 to establish

𝑝2 − 𝑝𝑞 + 2𝑞2 = 𝑝(𝑝 − 𝑞) + 2𝑞2 ≥ 2𝑞2.

This implies

𝑝𝑞(𝐾 − 1) + 2𝑞2 ≥ 3𝑝2 − 𝑝𝑞 + 2𝑞2 = 2𝑝2 + (𝑝2 − 𝑝𝑞 + 2𝑞2) ≥ 2𝑝2 + 2𝑞2 ,

which rearranges to

𝑝2(𝐾 + 1) + 𝑝𝑞(𝐾 + 3) + 2𝑞2 ≥ 𝑝2(𝐾 + 3) + 4𝑝𝑞 + 2𝑞2.

Next, we write

𝜆★
2 − 𝜆★

3 =

(
(𝐾 − 1)𝑝

2
(
𝑝 · 𝐾+1

2 + 𝑞
)) − (

−1 + 𝑝
(

1
𝑝 + 𝑞 +

𝐾 + 1
𝑝(𝐾 + 1) + 2𝑞

))

286

= 1 −
𝑝

𝑝 + 𝑞 −
2𝑝

𝑝(𝐾 + 1) + 2𝑞
= 1 −

(
𝑝2(𝐾 + 1) + 2𝑝𝑞 + 2𝑝2 + 2𝑝𝑞
(𝑝 + 𝑞)(𝑝(𝐾 + 1) + 2𝑞)

)
= 1 −

𝑝2(𝐾 + 3) + 4𝑝𝑞
𝑝2(𝐾 + 1) + 𝑝𝑞(𝐾 + 3) + 2𝑞2 ≥ 1 −

𝑝2(𝐾 + 3) + 4𝑝𝑞
𝑝2(𝐾 + 3) + 4𝑝𝑞 + 2𝑞2 > 0.

Finally, to show 𝜆★
3 > 0, we write

𝜆★
3 + 1 =

𝑝

𝑝 + 𝑞 +
𝑝(𝐾 + 1)

𝑝(𝐾 + 1) + 2𝑞
>

2𝑝
𝑝 + 𝑞 > 1,

which allows us to complete the proof of Lemma 7.5.27. □

Next, we argue that studying ℒ★, which is formed by taking into account the weighted self-
loops, gives us an understanding that is not too far from that of ℒ★

nl, which is formed by setting
𝑝𝑣𝑣 = 0 for all 𝑣 ∈ 𝑉 .

Lemma 7.5.28. Let P be the diagonal matrix where P[𝑣, 𝑣] = 𝑝𝑣𝑣 . Let ℒ★
nl be the normalized Laplacian

of the graph formed by A★ − P. Then, we haveℒ★ − ℒ★
nl

op ≤
6𝐾
𝑛 − 2 .

Proof of Lemma 7.5.28. Recall L★ B D★ − A★. Let D★
nl be defined analogously to ℒ★

nl. Observe
that we have

ℒ★ =
(
D★)−1/2 L★ (

D★)−1/2

ℒ★
nl =

(
D★

nl
)−1/2 L★ (

D★
nl
)−1/2

.

From this, we see that writing down the 𝑣, 𝑤th entry of the difference gives

(
ℒ★

nl − ℒ
★) [𝑣, 𝑤] = L★[𝑣, 𝑤]

©«
1√

(𝒅★[𝑣] − 𝑝𝑣𝑣)(𝒅★[𝑤] − 𝑝𝑤𝑤)
− 1√

𝒅★[𝑣]𝒅★[𝑤]

ª®®¬ .
This resolves to different forms based on whether 𝑣 = 𝑤. When 𝑣 = 𝑤, evaluating the formula
gives (

ℒ★
nl − ℒ

★) [𝑣, 𝑣] = 𝒅★[𝑣] − 𝑝𝑣𝑣
𝒅★[𝑣] − 𝑝𝑣𝑣

−
𝒅★[𝑣] − 𝑝𝑣𝑣

𝒅★[𝑣]
=

𝑝𝑣𝑣

𝒅★[𝑣]
.

When 𝑣 ≠ 𝑤, we apply Lemma 7.5.25 and get

�� (ℒ★
nl − ℒ

★) [𝑣, 𝑤]�� = 𝑝𝑣𝑤
©«

1√
(𝒅★[𝑣] − 𝑝𝑣𝑣)(𝒅★[𝑤] − 𝑝𝑤𝑤)

− 1√
𝒅★[𝑣]𝒅★[𝑤]

ª®®¬
≤ 𝐾𝑝

(
1

𝑛𝑝/2 − 𝑝 −
1

𝑛𝑝/2

)
=

4𝐾
𝑛2 − 2𝑛

.

Using this analysis and applying Lemma 7.5.24 gives

ℒ★
nl − ℒ

★

op ≤ max
𝑣∈𝑉

𝑝𝑣𝑣

𝒅★[𝑣]
+ 𝑛max

𝑣≠𝑤
𝑝𝑣𝑤

©«
1√

(𝒅★[𝑣] − 𝑝𝑣𝑣)(𝒅★[𝑤] − 𝑝𝑤𝑤)
− 1√

𝒅★[𝑣]𝒅★[𝑤]

ª®®¬
287

≤ 2𝐾
𝑛
+ 𝑛max

𝑣≠𝑤
𝑝𝑣𝑤

©«
1√

(𝒅★[𝑣] − 𝑝𝑣𝑣)(𝒅★[𝑤] − 𝑝𝑤𝑤)
− 1√

𝒅★[𝑣]𝒅★[𝑤]

ª®®¬
≤ 2𝐾

𝑛
+ 4𝐾
𝑛 − 2 ≤

6𝐾
𝑛 − 2 ,

completing the proof of Lemma 7.5.28. □

This gives Lemma 7.5.29, which means we can use 𝒖★2 as a suitable proxy for sign
(
𝒖2(ℒ★

nl)
)
.

Lemma 7.5.29. There exists a constant 𝐶(𝛼, 𝐾) depending on 𝛼 and 𝐾 such that we have𝒖2(ℒ★
nl) − 𝒖★2

∞ ≤

𝐶(𝛼, 𝐾)
𝑛

.

This implies that for all 𝑛 sufficiently large, we have sign
(
𝒖2(ℒ★

nl)
)
= sign

(
𝒖★2

)
.

Proof of Lemma 7.5.29. By Lemma 7.5.27, Weyl’s inequality, and Lemma 7.5.28, we know that
for all 𝑛 sufficiently large,

𝜆★
2 − 𝜆3(ℒ★

nl) =
(
𝜆★

2 − 𝜆★
3
)
+ (𝜆★

3 − 𝜆3(ℒ★
nl))

≥
(
1 − 𝑝2(𝐾 + 3) + 4𝑝𝑞

𝑝2(𝐾 + 3) + 4𝑝𝑞 + 2𝑞2

)
− 𝐶7.5.28

𝑛
≥ 𝐶1(𝛼, 𝐾).

Combining this with Lemma 7.5.28 again, the Davis-Kahan inequality tells us that𝒖2(ℒ★
nl) − 𝒖★2

∞ ≤

𝒖2(ℒ★
nl) − 𝒖★2

2 ≤

𝐶2(𝛼, 𝐾)
𝑛

,

and then using the fact that
𝒖★2∞ = 1/

√
𝑛 (arising from Lemma 7.5.27) completes the proof of

Lemma 7.5.29. □

We are now ready to prove the inconsistency of normalized spectral bisection on the nested
block examples.

Proof of Theorem 31. Let 𝐺 be a graph drawn from the nested block example. We choose 𝑝 and
𝑞 such that 𝑝 ≳ log 𝑛/𝑛 and 𝑝/𝑞 = 𝛼 ≥ 2 where 𝛼 is some constant and such that 𝑝 and 𝑞 both
satisfy the conditions of Theorem 29. Let 𝐾 ≥ 3𝛼. Observe that the true communities are 𝐿
and 𝑅. We will show that bisection based on 𝒖2 of I − ℒ (corresponding to the eigenvector
associated with the second smallest eigenvalue ofℒ) will attain a large misclassification rate. In
particular, based on our calculation in Lemma 7.5.27, we expect that 𝒖2 will output a bisection
that places 𝐿1 and 𝐿2 into separate clusters. On the other hand, by Theorem 29, for all 𝑛 large
enough, the unnormalized spectral bisection algorithm will be strongly consistent.

First, observe that it is enough to prove the inconsistency result just for the symmetric normal-
ized Laplacian. Indeed, observe that if 𝒖2 is an eigenvector of I − ℒ = D−1/2AD−1/2, then we
have

𝜆2D−1/2𝒖2 = D−1AD−1/2𝒖2 = D−1A(D−1/2𝒖2),

which shows that D−1/2𝒖2 must be the eigenvector of the random-walk normalized Laplacian
I − D−1A corresponding to eigenvalue 𝜆2. Since D is a positive diagonal matrix, it does not

288

change the signs of 𝒖2 and therefore the output of the normalized spectral bisection algorithm
is the same.

Our general approach to prove the inconsistency is to use the Davis-Kahan Theorem, a bound
on

ℒ − ℒ★
nl

op, and a bound on the gap 𝜆★
2 −𝜆3. Let 𝒅min be the minimum degree of the graph

given by adjacency matrix A and let 𝒅★min be the minimum weighted degree of the graph given
by the adjacency matrix A★. First, using [DLS21, Theorem 3.1], we have with probability 1−𝑛−𝑟
for some constant 𝑟 ≥ 1 and constants 𝐶(𝑟) and 𝐶 (the latter of which does not depend on 𝑟),
for all 𝑛 sufficiently large,ℒ − ℒ★

nl

op ≤
𝐶(𝑟)

(
𝑛max(𝑖 , 𝑗) 𝑝𝑖 𝑗

)5/2

min
{
𝒅min , 𝒅

★
min

}3

≤ 𝐶(𝑟) (𝑛 · 𝐾𝑝)5/2

min
{
𝑛(𝑝 + 𝑞)/3, 𝑛(𝑝 + 𝑞)/3 − 𝐶

√
𝑛(𝑝 + 𝑞) log 𝑛

}3

≤ 𝐶1(𝑟, 𝛼)𝐾5/2(𝑛𝑝)5/2

(𝑛𝑝)3
=
𝐶1(𝑟, 𝛼)𝐾5/2
√
𝑛𝑝

.

Next, we invoke Lemma 7.5.28 to write

𝜆2(ℒ★
nl) − 𝜆3 =

(
𝜆★

2 − 𝜆★
3
)
+ (𝜆★

3 − 𝜆3) +
(
𝜆2(ℒ★

nl) − 𝜆
★
2
)

≥
(
1 −

𝑝2(𝐾 + 3) + 4𝑝𝑞
𝑝2(𝐾 + 3) + 4𝑝𝑞 + 2𝑞2

)
− 𝐶2(𝑟, 𝛼)𝐾5/2

√
𝑛𝑝

− 𝐶7.5.28
𝑛
≥ 𝐶𝑔(𝛼, 𝐾),

where the last line denotes a positive constant depending on 𝑞 and 𝐾 (this constant will always
be positive for sufficiently large 𝑛, as we showed that 𝜆★

2 − 𝜆★
3 > 0 in Lemma 7.5.27).

Putting everything together, we get by the Davis-Kahan theorem that some signing of 𝒖2
satisfies𝒖2 − 𝒖2(ℒ★

nl)

2 ≤

ℒ − ℒ★
nl

op

min
{��𝜆2(ℒ★

nl) − 𝜆3
�� , 1 − 𝜆2(ℒ★

nl)
} ≤ 𝐶3(𝑟)𝐾5/2

𝐶′𝑔(𝛼, 𝐾)
√
𝑛𝑝
≤ 𝐶4(𝑟, 𝛼, 𝐾)√

𝑛𝑝
.

Now, consider the subset of coordinates of 𝒖2 belonging to 𝐿1. Suppose 𝑚 of these coordinates
do not agree in sign with 𝒖★2 . To maximize 𝑚, each of these coordinates in 𝒖2 should be 0,
so using this reasoning and applying Lemma 7.5.29 means the total ℓ2 error can be bounded
(using Lemma 7.5.28) as

𝑚

(
1√
𝑛/2
− 𝐶7.5.28

𝑛

)2

≤
𝒖2 − 𝒖2(ℒ★

nl)
2

2 ≤
𝐶4(𝑟, 𝛼, 𝐾)2

𝑛𝑝
.

This means the number of coordinates 𝑚 on which 𝒖2 and 𝒖★2 disagree on is at most

𝑛 · 𝐶5(𝑟, 𝛼, 𝐾)2
2𝑛𝑝 ,

and therefore the misclassification rate of 𝒖2 with respect to the true labeling induced by 𝐿 and
𝑅 must be at least

𝑛
4 −

𝑛·𝐶5(𝑟,𝛼,𝐾)2
2𝑛𝑝

𝑛
=

1
4 −

𝐶5(𝑟, 𝛼, 𝐾)2
2𝑛𝑝 .

Since 𝑝 ≳ log 𝑛/𝑛, this completes the proof of Theorem 31. □

289

Figure 7.2.: Agreement with the planted bisection of the bipartition obtained from un-
normalized spectral bisection, for graphs generated from a distribution in
NSSBM(𝑛, 𝑝, 𝑝, 𝑞) for fixed values of 𝑛, 𝑝 and varying values of 𝑝 > 𝑞. The left
plot uses 𝑝 = 1/2, the right plot uses 𝑝 = 1. The solid red curves plot the function
𝑝thr(𝑞) (see (7.6.1)), and the dashed red curves plot the function 𝑝info(𝑞) (see (7.6.2)).

7.6. Additional experiments

In this section, we show more numerical trials that complement those discussed in Section 7.4.

7.6.1. Varying edge probabilities in an NSSBM

In Section 7.4, we investigated the behavior of an NSSBM model by fixing the values of 𝑝, 𝑞 and
varying the largest edge probability 𝑝. Here, we take an alternative approach, and instead fix
𝑝 and vary the values of 𝑝 and 𝑞.

Setup. Let us fix 𝑛 = 2000, 𝑝 ∈ {1/2, 1}. For varying 𝑝, 𝑞 in the range [1/𝑛, 9/20] such that
𝑝 > 𝑞, we sample 𝑡 = 3 independent draws 𝐺 from the same benchmark distribution 𝒟𝑝,𝑝,𝑞

used in Section 7.4. For each of them, we compute the agreement of the bipartition obtained
by unnormalized spectral bisection with respect to the planted bisection. For each (𝑝, 𝑞), we
plot the average agreement across the 𝑡 independent draws. The results are shown in Fig. 7.2,
where in the left and right plot we ran the experiments with 𝑝 = 1/2 and 𝑝 = 1 respectively.
The lower diagonal of these plots, where 𝑝 ≤ 𝑞, is artificially set to 0.

Theoretical framing. According to Theorem 29, fixing the value of 𝑝 ∈ {1/2, 1}, we obtain
that unnormalized spectral bisection achieves exact recovery provided that for 𝑞 ∈ [1/𝑛, 9/20]
one has 𝑝 ≥ 𝑝thr(𝑞)where

𝑝thr(𝑞) =
√
𝑝 log 𝑛
√
𝑛
+ 𝑞 (7.6.1)

is obtained by rearranging the precondition of Theorem 29, ignoring the constants, and disre-
garding the fact that 𝛼 should be 𝑂(1). The solid red curve in Fig. 7.2 plots 𝑝thr(𝑞) as a function
of 𝑞. For comparison, the information-theoretic threshold for SSBM [ABH16] demands that

290

𝑝 ≥ 𝑝info(𝑞)where

𝑝info(𝑞) =
(
√

2
√

log 𝑛
𝑛
+ √𝑞

)2

. (7.6.2)

The dashed red curve in Fig. 7.2 plots 𝑝info(𝑞) as a function of 𝑞.

Empirical evidence. From Fig. 7.2, one can see that our experiments reflect the behavior pre-
dicted by Theorem 29 quite closely, although empirically we achieve 100% agreement slightly
above 𝑝thr(𝑞) (i.e. the solid red curve). However, this is likely due to the constant factors from
Theorem 29 that we ignored, and also 𝑛 = 2000 is plausibly too small to show asymptotic
behaviors. Nevertheless, we do achieve 100% agreement consistently as soon as we surpass the
information-theoretic threshold 𝑝info(𝑞): in the regime of our experiment, it appears that the
unnormalized Laplacian is robust all the way to the optimal threshold for exact recovery in the
SSBM.

7.6.2. Varying the size of a planted clique in a DCM

In some sense, the experiments from Section 7.4 and Section 7.6.1 can be thought of as ex-
periments for the deterministic clusters model too. This is because each realization of the
internal edges gives rise to a different DCM distribution (see Section 7.2). We complement our
previous discussion by illustrating the behavior of certain families of DCM distributions that
are conceptually different than those considered in Section 7.4.

Benchmark distribution. Let 𝑛 be divisible by 4 and let {𝑃1 , 𝑃−2} be a partitioning of𝑉 = [𝑛]
into two equally-sized subsets. Fix 𝑝 ∈ [0, 1]. For some set 𝑆 ⊆ 𝑃1 such that 𝑆 = {1, . . . , |𝑆 |} (for
simplicity), let 𝐺2 = (𝑃2 , 𝐸2) ∼ ER(𝑛/2, 𝑝) be a graph drawn from the Erdős-Rényi distribution
with sampling rate 𝑝, and let 𝐺1 = (𝑃1 , 𝐸1) ∼ ERPC(𝑛/2, 𝑝, 𝑆) be also a graph drawn from
the Erdős-Rényi distribution with sampling rate 𝑝 where we additionally plant a clique on
the vertices 𝑆. Fixing 𝐺1 , 𝐺2, for 𝑞 ∈ [0, 1] we consider the distribution 𝒟𝐺1 ,𝐺2

𝑞 over graphs
𝐺 = (𝑉, 𝐸) where 𝐺[𝑃1] = 𝐺1, 𝐺[𝑃2] = 𝐺2, and every edge (𝑢, 𝑣) ∈ 𝑃1 × 𝑃2 is sampled
independently with probability 𝑞. One can see that 𝒟𝐺1 ,𝐺2

𝑞 is in fact in the set DCM(𝑛, 𝑑in , 𝑞)
for some 𝑑in.

Setup. Let us fix 𝑛 = 2000, 𝑝 = 9/
√
𝑛, 𝑞 = 1/

√
𝑛. For varying values of |𝑆 | in the range

[|𝑃1 |/10, |𝑃1 |], we sample 𝐺1 = (𝑃1 , 𝐸1) ∼ ERPC(𝑛/2, 𝑝, 𝑆) and 𝐺2 = (𝑃2 , 𝐸2) ∼ ER(𝑛/2, 𝑝), and
then draw 𝑡 = 10 independent samples 𝐺 from 𝒟𝐺1 ,𝐺2

𝑞 . For each sample 𝐺, we run spectral
bisection (i.e. Algorithm 19) with matrices L,ℒsym ,ℒrw ,A. Then, we compute the agreement
of the bipartition hence obtained with respect to the planted bisection, and average it out across
the 𝑡 independent draws. The results are shown in the left plot of Fig. 7.3. Again, another
natural way to get a bipartition of 𝑉 from the eigenvector is a sweep cut, and the average
agreements that this results in are shown in the right plot of Fig. 7.3.

Theoretical framing. Ignoring the constants, Theorem 30 guarantees that exact re-
covery is achieved by unnormalized spectral bisection as long as 𝑑in ≥ 𝑛𝑞 +

√
𝑛 and

𝜆3(L̂) − 𝜆2(L̂) ≥
√
𝑛 + 𝑛𝑞 +

√
𝑛𝑞 log 𝑛 + log 𝑛, where L̂ is the expected Laplacian of 𝒟𝐺1 ,𝐺2

𝑞 .
For each clique size that we consider, Fig. 7.4 shows the minimum in-cluster degree of the
graphs 𝐺1 , 𝐺2 that we draw (in the left plot), and the spectral gap 𝜆3(L̂) − 𝜆2(L̂). The red
horizontal lines in the left and right plot respectively correspond to the value of 𝑛𝑞 +

√
𝑛 and√

𝑛 + 𝑛𝑞 +
√
𝑛𝑞 log 𝑛 + log 𝑛 on the 𝑦-axis, indicating the lower bound on 𝑑in and 𝜆3(L̂) − 𝜆2(L̂)

demanded by Theorem 30.

291

Figure 7.3.: Agreement with the planted bisection of the bipartition obtained from several
matrices associated with an input graph generated from a distribution 𝒟𝐺1 ,𝐺2

𝑞 ∈
DCM(𝑛, 𝑑in , 𝑞) for fixed values of 𝑛, 𝑞 and varying the size of the planted clique 𝑆. In
the left plot, the bipartition is the 0-cut of the second eigenvector, as in Algorithm 19.
In the right plot, the bipartition is the sweep cut of the first 𝑛/2 vertices in the second
eigenvector.

Figure 7.4.: The minimum in-cluster degree 𝑑in and the spectral gap𝜆3(L̂)−𝜆2(L̂)of distributions
𝒟𝐺1 ,𝐺2
𝑞 ∈ DCM(𝑛, 𝑑in , 𝑞)with fixed values of 𝑛, 𝑞 and varying the size of the planted

clique 𝑆. The red horizontal line on the left corresponds to the value 𝑛𝑞 +
√
𝑛, the

red horizontal line on the right corresponds to the value
√
𝑛+𝑛𝑞+

√
𝑛𝑞 log 𝑛+ log 𝑛.

292

Empirical evidence: consistency. From Fig. 7.4, one can see that all the distributions
𝒟𝐺1 ,𝐺2
𝑞 that we use roughly meet the requirement of Theorem 30. Indeed, in the left plot of

Fig. 7.3 one sees that unnormalized spectral bisection consistently achieves exact recovery for
all clique sizes. On the contrary, the bipartition obtained by running spectral bisection with
the adjacency matrix A misclassifies a fraction of the vertices for certain sizes of the planted
clique. Nevertheless, the sweep cut obtained from all the matrices recovers the planted bisection
exactly.

Empirical evidence: example embedding. Let us fix the value |𝑆 | = 800 for the size of the
planted clique, for which we see in Fig. 7.3 that the adjacency matrix fails to recover the planted
bisection. We generate a graph from a distribution 𝒟𝐺1 ,𝐺2

𝑞 with clique size |𝑆 | = 800, and plot
how the vertices are embedded in the real line by the second eigenvector of all the matrices we
consider. The result is shown in Fig. 7.5, where the three horizontal dashed lines, from top to
bottom, respectively correspond to the value of 1/

√
𝑛, 0,−1/

√
𝑛 on the 𝑦-axis. Graphically, one

can see that the embedding in the unnormalized Laplacian is indeed the one that moves the
least away from the values ±1/

√
𝑛, and in fact the vertices {1, . . . , 800} ⊆ 𝑃1 where we plant the

clique concentrate even more around 1/
√
𝑛. This is a phenomenon related to the one illustrated

by Fig. 7.1. Finally, one can see from the embedding that splitting vertices around 0 does result
in misclassifying a fraction of the vertices for the adjacency matrix. However, taking a sweep
cut that splits the vertices into two equally sized parts recovers the planted bisection for all
matrices. This reflects the results shown in Fig. 7.3.

Figure 7.5.: Embedding of the vertices given by the second eigenvector 𝒖2 of several matrices
associated with a graph sampled from a distribution𝒟𝐺1 ,𝐺2

𝑞 ∈ DCM(𝑛, 𝑑in , 𝑞), with
the size of the planted clique set to |𝑆 | = 2/5 · 𝑛. Horizontal dashed lines, from top
to bottom, correspond to 1/

√
𝑛, 0,−1/

√
𝑛 respectively.

293

Bibliography

[Abb18] Emmanuel Abbe. Community detection and stochastic block models: recent
developments. Journal of Machine Learning Research, 18(177):1–86, 2018. arXiv:
1703.10146 [math.PR]. url: http://jmlr.org/papers/v18/16-480.html
(cited on pages 251, 261).

[ABH16] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recov-
ery in the stochastic block model. IEEE Transactions on Information Theory,
62(1):471–487, 2016. doi: 10.1109/TIT.2015.2490670. arXiv: 1405.3267
[cs.SI] (cited on pages 255, 261, 290).

[ABRS20] Emmanuel Abbe, Enric Boix-Adserà, Peter Ralli, and Colin Sandon. Graph
powering and spectral robustness. SIAM Journal on Mathematics of Data

Science, 2(1):132–157, 2020. doi: 10.1137/19M1257135. arXiv: 1809.04818
[cs.DS]. url: https://doi.org/10.1137/19M1257135 (cited on page 261).

[AFWZ20] Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. En-
trywise eigenvector analysis of random matrices with low expected rank.
Annals of statistics, 48(3):1452, 2020. arXiv: 1709.09565 [math.ST] (cited on
pages 20, 251, 255, 258, 259, 261, 274).

[ABKLRR20] Rediet Abebe, Solon Barocas, Jon Kleinberg, Karen Levy, Manish Raghavan,
and David G Robinson. Roles for computing in social change. In Proceedings

of the 2020 conference on fairness, accountability, and transparency, pages 252–
260, 2020 (cited on page 140).

[AAKMRZ22] Jacob D Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgen-
stern, Chris Russell, and Jie Zhang. Active sampling for min-max fairness.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference

on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 53–65. PMLR, July 2022. url: https://proceedings.mlr.press/
v162/abernethy22a.html (cited on pages 136, 137, 142).

[ABCPK18] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet. Turning your weakness into a strength: watermarking deep neural
networks by backdooring. In Proceedings of the 27th USENIX Conference on Se-

curity Symposium, SEC’18, pages 1615–1631, Baltimore, MD, USA. USENIX
Association, August 2018. arXiv: 1802.04633 [cs.LG] (cited on pages 18,
213).

[AJK24] Deeksha Adil, Shunhua Jiang, and Rasmus Kyng. Acceleration meets inverse
maintenance: faster ℓ∞-regression, 2024. arXiv: 2409.20030 [cs.DS]. url:
https://arxiv.org/abs/2409.20030 (cited on page 138).

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative

refinement for ℓ𝑝-norm regression. In Proceedings of the 2019 Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA). 2019, pages 1405–1424. doi: 10.
1137/1.9781611975482.86. arXiv: 1901.06764 [cs.DS]. url: https://
epubs.siam.org/doi/abs/10.1137/1.9781611975482.86 (cited on
pages 140, 168).

294

https://arxiv.org/abs/1703.10146
http://jmlr.org/papers/v18/16-480.html
https://doi.org/10.1109/TIT.2015.2490670
https://arxiv.org/abs/1405.3267
https://arxiv.org/abs/1405.3267
https://doi.org/10.1137/19M1257135
https://arxiv.org/abs/1809.04818
https://arxiv.org/abs/1809.04818
https://doi.org/10.1137/19M1257135
https://arxiv.org/abs/1709.09565
https://proceedings.mlr.press/v162/abernethy22a.html
https://proceedings.mlr.press/v162/abernethy22a.html
https://arxiv.org/abs/1802.04633
https://arxiv.org/abs/2409.20030
https://arxiv.org/abs/2409.20030
https://doi.org/10.1137/1.9781611975482.86
https://doi.org/10.1137/1.9781611975482.86
https://arxiv.org/abs/1901.06764
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.86
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.86

[ADW19] Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. Fair regression:
quantitative definitions and reduction-based algorithms. In International

Conference on Machine Learning, pages 120–129. PMLR, 2019 (cited on
page 136).

[AHV05] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geomet-
ric approximation via coresets. Combinatorial and computational geometry,
52(1):1–30, 2005 (cited on page 23).

[AS10] Pankaj K Agarwal and R Sharathkumar. Streaming algorithms for extent
problems in high dimensions. In Proceedings of the Symposium on Discrete

Algorithms, pages 1481–1489, 2010 (cited on page 29).
[AKJ14] Nir Ailon, Zohar Karnin, and Thorsten Joachims. Reducing dueling ban-

dits to cardinal bandits. In International Conference on Machine Learning,
pages 856–864. PMLR, 2014 (cited on page 191).

[ACCO00] Knud D Andersen, Edmund Christiansen, Andrew R Conn, and Michael L
Overton. An efficient primal-dual interior-point method for minimizing a
sum of euclidean norms. SIAM Journal on Scientific Computing, 22(1):243–262,
2000 (cited on page 85).

[And96] Knud D. Andersen. An efficient newton barrier method for minimizing a
sum of euclidean norms. SIAM Journal on Optimization, 6(1):74–95, 1996.
doi: 10.1137/0806006. eprint: https://doi.org/10.1137/0806006. url:
https://doi.org/10.1137/0806006 (cited on pages 85, 86).

[AJB+17] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Em-
manuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron
Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look at mem-
orization in deep networks. In Doina Precup and Yee Whye Teh, editors, Pro-

ceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 233–242. PMLR, 2017. arXiv:
1706.05394 [stat.ML] (cited on page 224).

[AGM15] Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D Milman.
Asymptotic Geometric Analysis, Part I, volume 202. American Mathematical
Soc., 2015 (cited on page 37).

[ANSS22] Arash Asadpour, Rad Niazadeh, Amin Saberi, and Ali Shameli. Sequential
submodular maximization and applications to ranking an assortment of
products. Operations Research, 2022. arXiv: 2002.09458 [cs.GT] (cited on
page 136).

[ABD21] Konstantin Avrachenkov, Andrei Bobu, and Maximilien Dreveton. Higher-
order spectral clustering for geometric graphs. Journal of Fourier Analysis and

Applications, 27(2):22, March 2021. doi: 10.1007/s00041- 021- 09825- 2.
arXiv: 2009.11353 [cs.LG]. url: https://doi.org/10.1007/s00041-021-
09825-2 (cited on page 261).

[Bac08] Francis R Bach. Consistency of the group lasso and multiple kernel learning.
Journal of Machine Learning Research, 9(6), 2008. arXiv: 0707.3390 [cs.LG]
(cited on page 92).

[BH21] Maria-Florina Balcan and Nika Haghtalab. Noise in classification. Beyond

the Worst-Case Analysis of Algorithms:361, 2021 (cited on page 224).
[BLM21] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Regularized online allo-

cation problems: fairness and beyond. In International Conference on Machine

Learning, pages 630–639. PMLR, 2021 (cited on page 140).

295

https://doi.org/10.1137/0806006
https://doi.org/10.1137/0806006
https://doi.org/10.1137/0806006
https://arxiv.org/abs/1706.05394
https://arxiv.org/abs/2002.09458
https://doi.org/10.1007/s00041-021-09825-2
https://arxiv.org/abs/2009.11353
https://doi.org/10.1007/s00041-021-09825-2
https://doi.org/10.1007/s00041-021-09825-2
https://arxiv.org/abs/0707.3390

[BHKKMP19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur
Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound for
the planted clique problem. SIAM Journal on Computing, 48(2):687–735, 2019.
arXiv: 1604.03084 [cs.CC] (cited on page 263).

[BS16] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L.

Rev., 104:671, 2016 (cited on pages 136, 140).
[Bar14] Alexander Barvinok. Thrifty approximations of convex bodies by polytopes.

International Mathematics Research Notices, 2014(16):4341–4356, 2014. doi: 10.
1093/imrn/rnt078. arXiv: 1206.3993 [math.MG] (cited on page 29).

[BV06] Eyal Beigman and Rakesh Vohra. Learning from revealed preference. In
Proceedings of the 7th ACM Conference on Electronic Commerce, pages 36–42,
2006 (cited on page 191).

[BDDMR13] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melen-
berg, and Gĳs Rennen. Robust solutions of optimization problems affected
by uncertain probabilities. Management Science, 59(2):341–357, 2013 (cited on
pages 136, 140).

[BHJKR21] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron
Roth. Fairness in criminal justice risk assessments: the state of the art. Soci-

ological Methods & Research, 50(1):3–44, 2021 (cited on page 136).
[BFT11] Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. The price of

fairness. Operations research, 59(1):17–31, 2011 (cited on page 140).
[BFT12] Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. On the

efficiency-fairness trade-off. Management Science, 58(12):2234–2250, 2012
(cited on page 140).

[BFL21] Omar Besbes, Yuri Fonseca, and Ilan Lobel. Contextual inverse optimization:
offline and online learning, 2021. doi: 10.48550/ARXIV.2106.14015. url:
https://arxiv.org/abs/2106.14015 (cited on page 198).

[BV24] Abhinav Bhardwaj and Van Vu. Matrix perturbation: davis-kahan in the infin-

ity norm. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Dis-

crete Algorithms (SODA). January 2024, pages 880–934. arXiv: 2304.00328
[math.PR] (cited on pages 255, 258, 259).

[BJKMMW24] Aditya Bhaskara, Agastya Vibhuti Jha, Michael Kapralov, Naren Sarayu
Manoj, Davide Mazzali, and Weronika Wrzos-Kaminska. On the robustness
of spectral algorithms for semirandom stochastic block models. Advances in

Neural Information Processing Systems (NeurIPS), 37, 2024. arXiv: 2412.14315
[stat.ML] (cited on pages 21, 251).

[BMV23] Aditya Bhaskara, Sepideh Mahabadi, and Ali Vakilian. Tight bounds for
volumetric spanners and applications. In Conference on Neural Information

Processing Systems, 2023. arXiv: 2310.00175 [cs.DS] (cited on page 30).
[BGW18] Asia J Biega, Krishna P Gummadi, and Gerhard Weikum. Equity of attention:

amortizing individual fairness in rankings. In The 41st international acm sigir

conference on research & development in information retrieval, pages 405–414,
2018 (cited on page 140).

[BBKLY18] Avrim Blum, Vladimir Braverman, Ananya Kumar, Harry Lang, and Lin
F. Yang. Approximate convex hull of data streams. In Proceedings of the

International Colloquium on Automata, Languages, and Programming (ICALP),
volume 107, 21:1–21:13, 2018. arXiv: 1712.04564 [cs.CG] (cited on page 29).

296

https://arxiv.org/abs/1604.03084
https://doi.org/10.1093/imrn/rnt078
https://doi.org/10.1093/imrn/rnt078
https://arxiv.org/abs/1206.3993
https://doi.org/10.48550/ARXIV.2106.14015
https://arxiv.org/abs/2106.14015
https://arxiv.org/abs/2304.00328
https://arxiv.org/abs/2304.00328
https://arxiv.org/abs/2412.14315
https://arxiv.org/abs/2412.14315
https://arxiv.org/abs/2310.00175
https://arxiv.org/abs/1712.04564

[BGLMSY24] Avrim Blum, Meghal Gupta, Gene Li, Naren Sarayu Manoj, Aadirupa Saha,
and Yuanyuan Yang. Dueling optimization with a monotone adversary. In
Proceedings of Thirty Fifth Conference on Algorithmic Learning Theory (ALT),
February 2024. arXiv: 2311.11185 [cs.DS] (cited on pages 17, 191, 263).

[BHPQ17] Avrim Blum, Nika Haghtalab, Ariel D Procaccia, and Mingda Qiao. Collab-
orative pac learning. Advances in Neural Information Processing Systems, 30,
2017 (cited on page 140).

[BS95a] Avrim Blum and Joel Spencer. Coloring random and semi-random
k-colorable graphs. Journal of Algorithms, 19(2):204–234, 1995. issn: 0196-
6774. doi: https://doi.org/10.1006/jagm.1995.1034. url: https:
//www.sciencedirect.com/science/article/pii/S0196677485710346
(cited on page 263).

[BS95b] Avrim Blum and Joel Spencer. Coloring random and semi-random
k-colorable graphs. Journal of Algorithms, 19(2):204–234, 1995 (cited on
page 198).

[BOHG13] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham
Gutiérrez. Recommender systems survey. Knowledge-based systems, 46:109–
132, 2013 (cited on page 191).

[Bop87] Ravi B. Boppana. Eigenvalues and graph bisection: an average-case analysis.
In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987),
pages 280–285, 1987. doi: 10.1109/SFCS.1987.22 (cited on page 263).

[BCFGGGGG21] Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geip-
ing, Micah Goldblum, Tom Goldstein, and Arjun Gupta. Strong data aug-
mentation sanitizes poisoning and backdoor attacks without an accuracy
tradeoff. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 3855–3859, June 2021. arXiv:
2011.09527 [cs.CR] (cited on pages 221, 245).

[BLM87] J Bourgain, J Lindenstrauss, and V Milman. Estimates related to steiner
symmetrizations. In Geometric Aspects of Functional Analysis: Israel Seminar

(GAFA) 1987–88, pages 264–273. Springer, 1987 (cited on page 37).
[BLM89] Jean Bourgain, Joram Lindenstrauss, and Vitali Milman. Approximation of

zonoids by zonotopes, 1989 (cited on pages 89, 92, 93, 108, 143).
[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004 (cited on pages 85, 128, 137, 142).
[BRR23] Rainie Bozzai, Victor Reis, and Thomas Rothvoss. The vector balancing

constant for zonotopes. In 2023 IEEE 64th Annual Symposium on Foundations

of Computer Science (FOCS), pages 1292–1300. IEEE, 2023. arXiv: 2210.16460
[math.MG] (cited on page 92).

[Bub15] Sébastien Bubeck. Convex optimization: algorithms and complexity, 2015.
arXiv: 1405.4980 [math.OC] (cited on page 193).

[BCLL18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An ho-
motopy method for lp regression provably beyond self-concordance and
in input-sparsity time. In Proceedings of the 50th Annual ACM SIGACT Sym-

posium on Theory of Computing, STOC 2018, pages 1130–1137, Los Angeles,
CA, USA. Association for Computing Machinery, 2018. isbn: 9781450355599.
arXiv: 1711.01328 [math.OC] (cited on page 140).

297

https://arxiv.org/abs/2311.11185
https://doi.org/https://doi.org/10.1006/jagm.1995.1034
https://www.sciencedirect.com/science/article/pii/S0196677485710346
https://www.sciencedirect.com/science/article/pii/S0196677485710346
https://doi.org/10.1109/SFCS.1987.22
https://arxiv.org/abs/2011.09527
https://arxiv.org/abs/2210.16460
https://arxiv.org/abs/2210.16460
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1711.01328

[BJLLS19] Sébastien Bubeck, Qĳia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford.
Complexity of highly parallel non-smooth convex optimization. In Proceedings of the

33rd International Conference on Neural Information Processing Systems. Curran
Associates Inc., Red Hook, NY, USA, 2019. arXiv: 1906.10655 [math.OC]
(cited on page 146).

[BKS23] Rares-Darius Buhai, Pravesh K. Kothari, and David Steurer. Algorithms
approaching the threshold for semi-random planted clique. In Proceedings

of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
pages 1918–1926, Orlando, FL, USA. Association for Computing Machinery,
2023. isbn: 9781450399135. arXiv: 2212.05619 [cs.DS] (cited on pages 252,
263).

[BPSSW21] Brian Bullins, Kshitĳ Patel, Ohad Shamir, Nathan Srebro, and Blake E
Woodworth. A stochastic newton algorithm for distributed convex opti-
mization. Advances in Neural Information Processing Systems, 34:26818–26830,
2021. arXiv: 2110.02954 [math.OC] (cited on page 140).

[CKP09] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers
with independency constraints. In 2009 IEEE international conference on data

mining workshops, pages 13–18. IEEE, 2009 (cited on page 140).
[CHJJS22] Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron

Sidford. Optimal and adaptive monteiro-svaiter acceleration. In Proceed-

ings of the 36th International Conference on Neural Information Processing Sys-

tems, NIPS ’22, New Orleans, LA, USA. Curran Associates Inc., 2022. isbn:
9781713871088. arXiv: 2205.15371 [math.OC] (cited on pages 141, 146, 149–
151, 153).

[CJJJLST20] Yair Carmon, Arun Jambulapati, Qĳia Jiang, Yujia Jin, Yin Tat Lee, Aaron
Sidford, and Kevin Tian. Acceleration with a ball optimization oracle. In
Proceedings of the 34th International Conference on Neural Information Processing

Systems, NIPS ’20, Red Hook, NY, USA. Curran Associates Inc., 2020. isbn:
9781713829546. arXiv: 2003.08078 [math.OC] (cited on pages 13, 144–146,
153, 155, 163–165).

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from un-
trusted data. In Proceedings of the 49th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2017, pages 47–60, Montreal, Canada. Associ-
ation for Computing Machinery, 2017. isbn: 9781450345286. arXiv: 1611.
02315 [cs.LG] (cited on page 252).

[CZZ18] Jiecao Chen, Qin Zhang, and Yuan Zhou. Tight bounds for collaborative pac
learning via multiplicative weights. Advances in neural information processing

systems, 31, 2018. arXiv: 1805.09217 [cs.LG] (cited on page 140).
[CGSB22] Qinyi Chen, Negin Golrezaei, Fransisca Susan, and Edy Baskoro. Fair as-

sortment planning. arXiv preprint arXiv:2208.07341, 2022 (cited on pages 136,
140).

[CLLLS17] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning, 2017.
arXiv: 1712.05526 [cs.CR] (cited on pages 18, 213, 223).

[CD21] Xue Chen and Michał Dereziński. Query complexity of least absolute devi-
ation regression via robust uniform convergence. In Conference on Learning

Theory, pages 1144–1179. PMLR, 2021. arXiv: 2102.02322 [cs.LG] (cited on
page 92).

298

https://arxiv.org/abs/1906.10655
https://arxiv.org/abs/2212.05619
https://arxiv.org/abs/2110.02954
https://arxiv.org/abs/2205.15371
https://arxiv.org/abs/2003.08078
https://arxiv.org/abs/1611.02315
https://arxiv.org/abs/1611.02315
https://arxiv.org/abs/1805.09217
https://arxiv.org/abs/1712.05526
https://arxiv.org/abs/2102.02322

[CG18] Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-
random adversary. In Conference On Learning Theory, pages 1362–1394.
PMLR, 2018 (cited on page 198).

[CKLV19] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvtiskii.
Matroids, matchings, and fairness. In The 22nd International Conference on

Artificial Intelligence and Statistics, pages 2212–2220. PMLR, 2019 (cited on
page 140).

[Cho16] Alexandra Chouldechova. Fair prediction with disparate impact: a study
of bias in recidivism prediction instruments. big data, 5 (2), 153-163, 2016
(cited on page 136).

[CR18] Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in ma-
chine learning, 2018. arXiv: 1810.08810 [cs.LG]. url: https://arxiv.org/
abs/1810.08810 (cited on page 136).

[CLRS11] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits
with linear payoff functions. In Proceedings of the Fourteenth International Con-

ference on Artificial Intelligence and Statistics, pages 208–214. JMLR Workshop
and Conference Proceedings, 2011 (cited on page 193).

[Cla10] Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the
Frank–Wolfe algorithm. ACM Trans. Algorithms, 6(4), September 2010 (cited
on page 30).

[CCLY19] Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal
algorithm for approximating the john ellipsoid. In Conference on Learning

Theory, pages 849–873. PMLR, 2019. arXiv: 1905.11580 [cs.DS] (cited on
pages 125, 131).

[CLMPS16] Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron
Sidford. Geometric median in nearly linear time. In Proceedings of the forty-

eighth annual ACM symposium on Theory of Computing, pages 9–21, 2016.
arXiv: 1606.05225 [cs.DS] (cited on page 86).

[CP15] Michael B Cohen and Richard Peng. ℓ𝑝 row sampling by lewis weights. In
Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 183–192, 2015. arXiv: 1412.0588 [cs.DS] (cited on pages 93, 125).

[CdM24] Vincent Cohen-Addad, Tommaso d’Orsi, and Aida Mousavifar. A
near-linear time approximation algorithm for beyond-worst-case graph
clustering. In Forty-first International Conference on Machine Learning, 2024.
arXiv: 2406.04857 [cs.DS]. url: https://openreview.net/forum?id=
MSFxOMM0gK (cited on pages 252, 263).

[CGKMN24] Vincent Cohen-Addad, Surya Teja Gavva, CS Karthik, Claire Mathieu, and
Namrata. Fairness of linear regression in decision making. International jour-

nal of data science and analytics, 18(3):337–347, 2024 (cited on page 136).
[CGT00] Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region

methods. SIAM, 2000 (cited on page 142).
[CGNSG23] Sam Corbett-Davies, Johann D Gaebler, Hamed Nilforoshan, Ravi Shroff,

and Sharad Goel. The measure and mismeasure of fairness. The Journal of

Machine Learning Research, 24(1):14730–14846, 2023 (cited on page 136).
[CV15] Benjamin Cousins and Santosh Vempala. Bypassing KLS: Gaussian cooling

and an𝑂∗(𝑁3) volume algorithm. In Proceedings of the Symposium on Theory of

Computing, pages 539–548, 2015. arXiv: 1409.6011 [cs.DS] (cited on page 8).

299

https://arxiv.org/abs/1810.08810
https://arxiv.org/abs/1810.08810
https://arxiv.org/abs/1810.08810
https://arxiv.org/abs/1905.11580
https://arxiv.org/abs/1606.05225
https://arxiv.org/abs/1412.0588
https://arxiv.org/abs/2406.04857
https://openreview.net/forum?id=MSFxOMM0gK
https://openreview.net/forum?id=MSFxOMM0gK
https://arxiv.org/abs/1409.6011

[CBM18] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the
presence of adversaries. Advances in Neural Information Processing Systems,
31, 2018. arXiv: 1806.01471 [stat.ML] (cited on pages 220, 236, 239).

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem
of johnson and lindenstrauss. Random Structures & Algorithms, 22(1):60–65,
2003. doi: https://doi.org/10.1002/rsa.10073 (cited on page 199).

[Dat14] Big Data. Seizing opportunities, preserving values. The White House Report

Washington, 2014 (cited on page 136).
[DPVW14] Mark A Davenport, Yaniv Plan, Ewout Van Den Berg, and Mary Wootters. 1-

bit matrix completion. Information and Inference: A Journal of the IMA, 3(3):189–
223, 2014 (cited on page 198).

[DLS21] Shaofeng Deng, Shuyang Ling, and Thomas Strohmer. Strong consistency,
graph laplacians, and the stochastic block model. Journal of Machine Learn-

ing Research, 22(117):1–44, 2021. arXiv: 2004.09780 [stat.ML] (cited on
pages 20, 251, 255, 257, 258, 261, 278, 289).

[DGT19] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-
independent pac learning of halfspaces with massart noise. Advances in

Neural Information Processing Systems, 32, 2019 (cited on page 198).
[DK23] Ilias Diakonikolas and Daniel M Kane. Algorithmic high-dimensional robust

statistics. Cambridge university press, 2023 (cited on page 224).
[DK20] Kate Donahue and Jon Kleinberg. Fairness and utilization in allocating re-

sources with uncertain demand. In Proceedings of the 2020 conference on fair-

ness, accountability, and transparency, pages 658–668, 2020 (cited on page 140).
[DGN16] J Duchi, P Glynn, and Hongseok Namkoong. Statistics of robust optimiza-

tion: a generalized empirical likelihood approach. arxiv. Machine Learning,
2016 (cited on pages 136, 140).

[DHSSZ15] Miroslav Dudík, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins,
and Masrour Zoghi. Contextual dueling bandits. In Conference on Learning

Theory, pages 563–587. PMLR, 2015 (cited on page 191).
[DHPRZ12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. Fairness through awareness. In Proceedings of the 3rd innovations in

theoretical computer science conference, pages 214–226, 2012 (cited on page 140).
[Ehr05] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science &

Business Media, 2005 (cited on page 140).
[Fei21] Uriel Feige. Introduction to semirandom models. In Beyond the Worst-Case Anal-

ysis of Algorithms. TimEditor Roughgarden, editor. Cambridge University
Press, 2021, pages 189–211. doi: 10.1017/9781108637435.013 (cited on
pages 191, 198).

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J.

Comput. Syst. Sci., 63(4):639–671, December 2001. issn: 0022-0000. doi: 10.
1006/jcss.2001.1773. url: https://doi.org/10.1006/jcss.2001.1773
(cited on pages 20, 252, 255, 263).

[FL11] Dan Feldman and Michael Langberg. A unified framework for approximat-
ing and clustering data. In Proceedings of the forty-third annual ACM symposium

on Theory of computing, pages 569–578, 2011. arXiv: 1106.1379 [cs.LG] (cited
on page 82).

300

https://arxiv.org/abs/1806.01471
https://doi.org/https://doi.org/10.1002/rsa.10073
https://arxiv.org/abs/2004.09780
https://doi.org/10.1017/9781108637435.013
https://doi.org/10.1006/jcss.2001.1773
https://doi.org/10.1006/jcss.2001.1773
https://doi.org/10.1006/jcss.2001.1773
https://arxiv.org/abs/1106.1379

[FZ20] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and
why: discovering the long tail via influence estimation. Advances in Neural In-

formation Processing Systems, 33:2881–2891, 2020. arXiv: 2008.03703 [cs.LG]
(cited on page 224).

[GMPS19] Sainyam Galhotra, Arya Mazumdar, Soumyabrata Pal, and Barna Saha. Con-
nectivity of Random Annulus Graphs and the Geometric Block Model. In
Dimitris Achlioptas and László A. Végh, editors, Approximation, Random-

ization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-

/RANDOM 2019), volume 145 of Leibniz International Proceedings in Infor-

matics (LIPIcs), 53:1–53:23, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. isbn: 978-3-95977-125-2. arXiv: 1804.05013
[cs.DM] (cited on page 261).

[GPMS18] Sainyam Galhotra, Soumyabrata Pal, Arya Mazumdar, and Barna Saha. The
geometric block model and applications. In 2018 56th Annual Allerton Confer-

ence on Communication, Control, and Computing (Allerton), pages 1147–1150,
2018. doi: 10.1109/ALLERTON.2018.8635938 (cited on page 261).

[GC23] Xing Gao and Yu Cheng. Robust matrix sensing in the semi-random model.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
url: https://openreview.net/forum?id=nSr2epejn2 (cited on page 263).

[GNW24] Julia Gaudio, Xiaochun Niu, and Ermin Wei. Exact community recovery in

the geometric sbm. In Proceedings of the 2024 Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA). 2024, pages 2158–2184. doi: 10.1137/1.
9781611977912.78. arXiv: 2307.11196 [cs.SI]. url: https://epubs.
siam.org/doi/abs/10.1137/1.9781611977912.78 (cited on pages 252,
261).

[Gir14] Davide Giraudo. Bound the variance of the product of two random
varables. Mathematics Stack Exchange, November 2014. url: https :
//math.stackexchange.com/q/1044864 (cited on page 158).

[GYF18] Naman Goel, Mohammad Yaghini, and Boi Faltings. Non-discriminatory
machine learning through convex fairness criteria. In Proceedings of the 2018

AAAI/ACM Conference on AI, Ethics, and Society, pages 116–116, 2018 (cited
on page 140).

[GGKMLS21] Sreenivas Gollapudi, Guru Guruganesh, Kostas Kollias, Pasin Manurangsi,
Renato Paes Leme, and Jon Schneider. Contextual recommendations and
low-regret cutting-plane algorithms, 2021. doi: 10.48550/ARXIV.2106.
04819. url: https://arxiv.org/abs/2106.04819 (cited on pages 193, 198).

[GNPS24] Negin Golrezaei, Rad Niazadeh, Kumar Kshitĳ Patel, and Fransisca Susan.
Online combinatorial optimization with group fairness constraints. Available

at SSRN 4824251, 2024 (cited on pages 136, 140).
[GK10] Eugene Gover and Nishan Krikorian. Determinants and the volumes of

parallelotopes and zonotopes. Linear Algebra and its Applications, 433(1):28–
40, 2010 (cited on page 56).

[GDG17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: identi-
fying vulnerabilities in the machine learning model supply chain, August
2017. arXiv: 1708.06733 [cs.CR] (cited on page 223).

[GLDG19] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
Nets: evaluating backdooring attacks on deep neural networks. IEEE Access,
7:47230–47244, 2019 (cited on page 223).

301

https://arxiv.org/abs/2008.03703
https://arxiv.org/abs/1804.05013
https://arxiv.org/abs/1804.05013
https://doi.org/10.1109/ALLERTON.2018.8635938
https://openreview.net/forum?id=nSr2epejn2
https://doi.org/10.1137/1.9781611977912.78
https://doi.org/10.1137/1.9781611977912.78
https://arxiv.org/abs/2307.11196
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.78
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.78
https://math.stackexchange.com/q/1044864
https://math.stackexchange.com/q/1044864
https://doi.org/10.48550/ARXIV.2106.04819
https://doi.org/10.48550/ARXIV.2106.04819
https://arxiv.org/abs/2106.04819
https://arxiv.org/abs/1708.06733

[GV16] Olivier Guédon and Roman Vershynin. Community detection in sparse
networks via grothendieck’s inequality. Probability Theory and Related Fields,
165(3):1025–1049, 2016. arXiv: 1411.4686 [math.ST] (cited on page 20).

[GMS22] Swati Gupta, Jai Moondra, and Mohit Singh. Socially fair and hierarchical
facility location problems. arXiv preprint arXiv:2211.14873, 2022 (cited on
page 140).

[HSS08] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc-
ture, dynamics, and function using NetworkX. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), 2008 (cited on
page 260).

[HJZ22] Nika Haghtalab, Michael Jordan, and Eric Zhao. On-demand sampling:
learning optimally from multiple distributions. Advances in Neural Informa-

tion Processing Systems, 35:406–419, 2022. arXiv: 2210.12529 [cs.LG] (cited
on page 140).

[HK19] Steve Hanneke and Samory Kpotufe. On the value of target data in transfer
learning. Advances in Neural Information Processing Systems, 32, 2019. arXiv:
2002.04747 [cs.LG] (cited on page 140).

[HPS16] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in su-
pervised learning. Advances in neural information processing systems, 29, 2016.
arXiv: 1610.02413 [cs.LG] (cited on pages 136, 140).

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten
H. van Kerkwĳk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–
362, September 2020. doi: 10.1038/s41586- 020- 2649- 2. url: https:
//doi.org/10.1038/s41586-020-2649-2 (cited on page 260).

[HLL83] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
Stochastic blockmodels: first steps. Social Networks, 5(2):109–137, 1983. issn:
0378-8733. doi: https://doi.org/10.1016/0378- 8733(83)90021- 7.
url: https : / / www . sciencedirect . com / science / article / pii /
0378873383900217 (cited on pages 19, 251, 261).

[HW12] John N Hooker and H Paul Williams. Combining equity and utilitarianism
in a mathematical programming model. Management Science, 58(9):1682–
1693, 2012 (cited on page 140).

[HJ91] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. In Cam-
bridge University Press, 1991 (cited on page 66).

[How97] Ralph Howard. The John ellipsoid theorem. University of South Carolina, 1997
(cited on page 70).

[ISTETM19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Bran-
don Tran, and Aleksander Madry. Adversarial examples are not bugs, they
are features. In H Wallach, H Larochelle, A Beygelzimer, F d’Alché-Buc, E
Fox, and R Garnett, editors, Advances in Neural Information Processing Sys-

tems, volume 32. Curran Associates, Inc., 2019. arXiv: 1905.02175 [stat.ML]
(cited on page 223).

302

https://arxiv.org/abs/1411.4686
https://arxiv.org/abs/2210.12529
https://arxiv.org/abs/2002.04747
https://arxiv.org/abs/1610.02413
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1016/0378-8733(83)90021-7
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://arxiv.org/abs/1905.02175

[JLLS23] Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsify-
ing sums of norms. In 2023 IEEE 64th Annual Symposium on Foundations of

Computer Science (FOCS), pages 1953–1962. IEEE, 2023. arXiv: 2305.09049
[cs.DS] (cited on pages 82, 84, 85, 87, 88, 91–93, 99–101, 117, 125, 127, 143).

[JLS22] Arun Jambulapati, Yang P Liu, and Aaron Sidford. Improved iteration com-
plexities for overconstrained p-norm regression. In Proceedings of the 54th

Annual ACM SIGACT Symposium on Theory of Computing, pages 529–542,
2022. arXiv: 2111.01848 [cs.DS] (cited on pages 92, 97, 125, 128, 138–140,
142, 143, 145, 146, 163, 185).

[JLS23] Arun Jambulapati, Yang P Liu, and Aaron Sidford. Chaining, group leverage
score overestimates, and fast spectral hypergraph sparsification. In Proceed-

ings of the 55th Annual ACM Symposium on Theory of Computing, pages 196–
206, 2023. arXiv: 2209.10539 [cs.DS] (cited on pages 82, 92, 93, 97, 125, 132,
143).

[JNR12] Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of
derivative-free optimization. Advances in Neural Information Processing Sys-

tems, 25, 2012 (cited on pages 16, 191–193, 197).
[JRTZ16] Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker.

Recommender systems—beyond matrix completion. Communications of the

ACM, 59(11):94–102, 2016 (cited on page 191).
[Jer92] Mark Jerrum. Large cliques elude the metropolis process. Random Struct.

Algorithms, 3(4):347–360, 1992. doi: 10.1002/RSA.3240030402. url: https:
//doi.org/10.1002/rsa.3240030402 (cited on page 263).

[JLLV21] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Reducing isotropy
and volume to KLS: an 𝑂∗(𝑛3𝜓2) volume algorithm. In Proceedings of the

Symposium on Theory of Computing, pages 961–974, 2021. arXiv: 2008.02146
[cs.DS] (cited on page 24).

[Joh48] Fritz John. Extremum problems with inequalities as subsidiary conditions.
In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187–
204. Interscience Publishers, Inc, 1948 (cited on pages 9, 24, 143).

[JS00] William Johnson and Gideon Schechtman. Finite dimensional subspaces of
𝐿𝑝 . Handbook of the Geometry of Banach Spaces, 1, September 2000 (cited on
page 91).

[JKP22] Michael Juhos, Zakhar Kabluchko, and Joscha Prochno. Limit theorems
for mixed-norm sequence spaces with applications to volume distribution,
2022. arXiv: 2209.08937 [math.PR] (cited on page 92).

[KKTY22] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida.
Spectral hypergraph sparsifiers of nearly linear size. In 2021 IEEE 62nd

Annual Symposium on Foundations of Computer Science (FOCS), pages 1159–
1170. IEEE, 2022. arXiv: 2106.02353 [cs.DS] (cited on page 82).

[KSJ18] Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Global lin-
ear convergence of newton’s method without strong-convexity or lipschitz
gradients, 2018. arXiv: 1806.00413 [cs.LG]. url: https://arxiv.org/abs/
1806.00413 (cited on page 145).

[KA21] Maximilian Kasy and Rediet Abebe. Fairness, equality, and power in algo-
rithmic decision-making. In Proceedings of the 2021 ACM Conference on Fair-

ness, Accountability, and Transparency, pages 576–586, 2021 (cited on page 140).

303

https://arxiv.org/abs/2305.09049
https://arxiv.org/abs/2305.09049
https://arxiv.org/abs/2111.01848
https://arxiv.org/abs/2209.10539
https://doi.org/10.1002/RSA.3240030402
https://doi.org/10.1002/rsa.3240030402
https://doi.org/10.1002/rsa.3240030402
https://arxiv.org/abs/2008.02146
https://arxiv.org/abs/2008.02146
https://arxiv.org/abs/2209.08937
https://arxiv.org/abs/2106.02353
https://arxiv.org/abs/1806.00413
https://arxiv.org/abs/1806.00413
https://arxiv.org/abs/1806.00413

[KNRW18] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing
fairness gerrymandering: auditing and learning for subgroup fairness. In
International conference on machine learning, pages 2564–2572. PMLR, 2018
(cited on page 140).

[KNRW19] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. An empirical
study of rich subgroup fairness for machine learning. In Proceedings of the

conference on fairness, accountability, and transparency, pages 100–109, 2019
(cited on page 140).

[KLLST23] Jonathan Kelner, Jerry Li, Allen X. Liu, Aaron Sidford, and Kevin Tian. Semi-
random sparse recovery in nearly-linear time. In Gergely Neu and Lorenzo
Rosasco, editors, Proceedings of Thirty Sixth Conference on Learning Theory,
volume 195 of Proceedings of Machine Learning Research, pages 2352–2398.
PMLR, July 2023. arXiv: 2203.04002 [cs.DS]. url: https://proceedings.
mlr.press/v195/kelner23a.html (cited on pages 252, 263).

[KLLST22] Jonathan A Kelner, Jerry Li, Allen Liu, Aaron Sidford, and Kevin
Tian. Semi-random sparse recovery in nearly-linear time. arXiv preprint

arXiv:2203.04002, 2022 (cited on page 198).
[KV17] Henning Kempka and Jan Vybíral. Volumes of unit balls of mixed sequence

spaces. Mathematische Nachrichten, 290(8-9):1317–1327, 2017. arXiv: 1505.
05867 [math.FA] (cited on page 92).

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR

Computational Mathematics and Mathematical Physics, 20(1):53–72, 1980 (cited
on page 8).

[Kla23] Bo’az Klartag. Logarithmic bounds for isoperimetry and slices of convex
sets, 2023. arXiv: 2303.14938 [math.FA] (cited on page 93).

[KLMR18] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan.
Algorithmic fairness. In Aea papers and proceedings, volume 108, pages 22–27,
2018 (cited on page 136).

[KHKN15] Junpei Komiyama, Junya Honda, Hisashi Kashima, and Hiroshi Nakagawa.
Regret lower bound and optimal algorithm in dueling bandit problem.
In Conference on learning theory, pages 1141–1154. PMLR, 2015 (cited on
page 191).

[Kuč95] Luděk Kučera. Expected complexity of graph partitioning problems. Discrete

Applied Mathematics, 57(2):193–212, 1995. issn: 0166-218X. doi: https://doi.
org/10.1016/0166-218X(94)00103-K. url: https://www.sciencedirect.
com/science/article/pii/0166218X9400103K. Combinatorial optimiza-
tion 1992 (cited on page 263).

[KY05] P. Kumar and E. A. Yildirim. Minimum-volume enclosing ellipsoids and
core sets. J. Optim. Theory Appl., 126(1):1–21, July 2005 (cited on page 30).

[KLRS17] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfac-
tual fairness. Advances in neural information processing systems, 30, 2017 (cited
on page 140).

[LLV17] Can M Le, Elizaveta Levina, and Roman Vershynin. Concentration and regu-
larization of random graphs. Random Structures & Algorithms, 51(3):538–561,
2017. arXiv: 1506.00669 [math.PR] (cited on page 267).

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010.
url: http://yann.lecun.com/exdb/mnist/ (cited on pages 221, 241).

304

https://arxiv.org/abs/2203.04002
https://proceedings.mlr.press/v195/kelner23a.html
https://proceedings.mlr.press/v195/kelner23a.html
https://arxiv.org/abs/1505.05867
https://arxiv.org/abs/1505.05867
https://arxiv.org/abs/2303.14938
https://doi.org/https://doi.org/10.1016/0166-218X(94)00103-K
https://doi.org/https://doi.org/10.1016/0166-218X(94)00103-K
https://www.sciencedirect.com/science/article/pii/0166218X9400103K
https://www.sciencedirect.com/science/article/pii/0166218X9400103K
https://arxiv.org/abs/1506.00669
http://yann.lecun.com/exdb/mnist/

[Lee23] James R Lee. Spectral hypergraph sparsification via chaining. In Proceedings

of the 55th Annual ACM Symposium on Theory of Computing, pages 207–218,
2023. arXiv: 2209.04539 [math.PR] (cited on pages 82, 87, 93, 116).

[LS19] Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt(rank)
linear system solves, 2019. arXiv: 1910.08033 [cs.DS] (cited on pages 85,
92, 137, 138, 140–143).

[LS18] Renato Paes Leme and Jon Schneider. Contextual search via intrinsic vol-
umes, 2018. doi: 10.48550/ARXIV.1804.03195. url: https://arxiv.org/
abs/1804.03195 (cited on page 198).

[Len83] Hendrik W Lenstra Jr. Integer programming with a fixed number of vari-
ables. Mathematics of operations research, 8(4):538–548, 1983 (cited on page 8).

[LCDS20] Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale
methods for distributionally robust optimization. Advances in Neural Infor-

mation Processing Systems, 33:8847–8860, 2020. arXiv: 2010.05893 [math.OC]
(cited on page 136).

[Lew78] D. Lewis. Finite dimensional subspaces of 𝐿𝑝 . eng. Studia Mathematica,
63(2):207–212, 1978. url: http://eudml.org/doc/218208 (cited on page 90).

[LS24] Shuangping Li and Tselil Schramm. Spectral clustering in the gaussian mix-
ture block model, 2024. arXiv: 2305.00979 [stat.ML] (cited on pages 252,
261).

[LWW21] Yi Li, Ruosong Wang, and David P Woodruff. Tight bounds for the subspace
sketch problem with applications. SIAM Journal on Computing, 50(4):1287–
1335, 2021. arXiv: 1904.05543 [cs.DS] (cited on pages 14, 84).

[LWJLX20] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor
learning: a survey, July 2020. arXiv: 2007.08745 [cs.CR] (cited on page 223).

[LLS19] Yingkai Li, Edmund Y. Lou, and Liren Shan. Stochastic linear optimization
with adversarial corruption, 2019. arXiv: 1909.02109 [cs.LG] (cited on
page 8).

[LLS20] Allen Liu, Renato Paes Leme, and Jon Schneider. Optimal contextual pricing
and extensions, 2020. doi: 10 . 48550 / ARXIV . 2003 . 01703. url: https :
//arxiv.org/abs/2003.01703 (cited on page 198).

[LLV18] Ilan Lobel, Renato Paes Leme, and Adrian Vladu. Multidimensional binary
search for contextual decision-making. Operations Research, 66(5):1346–1361,
2018 (cited on page 198).

[LHH19] Michele Loi, Anders Herlitz, and Hoda Heidari. A philosophical theory
of fairness for prediction-based decisions. Available at SSRN 3450300, 2019
(cited on page 140).

[LFN18] Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth con-
vex optimization by first-order methods, and applications. SIAM Journal on

Optimization, 28(1):333–354, 2018. arXiv: 1610.05708 [math.OC] (cited on
pages 147, 185).

[Lu20] Zhou Lu. A note on John simplex with positive dilation, 2020. arXiv: 2012.
03427 [math.MG] (cited on page 29).

[MXX23] Will Ma, Pan Xu, and Yifan Xu. Fairness maximization among offline agents
in online-matching markets. ACM Transactions on Economics and Computation,
10(4):1–27, 2023 (cited on page 140).

305

https://arxiv.org/abs/2209.04539
https://arxiv.org/abs/1910.08033
https://doi.org/10.48550/ARXIV.1804.03195
https://arxiv.org/abs/1804.03195
https://arxiv.org/abs/1804.03195
https://arxiv.org/abs/2010.05893
http://eudml.org/doc/218208
https://arxiv.org/abs/2305.00979
https://arxiv.org/abs/1904.05543
https://arxiv.org/abs/2007.08745
https://arxiv.org/abs/1909.02109
https://doi.org/10.48550/ARXIV.2003.01703
https://arxiv.org/abs/2003.01703
https://arxiv.org/abs/2003.01703
https://arxiv.org/abs/1610.05708
https://arxiv.org/abs/2012.03427
https://arxiv.org/abs/2012.03427

[MMSTV17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks, June 2017. arXiv: 1706 . 06083 [stat.ML] (cited on
pages 213, 242, 244).

[MMV12] Konstantin Makarychev, Yury Makarychev, and Aravindan Vĳayaraghavan.
Approximation algorithms for semi-random partitioning problems. In Pro-

ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, pages 367–384, New York, New York, USA. Association for Com-
puting Machinery, 2012. isbn: 9781450312455. arXiv: 1205.2234 [cs.DS]
(cited on pages 20, 252, 256, 263).

[MMO22] Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Streaming
algorithms for ellipsoidal approximation of convex polytopes. In Proceedings

of Thirty Fifth Conference on Learning Theory (COLT), pages 3070–3093, July
2022. arXiv: 2206.07250 [cs.DS] (cited on pages 12, 23, 24, 26, 28, 29, 51,
58).

[MMO24] Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Near-optimal
streaming ellipsoidal rounding for general convex polytopes. In Proceedings

of Fifty Sixth Annual ACM Symposium on Theory of Computing (STOC), June
2024. arXiv: 2311.09460 [cs.DS] (cited on pages 12, 23).

[MB21] Naren Sarayu Manoj and Avrim Blum. Excess capacity and backdoor poi-
soning. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.
arXiv: 2109.00685 [cs.LG] (cited on pages 19, 213).

[MO25] Naren Sarayu Manoj and Max Ovsiankin. The change-of-measure method, block

lewis weights, and approximating matrix block norms. In Proceedings of the 2025

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2025. arXiv:
2311.10013 [math.FA] (cited on pages 15, 82, 143, 155, 163, 189).

[MP24] Naren Sarayu Manoj and Kumar Kshitĳ Patel. A second-order algorithm for
empirical group distributionally robust regression. In OPT 2024: Optimiza-

tion for Machine Learning, 2024. url: https://openreview.net/forum?id=
CPFpHb3vBm (cited on pages 15, 136).

[MNR21] Vahideh Manshadi, Rad Niazadeh, and Scott Rodilitz. Fair dynamic ra-
tioning. In Proceedings of the 22nd ACM Conference on Economics and Compu-

tation, pages 694–695, 2021 (cited on page 140).
[MN06a] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning, 2006

(cited on page 198).
[MN06b] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learn-

ing. The Annals of Statistics, 34(5), October 2006. issn: 0090-5364. doi:
10 . 1214 / 009053606000000786. url: http : / / dx . doi . org / 10 . 1214 /
009053606000000786 (cited on pages 252, 263).

[MU21] Sebastian Mayer and Tino Ullrich. Entropy numbers of finite dimen-
sional mixed-norm balls and function space embeddings with small
mixed smoothness. Constructive Approximation, 53:249–279, 2021. arXiv:
1904.04619 [math.FA] (cited on page 92).

[MMT20] Theo McKenzie, Hermish Mehta, and Luca Trevisan. A new algorithm
for the robust semi-random independent set problem. In Proceedings of the

Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20,
pages 738–746, Salt Lake City, Utah. Society for Industrial and Applied
Mathematics, 2020. arXiv: 1808.03633 [cs.DS] (cited on pages 252, 263).

306

https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1205.2234
https://arxiv.org/abs/2206.07250
https://arxiv.org/abs/2311.09460
https://arxiv.org/abs/2109.00685
https://arxiv.org/abs/2311.10013
https://openreview.net/forum?id=CPFpHb3vBm
https://openreview.net/forum?id=CPFpHb3vBm
https://doi.org/10.1214/009053606000000786
http://dx.doi.org/10.1214/009053606000000786
http://dx.doi.org/10.1214/009053606000000786
https://arxiv.org/abs/1904.04619
https://arxiv.org/abs/1808.03633

[MMRHyA17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017. arXiv: 1602.05629 [cs.LG] (cited on page 140).

[Mie99] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer
Science & Business Media, 1999 (cited on page 140).

[MSS19] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic fed-
erated learning. In International conference on machine learning, pages 4615–
4625. PMLR, 2019. arXiv: 1902.00146 [cs.LG] (cited on page 140).

[Moi21a] Ankur Moitra. Semirandom stochastic block models. In Beyond the Worst-Case

Analysis of Algorithms. Tim Roughgarden, editor. Cambridge University
Press, 2021, pages 212–233. doi: 10.1017/9781108637435.014 (cited on
pages 20, 252, 261).

[Moi21b] Ankur Moitra. Semirandom stochastic block models. In Beyond the Worst-Case

Analysis of Algorithms. TimEditor Roughgarden, editor. Cambridge Univer-
sity Press, 2021, pages 212–233. doi: 10.1017/9781108637435.014 (cited on
pages 191, 198).

[MPW16a] Ankur Moitra, William Perry, and Alexander S Wein. How robust are re-
construction thresholds for community detection? In Proceedings of the forty-

eighth annual ACM symposium on Theory of Computing, pages 828–841, 2016
(cited on page 20).

[MPW16b] Ankur Moitra, William Perry, and Alexander S. Wein. How robust are re-
construction thresholds for community detection? In Proceedings of the Forty-

Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 828–
841, Cambridge, MA, USA. Association for Computing Machinery, 2016.
isbn: 9781450341325. doi: 10.1145/2897518.2897573. arXiv: 1511.01473
[cs.DS]. url: https://doi.org/10.1145/2897518.2897573 (cited on
page 252).

[MGDS20] Omar Montasser, Surbhi Goel, Ilias Diakonikolas, and Nathan Srebro. Effi-
ciently learning adversarially robust halfspaces with noise. In Hal Daumé
Iii and Aarti Singh, editors, Proceedings of the 37th International Conference

on Machine Learning, volume 119 of Proceedings of Machine Learning Re-

search, pages 7010–7021. PMLR, 2020. arXiv: 2005.07652 [cs.LG] (cited
on pages 220, 223, 236, 239).

[MHS19] Omar Montasser, Steve Hanneke, and Nathan Srebro. VC classes are adver-
sarially robustly learnable, but only improperly. In Alina Beygelzimer and
Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning

Theory, volume 99 of Proceedings of Machine Learning Research, pages 2512–
2530, Phoenix, USA. PMLR, 2019. arXiv: 1902.04217 [cs.LG] (cited on
pages 213, 220).

[MS13] Renato D. C. Monteiro and B. F. Svaiter. An accelerated hybrid proximal ex-
tragradient method for convex optimization and its implications to second-
order methods. SIAM Journal on Optimization, 23(2):1092–1125, 2013. doi:
10.1137/110833786. eprint: https://doi.org/10.1137/110833786. url:
https://doi.org/10.1137/110833786 (cited on pages 13, 146).

[MGSS09] Asish Mukhopadhyay, Eugene Greene, Animesh Sarker, and Tom Switzer.
Approximate minimum spanning ellipse in the streaming model. In The

7th Japan Conference on Computational Geometry and Graphs, 2009 (cited on
page 28).

307

https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1902.00146
https://doi.org/10.1017/9781108637435.014
https://doi.org/10.1017/9781108637435.014
https://doi.org/10.1145/2897518.2897573
https://arxiv.org/abs/1511.01473
https://arxiv.org/abs/1511.01473
https://doi.org/10.1145/2897518.2897573
https://arxiv.org/abs/2005.07652
https://arxiv.org/abs/1902.04217
https://doi.org/10.1137/110833786
https://doi.org/10.1137/110833786
https://doi.org/10.1137/110833786

[MSS10] Asish Mukhopadhyay, Animesh Sarker, and Tom Switzer. Approximate
ellipsoid in the streaming model. In International Conference on Combinatorial

Optimization and Applications, pages 401–413, 2010 (cited on page 28).
[MR21] Justin Mulvany and Ramandeep S Randhawa. Fair scheduling of hetero-

geneous customer populations. Available at SSRN 3803016, 2021 (cited on
page 140).

[MMWY22] Cameron Musco, Christopher Musco, David P Woodruff, and Taisuke Ya-
suda. Active linear regression for ℓ𝑝 norms and beyond. In 2022 IEEE 63rd

Annual Symposium on Foundations of Computer Science (FOCS), pages 744–753.
IEEE, 2022. arXiv: 2111.04888 [cs.LG] (cited on pages 82, 92, 143).

[NN94] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms in Convex

Programming. SIAM studies in applied and numerical mathematics: Society
for Industrial and Applied Mathematics. Society for Industrial and Applied
Mathematics, 1994. isbn: 9780898715156 (cited on pages 8, 142).

[Nes08] Yurii Nesterov. Rounding of convex sets and efficient gradient methods for
linear programming problems. Optimisation Methods and Software, 23(1):109–
128, 2008 (cited on pages 24, 29).

[NZ18] Huy Nguyen and Lydia Zakynthinou. Improved algorithms for collabora-
tive pac learning. Advances in Neural Information Processing Systems, 31, 2018.
arXiv: 1805.08356 [cs.LG] (cited on page 140).

[NHCD10] Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. Efficient and robust
feature selection via joint ℓ2,1-norms minimization. Advances in neural infor-

mation processing systems, 23, 2010 (cited on page 92).
[OB20] Dmitrii Ostrovskii and Francis Bach. Finite-sample analysis of m-estimators

using self-concordance, 2020. arXiv: 1810.06838 [math.ST]. url: https:
//arxiv.org/abs/1810.06838 (cited on page 162).

[OWJ+22] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 35:27730–27744,
2022 (cited on page 191).

[PS20] Renato Paes Leme and Jon Schneider. Costly zero order oracles. In Proceed-

ings of the Conference on Learning Theory, volume 125, pages 3120–3132, July
2020 (cited on page 29).

[PT86] Alain Pajor and Nicole Tomczak-Jaegermann. Subspaces of small codimen-
sion of finite-dimensional banach spaces. Proceedings of the American Mathe-

matical Society, 97(4):637–642, 1986 (cited on page 95).
[PGZWSCJS24] Kumar Kshitĳ Patel, Margalit Glasgow, Ali Zindari, Lingxiao Wang, Sebas-

tian U Stich, Ziheng Cheng, Nirmit Joshi, and Nathan Srebro. The limits
and potentials of local sgd for distributed heterogeneous learning with
intermittent communication. In Shipra Agrawal and Aaron Roth, editors,
Proceedings of Thirty Seventh Conference on Learning Theory, volume 247 of
Proceedings of Machine Learning Research, pages 4115–4157. PMLR, July 2024.
arXiv: 2405.11667 [cs.LG]. url: https://proceedings.mlr.press/v247/
patel24a.html (cited on page 140).

[PS12] Joscha Prochno and Carsten Schuett. Combinatorial inequalities and sub-
spaces of l1, 2012. arXiv: 1204.6025 [math.FA] (cited on page 92).

308

https://arxiv.org/abs/2111.04888
https://arxiv.org/abs/1805.08356
https://arxiv.org/abs/1810.06838
https://arxiv.org/abs/1810.06838
https://arxiv.org/abs/1810.06838
https://arxiv.org/abs/2405.11667
https://proceedings.mlr.press/v247/patel24a.html
https://proceedings.mlr.press/v247/patel24a.html
https://arxiv.org/abs/1204.6025

[QSZ02] Liqun Qi, Defeng Sun, and Guanglu Zhou. A primal–dual algorithm for
minimizing a sum of euclidean norms. Journal of Computational and Applied

Mathematics, 138(1):127–150, 2002. issn: 0377-0427. doi: https://doi.org/
10.1016/S0377-0427(01)00357-0. url: https://www.sciencedirect.
com/science/article/pii/S0377042701003570 (cited on page 85).

[RVFRWYT19] Aida Rahmattalabi, Phebe Vayanos, Anthony Fulginiti, Eric Rice, Bryan
Wilder, Amulya Yadav, and Milind Tambe. Exploring algorithmic fairness
in robust graph covering problems. Advances in neural information processing

systems, 32, 2019. arXiv: 2006.06865 [math.OC] (cited on page 136).
[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should I

trust you?”: explaining the predictions of any classifier. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’16, pages 1135–1144, San Francisco, California, USA.
Association for Computing Machinery, August 2016. arXiv: 1602.04938
[cs.LG] (cited on page 223).

[RB97] Elon Rimon and Stephen P. Boyd. Obstacle collision detection using best
ellipsoid fit. J. Intell. Robotics Syst., 18(2):105–126, 1997 (cited on page 24).

[Rot23] Thomas Rothvoss. Asymptotic Convex Geometry. 2023. url: https :
/ / sites . math . washington . edu / ~rothvoss / lecturenotes /
AsymptoticConvexGeometry-24-FEB-2023.pdf (cited on page 95).

[Rud99] Mark Rudelson. Random vectors in the isotropic position. Journal of Func-

tional Analysis, 164(1):60–72, 1999. arXiv: math/9608208 [math.MG] (cited on
page 84).

[SKHL20] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy
Liang. Distributionally robust neural networks. In International Confer-

ence on Learning Representations, 2020. arXiv: 1911 . 08731 [cs.LG]. url:
https://openreview.net/forum?id=ryxGuJrFvS (cited on pages 136,
140).

[SFMK24] Aadirupa Saha, Vitaly Feldman, Yishay Mansour, and Tomer Koren. Faster
convergence with multiway preferences. In Sanjoy Dasgupta, Stephan
Mandt, and Yingzhen Li, editors, Proceedings of The 27th International Confer-

ence on Artificial Intelligence and Statistics, volume 238 of Proceedings of Machine

Learning Research, pages 433–441. PMLR, May 2024. arXiv: 2312 . 11788
[cs.LG]. url: https://proceedings.mlr.press/v238/saha24a.html
(cited on page 194).

[SKM21] Aadirupa Saha, Tomer Koren, and Yishay Mansour. Dueling convex opti-
mization. In International Conference on Machine Learning, pages 9245–9254.
PMLR, 2021 (cited on pages 16, 191–193, 197).

[SKM22] Aadirupa Saha, Tomer Koren, and Yishay Mansour. Dueling convex op-
timization with general preferences. arXiv preprint arXiv:2210.02562, 2022
(cited on pages 191, 192, 197).

[SK22] Aadirupa Saha and Akshay Krishnamurthy. Efficient and optimal algo-
rithms for contextual dueling bandits under realizability. In International

Conference on Algorithmic Learning Theory, pages 968–994. PMLR, 2022 (cited
on page 191).

[SSP20] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hid-
den trigger backdoor attacks. en. AAAI, 34(07):11957–11965, April 2020.
arXiv: 1910.00033 [cs.CV] (cited on pages 18, 213, 223).

309

https://doi.org/https://doi.org/10.1016/S0377-0427(01)00357-0
https://doi.org/https://doi.org/10.1016/S0377-0427(01)00357-0
https://www.sciencedirect.com/science/article/pii/S0377042701003570
https://www.sciencedirect.com/science/article/pii/S0377042701003570
https://arxiv.org/abs/2006.06865
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://sites.math.washington.edu/~rothvoss/lecturenotes/AsymptoticConvexGeometry-24-FEB-2023.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/AsymptoticConvexGeometry-24-FEB-2023.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/AsymptoticConvexGeometry-24-FEB-2023.pdf
https://arxiv.org/abs/math/9608208
https://arxiv.org/abs/1911.08731
https://openreview.net/forum?id=ryxGuJrFvS
https://arxiv.org/abs/2312.11788
https://arxiv.org/abs/2312.11788
https://proceedings.mlr.press/v238/saha24a.html
https://arxiv.org/abs/1910.00033

[SB17] Abishek Sankararaman and François Baccelli. Community detection on eu-
clidean random graphs. In 2017 55th Annual Allerton Conference on Communi-

cation, Control, and Computing (Allerton), pages 510–517, 2017. doi: 10.1109/
ALLERTON.2017.8262780 (cited on page 261).

[SB15] Purnamrita Sarkar and Peter J. Bickel. Role of normalization in spectral clus-
tering for stochastic blockmodels. The Annals of Statistics, 43(3), June 2015.
issn: 0090-5364. doi: 10.1214/14-aos1285. arXiv: 1310.1495 [stat.ML].
url: http://dx.doi.org/10.1214/14-AOS1285 (cited on page 257).

[SZ01] Gideon Schechtman and Artem Zvavitch. Embedding subspaces of 𝐿𝑝 into
ℓ
𝑝
𝑛 , 0 < 𝑝 < 1. Mathematische Nachrichten, 227(1):133–142, 2001 (cited on

pages 84, 89, 92, 93, 110).
[SL17] Martin R. Schuster and Maciej Liskiewicz. New Abilities and Limitations

of Spectral Graph Bisection. In Kirk Pruhs and Christian Sohler, editors,
25th Annual European Symposium on Algorithms (ESA 2017), volume 87 of
Leibniz International Proceedings in Informatics (LIPIcs), 66:1–66:15, Dagstuhl,
Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. isbn:
978-3-95977-049-1. doi: 10.4230/LIPIcs.ESA.2017.66. url: https://
drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.66
(cited on page 263).

[SBFVV19] Andrew D Selbst, Danah Boyd, Sorelle A Friedler, Suresh Venkatasubrama-
nian, and Janet Vertesi. Fairness and abstraction in sociotechnical systems.
In Proceedings of the conference on fairness, accountability, and transparency,
pages 59–68, 2019 (cited on page 136).

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:

From Theory to Algorithms. en. Cambridge University Press, May 2014 (cited
on pages 228, 230).

[SS19] Yanyao Shen and Sujay Sanghavi. Learning with bad training data via
iterative trimmed loss minimization. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5739–5748. PMLR, 2019. arXiv: 1810 . 11874 [cs.LG] (cited on
page 224).

[SJ11] Pannagadatta K Shivaswamy and Thorsten Joachims. Online learning with
preference feedback. arXiv preprint arXiv:1111.0712, 2011 (cited on page 191).

[SFHT13] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
A sparse-group lasso. Journal of Computational and Graphical Statistics,
22(2):231–245, 2013. issn: 10618600. url: http://www.jstor.org/stable/
43304828 (cited on page 92).

[SJ18] Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 2219–2228, 2018 (cited on page 140).
[SJ19] Ashudeep Singh and Thorsten Joachims. Policy learning for fairness in

ranking. Advances in neural information processing systems, 32, 2019 (cited
on page 140).

[SGJ22] Tasuku Soma, Khashayar Gatmiry, and Stefanie Jegelka. Optimal algorithms
for group distributionally robust optimization and beyond. arXiv preprint

arXiv:2212.13669, 2022 (cited on pages 136, 137).

310

https://doi.org/10.1109/ALLERTON.2017.8262780
https://doi.org/10.1109/ALLERTON.2017.8262780
https://doi.org/10.1214/14-aos1285
https://arxiv.org/abs/1310.1495
http://dx.doi.org/10.1214/14-AOS1285
https://doi.org/10.4230/LIPIcs.ESA.2017.66
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.66
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.66
https://arxiv.org/abs/1810.11874
http://www.jstor.org/stable/43304828
http://www.jstor.org/stable/43304828

[SVWZ24] Zhao Song, Ali Vakilian, David Woodruff, and Samson Zhou. On socially fair
regression and low-rank approximation, 2024. url: https://openreview.
net/forum?id=KJHUYWviZ6 (cited on pages 136, 137).

[SS08] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective
resistances. In Proceedings of the fortieth annual ACM symposium on Theory of

computing, pages 563–568, 2008. arXiv:0803.0929[cs.DS] (cited on page 82).
[Sra12] Suvrit Sra. Fast projections onto mixed-norm balls with applications.

Data Mining and Knowledge Discovery, 25:358–377, 2012. arXiv: 1204.1437
[stat.ML] (cited on page 92).

[SYLS16] Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: delay adap-
tive distributed stochastic optimization. In Arthur Gretton and Christian C.
Robert, editors, Proceedings of the 19th International Conference on Artificial

Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Re-

search, pages 957–965, Cadiz, Spain. PMLR, May 2016. arXiv: 1508.05003
[stat.ML] (cited on page 147).

[Sta08] Peter Stange. On the efficient update of the singular value decomposition.
PAMM, 8(1):10827–10828, 2008 (cited on pages 51, 52).

[Tal21] Michel Talagrand. Upper and Lower Bounds for Stochastic Processes: Decomposi-

tion Theorems. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge
/ A Series of Modern Surveys in Mathematics, 60; 60. Springer, 2nd ed.
2021 edition, 2021. isbn: 9783030825942. url: https://link.springer.com/
book/10.1007/978-3-030-82595-9 (cited on page 87).

[Tod16] Michael J. Todd. Minimum-Volume Ellipsoids: Theory and Algorithms. 2016
(cited on page 30).

[TY07] Michael J. Todd and E. Alper Yildirim. On Khachiyan’s algorithm for the
computation of minimum-volume enclosing ellipsoids. Discrete Appl. Math.,
155(13):1731–1744, August 2007 (cited on page 30).

[TLM18] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in back-
door attacks. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-
Bianchi, and R Garnett, editors, Advances in Neural Information Processing Sys-

tems, volume 31. Curran Associates, Inc., 2018. arXiv: 1811.00636 [cs.LG]
(cited on pages 18, 213, 223, 242).

[TJHAPJNT20] Loc Truong, Chace Jones, Brian Hutchinson, Andrew August, Brenda Prag-
gastis, Robert Jasper, Nicole Nichols, and Aaron Tuor. Systematic evaluation
of backdoor data poisoning attacks on image classifiers. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition workshops,
pages 788–789, 2020. arXiv: 2004.11514 [cs.CV] (cited on pages 18, 213).

[TTM19] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-
Consistent backdoor attacks, December 2019. arXiv: 1912.02771 [stat.ML]
(cited on page 223).

[ULP19] Berk Ustun, Yang Liu, and David Parkes. Fairness without harm: decoupled
classifiers with preference guarantees. In International Conference on Machine

Learning, pages 6373–6382. PMLR, 2019 (cited on page 140).
[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,

November 1984. issn: 0001-0782. doi: 10.1145/1968.1972. url: https:
//doi.org/10.1145/1968.1972 (cited on pages 18, 140).

311

https://openreview.net/forum?id=KJHUYWviZ6
https://openreview.net/forum?id=KJHUYWviZ6
https://arxiv.org/abs/0803.0929
https://arxiv.org/abs/1204.1437
https://arxiv.org/abs/1204.1437
https://arxiv.org/abs/1508.05003
https://arxiv.org/abs/1508.05003
https://link.springer.com/book/10.1007/978-3-030-82595-9
https://link.springer.com/book/10.1007/978-3-030-82595-9
https://arxiv.org/abs/1811.00636
https://arxiv.org/abs/2004.11514
https://arxiv.org/abs/1912.02771
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972

[vdBLLSSSW21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron
Sidford, Zhao Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-
regression in nearly linear time for dense instances. In Proceedings of the

53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021,
pages 859–869, Virtual, Italy. Association for Computing Machinery, 2021.
isbn: 9781450380539. doi: 10.1145/3406325.3451108. arXiv: 2101.05719
[cs.DS]. url: https://doi.org/10.1145/3406325.3451108 (cited on
page 86).

[vHan18] Ramon van Handel. Chaining, interpolation and convexity ii: the contraction
principle. The Annals of Probability, 46(3):1764–1805, 2018. arXiv: 1610.05199
[math.PR] (cited on page 95).

[Vap13] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 2013 (cited on page 140).

[VVB18] Michael Veale, Max Van Kleek, and Reuben Binns. Fairness and account-
ability design needs for algorithmic support in high-stakes public sector
decision-making. In Proceedings of the 2018 chi conference on human factors in

computing systems, pages 1–14, 2018 (cited on page 136).
[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applica-

tions in Data Science. Cambridge Series in Statistical and Probabilistic Math-
ematics. Cambridge University Press, 2018. doi: 10.1017/9781108231596
(cited on pages 95, 96, 112, 199, 206, 209, 227, 243, 264).

[VA18] Aravindan Vĳayaraghavan and Pranjal Awasthi. Clustering semi-random
mixtures of Gaussians. In Jennifer Dy and Andreas Krause, editors, Proceed-

ings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5055–5064. PMLR, July 2018.
arXiv: 1711.08841 [cs.DS]. url: https://proceedings.mlr.press/v80/
vijayaraghavan18a.html (cited on page 263).

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2 (cited on page 260).

[Von07] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and comput-

ing, 17:395–416, 2007. arXiv: 0711.0189 [cs.DS] (cited on pages 21, 252, 253,
257).

[Wai19] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic View-

point. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 2019 (cited on page 92).

[WSRVASLP20] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma,
Saurabh Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopou-
los. Attack of the tails: yes, you really can backdoor federated learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 16070–

312

https://doi.org/10.1145/3406325.3451108
https://arxiv.org/abs/2101.05719
https://arxiv.org/abs/2101.05719
https://doi.org/10.1145/3406325.3451108
https://arxiv.org/abs/1610.05199
https://arxiv.org/abs/1610.05199
https://doi.org/10.1017/9781108231596
https://arxiv.org/abs/1711.08841
https://proceedings.mlr.press/v80/vijayaraghavan18a.html
https://proceedings.mlr.press/v80/vijayaraghavan18a.html
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/0711.0189

16084. Curran Associates, Inc., 2020. arXiv: 2007.05084 [cs.LG] (cited on
pages 18, 213, 223).

[WY23a] David Woodruff and Taisuke Yasuda. Sharper bounds for ℓ𝑝 sensitivity
sampling. In International Conference on Machine Learning, pages 37238–37272.
PMLR, 2023. arXiv: 2306.00732 [cs.DS] (cited on page 82).

[WY22a] David P Woodruff and Taisuke Yasuda. High-dimensional geometric
streaming in polynomial space. In Proceedings of the Symposium on Founda-

tions of Computer Science, pages 732–743, 2022. arXiv: 2204.03790 [cs.DS]
(cited on pages 24–29, 35, 57).

[WY22b] David P Woodruff and Taisuke Yasuda. High-dimensional geometric
streaming in polynomial space. In 2022 IEEE 63rd Annual Symposium on

Foundations of Computer Science (FOCS), pages 732–743. IEEE, 2022. arXiv:
2204.03790 [cs.DS] (cited on page 97).

[WY23b] David P Woodruff and Taisuke Yasuda. Online lewis weight sampling. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 4622–4666. SIAM, 2023. arXiv: 2207.08268 [cs.DS] (cited
on page 82).

[WPSDBMSS20] Blake Woodworth, Kumar Kshitĳ Patel, Sebastian Stich, Zhen Dai, Brian
Bullins, Brendan Mcmahan, Ohad Shamir, and Nathan Srebro. Is local sgd
better than minibatch sgd? In International Conference on Machine Learn-

ing, pages 10334–10343. PMLR, 2020. arXiv: 2002.07839 [cs.LG] (cited
on page 140).

[XEIM21] Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry.
Noise or signal: the role of image backgrounds in object recognition. In
International Conference on Learning Representations, 2021. arXiv: 2006.09994
[cs.CV]. url: https://openreview.net/forum?id=gl3D-xY7wLq (cited on
page 223).

[XY97] Guoliang Xue and Yinyu Ye. An efficient algorithm for minimizing a sum of
euclidean norms with applications. SIAM Journal on Optimization, 7(4):1017–
1036, 1997 (cited on pages 85, 86, 133–135).

[YCOM24] Yuepeng Yang, Antares Chen, Lorenzo Orecchia, and Cong Ma. Top-𝐾 rank-
ing with a monotone adversary. In Shipra Agrawal and Aaron Roth, editors,
Proceedings of Thirty Seventh Conference on Learning Theory, volume 247 of
Proceedings of Machine Learning Research, pages 5123–5162. PMLR, July 2024.
arXiv: 2402.07445 [stat.ML]. url: https://proceedings.mlr.press/
v247/yang24b.html (cited on page 252).

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: toward a unified mea-
sure of complexity. In 18th Annual Symposium on Foundations of Computer

Science (sfcs 1977), pages 222–227. IEEE Computer Society, 1977 (cited on
page 209).

[YL06] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society Series B: Statistical

Methodology, 68(1):49–67, 2006 (cited on page 92).
[YBKJ12] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The

k-armed dueling bandits problem. Journal of Computer and System Sciences,
78(5):1538–1556, 2012 (cited on page 191).

313

https://arxiv.org/abs/2007.05084
https://arxiv.org/abs/2306.00732
https://arxiv.org/abs/2204.03790
https://arxiv.org/abs/2204.03790
https://arxiv.org/abs/2207.08268
https://arxiv.org/abs/2002.07839
https://arxiv.org/abs/2006.09994
https://arxiv.org/abs/2006.09994
https://openreview.net/forum?id=gl3D-xY7wLq
https://arxiv.org/abs/2402.07445
https://proceedings.mlr.press/v247/yang24b.html
https://proceedings.mlr.press/v247/yang24b.html

[ZZZYZ24] Lĳun Zhang, Peng Zhao, Zhen-Hua Zhuang, Tianbao Yang, and Zhi-Hua
Zhou. Stochastic approximation approaches to group distributionally ro-
bust optimization. Advances in Neural Information Processing Systems, 36, 2024
(cited on page 137).

[ZZCDL24] Zihan Zhang, Wenhao Zhan, Yuxin Chen, Simon S Du, and Jason D Lee. Op-
timal multi-distribution learning. In The Thirty Seventh Annual Conference on

Learning Theory, pages 5220–5223. PMLR, 2024. arXiv: 2312.05134 [cs.LG]
(cited on page 140).

314

https://arxiv.org/abs/2312.05134

	Introduction
	Our geometric motivation and quick summary of results
	Results – algorithms
	Streaming ellipsoidal approximations of convex polytopes
	Block Lewis weights and applications
	Dueling optimization with a monotone adversary

	Results – statistics
	PAC learning under backdoor attacks
	Spectral clustering with a monotone adversary

	Algorithms
	Streaming ellipsoidal approximations of convex polytopes
	Introduction
	Our contributions
	Related work and open questions

	Summary of techniques
	Monotone algorithms
	Streaming ellipsoidal rounding (Theorems 1, 3, and 4)
	Coresets for convex hull (Theorem 5)
	Lower bound (Theorem 7)

	Preliminaries
	Notation
	Geometry

	Streaming ellipsoidal rounding
	Monotone algorithms solve Theorem 2.1
	Special case
	Generalizing to high dimension and arbitrary previous ellipsoids
	General algorithm
	Fully-online asymmetric ellipsoidal rounding algorithm
	Aspect ratio-independent bounds and proof of Theorem 3

	Improved analysis for symmetric polytopes (Proof of thm:mainonesymmetric)
	Monotone update rule for symmetric ellipsoidal approximation
	Approximation guarantee via stronger evolution condition

	Forming small coresets for convex bodies (Proof of Theorem 5)
	Approximation lower bound for monotone algorithms
	Inapproximability of John's ellipsoid
	Lower bound adversary
	Analysis of the reduced case

	Details of analysis in Section 2.4.2

	Block Lewis weights for sparsification and minimizing sums of Euclidean norms
	Introduction
	Our results
	Notation and definitions
	Technical overview
	Prior results, related works, and connections

	Preliminaries
	Linear algebra background
	Convex geometry background
	Probability background

	Covering number estimates
	Notation and general formula
	Block Lewis weights
	Covering numbers for 0 < p < 2
	Covering numbers for p > 2
	Volume-based metric entropy

	Concentration analysis
	Applications and algorithms
	Block norm approximations via block Lewis weights (Proof of Theorem 8)
	Efficient computation of block Lewis weight overestimates (Proof of Theorem 2)
	Minimizing sums of Euclidean norms (Proof of Theorem 3)

	Block Lewis weights for distributionally robust linear regression
	Introduction
	Our results
	Prior results, connections, and open problems
	Chapter outline

	Technical overview
	The geometry of the proximal subproblems
	Solving proximal subproblems
	Iterating proximal calls

	Mirror descent with inexact updates
	Optimal MS acceleration under custom Euclidean geometry
	Minimizing the distributionally robust loss
	Smoothly approximating the objective
	Calculus for LogSumExp
	Smoothness and quasi-self-concordance of the modified objective
	Analysis of Algorithm 1

	Interpolating between average and robust losses
	Calculus for the objective
	Facts about the iterates
	Proximal subproblems – calculus, algorithms, proofs
	The algorithm

	Dueling optimization with a monotone adversary
	Introduction
	Problem statement
	Our results
	Technical overview
	Related works

	Proofs of upper bound results
	A general algorithm for problem:localrecfixedset with progress distributions
	Proof of cor:binsearchip
	Proof of cor:binsearchpl
	Proof of cor:binsearchdist
	Proof of thm:maryoptsmooth

	Proofs of lower bound results

	Statistics
	PAC learning under backdoor attacks
	Introduction
	Main contributions

	Backdoor attacks and memorization
	Problem Setting
	Warmup – Overparameterized vector spaces
	Memorization capacity and backdoor attacks

	Algorithmic considerations
	Certifying the existence of backdoors
	Filtering versus generalization

	Related works
	Restatement of theorems and full proofs
	Proofs from sec:backdoorstatistical
	Proofs from sec:backdooralgorithmic

	Numerical trials
	MNIST using neural networks

	Spectral clustering in semirandom stochastic block models
	Introduction
	Models and main results
	Nonhomogeneous symmetric stochastic block model
	Deterministic clusters model
	Inconsistency of normalized spectral clustering
	Open problems

	Analysis sketch
	Numerical trials
	Related work

	Deferred proofs
	Concentration inequalities
	Concentration of degrees
	Concentration of Laplacian and eigenvalue perturbations
	Eigenvector perturbations
	Leave-one-out and bootstrap
	Strong consistency of unnormalized spectral bisection
	Proofs of main results
	Inconsistency of normalized spectral bisection

	Additional experiments
	Varying edge probabilities in an NSSBM
	Varying the size of a planted clique in a DCM

	Bibliography

