
ar
X

iv
:2

50
4.

16
26

5v
1

 [
m

at
h.

C
O

]
 2

2
A

pr
 2

02
5

Term Coding for Extremal Combinatorics: Dispersion and

Complexity Dichotomies

Søren Riis
Queen Mary University of London

s.riis@qmul.ac.uk

Abstract

We introduce Term Coding, a novel framework for analysing extremal problems in discrete
mathematics by encoding them as finite systems of term equations (and, optionally, non-equality
constraints). In its basic form, all variables range over a single domain, and we seek an inter-
pretation of the function symbols that maximises the number of solutions to these constraints.
This perspective unifies classical questions in extremal combinatorics, network/index coding,
and finite model theory.

We further develop multi-sorted Term Coding, a more general approach in which variables
may be of different sorts (e.g., points, lines, blocks, colours, labels), possibly supplemented by
variable-inequality constraints to enforce distinctness. This extension captures sophisticated
structures such as block designs, finite geometries, and mixed coding scenarios within a single
logical formalism.

Our main result shows how to determine (up to a constant) the maximum number of solutions
maxI(Γ, n) for any system of term equations (possibly including non-equality constraints) by
relating it to graph guessing numbers and entropy measures.

Finally, we focus on dispersion problems, an expressive subclass of these constraints. We
discover a striking complexity dichotomy: deciding whether, for a given integer r, the maximum
code size that reaches nr is undecidable, while deciding whether it exceeds nr is polynomial-time
decidable.

1 Introduction

A recurring theme in complexity theory and combinatorics is that small adjustments to a problem’s
parameters can cause dramatic shifts in computational difficulty (see, e.g., [1, 2, 3]). This paper
demonstrates a particularly dramatic version of such a phenomenon. Although full first-order logic
with universal quantification can encode a broad range of combinatorial problems [4, 5, 6, 7], we
restrict our attention to a quantifier-free, negation-free language of term equations—augmented,
when needed, with non-equality constraints. (We refer to the resulting framework as Term Coding ;
a formal definition is given in Section 2.) Surprisingly, even this limited syntax captures many
extremal problems and reveals rich structural properties. In particular, we show that a minimal
increase in the solution threshold can flip an undecidable question into one decidable in polynomial
time.

A striking single-sorted dichotomy

Within the framework of single-sorted Term Coding (see Section 2 for formal definitions), we
consider dispersion problems—that is, systems of term equations over an n-element domain that

1

http://arxiv.org/abs/2504.16265v1

define a code (a set of tuples) whose size we wish to maximise. We prove that deciding whether,
for a given dispersion problem Γ and an integer r, there exists some n for which the code size
reaches nr is undecidable; yet, if the target size is increased by one to nr+1, the problem becomes
polynomial-time decidable.

A Specialised Framework with Broad Connections

Although single–sorted Term Coding is built on conjunctions of term equations (possibly with
non-equality constraints, in the literature sometimes called dis-equalities), it resonates with several
areas of discrete mathematics: extremal combinatorics, finite model theory, and network/index
coding. By linking code sizes to graph entropy [8, 9] and guessing numbers [10, 11], we obtain tight
bounds on the size of extremal solutions, highlighting the fine boundary between decidability and
undecidability.

1.1 General Motivation

Many central combinatorial problems—such as block designs, finite geometries, and error-correcting
codes—seek structures of size n that satisfy global constraints (see, e.g., [12, 13, 14, 15]). While
such constraints are often expressible using first-order logic (FO) with quantifiers, investigating
these problems through the lens of simpler logical fragments can yield new structural insights and
connections.

In our Term Coding framework, we restrict attention to a quantifier-free language based pri-
marily on conjunctions of term equations. In its basic single-sorted form, this resembles equational
logic. However, the framework is significantly extended by permitting multiple variable sorts (each
with its own domain) and incorporating non-equality constraints (s 6= t). As is standard in logic
and detailed later (Theorem 4.1), any first-order sentence ψ can be transformed by standard logical
transformations (Skolemisation followed by conversion to Conjunctive Normal Form (CNF)) into
an equisatisfiable universal sentence, which in turn corresponds directly to a system of multi-sorted
term equations and non-equalities. This means that the existence of any model (finite or infinite)
for ψ is equivalent to the existence of a model for a corresponding Term Coding system Γψ. Con-
sequently, the framework captures the full model-theoretic satisfiability of first-order logic, despite
its syntactic simplicity (lacking explicit quantifiers or full Boolean negation).

While possessing general expressive power, the emphasis in Term Coding shifts from merely
asking if a model exists (a question whose complexity is tied to FO logic) to analysing the prop-
erties of the code over finite domains—the set of solution tuples (a1, . . . , av)—and, in particular,
determining the maximum possible size of this code, maxI(Γ, n). This quantitative focus on max-
imising solutions within finite structures allows us to connect model-theoretic questions to extremal
combinatorics and information theory (via graph guessing numbers and entropy), leading to precise
asymptotic bounds and revealing phenomena like the complexity dichotomy central to this work
(which specifically concerns behaviour over finite domains).

By isolating and analysing this specific fragment—multi-sorted term equations with non-equalities,
viewed through an optimisation lens over finite domains—Term Coding provides a unified algebraic
and combinatorial framework for studying a broad spectrum of existence and extremal problems
relevant to combinatorics.

2

1.2 Motivating Example: Steiner Triple Systems (t=2, k=3)

A Steiner triple system on a set P (with |P | = n) is equivalent to endowing P with a binary
operation

f : P × P → P,

called a Steiner quasigroup. In our framework, this structure is completely characterised by the
following universally quantified term equations:

Idempotence: ∀x : f(x, x) = x.

Commutativity: ∀x, y : f(x, y) = f(y, x).

Inversion: ∀x, y : f
(
x, f(x, y)

)
= y.

These equations force that for any two distinct points x and y, the element f(x, y) is the unique
third point so that the triple {x, y, f(x, y)} forms a block. Every Steiner triple system (t = 2 and
k = 3) gives rise to such an operation f , and conversely, every binary operation satisfying the term
equations defines a Steiner triple system. It is well known that Steiner triple systems with t = 2
and k = 3 exist if and only if n ≡ 1 or 3 (mod 6).

This basic example involves only a single sort and three simple term equations. This is a
well-known algebraic reformulation for Steiner triple systems for t = 2 and k = 3.

In Term Coding, we consider problems that otherwise can be stated in universal algebra as
optimisation problems. The focus is on codes, and each set of solutions naturally defines a code
where each codeword (x, y) satisfies the given constraints. In this example, a computer search
provided the following values for the first few values of n.

n Maximum Ideal n2 Ratio

1 1 1 1.000
2 3 4 0.750
3 9 9 1.000
4 13 16 0.812
5 21 25 0.840
6 33 36 0.917
7 49 49 1.000
8 60 64 0.938
9 81 81 1.000

Table 1: Maximum values for n ≤ 9. Note that the ideal value n2 is attained if and only if n ≡ 1
or 3 modulo 6.

1.3 Term Coding: Purely Equational Single-Sorted Case

A particularly natural special case of Term Coding emerges when the constraints are reduced to
term equations alone. Concretely, a term equation has two sides, each built from variables and
function symbols. Formally, a system of term equations is given by a set

Γ = { s1 = t1, . . . , sm = tm},

3

where each si and ti is a term in variables x1, . . . , xv . In Term Coding, such equations define
fixed-length codes over an n-element alphabet A = {0, . . . , n− 1}. For each interpretation I of the
function symbols into A (i.e., each choice of how the functions act on A), the solution set

SI(Γ) =
{
(a1, . . . , av) ∈ Av : ∀i I |= si(a1, . . . , av) = ti(a1, . . . , av)

}

is a code (a collection of v-tuples). Naturally, one would like to determine:

max
I

(Γ, n) = max
I

∣∣SI(Γ)
∣∣,

where the maximum is taken over all possible interpretations I of Γ into A.

1.4 Illustrative Examples

To demonstrate the expressive power of Term Coding, we present a few more illuminating examples.

A Network Coding Example

Suppose we have two messages x, y ∈ A together with an encoded value z = f(x, y) that we wish
to store at three locations, so that x and y can be recovered from any two locations. Specifically,
let x, y, z range over an alphabet A = {0, 1, . . . , n− 1}, and consider the function symbols

f, h1, h2 : A×A → A.

We impose the following system of term equations:

z = f(x, y), h1
(
x, z

)
= y, h2

(
y, z

)
= x.

Under an interpretation I, these constraints encode:

• z stores an encoded combination of x and y, via z = fI(x, y).

• From (x, z) alone, we can recover y using y = hI1 (x, z).

• From (y, z) alone, we can recover x using x = hI2 (y, z).

A concrete interpretation setting f(x, y) = x + y (mod n) with suitable decoding functions
h1, h2 yields a code of size n2 from the n3 possible triples (x, y, z).

Self-Orthogonal Latin Squares

Term Coding can also capture classical combinatorial structures. Consider self-orthogonal Latin
squares—n × n arrays filled with n symbols, each appearing exactly once per row and column.
Define functions

f, h1, h2, h3, h4 : A×A → A

and consider the system of term equations:

h1
(
f(x, y), y

)
= x, h2

(
x, f(x, y)

)
= y, h3

(
f(x, y), f(y, x)

)
= x, h4

(
f(x, y), f(y, x)

)
= y.

Here, f(x, y) represents the symbol in row x, column y of the square. The constraints

h1
(
f(x, y), y

)
= x and h2

(
x, f(x, y)

)
= y

4

enforce that each row and column is a permutation of the n symbols, ensuring the “Latin” property.
Meanwhile,

h3
(
f(x, y), f(y, x)

)
= x and h4

(
f(x, y), f(y, x)

)
= y

impose the “self-orthogonality” requirement.

Concretely, there is a one-to-one correspondence between solutions to this system (with n2 code-
words (x, y)) and self-orthogonal Latin squares of order n. Such squares exist for all n except
{2, 3, 6} (see [16, 17]), illustrating how term equations can encode fundamental Latin square prop-
erties within the Term Coding formalism.

1.5 An Unsolvable Variant

To demonstrate the Term Coding setup, consider a stricter version of the self-orthogonal Latin
square constraints, where the “decoding” must be done by the square itself:

f
(
f(x, y), y

)
= x, f

(
x, f(y, x)

)
= y, f

(
f(x, y), f(y, x)

)
= x, f

(
f(y, x), f(x, y)

)
= y.

A short argument shows that no such self-orthogonal self-decoding Latin squares exist—i.e. solutions
that satisfy the term equations for n > 1. To see this, note:

• From the first two equations, f must be a Latin square.

• Comparing equations (1) and (3) forces y = f(y, x) (by injectivity).

• Consequently, every row of f is constant, contradicting the Latin square property.

However, although there are no global solutions, there do exist partial solutions.

In several examples, we will rely on a key normalisation step, where auxiliary variables are
introduced to replace nested or repeated subterms. As an illustration, we can introduce fresh
variables f(x, y) = z and f(y, x) = w, rewriting the four original equations as follows:

f
(
x, y

)
= z, f

(
y, x

)
= w, f

(
z, y

)
= x, f

(
x, w

)
= y, f

(
z, w

)
= x, f

(
w, z

)
= y.

Any set of solutions (x, y) ∈M2 to the original system corresponds to a set of solutions (x, y, z, w) ∈
M4 to these normalised equations, and vice versa (up to identifying the added variables).

1.6 Investigating Non-Solvability

It is important to understand that logically equivalent problems can lead to different optimisation
problems. In many cases, a combinatorial problem can be stated in logically equivalent ways—one
formulation may use k1 free variables, while another uses k2 free variables. In a formulation with
k free variables, the ideal maximal code size is nk. Thus, if one formulation has k1 free variables
and another has k2 free variables, then the ideal maximal codes are nk1 and nk2 , respectively.

For instance, consider the following two logically equivalent formulations:

Formulation 1 (natural version k = 2): Let Γ1 be the system

f
(
f(x, y), y

)
= x, f

(
x, f(y, x)

)
= y, f

(
f(x, y), f(y, x)

)
= x, f

(
f(y, x), f(x, y)

)
= y.

In this formulation, the same variables x and y appear repeatedly. Consequently, the number of
free variables is two, and, ideally, a maximal code would have size n2.

5

Formulation 2 (refined version k = 8): Let Γ2 be the system

f
(
f(x1, y1), y1

)
= x1, f

(
x2, f(y2, x2)

)
= y2, f

(
f(x3, y3), f(y3, x3)

)
= x3, f

(
f(y4, x4), f(x4, y4)

)
= y4.

Here, we have renamed variables so that every occurrence is distinct; the system now has eight free
variables. Consequently, the ideal maximal code in this formulation is n8.

Although both formulations are logically equivalent (since one can identify x1 with x2, y1
with y2, etc.), they lead to different optimisation problems. In practice, the maximum number of
solutions may be strictly less than the ideal nk. To investigate this, we performed a computational
search for interpretations I that maximise the number of solutions for small n. The best results
obtained, providing lower bounds on the true theoretical maximum maxI , are shown below:

Table 2: Best values found via computer search for Formulation 1 (Γ1, k = 2). These are lower
bounds on the true maximum size maxI(Γ1, n).

n Max Size Found Max Possible (n2) Max Size Found
n2

2 2 4 0.50

3 4 9 0.44

4 8 16 0.50

5 9 25 0.36

6 14 36 0.389

Table 3: Best values found via computer search for Formulation 2 (Γ2, k = 8). These are lower
bounds on the true maximum size maxI(Γ2, n).

n Max Size Found Max Possible (n8) Max Size Found
n8

2 128 256 0.50

3 2205 6561 0.336

4 24576 65536 0.375

5 138125 390625 0.353

6 559872 1679616 0.333

These tables illustrate that, although both formulations are logically equivalent, the corre-
sponding optimisation problems have different ideal bounds, and the maximum sizes found com-
putationally (and the resulting ratios to the ideal) differ. Furthermore, the functions f yielding
these best-known results for formulation 1 were not identical to those for formulation 2. This phe-
nomenon opens up avenues for further research into the interplay between different optimisation
problems related to Term Coding problems. By comparing equivalent formulations, one can analyse
how close the maximal code is to the ideal bound of nk for each formulation.

Moreover, our general Theorem 3.8 shows that the true theoretical maximum sizes, maxI(Γ1, n)
and maxI(Γ2, n), are bounded below by constants times n2 and n8 respectively. Thus, the true
ratios

c2(n) =
maxI(Γ1, n)

n2
and C8(n) =

maxI(Γ2, n)

n8

remain bounded from below by a positive constant independent of n. The computationally obtained
results presented in the tables, while potentially suboptimal lower bounds, are consistent with this
theoretical guarantee.

6

1.6.1 Diversification of Function Symbols

A key technique for analysing these systems, particularly for obtaining asymptotic bounds, is to
diversify the function symbols. Concretely, if the same symbol f appears with different tuples of
variables in the normalised system, we introduce a distinct function symbol for each occurrence.
Applying this to the normalised term equations derived from Formulation 1 yields the diversified
system Γ′′:

f1
(
x, y

)
= z, f2

(
y, x

)
= w, f3

(
z, y

)
= x, f4

(
x,w

)
= y, f5

(
z, w

)
= x, f6

(
w, z

)
= y.

Let Sn(Γ
′) and Sn(Γ′′) be the maximum solution set sizes for the normalised and diversified systems,

respectively, over a domain of size n. The diversified system Γ′′, having potentially more freedom
by using distinct functions, provides an upper bound: Sn(Γ

′) ≤ Sn(Γ
′′). Conversely, standard

domain partitioning arguments show that interpreting the diversified symbols over a suitably scaled
alphabet of size ≈ n/c (for some constant c) yields a lower bound on the original system’s solution
set size. Combining these bounds shows that the systems are asymptotically equivalent: Sn(Γ

′) =
Θ(Sn(Γ

′′)). This is crucial because the dependency structure of the diversified system Γ′′ is often
simpler and directly amenable to analysis using techniques like graph guessing games.

1.6.2 Graph Guessing Game Reformulation and Our New Method

Guessing games on directed graphs were originally introduced by Riis [10, 18] to investigate Valiant’s
open question on information-flow bottlenecks in circuit complexity and to connect network cod-
ing with a combinatorial notion of graph guessing numbers. Subsequent work related these games
to graph entropy and reversible versus irreversible information flows [9, 19] and examined special
families such as shift graphs [20], triangle-free graphs [21], and undirected graphs [22, 11]. Further
advances tied the guessing number to extremal graph theory: Martin and Rombach [23] explored
how bounding the guessing number is equivalent to forbidding a finite set of subgraphs and studied
classic Turán-type questions in this context. On another front, Gadouleau, Richard, and Riis [24]
investigated fixed-point counts in (Boolean or multi-valued) network update functions, highlighting
how the structure of “signed digraphs” links to guessing graphs and coding for asymmetric chan-
nels. These results also underscore the relevance of guessing games to Boolean networks, commonly
employed for modelling gene regulation, neural interactions, and social dynamics, where local up-
date rules translate into combinatorial constraints on the system’s global state evolution. See also
[25, 24] for additional applications to non-Shannon information inequalities, Boolean networks, and
coding theory.

In a standard graph guessing game, each node (or “player”) is assigned a hat colour from a
finite alphabet, sees only the hat colours of its in-neighbours, and must guess its own colour via a
deterministic function. The “guessing number” then measures how many hat assignments can be
simultaneously guessed correctly by a suitably designed strategy.

We introduce Term Coding, which provides a broader approach to extremal combinatorics by en-
coding complex constraints (e.g. d-designs, coding theory, or finite model theory) as systems of term
equations (with optional non-equality constraints). We further develop an extended multi-sorted
version of the guessing game model, allowing each node to have its own “alphabet” and labelling
beyond the classical single-sorted directed graph setting. Our main theorems show that this ex-
tended guessing-game viewpoint and the Term Coding formalism are tightly linked: specifically,
the maximum number of solutions in a Term Coding system (i.e. code size) can be approximated
up to a constant factor by the guessing number of the associated multi-sorted graph. In this way,

7

the new Term Coding method subsumes earlier guessing-game ideas while also generalising them
to richer combinatorial settings and multiple sorts.

z w

x y

x

y

Figure 1: Directed graph showing the functional dependencies for the normalised and diversified
term equations derived from the unsolvable self-decoding Latin square variant (introduced in Sec-
tion 1.5). The graph has six nodes, labelled according to the variables {x, x, y, y, z, w} on the
right-hand side of these six equations. An edge u → v indicates that variable v depends func-
tionally on variable u in the corresponding equation. The next section analyses this dependency
structure using guessing number/entropy techniques.

1.6.3 Labelling of Nodes and Distinctness Constraints

In our term-coding context, each node/player is labelled by a variable xi. If two nodes share the
same label, they must necessarily have the same hat colour (as they represent the same variable).
Conversely, non-equality constraints (xi 6= xj) forbid those two labelled nodes from ever sharing a
colour. Thus, in any random assignment of hats, if a violates these constraints, that assignment
is not considered valid. The players can agree on their guessing strategy (choice of functions)
in advance. The players know which labels must match or differ when they agree on a guessing
strategy.

1.6.4 Deterministic Strategies and Winning Configurations.

A guessing strategy specifies, for each node, how to guess its own hat colour based on the observed
colours of its in-neighbors. The “win” condition is that all nodes guess correctly on a given hat-
color assignment. We measure the quality of a strategy by the total number of hat assignments
(configurations) on which every guess is correct. In a term-coding analogy, each node’s guess
function enforces a local functional dependency (variables with edges from in-neighbors).

8

1.6.5 Maximal Solutions vs. Correct Guesses

In a diversified term-coding system, the largest set of hat assignments for which every node guesses
its own hat colour correctly is identical to the maximum set of solutions for the term equations.
Concretely, each valid solution corresponds to a winning hat assignment that respects the node
labels (i.e. each label (variable) is assigned the same colour) and any distinctness constraints while
aligning each node’s guess function with its actual hat. Conversely, every winning assignment in
the hat-guessing game (i.e. one where all guesses are correct) yields a consistent solution to the
diversified equations. Thus, determining the largest set of winning configurations is the same as
finding the diversified system’s maximum code/solution size.

1.6.6 Computing the Guessing Number

We measure entropy in bits (base 2). For a random variable X over an n-element set,

H̃(X) = −
∑

x

p(x) log2
(
p(x)

)
.

A uniform variable X has H̃(X) = log2(n) bits. To simplify, we define the normalised entropy
function

H(X) =
H̃(X)

log2(n)
,

so that a uniform variable has H(X) = 1. Equivalently,

H(X) ≤ 1 ⇐⇒ H̃(X) ≤ log2(n).

In the guessing game for the above graph, each variable must be functionally determined by its
in-neighbours. For instance,

H(w | x, y) = 0, H(x | z, y) = 0, . . .

We also impose H(x) ≤ 1, H(y) ≤ 1, H(z) ≤ 1, H(w) ≤ 1, ensuring no variable exceeds uniform
randomness over {0, . . . , n − 1}. Using subadditivity and these functional constraints, we obtain

H(x, y, z, w) = H(x, y, z) = H(y, z) ≤ H(z) + H(w) ≤ 2.

Hence, H(x, y, z, w) ≤ 2. Moreover, this bound is achievable by letting z = x and w = y while
choosing x, y uniformly and independently, so H(x, y, z, w) = 2 is optimal.

From the guessing-game viewpoint, H(x, y, z, w) = 2 corresponds to a guessing number of 2,
implying Θ(n2) codewords/solutions. Thus, the guessing number for this graph is 2, and there
are Ω(n2) solutions—matching the intuition that two free variables can each take n values. When
applied to the impossible self-orthogonal self-decoding Latin squares, this shows (when combined
with Theorem ??) that C2(n) is indeed bounded below by a constant. A similar argument can be
applied to the refined term equations for self-orthogonal self-decoding Latin squares, showing that
C8(n) is also bounded below by a constant.

For further background on these entropy-based methods in guessing games and their links to
graph entropy, see, for example, [9, 18, 8]. Interestingly, as discovered in [25], it turns out that
classical Shannon-type information inequalities are, in general, insufficient to determine the exact

9

upper bounds of certain guessing games, and specific graphs require non-Shannon inequalities [26]
for tighter bounds.

In summary, this example illustrates several important techniques: normalising term equations,
diversifying repeated function symbols, and interpreting the resulting system as a graph guessing
game whose guessing number (equivalently, graph entropy) determines asymptotic solution counts.

1.6.7 Multi-Sorted Term Coding and Non-Equality Constraints

Although we initially focus on the case where all variables range over a single n-element domain, it
is often useful to allow multiple sorts of variables (e.g. points, blocks, labels) in more advanced ap-
plications such as block designs, finite geometries, or complex coding scenarios. Moreover, one may
naturally include non-equality constraints (e.g. x 6= y) to enforce distinctness between variables.
In later sections (§4 and beyond), we show how the same bounding principles extend naturally
to the multi-sorted setting and how optional non-equality constraints can be incorporated without
disrupting the main arguments on guessing numbers and entropy.

1.6.8 Assumption on Consistency

When non-equality constraints are added, they may remove some solutions; however, as long as
the overall system is consistent, such distinctness constraints can as shown by the techniques in
Section 3 reduce the number of solutions by, at most, a constant (i.e., independent of the domain
size) multiplicative factor. In other words, if the system (without non-equality constraints) has
Θ(nr) solutions, then adding consistent non-equality constraints also yields Θ(nr) solutions (that
is, the asymptotic exponent remains unchanged). For example, even if a non-equality constraint
rules out a subset of assignments, it does so by a factor that does not grow with the domain size.
Hence, we assume that our systems are chosen to be consistent; that is, we assume that at least
one interpretation (for sufficiently large domain sizes) exists that satisfies all term equations and
all non-equality constraints. Pathological cases, such as

s = t together with s 6= t,

which trivially yield no solutions, are excluded.

1.6.9 Overview and Contributions

Beyond the single-sorted case, we develop a multi-sorted version of Term Coding, which permits
variables from different sorts (e.g. points, lines, blocks) and optional non-equality constraints. This
broader approach enables us to formulate classic design–theoretic configurations, finite geometries,
and mixed coding scenarios as optimisation problems. We also define multi-sorted dispersion prob-
lems – a particularly natural subclass that focuses on the number of distinct s-tuples that can be
realised as the image of a map. We demonstrate that the dispersion framework is surprisingly ex-
pressive (indeed, the multi-sorted setup is capable of encoding full finite model theory), while admit-
ting precise entropy–based bounds and exhibiting the same striking undecidable–to–polynomial–time
complexity jump when moving from nr to nr + 1.

Moreover, the maximum code or dispersion size can be determined up to a constant factor by
relating term equations to graph guessing numbers, thereby unifying the analysis of combinatorial
code sizes. In the single-sorted case, the corresponding guessing number is always an integer with
a value that can be determined in polynomial time in the size of the term equations.

10

1.7 Outline of the Paper

We begin in Section 2 by introducing the single-sorted Term Coding setup. There, we define how
to normalise an arbitrary system of term equations (by isolating nested subterms) and, optionally,
diversify repeated function symbols.

In Section 3, we develop the tools that link code sizes to the maximal number of winning config-
urations in a guessing-game defined on an associated directed graph. We prove supermultiplicative
inequalities, establish a limiting exponent for large alphabets, and formulate the main bounding
theorem connecting the maximum code size to the guessing number. Section 3.7 provides a con-
crete single-sorted example (the 5-cycle C5) to demonstrate normalisation, diversification, and the
treatment of non-equality constraints.

Section 4 extends the discussion to multi-sorted Term Coding, where different sorts (e.g. points,
lines, pairs, blocks) each have their own domains. We incorporate non-equality constraints (e.g.
x 6= y) and illustrate how block designs can be encoded in this setting.

Next, Section 5 formalises the multi-sorted guessing number and shows that the same supermul-
tiplicative and convergence arguments hold with multiple sorts and distinctness constraints.

In Section 6, we focus on dispersion problems, a subclass of Term Coding where we measure
how many distinct s-tuples can be realised. We discuss historical motivations, show how dispersion
can encode Boolean gates and Steiner-type designs, and explain why it remains a proper subclass
of Term Coding.

Section 7 then presents the core complexity dichotomy for single-sorted dispersion: deciding
whether maxI(Γ, n) can ever reach nk is undecidable, yet deciding if it eventually exceeds nk +1 is
solvable in polynomial time.

Finally, in Section 8, we summarise our main findings, highlight open problems, and discuss fu-
ture directions at the intersection of combinatorics, Term Coding, and guessing-number arguments.

1.8 Notation and Conventions

We describe the main terminology and notation used throughout this paper for the reader’s con-
venience.

• Term Equation: A term equation is an equality between two terms built from variables and
function symbols in our quantifier-free, negation-free language. When we write

s = t,

we mean that under any given interpretation, the evaluation of the term s equals that of the
term t. In our basic (single-sorted) setting, all variables range over a common finite domain
(of size n). In the more general (multi-sorted) setting, variables are assigned to different sorts
(or types), and each sort has its own finite domain.

• Non-Equality (Distinctness) Constraint: A non-equality constraint is an assertion that two
terms (or two variables) are not equal. For example, when we write

x 6= y,

we require that x and y be assigned distinct values. In our framework, such constraints
enforce distinctness where necessary (e.g., to ensure that different variables or subterms take
distinct values). We assume that the non-equality constraints are chosen to be consistent
with the term equations. However, they may remove some assignments; they do so only by

11

a constant multiplicative factor (with the constant independent of the domain size) and thus
do not affect the asymptotic exponent of the solution count.

• Interpretation: An interpretation assigns meanings to the symbols of our language. In the
single-sorted setting, an interpretation assigns each variable an element of a finite set A
(with |A| = n) and each function symbol a function fI : Ak → A, where k is the arity of
the symbol. In the multi-sorted setting, each sort is assigned its own finite domain (say,
A1, A2, . . .), and function symbols are interpreted as functions whose domain and codomain
respect the specified sorts.

• Code: Given a system Γ of term equations, an interpretation I yields a code (i.e., a set of
solutions) defined by

CI(Γ) = { (a1, . . . , av) ∈ Av : sI(a1, . . . , av) = tI(a1, . . . , av) for all s = t ∈ Γ }.

Our primary object of study is the maximum size of such a code:

max
I

(Γ, n) = max
I

∣∣CI(Γ)
∣∣.

Unless stated otherwise, we work in the single-sorted setting. When we extend our framework
to the multi-sorted case, we explicitly indicate that variables belong to different sorts and denote
the corresponding domain sizes by n1, n2, This distinction is maintained in our definitions,
theorems, and examples.

2 Normalising Term Equations and non-equalities: From Arbi-
trary Systems to a Normalised Form

In previous examples (e.g., the stricter Latin square constraints in Section 1.5) and in later examples
(e.g., the cycle graph C5 example in Section 3.7), we illustrate how rewriting nested or repeated
function symbols simplifies the analysis of term equations. We now describe how to transform
any arbitrary system of term constraints Γ (which may include both equations and non-equality
constraints) into an equivalent normalised system Γ′ whose structure is easier to analyse. This
process preserves the exact solution set, so every solution of Γ corresponds uniquely to one of Γ′.

The normalised system Γ′ paves the way for the diversification step (Section 2.3), which further
modifies Γ′ to facilitate asymptotic bounds without changing the solution exponent. Here, our
primary focus is on flattening term equations by introducing auxiliary variables; we then briefly
note that non-equalities are handled similarly.

Single- vs. Multi-Sorted Context. Although this section is presented for a single-sorted scenario
(where all variables range over the same domain), the procedure applies equally well in the multi-
sorted setting (see Section 4). In the latter, auxiliary variables are introduced so that each constraint
(regardless of sort) is rewritten in a consistent normal form (e.g., ensuring that each f(. . .) = xj is
sorted correctly).

Normalisation Overview. The goal is to replace every nested subterm with a fresh auxiliary vari-
able so all constraints become flat. For example, an equation

f
(
g(x, y), h(y, x)

)
= t

is rewritten by introducing
z = g(x, y), w = h(y, x),

12

so that it becomes
f(z, w) = t.

Non-equality constraints are handled analogously. For instance, in the non-equality

f(x, f(x, y)) 6= f(y, f(y, x)),

we first introduce auxiliary variables to flatten the compound terms, obtaining

f(x, y) = v1,

f(y, x) = v2,

f(x, v1) = v3,

f(y, v2) = v4,

v3 6= v4.

(Notice that this atomic non-equality may imply additional constraints among the original variables,
for example, forcing x 6= y.)

2.1 Normalisation: Retaining Equivalence of Solutions

Let
Γ = { s1 = t1, s2 = t2, . . . , sm = tm}

be an arbitrary system of term equations over a language L with variables x1, . . . , xv and function
symbols f1, . . . , fr (including 0-ary symbols c1, . . . , cu). Our goal is to transform Γ into an equivalent
system Γ′ where every constraint is in a “flat” form—that is, with exactly one function symbol on
the left-hand side and a single variable on the right.

In other words, we want to achieve the following:

Transform Γ into Γ′ so that every equation appears as f∗(xi1 , . . . , xik) = xj or c = xj ,
and every non-equality appears as xi 6= xj without changing the set of solutions.

Definition 2.1 (Normalised Equation). A normalised term equation is one of the form

f∗(xi1 , . . . , xik) = xj or c = xj,

where f∗ denotes a single (possibly newly introduced) function symbol and the right-hand side is
a lone variable. In a multi-sorted setting, the types of the variables must match the function’s
signature.

Procedure

To normalise a constraint φ (either an equation or a non-equality) in Γ, proceed as follows:

1. Isolate Nested Subterms. Replace every nested function application with a fresh auxiliary
variable. For example, rewrite

f
(
g(x, y), h(y, x)

)

by introducing z = g(x, y) and w = h(y, x), so that it becomes f(z, w). Apply this recursively
until every function application is “flat.”

13

2. Handle Non-Equalities. If φ is a non-equality (e.g. f(t1, . . . , tk) 6= f(s1, . . . , sk)), first intro-
duce auxiliary variables for each side so that the expression becomes an atomic non-equality
(e.g. v1 6= v2), then normalise the subterms.

3. Merge Trivial Equalities. If any constraint reduces to xj = xl, substitute xj for xl (or vice
versa) throughout the system and remove the trivial equation.

4. Rewrite in Normal Form. At the end, every constraint appears either as

f(. . .) = xj or c = xj ,

or as an atomic non-equality (e.g. xi 6= xj).

Since these steps only introduce auxiliary variables or merge existing ones, the transformed
system Γ′ is logically equivalent to Γ.

Proposition 2.2 (Preservation of Solutions). For any interpretation I into a domain A, there is
a one-to-one correspondence between the solutions of Γ and those of Γ′; in particular,

max
I

(Γ, n) = max
I

(Γ′, n).

Proof. Each transformation step (isolating nested terms, handling non-equalities, and merging
trivial equalities) preserves the solution set; hence, the overall system remains equivalent.

Remark 2.1 (Connection to Diversification). Normalisation “flattens” the system so that every
equation appears as f(. . .) = xj and every non-equality is atomic. This clarifies the dependency
structure among variables. Later, the diversification step (see Section 2.3) will replace repeated
function symbols with distinct ones—altering the total number of solutions only by a constant
factor and leaving the asymptotic behaviour unchanged.

2.2 Example: Characterizing Steiner Systems S(t, t+ 1, n)

This example illustrates the role of non-equality constraints. Let t and k be positive integers with
k = t + 1, and let n be a positive integer representing the number of points. A Steiner system
S(t, t + 1, n) is a set M with |M | = n (the points) and a collection of subsets of M , each of size
t+1 (the blocks), such that every t-subset of M is contained in exactly one block. We characterize
this structure using a single t-ary function f :M t →M with the following axioms:

2.2.1 Axioms

• Symmetry Axiom: For every permutation σ of {1, 2, . . . , t},

f(x1, x2, . . . , xt) = f(xσ(1), xσ(2), . . . , xσ(t))

This ensures that f depends only on the set {x1, x2, . . . , xt}, not the order of the arguments.

• Inversion Axiom: For any distinct x1, x2, . . . , xt ∈ M , let z = f(x1, x2, . . . , xt). Then, for
each i = 1, 2, . . . , t,

f(x1, . . . , xi−1, z, xi+1, . . . , xt) = xi

This axiom allows f to ”invert” by recovering any input when the output z replaces that
input.

14

• Non-Equality Axioms (for distinct inputs): The core structure of the Steiner system relies on
the behaviour of f when applied to t distinct points. We require that for any set of t pairwise
distinct points {x1, x2, . . . , xt} ⊂M :

f(x1, x2, . . . , xt) 6= xi for each i = 1, 2, . . . , t.

This condition, combined with the inherent distinctness xi 6= xj for i 6= j within the input
set, ensures that the block {x1, . . . , xt, f(x1, . . . , xt)} always contains exactly t + 1 distinct
points.

Crucially, these axioms, along with the Symmetry and Inversion axioms, apply only when
x1, . . . , xt are pairwise distinct. The definition or value of f when two or more arguments are
identical is not constrained by the fundamental Steiner system properties (unless additional
algebraic axioms like idempotence are imposed, as in the t = 2 case).

Proposition 2.3. There is a one-to-one correspondence between Steiner systems S(t, t+1, n) and
models of size n satisfying the symmetry axiom, inversion axiom, and non-equality axioms for the
t-ary function f .

Proof. Part 1: Steiner System to Model
Given a Steiner system S = (M,B) with |M | = n:

• Define f : For distinct x1, x2, . . . , xt ∈M , there is a unique block B ∈ B containing {x1, x2, . . . , xt}.
Since |B| = t+ 1, there is exactly one point z ∈ B not in {x1, x2, . . . , xt}. Set:

f(x1, x2, . . . , xt) = z

• Symmetry : SinceB depends only on the set {x1, x2, . . . , xt}, f(x1, x2, . . . , xt) = f(xσ(1), xσ(2), . . . , xσ(t))
for any permutation σ.

• Inversion: Let z = f(x1, x2, . . . , xt), soB = {x1, x2, . . . , xt, z}. The t-set {x1, . . . , xi−1, z, xi+1, . . . , xt}
is in B, and the unique point in B not in this set is xi. Thus:

f(x1, . . . , xi−1, z, xi+1, . . . , xt) = xi

• Non-Equality : By definition, z /∈ {x1, x2, . . . , xt}, and the inputs are distinct, so the axioms
hold.

Thus, S defines a model satisfying the axioms.
Part 2: Model to Steiner System
Given a model M of size n with f satisfying the axioms:

• Define Blocks: For distinct x1, x2, . . . , xt, form the block:

B = {x1, x2, . . . , xt, f(x1, x2, . . . , xt)}

The non-equality axioms ensure f(x1, x2, . . . , xt) 6= xi, so |B| = t+ 1.

• Uniqueness of Blocks: For any t-subset S = {x1, x2, . . . , xt}, B = S ∪ {f(x1, x2, . . . , xt)}
by the symmetry axiom. If S ⊆ B′ (another block), let B′ = {x1, . . . , xt−1, y, z} where
z = f(x1, . . . , xt−1, y). The inversion axiom on B′ implies B′ = B, so each t-subset is in
exactly one block.

15

Thus, the model defines a Steiner system S(t, t+ 1, n).
Part 3: One-to-One Correspondence
The map from Steiner systems to models (via f) and from models to Steiner systems (via

blocks) are inverses, as f is uniquely determined by the blocks and vice versa. Hence, there is a
one-to-one correspondence.

2.3 Diversification: An Approximation Technique

Once Γ′ is normalised, the diversification step renames repeated occurrences of the same function
symbol appearing in different contexts, assigning each occurrence a distinct symbol. By doing so,
the dependency structure is decoupled, simplifying the analysis of asymptotic solution counts via
guessing numbers (see Theorem 3.8). Importantly, diversification alters the solution set by at most
a constant factor, preserving the asymptotic growth rate.

Illustrative Example

Suppose Γ′ contains the equations

f(x, y) = z and f(y, x) = w.

In the diversified system Γ′′, these equations become

f1(x, y) = z and f2(y, x) = w.

where f1 and f2 are distinct function symbols replacing the original f in these two different contexts.
The associated dependency graph GΓ′ reflects that both z and w depend on the same function

symbol f . In contrast, in GΓ′′ , the two function symbols f1 and f2 are independent. This decoupling
permits separate guessing strategies for z and w, typically increasing the overall number of solutions.
Theorem 5.2, there exists a constant c > 0 such that for all n,

c ·max
I

(Γ′′, n) ≤ max
I

(Γ′, n) ≤ max
I

(Γ′′, n).

In summary:

• Normalisation transforms Γ into a flat system Γ′ (see Section 2) without altering the solution
set.

• Diversification renames function symbols to decouple dependencies, enabling tractable asymp-
totic bounds using guessing numbers, while preserving the solution count up to a constant
multiplicative factor.

3 Foundations and Main Result

Having introduced the normalisation process in Section 2 and the fundamental notions of term
languages, interpretations, and codes, we now present our key asymptotic bound (Theorem 3.8).
Specifically, we connect the maximum code size of a system of term equations to the guessing number
of an associated directed graph. While our proofs often assume a single-sorted setting (all variables
share one domain), the same framework and main theorem naturally extend to multi-sorted Term
Coding (see Section 4).

16

3.1 Associated Directed Graph GΓ

To connect the number of solutions of a Term Coding system to guessing games and entropy
measures, we associate a directed graph GΓ to the system. This graph captures the functional
dependencies between variables imposed by the equations. The construction relies on the normalised
form of the system, as described in Section 2.

Definition 3.1 (Variable Dependency Graph). Let Γ′ be a system of term equations in variables
V = {x1, . . . , xv} (including any auxiliary variables introduced during normalisation), where each
equation is in the normalised form f(xi1 , . . . , xik) = xj or c = xj . The variable dependency graph
is GΓ = (V,E) where:

• The vertex set is V , the set of all variables in the normalised system Γ′.

• For each equation of the form f(xi1 , . . . , xik) = xj in Γ′, we add the directed edges (xip → xj)
for all p ∈ {1, . . . , k}.

• Equations of the form c = xj mean xj is determined by a constant, corresponding to a vertex
with in-degree 0 in terms of variable dependencies.

Thus, in this graph, each variable xj appearing on the right-hand side of a non-constant equation
is functionally determined by its set of in-neighbours N−(xj).

Note on Multi-Sorted Systems: In multi-sorted Term Coding (see Section 4), the vertex set
V can be partitioned according to the sorts of the variables. The edge construction remains the
same, respecting the function signatures. The fundamental idea that a variable is determined by
its in-neighbours still holds.

Example: Illustration of GΓ

Consider the system (before normalisation):

f(x, f(x, y)) = y, f
(
f(x, y), y

)
= x.

During normalisation, we introduce an auxiliary variable z = f(x, y), obtaining the equivalent
system Γ′:

f(x, z) = y, f(z, y) = x, z = f(x, y).

The variables in Γ′ are V = {x, y, z}. Applying Definition 3.1:

• The equation z = f(x, y) adds edges (x→ z) and (y → z).

• The equation f(x, z) = y adds edges (x→ y) and (z → y).

• The equation f(z, y) = x adds edges (z → x) and (y → x).

The resulting graph GΓ is depicted in Figure 2.
As established by Theorem 3.8, the maximum code size maxI(Γ, n) is asymptotically determined
by the guessing number of this graph GΓ, denoted Guess(GΓ). This number reflects the maximum
achievable exponent in the Θ(nGuess(GΓ)) bound (conditional on Conjecture 3.9).

17

x

y

z

Figure 2: Variable dependency graph GΓ for the normalised system derived from f(x, f(x, y)) = y
and f(f(x, y), y) = x, where z = f(x, y).

3.2 Interpretations and Codes

Definition 3.2 (Interpretation). Let A be a non-empty finite set (alphabet) with |A| = n. An
interpretation I of L in A assigns:

• To each constant symbol c (0-ary function symbol) an element cI ∈ A.

• To each k-ary function symbol f a function fI : Ak → A.

Given an assignment (a1, . . . , av) ∈ Av to the variables, any term t evaluates to an element
tI(a1, . . . , av) ∈ A.

Multi-sorted Variant. In the multi-sorted case, I must provide a finite domain As for each sort
s (so the total domain size might be distributed across sorts), and interpret each function symbol
f consistently with its specified input and output sorts.

Definition 3.3 (Code of an Interpretation). For Γ and an interpretation I, the code defined by I
is

CI(Γ) =
{
(a1, . . . , av) ∈ Av : sIi (a1, . . . , av) = tIi (a1, . . . , av) for all si = ti ∈ Γ

}
.

We define Sn = maxI(Γ, n) = maxI
∣∣CI(Γ)

∣∣, the maximum code size over all interpretations into
an alphabet of size n. In a multi-sorted scenario, we consider all interpretations where each sort’s
domain D has size nD, and S(nD)D denotes the maximum size.

3.3 Guessing Numbers for Labelled Directed Graphs

The notion of a guessing game on a directed graph, together with its guessing number, provides
a combinatorial measure closely related to the maximum code size Sn. This concept has been
studied in various forms ([9, 8, 11]). Here, we adapt it to the variable dependency graph GΓ, which
is effectively a labelled directed graph, meaning that multiple vertices may correspond to the same
underlying conceptual variable (though often normalisation gives distinct auxiliary variables), or
constraints might force equality. The key connection is between solutions and correctly guessed
configurations.

Definition 3.4 (Guessing Game). Let G = (V,E) be the variable dependency graph GΓ, and let
A be an alphabet (or “colour set”) of size n.

• A configuration is an assignment (av)v∈V ∈ A|V | of a value from A to each variable (vertex).

• A deterministic guessing strategy is a collection of local functions {Gv : A |N−(v)| → A :
v ∈ V }, where each Gv “guesses” the value av based only on the values (au)u∈N−(v) of its
in-neighbours. (For v with N−(v) = ∅, Gv is a constant).

18

• A configuration (av)v∈V is guessed correctly by strategy {Gv} if av = Gv
(
(au)u∈N−(v)

)
for all

v ∈ V .

• The set of correctly guessed configurations for a strategy {Gv} is S{Gv} = {(av) ∈ A|V | | ∀v ∈
V, av = Gv(. . .)}.

There is a direct correspondence between interpretations I of the diversified normalised system
Γ′′ (see Section 2.3) and guessing strategies {Gv} for the associated dependency graph GΓ. The
set of solutions CI(Γ′′) corresponds precisely to the set of correctly guessed configurations S{Gv}
for the strategy derived from I. Let

S′′
n = max

I
|CI(Γ

′′)| = max
{Gv}

|S{Gv}|

denote the maximum number of correctly guessable configurations (which equals the maximum
code size for the diversified system Γ′′) over an alphabet of size n.

We define the normalised guessing number of the graph GΓ for alphabet size n as:

Definition 3.5 (Normalised Guessing Number).

Guess(GΓ, n) = logn(S
′′
n).

This quantity measures the exponent achieved by the maximum number of winning configura-
tions relative to the alphabet size. By definition, we have S′′

n = nGuess(GΓ,n).
Recall that the maximum code size Sn for the original (potentially undiversified) system Γ

relates to S′′
n via Sn = Θ(S′′

n). Therefore, the guessing number Guess(GΓ, n) also determines the
asymptotic behaviour of Sn, as its limit L = limn→∞Guess(GΓ, n) (whose existence we establish
later) governs the growth Sn = Θ(nL).

Example 3.1 (Bidirected Two-Vertex Guessing Game). Consider the directed graph G = (V,E)
with two vertices v1, v2 (representing variables x1, x2) and edges (v1 → v2) and (v2 → v1). This
corresponds to normalised equations like f1(x2) = x1 and f2(x1) = x2 in the diversified system Γ′′.
Each variable takes a value from A, |A| = n ≥ 2.

A Good Strategy (Optimal): Let the guessing functions be Gv1(a) = a and Gv2(a) = a. A
configuration (a1, a2) is guessed correctly if a1 = Gv1(a2) = a2 and a2 = Gv2(a1) = a1. The
set of correctly guessed configurations is S{Gv} = {(a, a) | a ∈ A}, with |S{Gv}| = n. This
strategy yields the maximum possible size, so S′′

n = n. Thus, the normalised guessing number is
Guess(G,n) = logn(S

′′
n) = logn(n) = 1.

A Poor Strategy (Yielding No Solutions): Since an optimal strategy exists that performs better
than average or random guessing, there must also be strategies that perform worse. To illustrate,
consider a fundamentally inconsistent strategy. Let Gv1(a2) = a2 (identity). Let Gv2(a1) = σ(a1),
where σ : A → A is a fixed-point-free permutation (such permutations exist for |A| ≥ 2; e.g., a
cyclic shift a 7→ a+1 (mod n)). For a configuration (a1, a2) to be guessed correctly, we require: 1.
a1 = Gv1(a2) = a2. 2. a2 = Gv2(a1) = σ(a1). Substituting (1) into (2) yields a1 = σ(a1). However,
since σ has no fixed points, this equation has no solution in A. Therefore, the set of correctly
guessed configurations for this strategy is empty: S{Gv} = ∅, and |S{Gv}| = 0.

The guessing number uses the strategy that maximises |S{Gv}|, which is the ”good” strategy
yielding S′′

n = n.
The guessing number uses the strategy that maximises |S{Gv}|, which is S′′

n = n in this case.

Limit and Convergence. We are interested in the limit L = limn→∞Guess(GΓ, n). We will show
this limit exists and state a conjecture about its rate of convergence.

19

3.4 Existence of the Limit via Fekete’s Lemma

The existence of the limit L = limn→∞Guess(GΓ, n) follows from a standard product construction
and Fekete’s Lemma. First, we establish a supermultiplicativity property.

Proposition 3.6 (Supermultiplicativity of Solution Counts). Let Sn = maxI |CI(Γ)| be the max-
imum code size for the original system Γ, and let S′′

n = maxI |CI(Γ′′)| be the maximum code size
for the diversified system Γ′′. For any integers n1, n2 ≥ 1, both quantities are supermultiplicative:

Sn1n2
≥ Sn1

× Sn2
and S′′

n1n2
≥ S′′

n1
× S′′

n2
.

Proof. We prove it for Sn; the proof for S′′
n is identical, just replacing Γ with Γ′′. Let I1 be an

interpretation over A1 (|A1| = n1) achieving |CI1(Γ)| = Sn1
, and I2 be an interpretation over A2

(|A2| = n2) achieving |CI2(Γ)| = Sn2
. Define a product interpretation I12 over the alphabet A =

A1×A2 (of size n1n2). For a function symbol f (of arity k), define fI12
(
(a

(1)
1 , a

(2)
1), . . . , (a

(1)
k , a

(2)
k)

)
=

(fI1(a(1)1 , . . . , a
(1)
k), fI2(a(2)1 , . . . , a

(2)
k)). If (a

(1)
1 , . . . , a

(1)
v) is a solution for I1 and (a

(2)
1 , . . . , a

(2)
v) is a

solution for I2, consider the combined tuple a12 =
(
(a

(1)
1 , a

(2)
1), . . . , (a

(1)
v , a

(2)
v)

)
∈ Av. For any term

equation s = t in Γ, evaluating s and t under I12 at a12 yields: sI12(a12) = (sI1(a1), sI2(a2)) and
tI12(a12) = (tI1(a1), tI2(a2)). Since a1 and a2 are solutions, s

I1(a1) = tI1(a1) and sI2(a2) = tI2(a2).
Thus sI12(a12) = tI12(a12), meaning a12 is a solution for I12. This construction yields Sn1

× Sn2

distinct solutions over A. Thus, Sn1n2
= maxI |CI(Γ)| ≥ |CI12(Γ)| ≥ Sn1

× Sn2
.

Now we apply Fekete’s Lemma to S′′
n, the quantity used to define the guessing number. The

supermultiplicativity S′′
nm ≥ S′′

nS
′′
m implies logS′′

nm ≥ logS′′
n + logS′′

m.
Define the sequence ak = log S′′

nk
0

for some integer base n0 ≥ 2. The supermultiplicativity

implies ak+l = log S′′
nk+l
0

≥ log(S′′
nk
0

S′′
nl
0

) = ak + al. Thus, {ak} is a superadditive sequence. By

Fekete’s Lemma for superadditive sequences, the limit limk→∞ ak/k exists and equals supk ak/k.
Let this limit be L′.

Recall our definition Guess(GΓ, n) = logn(S
′′
n) =

logS′′
n

logn . For the subsequence n = nk0, we have

Guess(GΓ, n
k
0) =

logS′′
nk
0

k log n0
=

ak
k log n0

.

Therefore, the limit along this subsequence exists:

lim
k→∞

Guess(GΓ, n
k
0) =

L′

log n0
.

Let this limit be L. Standard arguments involving the relationship between S′′
n and S′′

⌊n1/k⌋k show

that the limit exists not just along subsequences nk0 but for n → ∞ through integers. Thus, the
limit

L = lim
n→∞

Guess(GΓ, n) = lim
n→∞

log S′′
n

log n

exists. This limit L represents the asymptotic exponent governing the growth of the maximum
number of solutions for the diversified system, S′′

n = nL+o(1), and consequently (since Sn = Θ(S′′
n)),

also for the original system Γ, Sn = Θ(nL).

20

Historical Note. The existence of the limit for the normalised guessing number,

L = lim
n→∞

Guess(GΓ, n)

, was established previously. It was stated without proof in early work [10] and later rigorously
proved using arguments based on conflict graphs [8]. The derivation presented here, using Fekete’s
Lemma applied directly to the supermultiplicativity of the maximum solution count S′′

n (established
via a product interpretation construction), offers a more direct alternative proof.

3.5 Relating Original and Diversified Systems

Before presenting the main bounds in terms of the guessing number, we formalise the relationship
between the maximum code size Sn = maxI |CI(Γ)| of the original system Γ and the maximum
code size S′′

n = maxI |CI(Γ′′)| of its normalised and diversified version Γ′′. Recall that normalisation
(Section 2) produces an equivalent system Γ′ with Sn(Γ) = Sn(Γ

′). Diversification transforms Γ′

into Γ′′ by assigning a unique function symbol fi to each distinct function application (equation)
present in Γ′. Let k be the number of distinct variables in the normalised system Γ′.

The relationship relies on domain partitioning arguments. We illustrate the core idea of the
lower bound construction with the unsolvable self-decoding Latin square example from Section 1.5.

Example: Lower Bound for the Unsolvable SOLS Variant

Recall the normalised system Γ′ for this example, involving variables x, y, z, w (k = 4) and a single
function symbol f :

f(x, y) = z, f(y, x) = w, f(z, y) = x, f(x,w) = y, f(z, w) = x, f(w, z) = y.

The diversified system Γ′′ uses distinct functions f1, . . . , f6 for each equation. Let S′′
m = maxI |CI(Γ′′)|

over an alphabet Ã of size m.
To obtain a lower bound for S′

n = maxI |CI(Γ′)| over alphabet A of size n, we partition A into
k = 4 disjoint subsets Ax, Ay, Az, Aw, each of size m ≈ ⌊n/4⌋. Let I ′′∗ be an optimal interpretation
for Γ′′ over Ã. We construct an interpretation I ′ for Γ′ over A by defining the single function
fI

′

piece-wise, mimicking the behaviour of I ′′∗. For instance, for inputs (a, b) ∈ Ax × Ay, we
define fI

′

(a, b) to be the element in Az corresponding (via a fixed bijection φz : Ã → Az) to
fI

′′∗

1 (φ−1
x (a), φ−1

y (b)). Similarly, for (a, b) ∈ Ay ×Ax, f
I′

(a, b) lands in Aw mimicking fI
′′∗

2 , and so
on for all 6 equations.

Crucially, the input domains for these 6 required mappings (Ax×Ay, Ay×Ax, Az×Ay, Ax×Aw,
Az × Aw, Aw × Az) are disjoint subsets of A × A because the partitions Ax, . . . , Aw are disjoint.
Thus, the piece-wise definition of fI

′

is consistent. Any solution (x̃, ỹ, z̃, w̃) to Γ′′ under I ′′∗ maps
via φx, . . . , φw to a solution (x, y, z, w) for Γ′ under I ′ with x ∈ Ax, etc. This yields at least S′′

m

solutions for Γ′. Therefore, S′
n ≥ S′′

⌊n/4⌋. This illustrates how partitioning by the k = 4 variables
provides a lower bound with scaling constant c = k.

General Equivalence Lemma

This construction generalises. Let k be the number of distinct variables in the normalised system
Γ′.

Lemma 3.7 (Asymptotic Equivalence of Sn(Γ
′) and S′′

n). Let Γ′ be a normalised system of term
equations with k distinct variables, and let Γ′′ be its diversification. Let S′

n = maxI |CI(Γ′)| and

21

S′′
n = maxI |CI(Γ′′)|. Then S′

n = Θ(S′′
n). More precisely, there exist constants K1,K2 > 0 such that

for sufficiently large n:

(a) S′
n ≤ S′′

n

(b) S′
n ≥ K2 · S′′

⌊n/k⌋

(c) S′′
n ≤ K1 · S′

⌈n/Nocc⌉

Consequently, limn→∞
logS′

n
logn = limn→∞

logS′′
n

logn , if the limits exist.

Proof. (a) Upper bound (S′
n ≤ S′′

n): As before, any interpretation for Γ′ yields one for Γ′′. Max-
imising over interpretations gives S′

n ≤ S′′
n.

(b) Lower bound (S′
n ≥ K2 · S′′

⌊n/k⌋): Let k be the number of distinct variables in Γ′. Let

m = ⌊n/k⌋. Consider an optimal interpretation I ′′∗ for Γ′′ over Ã (size m), achieving S′′
m so-

lutions. Partition A (size n) into k disjoint subsets A1, . . . , Ak, each corresponding to a vari-
able xi and having size ≥ m. Define bijections φi : Ã → Ai. Construct I ′ for Γ′ over A.
Let f be a function symbol in Γ′. For each equation f (j)(xp1 , . . . , xpr) = xq in Γ′ (correspond-
ing to fj(xp1 , . . .) = xq in Γ′′), define the action of fI

′

on inputs (a1 ∈ Ap1 , . . . , ar ∈ Apr) as
fI

′

(a1, . . . , ar) = φq(f
I′′∗

j (φ−1
p1 (a1), . . . , φ

−1
pr (ar))). This ensures the output lands in the correct par-

tition Aq. Is this consistent if f appears in multiple equations, say f (j) and f (l)? The definition
depends on the index j or l of the equation it appears in. Since f is a single symbol in Γ′, we define
its action based on the *context* (which variables are in which positions, corresponding to a specific
equation index j). As the domains Ap1 × · · · × Apr are effectively separated by the partitioning
(even if some Ap repeats), we can define fI

′

piece-wise based on the structure of the input tuple
relative to the equations in Γ′. This construction ensures solutions to Γ′′ map to solutions to Γ′,
giving S′

n ≥ K2 · S′′
⌊n/k⌋ (where K2 handles floors, etc.).

(c) Upper bound (S′′
n ≤ K1 ·S′

⌈n/Nocc⌉): The argument here typically involves partitioning based

on the Nocc function occurrences, rather than variables, to show that the freedom of Γ′′ doesn’t
add too much. We omit the details (see e.g., [8]).

Limit Equivalence: Follows from bounds (a) and (b) as argued previously (using S′′
n in the

denominator).

Remark 3.1 (Handling Non-Equalities). The arguments above assume only term equations. If
the original system Γ also contains non-equality constraints xi 6= xj, these are carried through to
Γ′ and Γ′′. The supermultiplicativity (Prop. 3.6) still holds. The domain partitioning construction
in Lemma 3.7(b) needs slight modification: the mapping of solutions from Γ′′ (on Ã) to Γ′ (on A)
must ensure that if xi and xj are required to be distinct in Γ′, their images ai ∈ Ai and aj ∈ Aj
are distinct. Since Ai and Aj are disjoint by construction for i 6= j, this is automatically satisfied.
If a constraint involves terms, e.g., f(x1) 6= x2, the construction must ensure the corresponding
outputs differ. This can typically be accommodated, potentially by refining the partitions or
adjusting constants, without changing the Θ relationship. Thus, Sn(Γ) = Θ(S′′

n(Γ
′′)) holds even

with consistent non-equality constraints.

3.6 Main Theorem: Finite Bounds for Code Size

We now connect the maximal code size of the diversified system S′′
n to the guessing number defined

in Section 3.3. Combined with Lemma 3.7, this provides bounds for the original system Sn.

22

Theorem 3.8 (Finite-n Bounds via Guessing Number). Let Γ be the original system (possibly with
non-equalities), let Γ′′ be its normalised and diversified version, let GΓ′′ be its dependency graph,
and let Sn = maxI |CI(Γ)| and S′′

n = maxI |CI(Γ′′)|. Let Guess(GΓ′′ , n) = logn(S
′′
n).

(a) (Definition) By definition, S′′
n = nGuess(GΓ′′ ,n).

(b) (Bounds for Original System) There exist constants K2 > 0 and k ≥ 1 (number of variables
in Γ′) such that for sufficiently large n:

K2 · (⌊n/k⌋)Guess(GΓ′′ ,⌊n/k⌋) ≤ Sn ≤ nGuess(GΓ′′ ,n).

Proof. (a) This is Definition 3.5.
(b) The upper bound Sn ≤ S′′

n follows from Lemma 3.7(a). Substituting the definition from
(a) gives Sn ≤ nGuess(GΓ′′ ,n). The lower bound Sn ≥ K2 · S′′

⌊n/k⌋ follows from Lemma 3.7(b)

(with c = k). Substituting S′′
m = mGuess(GΓ′′ ,m) with m = ⌊n/k⌋ gives the stated lower bound

Sn ≥ K2 · (⌊n/k⌋)Guess(GΓ′′ ,⌊n/k⌋). The remark above notes these bounds extend to systems with
non-equalities.

Convergence Rate. While Fekete’s Lemma guarantees the existence of the limit L = limn→∞Guess(GΓ′′ , n),
it provides no information on the speed of convergence. Obtaining the precise asymptotic behaviour
Sn = Θ(nL) requires understanding this rate. Based on analyses of related graph parameters and
entropy convergence (e.g., [Relevant Citation(s) if available]), it is often observed or conjectured
that the convergence is relatively fast. We adopt this as a working hypothesis:

Conjecture 3.9 (Fast Convergence Rate). Let L = limn→∞Guess(GΓ′′ , n). The convergence to
the limit satisfies:

L−Guess(GΓ′′ , n) = L− logn(S
′′
n) = O

(
1

log n

)
.

If this convergence rate holds, we can combine it with the bounds in Theorem 3.8 to establish:

Corollary 3.10 (Asymptotic behaviour (Conditional)). Under the assumptions of Conjecture 3.9,
the maximum code size for the original system Γ satisfies:

max
I

(Γ, n) = Sn = Θ
(
nL

)
.

3.7 A Single-Sorted Example: The Cycle C5 with non-equality Constraints

Remark on Single-Sorted Scope. Although our main theorems accommodate multi-sorted frame-
works (and allow non-equality constraints among same–sort variables), the core steps—normalisation,
diversification, and the guessing–game interpretation—are nicely illustrated by a small single–sorted
example. Below, we show how a system of three main term equations (plus two non-equality con-
straints for illustration) yields the 5–node cycle graph C5 under a guessing interpretation. (It is
known that the guessing number Guess(C5, n), and hence the graph entropy E(C5, n), approaches
2.5 as n→ ∞.)

Example 3.2 (The C5 System with non-equality Constraints). Consider the following system over
variables (x, y, z, w, v), all ranging over the same single–sorted domain A of size n. Let f : A×A → A
be our function symbol, and impose

Γ =
{
f
(
f(z, x), y

)
= x, f

(
x, f(y, z)

)
= y, f

(
f(y, z), f(z, x)

)
= z

}
,

23

and
∆ =

{
x 6= z, f(x, y) 6= f(y, x)

}
.

Formally, we seek an interpretation I of f (plus assignments (x, y, z) ∈ A3) and we wish to estimate

max
I

∣∣∣
{
(x, y, z) ∈ A3 : Γ ∪∆ holds

}∣∣∣.

It will turn out that this number grows on the order of n2.5.

3.7.1 Step 1: Normalising the System

First, isolate every nested appearance of f(·, ·). For instance, in the equation

f
(
f(z, x), y

)
= x,

introduce a fresh variable α = f(z, x) so that it becomes f(α, y) = x. Repeating similarly for the
other equations yields a normalised system:

Γ′ =
{
f(z, x) = α, f(y, z) = β, f(α, y) = x,

f(x, β) = y, f(β, α) = z, f(x, y) = γ,

f(y, x) = δ
}
.

and
∆′ =

{
γ 6= δ, x 6= z, x 6= y

}
.

Here, the non-equality f(x, y) 6= f(y, x) has been normalised into γ 6= δ, and we retain the explicit
constraint x 6= z. (The implicit x 6= y arising from f(x, y) 6= f(y, x) is displayed for clarity.)

3.7.2 Step 2: Diversifying f

Next, we diversify each occurrence of f so that each distinct pair of input variables gets a unique
function symbol. Concretely, we rename:

f1(z, x) = α, f2(y, z) = β, f3(α, y) = x,

f4(x, β) = y, f5(β, α) = z, f6(x, y) = γ, f7(y, x) = δ.

Also, we include the original non-equality constraints x 6= z and f(x, y) 6= f(y, x) (the latter now
becomes γ 6= δ). The resulting system

Γ′′ =
{
f1(z, x) = α, f2(y, z) = β, f3(α, y) = x,

f4(x, β) = y, f5(β, α) = z,

f6(x, y) = γ, f7(y, x) = δ,

γ 6= δ, x 6= z, x 6= y

}

changes the solution set only by a constant factor asymptotically. Its key advantage is that the
dependency graph now consists of the original 5–node cycle on {x, y, z, α, β} (see Figure 3 below)
together with four additional nodes labelled x, y, γ, and δ (with directed edges from x and y to γ
and δ) representing the diversified output constraints.

24

x

y

βz

α
x

y

γ

δ

Figure 3: Left: A bidirected pentagon representing the dependency graph on {x, y, z, α, β}. Right:
Four additional nodes x, y, γ and δ with directed edges from x and y to γ and δ.

3.7.3 Step 3: Evaluating the Graph Guessing Number

A guessing–game viewpoint on this cycle shows that the size of any code consistent with Γ′′ grows
as Θ(n2.5) for large n. (For details, see Theorem 3.8 and related references.)

3.8 The 5-Cycle C5 and Its Entropy of 2.5

The upper and lower bound arguments presented here were first proved in [10]. Consider the
directed 5–cycle C5 with vertices {1, 2, 3, 4, 5}, where each vertex i observes the two neighbouring
variables xi−1 and xi+1 (indices modulo 5). Define the normalised entropy of a code C ⊆ {1, . . . , n}5
as

E(C5, n) = logn|C|,
so that a uniform assignment yields an entropy of 1 per variable. One shows that

E(C5) = sup
n
{E(C5, n)} = 2.5.

Upper Bound.

Standard Shannon inequalities and elimination of dependent variables yield

H(1, 2, 3, 4, 5) ≤ 2.5.

Achievability.

Assume n = m2. Identify each variable xi with an ordered pair (x′i, x
′′
i) where x

′
i, x

′′
i ∈ {1, . . . ,m}.

Label the vertices of the 5–cycle cyclically by 1, . . . , 5. At vertex i, define the local guessing function
by

Gi

(
(x′i−1, x

′′
i−1), (x

′
i+1, x

′′
i+1)

)
=

(
x′′i−1, x

′
i+1

)
.

A straightforward verification shows that if all vertices follow this rule, the resulting configuration
is correct if and only if the cyclic consistency conditions hold, yielding exactly m5 valid codewords.
Since m5 = (m2)2.5 = n2.5, the upper bound is achieved.

25

General Lower Bound.

For general n, our convergence results guarantee that

max
I

(Γ′′, n) = Ω(n2.5),

so the asymptotic behaviour is indeed governed by an entropy of 2.5.

In this example, the normalised and diversified system yields a dependency graph that is essen-
tially a 5–node cycle (see Figure 3 in Section 3.7.2). This structure underlies the calculation of the
guessing number, which, as shown, corresponds to a normalised entropy of 2.5.

4 Multi-Sorted Term Coding with Non-Equality Constraints

In many combinatorial problems, it is natural to partition variables into multiple sorts, each ranging
over a distinct finite domain (e.g. points, blocks, or colours). Additionally, one often requires
not only term equations but also non-equality constraints (for instance, x 6= y) to ensure that
certain variables or terms differ. Such a multi-sorted language with non-equalities extends Term
Coding beyond the purely single-sorted, equation-based setting, enabling us to encode more complex
structures such as Steiner designs, finite geometries, or colour-labelling schemes.

4.1 Multi-Sorted Term Languages and Non-Equalities

Sorts.

A multi-sorted term language partitions the variable set x1, . . . , xv into sorts. For example, one
might define:

• Points-sort (for elements in a geometry or block design),

• Blocks-sort (for k-element subsets or lines),

• Colours-sort (for label or colour sets),

• etc.

Each function symbol f is typed to map from a tuple of sorts to a single output sort. For instance,

f : Points× Points −→ Blocks,

or a Boolean function
f : Points× Points −→ {True,False}.

An interpretation I for this multi-sorted language must provide a finite domain As for each sort
s (e.g. |Points| = n, |Blocks| = q), and interpret every function symbol f by a function fI whose
domain and codomain match the declared sorts.

26

Terms and Term Equations.

A term in the multi-sorted context is constructed by applying function symbols to variables (or
subterms), ensuring that the input sorts match each function’s signature so that the term itself
acquires the function’s output sort. A term equation is a constraint s = t stipulating that for every
assignment of variables

sI(a1, . . . , av) = tI(a1, . . . , av),

where s and t are of the same sort. This is analogous to the single-sorted case, but with careful
tracking of sorts.

Non-Equality Constraints.

In addition, we now allow non-equality constraints. Specifically, for variables (or terms) xi and xj
of the same sort, one may write

xi 6= xj or f(. . .) 6= g(. . .),

demanding that these two terms (of the same sort) evaluate to different domain elements under
any valid interpretation. This is common in, for instance, Steiner-type problems (to ensure distinct
points in a block) or colourability contexts (forcing different vertices not to share the same colour).

Henceforth, a multi-sorted system of term constraints refers to a finite set of term equations
(s = t) and optional non-equality constraints (s 6= t), all quantifier-free and negation-free. In
subsequent subsections we shall illustrate how block designs or finite geometries can be naturally
encoded in this multi-sorted setting, analogous to the single-sorted case in Section ??, but now
with multiple domains and additional non-equality constraints.

4.2 Expressive Power: Encoding First-Order Finite Satisfiability

Having defined multi-sorted Term Coding systems involving both term equations and non-equality
constraints, we now establish their significant expressive power. Specifically, we show that the
problem of determining whether any first-order sentence has a finite model can be reduced to
determining if an effectively constructible multi-sorted Term Coding system has a model. This
result connects our framework directly to the foundations of finite model theory [27] and highlights
its capability to capture complex logical properties.

Theorem 4.1 (Encoding FO Finite Satisfiability). For any first-order sentence ψ over a finite rela-
tional signature Σ, one can effectively construct a multi-sorted Term Coding system Γψ, consisting
of term equations and non-equality constraints over a signature Σ′ (derived from Σ) and using aux-
iliary sorts (including Bool), such that: ψ has a finite model M with domain D (|D| = n ≥ 2) if
and only if Γψ has a model I where the interpretation of the primary sort corresponding to D has
size n, and the auxiliary sorts have fixed, standard interpretations (e.g., |Bool| = 2).

Proof. The proof proceeds via standard logical transformations, translating the first-order sentence
into a set of quantifier-free term constraints.

Step 1: Skolemisation. Given the FO sentence ψ over signature Σ, we first transform it into a
sentence ψSk in Skolem normal form. This sentence is purely universal, ψSk ≡ ∀x1 . . . ∀xm φ(x1, . . . , xm),
where φ is quantifier-free. The signature ΣSk may contain new function symbols (Skolem func-
tions) compared to Σ. Crucially, ψ has a finite model if and only if ψSk has a finite model

27

[hodges1993model]. The satisfiability problem is thus reduced to finding a model for the univer-
sal sentence ψSk. Such a model interprets the original sorts from Σ and provides interpretations
for the Skolem functions over the domain(s).

Step 2: Conjunctive Normal Form (CNF). The quantifier-free matrix φ(x1, . . . , xm) can be
converted into an equivalent formula φCNF in conjunctive normal form using standard logical
equivalences. φCNF is a conjunction of clauses C1 ∧ C2 ∧ · · · ∧ Cp, where each clause Ci is a
disjunction of literals Li1 ∨ Li2 ∨ · · · ∨ Liqi . Each literal Lij is either an atomic formula (like
R(t1, . . . , ta) or t1 = t2) or a negated atomic formula.

Step 3: Handling Negation and Introducing Boolean Sort. We introduce an auxiliary sort Bool
with two designated distinct constants, T (True) and F (False). We add the non-equality constraint
EQBool(T, F) = F , where EQBool is the equality function for the Bool sort. We also introduce
standard Boolean function symbols AND : Bool2 → Bool, OR : Bool2 → Bool, NOT : Bool → Bool,
along with term equations defining their standard truth tables (e.g., NOT (T) = F , NOT (F) = T ,
AND(T, T) = T , AND(T, F) = F , etc.).

For every atomic formula A (e.g., R(. . .) or t1 = t2) appearing in φCNF , we introduce a
corresponding function symbol fA that maps the sorts of the arguments of A to Bool. For example,
if R has signature S1 × S2 → Relation, we introduce fR : S1 × S2 → Bool. If t1, t2 have sort S,
we introduce feq,S : S × S → Bool (often written just EQS). A literal Lij in a clause Ci is then
represented by a Boolean term:

• If Lij is a positive atom A, it is represented by the term fA(. . .).

• If Lij is a negated atom ¬A, it is represented by the term NOT (fA(. . .)).

Step 4: Encoding Clauses as Term Equations. The universal sentence ψSk is satisfied if and
only if every clause Ci evaluates to true under all assignments to the variables x1, . . . , xm. Let
Term(Lij) be the Boolean term representing the literal Lij as constructed in Step 3. Each clause
Ci = Li1 ∨ · · · ∨ Liqi is equivalent to the condition that the corresponding Boolean term evaluates
to T . Using the OR function symbol (which can be built from AND and NOT if needed, or taken
as primitive), we express this condition as a term equation:

OR(Term(Li1), OR(Term(Li2), . . . , OR(Term(Li,qi−1), T erm(Liqi)) . . .)) = T

This equation must hold for all assignments to the free variables x1, . . . , xm appearing in the terms.
Since our framework implicitly assumes universal quantification over solutions, this single term
equation enforces the clause Ci.

Step 5: Constructing Γψ. The final multi-sorted Term Coding system Γψ comprises:

• The term equations defining the standard behaviour of the Boolean functions (AND,OR,NOT)
over {T, F}.

• The non-equality constraint ensuring T 6= F (e.g., EQBool(T, F) = F).

• For each clause Ci in φCNF , the term equation derived in Step 4 ensuring the clause evaluates
to T .

The signature Σ′ for Γψ includes the sorts and function symbols from ΣSk plus the Bool sort and
the associated logical function symbols (fA for atoms A, EQSort, AND, OR, NOT).

Equivalence: An interpretation I over appropriate domains (including a domain D of size n for
the primary sort(s) and a domain {True, False} for Bool) satisfies all equations in Γψ if and only
if:

28

• The Boolean operations behave standardly.

• Every clause Ci evaluates to True under the interpretation induced for the atomic formulas
(via the fA functions) for all assignments to x1, . . . , xm.

This is precisely the condition for the interpretation I (restricted to the signature ΣSk) to be a
model of the universal sentence ψSk. Since ψSk is equivalent to ψ regarding finite satisfiability,
Γψ has a model with the primary sort of size n if and only if ψ has a finite model of size n. The
construction is effective as Skolemisation, CNF conversion, and term generation are algorithmic.

Corollary 4.2. The problem of determining whether a given multi-sorted Term Coding system has
a finite model is undecidable.

Proof. This follows immediately from Theorem 4.1 and Trakhtenbrot’s theorem, which states that
the set of first-order sentences having a finite model is undecidable [28].

Indeed, as we will explore later in the context of complexity dichotomies (Section 7, relying on
appendix A), even more specific questions related to achieving certain solution thresholds within
the simpler single-sorted Term Coding framework (particularly for dispersion problems) remain
undecidable.

This theorem firmly establishes that multi-sorted Term Coding possesses significant logical
strength, capable of capturing the full complexity of first-order finite model theory. Consequently,
the framework provides a unified lens for studying a wide range of combinatorial existence problems
that can be specified in first-order logic.

4.3 Scope and Expressiveness of Multi-Sorted Term Coding

The introduction of multiple sorts and non-equality constraints in Section 4 significantly broadens
the range of problems addressable by the Term Coding framework. While the single-sorted, purely
equational version already captures interesting combinatorial optimisation problems, the multi-
sorted extension with distinctness constraints allows for the direct encoding of structures involving
different types of objects and necessary separation properties.

As formally established in Theorem 4.1, this extended framework is powerful enough to capture
the full expressiveness of first-order logic concerning finite satisfiability. This has several important
consequences:

• Combinatorial Designs: The existence problem for a wide variety of combinatorial de-
signs can be formulated as a satisfiability problem within multi-sorted Term Coding. This
includes structures like general t − (v, k, λ) designs, projective and affine planes, transversal
designs, orthogonal arrays, and specific types of Latin squares (e.g., those avoiding certain
substructures), where distinct points, blocks, or symbols must be handled.

• Graph Properties: Many fundamental graph-theoretic problems concerning the existence
of specific subgraphs or properties in finite graphs are expressible in first-order logic. Conse-
quently, questions like the existence of a k-clique, the satisfiability of k-colorability (for fixed
k), or the existence of certain cycle structures can be translated into Term Coding satisfiability
problems, typically using sorts for vertices, edges, and potentially colors or indices.

• Finite Model Theory and Beyond: The framework inherently encompasses any property
checkable by a fixed first-order sentence on finite relational structures. This connects Term
Coding to core questions in finite model theory, database theory (e.g., query containment

29

under constraints), and verification (e.g., model checking finite-state systems against FO
properties).

Therefore, the existence problem for any finite structure definable by a set of first-order axioms
can, in principle, be represented as finding a satisfying interpretation for a corresponding multi-
sorted Term Coding system Γ. Although our primary focus remains on the *optimisation* aspect
– determining the maximum size maxI(Γ,n) and its relation to guessing numbers – the ability to
encode satisfiability underlines the fundamental nature and broad applicability of the framework.
The undecidability results for Term Coding satisfiability (Corollary 4.2) are a direct consequence
of this expressive power, mirroring Trakhtenbrot’s theorem for first-order logic.

4.4 Extremal and Existence Questions Revisited

When moving to multi-sorted Term Coding with non–equality constraints, we still define

max
I

(Γ;n1, n2, . . .)

as the largest number of solutions (x1, . . . , xv) that are consistent with the given term equations
(possibly in normal form) and non–equality constraints (i.e. x 6= y) under an interpretation I. Here,
each sort Si has a finite domain of size ni; any constraint of the form f(. . .) 6= g(. . .) functions
analogously to a functional constraint that forbids f(. . .) = g(. . .) from simultaneously holding.
Hence, from an information–theoretic perspective, non–equality constraints alter the permissible
solution sets by at most constant factors, assuming the system remains consistent. This is because
each consistent non-equality constraint rules out a fixed pattern of value coincidences (e.g., x = y),
the relative frequency of which vanishes as the domain sizes ni grow, while the overall structure
determining the growth exponent remains unchanged.

Bounding Results Still Hold. Since adding or removing consistent non–equality constraints only
impacts maxI(Γ;n1, n2, . . .) by constant multiplicative factors (dependent on Γ but not on the
ni), all the key bounding arguments (cf. Theorem ?? for the single-sorted case and the principles
extended in Section 5 for the multi-sorted case) carry over with little modification. In particular,
the asymptotic behaviour of the maximum number of solutions is still governed by the limiting
guessing number L = Guess(GΓ) of the associated variable dependency graph GΓ. Specifically,

max
I

(Γ;n1, n2, . . .) = Θ(ML
max) as ni → ∞,

where L = limn→∞Guess(GΓ; (n,m1), . . . , (n,mr)) is the limiting exponent (assuming common
scaling n), and Mmax is the effective geometric mean size of the domains, weighted by the number
of variables of each sort (see Corollary 5.3 for the precise definition). In essence, the asymptotic
exponent L remains the determining factor.

Complexity Aspects. As in the single–sorted case, determining whether a multi–sorted system
(with non–equality constraints) can ever exceed a threshold corresponding to an integer exponent
(like Mk

max for integer k) is undecidable, stemming from the framework’s ability to encode first-
order satisfiability. In contrast, verifying whether the system eventually attains more than this
threshold (e.g., exceedingMk

max asymptotically) becomes decidable in polynomial time, particularly
for dispersion problems where L is known to be an integer (or efficiently computable rational in some
settings). This reflects the same sharp complexity dichotomy between reaching an integer threshold
and exceeding it. Similarly, dispersion arguments—i.e. counting how many distinct s-tuples can
appear—extend naturally to the multi–sorted setting, inheriting these complexity properties.

30

Broader Impact and Examples. Block designs, coding problems, and finite geometries often require
enforcing the distinctness of points, lines, blocks, or symbols; hence, non–equality constraints arise
naturally. By allowing multiple sorts (e.g. points versus blocks, etc.) and imposing x 6= y–type
requirements, we capture these classical structures within the Term Coding framework. In subse-
quent sections (like Section 5), we demonstrate how the bounding principles (i.e. normalisation,
diversification, guessing–number arguments) adapt seamlessly.

Summary. Thus, multi–sorted Term Coding with non–equality constraints naturally generalises
the single–sorted, purely equation–based approach. Apart from constant–factor differences in so-
lution counts (provided consistency is maintained), all the bounding techniques, finite–n theorems
based on guessing numbers, and complexity dichotomies remain valid. This broader viewpoint
accommodates a richer class of combinatorial designs and existence problems (such as Steiner sys-
tems, projective planes, colourings, etc.) without altering the essential extremal and complexity
insights derived from the framework.

5 Guessing Number in the Multi-Sorted Setting (with non-equality
Constraints)

In Section 3, we defined a guessing number Guess(G,n) for a single-sorted scenario, in which each
node of G = (V,E) chooses its hat colour from one alphabet of size n. We now generalise to a
multi-sorted setup, allowing different nodes (each assigned a variable) to have different alphabet
sizes, possibly with additional non-equality constraints (i.e. v 6= w) among certain nodes of the
same sort. (Note that in our framework each node is associated with a variable, which has both
a name and a sort. If two nodes are assigned the same variable, then in any valid assignment
they must receive the same hat colour.) Our goal is to define a multi-sorted guessing number
that generalises the single-sorted concept consistently, particularly regarding the extraction of an
asymptotic exponent governing the growth of the maximum number of guessable configurations.

5.1 Multi-Sorted Hat Assignments and Distinctness

Multiple sorts and alphabets.

Suppose we have r distinct sorts S1, . . . , Sr, each with an associated alphabet (hat-colour set) Aj

of size sj. A directed graph G = (V,E) is now labelled (or multi-sorted), meaning each node v ∈ V
carries a label sort(v) ∈ {S1, . . . , Sr}. Thus:

• Node v’s hat colour is chosen from Asort(v), whose size we denote by ssort(v).

• If nj is the number of nodes labelled by the sort Sj, then each of those nj nodes draws its
colour from Aj of size sj.

• Hence, the total raw configuration space has size

TotalConfigurations =
r∏

j=1

s
nj

j ,

where
∑r

j=1 nj = |V | (the total number of nodes).

31

Non-equality (Distinctness) Constraints.

In many applications (e.g. certain block designs, Steiner systems, or colourings), some pairs of
nodes v,w of the same sort must be forced to have distinct colours (i.e. v 6= w). Concretely:

• We forbid any configuration in which two same-sort nodes v,w share the same colour if v 6= w
is declared as a non-equality constraint.

• This reduces the permissible configuration space to a subset of the raw configuration space.

5.2 Multi-Sorted Guessing Game with Non-Equalities

Just as in the single-sorted game, each node v sees its in-neighbours’ colours and tries to guess its
own colour. However:

• Sort-Specific Alphabets:
v’s guess function must output a colour in Asort(v) of size ssort(v).

• Distinctness Constraints:
If v 6= w is declared (i.e. two nodes of the same sort must differ), no valid configuration can
assign them the same colour. Any strategy that attempts to guess “all nodes” correctly on a
set S of assignments must include only those assignments satisfying v 6= w.

A deterministic guessing strategy is thus a collection {Gv} of local functions

Gv :
(∏

u∈N−(v)

Asort(u)

)
→ Asort(v).

We denote the maximum size of a set S of valid assignments (respecting all constraints) on which
a single strategy {Gv} is correct for all v ∈ V by max |S|.

5.3 Defining the Multi-Sorted Guessing Number Consistently

While max |S| is the fundamental quantity representing the largest number of correctly guessable
configurations, our goal is often to understand its asymptotic behaviour, particularly the exponent
that governs its growth, analogous to L in the single-sorted nL scaling. To extract such an exponent
consistently across different distributions of sort sizes, we need a suitable normalisation base for
the logarithm.

The geometric mean of the alphabet sizes, weighted by the number of nodes of each sort, provides
a natural normalisation. It represents the ”average alphabet size per node” in a logarithmic sense
(logM = 1

|V |
∑
nj log sj). Using this base ensures that if all sort sizes are equal (sj = n), the base

becomes n, recovering the single-sorted definition. Furthermore, this choice allows us to define a
limiting exponent L = limGuess(G; . . .) which governs the asymptotic growth as max |S| = Θ(ML),
facilitating direct comparisons between different multi-sorted systems and connecting to the integer
thresholds relevant for the complexity dichotomy.

Definition 5.1 (Multi-Sorted Guessing Number with Distinctness). Let G = (V,E) be a multi-
sorted directed graph with sorts S1, . . . , Sr, each sort Sj having alphabet size sj, and suppose nj
nodes are labelled by Sj. Let max |S| be the maximum size of a set of valid configurations correctly
guessed by a single deterministic strategy.

32

We define the multi-sorted guessing number as

Guess(G; (s1, n1), . . . , (sr, nr)) = logM

(
max

strategy
|S|

)
,

where the base M is the weighted geometric mean of the alphabet sizes:

M =

r∏

j=1

s
nj

j

1∑r
j=1

nj

=

r∏

j=1

s
nj

j

1/|V |

.

5.4 Multi-Sorted Guessing Strategies and their Relation to Term Coding

The multi-sorted guessing game setup provides a combinatorial interpretation for the behaviour of
multi-sorted Term Coding systems.

One way to relate the multi-sorted setup to the single-sorted one is through an intuitive
”blowing-up” argument. If we consider the information content of assigning a value to a node
v of sort Sj (alphabet size sj) relative to some base alphabet size n, it corresponds roughly to
logn sj. We can imagine replacing node v with approximately logn sj conceptual nodes, each using
alphabet size n. An edge (u → v) in the original graph would then correspond to connections
between all conceptual nodes derived from u and all conceptual nodes derived from v. While this
is heuristic (especially if logn sj is not an integer), it suggests that the overall structure and infor-
mation flow are preserved. A deterministic guessing strategy on the original multi-sorted graph
corresponds to a strategy on this conceptual single-sorted graph, leading to the same maximum
number of globally consistent assignments (relative to their respective total configuration spaces).
When all sj = n, this trivially recovers the single-sorted game.

In many combinatorial applications, the different sort sizes sj are often functions of a single
underlying parameter, typically the size n of a primary sort (e.g., the number of points in a design).
If sj = sj(n), we can view the multi-sorted guessing number as a function of n:

Guess
(
G; {sj(n)}, {nj}

)
= logM(n)

(
max |S|

)
, where M(n) =

∏

j

(sj(n))
nj

1/|V |

.

This naturally connects the abstract definition to concrete problems where parameters scale to-
gether.

Finally, consider the multi-sorted Term Coding framework (cf. Section 4). Variables correspond
to nodes in the dependency graph GΓ, inheriting their sorts. An equation f(xi1 , . . .) = xj dictates
that node xj must guess its value based on its in-neighbours xi1 , A non-equality constraint
xp 6= xq translates directly to a distinctness constraint between nodes p and q (if they have the same
sort). An interpretation I for the Term Coding system Γ directly defines a guessing strategy {Gv}.
The maximum size of the solution set for the corresponding diversified system Γ′′ (where distinct
function symbol occurrences are treated independently) exactly equals max |S|, the maximum num-
ber of configurations correctly guessable by a single strategy. Since maxI(Γ; s) = Θ(maxI(Γ′′; s)),
we have maxI(Γ; s) = Θ(max |S|). Taking the logarithm with base M shows that Guess(G; s) cap-
tures the asymptotic exponent governing the original Term Coding problem’s solution size. Thus,
the core principles relating solutions, graph structure, and guessing numbers extend consistently
to the multi-sorted setting.

33

5.5 Example: A Two-Node Graph with Alphabet Sizes n1, n2

Consider a directed graph G consisting of exactly two nodes {v1, v2}, representing variables X and
Y . Node v1 has sort S1 with alphabet size s1 = n1, and node v2 has sort S2 with alphabet size
s2 = n2. Assume edges (v1 → v2) and (v2 → v1), meaning each node must guess its value based on
the other’s value. This corresponds to term equations like f1(Y) = X and f2(X) = Y .

The strongest possible correlation is imposed: any valid assignment (x, y) must satisfy both
equations. This implies that the set of valid assignments S must satisfy X = f1(f2(X)) and
Y = f2(f1(Y)). Let the maximum size of such a set be max |S|. Information-theoretically,
the dependencies imply H(X|Y) = 0 and H(Y |X) = 0. Standard entropy properties then give
H(X,Y) = H(X) = H(Y). Since H(X) ≤ log |A1| = log n1 and H(Y) ≤ log |A2| = log n2 (using
an arbitrary logarithm base), we must have H(X,Y) ≤ min(log n1, log n2). The number of possible
assignments is maximized when this bound is achieved, giving max |S| = baseH(X,Y) ≤ min(n1, n2).
This bound is achievable by defining f1, f2 appropriately (e.g., if n1 ≤ n2, map A1 injectively into
A2 via f2 and define f1 as its partial inverse). Thus, max |S| = min(n1, n2).

Now we apply Definition 5.1. We have r = 2, n1 = 1 node of sort 1, n2 = 1 node of sort 2. The
geometric mean base is

M = (sn1

1 s
n2

2)1/(n1+n2) = (n11n
1
2)

1/2 =
√
n1n2.

The multi-sorted guessing number is:

Guess
(
G; (n1, 1), (n2, 1)

)
= log√n1n2

(
min{n1, n2}

)
.

If n1 = n2 = n, the base is n and max |S| = n, so Guess(G; (n, 1), (n, 1)) = logn(n) = 1, correctly
matching the single-sorted result for a bidirected edge.

5.6 A Multi-Sorted Analogue of Theorem ?? (with non-equality Constraints)

We now extend Theorem 3.8—the finite-n bounds in the single-sorted case—to a multi-sorted Term
Coding framework, possibly including non-equality (distinctness) constraints among variables of the
same sort. Instead of one domain of size n, we allow each sort Sj to have its own domain of size nj,
and we may require that certain variables of that sort be distinct. (Recall that in our framework,
each node is associated with a variable that has both a name and a sort; if two nodes share the
same variable name, they must receive the same hat colour.)

The key result below shows that

max
I

(Γ;n1, . . . , nr)

can be sandwiched by multi-sorted guessing-number bounds, much like the single-sorted sandwich
in Theorem ??. We use the multi-sorted guessing number

Guess
(
GΓ; (s1,m1), . . . , (sr,mr)

)

as defined in Definition 5.1, where GΓ is the variable dependency graph of the Term Coding system
Γ, mj is the number of nodes in GΓ corresponding to variables of sort Sj, and sj is the alphabet
size for sort Sj.

Theorem 5.2 (Multi-Sorted Sandwich Bounds (non-equality Included)). Let Γ be a multi-sorted
Term Coding system with r sorts, where sort Sj has domain size sj = nj and corresponds to mj

34

nodes in the dependency graph GΓ = (V,E). Assume Γ includes term equations and consistent
non-equality constraints. For sufficiently large domain sizes n = (n1, . . . , nr), the maximum size of
any solution set maxI(Γ;n) satisfies:

K1 ·MGuess(GΓ;nlower)
lower

≤ max
I

(Γ;n) ≤ MGuess(GΓ;n),

where:

• M = (
∏r
j=1 n

mj

j)1/|V | is the geometric mean base for the upper bound, with n in the Guess
function representing the tuple ((n1,m1), . . . , (nr,mr)).

• Mlower = (
∏r
j=1(⌊nj/wj⌋)mj)1/|V | is the base for the lower bound, using reduced alphabet sizes

nlower = ((⌊n1/w1⌋,m1), . . . , (⌊nr/wr⌋,mr)) in the Guess function.

• wj is approximately the number of distinct variables of sort Sj used in Γ, required for the
domain partitioning in the lower bound proof.

• K1 > 0 is a constant depending on Γ but not on n, absorbing effects of non-equalities, diversi-
fication adjustments (relating Γ to Γ′′), and the floor function in the lower bound construction.
The notation XY uses the exponent Y = Guess(. . .).

In particular, if all nj = n, these bounds simplify to K ′
1 ·nGuess(GΓ;(⌊n/w⌋,...)) ≤ maxI(Γ;n, . . . , n) ≤

nGuess(GΓ;(n,...)).

Proof Sketch. The proof adapts the single-sorted arguments.
Upper bound: Any solution set CI(Γ) under interpretation I is a subset of the correctly guessed

configurations S{Gv} for the strategy {Gv} derived from I. Thus maxI |CI(Γ)| ≤ max{Gv} |S{Gv}| =
max |S|. By Definition 5.1, max |S| = MGuess(GΓ;n). The upper bound follows with effective
constant K2 = 1.

Lower bound: Adapt the domain partitioning technique (as used in proofs related to graph
capacity or single-sorted guessing numbers) [10, 8]. For each sort Sj, partition the domain Aj of
size nj into wj blocks (where wj is roughly the number of distinct variables of sort j), each of size
≈ ⌊nj/wj⌋. Construct an interpretation Ilower based on an optimal strategy for the smaller alphabet
sizes (⌊nj/wj⌋)j . Use distinct blocks for distinct variables to satisfy non-equality constraints. The
number of solutions generated is related to the maximum guessable set Slower for the smaller
alphabets. Relating the solutions of the original Γ to this constructed solution involves factors
related to diversification (comparing Γ′ to Γ′′ ≈ Slower) and the floor function, absorbed into K1.

This yields |Slower| ≈M
Guess(GΓ;nlower)
lower , giving the lower bound maxI(Γ;n) ≥ K1 ·MGuess(GΓ;nlower)

lower .
Combining bounds yields the result. The specialization to nj = n follows directly.

Corollary 5.3 (Asymptotic Multi-Sorted Bounds (Conditional)). Fix a multi-sorted system Γ with
sorts of sizes (n1, . . . , nr), and let GΓ = (V,E) be the associated labelled (multi-sorted) graph with
mj nodes of sort Sj . Let Guess(GΓ) be the limiting multi-sorted guessing number, i.e., Guess(GΓ) =
limn→∞Guess(GΓ; (n,m1), . . . , (n,mr)). Assume the convergence to this limit is sufficiently fast,
satisfying

Guess(GΓ; (n,m1), . . . , (n,mr)) = Guess(GΓ) +O

(
1

log n

)

(analogous to the rate implied by Conjecture 3.9 in the single-sorted case). Then, as nj → ∞ for
each j (e.g., proportionally to some parameter n),

max
I

(
Γ;n1, . . . , nr

)
= Θ

(
MGuess(GΓ)

max

)
,

35

where

Mmax =

r∏

j=1

n
mj

j

1/|V |

is the weighted geometric mean base evaluated at the current domain sizes (n1, . . . , nr). Hence, if
n1 = · · · = nr = n, we obtain

max
I

(Γ;n, . . . , n) = Θ
(
nGuess(GΓ)

)
.

Proof. The existence of the limit Guess(GΓ) follows from a multi-sorted version of the super-
multiplicative argument and Fekete’s Lemma, as sketched in the proof of Theorem 5.2 and de-
tailed for the single-sorted case in Section 3.4. The Θ-asymptotic result then follows from the
sandwich bounds in Theorem 5.2. Specifically, the upper bound maxI ≤ MGuess(GΓ;n) and the

lower bound maxI ≥ K1 · MGuess(GΓ;nlower)
lower , combined with the assumed fast convergence rate

Guess(GΓ; s) = L + O(1/ log(min sj)), allow us to conclude maxI = Θ(ML
max). The crucial step

requires that terms like MO(1/ logM) are bounded by constants, which holds under the assumed
convergence rate. The specialization to n1 = · · · = nr = n follows directly, yielding Θ(nL).

Thus, in a multi-sorted scenario with distinctness constraints, we can still sandwich maxI(Γ;n1, . . . , nr)
using the multi-sorted guessing number. The geometric mean normalisation provides a consistent
way to define this number and relate it to the asymptotic behavior, generalizing the classic single-
sorted result Θ(nGuess(GΓ)) while maintaining consistency with standard bounding techniques.

6 Dispersion in Multi-Sorted Settings

In earlier sections, we discussed how term equations and code sizes (maximal solution sets) capture
extremal phenomena via local functional dependencies, often related to guessing numbers and
graph entropy. We now turn to the related notion of dispersion, originally introduced by Riis and
coauthors in a single-sorted context without non-equality constraints [29], which measures how
many distinct s-tuples a system of terms can generate. We present here a generalised definition
that incorporates:

• Multiple sorts, each with its own finite domain.

• Distinctness constraints among variables (xp 6= xq) within the same sort.

• Distinctness constraints among terms (ti 6= tj) produced by the system, provided they belong
to the same sort.

As shown in Section 6.3, any dispersion problem can be viewed as a special case of Term Coding.
The primary goal shifts from maximizing the number of input assignments (x1, . . . , xk) satisfying
certain implicit constraints, to maximizing the size of the *output set* {(t1, . . . , ts)}. A key feature,
explored in Section 6.6, is that the asymptotic growth exponent for standard (unweighted, single-
sorted) dispersion problems is always an integer. This property arises because the underlying
structure often relates to network flow capacities or matching problems, guaranteeing integral
solutions [29]. This contrasts with general Term Coding problems where the exponent (guessing
number) can be non-integer.

After defining dispersion precisely, we illustrate its scope, including its connection to network
coding, Boolean logic, and its ability to encode finite satisfiability problems. Unlike some earlier

36

treatments, our formulation does not assume built-in logical connectives like ”OR”, relying instead
on term equations and non-equalities, potentially augmented with a dedicated Boolean sort if
complex logical conditions need to be simulated.

6.1 Historical Context and the Riis–Gadouleau Example

The notion of dispersion was introduced by Riis and Gadouleau [29] as a flexible tool for analyzing
information flow, particularly in network coding scenarios subject to dynamic changes or failures.
In their original work, the focus was primarily on the single-sorted setting where all variables share
a common alphabet A of size n. We illustrate their core ideas and then show how the concept fits
naturally into our multi-sorted framework.

A Single-Function Relay: The Case Study.

In [29, §VI], a central example involves a single coding function

f : A2 −→ A,

and four variables x, y, z, w ∈ A. The term set under consideration is

Γ = { f(x, y), f(x, z), f(w, y), f(w, z)}.

The dispersion problem asks for the maximum number of distinct 4-tuples (f(x, y), f(x, z), f(w, y), f(w, z))
that can be generated by choosing an optimal interpretation for f : A2 → A. While the ideal out-
come might seem to be n4 (perfect separation), the shared function f creates dependencies. Riis
and Gadouleau showed that collisions are unavoidable, proving an upper bound on the dispersion
exponent γ(Γ, |A|) = log|A|(max |Image|) strictly less than 4:

γ(Γ, |A|) ≤ 4 − log|A|
(
1 − 2|A|−1 + 3|A|−2 − |A|−3

)
.

(Note: The original bound might involve slightly different terms depending on exact assumptions,
but the principle is a non-trivial upper bound ¡ 4.)

Multi-Sorted Generalisation.

This example readily extends to a multi-sorted scenario. Suppose we assign sorts:

x,w ∈ Sort1 (size n1), y, z ∈ Sort2 (size n2),

and the function maps to a third sort:

f : Sort1× Sort2 −→ Sort3 (size n3).

The set of terms Γ = { f(x, y), f(x, z), f(w, y), f(w, z)} now defines a multi-sorted dispersion
problem. The quantity of interest is Disp(Γ;n1, n2, n3), the maximum size of the image set. Propo-
sition 6.1 provides simple bounds based on elementary counting arguments.

Proposition 6.1 (Bounds for the Single-Relay Example in Multi-Sorted Form). Let x,w ∈ Sort1

(size n1), y, z ∈ Sort2 (size n2), and f : Sort1× Sort2 → Sort3 (size n3). Let

Γ = { f(x, y), f(x, z), f(w, y), f(w, z)}.

37

Its dispersion (maximum image size), denoted Disp(Γ;n1, n2, n3), satisfies:

min
(
n1(n1 − 1)n2(n2 − 1), n3(n3 − 1)(n3 − 2)(n3 − 3)

)
≤ Disp(Γ;n1, n2, n3) ≤ min

(
n43, Upart

)
,

where the partition-based upper bound Upart accounts for potential equalities among input variables:

Upart = n1(n1 − 1)n2(n2 − 1) + n1n2(n2 − 1) + n1(n1 − 1)n2 + n1n2.

Proof. Upper bound. The image consists of 4-tuples from Sort3, so the size is at most n43. Alter-
natively, consider the four cases based on equalities among x,w and y, z. The number of distinct
input tuples (x, y, z, w) in these cases are n1(n1−1)n2(n2−1), n1n2(n2−1), n1(n1−1)n2, and n1n2,
respectively. Summing these gives Upart. Even if f maps each distinct input tuple type to a unique
output tuple, the total image size cannot exceed Upart. Thus, Disp(Γ;n1, n2, n3) ≤ min(n43, Upart).

Lower bound. Assume n1, n2 ≥ 2. If n3 < 4, the term n3(n3−1)(n3−2)(n3−3) is non-positive,
making the lower bound trivial. If n3 ≥ 4, we can construct an interpretation. Focus on inputs
where x 6= w and y 6= z. There are n1(n1 − 1)n2(n2 − 1) such input combinations. We can choose
f to map these inputs injectively to distinct elements in Sort3. Furthermore, we can ensure that
for such inputs, the four outputs f(x, y), f(x, z), f(w, y), f(w, z) are all distinct, requiring at least
4 distinct values in Sort3. This construction generates at least n1(n1 − 1)n2(n2 − 1) distinct image
tuples, provided the target sort Sort3 is large enough to accommodate the necessary distinctness
(at least 4 elements needed just for one output tuple). A simple lower bound reflecting this is
min(n1(n1 − 1)n2(n2 − 1), n3(n3 − 1)(n3 − 2)(n3 − 3)).

Remark on Exponent vs. Direct Count Definitions

As noted, some literature defines dispersion via an exponent D, where the maximum image size
scales like nD (for single-sort size n). This exponentD = limn→∞

log(max |Image|)
logn is particularly useful

for asymptotics and is known to be an integer for standard dispersion problems (see Section 6.6). In
this paper, we primarily define Disp(Γ;n1, . . . , nr) as the direct maximum cardinality of the image
set, max |ImageI |. This avoids logarithms in the definitions and theorems. The two perspectives
are equivalent for asymptotic analysis: our results on the count max |Image| directly imply results
on the exponent D, and vice versa. We choose the direct count for definitional clarity, especially
in the multi-sorted setting.

6.2 Defining Dispersion with Distinctness Constraints

We now formalize the definition for the multi-sorted case with constraints. A multi-sorted dispersion
problem is specified by:

• A set of sorts S1, . . . , Sr.

• Variables x1, . . . , xk, each xi belonging to some sort S(xi).

• A set of variable distinctness constraints xp 6= xq, where xp, xq must have the same sort.

• A finite family of function symbols f1, . . . , fm, with specified sort signatures (e.g., fj : Sj1 ×
· · · × Sja → Sj0).

• A list of output terms t1, . . . , ts, each well-typed using the variables and function symbols.
Let S(ti) be the sort of term ti.

38

• A set of term distinctness constraints ti 6= tj , where ti, tj must have the same sort S(ti) = S(tj).

Definition 6.2 (Multi-Sorted Dispersion under Distinctness). Let Γ be a multi-sorted dispersion
problem specified as above. An interpretation I assigns each sort Si a finite domain Ai (of size
ni) and interprets each function symbol f as a function fI respecting the sort signatures. An
assignment a = (a1, . . . , ak) of values from the corresponding domains to the variables x1, . . . , xk
is input-valid if ap 6= aq whenever the constraint xp 6= xq is given. An input-valid assignment a is
output-valid under I if tIi (a) 6= tIj (a) whenever the constraint ti 6= tj is given.

The image set under I is the set of output tuples generated by valid assignments:

ImageI(Γ) =
{(
tI1 (a), . . . , t

I
s (a)

)
: a is input-valid and output-valid under I

}
.

The dispersion of Γ for domain sizes n = (n1, . . . , nr) is the maximum possible size of this image
set over all interpretations I:

Disp(Γ;n) = max
I

∣∣ImageI(Γ)
∣∣.

If all sorts have the same domain size n, we write Disp(Γ;n).

Remark on Encoding Logic. While the definition only includes atomic non-equalities (xp 6= xq,
ti 6= tj), more complex logical conditions (like coverage axioms in designs, e.g., ”point p must be
on one of lines L1, L2, L3”) can often be simulated. This typically involves introducing auxiliary
Boolean sorts and function symbols, translating the logic into term equations and non-equalities
within that extended system, similar to the process outlined in Section 6.5. Demanding maximal
dispersion in such encoded systems can then enforce the original combinatorial requirements.

6.3 From Multi-Sorted Dispersion to Multi-Sorted Term Coding

We demonstrate that optimizing dispersion is equivalent to optimizing the code size in a specific
Term Coding problem. Given a dispersion problem Γdisp with variables x1, . . . , xk and output terms
t1, . . . , ts, subject to constraints Xneq (on variables) and Tneq (on terms).

Constructing the Equivalent Term Coding Problem.

Define a Term Coding system ΓTC as follows:

• Variables: Keep the original variables x1, . . . , xk. Introduce s new variables y1, . . . , ys, where
the sort of yi matches the sort of ti.

• Function Symbols: Keep the original function symbols used in t1, . . . , ts. Introduce k new
function symbols h1, . . . , hk, where hi maps the tuple of sorts (S(t1), . . . , S(ts)) to the sort
S(xi).

• Term Equations: Add s+ k equations:

yi = ti for i = 1, . . . , s

xi = hi(y1, . . . , ys) for i = 1, . . . , k

• Non-Equality Constraints: Keep the original variable constraints Xneq. Translate the term
constraints Tneq into constraints on the corresponding y-variables (e.g., ti 6= tj becomes
yi 6= yj).

39

Equivalence Argument.

An interpretation ITC for ΓTC includes interpretations for the original functions and the new
hi functions. Consider the projection map π from the solutions of ΓTC onto the y-coordinates:
π(solution) = (y1, . . . , ys). The set of all possible projected tuples (y1, . . . , ys) obtained from solu-
tions of ΓTC under an optimal interpretation I∗

TC is precisely the maximum image set ImageI∗

disp
(Γdisp)

for an optimal interpretation I∗
disp of the original dispersion problem. Specifically, maxITC

|{(y1, . . . , ys) from solutions
Disp(Γdisp;n). The decoding functions hi in ΓTC serve only to ensure that each distinct image tuple
(y1, . . . , ys) corresponds to at least one valid input (x1, . . . , xk). Maximizing the number of solutions
for ΓTC essentially corresponds to maximizing the number of distinct (y1, . . . , ys) tuples that can
be generated and then decoded back to a valid input.

Thus, optimizing dispersion is equivalent to optimizing the size of the projection of the solution
set of the corresponding Term Coding problem. Dispersion is effectively a special case focusing on
the size of the output space rather than the input space.

Remark on Strict Expressiveness.

As highlighted previously (Section 3.7), general Term Coding problems can yield non-integer asymp-
totic exponents L = Guess(GΓ) (e.g., L = 2.5 for C5). In contrast, standard dispersion problems
yield integer exponents D (see Section 6.6). This implies that some structures encodable by Term
Coding (like the dependencies in C5) cannot be captured purely by optimizing dispersion, confirm-
ing that Term Coding is a strictly more expressive framework.

6.4 Boolean Functions via Dispersion

Dispersion maximization can surprisingly define basic logical operations. Consider a single sort
Bool with domain ABool = {0, 1}, intended to represent Boolean values. Introduce:

• A constant c ∈ Bool, intended to be 1.

• A binary function S : Bool× Bool → Bool.

• A non-equality constraint S(c, c) 6= c. This forces S(1, 1) 6= 1, i.e., S(1, 1) = 0.

Now consider the dispersion problem for the map T : Bool3 → Bool
3 defined by

T (x, y, z) =
(
S(x, x), S(c, y), S(z, c)

)
.

The total input space has size 23 = 8. Maximizing the dispersion, Disp(T ; 2), means making the
image size as large as possible. The maximum possible size is 8, which requires T to be a bijection.
For T to be bijective, each component map must also induce a bijection on certain inputs. The
constraint S(1, 1) = 0 is already imposed. Bijectivity forces the other values:

• x 7→ S(x, x) must be a permutation. Since S(1, 1) = 0, we must have S(0, 0) = 1.

• y 7→ S(c, y) = S(1, y) must be a permutation. Since S(1, 1) = 0, we must have S(1, 0) = 1.

• z 7→ S(z, c) = S(z, 1) must be a permutation. Since S(1, 1) = 0, we must have S(0, 1) = 1.

These conditions precisely define S(p, q) as the NAND function: S(p, q) = ¬(p ∧ q).
Similarly, defining neg : Bool → Bool with the constraint neg(x) 6= x forces neg to be the NOT

function (the only fixed-point-free permutation). Since NAND and NOT are functionally complete,
any Boolean function can be realized by maximizing the dispersion of an appropriately constructed
term system.

40

6.5 Encoding First-Order Finite Satisfiability as a Single-Sort Dispersion Prob-
lem

The expressive power illustrated by the Boolean example extends much further: as outlined in ap-
pendix B, any first-order sentence ψ (over a finite relational signature) can be effectively translated
into a single-sort dispersion problem Γψ such that ψ has an n-element finite model if and only if
Γψ achieves maximal dispersion under an interpretation using domain size related to n.

The encoding, detailed in appendix ??, follows standard logical transformations:

• Skolemisation: Convert ψ to an equisatisfiable universal sentence ψ̃ = ∀xφ(x), where φ is
quantifier-free.

• Conjunctive Normal Form (CNF): Rewrite φ as a conjunction of clauses C1 ∧ · · · ∧ Cm.

• Boolean Simulation: Introduce a sort Bool (or BoolPadded) with values for True/False. Re-
place each atomic formula A in the clauses with a Boolean-valued term A∗ (e.g., using function
symbols R∗, EQ∗).

• Clause Encoding: Use Boolean function symbols (definable via dispersion as shown in 6.4) to
represent the clauses. The entire formula φ becomes a single Boolean term φ∗(x).

• Dispersion Formulation: The problem becomes finding an interpretation I such that the
term φ∗(x) evaluates to True for all assignments a to x. This can be framed as a dispersion
problem. For instance, consider the dispersion of the term φ∗(x) itself. If there exists an
interpretation making φ∗(a) always True, the image set is just True, of size 1. If no such
interpretation exists, the image set might contain False or True, False. Thus, checking finite
satisfiability of ψ is equivalent to checking if the dispersion of φ∗ can be restricted to True.

This process demonstrates that the framework of single-sort dispersion with non-equality con-
straints is logically powerful enough to capture the complexity of first-order finite model theory.
Determining if a dispersion problem can achieve a certain image size (specifically, maximal disper-
sion in this encoding) can be equivalent to solving an arbitrary FO finite satisfiability problem.

For technical details, including the construction of Boolean gadgets using term equations and
non-equalities within the dispersion framework, see appendix ??. A concrete example demonstrat-
ing this encoding for the property of being a total linear order is provided in appendix ??.

6.6 Asymptotic behaviour and Integer Exponents

A key property distinguishing dispersion problems within the broader Term Coding framework
relates to their asymptotic behavior. Let Γ be a single-sorted dispersion problem involving terms
t1, . . . , ts over variables x1, . . . , xk using an n-element alphabet, and let maxI |ImageI | be its dis-
persion (the maximum image size, as defined in Definition 6.2).

It is known [29] that this maximum image size grows asymptotically as:

max
I

|ImageI | = Θ(nD)

where the exponent D is always an integer. This integer D can be interpreted as the guessing
number of the specific directed graph associated with the (normalized and diversified) dispersion

problem Γ. The convergence is often monotonic, meaning
log(max |ImageI |)

logn → D from below as
n→ ∞, indicating that collisions vanish asymptotically.

41

This integrality of the exponent D for dispersion problems contrasts sharply with general Term
Coding problems, where the limiting exponent L = Guess(GΓ) can be non-integer (as seen for C5

where L = 2.5). This property is fundamental to the complexity dichotomy discussed in Section 7.
In the multi-sorted case, analogous results often relate the maximum image size to integer values
derived from network flow or matching formulations [29].

7 A Complexity Dichotomy in Single-Sorted Dispersion

We now focus on the complexity of analysing single-sorted dispersion problems, revealing a sharp
dichotomy between undecidable and polynomial-time decidable questions based on the nature of
the solution size threshold. Let Γ be a single-sorted dispersion problem defined over an n-element
domain, involving terms t1, . . . , ts. Let maxI |ImageI | denote its dispersion count (Definition 6.2).

A key property, discussed in Section 6.6 and established in [29], is the asymptotic behavior:

max
I

|ImageI | = Θ(nD)

where the limit exponent D = limn→∞
log(maxI |ImageI |)

logn is always an integer. This integer D is the
guessing number of the graph associated with Γ and is often computable efficiently.

The complexity arises when we ask whether the dispersion count can meet or exceed specific
thresholds. The undecidable side of the dichotomy stems from foundational results concerning the
finite satisfiability of term equations.

7.1 Undecidability Background

It is well-established (e.g. [30, 31, 28], refined in [32]; see [33] for a survey) that determining the
existence of finite models for term equations is undecidable. Specifically:

Problem 1 (Finite Satisfiability). Given a system of term equations

Γeq = {t′1 = s′1, . . . , t
′
w = s′w},

decide whether there exists a finite non-trivial model (of size ≥ 2) in which all equations hold. This
problem is undecidable, even for a single equation [31, 28].

This fundamental result leads to the undecidability of related problems central to dispersion
thresholds:

Problem 2 (Finite Bijectivity). Given terms t1, . . . , tk (variables x1, . . . , xk), decide if there exists a
finite set A (|A| ≥ 2) and an interpretation I such that the induced map

ΘI : (x1, . . . , xk) 7→ (tI1 (x1, . . . , xk), . . . , t
I
k(x1, . . . , xk))

is bijective. This problem is also undecidable. Its undecidability can be shown via a reduction
from the undecidable problem of Horn Clause Finite Satisfiability, as detailed in appendix A.

These undecidability results directly impact our ability to determine if a dispersion system
can achieve certain exact performance thresholds, forming the basis for the difficult side of the
dichotomy.

42

7.2 The Dichotomy: Threshold Cases

We now analyse the complexity of deciding if maxI |ImageI | ≥ hthreshold(n) based on the threshold
function hthreshold(n).

Case 1: Threshold is Maximal Size (hthreshold(n) = nk). (Assuming the number of output terms is
s = k). The problem asks: Does there exist a finite domain size n ≥ 2 such that maxI |ImageI | ≥
nk? This requires the map ΘI : Ak → Ak defining the dispersion (where |A| = n) to be injective
(hence bijective, since the domain A is finite) for some interpretation I over a finite domain A of
size n.

Theorem 7.1. Assuming s = k, the dispersion problem with threshold hthreshold(n) = nk (i.e.,
deciding if maxI |ImageI | ≥ nk for some finite n ≥ 2) is undecidable.

Proof. This is equivalent to Problem 2 (Finite Bijectivity) applied to the terms t1, . . . , tk defining the
dispersion map ΘI . Since Problem 2 is undecidable (appendix A), this problem is undecidable.

Case 2: Threshold is an Integer Power (hthreshold(n) = nr, 1 ≤ r ≤ k). The problem asks: Does
there exist a finite n ≥ 2 such that maxI |ImageI | ≥ nr?

Theorem 7.2. For any fixed integer r, the dispersion problem with threshold hthreshold(n) = nr (i.e.,
deciding if maxI |ImageI | ≥ nr for some finite n ≥ 2) is undecidable, provided r is sufficiently
large (depending on the complexity required for the reduction).

Proof. This follows from the ability of single-sort dispersion systems (as demonstrated in Sec-
tion 6.5 and detailed in appendix B) to encode arbitrary finite satisfiability problems (like Problem
1). Showing that the image size can reach nr relates to finding specific finite models satisfying
the encoded FO sentence ψ, which links back to the undecidability of Problem 1. A detailed re-
duction, adapting the techniques outlined in appendix B, would be needed to formally establish
undecidability for a specific r.

Case 3: Threshold Strictly Between Integer Powers (nd < hthreshold(n) ∈ o(nd+1)). Here, the
question naturally becomes asymptotic: Does maxI |ImageI | ≥ hthreshold(n) hold for all sufficiently
large n?

Theorem 7.3. If the threshold function hthreshold(n) satisfies n
d < hthreshold(n) and hthreshold(n) ∈

o(nd+1) for some fixed integer d, then deciding if

max
I

|ImageI | ≥ hthreshold(n) holds for all sufficiently large n

is solvable in polynomial time in the size of the input dispersion problem Γ.

Proof. The condition holds for all sufficiently large n if and only if the integer asymptotic exponent
D satisfies D ≥ d+ 1. This integer D is the guessing number associated with Γ. As established in
[29, 34], for dispersion problems, D is an integer and can be computed in polynomial time (e.g.,
via max-flow/min-cut algorithms on the dependency graph). Therefore, the decision procedure
involves computing the integer D (in PTIME) and checking if D ≥ d+1. This is a polynomial-time
algorithm. For instance, checking if maxI |ImageI | ≥ nd + 1 holds for large n is equivalent to
checking if D > d.

43

7.3 Summary of the Dichotomy

This analysis reveals the striking complexity dichotomy for single-sorted dispersion problems:

• Undecidable: Determining if the maximum image size can ever reach a specific integer
power threshold (nk or nr) for some finite n ≥ 2.

• Polynomial-Time Decidable: Determining if the maximum image size asymptotically ex-
ceeds an integer power threshold (e.g., by checking against nd+1, or any threshold h(n) with
nd < h(n) ∈ o(nd+1)) for all sufficiently large n.

This sharp transition hinges on the difference between existential questions over specific finite
domain sizes (linked to undecidable satisfiability problems) and universal questions about asymp-
totic limits (determined by the efficiently computable integer exponent D). Further details on the
undecidability proofs are in appendix A.

8 Open Problems, Challenges and Conclusion

Given a Term Coding problem—a system of term equations (possibly with non–equality constraints)
over fixed finite alphabets—two central computational tasks arise:

• Model Finding: Develop efficient algorithms to construct a solution (i.e. a finite structure or
code) when one exists.

• Non–Existence Certification: Devise methods to efficiently certify that no solution exists.

While standard search procedures and SAT solvers perform well in some cases, our results indicate
that these methods may face inherent combinatorial barriers near critical thresholds.

A key observation is that one can transform a Term Coding problem into a corresponding
SAT instance. Let Γ denote the set of term equations and L the set of non-equality constraints.
A satisfying assignment to the resulting SAT instance, {SAT}Γ,L, corresponds one-to-one with a
finite model of the combined system Γ ∪ L (equations Γ and constraints L). Moreover, if Γ ∪ L
has no finite models, then results on the complexity of unsatisfiability proofs [35], particularly for
tree–resolution, imply:

• If Γ∪L holds in some infinite model, then every tree–resolution proof certifying the non–existence
of a finite model requires exponential size in n (the domain size).

Furthermore, Riis [35] demonstrated a related complexity gap (a dichotomy) concerning proof
complexity:

• The existence of polynomial–size (in n) tree-resolution proofs certifying the non–existence of
a finite solution for Γ ∪ L is equivalent to the system Γ ∪ L failing to hold in *any* infinite
model.

Together with classical exponential lower bounds for resolution proofs of principles like the propo-
sitional pigeonhole principle [haken85, Ajtai88], these results motivate the following conjecture.

Conjecture 8.1. Let Γ∪L be a single–sorted Term Coding problem (term equations Γ, non-equality
constraints L) over an n-element alphabet, and define the set of solvable domain sizes

S = {m ∈ N : Γ ∪ L has a solution for domain size m}.

44

We conjecture that for an instance size n for which no solution exists (n /∈ S), if n is close to a
threshold of solvability (specifically, if its distance to the set of solvable sizes satisfies dist(n, S) =
minm∈S |n − m| ≤ logO(1)(n)), then any resolution-based proof certifying the non-existence of a
solution for size n (via the corresponding SAT instance {SAT}Γ,L) must have exponential size.

Other Open Problems:

• Proof Complexity Lower Bounds: Establish sharp lower bounds for resolution–based proofs
for SAT instances derived from Term Coding problems. For instance, prove (or disprove)
that for specific systems Γ ∪ L unsolvable at certain domain sizes n, every tree–resolution
refutation requires exponential size in n.

• Efficient Model Finding and Hybrid Methods: Design specialised algorithms for Term Coding
problems that exploit their algebraic and combinatorial structure (e.g., via the associated
guessing number and dispersion invariants) to potentially outperform generic SAT solvers.
Can hybrid methods that combine search tree exploration with structural insights (e.g., re-
inforcement learning or simulated annealing guided by evaluation networks) yield improved
performance?

• Quantitative Analysis of Near-Optimal Solutions: For specific classes of Term Coding prob-
lems, determine how close the maximal solution size maxI(Γ∪L, n) can get to the ideal bound
suggested by the guessing number (e.g., nL). Identify structural conditions within Γ∪L that
lead to a sharp increase in the solution size or prevent the ideal bound from being met.

• Improved Term Equations and Non-Equalities for Designs: A problem like finding t−(v, k, λ)
designs can be expressed using multi-sorted term equations and non-equalities. This encod-
ing, however, is not unique. Different choices of defining equations and sorts can lead to
multiple optimisation problems (associated Term Coding problems), each with its own ideal
maximal code size that is attained if and only if the design exists. Are there particularly
’nice’ or efficient axiomatisations to consider? Perhaps structures as simple as the algebraic
formulation for Steiner triple systems (t = 2, k = 3) exist for more general cases.

• Improved Asymptotic Bounds: For concrete families of Term Coding problems (such as those
encoding combinatorial designs or error–correcting codes), derive tighter lower and upper
bounds on the maximum number of solutions. Can refined entropy– or guessing number–based
techniques capture finer combinatorial properties of the encoded structures?

• Extending Keevash’s Construction: Investigate whether Keevash’s methods based on random
greedy algorithms and absorption for the existence of t-designs can be adapted or applied to
broader classes of Term Coding problems. In particular, can one relax the strict term equa-
tions and non–equality constraints in design encodings to allow for probabilistic constructions
guaranteeing optimal or near-optimal solution counts?

• Structured and Linear Algorithms: When the alphabet possesses additional algebraic struc-
ture (e.g., a finite field or vector space), study Term Coding problems restricted to interpre-
tations using linear functions. Can one develop efficient algorithms or obtain tighter bounds
in this linear setting, paralleling classical results in algebraic coding theory?

• Search Tree Complexity and Learning Methods: Analyse the combinatorial complexity of the
search space associated with finding models for Term Coding problems. Can reinforcement
learning or classical search algorithms like simulated annealing be rigorously designed and

45

analysed for efficiently navigating this space, and what complexity bounds can be established
for such algorithms?

• Further Unification: Investigate further connections among Term Coding, graph entropy, net-
work/index coding, and potentially other areas like constraint satisfaction problems (CSPs).
How can techniques from these areas be integrated to derive new extremal combinatorial
results or improved algorithms?

In conclusion, the Term Coding framework recasts many classical extremal combinatorial prob-
lems into a unified algebraic setting, amenable to analysis using guessing number and entropy
techniques. Our main results establish tight asymptotic bounds on maximum code sizes and reveal
a striking complexity dichotomy related to decision thresholds: a minimal one–unit increase in the
solution threshold can transform an undecidable problem into one polynomial–time decidable (for
dispersion problems). This phase transition underscores the intricate interplay between algebra,
logic, and combinatorics, and opens numerous avenues for future research.

Ultimately, we believe that Term Coding not only sheds new light on classical extremal problems
but also offers potential for transformative advances in combinatorial design theory and algorithmic
reasoning, by bridging the gap between logical specifications and algebraic structures.

References

[1] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[2] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[3] Thomas J. Schaefer. “The complexity of satisfiability problems”. In: Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC). 1978, pp. 216–226.

[4] Ronald Fagin. “Generalized first-order spectra and polynomial-time recognizable sets”. In:
Complexity of computation 7 (1974), pp. 43–73.

[5] Neil D Jones and Alan L Selman. “Turing machines and the spectra of first-order formulas
with equality”. In: Proceedings of the fourth annual ACM symposium on Theory of computing.
1972, pp. 157–167.

[6] Etienne Grandjean. “The spectra of first-order sentences and computational complexity”. In:
SIAM Journal on Computing 13.2 (1984), pp. 356–373.

[7] Robert O Robson. “Model theory and spectra”. In: Journal of pure and applied algebra 63.3
(1990), pp. 301–327.

[8] Maximilien Gadouleau and Søren Riis. “Graph-theoretical constructions for graph entropy
and network coding based communications”. In: IEEE Transactions on Information Theory
57.10 (2011), pp. 6703–6717.

[9] Soren Riis. “Graph entropy, network coding and guessing games”. In: arXiv preprint arXiv:0711.4175
(2007).

[10] Søren Riis. “Information flows, graphs and their guessing numbers”. In: 2006 4th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. IEEE.
2006, pp. 1–9.

[11] Noga Alon et al. “The hat guessing number of graphs”. In: Journal of Combinatorial Theory,
Series B 144 (2020), pp. 119–149.

46

[12] J. H. Van Lint and R. M. Wilson. A Course in Combinatorics. 2nd. Cambridge University
Press, 2001.

[13] Peter Keevash. “The existence of designs”. In: arXiv preprint arXiv:1401.3665 (2014).

[14] W Cary Huffman, Jon-Lark Kim, and Patrick Solé. Concise encyclopedia of coding theory.
Chapman and Hall/CRC, 2021.

[15] Takeuchi & Yahagi. Kobayashi Tsunoda. Mathematics of information and coding. Vol. 203.
American Mathematical Soc., 2002.

[16] RK Brayton, Donald Coppersmith, and AJ Hoffman. “Self-orthogonal latin squares of all
orders n 6=2,3,6”. In: Bull. Amer. Math. Soc. (1974), 80 (1): 116–118.

[17] A Hedayat. “386: Self Orthogonal Latin Square Designs and Their Importance, II”. In: Bio-
metrics (1975), pp. 755–759.

[18] S Riis. “Information flows, graphs and their guessing numbers. the electronic journal of com-
binatorics”. In: R44–R44 (2007).

[19] Søren Riis. “Reversible and irreversible information networks”. In: IEEE Transactions on
Information Theory 53.11 (2007), pp. 4339–4349.

[20] Taoyang Wu, Peter Cameron, and Søren Riis. “On the guessing number of shift graphs”. In:
Journal of Discrete Algorithms 7.2 (2009), pp. 220–226.

[21] Peter J Cameron, Anh N Dang, and Soren Riis. “Guessing games on triangle-free graphs”.
In: arXiv preprint arXiv:1410.2405 (2014).

[22] Demetres Christofides and Klas Markström. “The guessing number of undirected graphs”.
In: the electronic journal of combinatorics (2011), P192–P192.

[23] Jo Martin and Puck Rombach. “Guessing numbers and extremal graph theory”. In: arXiv
preprint arXiv:2009.04529 (2020).

[24] Maximilien Gadouleau, Adrien Richard, and Søren Riis. “Fixed points of Boolean networks,
guessing graphs, and coding theory”. In: SIAM Journal on Discrete Mathematics 29.4 (2015),
pp. 2312–2335.

[25] Rahil Baber et al. “Graph guessing games and non-Shannon information inequalities”. In:
IEEE Transactions on Information Theory 63.7 (2016), pp. 4257–4267.

[26] Zhen Zhang and Raymond W Yeung. “A non-Shannon-type conditional inequality of infor-
mation quantities”. In: IEEE Transactions on Information Theory 43.6 (1997), pp. 1982–
1986.

[27] Leonid Libkin. Elements of finite model theory. Vol. 41. Springer, 2004.

[28] Boris A Trakhtenbrot. “Impossibility of an algorithm for the decision problem for finite
classes”. In: Doklady Akademiia Nauk SSSR. Vol. 70. 1950, p. 569.

[29] Søren Riis and Maximilien Gadouleau. “Max-flow min-cut theorems on dispersion and entropy
measures for communication networks”. In: Information and Computation 267 (2019), pp. 49–
73.

[30] A Markov. “On certain insoluble problems concerning matrices”. In: Doklady Akad. Nauk
SSSR. Vol. 57. 6. 1947, pp. 539–542.

[31] Emil L Post. “A variant of a recursively unsolvable problem”. In: Bull. Amer. Math. Soc.
52.4 (1946), pp. 264–269.

47

[32] Ralph McKenzie. “On spectra, and the negative solution of the decision problem for identities
having a finite nontrivial model1”. In: The Journal of Symbolic Logic 40.2 (1975), pp. 186–
196.

[33] Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Springer Sci-
ence & Business Media, 2001.

[34] Maximilien Gadouleau and Søren Riis. “Max-flow min-cut theorem for Rényi entropy in
communication networks”. In: 2011 IEEE International Symposium on Information Theory
Proceedings. IEEE. 2011, pp. 603–607.

[35] Søren Riis. “A complexity gap for tree resolution”. In: Computational Complexity 10.3 (2001),
pp. 179–209.

A Proof of Undecidability of Finite Bijectivity (Problem 2)

We reduce the Horn–clause finite satisfiability problem (HFS), known to be undecidable by a version
of Trakhtenbrot’s theorem, to the following decision problem.

Problem 2 (Finite Bijectivity) Given terms t1, . . . , tk over variables x1, . . . , xk and a signature Σ,
decide whether there is a finite structure (A, I) with |A| ≥ 2 such that the map

F : Ak −→ Ak, F (a1, . . . , ak) =
(
I(t1)(ā), . . . , I(tk)(ā)

)

is a bijection.

Horn–clause finite satisfiability (HFS) Given a finite Horn theory H over a relational signature
Σrel (we assume—w.l.o.g.— that every predicate is binary), decide whether there is a finite model
A |= H with |A| ≥ 2.

The reduction proceeds in eight steps.

Step 1: The expanded signature Σ⋆: For an instance H over Σrel we build the signature Σ⋆ used by
the term map.

• Constants. cT , cF , cE (“true”, “false”, “error/padding”).

• Relation encoders. For every R ∈ Σrel add h⋆R : A2 → A. Add a designated equality
simulator h⋆EQ : A2→A.

• Boolean core. ¬⋆ : A→A (intended NOT) and nand
⋆ : A2→A (intended NAND).

• Conditional–collapse gadget. For every d ≥ 1 the symbol cond⋆(d) : A 1+d → Ad is
interpreted by

I
(
cond⋆(d)(g, x1, . . . , xd)

)
=

{
(I(cE), . . . , I(cE)) if g = I(cT),

(x1, . . . , xd) otherwise.

Only the case d = 1 is actually used below.

• Auxiliary symbol. A ternary f : A3→A (used once, in Step A).

48

Step 2: Forcing cT 6= cF : Take fresh variables x′, y′ and add the two output components

f(cT , cF , x
′) and f(cF , cT , y

′)

to the eventual map F ′. Should an interpretation I satisfy I(cT) = I(cF), both components collapse
to the same unary function (x′, y′) 7→ f(a, a, x′, y′), which cannot be surjective on A2 when |A| ≥ 2;
hence bijectivity of F ′ enforces I(cT) 6= I(cF).

Step 3: Enforcing Boolean behaviour: NOT. Include the single-variable component cond⋆(1)
(
¬⋆(¬⋆(wnot)), wnot

)

with fresh input wnot. Bijectivity forces ¬⋆ to be an involution. Add two further components.
cond⋆(1)

(
h⋆EQ(¬⋆(cT), cT), wT

)
and cond⋆(1)

(
h⋆EQ(¬⋆(cF), cF), wF

)
. Together, they ensure that I(¬⋆)

swaps I(cT) and I(cF).

NAND. Take three fresh variables wn1, wn2, wn3 and insert the triple

(
nand

⋆(wn1, wn1), nand
⋆(cT , wn2), nand

⋆(wn3, cT)
)

as outputs corresponding to the same inputs. This tuple of unary maps forms a permutation of A3

iff I(nand⋆) realises true NAND on {T, F}.
Step 4: Making h⋆EQ real equality:

• Reflexivity, symmetry, transitivity. Add output components cond⋆(1)
(
¬⋆(h⋆EQ(x, x)), wref

)
,

cond⋆(1)
(
¬⋆(h⋆EQ(x, y) ↔ h⋆EQ(y, x)), wsym

)
and an analogous triple-variable component for

transitivity, each time with fresh w–inputs.

• Distinguishing non-equals. For every pair (vi, vj) of variables in the original Horn instance
introduce

cond⋆(1)
(
h⋆EQ(vi, vj), wij

)
.

Should I(h⋆EQ)(a, b) = T for some a 6= b, the map collapses on wij , contradicting bijectivity.

These gadgets force I(h⋆EQ) to agree with actual equality on the subset of A that is reachable
through variables occurring in H; call this subset D.

Step 5: Range restriction for relation encoders: For each encoder h⋆R and every (ordered) pair of
variables (u, v) occurring in H introduce

cond⋆(1)
(
guardrange

(
h⋆R(u, v)

)
, wR,(u,v)

)
, where guardrange(x) := ¬⋆

(
or
⋆
(
h⋆EQ(x, cT), h

⋆
EQ(x, cF)

))
.

The guard evaluates to T iff the value of h⋆R(u, v) is neither T nor F , so the gadget collapses
precisely on out-of-range outputs, preventing bijectivity. Hence I(h⋆R) maps A2 into {T, F}.
Step 6: Clause gadgets: For every clause C ≡ R1(v1, v2)∧ · · ·∧Rm(v2m−1, v2m) → T (v2m+1, v2m+2)
let ViolC(v̄) be the term

nand
⋆
(
nand

⋆
(
h⋆R1

(v1, v2), . . . , h
⋆
Rm

(v2m−1, v2m)
)
, h⋆T (v2m+1, v2m+2)

)
,

which yields T exactly when the antecedent of C is satisfied but its consequent is not. Insert the
component cond⋆(1)

(
ViolC(v̄), wC

)
with fresh input wC . Any violation of C collapses this component

and destroys bijectivity.

Step 7: Assembling the global map F ′: Let v be the variables of H and let w collect all auxiliary
variables introduced above. The map F ′ : Av∪w → Av∪w is obtained by concatenating, in order,

49

• the two “distinct T/F” outputs of Step A;

• all components from Steps 3–6 (each aligned with its own input);

• identity components vi 7→ vi for every original variable vi ∈ v;

• identity components for those auxiliary inputs that have not yet been used as an output.

Step 8: Correctness of the reduction:

(⇒) Suppose H has a finite model A = (A, {RA}), |A| ≥ 2. Extend A to an interpretation I by

– picking distinct I(cT), I(cF) ∈ A and an arbitrary I(cE) ∈ A;

– setting I(h⋆R)(a, b) = I(cT) iff (a, b) ∈ RA, else I(cF);

– interpreting h⋆EQ as true equality on A;

– interpreting ¬⋆ and nand
⋆ as Boolean NOT and NAND on {T, F} and arbitrarily else-

where;

– choosing any functions for the remaining symbols, respecting the clauses above.

Every guard in the construction evaluates to F , so every cond⋆ returns its live input; F ′ is a
variable permutation and thus bijective.

(⇐) Conversely, let (A, I) make F ′ bijective. Steps 2–6 force

I(cT) 6= I(cF), I(¬⋆), I(nand⋆) act as Boolean NOT/NAND,

I(h⋆EQ) to coincide with equality on the set D ⊆ A reached by the variables of H, and every
h⋆R to take only T or F . Finally every clause-gadget’s guard must be F , hence every clause
of H is satisfied by the relations RA := {(a, b) | I(h⋆R)(a, b) = I(cT)} on the finite domain D.

Conclusion. Because HFS is undecidable and we have provided a computable reduction to Prob-
lem 2, Finite Bijectivity is likewise undecidable whenever the underlying signature is allowed to
contain the constants and function symbols listed in Step 1. “‘

B Encoding First-Order Finite Satisfiability as a Single-Sort Dis-
persion Problem

This appendix outlines how the problem of determining if a first-order sentence ψ has a finite model
can be reduced to a dispersion problem Γψ operating over a single sort. This demonstrates the
significant expressive power of the dispersion framework, which relies on maximising the size of an
image set subject only to non-equality constraints, rather than using explicit term equations to
define function behaviour. The construction shows that dispersion can capture the complexity of
first-order logic on finite structures.

Step 1: Logical Preliminaries. First, we convert the given FO sentence ψ (over a signature Σ) into
an equisatisfiable sentence ψ̃ in Skolem Normal Form. This ψ̃ has the form

∀xφ(x),

50

where φ is quantifier-free and uses an expanded signature ΣSk. Second, we convert φ(x) into
Conjunctive Normal Form (CNF), resulting in

∀xφCNF (x), where φCNF =
∧

i

Ci.

Each clause Ci is a disjunction of literals (atomic formulas A or their negations ¬A), where atoms
are typically R(t1, . . . , tk) or t1 = tk. Let Atoms be the set of atoms in φCNF .

Step 2: The Single Sort and Signature Σ∗. We define a single sort, UniversalSort. An interpretation
I assigns a finite set A to this sort.

• The Domain A: For an intended FO model size n, A must contain at least n+ 2 elements.
We conceptually partition A into D ∪ {T, F} ∪ P , where |D| = n (the FO domain), T, F
represent ‘True’/‘False’, and P are padding elements.

• Signature Σ∗: Operates on UniversalSort. Includes:

– Constants: cT , cF (interpreted as T, F), and cE ∈ P (padding/error).

– Original/Skolem Functions: Symbols f∗ corresponding to f ∈ ΣSk.

– Atomic Predicate Functions: Symbols A∗ for each A ∈ Atoms.
– Boolean Simulation Functions: S∗ (NAND), neg∗ (NOT), plus auxiliary symbols

for their defining ’gadget’ maps (e.g., the map TS used to define S∗, see appendix ??).

– Conditional Function: COND∗ implementing IF-THEN-ELSE on k-tuples, where
k = |x|. Built from S∗,neg∗.

Step 3: Constraints: Simulating Logic and Restricting Predicates. The correct behaviour is enforced
by non-equality constraints and dispersion maximisation requirements on interpretations I.

• Simulating Boolean Logic (Clogic and Gadget Maximisation): We impose non-equalities
Clogic, including cT 6= cF , neg

∗(cT) 6= cT , neg
∗(cF) 6= cF , S

∗(cT , cT) 6= cT . Critically, a valid
interpretation I must also maximise the dispersion of the auxiliary gadget maps (such as the
map TS(x, y, z) = (S∗(x, x), S∗(cT , y), S∗(z, cT)) used to define S∗ in appendix ??), subject
only to the constraints in Clogic. This combined requirement forces I(S∗) and I(neg∗) to
simulate NAND and NOT correctly on the {T, F} subset.

• Predicate Range Restriction (Crange): For each predicate function A∗, we add non-
equalities A∗(x1, . . . , xk) 6= p for every padding element p ∈ P (including p = cE). This
ensures the output, for inputs from D, lies within {T, F}. *This restriction is necessary
because the simulated Boolean logic functions built from S∗,neg∗ require their inputs to be
effectively Boolean (T or F) to guarantee correct logical output.*

• Interpretation Consistency (Implicit Requirement): Dispersion maximisation does
not force A∗ to correctly represent the truth of atom A. The reduction seeks an interpre-
tation I that simultaneously satisfies the constraints above *and* is consistent with some
underlying n-element FO model M of ψ. *Specifically, ’consistent interpretation’ means that
for a1, . . . , ak ∈ D, I(f∗)(a1, . . . , ak) = fM(a1, . . . , ak), and I(A∗)(a1, . . . , ak) equals T if
atom A holds for (a1, . . . , ak) in M, and F otherwise.*

51

Step 4: Constructing the Final Dispersion Map. Translate φCNF (x) into a term Φ∗(x) using A∗

and derived Boolean connectives (AND∗, OR∗, . . .). Define the final map F (k = |x|):

F (x) = COND∗(Φ∗(x),x, (cE , . . . , cE)).

The conditional function COND∗ is essential here. Simply evaluating the dispersion of Φ∗(x)
would yield an image size of 1 or 2. To connect FO satisfaction to maximal dispersion over the nk

inputs in Dk, the map F must output k-tuples. COND∗ achieves this: if Φ∗(x) is T , F outputs
the input x; if Φ∗(x) is F , F outputs the collapse tuple (cE , . . . , cE). Thus, F acts as the identity
on Dk (achieving dispersion nk) only if Φ∗(x) is always T .*

Step 5: The Dispersion Problem Γψ and Equivalence. Γψ Given Σ∗, the logic gadgets, and F (x),

does there exist a finite interpretation I over A (containing D of size n) such that:

1. I satisfies Clogic, Crange, I(cT) 6= I(cF), and I maximises the dispersion of the logic-defining
gadget maps (subject to Clogic).

2. I is consistent (as defined in Step 3) with some n-element structure M for Σ.

3. The dispersion problem asks if the maximum possible image size for F under such interpre-
tations equals nk:

max
I satisfying (1, 2)

∣∣∣{F (a) | a ∈ Dk}
∣∣∣ ?
= nk.

Equivalence: The maximum possible dispersion |ImageI(F |Dk)| is nk. This value is achieved
if and only if F (a) = a for all a ∈ Dk, which, by the definition of COND∗, occurs precisely
when Φ∗(a) = I(cT) for all a ∈ Dk. Given that condition (1) ensures correct Boolean simulation
and condition (2) ensures consistency with a structure M, Φ∗(a) = I(cT) for all a if and only if
M |= φCNF (a) for all a. Therefore, maximal dispersion nk is achievable if and only if there exists
an n-element model M of ∀xφCNF (x), and thus of ψ.

Conclusion. We have outlined how to reduce the FO-FinSat problem for ψ to deciding whether a
specific dispersion problem Γψ can achieve maximal dispersion (nk). This relies on interpretations
simultaneously satisfying implicit consistency conditions and explicit requirements to maximise the
dispersion of auxiliary logic-defining gadgets while obeying non-equality constraints. This confirms
the high expressive power of the single-sort dispersion framework.

52

	Introduction
	General Motivation
	Motivating Example: Steiner Triple Systems (t=2, k=3)
	Term Coding: Purely Equational Single-Sorted Case
	Illustrative Examples
	An Unsolvable Variant
	Investigating Non-Solvability
	Diversification of Function Symbols
	Graph Guessing Game Reformulation and Our New Method
	Labelling of Nodes and Distinctness Constraints
	Deterministic Strategies and Winning Configurations.
	Maximal Solutions vs. Correct Guesses
	Computing the Guessing Number
	Multi-Sorted Term Coding and Non-Equality Constraints
	Assumption on Consistency
	Overview and Contributions

	Outline of the Paper
	Notation and Conventions

	Normalising Term Equations and non-equalities: From Arbitrary Systems to a Normalised Form
	Normalisation: Retaining Equivalence of Solutions
	Example: Characterizing Steiner Systems S(t, t+1, n)
	Axioms

	Diversification: An Approximation Technique

	Foundations and Main Result
	Associated Directed Graph G-Gamma
	Interpretations and Codes
	Guessing Numbers for Labelled Directed Graphs
	Existence of the Limit via Fekete’s Lemma
	Relating Original and Diversified Systems
	Main Theorem: Finite Bounds for Code Size
	A Single-Sorted Example: The Cycle C5 with non-equality Constraints
	Step 1: Normalising the System
	Step 2: Diversifying f
	Step 3: Evaluating the Graph Guessing Number

	The 5-Cycle C5 and Its Entropy of 2.5

	Multi-Sorted Term Coding with Non-Equality Constraints
	Multi-Sorted Term Languages and Non-Equalities
	Expressive Power: Encoding First-Order Finite Satisfiability
	Scope and Expressiveness of Multi-Sorted Term Coding
	Extremal and Existence Questions Revisited

	Guessing Number in the Multi‐Sorted Setting (with non‐equality Constraints)
	Multi‐Sorted Hat Assignments and Distinctness
	Multi‐Sorted Guessing Game with Non‐Equalities
	Defining the Multi‐Sorted Guessing Number Consistently
	Multi‐Sorted Guessing Strategies and their Relation to Term Coding
	Example: A Two-Node Graph with Alphabet Sizes n1,n2
	A Multi‐Sorted Analogue of Theorem ?? (with non‐equality Constraints)

	Dispersion in Multi‐Sorted Settings
	Historical Context and the Riis–Gadouleau Example
	Defining Dispersion with Distinctness Constraints
	From Multi‐Sorted Dispersion to Multi‐Sorted Term Coding
	Boolean Functions via Dispersion
	Encoding First-Order Finite Satisfiability as a Single-Sort Dispersion Problem
	Asymptotic behaviour and Integer Exponents

	A Complexity Dichotomy in Single‐Sorted Dispersion
	Undecidability Background
	The Dichotomy: Threshold Cases
	Summary of the Dichotomy

	Open Problems, Challenges and Conclusion
	Proof of Undecidability of Finite Bijectivity (Problem 2)
	Encoding First-Order Finite Satisfiability as a Single-Sort Dispersion Problem

