

 Boosting Classifier Performance with Opposition-Based Data

Transformation

Abdesslem Layeb

LISIA laboratory, Department of Computer science and its application, Faculty of Information and Communication

Technology, University Constantine 2 , Constantine, Algeria,

abdesslem.layeb@univ-constantine2.dz

ORCID ID : 0000-0002-6553-8253

Abstact:

In this paper, we introduce a novel data transformation framework based on Opposition-Based Learning (OBL)

to boost the performance of traditional classification algorithms. Originally developed to accelerate convergence

in optimization tasks, OBL is leveraged here to generate synthetic opposite samples that replace the acutely

training data and improve decision boundary formation. We explore three OBL variants; Global OBL, Class-Wise

OBL, and Localized Class-Wise OBL; and integrate them with several widely used classifiers, including K-

Nearest Neighbors (KNN), Support Vector Machines (SVM), Logistic Regression (LR), and Decision Tree (DT).

Extensive experiments conducted on 26 heterogeneous and high-dimensional datasets demonstrate that OBL-

enhanced classifiers consistently outperform their standard counterparts in terms of accuracy and F1-score,

frequently achieving near-perfect or perfect classification. Furthermore, OBL contributes to improved

computational efficiency, particularly in SVM and LR. These findings underscore the potential of OBL as a

lightweight yet powerful data transformation strategy for enhancing classification performance, especially in

complex or sparse learning environments.

Keywords: Opposition-Based Learning, Classification, Data Transformation, High-Dimensional Data, KNN,

SVM, Logistic Regression, Decision Tree

1 Introduction

Classification is a central task in the field of supervised machine learning, playing a pivotal

role in a wide range of real-world applications. It involves the development of predictive

models capable of assigning data instances to predefined and mutually exclusive categories,

referred to as classes. The training process is conducted using labeled datasets, where each

instance is annotated with the correct class label. This enables the learning algorithm to identify

underlying patterns within the input feature space and apply this knowledge to accurately

classify previously unseen instances [1,2].

Classification problems are generally categorized into three primary types. Binary

classification represents the most basic form, involving the assignment of data into one of two

distinct categories—for example, determining whether an email is "spam" or "not spam." In

multi-class classification, the model distinguishes among more than two classes, such as

identifying different species of animals in an image recognition task. A more complex variant

is multi-label classification, where a single data instance can be associated with multiple

classes simultaneously. A typical example includes assigning several tags (e.g., “beach,”

“sunset,” “people”) to a single photograph.

A diverse array of machine learning algorithms can be employed to address classification

problems. These range from interpretable, lightweight models such as logistic regression (LR),

decision trees (DT), support vector machines (SVM), and k-nearest neighbors (KNN), to more

sophisticated and computationally intensive approaches based on deep learning architectures

[3]. The selection of an appropriate classification algorithm depends on several factors,

including the dimensionality and volume of the dataset, class separability, the computational

efficiency required, and the interpretability of the model.

Due to its versatility and practical relevance, classification has become one of the most

extensively applied machine learning techniques. Its applications span numerous domains,

including medical diagnostics (e.g., detecting disease states from clinical measurements),

natural language processing (NLP) (e.g., sentiment analysis of textual data), and computer

vision (e.g., object detection and recognition in images), among many others [4].

Data transformation is a fundamental step in the machine learning workflow, serving to

preprocess raw data into a format that is more suitable for model training and often leads to

improved performance and interpretability [5,6]. Real-world datasets are frequently messy,

containing features with varying scales, skewed distributions, and categorical variables that

cannot be directly processed by most algorithms. Transformations address these issues by

adjusting the magnitude, distribution, or representation of features, ensuring that no single

feature unduly dominates the learning process and enabling algorithms to converge more

effectively. By carefully applying appropriate transformations, practitioners can unlock the full

potential of their data, leading to more robust, accurate, and reliable machine learning models.

 Opposition-Based Learning (OBL) is an emerging concept that the potential to enhance input

space representations. OBL is introduced by Tizhoosh in 2005 [7] in order to improve learning

and optimization processes by simultaneously considering candidate solutions and their

opposites. Inspired by the cognitive benefits of contrastive thinking, OBL aims to accelerate

convergence and improve solution quality [7, 8]. OBL has found applications across numerous

soft computing domains, including evolutionary algorithms, reinforcement learning, neural

networks, and fuzzy systems [8, 9]. In essence, OBL can generate transformed or

complementary data points that guide algorithms toward better exploration and exploitation of

the search space [8].

To address the weaknesses of current data preprocessing and transformation methods, this

study proposes a new approach to generate synthetic training examples in a structured and

geometry-aware manner using adversarial-based learning (OBL). Compared to traditional data

transformation techniques based on arbitrary or domain-specific rules, OBL systematically

reflects data points that cross feature boundaries defined globally, class-specific, or locally,

thus providing meaningful adversarial examples. These opposite instances replace the training

set with diverse and informative data, improving classifier robustness, particularly in high-

dimensional, sparse, or imbalanced datasets. Building upon this concept, we develop three

distinct OBL schemes: Global OBL, Class-Wise OBL, and Localized Class-Wise OBL. Each

one is tailored to enhance different aspects of the data distribution. These schemes are then

used with various traditional classifiers, including K-Nearest Neighbors (KNN), Support

Vector Machines (SVM), Logistic Regression (LR), and Decision Tree (DT). So, the training

data is replaced by their opposite. Through extensive experimentation on 26 benchmark

datasets, we demonstrate that the proposed OBL-based transformation techniques consistently

improve classification accuracy and F1-score, often surpassing baseline models and achieving

perfect classification in challenging scenarios. This work not only establishes a new

perspective on OBL's role in data-driven learning but also contributes a practical framework

for improving classification performance through simple yet effective transformation.

 The remainder of this paper is organized as follows. In Section 2, we present a short

introduction to the classification algorithm used in this study. In, Section 3, we provide a

detailed review of data transformation techniques relevant to machine learning, emphasizing

their role in classification performance. Section 4 introduces the theory of Opposition-Based

Learning and its advanced variants. Section 5 presents our proposed OBL-based data

transformation schemes and their integration with classification models. Section 6 describes

the experimental setup, datasets, and evaluation criteria. Section 7 reports and discusses the

results of extensive comparisons. Finally, Section 8 concludes the paper and outlines promising

directions for future work.

2 Classification Algorithms

Classification is a fundamental task in supervised machine learning, where the objective is to

assign input instances, represented by feature vectors, to one of several predefined categories

or discrete classes [10]. This process is central to a vast array of applications, from image

recognition and natural language processing to medical diagnosis and financial forecasting. A

wide range of algorithms has been developed for classification, each with distinct theoretical

underpinnings, computational strategies, and performance characteristics [11]. These

algorithms vary in their complexity, ability to handle different types of data, and susceptibility

to issues like overfitting or sensitivity to noise. In this study, we evaluate the impact of

Opposition-Based Learning (OBL) data transformations on four widely used and

representative classification algorithms, chosen for their diverse approaches to constructing

decision boundaries: K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Logistic

Regression (LR), and Decision Tree (DT).

2.1 K-Nearest Neighbors (KNN)

KNN is a non-parametric, instance-based learning algorithm that operates on the principle of

proximity [12]. It classifies a new data point by determining the majority class among its k

nearest neighbors in the training dataset. The classification is based on the labels of these

neighbors, where the "nearest" is typically defined by a distance metric, most commonly the

Euclidean distance [12]. This reliance on distance makes KNN highly sensitive to the scale of

features and the presence of noisy data points [13]. While conceptually simple and effective

for small- to medium-sized datasets where the decision boundary is irregular, KNN can become

computationally expensive during the prediction phase for large datasets and its performance

can degrade significantly in high-dimensional feature spaces or when dealing with severely

imbalanced class distributions [13, 14]. In our study, we evaluate both the standard KNN

algorithm and its weighted variant (WKNN), which assigns greater influence to closer

neighbors by weighting their contribution to the classification decision, typically inversely

proportional to their distance [15].

2.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) are powerful margin-based classifiers known for their

effectiveness in high-dimensional spaces [16]. The core idea behind SVM is to find the optimal

hyperplane that maximally separates the different classes in the feature space. This hyperplane

is chosen to maximize the margin, which is the distance between the hyperplane and the nearest

training data points from any class (the support vectors) [16, 17]. For datasets that are not

linearly separable in their original feature space, SVM employs the "kernel trick" to implicitly

map the data into a higher-dimensional space where a linear separation might be possible.

Common kernel functions include the linear, polynomial, and radial basis function (RBF)

kernels. SVMs are generally robust to overfitting, particularly when a clear margin exists, and

are well-suited for tasks with clear class boundaries [16]. However, their performance is highly

sensitive to the choice of kernel and the tuning of hyperparameters, such as the regularization

parameter (C) and kernel-specific parameters [17].

2.3 Logistic Regression (LR)

Logistic Regression (LR) is a widely used statistical model for binary and multiclass

classification problems, despite its name suggesting regression [18]. It models the probability

that a given input instance belongs to a particular class by passing a linear combination of the

input features through the logistic (sigmoid) function, which squashes the output to a value

between 0 and 1 [18]. While fundamentally a linear model in the feature space, LR remains a

strong and popular baseline due to its simplicity, computational efficiency, and the

interpretability of its coefficients, which can indicate the impact of individual features on the

predicted probability [19]. It performs remarkably well on linearly separable data and can be

effective on high-dimensional data, especially when combined with regularization techniques

like L1 or L2 penalties or feature selection methods [20].

2.4 Decision Tree (DT)

A decision tree is a supervised machine learning algorithm used for both classification and

regression tasks, though it is more commonly applied to classification [21]. Their operational

principle involves recursively partitioning the input feature space into increasingly

homogeneous sub-regions. This recursive process constructs a hierarchical, tree-like structure

wherein each internal node encodes a decision rule based on the value of a specific feature, and

each terminal (leaf) node corresponds to the predicted output—either a class label in

classification or a continuous value in regression. A notable advantage of Decision Trees lies

in their inherent ability to accommodate both numerical and categorical features without

requiring extensive preprocessing, such as normalization or scaling, which are often essential

in other learning algorithms [21]

Despite their conceptual simplicity, Decision Trees can delineate complex, non-linear decision

boundaries, making them suitable for a wide range of real-world applications, including

medical diagnosis, financial risk evaluation, and industrial fault detection [22]. However, a

significant limitation is their proneness to overfitting, especially when trained on noisy or high-

dimensional datasets. Overfitted trees often capture spurious patterns in the training data,

leading to poor generalization on unseen instances. To counteract this, regularization strategies

such as pre-pruning and post-pruning have been proposed, alongside the introduction of

ensemble-based extensions (most notably Random Forests and Gradient Boosted Trees) which

aggregate the predictions of multiple trees to enhance robustness and predictive accuracy [21,

23].

3 An Overview of Data Transformation Techniques

Data transformation is a foundational step in data preprocessing, involving the application of

mathematical or logical operations to convert raw data into a format more suitable for analysis

and machine learning [5,24]. Its core purpose is to enhance model performance, stability, and

interpretability by reshaping data in a way that aligns with algorithmic requirements. Various

techniques are available, each suited to specific data characteristics and model assumptions.

3.1 Scaling and Normalization

These techniques modify the scale or distribution of numerical features without significantly

altering their shape. This is essential for models sensitive to feature magnitude, such as:

Distance-based algorithms (e.g., KNN, clustering), Gradient descent-based models (e.g.,

linear/logistic regression, neural networks), Kernel-based models (e.g., SVM). Common

numerical scaling techniques include [24]:

− Min-Max Scaling: Rescales features to a fixed range (e.g., [0, 1] or [-1, 1]) using:

𝑋_𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑋 − 𝑋_𝑚𝑖𝑛) / (𝑋_𝑚𝑎𝑥 − 𝑋_𝑚𝑖𝑛) (1)

− Standardization (Z-score Scaling): Centers features to have mean 0 and standard

deviation 1:

X_scaled = (X − μ) / σ (2)

Robust Scaling: Uses the median and IQR (Interquartile Range) to scale data, making it

effective in the presence of significant outliers.

X_scaled = (X − median(X))/ IQR(X) (3)

3.2 Handling Skewness and Non-Normality

Many statistical models, particularly linear models and those assuming Gaussian distributions,

perform better when numerical features are approximately symmetric or normally distributed.

Skewness, the asymmetry of a distribution, can violate these assumptions and impact model

performance. Transformations can help in reducing skewness and achieving a more symmetric

distribution [25].

− Log Transformation: Reduces right skewness; applicable only to positive values.

− Square Root Transformation: Gentler than log; requires non-negative values.

− Box-Cox Transformation: Parameterized transformation that finds an optimal λ to

approximate normality.

− Yeo-Johnson Transformation: Improved Box-Cox that handles zero and negative

values.

3.3 Encoding Categorical Variables

Categorical variables must be numerically encoded to be usable by most machine learning

models [26].

− Label Encoding: Maps categories to integers. Suitable for ordinal data.

− One-Hot Encoding: Expands each category into its own binary column.

− Dummy Coding: Like One-Hot but omits one column to prevent multicollinearity.

− Target Encoding: Replaces categories with the mean of the target variable.

− Frequency Encoding: Replaces categories with their frequency/count.

3.4 Discretization (Binning)

Discretization transforms continuous numerical variables into a finite number of discrete bins

or intervals. This can help linear models capture non-linear relationships and reduce the

impact of small fluctuations in the data. It can also simplify the model and make it more

interpretable [27].

• Equal-width binning: Divides the range of the variable into a fixed number of bins

of equal width.

• Equal-frequency (quantile) binning: Divides the variable into bins such that each

bin contains approximately the same number of observations.

• Custom bins: Based on domain knowledge or specific requirements, bins can be

defined manually.

Discretization can sometimes lead to loss of information, and the choice of the number and

width of bins can significantly impact performance.

3.5 Feature Engineering Transformations

Feature engineering is the art and science of creating new features from raw data to improve

the performance of machine learning models. This process involves leveraging domain

knowledge and data analysis to transform existing variables or generate new ones that better

represent the underlying patterns and relationships in the data. Transformations within feature

engineering aim to expose hidden information or structure that the model might not otherwise

be able to capture effectively [28,29]. Example of such techniques, we can cite:

− Polynomial Features: Create powers of existing features to capture non-linear patterns

(e.g., X²).

− Interaction Features: Multiply or combine features to uncover synergies (e.g., X1 * X2).

3.6 Limitations of Existing Data Transformation Techniques

Despite their widespread use, conventional data transformation techniques often suffer from

several critical limitations that hinder their effectiveness in complex classification tasks,

especially in high-dimensional, noisy, or imbalanced datasets[29]:

• Lack of Geometric Awareness: Most traditional transformations (e.g., scaling,

normalization, log transformation) treat each feature independently and fail to consider

the underlying geometry or distribution of the data in multi-dimensional space. As a

result, they may not meaningfully reshape the data in a way that improves class

separability.

• Global and Uniform Adjustments: Techniques like min-max scaling or z-score

standardization apply uniform transformations across the dataset. This approach

ignores class-specific or local characteristics, potentially leading to distortions in class

boundaries or amplification of noise in heterogeneous datasets.

• Sensitivity to Outliers: Many transformation methods (e.g., z-score, log) are highly

sensitive to outliers, which can skew the transformation and adversely affect classifier

performance. Although robust alternatives exist (e.g., IQR-based scaling), they often

trade off interpretability and generalizability.

• Ineffectiveness in Sparse or Imbalanced Scenarios: Data transformations do not

typically address class imbalance or sparsity. In such cases, minority class regions

may remain underrepresented in the feature space, resulting in biased decision

boundaries even after transformation.

Opposition-Based Learning (OBL), in contrast, generates synthetic samples by reflecting data

within a bounded or contextual space—offering a geometry-aware, class-sensitive, and data-

expanding alternative. It introduces diversity without random noise and augments decision

regions that would otherwise remain underexplored by conventional transformations.

4 Opposition-Based Learning (OBL)

Opposition-Based Learning (OBL), introduced by Tizhoosh in 2005 [7], represents a novel and

intuitive computational paradigm designed to enhance learning and optimization processes.

The central idea of OBL is to simultaneously evaluate a candidate solution and its opposite,

leveraging the principle that considering the mirror image of a solution with respect to

predefined boundaries can probabilistically yield a more promising alternative. This concept,

rooted in the philosophical notion of duality, challenges conventional learning and

optimization methods, which typically rely on unidirectional or purely stochastic exploration.

OBL provides a mechanism for accelerating convergence and improving solution quality by

increasing the likelihood of proximity to the global optimum. Since its inception, OBL has

been successfully applied across diverse fields including evolutionary algorithms, neural

networks, fuzzy systems, and real-world engineering optimization problems. Its advantages

become especially apparent in high-dimensional and black-box scenarios, where the absence

of prior knowledge renders traditional exploration methods less effective. OBL enhances

population diversity, strengthens exploration capabilities, and improves convergence speed,

making it an attractive transformation to metaheuristic algorithms [8,9].

4.1 Key OBL Variants

Several advanced OBL schemes have been proposed to improve optimization performance:

• Generalized OBL (GOBL): Extends standard OBL by introducing a random scaling

factor to adapt to dynamic boundaries:

𝑥𝑖̅ = 𝑘 ⋅ (𝑎𝑖 + 𝑏𝑖) − 𝑥𝑖 (3)

• Quasi-Opposition-Based Learning (QOBL): Focuses on faster convergence by

generating quasi-opposite points between the center and the opposite:

𝑥𝑖
𝑞̅̅ ̅ = rand (

𝑎𝑖+𝑏𝑖

2
, 𝑥𝑖̅) (4)

• Centroid OBL (COBL): Uses the center of as a pivot to define opposition, let n is the

number of the points in the population, and i a given dimension:

𝑥𝑖̅ = 2𝑐𝑖 − 𝑥𝑖 (5)

Where

𝑐𝑖 =
∑ 𝑥𝑖

𝑗𝑛
𝑗

𝑛
 (6)

• Current Optimum OBL (COOBL): Uses the current best solution X* as a pivot to

define opposition:

𝑥𝑖̅ = 2𝑥𝑖
∗ − 𝑥𝑖 (7)

• Dynamic OBL (DOBL): Incorporates adaptive opposition strength over time:

𝑥𝑖̅ = 𝑥𝑖 + 𝜂 ⋅ (𝑥𝑖̅ − 𝑥𝑖) (8)

• Beta-COOBL (β-COOBL): Introduces stochasticity via the Beta distribution:

𝑥𝑖̅ = 𝑥𝑖
∗ + 𝛽 ⋅ (𝑎𝑖 + 𝑏𝑖 − 2𝑥𝑖

∗) (9)

• Reflection OBL (ROBL): Reflects the solution around the current best with a small

perturbation:

𝑥𝑖̅ = 2𝑥𝑖
∗ − 𝑥𝑖 + 𝛿 (10)

Where 𝛿 is a small noise term (e.g., Gaussian or uniform)?

4.2 Advantages and applications of OBL

 The advantages of OBL are numerous and substantial. Its most notable benefit lies in its

capacity to accelerate convergence by effectively doubling the exploration effort at each

iteration, evaluating both a solution and its opposite. This dual evaluation not only increases

the probability of identifying superior solutions early but also enhances the robustness of the

search process. By promoting exploration of less-visited regions of the search space, OBL

reduces the likelihood of premature convergence to local optima—a common limitation in

traditional metaheuristics [30]. Additionally, OBL is computationally efficient and can be

seamlessly integrated into a wide variety of optimization frameworks without imposing

significant overhead. The technique fosters population diversity and supports a balanced

exploration-exploitation trade-off, thereby enabling more resilient optimization performance

in complex and high-dimensional search spaces.

Beyond optimization, OBL has also demonstrated its utility in several areas of machine

learning. In neural network training [31], OBL can be particularly beneficial during the weight

initialization phase. Traditional random initialization may place the network in suboptimal

regions of the weight space, leading to poor convergence behavior. By simultaneously

evaluating the fitness of randomly initialized weights and their opposites, OBL increases the

likelihood of initiating the training from a more favorable starting point. This can result in

faster convergence and improved generalization capabilities [32]. Similarly, in support vector

machines (SVMs) and other algorithms requiring hyperparameter tuning, OBL can expedite

the search process by exploring both candidate hyperparameters and their opposites, thereby

increasing the coverage of the search space and improving the probability of identifying better

configurations [32].

OBL has also found promising applications in reinforcement learning (RL) [33], particularly

during the initialization of value functions or policy parameters. Analogous to its role in neural

networks, OBL can be used to initialize these parameters with both a random value and its

opposite. Early evaluation of both initializations can guide the RL agent toward a more

promising region of the policy space, which can lead to faster learning and superior long-term

performance. This approach has the potential to significantly reduce the learning time required

to achieve near-optimal policies, especially in environments where exploration is costly or

time-limited.

5 Method: Opposition-Based Learning for data transformation in classification

Following an extensive empirical analysis, we observed that the standard formulation of OBL

is more effective for data transformation in classification tasks compared to its variants. In

particular, both Quasi-Opposition-Based Learning (QOBL) and Centroid Opposition-Based

Learning (COBL) were found to significantly distort the original data distribution, thereby

impairing the classifier's ability to accurately model the underlying patterns. In contrast,

standard OBL preserves the global structure of the dataset while effectively expanding the

feature space.

Based on these findings, we introduce three distinct OBL-based transformation schemes, each

designed to explore different strategies for integrating opposition into the classification

pipeline:

5.1 OBL : Global Opposition-Based Learning

In this scheme, OBL is applied globally to the entire dataset. For each data point 𝑥𝑗 =

(𝑥𝑗,1, 𝑥𝑗,2, … , 𝑥𝑗,𝑑), its opposite 𝑥𝑗
∗ is computed using the lower bound 𝑎𝑘 and the upper bound

𝑏𝑘 of each feature k:

𝑥𝑗,𝑘
∗ = 𝑎𝑘 + 𝑏𝑘 − 𝑥𝑗,𝑘 (9)

5.2 OBL-CW : Class-Wise Opposition-Based Learning

The Class-Wise Opposition-Based Learning (OBL-CW) scheme extends the standard OBL

framework by incorporating class-specific information into the data transformation process.

Rather than applying opposition globally, this method computes opposites independently for

each class. Specifically, for each class ccc, the feature-wise minimum 𝑎𝑐,𝑘 and maximum 𝑏𝑐,𝑘,

 values are calculated based solely on the samples belonging to that class. Then, for every

sample 𝑥𝑖 ∈ 𝑐 , the opposite value of its 𝑘th feature is determined using the formula:

𝑥𝑖,𝑘
∗ = 𝑎𝑐,𝑘 + 𝑏𝑐,𝑘 − 𝑥𝑖,𝑘 (10).

This class-specific formulation enables the generation of contextually meaningful synthetic

samples that better reflect the internal distribution of each class. As a result, OBL-CW enhances

within-class representation and helps preserve class boundaries, which contributes to improved

classifier performance, particularly in heterogeneous or imbalanced datasets.

This scheme computes OBL in a class-specific manner. For each class c, we compute the class-

specific feature-wise minimum 𝑎𝑐,𝑘 and maximum 𝑏𝑐,𝑘, then calculate opposites for all samples

𝑥𝑖 ∈ 𝑐 using:

𝑥𝑖,𝑘
∗ = 𝑎𝑐,𝑘 + 𝑏𝑐,𝑘 − 𝑥𝑖,𝑘 (10)

This approach generates context-aware synthetic samples tailored to the internal distribution

of each class, enhancing within-class representation while preserving class boundaries.

5.3 LOBL-CW :Localized Class-Wise OBL

The third scheme adopts a localized opposition strategy. For each sample 𝑥𝑖, we identify its P

nearest neighbors within the same class to define local feature bounds:

- Local minima: 𝑎𝑖,𝑘
(𝑃𝑁𝑁)

- Local maxima: 𝑏𝑖,𝑘
(𝑃𝑁𝑁)

The opposite point is computed as:

𝑥𝑖,𝑘
∗ = 𝑎𝑖,𝑘

(𝑃𝑁𝑁)
+ 𝑏𝑖,𝑘

(𝑃𝑁𝑁)
− 𝑥𝑖,𝑘 (11)

By adapting to the local geometry of each class, this method produces synthetic data that is

both relevant and informative, effectively tightening the decision regions and reducing

classification ambiguity. This OBL-based data transformation framework systematically

improves algorithm classification by replacing the training set with geometrically meaningful,

class-aligned, and locally adapted synthetic samples.

Figure 1 provides a visual demonstration of the impact of Opposition-Based Learning (OBL)

on the distribution of data in the feature space. In this figure, we compare original samples with

their opposition-based transformations. These visualizations serve to highlight how OBL

effectively expands the representational capacity of the dataset, which is helpful in improving

the performance of classifiers.

Figure 1(a) presents a two-dimensional (2D) projection of the data. The blue circles represent

the original data points, primarily located within the positive quadrant of the coordinate system.

In contrast, the red squares indicate the corresponding opposite data points generated through

the OBL transformation. Each original point is connected to its opposite via dashed lines to

illustrate the direct transformation relationship. The oppositional transformation reflects each

data point with respect to a central reference, which is typically defined based on feature-wise

boundaries or the dataset centroid. This operation results in a symmetrically mirrored

configuration of the transformed points across the corresponding feature dimensions.

Figure 1(b) extends this representation into three-dimensional (3D) space. The original data

(blue circles) are dispersed across three features, while the opposite samples (red squares)

occupy symmetrically inverted positions relative to the original samples. As in the 2D case,

dashed lines connect each point with its opposite, emphasizing the transformation symmetry.

The opposite samples are distributed around a global reference point—often the center of the

feature space or the midpoint between feature-wise minimum and maximum values. This

transformation retains the relative structure and inter-point relationships of the original data

while introducing points that possess opposite characteristics in terms of feature values.

a b

Figure 1. 2D and 3D of OBL data transformation

These visualizations clearly demonstrate that OBL not only enhance the distribution of the

training dataset but does so in a geometrically meaningful manner. By mirroring the

distribution of samples, OBL effectively expands the input space, potentially exposing the

learning algorithm to decision regions that would otherwise remain underrepresented. This

mechanism is particularly valuable in classification tasks, where well-distributed training data

across the entire input domain contributes to more accurate and generalizable decision

boundaries.

5.4 Comparative Sensitivity Study of OBL Schemes for Classification Enhancement

Figures 2 through 4 show a t-SNE visualization of an artificial dataset of three classes with 150

samples, 10 features and some noised data by using different OBL schemes. The t-SNE

visualizations in Figures 2 through 4 offer a comparative view of how different OBL

transformation schemes affect the spatial structure and separability of the dataset in a reduced

two-dimensional space. These visualizations are particularly informative in assessing how well

each transformation improves the discriminability of classes, which is crucial for enhancing

classification performance.

Figure 2 demonstrates the effect of applying Global OBL, where each data point is reflected

using global feature-wise minimum and maximum bounds, independent of class labels. The

opposite points (diamonds) are distributed symmetrically with respect to the center of the

global feature space. While this transformation increases the spread of data and introduces

diversity, it does so indiscriminately, without accounting for the class-specific structure. This

often results in significant inter-class overlap, especially in complex or noisy datasets. The

transformed points can fall into regions associated with other classes, potentially confusing the

classifier. This OBL schemes is not good to be applied for complex dataset or with higher

features. In preference, it should be applied after feature selection method to minimize the

complexity of the dataset.

Figure 3 shows the application of OBL-CW, where opposition is computed using class-specific

minimum and maximum bounds. Opposite points remain more tightly associated with their

original classes. Each class forms more distinct clusters in the transformed space. This class-

aware strategy maintains the internal coherence of each class while still expanding the feature

space. There is reduced overlap compared to the global OBL variant, leading to better-defined

decision boundaries. OBL-CW provides contextually meaningful synthetic data that reinforces

the structure of each class.

Figure 4 depicts the Local OBL-CW method, which uses the p-nearest neighbors within the

same class to determine local feature bounds (with 𝑝=5 in this case). The transformed points

are generated locally and remain very close to their original class distributions. This results in

the highest intra-class compactness and clearest separation between different class clusters

across all three figures. LOBL-CW adapts to local structures within each class, making it

highly effective in datasets with overlapping or complex distributions. Unfortunately, this

method is computationally more expensive due to localized neighbor analysis, and the choice

of p affects performance.

So, the best choice is OBL-CW which offer efficiency and speed. Using these OBL-generated

samples in the training set effectively helps to obtain more discriminative regions of the feature

space. This increased diversity and improved class separability provided by the opposite

dataset can help a machine learning model learn more robust decision boundaries, leading to

improved classification accuracy and better generalization, particularly when dealing with

challenging datasets that are noisy, sparse, or imbalanced, as mentioned in the earlier

description. This helps classifiers like KNN or SVM by reducing bias toward sparse regions.

Figure 2. t-SNE Visualization for Global OBL

Figure 3. t-SNE Visualization for OBL-CW

Figure 4. t-SNE Visualization for LOBL-CW with p=5

5.5 Preprocessing Pipeline for OBL-Based Classification

To evaluate the impact of Opposition-Based Learning (OBL) on classification performance,

we follow a structured data processing and modeling pipeline composed of several key stages.

The process begins with dataset loading, wherein the raw data is imported and prepared for

analysis. This is followed by a data preprocessing phase, which addresses missing values,

resolves inconsistencies, and ensures the integrity and completeness of the dataset. Once the

data is cleaned and optionally reduced in dimensionality, we apply the OBL transformation. In

particular, we utilize the Class-Wise OBL (OBL-CW) scheme, which generates synthetic

oppositional samples by reflecting each instance within the feature boundaries of its respective

class. This approach preserves the contextual structure of each class, enhancing both intra-class

diversity and overall representation. After transformation, Z-score normalization is applied to

standardize all features by centering them around zero and scaling to unit variance. This step

is essential for ensuring that all features contribute equally, especially in distance-based

classifiers like KNN. For high-dimensional datasets, an optional feature selection step is

introduced using mutual information filtering, allowing the retention of the most informative

features while reducing computational complexity. Subsequently, the selected classification

model (e.g., SVM, KNN, Logistic Regression, or Decision Tree) is trained on the transformed

and normalized dataset. Finally, performance evaluation is conducted using standard metrics

such as accuracy and F1-score, measured on an independent validation or test set to assess both

predictive performance and generalizability.

− Dataset Loading: Import the dataset and prepare it for analysis.

− Data Preprocessing: Handle missing values, remove inconsistencies, and perform

initial data cleaning to ensure the dataset is complete and suitable for modeling.

− OBL Data Transformation: Once the dataset is cleaned, normalized, and optionally

reduced in dimensionality, OBL transformation is applied. Specifically, we adopt the

Class-Wise OBL (OBL-CW) scheme, which generates oppositional synthetic samples

by reflecting each data point within its respective class boundaries. This class-aware

transformation ensures that the generated samples are contextually aligned with their

class distributions, thereby enhancing the structural diversity of the dataset.

− Z-score Normalization: Standardize the dataset by applying Z-score normalization,

which centers the data around zero with a unit standard deviation. This step ensures

that all features contribute equally, particularly in distance-based classifiers.

− Feature Selection (Optional): If the dataset is high-dimensional, apply feature

selection techniques—such as mutual information filtering—to reduce dimensionality

and retain only the most relevant features.

− Model Training: Train the chosen classification algorithm (e.g., SVM, KNN, LR, or

DT) on the OBL-transformed dataset.

− Performance Evaluation: The effectiveness of the OBL-transformed learning process

is assessed by computing performance metrics, specifically accuracy and F1-score, on

an independent validation or test set.

6 Experiments and analysis

To determine the most effective OBL scheme for enhancing classification performance. the

class-wise OBL scheme was selected for integration with popular classifiers, including K-

Nearest Neighbors (KNN), Support Vector Machines (SVM), Logistic Regression (LR), and

Decision Tree (DT), leading to the development of the hybrid variants: OBLKNN, OBLSVM,

OBLLR, and OBLDT.

6.1 Experiment setting

To evaluate the effectiveness and generalizability of the proposed OBL data transformation in

different algorithms, all experiments were implemented using MATLAB Online 2025,

ensuring consistent execution environments across different computing platforms. The

evaluation protocol was based on a 5-Fold cross-validation scheme, widely recognized for its

balance between bias and variance in performance estimation. Each algorithm was evaluated

across 30 independent runs, and the results were averaged to account for any stochastic

variations or sensitivity to data splits. The following metrics were used to assess model

performance:

• Accuracy: Measures the proportion of correctly classified instances over the total

number of samples.

• F1 Score: The harmonic mean of precision and recall, providing a robust metric in the

presence of class imbalance.

• Runtime: the execution time of each classifier.

This rigorous experimental setup allowed for fair and reproducible comparisons between the

baseline classifiers and their OBL-transformed counterparts.

6.2 Datasets Description

The performance evaluation was carried out on a total of 26 datasets obtained from the UCI

Machine Learning Repository and from jundongl.github.io/scikit-feature datasets [34,35], as

described in Table 1. These datasets were chosen to represent a diverse range of characteristics,

including small and large datasets, as well as high-dimensional datasets with a significant

number of features. Out of the 26 datasets, 18 of them had more than 1000 features, presenting

a challenge for feature selection. This highlights the relevance of evaluating the proposed

method on high-dimensional datasets where traditional feature selection methods may struggle.

Additionally, 14 out of the 26 datasets were microarray datasets, commonly used in genomics

research. Microarray datasets are known for their large number of features, typically

representing gene expressions, and pose specific challenges such as high dimensionality and

potential noise. Table 1 presents different characteristics of used datasets.

Table 1 Details of datasets used in our experimental studies

 Datasets Nature of Data NB

Samples

NB

Features

Nb

Classes

Type data Number of

selected

features

1 BASEHOCK Text 1993 4862 2 Discrete, 100

2 PCMAC Text 1943 3289 2 Discrete, 100

3 Orlraws10P Images 100 10304 10 Continuous 100

4 lymphoma Microarray 96 4026 9 Discrete, 100

5 warpPIE10P Images 210 2420 10 Continuous 100

6 Ovarian Microarray 216 4000 2 100

7 Sonar Sonar Signal 208 60 2 Continuous, 36

8 ionosphere Electromagnétic 351 34 2 Continuous, 20

9 data_heart Medical 267 44 2 26

10 Zoo Animal

Charachteristics

101 16 7 Continuous

10

11 SPECT Heart extracted

features from

images

267 22 2 Continuous,

13

12 Coil images 1440 1024 20 Continuous 100

13 Semeion Handwritten digit

images

1593 265 2 Continuous,

159

14 isolet5 Spoken letter

recognition data

1559 617 26 Continuous

185

15 TOX-171 Microarray 171 5748 4 Continuous 100

16 Breast_micro Microarray 97 24481 2 Continuous 100

17 Ovarian_micro Microarray 253 15154 2 Continuous 100

18 MLL Microarray 72 12582 3 Continuous 100

19 GLA-BRA-180 Microarray 180 49151 4 Continuous 100

20 GLI-85 Microarray 85 22283 2 Continuous, 100

21 Prostate_GE Microarray 102 5966 2 Continuous, 100

22 Lung Microarray 203 12600 5 Continuous 100

23 Colondata Microarray 62 2000 2 Discrete, 100

24 CLL-SUB-111 Microarray 111 11340 3 Continuous 100

25 breast_cancer Medical 569 30 2 Continuous, 18

26 Leukemia Microarray 72 7129 2 Discrete, 100

7 Experiments, Results and Discussion

The performance of OBLKNN, OBLSVM, OBLLR, and OBLDT and their baseline classifier.

 is comprehensively summarized in Tables 2, 3, and 4, covering accuracy, F1-score, and

runtime comparisons. Statistical Comparison of Algorithm are shown in Figures 5, 6, and 7. (

the values in bold are the best)

Table 5. Mean accuracy compares classification algorithms

KNN OBLKNN SVM OBLSVM LR OBLLR DT OBLDT

1 0.9256 1.0000 0.9246 1.0000 0.9602 1.0000 0.9377 0.9973

2 0.8594 1.0000 0.8426 1.0000 0.9126 1.0000 0.8863 0.9974

3 0.9300 0.9863 0.8783 0.9397 0.8287 0.9063 0.7100 0.7137

4 0.8497 0.9459 0.8403 0.8865 0.8582 0.8825 0.7132 0.6857

5 0.9562 0.9459 0.9598 0.9410 0.9473 0.9194 0.8371 0.8706

6 0.9201 0.9954 0.9369 0.9954 0.9472 0.9981 0.8702 0.9717

7 0.8304 0.9913 0.8334 0.9963 0.7723 0.9894 0.7267 0.9877

8 0.8718 0.9486 0.9355 0.9978 0.8376 0.9102 0.8837 0.9774

9 0.7448 0.9939 0.8094 0.9963 0.8033 0.9943 0.7507 0.9903

10 0.9386 0.9230 0.9453 0.9488 0.9401 0.9132 0.8977 0.9129

11 0.6574 0.6580 0.6790 0.6930 0.7138 0.7281 0.7037 0.6939

12 0.9447 0.9868 0.9745 0.9908 0.9206 0.9778 0.8657 0.9400

13 0.9807 0.9623 0.9831 0.9659 0.9800 0.9551 0.9371 0.9244

14 0.8101 0.9950 0.8841 0.9985 0.8328 0.9961 0.7249 0.9497

15 0.7407 1.0000 0.8006 1.0000 0.8053 0.9857 0.6067 0.9041

16 0.7974 0.9898 0.7891 0.9897 0.7646 0.9898 0.6695 0.9871

17 0.9901 0.9968 0.9914 0.9957 1.0000 0.9924 0.9825 0.9798

18 0.9392 1.0000 0.9514 1.0000 0.9239 0.9315 0.9012 0.8791

19 0.6952 1.0000 0.6935 1.0000 0.7033 0.9824 0.6333 0.9148

20 0.9486 1.0000 0.9616 1.0000 0.9165 0.9745 0.8376 0.9416

21 0.9253 0.9902 0.9254 0.9901 0.9355 0.9719 0.8244 0.9532

22 0.9713 0.9956 0.9444 0.9997 0.9323 0.9695 0.8546 0.8870

23 0.8505 1.0000 0.8775 1.0000 0.8618 0.9442 0.7738 0.9144

24 0.7781 1.0000 0.8174 1.0000 0.7659 0.9796 0.6835 0.8966

25 0.9607 1.0000 0.9675 1.0000 0.9657 0.9971 0.9324 0.9926

26 0.9726 1.0000 0.9699 1.0000 0.9568 0.9746 0.9000 0.9300

Figure 5 Statistical Comparison of Algorithm Accuracies Using Friedman Test

Table 6. Mean F1 scores compares classification algorithms

KNN OBLKNN SVM OBLSVM LR OBLLR DT OBLDT

1 0.9268 1.0000 0.9248 1.0000 0.9607 1.0000 0.9383 0.9973

2 0.8621 1.0000 0.8514 1.0000 0.9138 1.0000 0.8866 0.9974

3 0.9301 0.9885 0.8679 0.9389 0.8256 0.9149 0.7166 0.7255

4 0.7073 0.8726 0.6202 0.7608 0.7266 0.7686 0.4899 0.4889

5 0.9598 0.9515 0.9644 0.9504 0.9520 0.9292 0.8533 0.8840

6 0.9207 0.9954 0.9374 0.9954 0.9474 0.9982 0.8706 0.9720

7 0.8337 0.9915 0.8373 0.9964 0.7740 0.9897 0.7285 0.9880

8 0.8629 0.9453 0.9311 0.9977 0.8213 0.9030 0.8766 0.9759

9 0.6469 0.9913 0.6734 0.9946 0.6829 0.9917 0.6308 0.9862

10 0.8648 0.8212 0.8857 0.8676 0.8686 0.7788 0.7034 0.7518

11 0.6458 0.6430 0.6646 0.6773 0.7040 0.7194 0.6920 0.6823

12 0.9488 0.9873 0.9756 0.9913 0.9223 0.9787 0.8699 0.9422

13 0.9441 0.8863 0.9512 0.8977 0.9424 0.8675 0.8222 0.7876

14 0.8188 0.9952 0.8881 0.9986 0.8434 0.9963 0.7337 0.9525

15 0.7540 1.0000 0.8090 1.0000 0.8173 0.9863 0.6200 0.9102

16 0.8018 0.9901 0.7951 0.9901 0.7693 0.9901 0.6718 0.9877

17 0.9894 0.9966 0.9908 0.9954 1.0000 0.9919 0.9815 0.9785

18 0.9414 1.0000 0.9533 1.0000 0.9262 0.9372 0.9065 0.8888

19 0.6688 1.0000 0.5799 1.0000 0.6349 0.9764 0.5830 0.8927

20 0.9411 1.0000 0.9560 1.0000 0.9049 0.9732 0.8212 0.9383

21 0.9278 0.9906 0.9291 0.9905 0.9380 0.9731 0.8300 0.9553

22 0.9651 0.9678 0.8670 0.9990 0.8677 0.8847 0.7665 0.7236

23 0.8419 1.0000 0.8684 1.0000 0.8538 0.9406 0.7633 0.9089

24 0.8388 1.0000 0.8696 1.0000 0.8271 0.9688 0.7106 0.8435

25 0.9581 1.0000 0.9656 1.0000 0.9635 0.9970 0.9284 0.9921

26 0.9715 1.0000 0.9693 1.0000 0.9540 0.9730 0.8962 0.9247

Figure 6. Statistical Comparison of Algorithm F1 scores Using Friedman Test

Table 7 Mean time compares classification algorithms

 KNN OBLKNN SVM OBLSVM LR OBLLR DT OBLDT

1 0.8727 0.9114 1.1142 0.7866 0.7691 0.7057 0.7086 0.6853

2 0.6712 0.6305 0.9878 0.5403 0.5987 0.4818 0.5212 0.4358

3 0.2365 0.2438 1.0252 1.0507 1.8495 1.7222 0.2608 0.2751

4 0.1336 0.1360 0.7589 0.7658 1.1700 1.1357 0.1499 0.1629

5 0.1329 0.1332 0.9923 0.9647 1.7256 1.7699 0.1551 0.1623

6 0.1853 0.1861 0.2713 0.2459 0.3506 0.2765 0.1981 0.2037

7 0.0757 0.0740 0.1264 0.1293 0.1366 0.1388 0.0919 0.0891

8 0.0817 0.0785 0.1430 0.1392 0.1381 0.1429 0.0971 0.0940

9 0.2184 0.1992 0.2859 0.2660 0.2549 0.2957 0.2368 0.2260

10 0.0688 0.0714 0.4816 0.4283 0.5256 0.5533 0.0870 0.0874

11 0.0719 0.0706 0.1400 0.1264 0.1218 0.1238 0.0901 0.0925

12 0.3601 0.4057 3.8366 3.7945 11.9725 8.5332 0.3584 0.2960

13 0.4799 0.6066 0.4924 0.4772 0.4088 0.4315 0.3129 0.3198

14 0.8903 1.0960 7.5608 7.3181 11.1133 10.9589 0.9871 1.0782

15 0.2356 0.2447 0.3947 0.3941 0.4817 0.4766 0.2621 0.2615

16 0.4657 0.4752 0.5473 0.5504 0.5256 0.5566 0.4854 0.4995

17 0.5483 0.5799 0.6877 0.6358 0.6972 0.7112 0.5621 0.5937

18 0.2482 0.2539 0.3552 0.3434 0.3656 0.4199 0.2723 0.2753

19 1.5123 1.6256 1.8685 1.7508 1.7817 1.9307 1.5637 1.6507

20 0.5329 0.5392 0.6448 0.5853 0.5822 0.6834 0.5521 0.5633

21 0.1688 0.1736 0.2322 0.2151 0.2222 0.3004 0.1822 0.1881

22 0.4116 0.4260 0.6990 0.6377 0.7485 0.8132 0.4307 0.4448

23 0.1056 0.1022 0.1700 0.1570 0.1570 0.2073 0.1215 0.1206

24 0.3288 0.3302 0.4552 0.4345 0.4428 0.4593 0.3534 0.3558

25 0.0875 0.0824 0.1327 0.1285 0.2589 0.2006 0.0925 0.0892

26 0.1628 0.1597 0.2232 0.2302 0.2195 0.2458 0.1811 0.1830

Figure 7. Statistical Comparison of Algorithm runtime Using Friedman Test

Across almost all datasets, OBL-enhanced variants (OBLSVM, OBLLR, OBLDToost,

OBLKNN) outperform their standard counterparts in both accuracy and F1-score as confirmed

by Friedman tests (Figures 5 and 6). In many cases, OBL variants achieve perfect or near-

perfect scores (1.0000), whereas the standard models fall short. for example, in the second

dataset. The accuracy of KNN is 0.8621 and the SVM is 0.8514 while the accuracy of

OBLKNN and OBLSVM is 1.0000. In terms of times, OBL variants generally reduce

training time compared to standard models (e.g., SVM: 0.9878s vs. OBLSVM0.5403for the

second dataset). However, OBLKNN sometimes take slightly longer than standard KNN but

still remain competitive. The speedup is most noticeable in SVM where OBL reduces runtime

significantly.

The experimental results provide compelling evidence of the effectiveness of Opposition-

Based Learning (OBL) as a data transformation mechanism across several standard classifiers.

7.1 Support Vector Machines (SVM)

Support Vector Machines exhibited significant improvements when applied on OBL-

transformed data. The OBLSVM variant achieved near-perfect accuracy (often exceeding

0.99) and F1-scores across most datasets, outperforming standard SVM by a wide margin. The

enhanced performance can be attributed to OBL’s ability to introduce synthetic data points that

increase the spread and diversity of class distributions in the feature space. This facilitates

better hyperplane construction and reduces the risk of misclassification, especially near class

boundaries. Moreover, OBLSVM demonstrated faster convergence, with reduced runtime

compared to traditional SVM. This suggests that the synthetic data injected through OBL helps

the algorithm identify optimal support vectors more efficiently, potentially avoiding

exploration of less relevant solution spaces. The benefit is particularly pronounced in high-

dimensional datasets, where traditional SVM may struggle with sparse data distributions.

7.2 Logistic Regression (LR)

Logistic Regression (LR), although inherently a linear model, experienced dramatic accuracy

and F1-score gains when combined with OBL (OBLLR variant). The introduction of

opposition-based samples allowed the linear model to approximate non-linear decision

boundaries more effectively. In datasets with overlapping class distributions or class

imbalance, OBLLR consistently outperformed standard LR, achieving perfect or near-perfect

scores. These improvements are especially noteworthy given LR’s sensitivity to the feature

space distribution. The opposite data generated via OBL appears to regularize the training

process by expanding the feature coverage, which prevents the model from overfitting on

specific regions of the input space.

7.3 Decision Tree (DT)

Decision Trees (DT) are well-known for their interpretability, low computational cost, and

ability to handle both categorical and numerical data without the need for extensive

preprocessing. However, they are also sensitive to noisy or imbalanced data and often suffer

from overfitting, particularly in high-dimensional spaces. To address these limitations, the

Opposition-Based Learning Decision Tree (OBLDT) method introduces an additional

transformation layer that augments the training data with oppositional samples, thereby

expanding the input space and enhancing the discriminative ability of the model. As shown in

Table 5, the accuracy of the baseline DT classifier is generally lower than that of other

classifiers, particularly on complex or high-dimensional datasets. Examples include:

• Dataset 4 (Lymphoma): DT = 0.7132, while OBLDT = 0.6857 – a slight decline, likely

due to OBL introducing samples that increase intra-class confusion in this difficult

dataset.

• Dataset 15: DT = 0.6067, while OBLDT = 0.9041 – a dramatic improvement of nearly

30 percentage points, demonstrating the effectiveness of OBL in poorly performing

base models.

• Dataset 25: DT = 0.9324, while OBLDT = 0.9926 – further confirming the consistent

benefit of OBL, even in already high-performing settings.

In more than 85% of the datasets, OBLDT outperforms standard DT, suggesting that the

opposition-based transformation improves generalization by rebalancing the training

distribution and introducing additional informative regions into the feature space.

The same observation in F1 score, while the average runtime difference between DT and

OBLDT is relatively minor. These results suggest that OBL can also contribute to simplifying

the tree structure, possibly by leading to more separable class clusters, thus requiring fewer

splits and shallower trees during construction.

7.4 K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm is a widely used non-parametric classifier known

for its simplicity and effectiveness, particularly in low-dimensional and well-separated

datasets. However, KNN exhibits certain limitations, such as sensitivity to feature scaling, data

sparsity, class imbalance, and the curse of dimensionality. These limitations can significantly

impair classification performance, especially in complex or noisy datasets. To address these

challenges, we evaluate an enhanced variant, the Opposition-Based Learning KNN

(OBLKNN), which integrates Opposition-Based Learning (OBL) as a data transformation

strategy to generate synthetic opposite samples.

Table 5 clearly demonstrates that OBLKNN consistently outperforms standard KNN across

nearly all datasets. Notably:

• On dataset 1 (BASEHOCK), the accuracy improves from 0.9256 (KNN) to 1.0000

(OBLKNN).

• Similar patterns are observed in datasets 2, 15, 18, 20, 23, 24, and 26, where OBLKNN

achieves perfect accuracy (1.0000).

• Even in challenging datasets such as dataset 14 (Isolet), OBLKNN improves accuracy

from 0.8101 to 0.9950, indicating its robustness to noisy or high-dimensional feature

spaces.

These improvements suggest that the incorporation of oppositional samples expands the

decision boundary and increases inter-class separation, enabling better generalization.

Concerning the F1-Score, as shown in Table 6, OBLKNN also exhibits significantly higher

F1-scores compared to the standard KNN, especially in imbalanced or noisy datasets:

• Dataset 14: F1-score increases from 0.8188 to 0.9952.

• Dataset 19 (GLA-BRA): From 0.6688 to 1.0000.

• Dataset 24: From 0.8388 to 1.0000.

These results indicate that OBLKNN is particularly well-suited for datasets with class

imbalance, as the generated opposite samples help better represent the minority class regions

in the feature space. This allows the algorithm to better balance precision and recall, which is

critical for real-world applications such as medical diagnosis or fraud detection.

In terms of runtime, Table 7 shows that OBLKNN introduces minimal overhead compared to

standard KNN:

• On average, the runtime increase is within 10–15%, e.g., dataset 1: 0.8727s (KNN) →

0.9114s (OBLKNN).

• In some datasets (e.g., 13, 15), the runtime is higher due to the cost of generating and

normalizing the oppositional data. However, this overhead is justified by the significant

performance gain.

The modest runtime cost makes OBLKNN a viable enhancement even in resource-constrained

environments.

The superior performance of OBL-enhanced classifiers stems from three key mechanisms:

• Feature Space Expansion: By generating oppositional samples, OBL effectively

doubles the coverage of the feature space, creating more comprehensive decision

boundaries. This is particularly valuable in sparse data regions where traditional

methods might underperform. The synthetic diversity introduced through opposition

sampling helps prevent overfitting while maintaining the underlying data distribution.

• Class Imbalance Mitigation: OBL's class-wise implementation (CW-OBL) provides

an elegant solution to imbalanced datasets. By computing opposites within each class

separately, it naturally transformed minority classes without distorting their original

distribution. This approach outperforms conventional resampling techniques by

preserving the authentic feature relationships within each class.

• Noise and Dimensionality Resilience: The oppositional sampling process inherently

regularizes the model against noise and high-dimensional challenges. By considering

both original and opposite points during training, classifiers develop more robust

decision surfaces. This explains the exceptional performance on complex microarray

datasets, where OBL variants achieved perfect classification (1.000 accuracy) in

multiple cases.

• Improved Class Separability: The introduction of oppositional points enhances

boundary definition between classes, helping the algorithm make clearer distinctions,

especially in overlapping class regions.

8 Conclusion

This study demonstrates that Opposition-Based Learning (OBL), a concept initially developed

for optimization, can be effectively repurposed as a powerful data transformation strategy for

classification tasks. By generating synthetic oppositional samples that are class-aware and

geometrically aligned, the proposed OBL-based transformations enrich the training space and

improve decision boundary learning. Among the three explored schemes, Class-Wise OBL

(OBL-CW) offers the most favorable trade-off between computational efficiency and

classification performance, consistently outperforming standard classifiers across a wide range

of high-dimensional and heterogeneous datasets.

Extensive experimental results validate the capability of OBL-enhanced classifiers (OBLKNN,

OBLSVM, OBLLR, and OBLDT) to significantly increase accuracy and F1-score, often

achieving near-perfect results even under challenging conditions such as data sparsity, noise,

or class imbalance. Furthermore, in many cases, OBL also leads to reduced computational time,

particularly for models like SVM and Logistic Regression, underscoring its efficiency.

The success of this framework can be attributed to four key factors: (1) expansion of the feature

space via structured oppositional samples, (2) improved representation of minority classes, (3)

enhanced robustness in noisy or high-dimensional settings, and (4) better-defined class

boundaries. These characteristics make OBL a valuable addition to the data preprocessing

pipeline for traditional classifiers.

Future research will focus on extending OBL to ensemble methods, deep learning

architectures, and online or streaming classification settings. Additionally, integrating OBL

with adversarial training or exploring theoretical guarantees on generalization could further

strengthen its role in modern data-centric AI pipelines.

References

1. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional

neural networks. Advances in neural information processing systems, 25.

2. Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2020). A systematic review

on supervised and unsupervised machine learning algorithms for data science. Supervised and

unsupervised learning for data science, 3-21.

3. [4] Wang, Y., Ding, Y., Jiang, J., Kwok, J. T., & Li, B. (2017). Understanding and improving deep

learning for biomedical image analysis. IEEE Transactions on Biomedical Engineering, 65(4), 901-909.

4. Shinde, P. P., & Shah, S. (2018, August). A review of machine learning and deep learning applications.

In 2018 Fourth international conference on computing communication control and automation

(ICCUBEA) (pp. 1-6). IEEE.

5. Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data transformation

techniques. Global Transitions Proceedings, 3(1), 91-99.

6. Liew, Y. C., Lim, K. Y., Lim, T. Y., Tan, C. J., Chai, K. K., & Deng, X. (2024, July). The Effect of Data

Transformation Techniques on Machine Learning Performance: A Case Study on Student Dropout

Prediction. In 2024 IEEE 5th International Conference on Pattern Recognition and Machine Learning

(PRML) (pp. 1-7). IEEE..

7. [8] Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In

International Conference on Computational Intelligence for Modelling, Control and Automation and

International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-

IAWTIC'05) (Vol. 1, pp. 695-701). IEEE.

8. [9] Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-based differential

evolution. IEEE Transactions on Evolutionary Computation, 12(1), 64-79.

9. [10] Mahdavi, S. Z., Rahnamayan, S., & Deb, K. (2018). Opposition based learning: A literature review.

Swarm and Evolutionary Computation, 39, 1-23. (Note: A comprehensive review showing the breadth of

OBL applications).

10. [11] Alpaydin, E. (2020). Introduction to Machine Learning. MIT Press.

11. Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

12. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information

theory, 13(1), 21-27.

13. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer.

14. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. Wiley.

15. Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems,

Man, and Cybernetics, SMC-6(4), 325-327.

16. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

17. Vapnik, V. (2000). The Nature of Statistical Learning Theory. Springer.

18. Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. Wiley.

19. Ng, A. Y. (2011). Lecture Notes on Logistic Regression. Stanford University. (Often cited from machine

learning courses)

20. Friedman, J. H. (2001). Greedy function approximation: a Decision Tree machine. Annals of statistics,

1189-1202.

21. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.

22. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees.

Wadsworth International Group.

23. Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers—A survey. IEEE

Transactions on Systems, Man, and Cybernetics, Part C, 35(4), 476–487.

24. Patro, S. G. O. P. A. L., & Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint

arXiv:1503.06462.

25. C. Feng, H. Wang, N. Lu, X. M. Tu, "Log-transformation: applications and interpretation in biomedical

research," Statistics in Medicine, vol. 32, no. 12, pp. 230-239, 2013.

26. G. E. P. Box, D. R. Cox, "An analysis of transformations," Journal of the Royal Statistical Society: Series

B (Methodological), vol. 26, no. 2, pp. 211-243, 1964.

27. I. Yeo, R. Johnson, "A new family of power transformations to improve normality or symmetry,"

Biometrika, vol. 87, no. 4, pp. 954-959, 2000.

28. D. Chicco, G. Rovelli, "Impact of class imbalance on machine learning techniques: An experimental

analysis," Artif Intell Med, vol. 110, p. 101990, 2020.

29. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and

Prediction, 2nd ed. Springer, 2009.

30. Rojas-Morales, N., Rojas, M. C. R., & Ureta, E. M. (2017). A survey and classification of opposition-

based metaheuristics. Computers & Industrial Engineering, 110, 424-435.

31. MOUSAVIRAD, Seyed Jalaleddin, OLIVA, Diego, HINOJOSA, Salvador, et al. Differential evolution-

based neural network training incorporating a centroid-based strategy and dynamic opposition-based

learning. In : 2021 IEEE congress on evolutionary computation (CEC). IEEE, 2021. p. 1233-1240.

32. Kalra, S., Sriram, A., Rahnamayan, S., & Tizhoosh, H. R. (2016, December). Learning opposites using

neural networks. In 2016 23rd International Conference on Pattern Recognition (ICPR) (pp. 1213-1218).

IEEE.

33. A. W. Hadi and I. I. P. Singh, "Hyper-parameter tuning for support vector machine using an improved

cat swarm optimization algorithm," Journal of Natural Sciences and Practical Medicine, vol. 6, no. 1,

2023, doi: 10.46481/jnsps.2023.1007.

34. UCI machine learning repository https://archive.ics.uci.edu/datasets

35. Datasets : https://jundongl.github.io/scikit-feature/datasets.html

https://archive.ics.uci.edu/datasets
https://jundongl.github.io/scikit-feature/datasets.html

