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Abstract

In quantum information theory, maximally entangled states are essential for well-known
protocols like quantum teleportation or quantum key distribution. While many of these
protocols focus on bipartite entanglement, other applications, such as quantum error correction
or multiparty quantum secret sharing, are based on multipartite entanglement, precisely, on the
so-called locally maximally entangled (LME) multipartite states, where each part is maximally
entangled with their complement. Such LME states appear naturally in the invariant subspaces
of tensor products of irreducible representations of the symmetric group Sn, which we term
Kronecker subspaces, given that their dimensions are the so-called Kronecker coefficients. A
Kronecker subspace is a vector space of LME multipartite states that we call Kronecker states,
which entangle Hilbert spaces of large dimensions. Although such states can in principle be
obtained from the Clebsch-Gordan coefficients of the symmetric group, the known methods
to compute these coefficients tend to be inefficient even for small values of n. An alternative
quantum-information-based approach is inspired by entanglement concentration protocols,
where Kronecker subspaces appear naturally in the isotypic decomposition of tensor products of
copies of multipartite entangled states. In this context, closed expressions have been obtained
for a limited class of Kronecker states, associated with states in the so-called multiqubit W-
class. Our aim in this thesis is to extend this approach to build bases for Kronecker subspaces
associated with any multiqubit system. For developing our method we first propose a graphical
construction that we call “W-state Stitching”, where multiqubit entangled states are obtained
as tensor networks built from W states. Analyzing the isotypic decomposition of copies of
the graph state, an analogous set of graph Kronecker states, made from W-Kronecker states,
can be obtained. In particular, the graph states of generic multiqubit states can generate any
Kronecker subspace completely. Using this method, we show how to build any Kronecker
subspace corresponding to systems of three and four qubits. Independently of the Kronecker
state construction, theW-stitching technique has proven to be a powerful method for multiqubit
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entanglement classification. We hope the results of this work motivate the study of applications
of Kronecker states in quantum information, and serve as a starting point for a resource theory
of multipartite entanglement, with bipartite states and tripartite W states as building blocks,
where the asymptotic analysis is based on Kronecker states.
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1
Introduction

Entanglement is a key feature of quantum mechanics, with a broad range of applications
in quantum information protocols, such as quantum teleportation [BBC+93], quantum key
distribution [BB14], quantum error-correcting codes [DNM13], dense coding [BW92], and
many others[Yu21]. Despite its importance, entanglement becomes a complicated property
when considering systems with more than two particles, and the richness of such systems is
overwhelmed by their mathematical complexity. Finding maximally entangled states for multi-
ple particles in Hilbert spaces of high dimensions and determining their mathematical structure
has proven to be a challenge solved only for particular settings [WGE17]. In this research, we
present a construction inspired by entanglement concentration protocols, which allows us
to obtain maximally entangled states for many particles in systems of high dimensions in a
systematic approach. For that, we propose a graphical construction named “W-state Stitching”,
whereW states and bipartite states are used as building blocks of more general multiparticle
states. Through a Schur transformation [CH11] on copies of the states, a vector space of
maximally entangled states can be achieved, as well as corresponding algebraic expressions for
it.

From a historical perspective, entanglement has been seen to be a fascinating and profound
property of quantum systems, studied since the early stages of quantum mechanics. Entan-
glement refers to the non-classical correlations between two or more particles, even when
physically separated. In 1935, in the paper “Discussion of Probability Relations between
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Separated Systems” [Sch35], Schrödinger introduced the German term “Verschränkung” or
“Entanglement” in English to name this phenomenon. In Schrödinger’s words, “I would not
call that one, but rather the characteristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought.” It was not until 1960 that John Bell [Bel64]
introduced a mathematical structure and defined the “Bell’s inequality”, which constrained the
strength of the correlations that could be described from local realistic theories. In subsequent
experiments, physicists have found that the correlations between quantum particles violate
Bell’s inequality [Bel64], indicating that entanglement is a real feature of nature.

The potential applications of entanglement in quantum information theory were not fully
realized until 1991, when Artur Ekert [Eke91] proposed using entangled states to enhance the
security of the quantum key distribution protocol originally proposed by Bennett and Brassard
[BB14] seven years earlier. The following year, Bennett and Wiesner demonstrated that en-
tanglement could also be used for quantum data compression, known as superdense coding
[BW92]. This allows for two bits of classical information to be transmitted using only one
qubit with the help of pre-shared entanglement, leveraging the peculiarities of entanglement to
achieve more efficient communication. In 1993, Bennet [BBC+93] proposed a groundbreaking
application of entanglement known as the teleportation protocol. The concept involves sharing
an entangled state of two qubits between two parties, Alice and Bob, and using it to transmit
the quantum information of a third qubit from Alice to Bob through local operations and
classical communication. The remarkable feature of this protocol is that the original qubit is
not physically transported but instead destroyed on Alice’s side, and its state is transmitted to
Bob’s side through the entangled state up to applying one of four possible transformations.
The discovery of quantum teleportation provided a new insight into the role of entanglement
in quantum information.

Entanglement is the main source of many other applications in quantum information the-
ory, such as quantum error correction codes [Sho95; Ste96; DNM13], quantum computation
speedups [JL03], quantum repeaters [BDC+98], and quantum random number generators
[HSD+04]. While many of these applications have their roots in bipartite qubit systems, it
has been demonstrated that using entangled states of higher dimensions results in stronger
violations of Bell’s inequalities[VPB10], indicating stronger nonlocality. This implies that high
dimensional entangled states can enhance the security and efficiency of many of the applica-
tions mentioned above [BKB+02; BP00; ZZJ+19]. Furthermore, the use of multipartite entangled
states allows, for example, multiparty secure communication [STT20], quantum teleportation
among multiple parties [GKH14], and multiparty quantum key distribution [MWL+21], en-
hancing the capabilities of quantum communication networks [Mei21]. Moreover, Many-body
entangled states [AFO+08] give rise to phenomena and topological properties not present
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CHAPTER 1. INTRODUCTION

in bipartite entangled states. Examples include topological phases of matter [JES+12] and
long-range entanglement [CGW10]. Many-body entangled states are essential for exploring
quantum field theory and its connection to condensed matter physics. Entanglement entropy,
entanglement spectra, and entanglement Hamiltonians provide insights into the properties
of quantum field theories and their critical behavior, such as conformal field theories [CC04]
and holography [Hea19]. Therefore, a better understanding of multiparticle high-dimensional
entanglement is a requirement in the progress of quantum applications.

The question then arises: how to calculate high-dimensional multipartite states in a structured
way? In this research, we propose to use the representation theory of the symmetric group
Sn, where maximally entangled states appear in the invariant subspace of tensor products of
representations of Sn. We name those states as Kronecker states, and the vector space where
they belong as Kronecker subspace. When considering a system composed of n copies of some
multipartite state, the Kronecker subspace appears naturally as the subspace of the total Hilbert
space, where permutations of the parts in the copied state, which are elements of Sn, act
trivially. We present a useful framework to build general Kronecker subspaces from simpler
Kronecker states that appear when analyzing the Kronecker subspace of copies of bipartite
states andW states [SWK13], for which closed expressions were already obtained.

Before delving into the content of this research, we need to review the mathematical structure
of pure state entanglement [PV06]. For a two-particle system withH1 andH2 being the Hilbert
spaces associated with each particle, if a state |ψ12⟩ can be written as a tensor product,

|ψ12⟩ = |ψ1⟩ ⊗ |ψ2⟩ ,

where |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2, then the state is said to be separable; otherwise, it is entangled.
For example, the state of two qubits,

|ψ⟩ = 1√
2
(|00⟩+ |10⟩) ,

is separable since it can be written as the tensor product of |ψ1⟩ = 1√
2
(|0⟩+ |1⟩) and |ψ2⟩ = |0⟩.

On the other hand, the state ∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩) , (1.1)

cannot be written as a product of any two-qubit states and is, therefore, entangled. In fact, it is
a maximally entangled state known as the EPR state [EPR35]. To understand better how this
state is maximally entangled, we need to use entanglement measures, which not only identify
separable and entangled states but also measure how entangled is a given quantum state. One
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of such entanglement measures is the entropy of entanglement, which is defined for a pure state
|ψ⟩ as

E(|ψ⟩) := S(ρ1) = S(ρ2),

where S(ρ) = −tr(ρ log ρ) is the von-Neumann entropy, and ρi is the reduced density matrix
for the i subsystem. By noting that individual reduced density matrices for the state in Equation
(1.1) are fully mixed, one gets

E(
∣∣Φ+

〉
) = log 2,

which is the maximum possible value for qubit systems. i.e., |Φ+⟩ is a maximally entangled
state. The entropy of entanglement is zero when the subsystems 1 and 2 are separable, and its
maximum value, log di, with di being the dimension of the Hilbert space of the i-th subsystem,
is achieved when the reduced density matrix is proportional to the identity.

When considering systems with more than two particles, the definition of entanglement can
be straightforwardly generalized to multipartite systems. If a state with N particles can be
written as

|ψ⟩ =
N⊗
i=1

|ψi⟩ , |ψi⟩ ∈ Hi, ∀i ∈ {1, 2 . . . , N},

withHi the Hilbert space of the i-th particle, then the state is separable; otherwise it is entangled.
The properties of entanglement entropy described before can be used to define multipartite
locally maximally entangled states (LME) as those whose individual reduced density matrices
are proportional to the identity:

ρi = trı |ψ⟩ ⟨ψ| =
1

di
I,

where ı stands for the complement of part i in the set of parties. One can notice that when
considering systems with more than two particles, entanglement can appear in different forms.
For example, when considering the three qubit case, the state

|ψ⟩ = 1√
2
(|001⟩+ |010⟩) = 1√

2
|0⟩ ⊗ (|01⟩+ |10⟩) ,

is not separable, as it is not possible to write it as a product of states in each local Hilbert space;
however, it is not completely entangled as its first particle can be separated from the other
two, so now we can have entanglement for some subsets of particles, and even when there is
entanglement between all the parties, known as genuine entanglement, one can find different
classes of entanglement. For example, for three qubits, it is known that genuine entanglement
can be separated into two classes[DVC00]. When considering the states

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) , |W ⟩ = 1√

3
(|100⟩+ |010⟩+ |001⟩) , (1.2)
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CHAPTER 1. INTRODUCTION

they are both genuinely entangled, but their entanglement behaves very differently, for example,
when one of the particles is discarded (traced out). For the GHZ state, losing one of its parts
makes all the entanglement lost, while for theW state, after losing any of its parts, the remaining
two are entangled. In figure 1.1, a graphical representation of these states taken from [QA18] is
shown, where each ring represents one of the qubits. The differences between the entanglement
properties of these states show different kinds of entanglement in multipartite systems.

Figure 1.1: Graphical representation of states in (1.2), where each ring correspond to one of the qubits. At the left, the GHZ state is represented,
and after losing one part, the remaining two are unentangled. At the right, the W state is represented, and after losing one part, the remaining
two are entangled. Images taken from [QA18]

A natural setup for analyzing entanglement in a multipartite system is to consider Stochastic
Local Operations and Classical Communication (SLOCC) on the states. The LOCC part of
these operations can be thought of as all the possible operations that can be applied locally
in a multipartite state as if all its parts are distributed in multiple laboratories and cannot
interact directly. Under this setup, the different laboratories can be interconnected through a
classical channel to coordinate and adjust the actions of each part of the state. In this sense,
two states are said to be LOCC equivalent if they can be converted into each other through
the abovementioned operations. Note how, with this construction, it is impossible to create
non-local correlations between the parts of the system, meaning that the system’s entanglement
cannot increase. The stochastic part of SLOCC states that the conversion between states could
be achieved with some non-zero probability. It can be shown that such transformation is
possible between two states |ψ⟩ and |ϕ⟩ if there exists a set of unit determinant operators Ai
such that

A1 ⊗ A2 ⊗ · · · ⊗ AN |ψ⟩ = s |ϕ⟩ ,

with s a complex scalar [WGE17]. The Ai matrices belong to the Special Linear group of
dimension d, SLd, i.e., the group of unit-determinant matrices of dimension d×d. In this sense,
SLOCC classes are defined as the different orbits of SLd1 ⊗ SLd2 ⊗ . . . SLdN in the projective
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Hilbert space. The projective Hilbert space is obtained by taking the ordinary Hilbert space and
identifying all non-zero vectors that differ only by a scalar factor. This identification means
that all vectors that are proportional to each other are considered equivalent in the projective
Hilbert space.

By taking any state in an orbit, it is possible to transform it into a normal form by local opera-
tions of unit-determinant [VDD03]. Such normal form has the property that its local reduced
density matrices are proportional to the identity, which corresponds to the definition of locally
maximally entangled states. Moreover, it is shown in [VDD03] that normal forms correspond
to the states of minimal norm that can be obtained under local unit-determinant operations
on the initial state. When looking for normal forms, three scenarios are possible. One case is
when the normal form is the zero state. Such orbits are known as the Null cone [HLT14]. A
second option is that the normal form can only be achieved asymptotically, with an infinite
sequence of steps, meaning that the normal form, also known as critical state [BRV18], belongs
to the closure of the orbit. In this case, the orbit is said to be strictly semistable [SHK+20]. The
last option is that the normal form is achieved in the orbit with a finite number of steps; in
this case, the orbit is called polystable [SHK+20]. Critical states or normal forms, are usually
used as the representatives of their corresponding SLOCC class. For the three-qubit case
discussed before, genuine entanglement separates into two classes known as the GHZ-SLOCC
class and the W-SLOCC class, whose representatives were shown in (1.2). In this case, the
GHZ orbit is polystable, and then the representative |GHZ⟩ is chosen as the LME state in
the orbit. On the other hand, theW-class belongs to the null cone, so there is no LME in the orbit.

In recent years, the possibility of using representation theory to find LME states has been
highlighted [BRV18] [SSM21]. To understand how this connection is made explicitly, consider
first a bipartite state |ψ⟩ ∈ H1⊗H2, such that it is invariant up to a phase under the irreducible
action of a given group G on H1,

X(g)⊗ I |ψ⟩ = eiϕ(g) |ψ⟩ , ∀g ∈ G,

with X(g) an irreducible representation of G, then note how the reduced density matrix in the
first subsystem commutes with the action of the group:

X(g)ρ1(|ψ⟩)X(g)† = ρ1(|ψ⟩) ⇒ [X(g), ρ1(|ψ⟩)] = 0, ∀g ∈ G.

We will show later in Chapter 3 that if X(g) is an irreducible representation, by Schur’s lemma
[FH04], ρ1(|ψ⟩) has to be proportional to the identity. This property can be easily generalized
for all the parts of a multipartite entangled state; consider |ψ⟩ ∈ H1 ⊗H2 ⊗ · · · ⊗ HN , such
that it is invariant under the irreducible action of a given group G on each of its parts

Xλ1(g)⊗Xλ2(g)⊗ · · · ⊗XλN (g) |ψ⟩ = eiϕ(g) |ψ⟩ , ∀g ∈ G,
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CHAPTER 1. INTRODUCTION

where λi labels the irreducible representation acting on part i, then, according to Schur’s lemma,
each individual reduced density matrix ρi(|ψ⟩) is proportional to the identity, showing that
|ψ⟩ is an LME state.

This setting has been used to calculate LME states and find relations between representation
theory and entanglement [BLR+19] [SSM21]. However, the main focus has been analyzing the
irreducible representations of SU(d). In this research, we use the same approach by analyzing
the irreducible representations of the symmetric group Sn. As we will see, the invariant sub-
space for this group is, in general, not one-dimensional, which makes it harder to compute the
associated LME states. However, the richness of this structure also motivates this exploration.
Having subspaces full of maximally entangled states is optimal, for example, for designing
quantum codes [HG20].

The symmetric group Sn is the group of permutations of n elements and its irreducible repre-
sentations (henceforth irreps) are labeled as [λ]. Our goal is to build multipartite states that are
invariant under the simultaneous action of irreps of Sn in each of the parts; for example, for
the three-part case, we want states such that

D[λ1](π)⊗D[λ2](π)⊗D[λ3](π) |Kλ1λ2λ3⟩ = |Kλ1λ2λ3⟩ , ∀π ∈ Sn, (1.3)

with [λi] irreps of Sn and D[λ](π) the matrix representation of permutation π in irrep[λ]. The
set of states {|Kλ1λ2λ3⟩} with the property in (1.3) form the invariant subspace of the tensor
product of irreps ([λ1]⊗ [λ2]⊗ [λ3])Sn i.e., the subspace where the diagonal action of Sn acts
trivially, whose dimension is known as the Kronecker coefficient kλ1λ2λ3 :

dim([λ1]⊗ [λ2]⊗ [λ3])Sn = kλ1λ2λ3 ,

Because of this, we name such states as Kronecker states and the invariant subspace ([λ1]⊗[λ2]⊗
[λ3])Sn as Kronecker subspace, which will be the main object of study throughout this document.

Kronecker subspaces are very interesting from the quantum information point of view; they
are vector spaces of dimension kλ1λ2λ3(which in general is greater than 1), and all vectors in
them are LME states. It is worth highlighting that being a vector space, any linear combination
of Kronecker states in a given set λ1λ2λ3 is also a Kronecker state. Also, as these states are
invariant under the irreducible actions of Sn, they will show up when considering setups with
permutational invariance, which are very common in many quantum information protocols.

A relevant example where Kronecker states appear naturally is the entanglement concentration
protocol proposed by Hayashi and Matsumoto [MH07]. In this protocol the goal is to take a
bipartite entangled state |ψ⟩ ∈ H1 ⊗H2, which is not maximally entangled, E(|ψ⟩) < log d
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(for simplicity we will take d1 = d2 = d), and by taking n copies of it, |ψ⟩⊗n, to extract a
reduced quantity nLME < n of maximally entangled states. To achieve this, we consider the
decomposition of the total Hilbert space into irreducible representations of GLd (the group
of general linear transformations of dimension d) and Sn in each part using the Schur-Weyl
duality, a powerful tool from representation theory that is used throughout this document, and
that is introduced in Section 3.3. Specifically, the n copies of the Hilbert space associated with
the two parts are decomposed as a diagonal action of GLd and Sn irreps:(

(H1 ⊗H2)⊗n
)Sn

=
⊕

λ1λ2⊢n,d

{λ1} ⊗ {λ2} ⊗ ([λ1]⊗ [λ2])Sn ,

where {λ} and [λ] respectively label irreducible representations of GLd and (Sn), we also use
(·)Sn to represent the permutationally invariant subspace of “·”, and λ1λ2 ⊢ n, d restricts the
possible irreducible representations according to the number of copies and the dimension of
the original Hilbert space. Since the system is invariant under the permutation of the copies,
Sn irreps are restricted to the invariant subspace (or Kronecker subspace), which in this case is
one-dimensional and only exists when [λ1] = [λ2] = [λ], i.e., kλ1λ2 = δλ1λ2 . Then, there exists
a basis transformation also known as the Schur transform [CH11], presented in Section 3.4,
which makes explicit the decomposition of the total Hilbert state into the diagonal form(

(H1 ⊗H2)⊗n
)Sn

=
⊕
λ⊢n,d

{λ} ⊗ {λ} ⊗ ([λ]⊗ [λ])Sn .

By applying the Schur transform on the copied state, this can be rewritten as:

|ψ⟩⊗n =
⊕
λ⊢n,d

√
pλ(ψ) |ϕλ(ψ)⟩ |Kλλ⟩ ,

where pλ(ψ) is a probability distribution that depends on the input state |ψ⟩, and |ϕλ(ψ)⟩ and
|Kλλ⟩ are states in {λ} ⊗ {λ} and ([λ]⊗ [λ])Sn respectively. After a projective measurement
onto the irreps λ on each part, one obtains a product state whose GLd part can be dropped
to obtain |Kλλ⟩, a maximally entangled state. We will see later in Section 3.5.2 that with this
protocol, the resultant Kronecker state |Kλλ⟩ asymptotically concentrates the entanglement of
the original copies nE(|ψ⟩).

For the bipartite case it will be shown in Chapter 4, that obtaining the coefficient expansion of
the Kronecker states is very simple, and corresponds to a generalization of the EPR state:

|Kλλ⟩ =
1√
f [λ]

∑
q

|λ, q⟩ |λ, q⟩ ,
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CHAPTER 1. INTRODUCTION

where f [λ] is the dimension of the Sn irrep [λ] and q labels the basis elements of such irrep.
However, when considering systems composed of three or more parts, obtaining closed ex-
pressions for the Kronecker states poses a significant challenge because the dimension of the
Kronecker subspace is in general greater than one, which makes harder to identify the structure
of the Kronecker states. One approach is to explicitly calculate the projector onto the invariant
subspace ([λ1]⊗ [λ2]⊗ [λ3])Sn . However, this method involves the computation and summation
of n! square matrices, each with dimensions of f [λ1]×f [λ2]×f [λ3]. Given that the dimensions f
grow exponentially with n, this approach quickly becomes impractical and inefficient. Another
approach is to use the Clebsch Gordan Coefficients (CGC) of the symmetric group [SDS81]. In
Chapter 4 it will be shown that when choosing real basis for irreps of Sn, Kronecker states can
also be written as

|Kλ1λ2λ3,i⟩ =
1√
f [λ3]

∑
q1q2q3

C
[λ1][λ2][λ3],i

q1q2q3

∣∣λ1, q1〉 ∣∣λ2, q2〉 ∣∣λ3, q3〉 .
with C [λ1][λ2][λ3],i

q1q2q3 the CGC of Sn, where i is a label for the dimensions of the invariant subspace.
In other words, finding the expansion coefficients of a Kronecker state basis is equivalent to
finding a set of CGC of Sn. However, the algorithms available for this task are challenging to
follow and typically inefficient [SDS81; DH12; GC85], and computing CGCs becomes infeasible
even for moderate values of n. For instance, we could not compute all CGC for n = 8 and
beyond on a personal computer using the available algorithms. Even for the CGC we could
compute for n = 8, the computation took several days for some sets λ1λ2λ3.

Despite the difficulty exhibited by this problem, Botero and Mejia [BM18] found a partial
solution in a generalization of Hayashi-Matsumoto protocol to a special class of multiparticle
systems. They studied the protocol using copies of states in the multipartite W-SLOCC class.
By using the theory of SLOCC covariants [TLT06], they showed that the final state in the Schur
transform of states in the W-SLOCC class, after projecting onto some set of local partitions
λ1λ2λ3, the resultant state is separable in the GL2 and Sn parts as in the bipartite case. This
discovery allows for a generalization of entanglement concentration when the input states are
in the W-class. Moreover, they obtained closed analytic expressions for the unique Kronecker
vector for the W-class in each set of partitions

∣∣KW
λ1λ2λ3

〉
, which is particularly important

for our purposes. Nevertheless, the mathematical structure that allows closed expressions
for Kronecker states also limits what can be obtained. Only one Kronecker vector out of a
space of dimension kλ1λ2λ3 can be obtained for each set of local partitions, and the W-SLOCC
class cannot achieve some sets due to restrictions on the local spectra[WDG+13a]. To build
completely the Kronecker subspace, the restrictions of W-class have to be overcome.

The main result of this work is a novel graphical method called “W-state Stitching”, whereW
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states of three parts (W3) work as building blocks, that are stitched with bipartite states to build
more complex multiqubit states, in a network-like construction. The structure of the stitching
procedure can be seen graphically, and the resultant states are associated with the topology
of certain graphs. By applying the Schur transform to tensor copies of these graph states,
equations for general Kronecker states can be obtained from the already computed

∣∣KW
λ1λ2λ3

〉
for theW class. Using this construction, we have built all the possible Kronecker subspaces up
to n = 12 for three parties in a personal computer. For this value, the most interesting case
corresponds to a Kronecker subspace of dimension kλ1λ2λ3 = 3, where the dimension of the
Hilbert space of each part is f = 275. With four parties, we calculated all Kronecker subspaces
up to n = 9 where a value of kλ1λ2λ3λ4 = 39 can be obtained.

Remarkably, the W-state Stitching procedure we proposed to obtain Kronecker states becomes
a very powerful tool. By identifying the symmetries of theW3 states in a graphical procedure
that we called “Parameter pushing”, it is possible to identify which parameters in the stitched
state can be used to differentiate SLOCC classes and which are irrelevant under SLOCC classifi-
cation. Our exploration encompasses the three and four-qubit scenarios, offering a graphical
framework for classification. This innovative method also illuminates a graphical interpreta-
tion to calculate SLOCC invariants in multiqubit settings [TLT06], which are homogeneous
polynomials on the coefficients of the state that are invariant under SLOCC operations, and as
we will see in Chapter 2, are useful for classifying entanglement. Finding SLOCC invariants for
qubit systems is not a trivial task and usually leads to complicated expressions [LT05]. By using
our graphical tools, we provide explicit graphical representations for 17 independent SLOCC
polynomial invariants in the context of five qubits, which, as far as we know, have not been
obtained before. With this language, it is possible to show explicitly how these objects allow
for identifying different kinds of entanglement. The elegance and efficiency of our methods
simplify manual calculations of entanglement-related quantities, making them accessible to
researchers new to the field. In this sense, we set the seed of a new approach to quantify and
classify multipartite entanglement, where the basic units areW3 states and bipartite states.

This document is organized as follows: in Chapter 2, we explore the problem of entanglement
classification for qubits; starting from the two qubits case, we introduce the LU and SLOCC
equivalence and their physical significance. We discuss SLOCC invariants as tools to discern
specific entanglement classes. We study the three qubits SLOCC classification and show how,
by calculating an invariant, it is possible to distinguish between the two genuinely entangled
states |W ⟩ and |GHZ⟩ and discuss their entanglement properties. Our exploration extends to
systems of four qubits, where we discuss the parametric classification delineated in [VDD+02].
This classification scheme separates the Hilbert space into nine distinct SLOCC families. We
comment on the entanglement properties of some particular states and highlight the properties
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of the generic family known as Gabcd.

Chapter 3 introduces representation theory focusing on the symmetric group and the general
linear group, including some useful examples. We explore the connection between angular
momentum and irreducible representations of GL2. In addition, we introduce Schur-Weyl
duality and an algorithm implementing the Schur transform for qubit systems. We also discuss
some results of Schur-Weyl duality in quantum information, such as the Keyl-Werner theorem
and the entanglement concentration protocol.

Chapter 4 introduces Kronecker states, including their definition, properties, connection with
the Clebsch-Gordan coefficients of the symmetric group, and the difficulties involved in their
computation. We also explore the relationship between the entanglement concentration proto-
col and Kronecker states. Finally, we describe the construction presented by Botero and Mejia
for computing Kronecker states in the W-class.

In Chapter 5, we present the W-Stitching procedure to obtain multiqubit states from tripartite
W states and bipartite states; we introduce the method of parameter pushing and a set of rules
obtained from the algebras of the graphical objects, that allow us to identify the relevant pa-
rameters of the construction under SLOCC orbits. We study this tool for SLOCC classification,
obtaining explicit graphical constructions for any state in the cases of two, three, and four qubits.

In Chapter 6, we extend the stitching procedure to W-Kronecker states and bipartite Kronecker
states and, by doing so, obtain more general Kronecker states. Later, we show how applying
the Schur transform in graphs allows for constructing complete Kronecker subspaces using
the already known expressions forW−Kronecker states. We explicitly study the construction
for three and four qubits, obtaining rules that allow the computation of any Kronecker state
with three and four parts of length at most 2. We also explore the deep connections between
multiqubit graph states and the corresponding graph in the Kronecker space. Finally, we give
explicit constructions to produce the orthogonal basis of Kronecker subspaces for the three-part
case up to n = 12. We explore the limitations of some graphs for the four qubits case, showing
a general graph for building any Kronecker subspace of four parts and presenting some of
the most interesting results. We finish this chapter by exploring the case of five qubits and
showing graphs that are good candidates to generate any Kronecker subspace of five parts.

In chapter 7, we present three secondary results obtained through this investigation that are not
necessary for the main objective of building Kronecker subspaces. The first result is a simple
method to calculate matrices for irreducible representations of Sn labeled with partitions of
length two, using the Schur-Weyl duality. The second result is a graphical method, motivated
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by the W-state stitching to find SLOCC invariants in multiqubit settings graphically; we also
show how, when using the graphs from Chapter 5, such invariants can be simplified to the
point of being computed by hand in some cases. The last secondary result is obtained from a
study in the multipartite W-class when applying the Schur transform on the correspondent
graph states; in this case, the calculations can be made explicitly, obtaining that the set of
possible spectra in this class is completely fixed by the local spectra, also implying a recurrent
structure on the W-Kronecker states.

Finally, in Chapter 8, we summarize the results obtained here, along with interesting open
questions that leave this approach that are worth studying deeper in the future.
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2
Preliminaries I: Entanglement

Entanglement is a fundamental concept in quantum physics, serving as the basis for various
quantum applications. This phenomenon establishes correlations between particles, where
their properties become interdependent, even when separated by vast distances, demonstrating
the non-local characteristics of quantum systems. This phenomenon not only challenges classi-
cal intuition but also underpins many of the key distinctions between quantum and classical
physics.

Entanglement becomes increasingly intricate and interesting as the number of particles within
a quantum system grows. Nevertheless, formulating a comprehensive mathematical description
of entanglement in such complex systems remains a formidable challenge. To harness the full
potential of many-body quantum systems, it is imperative to comprehend the mathematical
framework of multipartite entanglement. This thesis advances this direction by introducing a
systematic methodology for computing multipartite maximally entangled states, where each
component exhibits maximal entanglement with its complementary counterpart.

This chapter sets the stage for our exploration by establishing the basics of quantum entangle-
ment and multipartite entanglement classification. The contents of this chapter are, therefore,
not new but are based on established literature such as [PV06][WGE17][HHH+09][BPR+00]
[NC00].
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2.1. QUANTUM STATES AND ENTANGLEMENT

2.1 Quantum states and entanglement

In this document, we utilize the Hilbert space formalism to describe quantum systems. For this,
we define a pure state |ψ⟩ as a normalized vector in a Hilbert space H of complex dimension d,
where the vector represents our complete knowledge of the quantum state. This vector can be
expanded in an orthonormal basis ofH as:

|ψ⟩ =
d−1∑
i=0

ci |i⟩ ,

where the normalization condition imposes
∑

i |ci|2 = 1.

In some cases, we may not know the state of the system with certainty, but we know that with
some probability pi, the system is in the state |ψi⟩. We represent this as a mixed state using the
density matrix:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| ,

which is a linear operator acting on the Hilbert space. Pure states correspond to ρ = |ψ⟩ ⟨ψ|,
so they are rank-1 projectors on the Hilbert space. When considering the system as composed
of N subsystems, the Hilbert space corresponds to the tensor product of the Hilbert spaces of
each subsystem

H = H1 ⊗H2 ⊗ · · · ⊗ HN ,

where any pure state can be written as

|ψ⟩ =
∑
i

ci |i⟩ , |i⟩ =
∣∣i1i2 . . . iN〉 ,

each ij labels the orthonormal bases of the corresponding Hilbert space Hj , and we have
introduced a boldface notation that will be recurrent throughout the document to summarize
sets of, or actions on, the parts of a multipartite system, in this case: H = ⊗N

i=1Hi.

Separable and Entangled states

With the introduced notation, we can define pure separable states as those that can be expressed
as:

|ψ⟩ =
N⊗
i=1

|ψi⟩ , |ψi⟩ ∈ Hi, ∀i ∈ {1, 2 . . . , N}. (2.1)
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CHAPTER 2. PRELIMINARIES I: ENTANGLEMENT

For separable states, each subsystem can be described independently from the others. The state
|ψi⟩ describes completely the subsystem i independently from its complement ı.

Now, we define pure entangled states as those pure states that cannot be written as in Equation
(2.1), throughout this document we will focus on pure states. The dimension associated with
separable states is given by the sum of the complex dimensions di of each Hilbert space Hi

minus one, by normalization; in contrast, the complex dimension of the total Hilbert space is
given by

dim(H) = d =
N∏
i

di − 1,

then, the Hilbert space of composed systems is predominantly composed of entangled states.

When considering the two-qubit case (di = 2), one entangled pure state is the Bell state |Φ+⟩
[NC00]: ∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩). (2.2)

Note how, when considering the set of separable two-qubit pure states, they can be parametrized
as: ∣∣ψSEP12

〉
= c10c

2
0 |00⟩+ c10c

2
1 |01⟩+ c11c

2
0 |10⟩+ c11c

2
1 |11⟩ ,

where ci represents the coefficients of |ψi⟩, then there is no possible solution for c10, c11, c20, c21
that can yield |Φ+⟩, meaning that this state is not separable; hence, it is entangled.

Our next objective is to quantify entanglement. To achieve this, we must establish criteria for
determining when two states exhibit equal degrees of entanglement and when one state is
more entangled than another. For this purpose, we will introduce the concepts of LU (Local
Unitary) and LOCC (Local Operations and Classical Communication) operations.

2.1.1 LU operation
Let us start by defining Locally Unitary (LU) operation as the action of unitary operators Ui
on each of the parts of the system. Then, we define two states as LU-equivalent if they can be
obtained with certainty from each other by applying some LU operation. That is, if there exists
a set of local unitary operations such that

|ϕ⟩ = U1 ⊗ U2 ⊗ · · · ⊗ UN |ψ⟩ ,

then, we say that |ψ⟩ and |ϕ⟩ are LU-equivalent states. As entanglement describes non-local
properties of the system, it is impossible to increase entanglement by local operations, so
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we can ensure that |ϕ⟩ is at least as entangled as |ψ⟩. Moreover, as unitary operations are
invertible, if it is possible to obtain |ϕ⟩ from |ψ⟩ by a LU operation with certainty, then it is also
possible to obtain |ψ⟩ from |ϕ⟩ by a LU operation with certainty, so |ψ⟩ is at least as entangled
as |ϕ⟩. In conclusion, two LU-equivalent states have the same entanglement; the same can be
obtained for σ and ρ. LU-equivalence can also be understood by the following. When explicitly
expressing the coefficient expansion of |ψ⟩ in an orthonormal basis as in Equation (2.1), we
observe that:

U |ψ⟩ =
∑
i

ci (U |i⟩) =
∑
i

ci |i′⟩ ,

where |i′⟩ denotes another orthonormal basis in H for expanding the state, and U =
⊗N

i=1 Ui.
Then, local unitary transformations can be viewed as a change in the basis of the local Hilbert
spaces, so they change only the local representation of the parts of the state and not the state
itself. As entanglement is a non-local correlation, it cannot change by changing the local
representations. Later, we will explore how LU equivalence can classify states according to
their entanglement.

2.1.2 LOCC and SLOCC operations
Other operations that we will use are the Local Operations and Classical Communication
(LOCC) [CLM+14], which are defined as all possible operations that can be executed on the
different subsystems with no interaction between them, as if each subsystem were located in a
separate laboratory. This set of operations includes various types of measurements and allows
classical communication between the laboratories, enabling the coordination of strategies for
applying operations on the subsystems. Mathematically, if a state σ is obtained with certainty
from LOCC operations on a state ρ, then there exists some local operators Aki such that [PV06]:

σ =
∑
k

AkρAk†,
∑
k

AkAk† = I, Ak =
N⊗
i=1

Aki

where the Aki matrices are known as the Kraus Operators [KBD+83]. This process can also be
understood as the initial state ρ being mapped to

σk =
AkρAk†

tr
(
AkρAk†

) ,
with a probability given by :

pk = tr
(
AkρAk†

)
,
∑
k

pk = 1.
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Subsequently, the state after the LOCC can be expressed as:

σ =
∑
k

pkσk. (2.3)

In this picture, we say that after the LOCC operation, the state ρ is converted to the ensemble
σ with certainty. Under this framework, all correlations that can be established between two
states through LOCC operations are classical. Thus, it is impossible to increase the system’s
entanglement, but it is possible to reduce entanglement, for instance, by measuring the subsys-
tems. In this sense, we know that state σ cannot be more entangled than ρ, making LOCC a
valuable tool for constructing a hierarchy of entangled states.

Additionally, it is possible to define a class of operations known as Stochastic Local Operations
and Classical Communications (SLOCC), which means that LOCC can be performed with some
non-zero probability. From the previous description of LOCC in Equation (2.3), we have that
with probability pk, the state ρ is transformed into the state σk. In this sense, SLOCC operations
can be described as one of the possible branches within LOCC operations. Therefore, any
operation of the form:

A |ψ⟩ , AρA†,

qualifies as a SLOCC operation, whereA = ⊗N
i=1Ai, and Ai are local operators acting on the

i-th particle. In contrast to LOCC operations, SLOCC operations can potentially increase the
entanglement of the initial state. i.e., σk can be more entangled than ρ, although this occurs with
a certain probability, pk. When considering all possible scenarios, on average, the entanglement
cannot increase.

2.2 Entanglement measures

Quantifying entanglement is a non-trivial task, and numerous attempts have been made to
identify measures that align with physical and mathematical principles[PV06]. These measures
must take the form of real positive functions that operate on states. Various desirable properties
of such functions, denoted as E(ρ), are outlined below:

• Any entanglement measure must be null for separable states:

E

(∑
k

pkρ
k

)
= E

(⊗
i

|ψi⟩

)
= 0.

• The entanglement measure must remain invariant under LU operations.

E(ρ) = E(UρU †)
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• The entanglement measure cannot, on average, increase under SLOCC operations. This
property is known as “monotonicity”. Then, if the possible outputs of an LOCC operations
are defined by an assemble of density matrices {σk}, each with probability pk, this
property can be stated as[PV06]:

E(ρ) ≥
∑
k

pkE(σk),

Functions exhibiting these properties are referred to as entanglement monotones. In the fol-
lowing, we will introduce some of these measures that hold relevance in the context of this
document.

Entropy of entanglement

When considering a pure state composed of two subsystems, the entropy entanglement measure
[BBP+96] is highly relevant. This measure is defined as:

E(ρ) = S(ρ1) = S(ρ2), S(ρ) = − tr ρ(log ρ), (2.4)

i.e., the Von Neumann entropy of the reduced density matrices. Such reduced density matrices
correspond to ρi = trı ρ, i.e., the trace of the density matrix ρ over the complementary parts of i.
Using the notation for pure states in Equation (2.1) the reduced density matrices are calculated
as:

ρi = trı (ρ) =
∑
ı

⟨ı| ρ |ı⟩ . (2.5)

The entropy of entanglement defined in Equation (2.4) evaluates to zero for separable states and
reaches its maximum value when the reduced density matrix is proportional to the identity:

S

(
1

d
I

)
= log d.

This measure applies to multipartite pure states to quantify entanglement between any two
complementary subsystems. It is always possible to assess the entanglement of each part with
its complement. As a result, one can define locally maximally entangled (LME) states [BLR+19]
as those whose individual reduced density matrices are proportional to the identity:

ρi = trı |ψ⟩ ⟨ψ| =
1

di
I. (2.6)

These states maximize the entropy of entanglement for each part with the full system. LME
states are a remarkable class of entangled states and play a central role in many quantum
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protocols outlined in the introduction. Additionally, as we will see, they become special states
when studying orbits under SLOCC within the total Hilbert space.

For pure states, the system can be separated into two parts, i, and ı, and represented using the
so-called Schmidt Decomposition [NC00] as:

|ψ⟩ =
di∑
j=1

√
λj |j⟩i |j⟩ı

where |j⟩i forms an orthonormal basis in Hi =
⊗

j∈i Hj , and we assume di ≤ dı . The values
λj are known as Schmidt Coefficients. The reduced density matrices are then given by:

ρi =
∑
j

λj |j⟩i ⟨j|i , ρı =
∑
j

λj |j⟩ı ⟨j|ı ,

moreover, the entanglement entropy can be calculated as:

E(|ψ⟩) = E(ρi) = E(ρı) = −
di∑
j=1

λj log λj, (2.7)

this measure is usually considered the basic measure for bipartite entanglement. We will see
later in subsection 3.5.2 how this measure appears as the rate of entanglement concentration.

Concurrence

For the two-qubit case, another relevant entanglement measure is the Concurrence [HW97],
which plays an important role in the context of the results presented here. When dealing with
mixed states, the concurrence is defined as:

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4),

where, in this case, λi are the non increasing eigenvalues of

R =
√√

ρρ
√
ρ, ρ = (σy ⊗ σy)ρ

∗(σy ⊗ σy)

with σy representing the Pauli matrix, and ρ∗ being the complex conjugate of ρ. Despite the
apparent complexity of this definition, the concurrence can be calculated straightforwardly for
pure qubit states. Consider the coefficient expansion of a bipartite pure state:

|ψ⟩ = c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩ ,
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then, the concurrence can be expressed as the absolute value of the determinant of the density
matrix:

C(|ψ⟩ ⟨ψ|) =
∣∣∣∣2 ∣∣∣∣ c00 c01

c10 c11

∣∣∣∣∣∣∣∣ . (2.8)

The concurrence exhibits behavior similar to the entropy of entanglement, being zero for
separable states and maximal for locally maximally entangled (LME) two-qubit states; moreover,
it is very useful to define multipartite entanglement measures, and it has the property that it is
invariant under invertible determinant 1 SLOCC operations [VDD03], that is, local operators in
the Special Linear groupSLd. Functions with this invariance property that depend polynomially
on the coefficients of the state are called SLOCC polynomial invariants, which, as we will see in
section 2.3.2, are very useful functions to classify entanglement.

Three-Tangle

While the entropy of entanglement and concurrence are valuable tools for measuring entan-
glement in bipartite systems, they fall short when considering more complex cases, such as
a three-qubit pure state. In such a scenario, it becomes essential to introduce a measure that
identifies entanglement between all three parts rather than just bipartite entanglement. This is
where the tangle comes into play, defined as [CKW00]:

τ1|2 = C2(ρ12),

allowing us to quantify the residual three-partite entanglement as:

τ123 = τ1|23 − τ1|2 − τ1|3.

This measure is known as the three-tangle. It has been shown that for a pure three-partite qubit
state with a coefficient expansion:

|ψ⟩ =
1∑

ijk=0

cijk |ijk⟩ ,

the three-tangle can be expressed as:

τ123(|ψ⟩) = 2
∣∣∣cijkci′j′mcnpk′cn′p′m′ϵii

′
ϵjj

′
ϵkk

′
ϵnn

′
ϵmm

′
ϵpp

′
∣∣∣ = 2HDet3(ρ), (2.9)

where ϵii′ is the two-dimensional Levi-Civita tensor. The three-tangle can also be computed
as the Cayley’s hyperdeterminant of the three-dimensional tensor defined by cijk[CGL+18].
Hyperdeterminants also belong to the category of SLOCC polynomial invariants, which we
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will introduce in section 2.3.2.

Generalizations of entanglement measures for four-qubit systems have been found recently
[MMR+23][GJL+23]. However, due to their complexity, they are not shown here. Nevertheless,
it is noteworthy how defining such measures becomes increasingly challenging with a growing
number of particles. Now, we delve into the problem of defining whether two states can
or cannot be considered equivalent according to their entanglement with the tools we have
introduced.

2.3 Entanglement classification

When studying the problem of entanglement classification, we need to define first what criteria
we will use to define two states as equivalent or as belonging to the same class. We already
defined two sets of meaningful operations in this sense, and we will use them to define two
classifications. These are given by LU operations and SLOCC.

2.3.1 LU-classification

As discussed in this chapter, LU operations can be interpreted as a change in the choice of
orthonormal basis for each constituent Hilbert space Hi; then, the system’s entanglement
cannot change under LU transformations. Hence, we can introduce a classification known as
LU-classification to group LU-equivalent states, which, according to Section 2.1.1, are always
regarded as having the same degree of entanglement. In this context, two systems of N parts,
i.e., N-partite states, |ψ⟩ and |ϕ⟩, are considered equivalent if there exist unitary matrices,
denoted as Ui, such that

|ψ⟩ = U1 ⊗ U2 ⊗ . . . UN |ϕ⟩ .

For bipartite systems, LU classification can be effectively carried out through Schmidt decom-
position [EK95], which allows to write the coefficient expansion of a state in the following
form:

|ψ⟩ =
di∑
j=1

√
λj |j⟩i |j⟩ı ,

where i and ı represent the two subsystems, and di is chosen to be the lowest dimension. Under
LU operations, this Schmidt decomposition transforms as:

U1 ⊗ U2 |ψ⟩ =
di∑
j=1

√
λjU1 |j⟩i U2 |j⟩ı =

di∑
j=1

√
λj |j′⟩i |j

′⟩ı ,
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where the local basis of both parts rotates while keeping the Schmidt coefficients λj invariant;
as a result, two states are considered LU-equivalent if their ordered Schmidt coefficients λj
are the same, allowing us to define different LU-classes for each set of λj . This equivalence
is consistent with the entanglement entropy measure from Equation (2.7) because two states
with the same ordered Schmidt coefficients have the same entropy of entanglement. In the
case of two qubits, the LU-classes are labeled by a single continuous parameter, namely λ0.
However, generalizing this classification becomes challenging, even for three qubits. It has
been shown [AAJ+01] that any three-qubit pure state can be written in a generalized Schmidt
decomposition as:

|ψ⟩ = λ0 |000⟩+ λ1e
iϕ |100⟩+ λ2 |101⟩+ λ3 |110⟩+ λ4 |111⟩ ,

with λi ≥ 0, 0 ≤ ϕ ≤ π and
∑

i λ
2
i = 1, requiring five parameters to label the LU-class of

normalized states. While it has been demonstrated that this classification can be extended to
any number of qubits [Kra10], it is essential to note that the number of parameters required
to distinguish each class grows exponentially with the number of constituents. It is shown in
[WGE17] that the number of parameters needed for this classification for N qubits has a lower
bound given by 2N+1 − 3N − 2, being five parameters for three qubits, as stated above, and
18 parameters for four qubits. Next, we explore a coarser classification obtained from SLOCC
equivalence.

2.3.2 SLOCC-classification
In the previous section, we introduced the SLOCC operations due to their operational signifi-
cance. These operations encompass all possible transformations that can be applied locally to
the parts of a state when they are not allowed to interact physically. Then, SLOCC operations
cannot create entanglement between separable parties. Now, we will consider that two states
|ψ⟩, |ϕ⟩ are SLOCC equivalent if they can be interconverted by reversible SLOCC, i.e.,

|ψ⟩ = A |ϕ⟩ , |ϕ⟩ = A−1 |ψ⟩ ,

with this, we can restrict the set of operationsA to those such that Ai ∈ GLd where GLd is
the group of invertible matrices of dimension d, and for simplicity, we will assume all local
Hilbert spaces to be of dimension d. As we want to classify the states in the projective Hilbert
space, we can limit ourselves to the local actions of the Special linear group SLd ( the group of
matrices of dimension d× d with determinant equal to one), and consider unnormalized states.
From this perspective, we can ensure that two states |ψ⟩ , |ϕ⟩ are SLOCC equivalent if there
exist a set of unit determinant matrices Bi ∈ SLd, and a scalar s ∈ C such that:

B |ψ⟩ = s |ϕ⟩ , B =
N⊗
i=1

Bi.
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It is worth noting that, by definition, SLOCC operations cannot create entanglement from
unentangled states. However, due to the stochastic nature of SLOCC, there is a possibility
that entanglement between the parties may increase with some non-null probability from an
already entangled state, with the condition that when considering all the possible outputs with
their respective probabilities, the entanglement does not increase in average. Entanglement
neither can be destroyed when considering SLOCC equivalence due to the requirement of
being invertible. Because of this, we cannot claim that two SLOCC equivalent states are equally
entangled, but we can ensure they have the same type of entanglement. In this sense, SLOCC
equivalence separates the total Hilbert space into SLOCC classes, wherein states with the same
type of entanglement belong.

When studying SLOCC classification, it is useful to exploit the connection with algebraic
geometry and classical invariant theory described in [Hol19] [BRV18]. From the algebraic
geometry point of view, SLOCC classes correspond to orbits on the projective Hilbert space
under the action of SLd ⊗ SLd ⊗ · · · ⊗ SLd, that can be described by using auxiliary varieties.
On the other hand, classical invariant theory permits the calculation of SLOCC invariants and
covariants, that can be used to differentiate SLOCC classes. We will introduce here the most
relevant aspects of the connection in the context of this thesis.

In [VDD03], it is shown that starting from any state, we can apply local SLd operations to
obtain any state with a smaller norm in the same orbit. This process can be repeated multiple
times to reduce the norm as much as possible. These states are referred to as critical states, and
have the property of being LME states [VDD03]. It is also known from Kempf-Ness theorem
[GW11] that such critical states are unique in each orbit up to LU-equivalence. When this
process is applied to any state, three possible cases arise.

The first case is when the zero state is asymptotically reached as a result of the process. These
states are known as unstable orbits [HLT14], and they correspond to the Nullcone in the context
of geometric invariant theory.

The second case is when a critical state, distinct from the null state, can be approximated
arbitrarily with a finite number of steps but reached only in the infinite limit, indicating that the
critical state is in the closure of the orbit. These are known as strictly semistable orbits [SHK+20].

The last option is when the critical state is reached within a finite sequence of steps, and they
are referred to as polystable orbits. In this scenario, critical states are representatives of their
corresponding SLOCC class and are also known as Normal forms [VDD03]. Polystable orbits are
especially important in SLOCC classification because they contain the critical states, which are

23



2.3. ENTANGLEMENT CLASSIFICATION

LME states, and also because the set of polystable orbits is of full measure in the total Hilbert
space [GW11], meaning that almost all the total Hilbert space is composed by polystable orbits.

Now, we introduce the definitions of invariants and covariants, which are tools from classical
invariant theory [Olv99] that can be applied to multipartite quantum systems to identify SLOCC
classes.

Invariants and covariants

SL-invariant polynomials [SHK+20], from now on simply invariants, are homogeneous polyno-
mials in the coefficients of the state,

I(s |ψ⟩) = skI(|ψ⟩),
with s ∈ C and k the degree of the polynomial, such that their values do not change under
SLOCC operation, this means:

I (|ψ⟩) = I (B |ψ⟩) , B =
N⊗
i=1

Bi

where Bi ∈ SLd. Hence, invariants can be used to identify when two states are in differ-
ent SLOCC orbits or classes, and so they are fundamental tools when performing SLOCC-
classification. In general, the possible invariants for a quantum system define a ring [TLT06],
for which a minimal set of generators can be obtained. The number of generators and expres-
sions for them have been found for systems of two, three, and four qubits [VDD03] by using
techniques in classical invariant theory. Another important result that connects invariants
with the problem of classifying entanglement is shown in [VDD03], where it is shown that any
linearly homogeneous function of a pure state, that is invariant under SLOCC operations, is an
entanglement monotone.

In general, it is impossible to separate the SLOCC classes of a quantum system by only using
invariants. For completing a classification scheme, it is necessary to introduce the definition of
covariants [Hol19]; for this, a qubit state is associated with a form:

|ψ⟩ =
∑
i

ψi |i⟩ ⇒ fψ =
∑
i

ψixi, i = i1i2 . . . iN , xi =
N∏
j=1

xj
ij
,

where the xj
ij
are binary auxiliary variables associated with the basis elements of the local

Hilbert spaces. For example, any three-qubit state is mapped as:

|ψ⟩ =
1∑

i1i2i3=0

ψi1i2i3
∣∣i1i2i3〉⇒ fψ =

1∑
i1i2i3=0

ψi1i2i3x
1
i1x

2
i2x

3
i3 .
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With this, a covariant is defined as a polynomial acting on the coefficients of the state and the
auxiliary variables, C(|ψ⟩ ,xi), such that

C(|ψ⟩ ,xi) = C(B |ψ⟩ ,B−1xi), B ∈ SLd ⊗ SLd ⊗ · · · ⊗ SLd.

In the following, we will explicitly present the SLOCC classification for the cases of two, three,
and four qubits, where invariants and covariants play an important role.

Two-qubit SLOCC classification

Consider a two-qubit state in its normal form, given by the Schmidt decomposition:

|ψ⟩ = √
p0 |00⟩+

√
1− p0 |11⟩ , (2.10)

with p0 ≤ 1
2
. This state can be operated on with the SLOCC corresponding to:

B1 ⊗B2 =
1√
2

(
1

√
p0

|0⟩ ⟨0|+ 1√
1− p0

|1⟩ ⟨1|
)
⊗ I,

to obtain:
B1 ⊗B2 |ψ⟩ =

∣∣Φ+
〉
.

where |Φ+⟩ is the state shown in Equation (2.2), and due to its entropy of entanglement:

E(
∣∣Φ+

〉
) = log 2,

we can conclude that it is a maximally entangled state in two qubits. It is important to note that
the transformation shown above can only be performed if p0 ̸= 0. Consequently, the two-qubit
Hilbert space is divided into two SLOCC classes: the class of product states (p0 = 0), with
a representative |00⟩, and the class of entangled states (p0 ̸= 0), where the representative is
chosen to be |Φ+⟩.
It is important to note that this classification is coarser than the LU classification. For the case
of two qubits, there are infinitely many LU classes, each labeled by p0, whereas there are only
two SLOCC classes. The concurrence is the only invariant for two-qubit systems and can be
used to distinguish between these two classes. Consider the coefficient expansion of two states:

|ψ⟩ =
d∑
i,j

Ti,j |ij⟩ , |ϕ⟩ =
d∑
i,j

T ′
i,j |ij⟩ ,

where T and T ′ are matrices 2× 2 with the coefficient of the states. If these states are SLOCC
equivalent, then there exist some unit-determinant operators B1 and B2 and a non-zero scalar
s such that

B1 ⊗B2 |ψ⟩ = s |ϕ⟩ .
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Then:
sT ′ = B1TB

T
2 .

By computing the determinant of both sides, we have:

det(sT ′) = det(B1) det(T ) det(B2) = det(T ), (2.11)

implying that:
sd det(T ′) = det(T ).

Note that det(T ) is the concurrence, defined in Equation (2.8); this implies that either both
concurrences C(|ψ⟩ ⟨ψ|), C(|ϕ⟩ ⟨ϕ|) are equal to zero, or neither of them is zero. It is important
to observe that this invariant separates the two classes for two qubits, where C(|ψ⟩ ⟨ψ|) = 0
for separable states and C(|ψ⟩ ⟨ψ|) ̸= 0 for entangled states. The same analysis can be applied
to the entropy of entanglement: it is zero for the separable class and non-zero for the entangled
states. However, the entropy of entanglement is not a polynomial invariant, as it cannot be
written as a polynomial in the coefficients of the state.

Three qubit SLOCC classification

For classifying the SLOCC classes for three qubits, we can start by checking whether any
of the parts of a given state is entangled with the other two or not by using the entropy of
entanglement. Note that if any part is separable, it is not possible to entangled it with the
others by SLOCC operations. By only considering this, we have the following SLOCC classes:

• Separable: The first case is when none of the parts is entangled with the other two,
corresponding to a completely separable state. For this, all the individual entropies of
entanglement are equal to zero:

S(ρ1) = S(ρ2) = S(ρ3) = 0.

This class is usually labeled as A−B − C , and its representative can be chosen to be:

|ψA−B−C⟩ = |000⟩ .

• Bipartite entanglement: The second case is when only one of the qubits is not entangled
with the complement. In this case, its corresponding entropy of entanglement is zero,
but the other two are not. For example, when the first part is separable, one has:

S(ρ1) = 0, S(ρ2) ̸= 0, S(ρ3) ̸= 0.
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These are labeled as the A−BC, B − AC , and C − AB classes. The representative of
the first one can be chosen to be:

|ψA−BC⟩ =
1√
2
|0⟩ (|00⟩+ |11⟩) ,

and similar for B − AC and C − AB.

We are left with all the states where none of the individual entropies of entanglement is equal
to zero

S(ρ1) ̸= 0, S(ρ2) ̸= 0, S(ρ3) ̸= 0,

comprising all the genuinely entangled states. However, these states define two separated
SLOCC orbits, which can be discriminated by the three-tangle in Equation (2.9). The two orbits
have as representatives [DVC00] the W and GHZ states

|W ⟩ = 1√
3
(|100⟩+ |010⟩+ |001⟩) , |GHZ⟩ = 1√

2
(|000⟩+ |111⟩) .

Hence, their classes are named theW-SLOCC class and the GHZ-SLOCC class respectively. Both
classes are genuinely entangled, but when measuring the three-tangle in the representatives,
one has:

τ123(|W ⟩) = 0, τ123(|GHZ⟩) ̸= 0,

showing that they belong to different orbits. One can notice that the W-SLOCC class belongs
to the null cone since applying SLOCC operations, it is possible to get arbitrarily close to the
zero state [VDD03]:

lim
t→∞

(
1/t 0
0 t

)⊗3

|W ⟩ = 0,

while the GHZ-SLOCC class is a polystable orbit, the only full measure orbit in the total
Hilbert space of three qubits [GW11], with critical state |GHZ⟩ being an LME state. Any
other three-qubit state with the property of being an LME state (i.e., individual reduced density
matrices are proportional to the identity) has to be LU equivalent to |GHZ⟩ by the Kempf-
Ness theorem [GW11], that ensures that LME states are unique up to LU transformations in
closed orbits. The classification of SLOCC classes of three qubits can also be performed by
calculating the local entropies of entanglement and the three-tangle, as shown in Table 2.1.
However, this classification can be performed by using invariants and covariants, as shown in
[Zim14][BDD+09], where a set of covariants can replace the local entropies of entanglement,
and the three-tangle corresponds to the only polynomial invariant under SL2 ⊗ SL2 ⊗ SL2

action.
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S(ρ1) S(ρ2) S(ρ3) D
|ψA−B−C⟩ 0 0 0 0
|ψA−BC⟩ 0 ̸= 0 ̸= 0 0
|ψB−AC⟩ ̸= 0 0 ̸= 0 0
|ψC−AB⟩ ̸= 0 ̸= 0 0 0
|W3⟩ ̸= 0 ̸= 0 ̸= 0 0

|GHZ2
3⟩ ̸= 0 ̸= 0 ̸= 0 ̸= 0

Table 2.1: SLOCC classification for three qubits.

The GHZ and W states exhibit entanglement in distinct ways [WGE17], emphasizing the
relationship between SLOCC classification and entanglement characterization. The GHZ state
features entanglement among all three particles, measured by the three-tangle, while the
W-state only has entanglement between all 2-1 qubit pairs. These differences influence the
properties of each class. When one qubit of the GHZ state is measured on the computational
basis, the remaining two qubits collapse into a separable state. However, if one qubit is measured
on the basis defined by:

|+⟩ = 1√
2
(|0⟩+ |1⟩) , |−⟩ = 1√

2
(|0⟩+ |1⟩) ,

both outcomes occur with a probability of 1/2, and the remaining two qubits are projected into
the Bell states |Φ+⟩ and |Φ−⟩, respectively. Consequently, the GHZ state can be deterministically
transformed into an EPR state. If one qubit of the GHZ state is discarded, the reduced density
matrix for the other two qubits is described by the equation:

ρ23(GHZ) =
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) ,

representing an unentangled bipartite mixed state. In contrast, for the W state, if one of the
qubits is measured in the computational basis, there is a 2/3 probability that the remaining two
qubits are projected into the Bell state |Ψ+⟩, and with a probability of 1/3 they are projected
to the separable state |00⟩. Therefore, obtaining an EPR pair with certainty is not feasible.
However, if one qubit is discarded, the reduced density matrix becomes:

ρ23(W ) =
1

3
|0⟩ ⟨0|+ 2

3

(∣∣Ψ+
〉 〈

Ψ+
∣∣) ,

representing an entangled mixed state. In this regard, the entanglement of the W class proves
to be more robust under particle loss compared to the GHZ class. The method presented in
Chapter 5 is a construction that uses bipartite entangled states and W states to build more
general multipartite states.
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Four qubit classification

When dealing with states of four qubits, the complexity of the problem increases dramatically,
leading to an infinite number of SLOCC classes. Nevertheless, a study by Verstraete and others
[VDD+02] demonstrates how SLOCC classes can be separated into nine parametric families
based on their normal forms. These normal forms had one mistake that was corrected in [CD07];
the corrected normal forms are detailed in Table 2.2. However, it is essential to understand that
these families hold different meanings than the classes discussed earlier. Within the same family,
one may encounter states with different entanglement properties. For example, the family
denoted as Labc2 is typically entangled, but when a = b = c = 0, the state L0002 = |0110⟩
becomes completely separable.

L03⊕1̄03⊕1̄
= |0000⟩+ |0111⟩

L07⊕1̄
= |0000⟩+ |1011⟩+ |1101⟩+ |1110⟩

L05⊕3̄
= |0000⟩+ |0101⟩+ |1000⟩+ |1110⟩

La203⊕1̄
= a (|0000⟩+ |1111⟩) + |0011⟩+ |0101⟩+ |0110⟩

La4 = a (|0000⟩+ |1111⟩+ |0101⟩+ |1010⟩) + i |0001⟩ − i |1011⟩
Lab3 = a (|0000⟩+ |1111⟩) + a+b

2
(|0101⟩+ |1010⟩) + a−b

2
(|0110⟩+ |1001⟩)

+ i√
2
(|0001⟩+ |0010⟩ − |0111⟩ − |1011⟩)

La2b2 = a (|0000⟩+ |1111⟩) + b (|0101⟩+ |1010⟩) + |0110⟩+ |0011⟩
Labc2 =

a+b
2

(|0000⟩+ |1111⟩) + a−b
2

(|0011⟩+ |1100⟩) + c (|0101⟩+ |1010⟩) + |0110⟩
Gabcd =

a+d
2

(|0000⟩+ |1111⟩) + a−d
2

(|0011⟩+ |1100⟩)
+ b+c

2
(|0101⟩+ |1010⟩) + b−c

2
(|1001⟩+ |0110⟩)

Table 2.2: Normal forms of SLOCC families for four qubits in the classification of [VDD+02].

Within each parametric family, the choices of parameters a, b, c, d generally correspond to
different classes within that family. One prominent family is the Gabcd, the only full-measure
family. All the other families depend on up to three parameters, making them infinitely smaller
than the Gabcd family. The normal form of the state shown in Table 2.2 has the unique property
that its one-particle density matrices are proportional to the identity, thus making them LME
states. Interestingly, when a = b = c = d, the state becomes a product of twoEPR states, once
again underscoring how the entanglement properties of each family depend on the choices of
parameters.

Similarly to the case of three qubits, invariants, and covariants can be employed to differentiate
between various SLOCC classes and families of four qubit states. In the four-qubit scenario,
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the invariants form a ring with four generators and 170 covariants [HLT14]. These generators
are denoted as B,L,M,Dxy , where B is a polynomial invariant of degree 2, and L andM are
polynomials of degree 4, while Dxy has a degree of 6. However, to find these expressions, the
classical invariant theory was utilized, which required the computation of a set of covariants
to derive the invariants, which is beyond the scope of this document. In their work [HLT17],
Holweck, Luque, and Thibon introduced a classification scheme based on these invariants and
a subset of covariants to determine the belonging of any state to a specific family from Table
2.2. We employ this classification to demonstrate that any four-qubit state can be constructed
using the method presented in Chapter 5.

In the case of five-qubit systems, there is no known SLOCC classification, and although it is
known that there are 17 generators for the algebra of invariants [LT05], closed expressions to
compute them for all cases have yet to be determined. In Chapter 7, we present a novel method
offering a graphical interpretation of these invariants, making it possible to construct and work
with them in multi-qubit systems. We also provide graphical representations for complete sets
of independent invariants for systems ranging from two to five qubits.

There is a nice connection between the number of non-null invariants and critical states. For
the cases of two qubits, the only invariant is the concurrence, and the SLOCC class, with no
null concurrence, can be represented with an LME state, namely |Φ+⟩. In the case of three
qubits, the only invariant is the three-tangle, and the SLOCC class with non-null three-tangle
is the GHZ-class, and it is the unique class that can be represented with an LME state, namely
the GHZ state. In the scenario of four qubits, there are four independent polynomial invariants,
and the only family where all of the invariants are truly independent is the Gabcd family, which
is the only family represented by an LME state. This observation is not a coincidence; LME
states are not only important to label SLOCC closed orbits, but LME states can also be obtained
from imposing invariance on states under the action of the irreducible representation of a given
group. The main focus of this research is to calculate explicitly a family of LME states that
arise from the invariance under the action of the symmetric group. In the next chapter, we will
introduce the tools from representation theory relevant to this construction.
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The main goal of this research is to develop a systematic method to calculate a basis for Kro-
necker subspaces, composed of Locally Maximally Entangled (LME) states, which we name
Kronecker states. A Kronecker subspace is an invariant subspace of the tensor product of
irreducible representations of the symmetric group in n elements, denoted as Sn. A strong
relationship between Sn and GLd, the General Linear group of dimension d, is exploited to
construct these Kronecker states. This relation is made explicit by the Schur-Weyl duality that
we will introduce in Section 3.3.

In chapter 6, we will present our findings, but before we delve into the results, we will introduce
some fundamental concepts related to groups and representation theory. We will discuss the
irreducible representations of both Sn andGLd. Subsequently, we will elucidate the Schur-Weyl
Duality, explaining how it can be applied, focusing on the case with d = 2. This approach will
use the Schur transform, presented in Section 3.4, a crucial tool for the results presented in this
research.

In this chapter, we will confine our discussion to the most pertinent aspects to the context of this
study. For those interested in more comprehensive discussions into groups and representation
theory, we recommend consulting resources such as [FH04], [CPW02], and [Sag13], which
provide similar approaches and extensive coverage of these topics.
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3.1 Groups and Representations

3.1.1 Groups

A group is a mathematical structure consisting of a set G and a binary operation “·” that takes
any two elements g1 and g2 of G to form a third element g3 = g1 · g2, such that the following
axioms are satisfied:

• Closure: For any pair of elements g1 and g2 in the group G, g1 · g2, must also belong to
the set G.

• Associativity: The binary operation must be associative, which means that for all
elements g1, g2, and g3 in the group G, it holds that (g1 · g2) · g3 = g1 · (g2 · g3).

• Identity element: There exists an element e ∈ G, called the identity element, such that
for all g ∈ G, g · e = e · g = g.

• Inverse element: For each element g within the group, a corresponding element g−1

must exist in the group, referred to as the inverse element of g. The inverse element
satisfies the condition that g · g−1 = g−1 · g = e.

We will focus on two specific groups, namely, the Symmetric Group on n elements, Sn, and the
General Linear group of dimension d, GLd.

The Symmetric group Sn

Consider the set Sn defined as the set of n! permutations of n distinct elements, i.e., all the
possible re-orderings of the elements and the binary operation given by the composition of
permutations. We use the cycle notation for permutations:

π = (p1, p2, p3, . . . pk),

whose action sends each element pi to the pi+1 position, and pk is sent to the p1 position. For
example, when the permutation (135) acts on a set of n = 5 elements labeled {A,B,C,D,E},
it rearranges the elements as follows:

(135){A,B,C,D,E} = {E,B,A,D,C}.

Several essential facts about cycles within permutations are worth noting and will be valuable
for later discussions:
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• Any permutation in Sn can be expressed as the product of disjoint cycles. The cycle
structure, denoted by ρ, is a list of non-increasing lengths of these cycles. Any elements
that remain unpermuted are included as cycles of length 1. For example, in n = 5, the
permutation π = (135), must be written as π = (135)(2)(4) and then, its cycle structure
is given by ρ[(135)(2)(4)] = [311].

• Cycles with only two elements are called "transpositions." When two adjacent elements
are swapped, it is called an "adjacent transposition."

• Every element in Sn can be represented as a product of adjacent transpositions.

• We can represent permutations as products of disjoint cycles.

Let us now examine how the axioms of a group are satisfied by the set of permutations:

• Closure: The composition of permutations in Sn results in another permutation of n
elements. For instance, consider the composition of (23) and (135). It involves permut-
ing first with (135) and then permuting the result with (23). The outcome is another
permutation, represented as (1235):

(23)(135){A,B,C,D,E} = (23){E,B,A,D,C} = {E,A,B,D,C} = (1235){A,B,C,D,E},

• Associativity: The composition operation is naturally associative.

• Identity element: The identity element e can be expressed as e = (1)(2) . . . (n), where
each cycle of length one indicates that the elements remain in their original positions.
Consequently, under the action of e, no element within the set is moved or permuted.

• Inverse element: For each permutation π, there is always an inverse element π−1

that effectively reverses the permutation. For instance, if π = (1235), its inverse is
π−1 = (1532):

(1532)(1235){A,B,C,D,E} = (1532){E,A,B,D,C} = {A,B,C,D,E}.

By satisfying these axioms, it is evident that Sn indeed forms a group known as the symmetric
group.
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The General Linear group GLd

Now, consider the set GLd composed of the invertible complex square matrices of dimension d.
The binary operation defined for GLd is matrix multiplication. Then, for the group axioms, we
have:

• Closure: The product of two matrices in GLd results in another invertible matrix of
dimension d, showing that the set is closed under matrix multiplication.

• Associativity: Matrix multiplication is inherently associative.

• Identity element: The identity element in GLd corresponds to the identity matrix
of dimension d, typically denoted as Id. This identity matrix acts as the multiplicative
identity, satisfying A · Id = Id · A = A for all A ∈ GLd.

• Inverse element: For every matrix A ∈ GLd there exists an inverse matrix A−1 ∈ GLd
such that A · A−1 = A−1 · A = Id.

In summary, GLd indeed forms a group known as the General Linear group.

Now, let us introduce some essential definitions for groups, providing examples whenever
possible from the context for Sn and GLd.

Conjugacy classes

Let G be a group and x any group element. We define the conjugacy class of x as:

cx = {g ∈ G|g = hxh−1, for some h ∈ G},

where hxh−1 is known as the conjugation operation. This operation defines an equivalence
relation that separates the group G in conjugacy classes.

Conjugacy operation in GLd let the set of eigenvalues invariant, then, the conjugacy classes
of GLd separate the matrices according to their sets of eigenvalues a = (a1, a2, . . . , ad) up to
permutations.

For Sn, it turns out that conjugacy operation only relabel the disjoint cycles that uniquely
define the permutation, not changing their sizes [Alc18]. This means that in each conjugacy
class cx, all permutations have the same cycle structure as x. It is natural to label each distinct
conjugacy class according to the cycle structure of its elements. For that, let us introduce the
definition of partition to label such conjugacy classes.
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Partitions

The partitions of n are the different lists λ of non increasing positive integers λi such that∑
i λi = n. There is a correspondence between all the partitions of n and the possible cycle

structures of Sn. For example, for S4, there are five partitions:

λ1 = (4), , λ2 = (3, 1), λ3 = (2, 2), λ4 = (2, 1, 1), λ5 = (1, 1, 1, 1),

which correspond to the 5 cycle structures and hence conjugacy classes of S4. It is customary
to gather repeated numbers as powers, letting the partitions in the previous example be:

λ1 = (4), λ2 = (3, 1), λ3 = (2, 2), λ4 = (2, 12), λ5 = (14).

Partitions will be very important in this document because they are also used to label the
irreducible representations of GLd and Sn, as we will show later.

The Group Table

The group table is a very useful tool to understand the structure of a finite group. It lists the
result of the binary operation between the elements in the group. For instance, the elements of
S3 are {e, (12), (13), (23), (123), (132)} and the group table is shown below:

· e (12) (13) (23) (123) (132)
e e (12) (13) (23) (123) (132)

(12) (12) e (132) (123) (23) (13)
(13) (13) (123) e (132) (12) (23)
(23) (23) (132) (123) e (13) (12)
(123) (123) (13) (23) (12) (132) e
(132) (132) (23) (12) (13) e (123)

(3.1)

Note that in each row and column, the group elements appear once.

Subgroups

A subset Gs of G is said to be a subgroup of G if it satisfies all the conditions for a group and is
denoted by G ⊃ Gs. If Gs ⊃ G′

s, then together they form a chain group G ⊃ Gs ⊃ G′
s.

GLd has many interesting subgroups. For example, when considering the set of square matrices
of dimension d with unit determinant, they satisfy the conditions for being a group, known
as the special linear group SLd, so we have GLd ⊃ SLd. The group of unitary matrices of
dimension d, i.e., the Unitary group, Ud, is also a subgroup of GLd. Ud also has a subgroup, the
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group of unitary matrices of dimension d with unit determinant, known as the special unitary
group, SUd, so there is a group chain corresponding to GLd ⊃ Ud ⊃ SUd.

For finite groups, subgroups can be read from the group table as any combination of rows/columns
where the corresponding elements appear once for each row/column. For S3, the subgroups
are {e}, {e, (12)}, {e, (13)}, {e, (23)}, {e, (123), (132)}. In Sn, the group chain Sn ⊃ Sn−1 ⊃
Sn−2 ⊃ · · · ⊃ S2 is very relevant, as we will see later.

Homomorphism and Isomorphism

The mathematical structure represented by a group is an abstract concept that can be thought of
as something separated from the definition chosen for the group itself [CPW02]. The definitions
of homomorphisms and isomorphisms help us understand this group structure feature. For
this, define a map Φ that takes elements on a group G and map them to elements on another
group G′, this is written as:

Φ : G→ G′,

then Φ is said to be an homomorphism if for any g1, g2, g3 such that g1 · g2 = g3 it holds that:

Φ(g1) · Φ(g2) = Φ(g3),

which can be understood as the map preserving the multiplication rule of the original group. If
there exists any homomorphism Φ between G and G′, we can say that G is homomorphic to
G′, and denote this relation as:

G→ G′.

Any group has a homomorphism where all the elements are mapped to the identity, i.e.:

Φ(g) = e, ∀g ∈ G,

where the map preserves the multiplication rule. However, some homomorphisms are less
trivial. For example, in the symmetric group, we have S3 → S2 when considering the map that
acts as:

Φ((123)) = Φ((132)) = Φ(e) = e, Φ((12)) = Φ((13)) = Φ((23)),

preserving the multiplication rule for all the elements in S3.

Another interesting homomorphic relation is GLd → SLd, where SLd is the group of unit-
determinant matrices with dimensions d× d, and the map Φ acts on any element A ∈ GLd
as:

Φ(A) =
1

det(A)1/d
A,
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which also preserves the multiplication.

There is a special kind of homomorphism when there is a one-to-one correspondence between
the elements of G and the elements of G′, i.e., no two elements of G are mapped to the same
element in G′ or vice-versa. In this case, we say that Φ is an isomorphism; hence, G and G′ are
isomorphic groups. We denote this relation as:

G ≈ G′.

For finite groups, this means that the group tables of G and G′ are equal, up to some relabeling
of the elements. Two isomorphic groups represent the same abstract group.

For example, consider the set of symmetry transformations in the plane that leave the vertices
of an equilateral triangle to be fixed, also known as the Dihedral group, D3. Its elements
correspond to three reflections σ1, σ2, σ3, two rotations C3, C

2
3 , and the identity e as shown in

the following figure:
σ1

σ3 σ2

C3C2
3

The group table of D3 is:

· e σ1 σ2 σ3 C3 C2
3

e e σ1 σ2 σ3 C3 C2
3

σ1 σ1 e C2
3 C3 σ3 σ2

σ2 σ2 C3 e C2
3 σ1 σ3

σ3 σ3 C2
3 C3 e σ2 σ1

C3 C3 σ2 σ3 σ1 C2
3 e

C2
3 C2

3 σ3 σ1 σ2 e C3

.

Note how this group table is the same as (3.1) after the relabeling:

e→ e, σ1 → (12), σ2 → (13), σ3 → (23), C3 → (123), C2
3 → (132).
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Then, it is clear thatD3 and S3 are isomorphic; they are the same abstract group. One theorem
that highlights the importance of studying the Sn group instead of any other finite group is
Cayley’s theorem.

Cayley’s Theorem

Every finite group G is isomorphic to a subgroup of the permutation group S|G|.

The proof of this theorem is very simple. Label the elements of any groupG = {g1, g2, . . . , g|G|},
then write the group table. Each row of the table will correspond to a permutation π of G
because being G a group, each element g appears once in each row, in a position defined by the
multiplication rule. Then, we can associate each row with the permutation π of S|G|. Therefore,
every group G can be embedded in S|G|.

Cayley’s theorem makes explicit the importance of the symmetric group when studying finite
groups.

3.1.2 Representations
A representation is a homomorphism of a group G to a set of matrices in GLd for some d. The
homomorphism is given by a map

X : G→ GLd

such that

• X(e) = I , where I is the identity matrix.

• X(g1 · g2) = X(g1) ·X(g2) ∀g1, g2 ∈ G.

All groups have a trivial representation where each element is mapped to the number 1, a
representation of dimension 1.

X triv(e) = 1, X triv(g1) ·X triv(g2) = (1) · (1) = 1 = X triv(g1 · g2),

where we used a superscript to label the representation as it will be usual, and triv stands for
the trivial representation. For Sn, it is possible to build a natural representation of dimension
d = n, where the matrix Xdef (π) associated with a permutation π consists of the identity
matrix after exchanging rows as π indicates. For example, for S3, we have:

S3 : Xdef (12) =

 0 1 0
1 0 0
0 0 1

 , Xdef (123) =

 0 0 1
1 0 0
0 1 0

 .
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This representation is the defining representation of Sn. Representations are a powerful tool
for studying groups, as they allow us to understand the structure and properties of a group
through its action on matrices. In physics, representations are used extensively in fields such
as particle physics [CPW02], gravitation[BM94], and more specifically in quantum mechanics
[Woi17], where vectors and matrices represent states and actions on states in a vector space.

The vector space V defining the basis of the representation is known as the representation
space. In the previous example, the representation space is V = C{|1⟩ , |2⟩ , |3⟩} where:

|1⟩ =

 1
0
0

 , |2⟩ =

 0
1
0

 , |3⟩ =

 0
0
1

 ,

and CS denotes the vector space generated by the elements in S over C. For the previous
example, the representation space considers all the possible linear combinations

c1 |1⟩+ c2 |2⟩+ c3 |3⟩ ,

with ci ∈ C. Another useful representation for Sn is the regular representation, where the
representation space is defined as V = CSn, i.e., the action of the group on itself. This
representation has dimension n!, and we can define the orthonormal basis elements as:

{|e⟩ , |(12)⟩ , |(13)⟩ , |(23)⟩ , |(123)⟩ , |(132)⟩}. (3.2)

Then, the action of the group in these elements defines the representation matrices. For example,
for Xreg(12), we have:

Xreg(12) =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

 . (3.3)

For the group GLd, a recurrent representation in this document is the standard representation,
where each matrix A ∈ GLd is represented by itself. In this case, the representation space is
defined by d orthonormal vectors as V = C{|0⟩ , |1⟩ , . . . , |d− 1⟩}.

There are many possible representations for a given group. One of the objectives of repre-
sentation theory is to find the basic pieces that can be used to represent a group, known as
irreducible representations.
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Reducibility

Representations can be broken down into smaller pieces that are easier to analyze. Reducibility
is an important concept in representation theory because it allows us to study complex rep-
resentations by analyzing simpler ones. For that, defineW as a subspace of a representation
space V , with representation X such that

|w⟩ ∈ W → X(g) |w⟩ ∈ W ∀g ∈ G

This subspace is also known as an invariant subspace, which is a representation space on its own.

For example, consider the defining representation for Sn with V = C{|1⟩ , |2⟩ , . . . , |n⟩}, and
take the one dimensional supspace given byW = C{|1⟩+ |2⟩+ . . . |n⟩}. The action of any π
over vectors inW will be:

X(π)c(|1⟩+ |2⟩+ · · ·+ |n⟩) = c(|π(1)⟩+ |π(2)⟩+ · · ·+ |π(n)⟩) = c(|1⟩+ |2⟩+ · · ·+ |n⟩) ∈ W

SoW is an invariant subspace of V . Note that the representation in this subspace is given by
X(π) = 1,∀π ∈ Sn, in other words, the trivial representation.
A representation space V is said to be reducible if it contains a nontrivial invariant subspaceW
(V and 0 are trivial invariant subspaces). Otherwise V is said to be irreducible.

For the regular representation, it is also possible to identify the trivial representation on the
invariant subspaceW = C{|(e)⟩+ |(12)⟩+ . . . }. However, the regular representation is even
more interesting because it is known that all the irreducible representations appear in it.

Complete reducibility

The idea is to reduce any representation as much as possible. Note how the representation
space can be separated into subrepresentations, and the process can be repeated until we end
up with only irreducible representations, then

V = W 1 ⊕W 2 ⊕ · · · ⊕W k

withW i irreducible representations. After identifying these irreducible representations, the
matrix representations on V can be written in a block diagonal form:

X(g) ∼=


Xλ1(g)

Xλ2(g)
.
.

Xλk(g)

 .
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Where Xλi(g) is the representation matrix of g in the irreducible representationW λi , and the
symbol "∼=" is used to make explicit that a change of basis is needed for the block-diagonalization
of thematrix. Wewill see that for the groups we are interested in, the irreducible representations
can be labeled by partitions; hence, the λi label will appear naturally. In general, when making
this reduction, some of the irreducible representations appear more than once, so we can state
that a representation can be decomposed in unique irreducible representations λi as:

X(g) =
⊕
i

Xλi(g)⊗ Imi
, (3.4)

wheremi is the number of times that the irreducible representation λi appears in this decom-
position, also known as the multiplicity.

3.1.3 Irreducibility

The next task is introducing a tool to determine whether a representation is reducible or
irreducible. We need to introduce first some definitions from representation theory:

Isomorphic representations

First, we define a group homomorphism as a linear map between two representations of a group
G that respects the group structure. Specifically, let (V,X) and (W,Y ) be two representations
of G, where V andW are the representation spaces, and X and Y are the homomorphic maps
from G to V andW respectively. A linear map T : V → W is called a group homomorphism
if it satisfies the following condition for all g ∈ G and |v⟩ ∈ V :

T (X(g) |v⟩) = Y (g)(T |v⟩),

which implies that
TX(g) = Y (g)T.

We define a group isomorphism as a bijective group homomorphism, meaning that the map T is
invertible. Therefore, two representations spaces V andW with mapsX and Y are isomorphic
when there exists a transformation T such that

Y (g) = TX(g)T−1 ∀g ∈ G.

In this sense, two representations are isomorphic or equivalent when they only differ by a
change of basis. With this, we can introduce Schur’s Lemma, which is a very important result
of representation theory and will be recurrent in the context of this document.
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Schur’s Lemma

Let V andW be two irreducible representation spaces of a group G. If T : V → W is a group
homomorphism, then either T is a group isomorphism or T is the zero map.

This Lemma has two important corollaries:

• LetX and Y be two irreducible representations ofG. If T is a matrix such that TX(g) =
Y (g)T for all g ∈ G, then either T is invertible or T is the zero matrix.

• LetX be an irreducible representation ofG. Then, the only matrices T that commute with
X(g) for all g ∈ G are those of the form cI . This can be seen as follows: if T commutes
with X(g), then TX(g) = X(g)T for all g ∈ G. Thus, (T − cI)X(g) = X(g)(T − cI)
for any c. If c is equal to λT , an eigenvalue of T , then T − cI is not invertible, and then
by the previous corollary T − cI = 0. Therefore, T must be of the form cI . In conclusion,
for any irreducible representation of G, we have:

TX(g)T−1 = X(g), ∀g ∈ G→ T = cI.

This lemma and its corollaries give rise to one important property for irreducible representations,
the great orthogonality theorem. Consider two irreducible representations of the same group
Xλ1 , Xλ2 then, the great orthogonality theorem states for their matrix elements that [Kep17]:

1

|G|
∑
g∈G

Xλ1(g)i,kX
λ2(g)l,j = δλ1,λ2

δi,jδk,l
d

. (3.5)

Where d = dim(Xλ1). The great orthogonality theorem is the cornerstone of the character
theory, which allows us to identify when a given representation is reducible or not. Furthermore,
when the representation is reducible, the character theory explicitly gives the decomposition
into irreducible representations from now on irreps.

Characters

For a representation Xλ of a group G, the character of some element g ∈ G is defined as the
trace of the matrix representation:

χλ(g) = tr
(
Xλ(g)

)
.

Some interesting properties of characters must be highlighted. Consider two isomorphic
representations Xλ, X λ̃, then there exists a basis transformation T such that:

X λ̃(g) = TXλ(g)T−1, ∀g ∈ G,
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then, the character of two isomorphic representations are the same:

χλ̃(g) = tr
(
X λ̃(g)

)
= tr

(
TXλ(g)T−1

)
= tr

(
T−1TXλ(g)

)
= tr

(
Xλ(g)

)
= χλ(g).

Under the same procedure, it is easy to check that the character is a class function, i.e., its
value is the same for all the elements in the same conjugacy class. Consider g1, g2 belonging
to the same conjugacy class; then, there is some h ∈ G such that g2 = hg1h

−1, then for any
representation Xλ we have:

χλ(g2) = tr
(
Xλ(g2)

)
= tr

(
Xλ(hg1h

−1)
)
= tr

(
Xλ(h)Xλ(g1)X

λ(h−1)
)
= tr

(
Xλ(g1)

)
= χλ(g1).

Class functions are very relevant in representation theory, and it is known that characters of
irreps can be used to generate the set of class functions[Alc18]. However, this discussion goes
beyond the scope of this document.

The great orthogonality theorem has an important consequence in terms of characters. First,
let us define the inner product between characters:

⟨χλ1|χλ2⟩ = 1

|G|
∑
g∈G

χλ1(g)χλ
2

(g).

Then, we have from equation (3.5) that if Xλ1 and Xλ2 are irreps of G then:

⟨χλ1|χλ2⟩ = 1

|G|
∑
g∈G

∑
j,k

Xλ1(g)jjX
λ2(g)kk =

δλ1λ2

d

∑
j,k

δjkδjk = δλ1λ2 , (3.6)

which is known as the orthogonality relation of characters. We can show how characters can
identify whether some representation is reducible. Consider a reducible representationXµ of a
group G, then there exists a basis transformation T such that:

TXµ(g)T−1 =
⊕
i

Xλi(g)⊗ Imi,µ
, ∀g ∈ G,

wheremi,µ is the multiplicity of λi in µ, and the sum runs over all the irreps of G. Then, the
character of Xµ is:

χµ(g) = tr(Xµ(g)) = tr
(
TXµ(g)T−1

)
= tr

(⊕
i

Xλi(g)⊗ Imi,µ

)
=
∑
i

mi,µ tr
(
Xλi(g)

)
=
∑
i

mi,µχ
λi(g).

,
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when taking the inner product, we have:

⟨χµ|χµ⟩ = 1

|G|
∑
g∈G

χµ(g)χµ(g) =
1

|G|
∑
g∈G

∑
ij

mi,µmj,µχλ
i(g)χλ

j

(g),

by summing g and using equation (3.6) we get:

⟨χµ|χµ⟩ =
∑
i

m2
i,µ.

If µ is irreducible, then its decomposition into irreps can only have one term with mi,µ =
1, µ ∼= λi; then

⟨χµ|χµ⟩ = 1.

only for irreps. When this inner product is larger than one, µ is composed of more than one
irrep. Characters can also be used to identify the multiplicity of a given irrep in the diagonal
decomposition [Alc18]: 〈

χµ
∣∣∣χλi〉 = mi. (3.7)

With this tool, it is possible to break down any representation in its irreps, even without
knowing the change of basis that block-diagonalizes the matrix. One interesting case for us
is the decomposition into irreducible representations of the tensor product representation
obtained by taking the tensor product of two representations.

Tensor Product representation

Consider we take two irreducible representations of a group G, λ1, λ2, and for each element g
we build the matrix

Xλ1⊗λ2(g) = Xλ1(g)⊗Xλ2(g),

then, the map Xλ1⊗λ2(g) is also a representation. This is because, firstly, the identity element
is mapped to the identity matrix:

Xλ1⊗λ2(e) = Xλ1(e)⊗Xλ2(e) = Id1 ⊗ Id2 = Id1×d2 ,

being di the dimension of the irrep λi. Secondly, this map respects the multiplication rule of
the group:

Xλ1⊗λ2(g1 · g2) = Xλ1(g1 · g2)⊗Xλ2(g1 · g2) = Xλ1(g1)X
λ1(g2)⊗Xλ2(g1)X

λ2(g2)

=
(
Xλ1(g1)⊗Xλ2(g1)

)(
Xλ1(g2)X

λ2(g2)
)
= Xλ1⊗λ2(g1)X

λ1⊗λ2(g2).
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This representation is known as the Tensor product representation and will be the most relevant
construction throughout this document. This kind of construction appears naturally in quan-
tum mechanics when considering multipartite systems. We usually define a representation
for each of the parts of the system, but when thinking of the system as a whole, it will be
represented by the tensor product of the individual representations.

In general, the tensor product representation is reducible, i.e., it can be decomposed diagonally
in irreps. This diagonalization can be seen as:

λ1 ⊗ λ2 =
⊕
i

λi ⊗ Imi,λ1⊗λ2
,

wheremi,λ1⊗λ2 is the multiplicity of irrep λi in the decomposition of λ1 ⊗ λ2. This multiplicity
can be calculated from equation (3.7) as:

mi,λ1⊗λ2 =
〈
χλ

1⊗λ2
∣∣∣χλi〉 =

1

|G|
∑
g

χλ1(g)χλ2(g)χλ
i

(g).

For the symmetric group Sn, this multiplicity receives the name of Kronecker coefficient, and
we label it as kλ1λ2λ. For this group, we will write the diagonal decomposition as:

[λ1]⊗ [λ2] =
⊕
λ⊢n

[λ]⊗ Ikλ1λ2λ , (3.8)

where irreps are labeled by the partitions of n as [λ], as we will explain in the next section. In
this group the multiplicity, i.e., the Kronecker coefficient, can be calculated as:

kλ1λ2λ =
1

n!

∑
π∈Sn

χ[λ1](π)χ[λ2](π)χ[λ](π). (3.9)

This value will appear again later when characterizing the subspace in the tensor product of
irreps of Sn, over which Sn acts trivially. i.e., the invariant subspace. Besides the multiplicity of
irreps in the tensor product decomposition, we will also be interested in the change of basis
that allows block-diagonalization. We know that there exists some unitary matrix U such that
for all g ∈ G:

UXλ1⊗λ2(g)U−1 =
⊕
i

mi,λ1⊗λ2⊕
si=1

Xλi(g),

where si label the different subspaces corresponding to the same λi in the decomposition. In
terms of the basis of each representation this can be written as [Kep17]:

dλ1∑
j=1

dλ2∑
k=1

Cλ1λ2λi,s

l1j ,l
2
k,l

i

∣∣λ1, l1j〉 ∣∣λ2, l2k〉 = ∣∣λi, li, s〉 , (3.10)
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where lij label the basis elements of irrep λi, and Cλ1λ2λi,s

l1j ,l
2
k,l

i are known as the Clebsch Gordan
coefficients (CGC) of the group G. CGC are the matrix elements of U , hence, the unitarity
conditions of U :U †U = I = UU †, can be understood as orthogonality relations of CGC:

∑
s,λi,li

Cλ1λ2λi,s

l1j ,l
2
k,l

i Cλ1λ2λi,s

l1
j′ ,l

2
k′ ,l

i = δjj′δkk′ ,

∑
jk

Cλ1λ2λi,s

l1j ,l
2
k,l

i Cλ1λ2λi′ ,s′

l1j ,l
2
k,l

′i′ = δii′δss′δll′ .

CGC are important mathematical objects that are generally hard to compute. Some closed
results are known for SU2, SU3, SL3, but despite some efforts [SDS81] [CM11][DH12], there
are, to the best of our knowledge, no closed expressions for Sn, and the known approaches
are strictly mathematical. One of the main results of this research is a physics-based method
to calculate CGC for the symmetric group Sn using algebraic expressions and a recursive
construction.

Now, we will focus on defining the irreps of Sn, and the irreps appearing in the tensor prod-
uct of n copies of the standard representation of GLd, which are known as the polynomial
representations of GLd[Kep17].

3.2 Irreducible representations of GLd and Sn

It is a well-known result of representation theory that the different irreducible representations of
Sn and the polynomial representations ofGLd can be labeled by partitions λ. Such partitions can
be represented graphically by the Young diagrams[Sag13], allowing us to interpret graphically
the dimensions and other properties of the corresponding irreps.

3.2.1 Young diagrams

Young diagrams are in one-to-one correspondence with partitions. The Young diagram for a
partition of n given by λ = (λ1, λ2, . . . , λk) corresponds to a left-aligned diagram with n boxes
and k rows, where in the i-th row, there are λi boxes. For example, for all the partitions of
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n = 4, the different Young diagrams are:

λ1 = (4) = , λ2 = (3, 1) = , λ3 = (2, 2) = ,

λ4 = (2, 1, 1) = , λ5 = (1, 1, 1, 1) = .

Each of these diagrams will label the different irreducible representations of Sn and GLd; the
connection between irreps and partitions has been explained multiple times in the literature
[BT84] [FH04] [Sag13]. However, this explanation is out of the scope of this work, and we will
focus on explaining how the Young diagrams permit labeling the basis elements in each irrep
of Sn and GLd groups. Later, in Section 3.4, these labels will acquire a physical significance
that is what is relevant for us.

3.2.2 Irreducible representations of GLd

Let us start by recalling that GLd is the group of invertible matrices of dimensions d × d,
with entries over the complex numbers. This group has a representation in itself, which is
an irreducible representation known as the standard representation. A matrix A ∈ GLd is
represented by itself in the standard representation of dimension d. We will be interested in the
irreducible representations that appear in the diagonal decomposition of the tensor product of
n copies of the standard representation, known as the polynomial representations ofGLd[Kep17].

One useful way of approach the polynomial representations ofGLd is thinking on the standard
representation of GLd as belonging to a vector space defined by |i⟩, where i can take values
from 0 to d− 1. We will represent the standard representation as a Young diagram of n = 1,
i.e., a single box that represents the index in the standard representation:

⇒ i .

We are interested in the irreducible representations that appear when decomposing tensor
products of some irrep with one copy of the standard representation. In terms of Young
diagrams, it corresponds to considering all the Young diagrams obtained by adding one box
in the different rows to the initial irrep. For the case of two copies, the product basis will be
represented by a two indices vector space |i1i2⟩. In terms of Young diagrams, we can add the
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second box in two different ways:

i1 ⊗ i2 = i1 i2 ⊕ i1

i2
.

The first case corresponds to adding one box to the first row. This irrep is labeled as {2} where
we introduced the notation {λ} for the irreps of GLd. The second case corresponds to adding
one box to the second row, and is labeled as {1, 1}. It is not possible to add boxes in the third
row, then these are the only two possibilities. Each resultant Young diagram is an irreducible
representation that specifies a rule for symmetrizing the indices in the product basis of the
copies of the standard vector space. For this, indices in the rows are symmetrized, and indices in
the columns are anti-symmetrized. For the example with two copies, the two Young diagrams
permit to obtain two in general unnormalized with the symmetries of the vector of two indices
|i1i2⟩:

{2} : i1 i2 ⇒ |i1i2⟩+ |i2i1⟩ , {1, 1} : i1

i2
⇒ |i1i2⟩ − |i2i1⟩ .

We will focus on the irreps of GL2, so the indices can only take values 0 and 1, then Young
diagrams encode the different symmetries in the computational basis. For the symmetric irrep
we can define three independent unnormalized vectors in the product basis with the symmetry
given by the Young diagram:

{2} : i1i2 = 00 ⇒ 2 |00⟩ , i1i2 = 01 ⇒ |01⟩+ |10⟩ , i1i2 = 11 ⇒ 2 |11⟩ . (3.11)

Note that choosing the values i1i2 = 10 lead to the same vector as for i1i2 = 01, so, the obtained
states are not independent. The three states in the previous equation, when normalized, define
a basis for an invariant subspace in the tensor product representation that correspond to an
irreducible representation. This can be seen as follows: first, let us name the normalized vectors
according to the respective irrep and to the number of ones of the values for the ordered indices
i1i2, also known as the weight ω, as |λ, ω⟩. For example, i1i2 = 01 ⇒ |{2}, 1⟩. Then, we have:

|00⟩ = |2, 0⟩ , 1√
2
(|01⟩+ |10⟩) = |2, 1⟩ , |11⟩ = |2, 2⟩ (3.12)

Now, define an element A in GL2:

A =

(
a00 a01
a10 a11

)
.
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Next, let act the tensor product of two copies of A on each of the vectors defined in Equation
(3.12) after normalize them. For the first one we have:

A⊗ A |2, 0⟩ = A |0⟩ ⊗ A |0⟩ = (a00 |0⟩+ a10 |1⟩)⊗ (a00 |0⟩+ a10 |1⟩)
= a200 |00⟩+ a00a10 |01⟩+ a00a10 |10⟩+ a210 |11⟩ = a200 |2, 0⟩+

√
2a00a10 |2, 1⟩+ a210 |2, 2⟩ .

This shows that the resultant state belong to the subspace defined by |2, 0⟩ , |2, 1⟩ and |2, 2⟩.
We can do the same with the other two vectors in Equation (3.12):

A⊗ A |2, 1⟩ =
√
2a00a01 |2, 0⟩+ (a00a11 + a01a10) |2, 1⟩+

√
2a10a11 |2, 2⟩ ,

A⊗ A |2, 2⟩ = a201 |2, 0⟩+
√
2a01a11 |2, 1⟩+ a211 |2, 2⟩ .

Therefore, the vectors in Equation (3.12) define an invariant subspace, which can be shown
it corresponds to an irreducible representation. We can make the same analysis with the
irrep corresponding to {1, 1}. Note first that with the values 0 and 1 for the indices, only one
independent normalized state can be obtained:

{1, 1} :
1√
2
(|01⟩ − |10⟩) = |(1, 1), 1⟩ .

Note that when acting with A⊗ A we have:

A⊗ A |(1, 1), 1⟩ = (a00a11 − a01a10) |(1, 1), 1⟩ = det(A) |(1, 1), 1⟩ .

Thus, the one-dimensional subspace defined by |(1, 1), 1⟩ is also an invariant subspace, corre-
sponding to another irreducible representation. Note that with the two irreps represented by
{2} and {1, 1} we complete the four-dimensional space, defined by GL2 ⊗GL2. The dimen-
sions of the irreps can be obtained easily from the corresponding Young diagrams. For this, we
fill the diagram with numbers from 0 to d− 1 such that they are not decreasing horizontally
and are strictly increasing vertically, in this way we ensure to only consider independent basis
elements. Filling young diagrams with these restrictions corresponds to semi-standard Young
tableaux (SSYT). For the two irreps in the example we have:

{2} : 0 0 , 0 1 , 1 1 , {1, 1} : 0

1
.

In this sense, the number of SSYT in a Young diagram representing the partition λ is equal
to the dimension of the irrep {λ}. Let us now consider the case when decomposing three
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copies of the standard representation. We can do this by first adding one box to the standard
representation, and then adding the other one. This process can be seen graphically as:

i1 ⊗ i2 ⊗ i3 =

 i1 i2 ⊕ i1

i2

⊗ i3 =
i1 i2 i3 ⊕ i1 i2

i3
⊕ i1 i3

i2
⊕ i1

i2

i3

.

First, note that for GL2, the last irrep {1, 1, 1} is not admissible, because there is no way to
put numbers from 0 to 1 strictly increasing along three boxes. Then, the possible irreps for n
copies of GL2 will be those with at most two rows. We will label those partitions as λ ⊢ n, 2,
i.e., partitions of n with at most two rows. From the previous decomposition into irreps, it must
be noticed that the same irrep appears twice, {λ} = {2, 1}, which means that two copies of the
same irrep appear in the decomposition of the tensor product into irreps. Note that one irrep
was obtained by symmetrizing first i1 with i2 and then anti-symmetrizing i1 with i3, while
the other is obtained by firs anti-symmetrizing i1 with i2 and then symmetrizing i1 with i3.
However, as they are represented by the Young diagram, they are isomorphic representations.
We will see later, that these multiplicities are determined by the irreducible representations of
Sn. In this case the corresponding symmetries for the different irreps are represented by the
unnormalized vectors in the computational basis |i1i2i3⟩ as:

{3} : i1 i2 i3 ⇒ |i1i2i3⟩+ |i2i1i3⟩+ |i3i2i1⟩+ |i1i3i2⟩+ |i2i3i1⟩+ |i3i1i2⟩ ,

{2, 1}1 : i1 i2

i3
⇒ |i1i2i3⟩+ |i2i1i3⟩ − |i3i2i1⟩ − |i2i3i1⟩ ,

{2, 1}2 : i1 i3

i2
⇒ |i1i2i3⟩+ |i3i2i1⟩ − |i2i1i3⟩ − |i2i3i1⟩ .

(3.13)

Note that the two multiplicities of {2, 1} labeled by subscripts are isomorphic up to a relabeling
of the indices, i.e., they can be obtained from each other acting with an element of Sn on the
indices. The SSYT for both irreps are:

{3} : 0 0 0
,

0 0 1
,

0 1 1
,

1 1 1

{21} : 0 0

1
, 0 1

1

Then, the dimension of irrep {3} is four, while for the irrep {21} is two, which appears twice
in the decomposition of three copies of the standard representation. The basis elements of the
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irreps can be obtained easily and expressed in the |λ, ω⟩ notation for free multiplicity cases
and |λ, ω, s⟩ for the cases with multiplicity with s the multiplicity index :

{3} : |000⟩ = |3, 0⟩ , 1√
3
(|001⟩+ |010⟩+ |100⟩) = |3, 1⟩ ,

1√
3
(|011⟩+ |101⟩+ |110⟩) = |3, 2⟩ , |111⟩ = |3, 3⟩ ,

{21}1 :
1√
6
(2 |001⟩ − |100⟩ − |010⟩) = |(21), 1, 1⟩ , 1√

6
(|011⟩+ |101⟩ − 2 |110⟩) = |(21), 2, 1⟩ ,

{21}2 :
1√
2
(|010⟩ − |100⟩) = |(21), 1, 2⟩ , 1√

2
(|011⟩ − |101⟩) = |(21), 2, 1⟩ .

It is not hard to check again that all the irreps are invariant subspaces; but more interestingly,
we can note that the action of the tensor product on any multiplicity of irrep {2, 1} transforms
as the single copy of A multiplied by the determinant of A:

A⊗ A⊗ A · (c1 |(21), 1, 1⟩+ c2 |(21), 2, 1⟩) ∼= det(A) · Ã(c1
∣∣0̃〉+ c2

∣∣1̃〉),
with c1 and c2 complex coefficients, and Ã is the same matrix A but re-interpreted as acting on
the two-dimensional Hilbert space defined by

∣∣0̃〉 = |(21), 1, 1⟩ and
∣∣1̃〉 = |(21), 2, 1⟩. This is

a general property of irreps with number of rows equal to the dimension d. Each full column
correspond to one determinant, det(A), multiplied by the irrep corresponding to erasing the
full columns in the Young diagram.

In conclusion, Young diagrams permit to separate the irreducible representations of the tensor
product on copies of the standard representation. Each partition λ label one symmetrizing rule
that corresponds to an irreducible representation of GLd, and the possible SSYT in the Young
diagram label the basis elements of the irrep. However, for this group, it is common to relate
the dimension with the character of the identity element.

In general, The characters of GLd irreps denoted by {λ} can be obtained as Schur polynomials
on the set of eigenvalues of the matrix A ∈ GLd to be represented. We label such a set of
eigenvalues as a. Schur polynomials are symmetric functions that can be computed as [Tam12]:

sλ(a) =

∣∣∣∣∣∣∣∣∣
aλ1+d−1
1 aλ1+d−1

2 · · · aλ1+d−1
d

aλ2+d−2
1 aλ2+d−2

2 · · · aλ2+d−2
d... ... . . . ...

aλd1 aλd2 · · · aλdd

∣∣∣∣∣∣∣∣∣∏
1≤j≤k≤d(aj − ak)

. (3.14)
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Then, the dimension of an irrep labeled by {λ} can be calculated as:

dim({λ}) = sλ(1),

where 1 = (1, 1, . . . , 1), and the evaluation is done after expressing Equation (3.14) as a
polynomial. It is possible to find bounds for Schur polynomials as:

aλ11 a
λ2
2 · · · aλdd ≤ sλ(a) ≤ sλ(1)a

λ1
1 a

λ2
2 · · · aλdd (3.15)

which will be useful when analyzing asymptotic behaviors.

Now, consider any SSYT of two rows; then, the entries in the first λ2 columns are fixed, and
we are left with n− 2λ2 boxes that, when imposing the restrictions of SSYT, can be filled in
n− 2λ2 + 1 ways. For example, consider λ = (5, 2), then the possible SSYT are:

0 0 0 0 0

1 1
, 0 0 0 0 1

1 1
, 0 0 0 1 1

1 1
, 0 0 1 1 1

1 1
, (3.16)

which corresponds to:

dim({5, 2}) = n− 2λ2 + 1 = 7− 4 + 1 = 4.

This fact can also be seen from the Schur polynomial, which for partitions of two parts is
reduced to [Tam12]:

s(λ1,λ2)(a1, a2) =

n−λ2∑
i=λ2

ai1a
n−i
2 ,

then, by replacing in the sum and evaluating a1 = a2 = 1 we have:

dim({λ1, λ2}) = s(λ1,λ2)(1, 1) = n− 2λ2 + 1.

It is important to note how, given a partition λ ⊢ n, 2, each SSYT is unambiguously defined by
the number of 1s in the SSYT, ω. Then, the basis elements defined by the SSYT from Equation
(3.16) could also be labeled as:

|{λ}, ω⟩ ⇒ |{5, 2}, 2⟩ , |{5, 2}, 3⟩ , |{5, 2}, 4⟩ , |{5, 2}, 5⟩ .

When having diagrams labeled by {λ} with the number of rows being equal to the dimension
d, each of the columns with d rows corresponds to an anti-symmetrizing of all the different
indices of the tensor representation of the matrices A, which is by definition the determinant
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of the matrix. Then, for the case of d = 2, each column with two rows can be replaced by a
factor of det(A). For example, for the matrix representation V {λ}(A) in the irrep {λ}, this is:

V {λ1,λ2}(A) = det(A)λ2V {n−2λ2}(A), e.g., V {5,2}(A) = (det(A))2V {3}.

When the matrices to be represented are with unit-determinant, or when we are just not
interested in the value of the determinant, we can focus only on the non-full columns to
analyze the representation. Having defined the notation for the basis elements of GL2, we still
have to build the irreducible representations obtained from the tensor product representations
of the standard representation. However, this process will be introduced later in Section 3.4, as
it is a fundamental tool in this research. Now, we will present the irreducible representations
of the other group relevant to this document, the Symmetric group Sn.

3.2.3 Irreducible representations of Sn

In a similar way as Young diagrams permit to identify irreducible representations of GLd
from the tensor copies of the standard representation, they also permit to identify irreducible
representations of Sn from the regular representation that we introduced in Equations (3.2)
and (3.3). However, we will not present this approach. Instead, we will focus on how the
irreducible representations of Sn appear in the decomposition of the tensor product of copies
of the standard representation of GLd. For this, let us define the standard Young tableaux (SYT)
associated to a Young diagram of n boxes as the possible ways of filling all the boxes with a
unique number from 1 to n, such that the numbers 1, 2, . . . , n appear strictly increasing along
rows and columns. For example, for the partition λ = (422):

3 1 7 4

6 2

8 5

/∈ SY T,
1 3 4 7

2 6

5 8

∈ SY T.

It turns out that the irreducible representations of Sn are labeled by the different partitions of
n similar to the irreps of GLd; however, for Sn the basis elements are labeled by the SYT, as for
GLd they are labeled by the SSYT. Then, each possible SYT in a Young diagram λ, label one of
the basis elements of the irreducible representation that will be denoted by [λ].

Note from the example in Equation (3.13) that, two multiplicities of the irrep {2, 1} of GLd
appeared in the decomposition on irreps of the tensor product of three copies of the standard
representation. The two multiplicities correspond to the two different ways of achieving the
Young diagram λ = (2, 1), by adding one box at the time:

53



3.2. IRREDUCIBLE REPRESENTATIONS OF GLd AND Sn

i1 ⇒ i1 i2 ⇒ i1 i2

i3
,

i1 ⇒ i1

i2
⇒ i1 i3

i2
. (3.17)

The sub-indices of the indices in the computational basis follow the rules of SYT. In this sense,
the multiplicites of GLd are labeled by the basis elements of irreps of Sn. In this case, for Sn
the dimension of the irrep [2, 1] is two, because there are two different ways of building the
Young diagram. Each path represents one different process of symmetrizing anti-symmetrizing
the indices of the product basis of GLd that arrive at the same partition λ.

The dimension of an irrep [λ] can be obtained by counting how many SYT can be obtained in
the young diagram λ. For example, given the partition [3, 2], there are five possible SYT:

q
[3,2]
1 = 1 2 3

4 5
, q

[3,2]
2 = 1 2 4

3 5
, q

[3,2]
3 = 1 2 5

3 4
,

q
[3,2]
4 = 1 3 4

2 5
, q

[3,2]
5 = 1 3 5

2 4
,

(3.18)

where we used q[λ]i to label each SYT and so, each basis element. Then, we conclude that [3, 2]
is an irrep of dimension five, i.e.,

f [3,2] = 5,

where f [λ] is the dimension of irrep [λ]. Despite the utility of SYT to label the basis elements of
irreps in Sn, there are different notations that may be useful. One recurrent notation in this
document is to use a modification of the Yamanouchi symbols [WH12], where each SY T will
be represented by a list of length n, first denote rq(i) to be the row where number i appears in
the SYT labeled as q, then, the i-th number in the list will correspond to rq(i)− 1. For example,
for the basis elements of [3, 2] defined in equation (3.18) we have:

q
[3,2]
1 = {0, 0, 0, 1, 1}, q[3,2]2 = {0, 0, 1, 0, 1}, q[3,2]3 = {0, 0, 1, 1, 0},

q
[3,2]
4 = {0, 1, 0, 0, 1}, q[3,2]5 = {0, 1, 0, 1, 0}.

Another relevant point of view for the basis elements of irreps of Sn is that they can also
be understood as a possible path to obtain the Young diagram λ by adding one box in each
step, and the Yamanouchi symbol tells in which row the box should be added. This point
of view permits us to see that the base defined by SYT is adapted to the chain group of Sn:
Sn ⊃ Sn−1 ⊃ · · · ⊃ S2 ⊃ S1, when taking the first n′ elements in any Yamanouchi symbol
representing a basis element of [λ] in Sn, it will correspond to a valid Yamanouchi symbol of
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Figure 3.1: Simplified Young Lattice up to n = 5, where only partitions with at most two rows are considered. From the first box to any λ,
there are exactly f [λ] paths, each corresponding to one SYT and hence, to one Young-Yamanouchi symbol.

some irrep [λ′] in Sn′ . For example, the q[3,2]4 base can be understood as the following path of
partitions to achieve [3, 2]:

q
[3,2]
4 = {0, 1, 0, 0, 1} : ⇒ ⇒ ⇒ ⇒ .

Thinking on the basis elements of irreps of Sn as paths in the possible set of partitions is a
useful point of view when relating its action to tensor products of SL2 or, equivalently, when
analyzing the problem of addition of spin 1/2 particles, as we will see later. In particular,
when considering only partitions of at most two rows (on which we will focus later), it is
useful to think about all possible paths in a simplified Young’s lattice [Sag13], where a structure
of partitions can be obtained by starting at some partition of n and connecting it with the
partitions of n+ 1 that are obtained when adding one box in the first row or one box in the
second row to the corresponding initial Young diagram. The simplified Young’s lattice is shown
in Figure 3.1 up to n = 5.

With this graphical tool, each basis element of [λ] corresponds to one of the paths that end up
in partition λ. The Young Yamanouchi symbol, labeling the basis element, corresponds to the
direction of the steps in the path, being qi = 0 (qi = 1) when the i-th step is taken to the right
(left) in the lattice. With this graphical representation, the base q[3,2]4 can be seen as:
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q
[3,2]
4 = 1 3 4

2 5
= {0, 1, 0, 0, 1} = . (3.19)

The three ways to label the basis elements of Sn, i.e., SYT, Young Yamanouchi symbols, and
Young lattice’s paths, will be used through this document, as each has advantages that will be
exploited depending on the context.

Finding the dimension of an irreducible representation of Sn is reduced to the problem of
determining how many standard Young tableaux there are for a given partition λ. This process
can be understood from a combinatorial point of view. First, we take the Young diagram λ
and fill each box with the number of boxes below and to the right of it, plus 1, known as the
hook lengths. Then, the diagram will be filled with these numbers hi called hooks. The hook
formula [Alc18] can then be used to calculate the dimension of the irreducible representation
associated with λ.

f [λ] :=
n!∏
i hi

.

For example, the young diagram [3, 2] filled with the hook lengths is:

4 3 1

2 1
⇒ f [3,2] =

5!

4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
= 5.

Using the hook formula (3.2.3), we can understand how the dimension fλ of an irreducible
representation grows asymptotically. If we fill each row of the Young diagram with the numbers
1, 2, · · · , λi, then it is clear that:

f [λ] ≤ n!∏
i λi!

.

On the other hand, we can also define the numbers vi = λi + k + i, where k is the length of
partition λ, leading to the lower bound:

f [λ] ≥ n!∏
i vi!

.

In the asymptotic limit when n→ ∞ with k fixed, we have vi ≈ λi, so:

f [λ] ∼ n!∏
i λi!

. (3.20)
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Where “∼” stands for asymptotic behavior. Using Stirling’s approximation, we can obtain
asymptotically,

f [λ] ∼ exp
(
nH(λ̄)

)
, (3.21)

where H(λ̄) is the Shannon entropy of the normalized partition λ̄ = λ/n. This shows that
dimensions of irreps of Sn grow exponentially with n.

With the basis elements of irreps of Sn defined, it is possible to obtain a matrix representation
for each element of Sn in each irrep using the Young-Yamanouchi algorithm. In this algorithm,
analyzing permutational relations of the SYT, it is possible to find the matrix entries of all the
adjacent transpositions of Sn. With these matrix representations, obtaining any other element
of Sn through matrix multiplication is possible, as adjacent transpositions are generators of Sn.
I.e., any element of Sn can be obtained by multiplications of adjacent transpositions. We will
briefly outline the Young-Yamanouchi algorithm here. However, in Section 7.1, we introduce a
more relevant method to build the matrix representations of Sn.

Young-Yamanouchi algorithm

For this algorithm, we start by defining the axial distance ρq(i) in a standard Young tableau
defined by q as the number of steps to go from the box filled with i to the box filled with i+ 1,
with the convention that the steps must be taken horizontally and vertically only. Steps going
up or to the right are positive, and steps going down or to the left are negative. For example,
consider the following SYT:

q
[4,2,1]
1 = 1 3 4 7

2 6

5

,

then, for going from the box filled with 1 to the box filled with 2, we need to take a step going
down, i.e., ρ

q
[4,2,1]
1

(1) = −1, for going from 2 to 3 we can take one step up and one step to the
right, i.e., ρ

q
[4,2,1]
1

(2) = 2, all axial distances in this SYT are:

ρ
q
[4,2,1]
1

(1) = −1, ρ
q
[4,2,1]
1

(2) = 2, ρ
q
[4,2,1]
1

(3) = 1, ρ
q
[4,2,1]
1

(4) = −4, ρ
q
[4,2,1]
1

(5) = 2, ρ
q
[4,2,1]
1

(6) = 3.

We also have to list all the SYTs that are related through adjacent transpositions. For example,
if we consider another SYT of [4, 2, 1]:

q
[4,2,1]
2 = 1 3 4 7

2 5

6

,
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this one can be obtained from q
[4,2,1]
1 by applying the adjacent transposition of 5 with 6, i.e.,

(56)q
[4,2,1]
1 = q

[4,2,1]
2 .

With this, the entries of the matrix representation of adjacent transpositions (i, i+ 1) can be
obtained as:

D
[λ]
qq′(i, i+ 1) = ⟨q| (i, i+ 1) |q′⟩ =



1
ρq(i)

q = q′

√
ρ2q(i)−1

|ρq(i)| q = (i, i+ 1)q′

0 otherwise

,

where D[λ](i, i + 1) is the matrix representation of adjacent transposition (i, i + 1) in the
irreducible representation λ.

Now, we will use the Young-Yamanouchi algorithm to compute the two-dimensional repre-
sentation in S3 corresponding to [2, 1]. The two SYTs and their corresponding Yamanouchi
symbols are

q
[2,1]
1 := 1 2

3
⇒ {0, 0, 1}, q

[2,1]
2 := 1 3

2
⇒ {0, 1, 0}.

When considering the Young Lattice, these basis are represented by the only two paths to get
to the partition [2, 1]:

,

we now labeled each step with its corresponding value in the Yamanouchi symbol, being 0 to
the right and 1 to the left. Note that the only relation by adjacent transpositions in this case is:

(23)q1 = q2.

The axial distances in these basis are:

ρ
q
[2,1]
1

(1) = 1, ρ
q
[2,1]
1

(2) = −2 ρ
q
[2,1]
2

(1) = −1 ρ
q
[2,1]
2

(2) = 2,
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then, the matrices of adjacent transpositions using equation (3.2.3) can be obtained as:

D[2,1](12) =

(
1 0
0 −1

)
, D[2,1](23) =

(
−1

2

√
3
2√

3
2

1
2

)

where the entries in the matrices are ordered as q[2,1]1 , q
[2,1]
2 . These matrices are built in a way

that the chain structure of the symmetric group is made explicitly; note how for D[2,1](12) the
diagonal form corresponds to

D[2,1](12) = D[2](12)⊕D[12](12).

With the two matrices in (3.2.3), the remaining four matrices of S3 can be obtained from the
group table in (3.1):

D[2,1](e) = D[2,1](12) ·D[2,1](12) =

(
1 0
0 1

)
,

D[2,1](123) = D[2,1](12) ·D[2,1](23) =

(
−1

2

√
3
2

−
√
3
2

−1
2

)
,

D[2,1](132) = D[2,1](23) ·D[2,1](12) =

(
−1

2
−

√
3
2√

3
2

−1
2

)
,

D[2,1](13) = D[2,1](12) ·D[2,1](132))

(
−1

2
−

√
3
2

−
√
3
2

1
2

)
.

From these matrix representations, it can be checked that the multiplication rules for the group
are satisfied, and from the characters, i.e., the traces of the matrices, it is possible to check that
this is an irreducible representation with Equation (3.5).

We are now in a position to present a connection between Sn and GLd that highlights the
importance of these groups when analyzing quantum systems, where it is made explicit that
quantum systems of n particles, each in a Hilbert space of dimension d, allow a decomposition
of the total Hilbert space in irreducible representations of Sn and GLd.

3.3 Schur-Weyl Duality

Consider a system with n qudits, with a total Hilbert space H = (Cd)⊗n. The product basis is
then

|i1, i2, . . . in⟩ , ij ∈ {0, 1, 2, . . . , d− 1},
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The group GLd acts with its standard representation in each of the qudits, and the group Sn
acts by permuting the n parts. Then, their actions inH can be described as:

U(π) |i1, i2, . . . in⟩ =
∣∣iπ−1(1), iπ−1(2), . . . iπ−1(n)

〉
,

A⊗n |i1, i2, . . . in⟩ = A |i1⟩ ⊗ A |i2⟩ ⊗ · · · ⊗ A |in⟩ .

with A ∈ GLd and U(π) is the matrix that permutes the basis elements according to π. First,
note that U(π) being a representation of Sn, can be decomposed in irreps of Sn according to
(3.4) as:

U(π) =
⊕
λ⊢n

Im[λ]
⊗D[λ](π),

where λ ⊢ n restricts the representation to partitions of n, and m[λ] is the multiplicity of
irrep [λ] in the decomposition of U . Similarly for A⊗n, it can be decomposed as irreducible
representations of GLd labeled by partitions of n with at most d rows, i.e.,

A⊗n =
⊕
λ⊢n,d

V {λ} ⊗ Im{λ} ,

withm{λ} the multiplicity of irrep {λ} in A⊗n, and V {λ}(A) the matrix representation of A in
{λ}. Schur-Weyl Duality states that, due to the action of GLd and Sn commute, they can be
block-diagonalized simultaneously, with both irreps labeled by the same partition λ, implying
that irreps of Sn and GLd decompose completely the total Hilbert space. Schur-Weyl duality
can be represented as:

(Cd)⊗n ∼=
⊕
λ

{λ} ⊗ [λ]. (3.22)

When considering the actions of U(π) and A⊗n this can be read as:

U(π)A⊗n = A⊗nU(π) =
⊕
λ⊢n,d

V {λ}(A)⊗D[λ](π),

which means that U(π) acts independently in Sn irreps and A⊗n acts independently in GLd
irreps. When considering each action separatedly, for U(π) we have:

U(π) =
⊕
λ⊢n,d

Isλ(1) ⊗D[λ](π),

meaning that the multiplicity of irrep [λ] in U decomposition, is given by the dimension of
irrep {λ} (in GLd). Similarly, for A⊗n we have:

A⊗n =
⊕
λ⊢n,d

V {λ}(A)⊗ If [λ] , (3.23)
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where now the multiplicity of irrep {λ} is given by the dimension of irrep [λ] (in Sn). This
is a notion that we introduced previously; the different paths for obtaining an irreducible
representation {λ} in GLd, i.e., the different choices in the orders to symmetrizing and anti-
symmetrizing the indices of the computational basis, correspond to a different multiplicity
of the same irrep. On the other hand, each path to build the Young diagram λ, labels a basis
element of the irrep [λ] in Sn. Then, there are as many multiplicities of the irrep {λ} in GLd as
basis elements of irrep [λ] in Sn. We already explored this property of the decomposition into
irreps of tensor products of copies of GLd in Equation (3.13), where the irrep {2, 1} of GL2

appeared twice in the decomposition into irreps. This is exactly the dimension of irrep [2, 1] in
S3, f [2,1] = 2.

One important consequence of Schur-Weyl duality is that, there is some transformation that
takes the representationsU(π) andA⊗n into their diagonal block forms, i.e., their decomposition
into irreps simultaneously, known as the Schur transform.

3.4 Schur Transform

Schur-Weyl duality states that copies of a Hilbert space can be decomposed simultaneously
into irreps of GLd and Sn. The operation that makes this decomposition explicit is the Schur
transform [CH11]. In this section, we will show how this transformation can be made explicit
when restricting GLd to SL2, permitting the use of the CGC of SL2 for the diagonalization.
This restriction is strong but meaningful in quantum mechanics, allowing us to analyze any
multi-qubit system. The procedure and language presented here are mainly based on [BM18].

We want to find the transformation between the product basis of n qubits to the basis of irreps
of SL2 and Sn. In this setup, the basis for the initial Hilbert space, defined by n copies of the
standard representation SL2 ⊗ SL2 ⊗ · · · ⊗ SL2, can be chosen to be:

|s1, s2, s3, . . . , sn⟩ , si ∈ {0, 1},

i.e., each basis element will be labeled by a binary sequence of length n. We often refer to this
as the computational basis.

On the other side, we want to end up in a simultaneous basis of SL2 and Sn, and, as we know
from Schur-Weyl duality, these are simultaneously labeled by the same partition λ. Then, this
basis will be labeled as:

|λ, ω, q⟩ ,
where ω labels the basis elements of {λ} according to the weight of the representing SSYT, and
q labels the basis elements of [λ], usually with the modified Yamanouchi symbol. We refer to
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this basis as the Schur basis. As the length of the partitions is at most 2 (because d = 2), we will
simplify the notation by using only the value of λ2 to label λ and state the n value. For example,
instead of using [31], we will use [1] in n = 4. In summary, finding the Schur transform is the
same as finding the coefficients that relate the computational basis with the Schur basis:

|s1, s2, s3, . . . , sn⟩ =
n/2∑
λ=0

∑
ω,q

Γλ,ω,qs |λ, ω, q⟩ .

This transformation can be done by refining the well-known process of angular momentum
addition in quantum mechanics, particularly in the case of spin 1/2.

Angular momentum addition

Systems of angular momentum j can be studied as representations in SL2j+1, and the process
of angular momentum addition is nothing but the decomposition into irreps of tensor products
of irreps of SL2j+1. Note that the example at the beginning of subsection 3.2.2 corresponds to
the problem of adding two spins 1/2. The symmetric representation in this example it is the
subspace usually known as the triplet, while the anti-symmetric representation is the singlet
[Gri05]. In this context, j values label the irreps, andm values label the basis elements of irrep
j. Angular momentum addition consists of rewriting the tensor product as a sum of possible
values of total angular momentum:

|j1,m1⟩ |j2,m2⟩ =
∑
J

⟨J,M |j1,m1; j2,m2⟩ |J,M⟩ , M = m1 +m2,

where ⟨J,M |j1,m1; j2,m2⟩ are the CGC of SL2j+1. When restricting to qubit systems, a good
strategy is to consider what happens to the system when adding one qubit at a time. In that
particular case, the angular momentum addition can be expressed as:

|j1,m1⟩ |1/2,±1/2⟩ = ⟨j1 + 1/2,m1 ± 1/2|j1,m1; 1/2,±1/2⟩ |j1 + 1/2,m1 ± 1/2⟩
+ ⟨j1 − 1/2,m1 ± 1/2|j1,m1; 1/2,±1/2⟩ |j1 − 1/2,m1 ± 1/2⟩ ,

(3.24)

and for this case, the CGC have a nice closed expression [CGCJ]:

⟨J,M |j1, 1/2;m1,±1/2⟩ =

J m2 = 1/2 m2 = −1/2

j1 + 1/2
√

j1+m1+1
2j1+1

√
j1−m1+1
2j1+1

j1 − 1/2 −
√

j1−m1

2j1+1

√
j1+m1

2j1+1

.

With this, it is possible to decompose the tensor product of many qubits into a sum on a total
angular momentum basis. The first thing we want to do is to translate this process to the
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language that we use for SL2 representations. By fixing the number of parts n, the relation
between the notations is simple:

J =
n

2
− λ, M =

n

2
− ω,

and the restriction forM , −J ≤M ≤ J , is translated to λ ≤ ω ≤ n− λ. Under this change of
notation, the CGC for adding 1/2 spin corresponds to:

⟨j,m|j1, 1/2;m1,±1/2⟩ = ⟨λ, ω′ + sn|λ′, 0;ω′, sn⟩ = Γλ,ω,nλ′,sn
,

with

Γλ
′,ω,n
λ,sn

=

λ sn = 0 sn = 1

λ′
√

n−λ−ω
n−2λ

√
ω−λ
n−2λ

λ′ + 1 −
√

ω−λ+1
n−2λ+2

√
n−λ−ω+1
n−2λ+2

,

where sn refers to the binary value added in the last step in the process. Then, the process of
adding one qubit shown in Equation (3.24) can be written, ommiting the λ label for the qubit
added (which is always λ = 0) as:

|λ′, ω′⟩ |sn⟩ = Γλ
′,ω′+sn,n
λ′,sn

|λ′, ω′ + sn⟩+ Γλ
′,ω′+sn,n
λ′+1,sn

|λ′ + 1, ω′ + sn⟩ .

Let us use this as an example to decompose a simple tensor product. Consider we want to find
the coefficients for the decomposition of the tensor product of |λ = 2, ω = 2⟩ with n = 5, and
a single qubit, say |1⟩ (or |λ = 0, ω = 1⟩). In young diagrams, we are looking for coefficients
corresponding to the following decomposition:

⊗ ∼= ⊕ .

Note how with our notation, when starting from λ′, we can only obtain λ = {λ′, λ′ + 1} when
adding one qubit. By using the angular momentum addition, we have the following:

|2, 2⟩ |0, 1⟩ = Γ2,3,6
2,0 |2, 3⟩+ Γ2,3,6

3,0 |3, 3⟩ ,

where we ommited λ and ω, but the values are always ordered as |λ, ω⟩. It is worth highlighting
that the possible final states are the ones such that ω = ω′ + sn, i.e., the ω value is fixed.
Calculating both CGC, we obtain the following:

|2, 2⟩ |0, 1⟩ =
√

3− 2

6− 2 ∗ 2
|2, 3⟩+

√
6− 2− 3 + 1

6− 2 ∗ 2 + 2
|3, 2⟩ =

√
1

2
|2, 3⟩+

√
1

2
|3, 3⟩ .
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This process would correspond to the diagonalization of SL2 irreducible representations;
however, it does not distinguish all the permutational inequivalent ways to obtain the initial
state of n− 1 particles. For the previous example, the base |2, 2⟩, i.e.,

0 0 0

1 1
,

can be obtained in several ways from one qubit system:

q1 =
0 ⇒ 0 0 ⇒ 0 0 0 ⇒ 0 0 0

1
⇒ 0 0 0

1 1
,

q2 =
0 ⇒ 0 0 ⇒ 0 0

1
⇒ 0 0 0

1
⇒ 0 0 0

1 1
,

q3 =
0 ⇒ 0 0 ⇒ 0 0

1
⇒ 0 0

1 1
⇒ 0 0 0

1 1
,

q4 =
0 ⇒ 0

1
⇒ 0 0

1
⇒ 0 0 0

1
⇒ 0 0 0

1 1
,

q5 =
0 ⇒ 0

1
⇒ 0 0

1
⇒ 0 0

1 1
⇒ 0 0 0

1 1
,

each with different permutational symmetries, representing the different basis elements of
n = 5, [λ] = [2]. For the Schur transform, this permutational symmetry matters. The only
difference with angular momentum addition is that keeping a register of the different ways
to get to the final partition will be necessary, and such a register turns out to be the basis
elements of Sn irreps. Note that each path of partitions will also mean a path of CGC used in
the construction, and the resultant transformation will also depend on the Sn basis elements,
which is necessary if we want to diagonalize its action simultaneously.

Schur transform on d = 2

First, let us redefine the CGC in terms of where the new box is being added to the initial Young
Tableaux λ′ in each step of the angular momentum addition:

Γλ,ω,nqn,sn =

λ sn = 0 sn = 1

qn = 0
√

n−λ−ω
n−2λ

√
ω−λ
n−2λ

qn = 1 −
√

ω−λ+1
n−2λ+2

√
n−λ−ω+1
n−2λ+2

. (3.25)
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In this sense, the coefficients of the Schur basis for n elements can be obtained from the
coefficients of the Schur basis for n− 1 elements by adding one qubit. Then, one gets:

|λ′, ω′, q′⟩ |sn⟩ = Γλ
′,ω′+sn,n

0,sn |λ′, ω′ + s, q′0⟩+ Γλ
′+1,ω′+sn,n

1,sn |λ′, ω′ + s, q′1⟩ ,

where q′0 (q′1) refers to the sequence obtained from the initial sequence q′ after concatenating
a 0 (1) at the end. A very useful relation that can be obtained from here is the inner product in
the Schur basis of n with those of n− 1:

⟨λ, ω, q|λ′, ω′, q′⟩ |sn⟩ = Γλ,ω,nqn,snδω,ω′+snδq′qn,qδλ,λ′+qn , (3.26)

with qn being the last value of the sequence q, the appearing deltas can be understood as an
equivalent of selection rules from angular momentum addition. Now, consider that we want to
perform the Schur transform in a binary sequence of n elements, i.e., to find the coefficients of:

|s1, s2, s3, . . . , sn⟩ =
n/2∑
λ=0

∑
ω,q

Γλ,qs |λ, ω, q⟩ .

Due to angular momentum addition selection rules, it is clear that ω is fixed to be ω =
∑n

i=1 si.
It is useful to define ωi =

∑i
j=1 si, i.e., the partial weight of the sequence at step i. By picking

one set λ, q, we can see that the coefficient we want to find corresponds to the product of CGC
defined by the sequence and the path q. For example, consider the sequence |010011⟩, and we
want to calculate the coefficient corresponding to λ = 2, q = {0, 1, 0, 0, 0, 1}. This path can be
seen as:

0 ⇒ 0

1
⇒ 0 0

1
⇒ 0 0 0

1
⇒ 0 0 0 1

1
⇒ 0 0 0 1

1 1
,

where at i step, one box filled with si is added to the qi − 1 row. This path can also be seen
from the Young lattice, where the Young diagrams now are filled in each step with the elements
of the sequence s:
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From this point of view, some steps are not possible when the sequence is fixed. For example,
step number four cannot be done to the left; otherwise, we end up in a Young Tableau:

0 0

1 0
,

which is not an SSYT in GLd as the second column is not strictly increasing. Given a possible
path as the previous one, it is then translated to a sequence of CGC to be multiplied:

0 Γ1,1,2
1,1

===⇒ 0

1

Γ1,1,3
0,0

===⇒ 0 0

1

Γ1,1,4
0,0

===⇒ 0 0 0

1

Γ1,2,5
0,1

===⇒ 0 0 0 1

1

Γ2,3,6
1,1

===⇒ 0 0 0 1

1 1

,

With this, we can read the coefficient of the Schur transform to be:

Γ
2,{0,1,0,0,0,1}
010011 = Γ1,1,2

1,1 · Γ1,1,3
0,0 · Γ1,1,4

0,0 · Γ1,2,5
0,1 · Γ2,3,6

1,1 =

√
1

2
· 1 ·

√
1

2
·
√

1

3
·
√

1

2
=

1

2
√
6
.

The same process should be done for all the partitions λ and basis elements q. In general, we
will have:

Γλ,qs =
n∏
i=1

Γλi,ωi,i
qi,si

,

where λi =
∑i

j=1 qi is the partial partition at step i. Then, the Schur transform can be performed
as:

|s⟩ =
∑
λ∼ωs

|λ, ωs⟩
∑
q

Γλ,qs |λ, q⟩ , (3.27)

where ωs is the weight of the full sequence, i.e., ωs =
∑n

i=1 si, and λ ∼ ωs restricts the
appearing partitions to those such that λ ≤ ωs ≤ n− λ, due to the natural restriction of SL2

irreps. Equivalently, we have that the coefficients for transforming one basis into the other are
given by:

⟨λ, ωs, q|s⟩ = Γλ,qs . (3.28)
Summarizing, the Schur transform can be performed as follows: given a sequence s, we start
by choosing λ and q, which is understood as a path in the Young lattice, then, according to
this path, we perform angular momentum addition (By calculating Γ) at each step in the path,
and at the end, we multiply the chain of Γ’s defined by the sequence and the path. Next, we
repeat the process on another q until we scan all the possible λs and qs. In each path step,
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we can check if the filled diagram is a valid SSYT; if not, its corresponding coefficient in the
Schur transform is zero. We have found this perspective very useful for thinking about the
Schur transform. With the Schur transform of the sequences that define the product basis, it is
straightforward to apply to states on such a basis.

Schur transform can be performed over all the sequences defining the computational basis,
and the coefficients Γλ,qs build a unitary matrix that under conjugation simultaneously diago-
nalizes the actions of GL2 and Sn. For example, when applying the Schur transform on the
computational basis of three qubits, we can obtain the following matrix:

Γ =



1 √
1
3

√
1
3

√
1
3√

1
3

√
1
3

√
1
3

1√
2
3

−
√

1
6

−
√

1
6√

1
2

−
√

1
2√

1
6

√
1
6

−
√

2
3√

1
2

−
√

1
2


.

Rows are labeled by the computational basis, and columns by the Schur basis. When conjugating
this matrix on three tensor products of elements A ∈ GLd, one gets:

Γ(A⊗3)Γ† =

 V {0}(A)
V {1}(A)

V {1}(A)

 .

Similarly, with any permutation of S3 acting on the computational basis:

ΓU(π)Γ† =


D[0](π)

D[0](π)
D[0](π)

D[0](π)
D[1](π)

D[1](π)

 ,

where it is worth highlighting that multiplicities of irreps in Sn (GL2) are the dimension of
irreps in GL2(Sn), which is stated by Schur-Weyl duality. This diagonalization can build Sn
irreducible representations without using the Young-Yamanouchi algorithm, as described in
Section 7.1.
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3.5 Schur-Weyl Duality in Quantum information

In quantum mechanics, it is common to encounter systems that exhibit invariance under
permutations; for example, we can model systems composed of identical copies of the same
state, where permuting these copies does not alter the overall system. For this kind of setup,
the total Hilbert space is invariant under permutations, so under Schur-Weyl duality, it must
only contain the trivial representation in Sn. In this context, we will explore two applications
in the field of quantum information that harness this symmetry to yield valuable insights and
solutions.

3.5.1 Keyl-Werner Theorem
Quantum state tomography is a common problem in quantum information that involves recon-
structing an unknown quantum state by making measurements on many identically prepared
copies of the state. For a quantum system described by a density matrix ρ, finding the eigen-
values of ρ gives important information about the system. These eigenvalues, denoted by
a = (a1, a2, . . . , ad), with ai ≥ ai+1, label the conjugacy class in GLd that gathers all equiva-
lent states. One way to approach this problem is through the Keyl-Werner estimation theorem,
as described in [KW01]. The theorem shows how Schur-Weyl duality can be used to obtain a
with high precision in a single measurement over n copies of the state.

Consider the Schur-Weyl transform on n copies of ρ, which, by permutational symmetry, must
be of the form:

ρ⊗n =
⊕
λ

V {λ}(ρ)⊗ If [λ] .

as shown in Equation (3.23). Note how the corresponding part to the symmetric group is just
the identity due to permutation invariance. This setup aims to determine a with high precision
in a single measure on the n copies. For this, note that a collective measurement of λ on the n
copies is described by a set of orthogonal projectors {Pλ}, and the probability of obtaining an
output λ is

p(λ|ρ⊗n) = tr
(
Pλρ⊗n

)
= tr

(
V {λ}(ρ)⊗ If [λ]

)
= tr

(
V {λ}(ρ)

)
⊗ tr

(
If [λ]

)
= sλ(a)f

[λ],

where in the last equality, we used the Schur polynomial sλ(a) in Equation (3.14) for the
character of {λ} representation, and the fact that the trace of the identity element in irrep [λ]
is the dimension of the irrep f [λ] in Equation (3.2.3). We can then use the asymptotics in f [λ]

and sλ(a) shown in Equations (3.20) and (3.15) to obtain the bounds:(∏
i

aλii

)(
n!∏
i vi

)
≤ sλ(a)f

[λ] ≤ sλ(1)

(∏
i

aλii

)(
n!∏
i λi

)
,
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where λi and vi are defined in (3.2.3). Then, sλ(a)f [λ], follows a large deviation law that can be
obtained by Stirling’s approximation to be:

sλ(a)f
[λ] ∼ e−nD(λ̄||a) (3.29)

where D(λ̄||a) is the relative entropy between the set of eigenvalues a and the normalized
partition λ̄ = λ/n:

D(λ̄||a) =
∑
i

λi log

(
λi
ai

)
, (3.30)

which is 0 only when a = λ̄. Then, the probability p(λ|ρ⊗n)will be asymptotically concentrated
in the normalized partition λ̄ that corresponds to the set of eigenvalues a. In this sense, the
output of the λ measurement, with high probability, will give an output λ̄ = a, allowing a
single measure to determine a.

3.5.2 Bipartite entanglement concentration

In several quantum information applications, the protocols are designed to use LME states as
inputs. However, preparing perfect LME states may be a challenging task. Because of this, it is
useful to consider one protocol that takes many entangled states (but not necessarily LME) and
concentrates the entanglement in some reduced quantity of LME states. This process is known
as Entanglement Concentration, and the first protocol was proposed by [BBP+96]; however, we
will present the Hayashi-Matsumoto protocol [MH07] which uses Schur-Weyl Duality and the
Keyl-Werner theorem.

This protocol exploits the fact that when considering the tensor product of two irreps of Sn, the
invariant subspace is one-dimensional. For a bipartite state, the total Hilbert space corresponds
to H = H1 ⊗H2, when taking n copies of the bipartite state, the copied total Hilbert space is:

(H⊗n)Sn =
(
H1⊗n ⊗H2⊗n

)Sn

,

where (·)Sn refers to the subspace invariant under the permutation of the copies. We can state
Schur-Weyl duality for the copied Hilbert space of each part. According to Equation (3.22), we
have:

(
H1⊗n ⊗H2⊗n

)Sn ∼=

⊕
λ1⊢n,d

{λ1} ⊗ [λ1]

⊗

⊕
λ2⊢n,d

{λ2} ⊗ [λ2]

Sn

.
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We can group the corresponding parts of GLd and Sn, and noting that the permutation invari-
ance only affects the Sn irreps, we have:(

H1⊗n ⊗H2⊗n
)Sn ∼=

⊕
λ1,λ2⊢n,d

(
{λ1} ⊗ {λ2}

)
⊗
(
[λ1]⊗ [λ2]

)Sn
.

The invariant subspace ([λ1]⊗ [λ2])
Sn refers to the subspace that acts trivially under Sn i.e.,

copies of the trivial representation [n] in the tensor product [λ1] ⊗ [λ2]. We saw previously
that the multiplicity of such copies is known as the Kronecker coefficient and can be calculated
from the characters as:

kλ1λ2n =
1

n!

∑
π∈Sn

χ[λ1](π)χ[λ2](π)χ[n](π),

as all the characters are 1 in the trivial representation we have:

kλ1λ2n =
1

n!

∑
π∈Sn

χ[λ1](π)χ[λ2](π) = δλ1λ2 .

In the last step, we used the orthogonality of the characters from equation (3.6). Then, the
invariant subspace only exists when λ1 = λ2 =: λ and it is a one-dimensional subspace. Finally,
the Schur-Weyl duality for this setup can be simplified to:(

H1⊗n ⊗H2⊗n
)Sn ∼=

⊕
λ⊢n,d

({λ} ⊗ {λ})⊗ ([λ]⊗ [λ])Sn

This simplification is only possible for bipartite systems, and it is used in Hayashi-Matsumoto
protocol to obtain maximally entangled states from copies of entangled (but not maximally
entangled) bipartite states in any dimension. We will outline the mathematical structure of this
protocol for the two qubits case, where some of the techniques we introduced before appear
and prove to be useful.

It was shown in equation (2.10) that any entangled state of two qubits can be written in the
normal form:

|ψ⟩ = √
p0 |00⟩+

√
1− p0 |11⟩ .

It can be seen that the entanglement entropy of this state is given by:

E(|ψ⟩) = −p0 log2 p0 − (1− p0) log2(1− p0) = H2(p0),
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where H2 is the binary entropy function. By taking n copies of the state, the coefficient
expansion corresponds to:

|ψ⟩⊗n =
n∑

ω=0

(p0)
(n−ω)/2 (1− p0)

ω/2
∑
s∼ω

|s⟩ |s⟩ , (3.31)

where s are binary sequences of length n, and s ∼ ω denotes all the binary sequences with ω
ones. Now, let us focus on the Schur transform of the sequences. According to equation (3.27),
we have:∑

s∼ω

|s⟩ |s⟩ =

(∑
λ

|λ, ωs⟩
∑
q

Γλ,qs |λ, q⟩

)(∑
λ′

|λ′, ωs⟩
∑
q′

Γλ
′,q′

s |λ′, q′⟩

)
,

expanding and grouping the GL2 parts and the Sn parts of the two terms on the right hind
side, we have:

∑
s∼ω

|s⟩ |s⟩ =
∑
λ,λ′

|λ, ω⟩ |λ′, ω⟩

(∑
q,q′

Γλ,qs Γλ
′,q′

s |λ, q⟩ |λ′, q′⟩

)
, (3.32)

Now, we know that as the sum on the left considers all the sequences with the same weight ω,
it is invariant under the simultaneous permutation of any of the n elements in both sequences,
i.e., ∑

s∼ω

|s⟩ |s⟩ = π ⊗ π
∑
s∼ω

|s⟩ |s⟩ ,

then, for the Sn part of the Schur transform, we have:

∑
q,q′

n∏
i,j=1

Γλ,qs Γλ
′,q′

s |λ′, q′⟩ =
∑
q,q′

Γλ,qs Γλ
′,q′

s Dλ(π) |λ, q⟩Dλ′(π) |λ′, q′⟩ . (3.33)

It is possible to define a linear map known as partial transpose [MH07] such that:

t(|ϕ1⟩ |ϕ2⟩) = |ϕ1⟩ ⟨ϕ2| , |ϕ1⟩ |ϕ2⟩ = t−1(|ϕ1⟩ ⟨ϕ2|),

then we can rewrite RHS of Equation (3.33) as:

t−1

(
Dλ(π)

(∑
q,q′

Γλ,qs Γλ
′,q′

s |λ, q⟩ ⟨λ′, q′|

)
Dλ′(π)†

)
.

Note that this is invariant under any π ∈ Sn and as λ is an irrep, we know from Schur’s
lemma that, first, λ = λ′, otherwise the corresponding summand is null, and when λ = λ′ the
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summand has to be proportional to the identity. Furthermore, it is not hard to show that the
proportionality constant is 1, then, one gets replacing in (3.33):(∑

q,q′

Γλ,qs Γλ
′,q′

s |λ, q⟩ |λ′, q′⟩

)
= t−1

(∑
q

|λ, q⟩ ⟨λ, q|

)
δλλ′ =

∑
q

|λ, q⟩ |λ, q⟩ δλλ′ ,

using this result in Equation (3.32) we finally obtain for the Schur transform:∑
s∼ω

|s⟩ |s⟩ =
∑
λ,q

|λ, ω, q⟩ |λ, ω, q⟩ .

From Equation (3.31) we get:

|ψ⟩⊗n =
∑
λ

(
n∑

ω=0

(p0)
(n−ω)/2(1− p0)

ω/2 |λ, ω⟩ |λ, ω⟩

)(∑
q

|λ, q⟩ |λ, q⟩

)
,

where sλ(p0) is the Schur polynomial defined in Equation (3.14). By normalizing both terms
and including the restriction from GL2, λ ≥ ω ≥ n− λ, we get:

|ψ⟩⊗n =
∑
λ

√
f [λ]sλ(p0)

(
n−λ∑
ω=λ

(p0)
(n−ω)/2(1− p0)

ω/2√
sλ(p0)

|λ, ω⟩ |λ, ω⟩

)(
1√
f [λ]

∑
q

|λ, q⟩ |λ, q⟩

)
,

(3.34)
This transformation can be seen as

|ψ⟩⊗n =
∑
λ

√
f [λ]sλ(p0) |Φλλ(p0)⟩ |Kλλ⟩ ,

where |Φλλ(p0)⟩ , |Kλλ⟩ are normalized entangled states in {λ} ⊗ {λ} and [λ]⊗ [λ] represen-
tations respectively, and f [λ]sλ(p0) corresponds to the probability of getting λ as an outcome
of a projective measurement in the irreps. The Hayashi-Matsumoto protocol consists on taking
n copies of any bipartite state and measuring the corresponding irrep on at least one of the
parts. After this projective measurement, the total state ends up with a vector that is separable
in the partition of {λ} ⊗ {λ} and ([λ]⊗ [λ])Sn :

|ψ⟩⊗n Pλ−→ |Φλλ(p0)⟩ |Kλλ⟩ .

The part corresponding to the invariant subspace ([λ]⊗ [λ])Sn is what we call a Kronecker state,
which is locally maximally entangled. Recalling that the individual reduced density matrices of
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Kronecker states are proportional to the identity, its entropy of entanglement, from Equation
(1), is given by

E(|Kλλ⟩) = S(
1

f [λ]
I
[λ]
f ) = log2 f

λ.

From Equation (3.29), the probability is asymptotically concentrated in the partition λ∗/n = p0.
By Using (3.21) we have:

E(|Kλ∗λ∗⟩) = log2f
λ∗ ∼ log2(2

nH(λ∗/n)) = nH(p0),

showing how all the entanglement from the n initial copies is concentrated asymptotically.

When considering a generalization of the Hayashi-Matsumoto protocol for systems with more
particles, one quickly finds that this is not possible. When considering n copies of a three-qubit
state, for example, by applying the Schur transform in the n copies of each part, the most
general form is given by:

|ψ⟩⊗n =
⊕
λ1λ2λ3

√
p(λ1λ2λ3|ψ)

kλ1λ2λ3∑
i=1

|Φλ1λ2λ3,i(ψ)⟩ ⊗ |Kλ1λ2λ3,i⟩

 , (3.35)

where |Φλ1λ2λ3,i(ψ)⟩ is some normalized state in Vλ1 ⊗ Vλ2 ⊗ Vλ3 , which depends on the pa-
rameters of the input state |ψ⟩, |Kλ1λ2λ3,i⟩ is a normalized Kronecker state asociated to the
i-th multiplicity, and p(λ1λ2λ3|ψ) is the probability of projecting in a particular set λ1λ2λ3.
After a projective measurement in any set λ1λ2λ3, the resultant state is generally not separable
between theGL2 and Sn parts, and hence it is not possible to extract the entanglement from the
Kronecker states |Kλ1λ2λ3,i⟩. However, we will see that for states in the multipartite W-class,
the generalization is possible, and makes possible not only the generalization of Hayashi-
Matsumoto protocol to multiparticle systems, but also gives explicit expressions for calculating
Kronecker states for more than two qubits.

These applications show not only the utility of considering Schur-Weyl duality in permutational
invariant setups but also how Kronecker states naturally emerge as the bearers of entangle-
ment when examining the asymptotic behavior of such systems. In the next chapter, we will
formally introduce Kronecker states and outline various approaches to their explicit calculation
while addressing the primary challenges associated with these methods. Furthermore, we
will introduce the generalized entanglement concentration protocol that allows for the exact
computation of Kronecker states within the W-SLOCC class. This protocol will be pivotal for
the results we present in the final chapter.
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4
Kronecker states

In the introduction, we emphasized the significance of multiparticle maximally entangled
states in high dimensions as they enable the implementation and improvement of several
quantum information protocols. Due to the increasing complexity of quantum systems, it is
essential to have a better understanding of the entanglement structure of many particles. To
address this issue, we propose studying the maximally entangled subspace corresponding to the
permutationally invariant subspace of the tensor product of irreducible representations of Sn.
We refer to this subspace as the Kronecker Subspace, as the Kronecker coefficient determines its
dimension, and the states belonging to this subspace are called Kronecker states. The primary
objectives of this research are to comprehend the mathematical structure of Kronecker states
and to develop a tool for constructing the Kronecker subspace.

In this chapter, we formally define Kronecker states and highlight their properties, which make
them special LME states, and justify why we focus on obtaining them. Later, we explore a
naive approach to calculating them, showing how, in essence, calculating Kronecker states
is a complex problem. We explore the existing connection between Kronecker states and
Clebsch Gordan Coefficients (CGC) of the symmetric group and discuss some of the known
methods to calculate the CGC. We also show that the problem of calculating Kronecker states is
equivalent to the problem of finding the CGC of the symmetric group Sn. We finish this chapter
by introducing a method to calculate a specific kind of Kronecker states that appear when
generalizing the entanglement concentration protocol presented in Section 3.5.2 to multipartite
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states in the W-class. This method ends up with an analytical expression that is easy to follow
for calculating this kind of Kronecker states, which we nameW-Kronecker states. However, this
approach has limitations as it only allows us to calculate a small part of the total Kronecker
subspace. These limitations are overcome with the method we will introduce in Chapter 6,
where we build general multiqubit states using only W-states and bipartite states. From this
construction general Kronecker states can be obtained from W-Kronecker states that can be
calculated explicitly.

4.1 Definition

Aswe saw in the last chapter, the Schur-Weyl duality states thatn tensor copies of a d−dimensional
Hilbert spaceH ≃ Cd can be decomposed into a direct sum of coordinated irreducible repre-
sentations (irreps) of the General Linear group GLd and the Symmetric group Sn,

H⊗n ∼=
⊕
λ⊢n,d

{λ} ⊗ [λ], (4.1)

where {λ} are irreps of GLd, [λ] are irreps of Sn, and λ ⊢ n, d restricts the irreps to partitions
of n with length at most d. Equation (4.1) is known as the isotypic decomposition [BCH05]. It is
worth noting, that the dimension of {λ}, the number of SSYT is given by the Schur polynomial
(or equivalently the Weyl formula [FH04] evaluated at 1⊗n) and grows polynomially in n , while
the dimension of [λ] is given by the hook formula in Equation (3.2.3), and grows exponentially
with n as exp

(
nH(λ̄)

)
[CM06], with H the Shannon entropy, and λ̄ the reduced partition

λ̄ = λ/n.

Now, consider n copies of a state with N parts, whose Hilbert space corresponds to H =
⊗N
i=1Hi, where Hi labels the Hilbert space associated to each particle. Then, we can apply

Schur-Weyl duality locally to the copies of each particle Hilbert space:

H⊗n = H1⊗n ⊗ · · · ⊗ HN⊗n
=

(⊕
λ1

{λ1} ⊗ [λ1]

)
⊗ · · · ⊗

(⊕
λN

{λN} ⊗ [λN ]

)
,

we can group this multilocal isotypic decomposition as:

H⊗n ∼=
⊕
λ

{λ} ⊗ [λ],

where we extended the boldface notation to partitions and irreps as: λ = (λ1, . . . , λN), {λ} =⊗
i{λi} , [λ] =

⊗
i[λ

i], and all λi ⊢ n, d. When considering permutationally invariant systems
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of n copies, i.e., systems that are invariant under the reordering of the n copies, we see that they
lie in the symmetric part of the total Hilbert space

(
H⊗n)Sn , where (·)Sn represents invariance

under Sn. Therefore the multilocal isotypic decomposition reads(
H⊗n)Sn ∼=

⊕
λ

{λ} ⊗ [λ]Sn ,

where [λ]Sn is the invariant subspace of [λ] under the diagonal action of Sn, i.e., a subspace
where simultaneous actions of Sn in itsN parts act trivially. We can find the dimension of such
invariant subspace by calculating how many copies of the trivial representation [n] appear in
the decomposition of the tensor product [λ]. We know from Equation (3.7) that this multiplicity
can be obtained from the characters as:

dim([λ]Sn) =
1

|n!|
∑
π∈Sn

χ[λ1](π)χ[λ1](π)χ[λ2](π) . . . χ[λN ](π) · χ[n](π),

as χ[n](π) is always 1, then this dimension corresponds to a Generalized Kronecker coefficient,
as it was defined for the case of three irreps in Equation (3.9), i.e.:

kλ = dim([λ]Sn) =
1

|n!|
∑
π∈Sn

χ[λ1](π)χ[λ1](π)χ[λ2](π) . . . χ[λN ](π). (4.2)

This value can also be understood as the multiplicity of any of the irreps [λi] in the decomposi-
tion of the tensor product of the complementary irreps, [λī], in the sense that we defined the
Kronecker coefficient in Equation (3.9). As the dimension of the invariant subspace is given by
the Kronecker coefficient, we name the states in the invariant subspace [λ]Sn , Kronecker states,

|Kλ⟩ ∈ [λ]Sn .

Kronecker states are the main focus of this research. They are maximally entangled states
when considering the bipartition of one part against the others (as we will prove soon), also
known as Locally Maximally Entangled (LME) states. We also name the invariant subspace
[λ]Sn as the Kronecker subspace. It is a very special vector space. In general, the Kronecker
coefficient is greater than one, meaning that Kronecker subspace can be spanned by kλ > 1
orthogonal Kronecker states. Furthermore, being elements of a vector space, they have the
property that any complex linear combination of K Kronecker states is another Kronecker
state:

c1 |Kλ,1⟩+ c2 |Kλ,2⟩+ . . . cK |Kλ,K⟩ ∈ [λ]Sn , ∀ci ∈ C, |Kλ,i⟩ ∈ [λ]Sn .

Another important property is that by definition, these states are invariant under the diagonal
action of Sn, i.e.:

D[λ1](π)⊗ · · · ⊗D[λN ](π) |Kλ⟩ = |Kλ⟩ , ∀π ∈ Sn,
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with Dλ(π) the matrix representation of the element π in the irrep λ. This property is impor-
tant on its own, as there is a set of operations (in fact, a group) that leave Kronecker states
invariant; this makes Kronecker states good candidates to perform quantum information tasks.
For example,Werner states [Wer89], which are invariant under the simultaneous action of Ud
in each of the parts, have been used for quantum information applications such as quantum
data hiding[Egg03], and entanglement teleportation [LK00], and have also been used to study
fundamental quantum problems such as nonadditivity of entanglement [SST01]. However,
exploring applications of Kronecker states goes beyond the scope of this research.

The invariance described before can also be used to show that Kronecker states are LME states.
Note that the reduced density matrices in each part, ρi(Kλ) = trı(|Kλ⟩ ⟨Kλ|), i.e., the partial
trace of the density matrix in all the parts but i, remain invariant under conjugacy with elements
of Sn:

D[λi](π)ρi(Kλ)D
[λi]†(π) = ρi(Kλ).

As [λi] is an irrep of Sn by Schur’s lemma, the reduced density matrix is proportional to the
identity in the irrep [λi]:

ρi(Kλ) = cIf [λi] ,

with f [λi] the dimension of irrep [λi]. As the density matrix has trace equal to one, and the
trace of the identity is the dimension of the irrep, the proportionality constant can be found by
tracing in both sides to be 1

f [λ]
, then we get

ρi(Kλ) =
1

f [λi]
If [λi] .

As the reduced density matrix is proportional to the identity in all of the irreps, Kronecker
states are maximally entangled states when considering the bipartition of one part against
the other as defined in Equation (2.6). LME states are an important resource in quantum
information protocols such as quantum teleportation [BBC+93], quantum key distribution
[BB14], or quantum error correction[DNM13].

Despite the promising properties of Kronecker states, studying their possible applications in
quantum information is very difficult without a clear understanding of their mathematical
structure. The main purpose of this document is to introduce a method to calculate explicitly
any multipartite Kronecker state for sets of partitions λ where each irrep is at most of two
parts (d = 2), which we will see soon, is a highly non-trivial task.
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4.2 Obtaining Kronecker states

In this section, we will show an algorithm to calculate Kronecker states to understand how
complex this process can be. We start with the simplest cases and explore some examples for
more complicated ones. Let us first consider systems of two parts; for this case, the Kronecker
coefficient is given by

kλ1λ2 =
1

n!

∑
π∈Sn

χ[λ1](π)χ[λ2](π) = δλ1λ2 , (4.3)

following from the orthonormality of characters seen in Equation (3.6). Then, the Kronecker
subspace only exists for λ1 = λ2 =: λ, and it is one-dimensional, i.e., there is only one
Kronecker state. To find this state, we expand it in its coefficients as:

|Kλλ⟩ =
∑
i,j

Ki,j |λ, qi⟩ |λ, qj⟩ .

By definition, this state is invariant under any permutation π acting simultaneously in each
part, that is:

|Kλλ⟩ = D[λ](π)⊗D[λ](π) |Kλ,λ⟩ =
∑
i,j

Ki,jD
[λ](π)⊗D[λ](π) |λ, qi⟩ |λ, qj⟩ .

Summing over all permutations in both sides we get:

n! |Kλλ⟩ =
∑
i,j

Ki,j

∑
π

(
D[λ](π)⊗D[λ](π)

)
|λ, qi⟩ |λ, qj⟩ .

For the tensor product, we can apply Equation (3.5), which also shows how this state only
exists for λ1 = λ2. By doing this, we get:

n! |Kλ,λ⟩ = n!
∑
i,j

Ki,j
1

f [λ]

∑
kl

δl,iδl,j |λ, qk⟩ |λ, qk⟩ ,

which leads to the following expression:

|Kλ,λ⟩ =
∑

lKl,l

f [λ]

∑
k

|λ, qk⟩ |λ, qk⟩ ,

as
∑

lKl,l is a constant, and we are looking for a normalized state, the only Kronecker state is
then:

|Kλ,λ⟩ =
1√
f [λ]

∑
i

|λ, qi⟩ |λ, qi⟩ . (4.4)
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This expression is the canonical form of any Kronecker state of two parts. Note how we
already calculated them in Equation (3.34) for the Hayashi-Matsumoto protocol as the carriers
of entanglement in the asymptotic case.

The problem of calculating Kronecker states becomes significantly harder for three or more
parts. As there is no general expression for Kronecker states in different sets λ = λ1λ2λ3 of
irreps, Kronecker states must be built for each possible set λ. One possible approach is to use
the projector onto the invariant subspace to obtain a set of Kronecker states.

For any representation X of a group G, it is possible to build the projector P λ
X onto the carrier

space of any irreducible representation λ as [CPW02]:

P λ
X =

dim(λ)

|G|
∑
g∈G

χλ(g)X(g). (4.5)

For our purposes, we want to build the projector onto the invariant subspace [n] of the tensor
product representation [λ1]⊗ [λ2]⊗ [λ3]. Following Equation (4.5), we get:

P [n]
[λ] =

1

n!

∑
π∈Sn

D[λ1](π)⊗D[λ2](π)⊗D[λ3](π), (4.6)

where we have used the fact, as pointed out before, that χ[n](g) = 1. With this, a possible way
to construct Kronecker states is to calculate such a projector and apply it to any state in [λ].
This process ensures that the resultant state belongs to the invariant subspace, and hence, it is
a Kronecker state:

P
[n]
[λ] |ψλ⟩ ∈ [λ]Sn , ∀ |ψλ⟩ ∈ [λ].

Let’s use this method for the simplest case with n = 3 and [λ1] = [λ2] = [λ3] = [21]. Then, we
need all the representation matrices for [21], which can be obtained by the Young Yamanouchi
algorithm, or, from the procedure described to build matrix representations proposed in Section
7.1. Using the shorthand notation where we label each irrep only by the second element of the
partition, [λ] = [λ2], the six matrices are:

D[1](e) =

(
1 0
0 1

)
, D[1](12) =

(
1 0
0 −1

)
, D[1](23) =

(
−1

2

√
3
2√

3
2

1
2

)

D[1](13) =

(
−1

2
−

√
3
2

−
√
3
2

1
2

)
, D[1](123) =

(
−1

2

√
3
2√

3
2

−1
2

)
, D[1](231) =

(
−1

2
−

√
3
2

−
√
3
2

1
2

)
.
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where the two basis elements are the Yamanouchi symbols q[1]1 = {001}, q[1]2 = {010}. With
these matrices, the projector can be constructed, yielding:

P [3]
[1]⊗[1]⊗[1] =

1

3!

∑
π∈S3

D[1](π)⊗D[1](π)⊗D[1](π) =



1
4

0 0 −1
4

0 −1
4

−1
4

0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1

4
0 0 1

4
0 1

4
1
4

0
0 0 0 0 0 0 0 0
−1

4
0 0 1

4
0 1

4
1
4

0
−1

4
0 0 1

4
0 1

4
1
4

0
0 0 0 0 0 0 0 0


.

(4.7)
Note from Equations (4.2) and (4.6), that the Kronecker coefficient can also be calculated as:

kλ = tr
(
P [n]

[λ]

)
;

then, for the set λ = (1, 1, 1) in n = 3, the Kronecker coefficient can be obtained to be
k(1,1,1) = tr

(
P [0]

[1]⊗[1]⊗[1]

)
= 1. There is only one Kronecker state in the invariant subspace

([1]⊗ [1]⊗ [1])S3 , which can be obtained by applying the projector to any state whose projection
is not null. For example, one possible state corresponds to the first element of the product basis
labeled as: ∣∣λ, qλ〉 = ∣∣∣111, q[1]1 q

[1]
1 q

[1]
1

〉
,

which corresponds to the first column of P [3]
[1]⊗[1]⊗[1] in Equation (4.7) . When acting on it with

the projector and normalizing the result, one gets the Kronecker state:

|K111⟩ =
1

2

(∣∣∣111, q[1]1 q
[1]
1 q

[1]
1

〉
−
∣∣∣111, q[1]1 q

[1]
2 q

[1]
2

〉
−
∣∣∣111, q[1]2 q

[1]
1 q

[1]
2

〉
−
∣∣∣111, q[1]2 q

[1]
2 q

[1]
1

〉)
.

It can be noticed that any other choice of state to project on will to |K111⟩ up to a constant,
which correspond to the same state. Some remarkable results arise from this simple example.
First, note that the irrep [21] is of dimension 2, so we can consider this state a LME state of 3
qubits. A clearer visualization is obtained when dropping the λ label, and making the change
of notation q[1]1 → 0, q

[1]
2 → 1 in the kets. The obtained Kronecker state corresponds to:

|K111⟩ =
1

2
(|000⟩ − |011⟩ − |101⟩ − |110⟩) . (4.8)

It is easy to check that the reduced density matrices in each part are proportional to the identity:

ρ1 = ρ2 = ρ3 =
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) = I2

2
,
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in correspondence with (4.1), showing again that this is a LME state. Now, recalling from
Section 2.3, we know that the Hilbert space of three qubits contains only one stable orbit
corresponding to the GHZ-class, i.e., all critical states (or LME states) are LU-equivalent to the
GHZ state. The equivalence can be shown in this case by performing a multi-local rotation
given by

|0′⟩ = |0⟩+ |1⟩√
2

, |1′⟩ = |0⟩ − i |1⟩√
2

.

Then, the obtained Kronecker state can be rewritten as:

|K′
111⟩ =

1√
2
(|0′0′0′⟩+ |1′1′1′⟩) .

This result is expected; it is not possible to obtain an LU inequivalent state to the GHZ state
within the tensor product of three Hilbert spaces of dimension two.

This approach for calculating Kronecker states is easy to follow and to replicate for other
values of n and λ; however, the complexity of this approach relies on building of the projector
P [n]

[λ] , a squared matrix obtained by adding n! matrices with dimension
(
f [λ1] × f [λ2] × f [λ3]

)2
,

where each irrep dimension f [λ] grows exponentially with n as shown in Equation (3.21).
This approach becomes unfeasible very fast; for example, the first case where the Kronecker
coefficient for three irreps is greater than one with irreps of d = 2 is in n = 6 with [λ1] =
[λ2] = [λ3] = [4, 2] (or simply [2] using the short notation). In this case, the dimensions of the
irreps are all f [2] = 9, so we need to calculate and add 6! = 120 square matrices of dimension
729×729, and then look for two states in [2]⊗ [2]⊗ [2] that project onto two different Kronecker
states, which can be orthogonalized to obtain a basis for ([2]⊗ [2]⊗ [2])S6 . This method becomes
a major task even for small values of n.

4.3 Kronecker states and Clebsch-Gordan coefficients

Obtaining closed expressions for the basis of the Kronecker subspaces is a highly non-trivial
task. For the goal of obtaining meaningful Kronecker subspaces, i.e., Kronecker subspaces of
many particles with high dimensions and high Kronecker coefficient, the projector approach
cannot be considered. When looking for other options to calculate Kronecker states from rep-
resentation theory, it can be seen that Kronecker states correspond with the Clebsch-Gordan
coefficients (CGC) of the symmetric group up to a factor.

We are interested in calculate states in the invariant subspace of the tensor product of three
irreps, ([λ1]⊗ [λ2]⊗ [λ3])

Sn . For analyzing this subspace we can start by coupling first the
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irreps [λ1] and [λ2], and decompose the tensor product into intermediate irreps [λ] as shown in
Equation (3.8):

([λ1]⊗ [λ2]⊗ [λ3])Sn =

((⊕
λ⊢n

[λ][λ1]⊗[λ2] ⊗ Ikλ1λ2λ

)
⊗ [λ3]

)Sn

,

where [λ][λ1]⊗[λ2] recalls that these copies of [λ] are the ones appearing in the decomposition of
[λ1]⊗ [λ2]. Then we can repeat the process by now decomposing the tensor product of [λ3]
with each of the copies of [λ],

([λ1]⊗ [λ2]⊗ [λ3])Sn =
⊕
λ⊢n

(
[λ][λ1]⊗[λ2] ⊗ [λ3]

)Sn ⊗ Ikλ1λ2λ . (4.9)

Then, from Equation (4.3) we know that the invariant subspace from the tensor product
of two irreps of Sn only exists when both irreps are the same, and is multiplicity free. So,(
[λ][λ1]⊗[λ2] ⊗ [λ3]

)Sn
=
(
[λ3][λ1]⊗[λ2] ⊗ [λ3]

)Sn
δλλ3 . Substituting in the previous equation, we

have:
([λ1]⊗ [λ2]⊗ [λ3])Sn =

(
[λ3][λ1]⊗[λ2] ⊗ [λ3]

)Sn ⊗ Ikλ1λ2λ3 .

Then, the problem can be thought of as looking for kλ1λ2λ3 copies of two parts Kronecker states.
We also know that, for bipartite systems, Kronecker states have the canonical form shown in
Equation (4.4), then, this invariant subspace can be spanned by kλ1λ2λ3 Kronecker states, each
built from a copy of [λ3] in the decomposition of [λ1]⊗ [λ2], where each Kronecker state can
be written as:

|Kλ1λ2λ3,i⟩ =
1√
f [λ3]

∑
q[λ

3]

∣∣∣λ3, q[λ3], i〉
λ1λ2

∣∣∣λ3, q[λ3]〉 , (4.10)

where q[λ3] labels the basis elements of irrep [λ3], and
∣∣∣λ3, q[λ3], i〉

λ1λ2
refers to the basis

elements of the i-th copy of λ3 in the decomposition of [λ1] ⊗ [λ2]. However, we want to
expand the Kronecker state in the product basis

∣∣∣λ1λ2λ3, q[λ1]q[λ2]q[λ3]〉, and for doing that, we

need to relate the basis elements of
∣∣∣λ3, q[λ3], i〉

λ1λ2
with the product basis where it came from,∣∣∣λ1λ2, q[λ1]q[λ2]〉. As described previously in Equation (3.10) the relation of those basis is given

by the CGC, in this case, of the Symmetric group as:∣∣∣λ3, q[λ3], i〉 =
∑

q[λ
1]q[λ

2]

C
[λ1][λ2][λ3],i

q[λ
1],q[λ

2],q[λ
3]

∣∣∣λ1, q[λ1]〉 ∣∣∣λ2, q[λ2]〉 .
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By plugging this in Equation (4.10) we get that Kronecker states can be calculated from CGC
of Sn as:

|Kλ1λ2λ3,i⟩ =
1√
f [λ3]

∑
q[λ

1]q[λ
2]q[λ

3]

C
[λ1][λ2][λ3],i

q[λ
1],q[λ

2],q[λ
3]

∣∣∣λ1λ2λ3, q[λ1]q[λ2]q[λ3]〉 .
We can also consider the coefficient expansion of Kronecker states as represented by:

|Kλ1λ2λ3,i⟩ =
∑

q[λ
1]q[λ

2]q[λ
3]

Kλ1λ2λ3,q[λ
1]q[λ

2]q[λ
3],i

∣∣∣λ1λ2λ3, q[λ1]q[λ2]q[λ3]〉 .
Then, the relation between coefficients of Kronecker states and CGC of Sn is given by:

Kλ1λ2λ3,q[λ
1]q[λ

2]q[λ
3],i =

1√
f [λ3]

C
[λ1][λ2][λ3],i

q[λ
1],q[λ

2],q[λ
3]
. (4.11)

In other words, finding the coefficient expansion of Kronecker states in the product basis of the
irreps is equivalent to the problem of finding the CGC of the symmetric group corresponding
to the same set of irreps. This remarkable connection allows some progress when trying
to calculate Kronecker states. For example, in [ML83], expressions for specific sets λ with
kλ = 1 are obtained; however, there is no general expression for cases with multiplicity, i.e.,
kλ > 1. In [CPW02], the authors introduce the Eigenfunction method to analyze irreps of
Sn. Through building class operators, which correspond to the sum of all the operators in
the same conjugacy class, they show that by a proper choice of linear combinations of class
operators, it is possible to build a matrix M . Then, they show that CGC can be obtained
as coefficients of eigenvectors of M in the product basis of two irreps, namely [λ1] ⊗ [λ2].
Compared with the projector method, this one is more efficient because the matrix to be built
being of dimension (f [λ1] ⊗ f [λ2])2. However, the complexity again grows when looking for
the eigenvectors of such matrix. Another problem of this approach is that, as the authors point
out in [GC85], the separation of the different copies of [λ3] in [λ1]⊗ [λ2] is arbitrary and can
only be partially solved by imposing symmetries in the construction, which becomes harder
as the multiplicity of the copies grows. In [DPD02], the authors use the isoscalar factors (ISF),
which relate representations of Sn with those of Sn−1, to find expressions for CGC depending
on ISF. They explore this construction and obtain expressions for calculating ISF and hence
CGC for certain sets λ with specific relations between the λi. They focus on cases with no
multiplicity and state that the method can be used even with multiplicity; however, there is no
clear interpretation of the multiplicity separation. A more recent advance in this direction is
shown in [DH12], where the authors enlarge the list of sets allowed by the ISF method and
introduce a list of symmetries in CGC. However, they also focus on cases with no multiplicity,
and the problem of multiplicity separation is not described. All of these methods have at least
one of the following problems:
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• The method becomes very inefficient rapidly with the dimensions of the irreps.

• The method is not general for the possible sets λ.

• The method cannot be used with kλ > 1 or does not lead to a meaningful way to separate
the multiplicities.

One objective of this thesis is to provide an alternative algorithm that allows calculating
Kronecker states, and hence Clebsch Gordan coefficients of Sn for any set λ with each λi
of at most two parts, whose complexity grows slowly compared with the existing methods,
and where the multiplicity problem is solved partially by the nature of the construction. In
fact, for many sets λ, we can set the first base of the invariant subspace to correspond to the
only Kronecker state appearing in the multipartite W-class, which can be calculated from an
analytical expression as we will see in next section.

4.4 W-Class entanglement concentration andW-Class Kro-
necker states

Bipartite Kronecker states naturally arise in the bipartite entanglement protocol proposed by
Hayashi-Matsumoto [MH07] described in Section 3.5.2. As was discussed there, a multipar-
tite generalization is not directly obtained, due to the multiplicity of the invariant subspaces,
making it impossible to separate the states belonging to GLd irreps from those belonging to
Sn irreps. Remarkably, a generalization of the protocol is possible when the states used as
input belong to the multipartiteW -class [SWK13], which are generalizations of the W-class
for the three-qubit case. In [BM18], Botero and Mejía consider the multipartite entanglement
concentration protocol by replicating the idea of Hayashi and Matsumoto but restricting the
input states to belong to the multipartite W-class. It is shown that under this restriction, the
corresponding subspace of {λ} is always one-dimensional. Meaning that when taking n copies
of a state in the W-class, the Schur transform leads to a unique state in {λ} and some linear
combination of Kronecker states in [λ] (which by definition is again a Kronecker state) for
which the authors obtain an analytical expression. As this result is a cornerstone in the method
that we propose, to build general Kronecker states, we will summarize here the results obtained
in [BM18] and show how the expression for the unique Kronecker state is applied in simple
cases.

First, we need to define theN -partite W class as the orbit under SLOCC operations of the |WN⟩
state:

|WN⟩ =
1√
N

N∑
i=1

|1i⟩ , (4.12)
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where 1i is a sequence with a “1" at position i and zeros in the remaining (N−1) positions. It is
known that any state in this class is, up to LU transformations, completely specified by the set
of eigenvalues of the reduced density matrices on each part, r [SWK13], and is LU-equivalent
to the state [Yu13] : ∣∣ψW〉 =√c0r|0⟩+

N∑
i=1

√
cir|1i⟩, (4.13)

where 0 is a sequence of N zeros, and cir are real coefficients with
∑N

i=0 c
i
r = 1. We show

later in Equation (7.7) that these coefficients can be obtained from the set of local spectra
r. The normal form in Equation (4.13) can be used to compute a unique unnormalized state
corresponding to the GL2 part of the Schur transform. For this, Mejia and Botero calculate
explicitly the SLOCC covariants [TLT06] of any state in the normal form and show that by
fixing n and λ, the obtained covariant is unique up to a constant. By using a mapping between
homogeneous polynomials and states [FH04], a unique unnormalized state is obtained from
this covariant as:∣∣∣Φ∧λ(ψ

W )
〉
= n!−(N−2)/2

n∑
ω0=0

(c0r)
ω0/2

ω0!

∑
ω

cr
ω/2
√
Aλ,ω |λ,ω⟩ . (4.14)

with a list of weights ω = ω1ω2 . . . ωN restricted by
∑N

i=0 ω
i = n, and

cω/2r =
N∏
i=1

(cir)
ωi/2, Aλ,ω =

N∏
i=1

Aλi,ωi , Aλ,ω =
(n− λ− ω)!

(ω − λ)!
. (4.15)

Given a set of marginal spectra r, and a set of irreps λ, the state
∣∣∣Φ∧λ(ψ

W )
〉
is defined uniquely.

It corresponds to the unique possible state in {λ} that appears in the Schur transform of∣∣ψW〉⊗n. Recall from Equation (3.35) that the multi-local Schur transform on multipartite qubit
states generically corresponds to:

|ψ⟩⊗n =
⊕
λ⊢n,2

√
p(λ|ψ)

[
kλ∑
i=1

|Φλ,i(ψ)⟩ |Kλ,i⟩

]
.

This expression is simplified when using W-class states∣∣ψW〉⊗n =
⊕
λ∈ΛW

n

ηλ

∣∣∣Φ∧λ

(
ψW
)〉 ∣∣KW

λ

〉
, (4.16)

where ηλ is a factor relating the unnormalized state
∣∣∣Φ∧λ(ψ

W )
〉
and the normalized state∣∣Φλ(ψ

W )
〉
as : ∣∣Φλ(ψ

W )
〉
=

ηλ√
p(λ|ψW )

∣∣∣Φ∧λ(ψ
W )
〉
,
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and
∣∣KW

λ

〉
is a unique Kronecker state corresponding to the W-class, which we will call W-

Kronecker state. ΛWn is the set of all the λ that lie in the sector of the W in the entanglement
polytope [WDG+13a], defined by:

2λi ≤
N∑
j=1

λj ≤ n. (4.17)

We will discuss this restriction in depth in the next subsection. From Equation (4.16), it is
possible to note how the Hayashi-Matsumoto algorithm can be generalized for states in the
W class. When making a projective measurement on the local partitions, this measurement
corresponds to a projection to a given set λ as:∣∣ψW〉⊗n Pλ

−→
∣∣Φλ(ψ

W )
〉 ∣∣KW

λ

〉
, (4.18)

where now the state in {λ} is separable from the corresponding Kronecker state, which is a
maximally entangled state. For more details on this process, the reader should refer to the
original paper [BM18].

We are mainly interested in the process of obtaining an analytical expression for
∣∣KW

λ

〉
that is

also shown in the original paper [BM18], but by its relevance, we will deduce it completely here.
It will be useful to write the Kronecker states associated with theW class in their coefficient
expansion as: ∣∣KW

λ

〉
=
∑
q

KW
λ,q |λ, q⟩ , (4.19)

where each basis element of irrep λi in Sn is labeled (as discussed in Section 3.2.3) with the
corresponding (modified) Yamanouchi symbol i.e., a binary list qi = {qi1, qi2, . . . , qin} that repre-
sents one possible valid way to obtain the Young Tableaux associated to λi by adding boxes in
the first row (qi = 0) or in the second row (qi = 1) in each step. An example of the different
labeling schemes used for the basis elements of Sn is shown in Equation (3.19). We also use
here the boldface notation for the set of basis elements q = (q1, q2, . . . , qN).

The Schur transform shown in Equation (4.16) can be used on any state in the W-class, and as
the Kronecker state appearing in the decomposition does not depend on the specific state used
as input, we can choose any. As the state with the most simple structure is the |WN⟩ state,
then, from now on, we pick the state to be the W state itself, i.e.,

∣∣ψW〉 = |WN⟩ defined in
Equation (4.12). For this state, the expression in Equation (4.14) is simplified to:∣∣∣Φ∧λ(WN)

〉
=
n!−(N−2)/2

√
Nn

∑
ω

√
Aλ,ω |λ,ω⟩ . (4.20)

87



4.4. W-CLASS ENTANGLEMENT CONCENTRATION AND W-CLASS KRONECKER STATES

This expression can be used to obtain a recursive relation between W-Kronecker states. We
can think of the Schur transform of n copies of |WN⟩ in two equivalent ways; the first is to
apply Equation (4.16) directly, obtaining:

|WN⟩⊗n =
⊕
λ∈ΛW

n

ηλ

∣∣∣Φ∧λ(WN)
〉 ∣∣KW

λ

〉
, (4.21)

and as a recursive construction from the Schur transform on n− 1 copies of |WN⟩,

|WN⟩⊗n =

 ⊕
λ′∈ΛWN

n−1

ηλ′

∣∣∣Φ∧λ′(WN)
〉 ∣∣KW

λ′

〉
︸ ︷︷ ︸

|WN ⟩⊗(n−1)

⊗ |WN⟩ , (4.22)

where λ′ refer to sets of irreps of Sn−1. We can match the expression in Equation (4.21) with
Equation (4.22), and replace the corresponding expansions of

∣∣∣Φ∧(WN)
〉
states from Equation

(4.20). By fixing some set λ we get:

n!−(N−2)/2ηλ

(∑
ω

√
Aλ,ω

)∣∣KW
λ,q

〉
=

(n− 1)!−(N−2)/2
⊕
λ′<λ

ηλ′

((∑
ω′

√
Aλ′,ω′

)∣∣KW
λ′,q′

〉)
⊗

(
N∑
i=1

|1i⟩

)
,

where λ′ < λ restrict the partitions of n− 1, appearing on the right-hand side of the equation
to those λ′ that can reach λ by adding one box either up or down in the Young Tableaux for
each λ′i. When expanding the W-Kronecker states in its coefficients as shown in equation
(4.19), the previous expression can be simplified to:

n−(N−2)/2ηλ
∑
ω,q

√
Aλ,ωK

W
λ,q |λ,ω, q⟩ =

⊕
λ′<λ

ηλ′

(∑
ω′,q′

√
Aλ′,ω′KW

λ′,q′ |λ′,ω′, q′⟩

)
⊗

(
N∑
i=1

|1i⟩

)
,

that by projecting with an element of the total Schur basis, ⟨λ,ω, q|, corresponds to:

n−(N−2)/2ηλ
√
Aλ,ωK

W
λ,q =⊕

λ′<λ

ηλ′

∑
ω′,q′

√
Aλ′,ω′KW

λ′,q′

(
N∑
i=1

⟨λ,ω, q|λ′,ω′, q′⟩ |1i⟩

)
,

(4.23)
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Note that the inner product appearing in the last equation is in fact a product of the CGC used
for the Schur transform, for example the term corresponding to i = 1 is:

⟨λ,ω, q|λ′,ω′, q′⟩ |100 . . .⟩ =
〈
λ1, ω1, q1

∣∣λ′1, ω′1, q′1
〉
|1⟩

N∏
i=2

〈
λi, ωi, qi

∣∣λ′i, ω′i, q′i
〉
|0⟩ .

The inner products at the right are the CGC for the Schur basis that we introduced in the
previous chapter. From Equation (3.26), we can notice that λ′ q′ are fixed by λ and q, and ω′ is
fixed by ω and 1i. We get:

⟨λ,ω, q|λ′,ω′, q′⟩ |1i⟩ = Γλ
i,ωi,n
qin,1

δωi,ω′i+1δqi,q′iqinδλi,λ′i+qin

∏
j ̸=i

Γλ
j ,ωj ,n

qjn,0
δωj ,ω′jδqj ,q′jqjnδλj ,λ′j+qjn .

By plugging this expression in Equation (4.23), the sums on λ′,ω′ and q collapse, obtaining:

n−(N−2)/2ηλK
W
λ,q′qn =

(
N∑
i=1

√
Aλ−qn,ω−1i

Aλ,ω

Γλ
i,ωi,n
qin,1

∏
j ̸=i

Γλ
j ,ωj ,n

qjn,0

)
ηλ−qnK

W
λ−qn,q′ . (4.24)

It is useful to define a re-scaled coefficient:

K̂W
λ,q = n!−(N−2)/2ηλK

W
λ,q,

then, Equation (4.24) can be written as:

K̂W
λ,q′qn = Fλ,qn,nK̂

W
λ−qn,q′ (4.25)

where Fλ,qn,n is a recurrence factor that can be calculated as:

Fλ,qn,n =
N∑
i=1

√
Aλ−qn,ω−1i

Aλ,ω

Γλ
i,ωi,n
qin,1

∏
j ̸=i

Γλ
j ,ωj ,n

qjn,0
. (4.26)

From the definitions of Aλ,ω in Equation (4.15), and the CGC in Equation (3.25), one can show
that for any combination of qn and sn one gets:√

Aλ′,ω′

Aλ,ω
Γλ,ω,nqn,sn =

1 + sn(ω − qn(n− λ+ 1)− (1− qn)λ− 1)√
n− 2λ+ 2q

,

Note that in the i-th term of the sum in Equation (4.26), only the i-th term has sin = 1 and all
the others are sjn = 0, then, we have:

Fλ,qn,n =
N∑
i=1

ωi − qin(n− λi + 1)− (1− qin)λ
i∏

j

√
n− 2λj + 2qjn

.
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This expression can be simplified by noting that
∑N

i ω
i = n, then, the final expression for the

recurrence factor is:

Fλ,qn,n =
n−

∑N
i=1 [q

i
n(n− λi + 1)− (1− qin)λ

i]∏
i

√
n− 2λi + 2qin

. (4.27)

This expression, along with the recurrence relation in Equation (4.25), allow us to obtain
unnormalized W-Kronecker states in the product basis of irreps of Sn:∣∣∣K̂W

λ

〉
=
∑
q

K̂W
λ,q |λ, q⟩ , (4.28)

from W-Kronecker states in the product basis of irreps of Sn−1. By noting that any Kronecker
state is connected through this process to the unique W-Kronecker state in S1 , i.e.,∣∣KW

0

〉
= |0,0⟩ .

then any scaled coefficient K̂W
λq can be obtained from iterating the recurrence equation from 1

to n, then, by introducing the notation λi,j =
∑j

k=1 q
i
k for the partial partitions at step j for

each basis element qi, we have the expression:

K̂W
λ,q =

n∏
j=2

Fλj ,qj ,j =
n∏
j=2

j −
∑N

i=1

[
qij(j + 1− λ(i),j)− (1− qij)λ

i,j
]

∏N
i=1

√
n− 2λi,j + 2qij

. (4.29)

With this, we can compute the W-Kronecker states for any N and n up to normalization. By
defining a set λ for which we want to calculate the correspondent W-Kronecker state, we can
use the previous equation for calculating all the coefficients for the possible basis q and build
the unnormalized state

∣∣∣K̂W
λ

〉
according to Equation (4.28), then we can normalize the obtained

state to get
∣∣KW

λ

〉
.

This process is very efficient for calculating Kronecker states, and hence Clebsch Gordan
Coefficients of Sn, as there is no need to build any matrix representation. In general, for the
three parts case, we will be building vectors of dimension f [λ1] × f [λ2] × f [λ3] (without square)
directly from its coefficients, which shows a clear advantage over the mentioned methods
in the previous section. The only required knowledge from representation theory for using
this equation is to understand the relation between Young diagrams and labels of irreps of Sn.
However, this approach is insufficient for calculating all possible Kronecker states with irreps
of at most two parts. Two restrictions must be highlighted:
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• One of the most interesting properties of Kronecker states is that they define a vector
space, and any linear combination of states in such vector space is naturally a Kronecker
state. However, the expression obtained was achieved precisely because in this particular
class, the appearing Kronecker state is unique. So, with this approach, it is impossible to
find more than one Kronecker state in each set λ. Using this method as the unique tool
to calculate Kronecker states will not permit exploring the rich structure of Kronecker
subspaces.

• These W-Kronecker states are obtained from the Schur transform on states belonging to
the N-partite W class. As pointed out, the sets of partitions appearing in the decompo-
sition of any state in this class are restricted by the polytope ΛWn defined in Equation
(4.17). It is easy to find sets of partitions outside of this polytope. For example, consider
n=5, and λ = 222 (i.e., [λ1] = [λ2] = [λ3] = [32]), where the Kronecker coefficient is
kλ = 1. Even though there exists a Kronecker state in the invariant subspace, it cannot
be obtained from Equation (4.29) because the set λ is out of the polytope ΛWn , the set of
lower values of the partitions add to more than n:

3∑
i=1

λi = 6,

to understand why the W-class has this restriction, let us discuss the entanglement
polytope [WDG+13b].

Entanglement Polytope
One recurrent problem in quantum mechanics that is related to the Kronecker coefficient is the
One-body quantum marginal problem [Kly04], in the pure state case. Consider that we have a
set of N reduced density matrices {ρi}, also called marginal states, and we want to know if
there exists some possible N-partite pure state |ψ⟩ such that its reduced density matrices are
the set {ρi}. This problem is very complex in general, but it has a well-known solution for the
case of qubits [HSS03]. In this case, the N-partite pure state |ψ⟩ only exists if the set of smallest
eigenvalues (we consider the eigenvalues to be in descending order as a = (a1a2)) {ai2} of the
reduced density matrices {ρi} satisfy polygonal inequalities:

2 · ai2 ≤
N∑
j=1

aj2,

this set of inequalities defines a polytope that is upper bounded by the planes corresponding to
ai2 = 1/2 because it is the maximal value of the minimal eigenvalue. Any set of reduced density
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matrices with eigenvalues outside of this polytope is not compatible with any pure state. It is
worth noting how any separable qubit in the state has fixed its minimal eigenvalue to zero,
shedding light on how this polytope is related to the entanglement on the state [WDG+13b].
Moreover, in [HZG04], it was shown that the marginal spectra of states belonging to the W
class correspond to a restriction of the total polytope. This restriction is given by the plane
defined by:

N∑
i=1

ai2 ≤ 1,

then, it is possible to use the set of marginal spectra, a2 to decide if a state can or cannot belong
to the W class.

Remarkably, this result is strongly connected with representation theory. In [CHM07], by
using the Keyl Werner theorem, it is shown that if three density matrices are compatible with
a three-partite pure state, then there exists a normalized set of irreps of Sn, λ̄ = λ̄1λ̄2λ̄3, with
λ̄i = λi/n, arbitrarily close to a2 = a12a

2
2a

3
2, such that that the Kronecker coefficient is not null

kλ > 0. This result implies that the polytope of admissible marginal spectra is equal to the set
of normalized partitions with a Kronecker coefficient different from zero, called KRON. Due to
the connection with the marginal problem, we can define two interesting polytopes regarding
irreps. The first one is the total polytope KRON, where belong all the sets of irreps λ with
non-null Kronecker coefficient, kλ > 0, that is defined by the following:

KRON :

{
λ | 2 · λi ≤

N∑
j=1

λj, ∀λi
}
. (4.30)

And the polytope corresponding to the W class, named ΛWn is defined as [BM18]:

ΛWn :

{
λ | 2 · λi ≤

N∑
j=1

λj ≤ N, ∀λi
}
. (4.31)

In figure 4.1, both polytopes are represented in the three-parts case; it is clear that there is
a region of KRON that states in the W-class cannot achieve. In terms of the Kronecker state
construction, this means that sets of irreps with a Kronecker coefficient different from zero can
not be obtained from states in the W class.

Despite these restrictions, we can think of the approach of building W-Kronecker states as an
efficient protocol to find one of the kλ Kronecker states in the admissible sets of partitionsλ ∈
ΛWn . In the following, we illustrate a simple example to show how Equation (4.29) is used to
calculate W-Kronecker states.
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Figure 4.1: Representation of polytopes KRON and ΛW
n for the three-parts case, each axis represents the second element of the normalized

partition labeling the individual irreps. It can be seen that irreps with no null Kronecker coefficient can not be obtained from W-class states.

Example of W-Kronecker state calculation

For this example, we want to build the Kronecker state corresponding to the invariant subspace
in [λ] = [1]⊗ [1]⊗ [2] for n = 4 (or in the long notation [λ] = [31]⊗ [31]⊗ [22]). First, let us
label the basis elements of the two irreps. For [1], we have three basis elements:

q
[1]
1 = {0, 0, 0, 1}, q

[1]
2 = {0, 0, 1, 0}, q

[1]
3 = {0, 1, 0, 0}.

It is also useful to use the Young lattice representation; for this case, we have the three paths
(labeled the same as their corresponding q):

Similarly, for the irrep [22] we have:

q
[2]
1 = {0, 0, 1, 1}, q

[2]
2 = {0, 1, 0, 1},
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or equivalently within the Young lattice:

.

Now, we need to choose some set q to calculate its coefficient. Due to the dimensions of the
irreps, there are f [λ1] × f [λ2] × f [λ3] = 3 × 3 × 2 = 18 basis elements in the product basis,
which we will label as qi with i ∈ {1, . . . , 18}. Let us start with q1 = q

[1]
1 q

[1]
1 q

[2]
1 . In order to

find the construction of this coefficient from the recursive equation, we can find the needed
factors easily by looking simultaneously at the Young lattice of the three basis elements:

∣∣λ, q1
〉
= .

From this multiple lattice, it is possible to read the sequence of Fλj ,qj ,j to be used in the
construction. For this, we look at the line corresponding to n = j and read from it the partial
partitions λj , and the step taken to reach those from n′ = j − 1. In this case, for example, for
j = 2, the three partitions are at λ2 = (000), and all parts arrived there from taking a step to
the right, so q2 = (000). For j = 3, the set of partial partitions is λ3 = (001), and the first two
parts take the step to the right, while the third one take the step to the left, so q3 = (001). To
finish, the last set of partitions is λ4 = λ = (112) and the steps were q4 = (111). Then, for
this coefficient, we have:

K̂W
λ,q1 = F(000),(000),2 · F(001),(001),3 · F(112),(111),4,

which can be calculated from Equation (4.27) to be:

K̂W
λ,q1 =

1

2
√
2
· 0 · −7

4
√
2
= 0.

Note how the third multi-step gives a null value; this can be used to discard all the basis qi that
have this step; however, in this case, the only base with such step is q1. This multi-step should
also be discarded beforehand as the partial partition λ3 = (001) is out of ΛW3 . This condition
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should be checked in each multi-step. The next basis element in a lexicographic ordering is
q2 = q

[1]
1 q

[1]
1 q

[2]
2 i.e.,

∣∣λ, q2
〉
= .

It can be seen that the set of partial partitions λ2 = (001) is out of ΛW2 , showing this coefficient
is also null, and by the same reason, some other basis elements give null coefficients, those
bases are:

q2 = q
[1]
1 q

[1]
1 q

[2]
2 , q4 = q

[1]
1 q

[2]
1 q

[2]
2 ,

q8 = q
[2]
1 q

[1]
1 q

[2]
2 , q10 = q

[2]
1 q

[2]
1 q

[2]
2 .

The next coefficient to calculate is for the basis element q3 = q
[1
1 q

[1]
2 q

[2]
1 . For this one, we have:

∣∣λ, q3
〉
= .

The coefficient is calculated as:

K̂W
λ,q3 = F(000),(000),2 · F(011),(011),3 · F(112),(101),4 =

1√
2
· −1√

3
· −1 =

1√
6
.

This term is the first non-zero coefficient for the W-Kronecker state. As the two first irreps are
the same, and the Equation (4.27) is symmetric, we also have:

K̂W
λ,q7 =

1√
6

where q7 = q
[1
2 q

[1]
1 q

[2]
1 . For the next coefficient to calculate, q5 = q

[1]
1 q

[1]
3 q

[2]
1 , the second set of

partial partitions is λ2 = (010) that is out of ΛW2 , hence, its coefficient is zero. By the same
multi-step, the coefficient of q11 = q

[1]
2 q

[1]
3 q

[1]
1 is also zero, and by symmetry, the coefficients of

q13 = q
[1]
3 q

[1]
1 q

[2]
1 and q15 = q

[1]
3 q

[1]
2 q

[2]
1 . The last null coefficient corresponds to q18 = q

[1]
3 q

[1]
3 q

[2]
2 ,
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whose second partial partition λ2 = (111) is out of ΛW2 . The remaining coefficients are not
zero and can be calculated with the process described, obtaining:

K̂W
λ,q6 = K̂W

λ,q14 =
1√
6
,

K̂W
λ,q9 = −K̂W

λ,q12 = −K̂W
λ,q16 = −K̂W

λ,q17 =
1

2
√
3
,

where the basis elements correspond to:

q6 = q
[1]
1 q

[1]
3 q

[2]
2 , q9 = q

[1]
2 q

[1]
2 q

[2]
1 , q12 = q

[1]
2 q

[1]
3 q

[2]
2 ,

q14 = q
[1]
3 q

[1]
1 q

[2]
2 , q16 = q

[1]
3 q

[1]
2 q

[2]
2 , q17 = q

[1]
3 q

[1]
3 q

[2]
1 .

We can put everything together to write the “unnormalized” Kronecker state as:∣∣∣K̂W
112

〉
=

1√
6

(∣∣∣112, q[1]1 q
[1]
2 q

[2]
1

〉
+
∣∣∣112, q[1]1 q

[1]
3 q

[2]
2

〉
+
∣∣∣112, q[1]2 q

[1]
1 q

[2]
1

〉
+
∣∣∣112, q[1]3 q

[1]
1 q

[2]
2

〉)
+

1

2
√
3

(∣∣∣112, q[1]2 q
[1]
2 q

[2]
1

〉
−
∣∣∣112, q[1]2 q

[1]
3 q

[2]
2

〉
−
∣∣∣112, q[1]3 q

[1]
2 q

[2]
2

〉
−
∣∣∣112, q[1]3 q

[1]
3 q

[2]
1

〉)
,

(4.32)
in this particular case, one can check that

∣∣∣K̂W
112

〉
=
∣∣KW

112

〉
i.e., the resultant state is already

normalized. It is always possible to understand the obtained Kronecker states as LME states
for multi-qudits, where each qudit dimension corresponds to the dimension of f [λi]. For this
example, the obtained Kronecker state corresponds to an LME state of two qutrits and one
qubit. The mapped state is obtained by dropping the λ label and making the assignations:

q
[1]
1 → 0, q

[1]
2 → 1, q

[1]
3 → 2, q

[2]
1 → 0, q

[2]
2 → 1,

then, the state becomes:∣∣∣K̂W
〉
=

1√
6
(|010⟩+ |021⟩+ |100⟩+ |201⟩) + 1

2
√
3
(|110⟩ − |121⟩ − |211⟩ − |220⟩) .

This process can be used to find one set of CGC for each partition setλ ∈ ΛWn by using Equation
(4.11) normalizing the obtained state. For example, from the obtained state for n = 4,

∣∣KW
112

〉
,

which casually is already normalized, we can read the CGC by multiplying each coefficient by√
f [λ3] =

√
2 obtaining:

C
[1][1][2]

q
[1]
1 ,q

[1]
2 ,q

[2]
1

= C
[1][1][2]

q
[1]
1 ,q

[1]
3 ,q

[2]
2

= C
[1][1][2]

q
[1]
2 ,q

[1]
1 ,q

[2]
1

= C
[1][1][2]

q
[1]
3 ,q

[1]
1 ,q

[2]
2

=
1√
3
,

C
[1][1][2]

q
[1]
2 ,q

[1]
2 ,q

[2]
1

= −C [1][1][2]

q
[1]
2 ,q

[1]
3 ,q

[2]
2

= −C [1][1][2]

q
[1]
3 ,q

[1]
2 ,q

[2]
2

= −C [1][1][2]

q
[1]
3 ,q

[1]
3 ,q

[2]
1

=
1√
6
.

96



CHAPTER 4. KRONECKER STATES

These values agree with the ones in [GC85], where the authors show tables of CGC values up
to S6. With the method shown here, we calculated exactly (in rational form) all W-Kronecker
states up to S13, where vectors with more than six million coefficients appear.

To summarize this chapter, we recall that the main goal of this document is to present a
procedure to calculate Kronecker states for any set λ, where each λi consists of at most two
parts, which are the possible irreps when studying qubit systems. Kronecker states constitute
the invariant subspace of the tensor product of irreps of Sn:

|Kλ⟩ ∈
(
[λ1]⊗ [λ2]⊗ · · · ⊗ [λN ]

)Sn
.

A vector space with a dimension given by the Kronecker coefficient kλ. This problem can
be reformulated by exploiting the connection between Kronecker states and Clebsch Gordan
Coefficients of the symmetric group. This connection is made explicit in terms of the coefficients
of Kronecker states in Equation (4.11). However, finding such CGC is not a simple task. The
procedure we will introduce later to calculate Kronecker states must also be understood as a
tool to compute the CGC efficiently.

One efficient method for a special class of Kronecker states is obtained from the entangle-
ment concentration protocol. When analyzing this problem in bipartite systems, we obtain
an expression for all bipartite Kronecker states shown in Equation (4.4) by applying the Schur
transform to n copies of bipartite states. It is highlighted that the entanglement of the n copies
is concentrated in the Kronecker states. A multipartite generalization of the protocol can be
obtained when using states in the multipartite W class. Despite the multiplicity of the invariant
subspace, kλ, the mathematical structure of states in this class implies that, as a result of the
Schur transform, the obtained state in {λ} is unique for each set λ. This makes it possible to
separate the obtained state from the corresponding Kronecker state in [λ]Sn after a projection
onto the set of partitions λ.

More relevant for this work is that the Schur transform, in this case can be done by focusing
on the W state itself, where a recurrence construction can be obtained from Equations (4.25),
(4.27) and (4.29) to calculate any Kronecker state of N parts corresponding to the W class.
Despite the simplicity and efficiency of this approach, there are two problems. First, the sets λ
allowed for this construction are defined by ΛWn in Equation (4.31), making it impossible to
find Kronecker states for some sets λ. The second limitation is that this construction for sets
with kλ > 1 does not provide more than one Kronecker state; it calculates only one, which we
call the W-Kronecker state.

The main goal of this thesis is to present a procedure for calculating Kronecker subspaces
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in any set λ, which requires to obtain kλ orthogonal Kronecker states. The procedure we
will introduce can be used for any set λ, and we can ensure that by using our algorithm, it is
possible to build a complete basis of kλ orthogonal Kronecker states, allowing the construction
of any Kronecker subspace that appear in the Schur basis of qubit systems. The thought process
leading to this result is rather simple: we know how to calculate Kronecker states of bipartite
states (Equation (4.4)), and we also know how to calculate Kronecker states in the W class,
where the W state is a simple representative (Equation (4.4)). If we want to calculate general
Kronecker states appearing in the Schur basis of more general states, we can do it by first
building multipartite general states using only bipartite states and W-states and then looking
at the corresponding Schur transform to find the corresponding Kronecker states. In the next
chapter, we will show the first step of this procedure in a construction that we nameW-state
stitching.
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5
Multipartite state construction from W
state stitching

In this section, we present a graphical method to build general multipartite qubit states using
W3 states and bipartite states. In this construction, we build graph states, where vertices
represent W3 states and inner edges are bipartite states. In this way, multiqubit states can
be obtained by projecting bipartite states, which we call stitches, with copies of W3 states,
where the parts to be projected can be read from the corresponding graph, and the coefficients
defining the stitches are used to modify the obtained state. Furthermore, using a suitable
representation of the stitches as elements of SL2 × Z2 (matrices of dimension 2 × 2 with
determinant either 1 or −1), it is possible to define a set of graphical rules, that can be used
to identify the parameters of the stitches that are relevant for SLOCC classification. With
this, it is possible to find theminimal graph fromwhich different SLOCC classes can be obtained.

The idea of representing quantum states in a graphical notation is not new; for example, the
very well-known approach of graph states [HDE+06] uses vertices to represent qubits and
edges to represent the interaction between them; this construction has a broad range of applica-
tions in quantum error correction and quantum computation. Another very relevant graphical
method is the ZW calculus [Had15], which we learned about during the final stage of this
investigation. In this method, processes are represented by diagrams, where each part of the
system is represented by a line that can interact with other elements or lines. The nature of
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interactions is given by the elements and connections in each path. This construction is very
rich, and it has been shown that it is complete, meaning that any quantum operation in the
Hilbert space formalism can be expressed in the graphical calculus [PWS+23]. Our construction
shares many features with the ZW-calculus. However, the focus of our construction is to
identify multiqubit SLOCC classification, which has not been explored deeply in ZW-calculus
[Had15] [Ng18]. So it involves some modifications of the ZW-calculus tailored to our aims. The
relation between the ZW notation and our graphical representation is presented in Appendix
C. This mapping allow us to ensure that with the W-state stitching it is possible to obtain any
multiqubit state.

In the ZW calculus,W states are special states as they are for us, and some of the rules we
present here have also been obtained in this construction. However, what differs in our con-
struction is that we exploit a useful feature of bipartite entangled states that fits nicely with
the stabilizer group of W states; namely, that any possible entangled bipartite state can be
parametrized up to a scale factor, in terms of a 2× 2 matrix of unit-determinant acting in one
of the parts of the maximally entangled state ⟨Φ+|. By using the invariance properties of ⟨Φ+|,
the state can be reparametrized in one of two possible ways:either as two upper triangular
matrices acting on different parts of the state ⟨Φ+|, or, as an upper triangular matrix, acting on
one of the parts of the state ⟨Ψ+|. Using this parametrization in the graph states, such upper
triangular matrices can be read as acting on theW3 states. We exploit the symmetries ofW
states under local actions of upper triangular matrices to reinterpret these actions in a way
that simplifies graph states according to SLOCC equivalence. This construction leads to graph
states that serve as representatives of SLOCC classes. There is also a difference in how our
graphs must be read compared to those of ZW calculus. Our language emphasizes states over
processes; this essential difference means that our graphs do not have a direction associated
with them, allowing us to “move” objects through the graph. This freedom facilitates SLOCC
classification.

We begin this chapter by introducing the stitching procedure and the graphical notation that
will be utilized. This notation was adapted to the one used in ZW calculus to avoid confusion
for readers familiar with the method. Subsequently, we explore a graphical interpretation of
the symmetries within theW3 state, which we refer to as Parameters pushing, which permits
us to identify what parameters used in the multiqubit construction are relevant under SLOCC
classification. Applying this technique allows us to simplify the various graphs that can be
generated, reducing the relevant parameters under the SLOCC classification for each graph.
We explore this construction for the cases of two, three, and four qubits, finding graphs repre-
senting states in all the possible SLOCC classes.
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CHAPTER 5. MULTIPARTITE STATE CONSTRUCTION FROMW STATE STITCHING

5.1 The W-state Stitching Procedure

Stitching is a method for constructing multiqubit states using graph states with two building
blocks: theW3 state as kets and generally entangled bipartite qubit states as bras. Given that
states only differing by a complex scale factor represent the same physical object, we will work
with unnormalized states to simplify the calculations. First, let us introduce the objects and the
language that will be used in the construction.

5.1.1 Objects and notation
The bipartite state, or from now on, the stitch, can be written in general as:

⟨ς| = ς00 ⟨00|+ ς01 ⟨01|+ ς10 ⟨10|+ ς11 ⟨11| .

This state can be written in an equivalent form by considering a matrix action on one of the
parts of a maximally entangled state ⟨Φ+| as:

⟨ς| =
〈
Φ+
∣∣ I ⊗ ς, ς :=

(
ς00 ς01
ς10 ς11

)
, (5.1)

where ⟨Φ+| is the (unnormalized) Bell state [NC00]:〈
Φ+
∣∣ = ⟨00|+ ⟨11| .

Note how Equation (5.1) materializes the fact that for two qubits, any entangled state is
connected to the maximally entangled state through SLOCC operations. In particular, we can
restrict ς to be unit-determinant i.e., ς ∈ SL2. By doing this, there are three different ways to
parametrize the matrix. The first is by fixing ς11 = 1+ς01ς10

ς00
:

ς1 =

(
ς00 ς01
ς10

1+ς01ς10
ς00

)
. (5.2)

Generically, the unit-determinant matrix ς1 admits an LU decomposition, that is a product of a
lower triangular matrix and an upper triangular matrix of the form:

ς1 =

(
1 0
ς10
ς00

1

)
·
(
ς00 ς01
0 1

ς00

)
The key idea behind parameter pushing construction will be to use symmetries of the multipar-
tite states ⟨Φ+| and |W3⟩, to move actions from one of the parts of the state to another (or to
others). In this case, what we consider is the invariance of ⟨Φ+|, that is:〈

Φ+
∣∣ = 〈Φ+

∣∣A⊗
(
A−1

)T ⇒
〈
Φ+
∣∣A⊗ I =

〈
Φ+
∣∣ I ⊗ AT . (5.3)
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with A ∈ GL2. Thus, we can move an operator acting to the right on one part to the other part
by transposing it. Then, the stitch ⟨ς1|, can be parametrized by two upper triangular matrices
acting on the parts of ⟨Φ+| as:〈

ς1
∣∣ = 〈Φ+

∣∣ I ⊗ ( 1 0
ς10
ς00

1

)
·
(
ς00 ς01
0 1

ς00

)
=
〈
Φ+
∣∣ ( 1 ς10

ς00

0 1

)
⊗
(
ς00 ς01
0 1

ς00

)
. (5.4)

Upper triangular matrices of unit-determinant will be recurrent objects that depend only on
two parameters, so we will denote them by:

u(v, w) =

(
v w
0 1

v

)
. (5.5)

We can also denote upper triangular matrices with diagonal fixed to 1 as:

A(w) = u(1, w) =

(
1 w
0 1

)
. (5.6)

In terms of u(v, w) and A(w), we can rewrite Equation (5.4) as:〈
ς1
∣∣ = 〈Φ+

∣∣A(ς10
ς00

)
⊗ u(ς00, ς01). (5.7)

Note how this parametrization requires that ς11 ̸= 0 and ς00 ̸= 0. These two cases require a
different parametrization. The first case is when the last entry of the matrix is ς11 = 0. In that
case, the unit-determinant matrix is parametrized as:

ς2 =

(
ς00

−1
ς10

ς10 0

)
,

after the LU decomposition on this matrix, we have the following:

ς2 =

(
1 0
ς10
ς00

1

)
·
(
ς00 − 1

ς10

0 1
ς00

)
,

which, by the symmetry of ⟨Φ+|, can be expressed as:〈
ς2
∣∣ = 〈Φ+

∣∣A(ς10
ς00

)
⊗ u(ς00, ς01),

where ς01 = − 1
ς10
; therefore, this exception can be parametrized exactly as in Equation (5.7).

The other exception is when the first entry of the matrix is ς00 = 0. In this case, the matrix is:

ς3 =

(
0 1

ς10

ς10 ς11

)
,
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where now we chose the matrix to have a determinant equal to −1. We can do this since the
sign of the determinant changes by multiplying the matrix by the imaginary number i, so, up
to a scale factor, this matrix is equivalent to a matrix in SL2. The approach for this matrix is
slightly different because it does not admit an LU decomposition, but we can write it as the σx
matrix acting on an upper diagonal matrix as:

ς3 = σx ·
(
ς10 ς11
0 1

ς10

)
.

We can use the symmetry of ⟨Φ+| to move the action of σx to the other part, as σx matrix is
symmetric, it does not change when changing the part where is acting on the ⟨Φ+| state. After
using the symmetry of ⟨Φ+|, and using the notation of (5.5) we have:〈

ς3
∣∣ = 〈Φ+

∣∣σx ⊗ u(ς10, ς11) =
〈
Ψ+
∣∣ I ⊗ u(ς10, ς11), (5.8)

where in the last step we let σx act on one of the parts of ⟨Φ+| to get ⟨Ψ+|. This parametrization
is, in essence, different from (5.7). Up to this point, we know that we can parametrize any
bipartite entangled state in one of two ways: The first is the result of acting with upper
triangular matrices on each part of ⟨Φ+|, which we call the Φ stitch, or, the second, the result
of acting with one upper triangular matrix on one of the parts of a ⟨Ψ+|, which we call the
Ψ-stitch. Before continuing, let us define another class of upper diagonal matrix that will appear
recurrently, namely diagonal matrices of unit-determinant:

B(v) = u(v, 0) =

(
v 0
0 1

v

)
. (5.9)

Note how any upper diagonal matrix u(v, w) can be decomposed as a product of A(vw) and
B(v) :

A(vw) · B(v) =
(
v w
0 1

v

)
= u(v, w).

The other key elements of the construction are the states to be stitched, theW3 states. The
unnormalizedW3 state is:

|W3⟩ = |100⟩+ |010⟩+ |001⟩ .

The choice of using W states in our construction was firstly motivated by the fact that we
know how to calculate W-Kronecker states, and that could be exploited for more general cases
as we will see in the next chapter. However, it will be seen soon that W states symmetries fit
nicely with the purpose of identifying SLOCC equivalences. Note that using only bipartite
states, it is impossible to obtain states of more than two qubits using projections. Therefore, it
is necessary to include three-qubit states in the construction. To reproduce entangled states,
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we cannot use states with separable qubits, so we are left with the GHZ state and theW state
of three parts as the simplest candidates. We will show later that picking theW state for the
construction is useful, as it has a stabilizer group related with the two possible parametriza-
tions of the stitches in Equations (5.7) and (5.8). Also, by using the construction with theW3

state, theGHZ-state can be obtained so that we can focus on the construction with theW3 state.

Now, we will introduce a graphical notation for all the objects so far defined. First, we represent
theW3 state as a vertex with three edges as:

|W3⟩ = A
B

C

,

whereA,B and C label the three parts of the state. This is the same notation for W states as for
ZW calculus, except that, since our construction involves states and not processes, the direction
of the edges have no meaning. This is in contrast to the ZW-calculus, where the directions
are related to the direction of the flow of time in the process. In this construction, each edge
corresponds to one of the parts of the represented state. W vertices are joined by bipartite
states, which will be represented by two-edge objects. As we already know, any bipartite stitch
can be written in terms of ⟨Φ+| and ⟨Ψ+|, which are related by the matrix operation σx, we
can define a graphical representation for them as edges with or without a •:〈

Φ+
∣∣ = ≀ ≀ , 〈

Ψ+
∣∣ = ≀ ≀ ,

where the • symbol represents the matrix σx, and the two extremes of each line represent one
of the parts of the state. The symbol “≀” at the extremes is used to specify that these indices are
to be contracted to something else to be defined as bras. For example:

⟨Φ+|

, (5.10)

where the inner line is a bra, as is contracting W states in both sides. We always will interpret
external edges as indices of a ket state. When having these objects free, i.e., without being
connected to something else, they correspond to:∣∣Φ+

〉
= ,

∣∣Ψ+
〉
= .

For the different upper diagonal matrices, we define the graphical representations:

B(v) =
v
, A(w) =

w
u(v, w) =

v, w
.
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This notation was chosen to represent with clarity in which part each matrix is acting; we
will show later that balls (B) can be slid along the lines so their actions can be unambiguously
understood as acting on any of the parts; this is not the same with the arrows (A, u), which in
general have a well-defined direction of action. Often we refer to these actions as decorations
on the lines.

By using the graphical notation, the two stitches parametrized in (5.7) and (5.8) can be rep-
resented. The first stitch, named the Φ-stitch, is a ⟨Φ+| state (represented by a line) with an
upper triangular matrix of diagonal 1 acting in one part (represented by a white arrow on one
of the extremes), and an upper triangular matrix in the other part (represented by a black arrow
on the other extreme). The second stitch, named the Ψ-stitch, is a ⟨Ψ+| state (represented by
a line with a •) with an upper triangular matrix acting on one of the parts (represented by a
black arrow on one of the extremes). Then, the graphical representations of the stitches are:

〈
ςΦ
∣∣ = ≀

ς10/ς00 ς00, ς01

≀ ,
〈
ςΨ
∣∣ = ≀ ≀

ς10, ς11

,

where decorations on the ends of the edges mean that the matrix represented by the object is
acting on the part represented by that end. It is worth recalling that by the symmetries of ⟨Φ+|,
we can move actions from one part to another by transposing them; this means that symmetric
matrices such as • and can be moved freely along edges, and interpreted in any of the parts
of the edge unambiguously. Therefore, these objects are usually drawn in the middle of lines,
but they can be moved through the lines if needed. Before delving into the properties of the
objects that we will use, let us define how we use them to build multiqubit states.

5.1.2 Multiqubit construction

The idea behind the stitching process is to build a graph state |G⟩ by taking the tensor product
of ω copies |W3⟩ states and stitching them together by projecting with a number s of bipartite
⟨ς| states, between parts ofW3 states. The graph state |G⟩ is:

|G⟩ =
s⊗
i=1

〈
ς i
∣∣ ω⊗
i=1

|W3⟩ ,

where the contractions between ⟨ς| and |W3⟩ are determined by the topology of the graph
state G. The simplest example is shown in Figure 5.1, where twoW3 states are stitched with
a two-particle state ⟨ς | to obtain a four-qubit state, and, from now on, when the parameters
are not shown in the graph, it means that all parameters are generic and independent. Notice
that only uncontracted parties are labeled. Due to the projections, actions on edges of bipartite
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states can also be understood as actions on the correspondent edges of the W3 state in the
vertex. For example, the state in Figure 5.1 is:〈

Φ+
∣∣
EF

A(w2)E ⊗ u(v, w2)F |W3⟩ABE |W3⟩CDF
=
〈
Φ+
∣∣
EF

(I ⊗ I ⊗A(w2)E) |W3⟩ABE (I ⊗ I ⊗ u(v, w2)F |W3⟩CDF ) ,

where we label the parts as on the left side of the figure and reinterpret the actions of arrows
on ⟨Φ+| as the same actions on the correspondent parts of theW3 states.

A

B

E

C

D

F
=

A

B

C

D

Figure 5.1: Graph in tree form, stitching twoW3 states with a stitch ς , to obtain a four-qubit state. The contraction occurs in the E and F
parties of the |W3⟩ states, which are not labeled in the resulting |G⟩ state.

The state obtained in the stitching procedure depends on the structure of the graph and the
parameters of the stitch. Such graphs allow inner loops and as much structure as desired. The
number of qubits in the resultant state corresponds to the number of external edges in the final
state, which is given by:

N = 3ω − 2s. (5.11)

Let us use the graph in Figure 5.1 to build a four-qubit state and show how multiqubit states
are obtained in this process. For this example, take:

⟨ς| = ≀ ≀
v, w

=
〈
Φ+
∣∣ ( v w

0 1
v

)
⊗ I.

Then, the graph state to calculate is:

A

B

C

D

v,w

.

When this contraction is mapped back to the vector and matrix notation, one obtains:

(⟨00|EF + ⟨11|EF ) (I⊗I⊗
(
v w
0 1

v

)
(|100E⟩+ |010E⟩+ |001E⟩) (|100F ⟩+ |010F ⟩+ |001F ⟩) ,
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where we chose to contract the last part of eachW3 labeled with E and F respectively. By
doing this contraction, one gets:

A

B

C

D

v,w

=
v (|1010⟩+ |1001⟩+ |0110⟩+ |0101⟩)+

w (|0010⟩+ |0001⟩) + 1
v
|0000⟩ . (5.12)

We could calculate this state by building the vector directly without the need for the graph;
however, we will endow the graphical notation with a set of rules that will allow us to simplify
the calculations in a way that is much more transparent than when using braket notation.
Stitching W vertices together allows us to build multiqubit states with any number of parts (or
external edges). For example, in Figure 5.2, a graph where six |W3⟩ states are stitched using
seven ⟨ς| states results in a four qubit state (6 · 3 − 2 · 7 = 4). We can ensure that with W

A

B

C

D

Figure 5.2: An example of the Stitching procedure, where sixW3 states are stitched by seven ς states, leaving four free edges, corresponding
to a four-qubit state.

stitching, it is possible to build any multiqubit state by exploiting the connection with the ZW
calculus. ZW-calculus is known to be complete [Ng18] for qubit systems. As any construction
in ZW-calculus can be mapped to our language and vice-versa, we know that our language is
also complete. In Appendix C, we explain completely the connection between languages.

It can be noticed from the example in Figures 5.1 and 5.2 that if one wants to explore all the
possible states obtained from a given graph, the process becomes complicated very quickly. For
the first one, we need to check what states are obtained with three complex parameters (one
from the white arrow and two from the black arrow), and for the second example, 21 complex
parameters must be considered. However, not all parameters are important. Recalling our goal
of obtaining general Kronecker states, one can notice that in the Schur basis expansion of n
copies of a multiqubit state,

|ψ⟩⊗n =
⊕
λ⊢n,2

√
p(λ|ψ)

[
kλ∑
i=1

|Φλ,i(ψ)⟩ |Kλ,i⟩

]
,
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SLOCC operations act only in the GL2 basis without changing the Kronecker subspace. There-
fore, for exploring such subspace, we need to focus on identifying the SLOCC inequivalent
states obtained from each graph. This process leads to many simplifications, as we shall now
see.

SLOCC equivalent graph states
To identify inequivalent SLOCC states, we must identify when two graph states are SLOCC
equivalent. Introducing the following notation to represent a generic graph state of N parts:

12 N

.

Note that SLOCC operations are proportional to some unit-determinant matrices acting locally
on the qubits of the state. Graphically, these actions can be represented as stitches on external
vertices. Then, any SLOCC operation can be written up to a scale factor as stitches in external
edges, and hence, two graphs that only differ by the decorations on the external edges are
SLOCC equivalent. For example, given any graph of five qubits, we have the equivalence

∼= ,

where “∼=” represents SLOCC equivalence. Thus, any invertible operation on external edges
is irrelevant under SLOCC equivalence. Moreover, we will see that many inner actions, or
decorations acting on inner edges, lead to the same SLOCC orbits; for example, recall the state
from the example in Equation (5.12), and the state obtained when stitching with ⟨ς| = ⟨Φ+|:

A

B

C

D

= |0000⟩+ |W2⟩ |W2⟩ . (5.13)

It turns out that both states belong to the same SLOCC class, namely La002(Labc2 , b = c = 0) in
the classification of [VDD+02]of Table 2.2. In fact, the state in Equation (5.12) can be obtained
from the state in Equation (5.13) with the following SLOCC operation:

v ·
A

B

C

D

1
v
, w

1
v

=
A

B

(v, w)
C

D

.

This simple example shows how some of the parameters of the stitches can be absorbed in
SLOCC operations. In more complex cases, as, for example, the graph in Figure 5.2, identifying
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the relevant information will prove to be necessary as there are 21 complex parameters in
the stitches, and in four qubits, the most general SLOCC class depends only on three complex
parameters. In the next section, we present the tool that allows us to move parameters within
a graph toward external edges to identify the relevant parameters in the stitching procedure.

5.2 Parameter pushing

In order to “clean” a graph state from information that can be absorbed in SLOCC operations,
we need to exploit symmetries that allow us to rewrite operations, as we already did in Equation
(5.3), when using the symmetry of |Φ+⟩ to parametrize the stitches. Similarly, theW3 state has
an interesting symmetry regarding u operations that can be used to switch between inner and
outer actions.

One of the reasons why we use W states rather than GHZ states is because the stabilizer group
of W state is larger than the stabilizer group of the GHZ when considering SLOCC operations.
It is known that the dimension of the stabilizer set is related to the measure of the SLOCC
orbits in the projective Hilbert space [BRV18] [GW11]. As GHZ is the full measure orbit for
three qubits, its stabilizer group must be of lower dimension than for the W state which is an
orbit of zero measure. This relation can be easily seen by building the stabilizer of both states.
For the GHZ state, the stabilizer group is the set of unit-determinant matrices B1, B2, B3, and
a complex scalar s such that

B1 ⊗B2 ⊗B3 |GHZ⟩ = s |GHZ⟩ .

The solution to the previous equation is achieved by the following set of discrete operations
[TG05]:

σx ⊗ σx ⊗ σx, I ⊗ σz ⊗ σz, σz ⊗ I ⊗ σz,

and one continuous, two-parameter operation[GW11]:

B(v1)⊗ B(v2)⊗ B
(

1

v1v2

)
,

with B(v) as defined in Equation (5.9). Then, the most general set of operations B1, B2, B3

that leave the GHZ state invariant (up to normalization) is defined by at most two complex
parameters corresponding to the two parameters in the last equation. On the other hand, for
theW state, the solution to

B1 ⊗B2 ⊗B3 |W ⟩ = s |W ⟩ ,
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is uniquely given by

u(v, w1)⊗ u(v, w2)⊗ u(v,−w1 − w2) |W ⟩ = v |W ⟩ , (5.14)

with u(v, w) as defined in Equation (5.5). Note that this solution has three complex parame-
ters, v, w1, and w2, which makes its stabilizer dimensionally larger than the stabilizer of the
|GHZ⟩ state. The extra parameter makes the orbit of the W state of measure zero in the projec-
tive Hilbert space of three qubits, as opposed to the orbit of the GHZ state, which is full measure.

In terms of the stitching method, this larger invariance of W states implies that a larger set of
SLOCC operations can be rewritten in a useful form than if we used the GHZ state. In general,
what we want to do is rewrite the action of an upper diagonal matrix u in one of the parts by
corresponding upper diagonal matrices in the other two parts; from Equation (5.14), this can
be done as:

u(v, w)⊗ I ⊗ I |W3⟩ = v · I ⊗ u(1/v, w1)⊗ u(1/v, w2) · |W3⟩ , (5.15)

where w1 + w2 = w. In this construction, we will set w1 = w,w2 = 0. This property is
understood as that of Pushing the action of an upper diagonal matrix on one of the parts to an
upper diagonal matrix on one of the other parts, and a diagonal matrix in the remaining one.
Graphically, the property in Equation (5.15) is:

v, w

= v ·

(1/v, w)

1/v

.

This property is very powerful given that the stitches can be parametrized in terms of upper
diagonal matrices, which are precisely the decorations that describe the symmetry of theW3

state (This symmetry can also be understood in terms of theWN state, but we will focus on
W3). Note that A and B are just special cases of u, so the following properties are also true:

v

= v ·

1/v

1/v

,
w

=
w

.

Using this property, which we will call parameter pushing, the example shown in equation (5.1.2)
is an obvious application of the symmetry. Parameter pushing is the main tool that we have in
the construction to identify what parameters are relevant under the SLOCC classification in the
W states stitching. To show how important pushing is, let us go back again to the graph state
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in Figure 5.1, and remember that any stitch can be parametrized in either one of the two forms
in Equation (5.1.1), the Φ-stitch and the Ψ-stitch. Then, all the states that can be obtained from
the Φ-stitch are:

1

2

3

4

v, w1 w2

= v · 1

2

3

41
v

1
v
, w1 w2 ∼= 1

2

3

4
= |0000⟩+

∣∣Ψ+
〉 ∣∣Ψ+

〉
. (5.16)

In the first step, we pushed both arrows through the W3 states, and in the second step, we
just dropped all the outer operations, as they are SLOCC operators. Then, regardless of the
three parameters of the stitch, all the states are in the same SLOCC class, whose graphical
representative is 1

2

3

4
. We can also check to see what classes are obtained when using

the Ψ-stitch:
1

2

3

4

v, w

= v · 1

2

3

41
v

1
v
, w

∼= 1

2

3

4
. (5.17)

A simple calculation shows that the graph state 1

2

3

4
is the unnormalized four qubit

W-state |W4⟩. This process shows how by using the Ψ stitch on the state, there are no relevant
parameters under SLOCC, but the two final states in Equations (5.16) and (5.17) are SLOCC
inequivalent. They belong to different classes according to [VDD+02]. We identified that
the two ways of constructing the state, with three and two complex parameters, respectively,
correspond only to two unique SLOCC inequivalent states. This identification is the essence
of the approach that we will use. However, pushing by itself is not enough to analyze more
complex graphs. In the next section, we will introduce a set of rules that can be obtained from
the algebras of the objects defined for the construction and some that can be obtained from the
construction itself that will help to make the graphical process even more useful.

5.3 Stitching and Pushing rules

W-state stitching and the procedure of parameter pushing based on the symmetries of W-states
can be used together to develop a graphical tool to perform calculations on multipartite states
and for calculating SLOCC invariants as we will see in Section 7.2. Here, we present a set of
rules that summarize the most important properties of this construction:

(i) Graphical definitions: First, we present the graphical representations of the elementary
objects of the construction:
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1. Vertices: Any vertex on the construction is representing aW3 state:

|W3⟩ = .

2. Edges: Any clean edge, i.e., line without decorations, represents the bipartite maximally
entangled state |Φ+⟩, or, if connected to something else, the ⟨Φ+|, where each end of
the edge represents one of the parts of the state:

∣∣Φ+
〉
= ,

〈
Φ+
∣∣ = ≀ ≀ ,

where we use the “≀” symbols to represent that the element is a bra, contracting kets in
both sides.

3. Operations: There are three basic operations from which any other invertible opera-
tion can be obtained up to a scale factor:

σx = •, B(v) =
v

, A(w) =
w
,

where B and A matrices are defined in Equations (5.9) and (5.6). The arrows point to
the part where they are acting on.

Although any other construction can be obtained from the ones defined above, it will be
useful to introduce symbols derived from the elemental ones:

4. Qubit: We show in the Appendix B that qubit |1⟩ can be obtained by stitching to-
gether two parts of the same |W3⟩ state with a clean ⟨Φ+|, which leads to a natural
representation of |1⟩:

|1⟩ = .

5. Composed objects: Other recurrent objects that can be obtained from composing the
previous ones are:∣∣Ψ+

〉
= , u(v, w) =

v, w
=

w
vv
, |0⟩ = .

The u matrix is defined in Equation (5.5), and we usually refer to the lines with • on
them as •-lines.
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6. The Z-ball: There is a special case for balls when the argument is the imaginary
number i. In that case, the matrix is proportional to the Pauli operator σz , and we
define a special notation for it:

B(i) =
i

= i · = iσz.

(ii) Stitch-Arrows equivalence: Any entangled bipartite state ⟨ς| with a coefficient matrix
of unit-determinant as in Equation (5.2) can be parametrized in one of the two following
forms: 〈

ςΦ
∣∣ = ς10 ς00, ς01

≀ ≀ ,
〈
ςΨ
∣∣ = 1

ς01
, ς11

≀ ≀ ,

named the Φ-stitch and the Ψ-stitch respectively. It is worth recalling here that when
stitches are contracted with W states, the actions of arrows are understood as acting on
the contracted parts of the W states.

(iii) Multiplication rules: The algebras of the objects defined in (i) have the following
multiplication rules:

1. Balls and white arrows have a nice structure because they define two groups under
matrix multiplication: balls are the group of diagonal matrices with determinant 1, and
white arrows are the group of upper triangular matrices with diagonal equal to 1. Then,
when multiplying balls, we get another ball, and when multiplying white arrows, we
get another white arrow. The ways that matrix multiplication combines such objects
are:

v1 v2

=
v1v2

,
w1w2

=
w1 + w2

.

2. As shown above, in (i.5), black arrows can be obtained by multiplying balls and white
arrows. However, this decomposition can be done in two equivalent forms:

v, w

=
v w/v

=
vw v

,

with these decompositions, the algebras of balls and white arrows define any operation
on black arrows.

3. The last two operations are σx and σz , that, being Pauli matrices, are involutory
matrices, so when multiplying two of each, we get:

= , = .
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(iv) Sliding rules: Due to the symmetry of ⟨Φ+| shown in Equation (5.3), symmetric operators
such as • and balls can be applied in any of the parts. Graphically, that means that those
objects can be slid through empty lines:

v

=
v

, = , =

(v) Commutation rules As balls and • can be slid on the lines, sometimes we will want to
move balls through •s, which corresponds to the commutation operation. Such commuta-
tion rules are:

v

=
1/v

, = −
We include here the fact that on •-lines, arrows can be switched from one part to another
as:

v, w
=

1/v, w

.

(vi) Pushing rules: The symmetries of W-states allow to push operations in one of the parts
to the other two as:

1. A black arrow with parameters (v, w) can be pushed through W vertices, creating a
black arrow with parameters (1/v, w) in one edge and a ball with 1/v as a parameter
in the other edge, and a scale factor v:

v, w

= v ·
(1/v, w)

1/v

2. Balls are a special black arrow where the second parameter is set to w = 0. Then,
when pushing a ball with parameter v through aW vertex, it results in one ball with
parameter 1/v in each opposite edge and a scale factor v. We apply this to generic
balls and Z-balls as:

v

= v ·
1/v

1/v

, = − .

3. White arrows are a special black arrow where the first parameter is set to v = 1. Then,
when pushing a white arrow through aW vertex results in the same arrow acting on
one of the opposite edges:

w

=
w

.

Up to this point, we introduced the rules that arise from the definitions of the basic objects
and their algebras. In the next part, we will introduce some rules obtained when analyzing the
construction in simple setups. Most of these rules are obtained in the Appendix B.
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(vii) Operations on qubits: First, we want to summarize how the qubits, introduced in (i.4)
and (i.5), interact with other objects in the construction.

1. First, the interaction between qubits is very simple:

= = 1, = 0.

2. When qubits are contracted with theW vertex, we obtain a |Ψ+⟩, when contracting
with a ⟨0|, or the separable state |00⟩ when contracting with ⟨1|:

= , =

3. The actions with the set of operations can be obtained from the matrix representations
to be:

v

= v · ,
v

=
1

v
· ,

w

= ,
w

= w · + ,
v, w

= v · ,
v, w

= w · +
1

v
.

and clearly • action exchange between |0⟩ and |1⟩.

(viii) Ball self-destruction : When moving a ball through a loop, according to sliding rules
(iv.2) and commutation rules (v.2), the argument of the ball is inverted by each • in the path.
Then, we can start by separating the ball v into two balls

√
v by using multiplication rules

(iii.1). After that, when pushing one of the balls through the vertices of the loop, if the
number of •’s is odd, the ball can be self-destroyed inside the loop. However, throughout
this process, by the pushing rule (vi.2), one ball is pushed to each external edge of the
loop and a factor appears, which must be considered. For example:

v

iii
=

√
v
√
v

v
=

√
v ·

√
v

1/
√
v

1√
v

v
= . . .

v
=

√
v ·

1/
√
v

√
v

√
v

1/
√
v

1√
v

√
v

iii
=

√
v ·

1/
√
v

√
v

√
v

1/
√
v

,

where we specified over the “=” sign the rule used in each step.
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(ix) WN states andWN reordering: W states have a nice mathematical structure that allows
the calculation of an N-partite W state as:

12

N1 N −N1

21

× =

12 N

,

where we generalized the notation of W3 to the N-partite W state as a vertex with N
edges. This construction can be reversed to write theWN state as the stitch of any two
subsets ofN with the • line, then all of the possible constructions are equivalent, allowing
one to replace any two constructions freely. The most simple case is:

1

2

3

4
= =

1

2

3

4

Replacing the first form with the last one has proven to be very useful to simplify states.
Note how the generalization of notation forWN states is consistent with the two qubits
case, because |W2⟩ is represented with a • and two edges, that is the same representation
of |Ψ+⟩, but |W2⟩ and |Ψ+⟩ are exactly the same state:

|W2⟩ =
∣∣Ψ+

〉
= .

(x) One-qubit constructions: When stitching two parts of the same W state, only two
SLOCC inequivalent states of one qubit appear. These shapes appear very frequently in
more complex constructions, so it is worth to state them as rules:

v

=

(
1 + v2

v

)
· , = 0.

(xi) Two-qubit constructions: When stitching two parts of two different W states, the set of
SLOCC inequivalent constructions are:

1. When both stitches are Φ-stitches, there are two inequivalent cases, one with a normal
ball that leads to an entangled state, and another with the Z-ball, leading to a separable
state:

v

=
√
1 + v2 ·

√
1+v2

v

, = .

2. When there is one Φ-stitch and one Ψ-stitch, only entangled states can be obtained:

=
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3. When both stitches areΨ-stitches, we have two options, one with generic balls, leading
to a separable state, and one with the Z-ball, where the state is canceled:

v

=

(
1 + v2

v

)
, = 0.

This set of rules is used to simplify a graph state and identify what parameters on the stitches
are relevant under SLOCC classification. Most rules without parameters introduced here are
also used in ZW calculus [Had15], but the parametric ones are original.

5.3.1 Examples:

We will show in two examples how the rules allow identifying relevant parameters in a graph
state and also make explicit when separable parts appear in the graph. First, consider the
following graph state:

.

Now, we must consider the different ways of filling this graph with the stitches in rule (ii). We
will show explicitly the construction where all the stitches are Φ-stitches:

vi∝ ,

where we already applied the pushing rules (vi) to push out the black arrows in external vertices,
leaving, for each corner, a ball inside, while the white arrows can be pushed out freely. As we
are interested in SLOCC classification, we can drop external decorations as they are SLOCC
operations; because of this, from now on, we will omit the decorations in external edges and
use the ∼= symbol:

∼=
iii,iv,vi∼= .

In the last step, one of the balls was moved along the inner lines, using sliding rules (iv), then,
pushed through vertices (vi), and multiplied with the other to combine them into just one ball,
using multiplication rules (iii). With this process, we have simplified the problem of SLOCC
classification from 12 original complex parameters in the four stitches to only one. It has to be
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highlighted that this parameter is relevant for SLOCC classification; by modifying its value, it
is possible to achieve three SLOCC inequivalent families:

∼=
∣∣∣Ga a√

2
a√
2
0

〉
,

∼=
∣∣La(ia)02〉 ,

2
√
ab

(a−b)

∼=
∣∣Gab

√
ab

√
ab

〉
,

where all of these states are labeled according to Table 2.2, and the correspondence was found
by using the classification scheme shown in [HLT17], where

∣∣∣Ga a√
2

a√
2
0

〉
is a subfamily of

|Gabcd⟩ with b = c = a√
2
, d = 0,

∣∣La(ia)02〉 is a subfamily of |Labc2⟩ with b = ia, c = 0 and∣∣Gab
√
ab

√
ab

〉
is another subfamily of |Gabcd⟩ with c = d =

√
ab.

We now present another example where an important feature of the construction is made
explicit: it is possible to identify clearly from the graph when separable qubits or separable
subsets of qubits are obtained in the graph state. Consider the graph represented by:

,

Now, we want to consider the case where one of the stitches is a Ψ-stitch, while the other two
are Φ-stitches; then, we start with:

iii,iv,vi∝

where we have combined all the steps used before into one step, i.e., we pushed the arrows
out (vi), slid and pushed the remaining balls to one line (iii,vi), and then multiplied them to
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combine them (iv). Now, we use the reordering ofW states on the •-line (ix):

ix
= ,

to end up with a two-qubit loop on the right side, which can be separated into two cases
according to the two-qubit constructions rules. The first one, using rule (xi.1), gives:

xi∝ ∼= ,

where in the last step, we dropped the external operations, showing that this state is SLOCC
equivalent to |W3⟩. The second case is when the inner ball is a Z-ball. Using the rule (xi.2), we
obtain:

xi
=

vii
= ,

where in the last step, we used operations on qubits (vii.2). In this case, the construction shows
explicitly that one of the qubits ends up separated from the other two; this is a property of the
proposed construction that allows identifying separability of subsets which is in general not
obvious to tell from the coefficient expansion of multipartite states.

By using the set of rules, we explored the SLOCC classification problem for the cases of three
and four qubits, leading to minimal graphs that can be used to reproduce any of the classes. In
the following, we present the graph representatives of the SLOCC classes.

Two qubits

For the two qubits case, there are two SLOCC classes: the separable class and the entangled
class. Both can be obtained with the same graph but different parameters:

= , ∼=

Three qubits

Three qubit states are separated into six SLOCC classes as shown in Section 2.3.2. Modifications
of the same one-loop graph can obtain all of them. The completely separable state can be
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obtained when using Ψ-stitches on all the inner edges:

= .

The classes A−BC,B − AC,C − AB can be obtained up to permutations when using one
Ψ-stitch, two Φ-stitches, and using a inner Z-ball:

= .

The W class is the primitive vertex on this construction; however, it can also be obtained when
using two Ψ-stitches and one Φ-stitch as:

= .

Finally, the GHZ class can be obtained from the one-loop graph when all the stitches are
Φ-stitches

∼= |GHZ⟩ . (5.18)

This last result was obtained from the ZW perspective in [Had15].

5.4 Graph equivalence of four qubit SLOCC families

All SLOCC families for four qubits shown in Table 2.2 can be obtained from graphs with
sixW vertices and seven stitches. The correspondence shown here was obtained using the
classification protocol shown in [HLT17]; however, this process is not trivial, and we will
describe it here. For this, let us consider again the first example in Section 5.3.1. The steps to
find the correspondence with SLOCC-families are the following:
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1. First, we start with the graph that we want to analyze and a choice of stitches to be used.
We will choose again the case where all stitches are Φ-stitches:

2. Then, we apply the stitching and pushing rules from Section 5.3 to clean as many stitching
parameters as possible. We have already shown this process, and the resulting graph state
is:

A B

CD

3. The “cleaned” state is now calculated in its vector form, which will have as many parameters
as the stitching parameters in the graph. For the example, the obtained vector is:∣∣∣∣ψv 〉 =

(
v +

1

v

)
|0000⟩+ v (|0011⟩+ |0101⟩+ |1100⟩+ |1111⟩) + 1

v
|1010⟩ ,

where v is a generic parameter for the ball left after cleaning the graph. Here, we introduced
a notation that will be recurrent, denoting by

∣∣∣ψG
Θ⃗

〉
to the state obtained when filling the

graph state G with the list of parameters Θ⃗.

4. For the obtained state, we include a scale factor s that allows us to relate unnormalized
states and calculate a complete set of four invariants, B,L,M,Dxy [HLT17](equivalently
we can also use the invariants that we propose in Section 7.2). For our example, this is:

B (s |ψv⟩) = 2(1 + v2)s2

L (s |ψv⟩) = s4

M (s |ψv⟩) = −v4s4

Dxy (s |ψv⟩) = −2v4s6(1 + v2).

5. We proceed to apply the classification protocol in section V of [HLT17]; for this, we calculate
the roots of the quartics Q1, Q2 and Q3 also introduced in [HLT17].

For the example, we can focus on Q3 whose general expression is:

Q3 (s |ψv⟩) =
(
x− s2(1 + v2)y

)2 (
x2 − 2s2(1 + v2)xy + s4(v2 − 1)2y2

)
,

where three different cases can be identified.
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5.4. GRAPH EQUIVALENCE OF FOUR QUBIT SLOCC FAMILIES

i. The first case, when v = ±1 ( we will pick v = 1, for simplicity), where

Q3 (s |ψv=1⟩) =
(
x− 2ys2

)2 (
x2 − 4s2xy

)
,

whose roots, obtained by fixing y = 1, Q3 = 0 and solving for x, are:

x1 = 0, x2 = x3 = 2s2, x4 = 4s2. (5.19)

Then, when fixing v = 1, the classification falls in the case (2), where only one of
the quartics (in this case, Q3) has a zero root. As there is a double nonzero root
(x2 = x3 = 2s2), the specific case is (d). Then, we evaluate the covariant L and get
L (s |ψv=1⟩) = 0, meaning that the state belongs to the Gabb0 subfamily, this is, the
family Gabcd with d = 0 and c = b.

ii. The second case is when v = ±i ( we will pick v = i by simplicity), where

Q3 (s |ψv=i⟩) = x2(x2 + 4s4y2),

whose roots are:
x1 = x2 = 0, x3 = −2is2, x4 = 2is2. (5.20)

Then, when fixing v = i, the classification falls in the case (2.b), where one of the
quartics (Q3) has a double zero root. Then, by evaluating the two covariants K3 and L
we get:

K3 (s |ψv=i⟩) ̸= 0, L (s |ψv=i⟩) = 0,

meaning that the state belong to the subfamily Lab02 , which is the family Labc2 with
c = 0.

iii. The last case, is when v ̸= ±1 and v ̸= ±i, then the roots of Q3 are:

x1 = s2(v − 1)2, x2 = s2(1 + v)2, x3 = x4 = s2(1 + v2). (5.21)

Then, the classification falls in the case (1.b), that when evaluating the covariant L we
get L (s |ψv⟩) = 0, meaning that the state belongs to the Gabcc subfamily (Gabcd with
d = c).

6. The last step is to find a parametrization of the stitching parameters that makes the map
between them and the parameters a, b, c, d explicit. This can be done by equating the roots
of the quartics from the graph state with the roots of the quartics of the corresponding
family or subfamily. In this example, we want to find s and v as functions of a, b, and c
(none of the cases have d as a parameter). For each of the cases, we have the following:
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i. For the first case, the representative is Gabb0, this state has a zero root in Q1. So, it is
enough to equate

r [Q1(|Gabb0⟩)] = r [Q3 (s |ψv=1⟩)] ,

where r refers to the roots of the functions. The roots of Q1 for the representative Gabb0

are:
x1 = 0, x2 = a2, x3 = x4 = b2.

The only solution for these roots to be equal to the roots in Equation (5.19) is:

b =
a√
2
, s2 =

a2

4
.

Note how the resultant subfamily is more restricted than Gabb0; this is expected because
we only have the scale factor to modify our graph state. Then, we can achieve a
one-parametric subfamily at most. Finally, we find that:

±a
2
· ∼=

∣∣∣Ga a√
2

a√
2
0

〉
,

the SLOCC relation can be achieved strictly with local operations in SL2, and permuta-
tions of the parts, and the scale factor is already known.

ii. For the second case, the representative is Lab02 , the zero root is in Q1, whose roots are:

x1 = x2 = 0, x3 = a2, x4 = b2.

Equating these roots with the ones of Equation (5.20) we get:

b2 = −a2, s2 =
ia2

2
.

Again, in this case, the resultant subfamily is more restricted than the one identified
using the classification protocol. We obtain finally :

√
i

2
a · ∼=

∣∣La(±ia)02〉 .
iii. For the last case, the representative is Gabcc. As we only have as free parameters s and

v from the graph state, we know this representative must be more restricted. We can
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only achieve, at most, a two-parametric subfamily from the graph state. The roots of
the first quartic of the representative are:

x1 = a2, x2 = b2, x3 = x4 = c2,

equating these roots with the ones in Equation (5.21) we get as a possible solution:

c =
√
ab, v =

2
√
ab

a− b
, s =

1

2
(b− a).

So, we have the following equivalence:

1

2
(b− a) ·

2
√
ab

(a−b)

∼=
∣∣Gab

√
ab

√
ab

〉
.

We did this process for all possible graphs for all possible combinations of stitches, leading to
an extensive list of subfamilies that are not worth putting explicitly here.

The first SLOCC family is the L03⊕1̄03⊕1̄
corresponding to the product state obtained from a

qubit and a GHZ state. One graph that can achieve this class is:

= = ∼=
∣∣L03⊕1̄03⊕1̄

〉
.

This family has no parameters, and it is the only one with separable qubits in the representative
state. From the graph structure, it is seen clearly that the resultant state is SLOCC equivalent
to |0⟩ ⊗ |GHZ⟩, which is the form of the representative state

∣∣L03⊕1̄03⊕1̄

〉
.

Another three families can be obtained from the graph state

∣∣∣∣∣∣ψv1,w1,w2

〉
=

v1, w1

w2

.

By changing the parameters of the arrows, two different families can be obtained. Let Θ⃗ =
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v1, w1, w2, be the parameters of the white arrow and the black arrow, we have that:∣∣∣∣∣∣ψ1,1,−1

〉
∼=
∣∣L05⊕3̄

〉
,

∣∣∣∣∣∣ψ1,1,1

〉
∼=
∣∣L07⊕1̄

〉
.

One more family is obtained by using one Ψ-stitch:

−1

∼= |La4⟩ .

This is a one-parametric family, and that parameter is reproduced with a scale factor on the
graph state. The remaining five SLOCC families can be obtained from the graph:

v1, w1

w2

.

For the four non-generic families, we have:∣∣∣∣ψ1,1,0

〉
∼=

√
2

a

∣∣La203⊕1̄

〉
,∣∣∣∣ψ√

a+b
a−b

,
√

a+b
2a

,0

〉
∼=

√
2√

a(a− b)
|Lab3⟩ ,∣∣∣∣∣∣ψ√

a2+b2

a2−b2
,1,0

〉
∼=

√
2√

a2 − b2
|La2b2⟩ ,∣∣∣∣∣∣ψ√

c2−ab

c2+ab
,

√
c2−a2−b2

2(c2+ab)
,0

〉
∼=

√
2√

c2 + ab
|Labc2⟩ .

It is clear how the parametrization gets more complicated with the number of parameters of the
families. To parametrize the generic state, the same method used for the other eight families led
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to equation systems that were not solvable analytically. For this state, we simultaneously used
equations from invariants, quartics, and roots to achieve a possible parametrization. Even with
this, the obtained expressions were too complicated, so we found that a nice parametrization
can be obtained by defining the symmetric combinations:

z1 = (a+b+c+d), z2 = (ab+ac+ad+bc+bd+cd), z3 = (abc+abd+acd+bcd), z4 = abcd.

Now, define w∗
1, w

∗
2 as the solutions to the system of equations

w2
1 + w2

2 =
z1z2

z1z2 − 2z3
, w2

1w
2
2 =

2(z1z2z3 − z21z4 − z23)
2

(z1z2 − 2z3)3(z31 − 2z1z2 + 4z3)
,

and define

v1 =

√
z31 − 2z1z2 + 4z3
2(z1z2 − 2z3)

, s =

√
2z1

z1z2 − 2z3
,

then, the generic state Gabcd can be obtained as∣∣∣∣ψv1,w∗
1 ,w

∗
2

〉
∼= s |Gabcd⟩ .

With this, we complete the nine SLOCC families of Verstraette, and therefore, any four qubit
state can be obtained from the graphs shown before. In [Ng18] and [Had15], a brief exploration
of graphs from ZW-calculus are shown for reproducing non-parametric representatives of
super-classes [LLS+07] of four qubits, which correspond to a different classification of SLOCC
classes. What we presented here is a complete scheme to reproduce graphically any four-qubit
SLOCC class by showing what graph and what stitching parameters are needed to reproduce
the nine SLOCC families [VDD+02] with free parameters a, b, c, d.

In the next chapter, we will see how this multi-qubit construction using W states and bipartite
states can be exploited to find explicit expressions for general Kronecker states and an orthogo-
nal basis for Kronecker subspaces. One of the requirements for the process shown in the next
chapter is that we can only ensure that every Kronecker subspace can be obtained if we can
build any multi-qubit state from W states and bipartite states only. Due to the connection with
ZW calculus and its completeness, we know that it is always possible; moreover, in this chapter,
we have shown how these constructions can be done explicitly for the cases of three and four
qubits.
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6
Kronecker states fromW-Stitching

In this chapter, we cover the main objective of this document, developing a systematic pro-
cedure to calculate multipartite locally maximally entangled states (LME) that belong to the
invariant subspace of the tensor products of irreps of the symmetric group Sn, where the Hilbert
spaces that are entangled have dimensions that grow exponentially with n. We call these states
Kronecker states and we name the invariant subspace where they belong, Kronecker subsbace.
Interestingly, Kronecker states form to a vector space of LME states, whose dimension is given
by the Kronecker coefficient, which is generally greater than one. This makes the Kronecker
subspace a promising vector space for applications in quantum information, as quantum secret
sharing, or designing codes for quantum error correction. For our construction, we exploit two
already discussed facts: first, it is possible to obtain expressions for Kronecker states that appear
in the multi-copy decomposition of states in theW -class and bipartite states in their Schur
basis, and second, any multiqubit state can be obtained by stitching W-states with bipartite
states. The main observation in the stitching procedure is that when the multi-particle Schur
transform is applied to any graph state, theGL2 and Sn subspaces retain the graph structure. In
other words, the Schur transformation of a generic graph state can be identified in the graphical
notation with the same graphs in {λ} and in [λ] representations, making it possible to read
explicitly from the graph a way to calculate generic Kronecker states from W-Kronecker states.

We begin this chapter with a recapitulation of the problem’s setup and the partial solutions
developed for calculating Kronecker states. Then, we explore the limitations of the known
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approaches and emphasize what can and can not be done with them. Later, we generalize the
stitching method to calculate Kronecker states and Φ states, showing how, with this approach,
some of the limitations of the known methods are simple to overcome. We dedicate the rest of
this chapter to describing the minimal conditions to calculate any possible Kronecker subspace.
We discuss the properties of the construction and how the connection between graph states and
Kronecker states gives us information about SLOCC classes from their graph representatives.

6.1 State of the art: Kronecker states

We name Kronecker states |Kλ⟩ the N -partite states that belong to the invariant subspace of
tensor products of N irreps of Sn:

|Kλ⟩ ∈ [λ]Sn ,

where λ = λ1, λ2, . . . , λN is a set of N partitions of n with at most two parts, [λ] =
⊗N

i=1[λ
i],

and V Sn represents the invariant subspace of V under the same action of the symmetric group
Sn on all the parts. As partitions are restricted to having at most two parts, we usually use
a shorthand notation for labeling partitions only with their second index: λi = λi2. For the
convenience of the reader, here we summarize properties of Kronecker states and Kronecker
subspaces that were already discussed in Chapter 3:

• Kronecker states are invariant under the diagonal action of Sn:

Dλ(π) |Kλ⟩ = |Kλ⟩ , ∀ |Kλ⟩ ∈ [λ]Sn , Dλ(π) =
N⊗
i=1

Dλi(π).

• Kronecker states are Locally Maximally Entangled states, due to their individual reduced
density matrices being proportional to the identity. Defining ρ = |Kλ⟩ ⟨Kλ|, then:

ρi = trı(ρ) =
1

f [λi]
If [λi] ,

where ı is the set of parts that are complementary to i, and f [λi] is the dimension of irrep
[λi].

• The dimension of the Kronecker subspace is given by the Kronecker coefficient, which
can be calculated from the Sn characters as:

dim([λ]Sn) = kλ =
1

n!

∑
π∈Sn

χ[λ](π), χ[λ](π) =
N∏
i=1

χ[λi](π).
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Kronecker states can be calculated from the Clebsch-Gordan coefficients (CGC) of the symmetric
group, as shown in section 4.3. In particular, when expanding the Kronecker states in its
coefficients as:

|Kλ⟩ =
∑
q

Kλ,q |λ, q⟩ ,

with q = q[λ
1]q[λ

2] . . . q[λ
N ], a list of basis elements of each irrep, then, it is possible to obtain

Kronecker states from CGC as:

Kλ,q,s =
1√
f [λi]

C
[λı],[λi],s

qλı ,qλi
, (6.1)

where i is the chosen part to make the decomposition of CGC, s is a multiplicity label, and ı is
the set of the complementary parts to i. However, as discussed in Section 4.3, the methods to
calculate CGC are inefficient even for small values of n or are not general enough to generate
significant Kronecker subspaces.

Alternatively to the mathematical approach of using CGC of Sn to calculate Kronecker states,
the quantum information-based approach, motivated by entanglement concentration protocols,
also sheds light on the task of calculating Kronecker states when considering copies of qubit
systems. The simplest case is the bipartite case, where n copies of a state |ψ⟩ ∈ H1 ⊗H2 with
Hi the Hilbert space of the i-th part, is studied through the Schur-Weyl duality, introduced in
section 3.3. Schur-Weyl duality states that the total Hilbert space of n copies can be decomposed
simultaneously on irreps of GL2 and Sn in each of the parts as:

(H⊗n)Sn ∼=
⊕
λ⊢n,2

({λ} ⊗ {λ})⊗ ([λ]⊗ [λ])Sn ,

where H = H1 ⊗H2, {λ} are irreps of GL2 and [λ] are irreps of Sn, both labeled by the same
partition λ, and the Kronecker coefficient is kλλ = 1. For this case, the Schur transform has the
general form:

|ψ⟩⊗n =
⊕
λ

√
p(λ|ψ) |Φλλ(ψ)⟩ |Kλλ⟩ ,

and the only Kronecker state for any λ can be calculated from the Schur transform to be:

|Kλλ⟩ =
1√
f [λ]

∑
q

|λ, q⟩ |λ, q⟩ .

When considering the multipartite case, this approach becomes much more complex. In this
case, the Schur-Weyl duality applied locally to the n copies of a state |ψ⟩ ∈ H1 ⊗ · · · ⊗ HN ,
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states that the total Hilbert space decomposes as:(
H⊗n)Sn ∼=

⊕
λ⊢n,2

{λ} ⊗ [λ]Sn ,

where now H =
⊗N

i=1Hi, {λ} =
⊗N

i=1{λi}, [λ] =
⊗N

i=1[λ
i] and λ = λ1 . . . λN is a multiple

label for local partitions. However, in this case, it is in general not possible to obtain unique
Kronecker states by performing the Schur transform; instead, the Schur transform for the
general case can be written as:

|ψ⟩⊗n =
⊕
λ⊢n,2

√
p(λ|ψ)

[
kλ∑
i=1

|Φλ,i(ψ)⟩ |Kλ,i⟩

]
, (6.2)

where |Φλ,i(ψ)⟩ is a state in {λ} and |Kλ,i⟩ is a Kronecker state in [λ]Sn . In this case, the
multiplicity of the invariant subspace given by the Kronecker coefficient, kλ, does not permit
the separation of the part corresponding to {λ} from the part corresponding to [λ]Sn , so, it is
not possible to obtain Kronecker states for the multipartite case with the Schur transform and
measurement for generic states.

Remarkably, when specializing in states in the multiqubit W-class, separability is achieved
again in the multi-copy setup. For this SLOCC class, the state corresponding to {λ} is unique
for each set λ; in particular, for the W state of N parts, |WN⟩, the Schur transform gives the
form:

|WN⟩⊗n =
⊕
λ∈ΛW

n

ηλ

∣∣∣Φ∧λ (WN)
〉 ∣∣KW

λ

〉
,

where
∣∣∣Φ∧λ (WN)

〉
is an unnormalized state in {λ} that can be calculated as:

∣∣∣Φ∧λ(WN)
〉
=
n!−(N−2)/2

√
Nn

∑
ω

√
Aλ,ω |λ,ω⟩ ,

with a list of weights ω = ω1ω2 . . . ωN restricted by
∑N

i=0 ω
i = n, and

Aλ,ω =
N∏
i=1

Aλi,ωi , Aλ,ω =
(n− λ− ω)!

(ω − λ)!
.

The factor ηλ relates the unnormalized state
∣∣∣Φ∧λ(WN)

〉
and the normalized state |Φλ(WN)⟩

as :
|Φλ(WN)⟩ =

ηλ√
p(λ|WN)

∣∣∣Φ∧λ(WN)
〉
,
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with ΛWn the polytope that restricts the possible set of partitions λ to those that belong to the
region spanned by the W-class, defined by[WDG+13a]:

ΛWn := {λ : 2λi ≤
N∑
j=1

λj ≤ n}.

The uniqueness of the state
∣∣∣Φ∧λ(WN)

〉
, permits us to apply the Schur transform on copies of

WN and, through a recurrent construction, to obtain the unique associated Kronecker state. By
defining an unnormalized Kronecker state,∣∣KW

λ

〉
=
∑
λ,q

K̂W
λ,q |λ, q⟩ ,

the unnormalized coefficients can be obtained from the following expression:

K̂W
λ,q =

n∏
j=2

j −
∑N

i=1

[
qij(j + 1− λ(i),j)− (1− qij)λ

i,j
]

∏N
i=1

√
n− 2λi,j + 2qij

, (6.3)

where λi,j =
∑j

k=1 q
i
k is the partial partition of the i-th irrep at step j in the construction. With

this equation, any Kronecker state appearing in the decomposition of W-class states can be
obtained efficiently.

This way of calculating Kronecker states has two problems that make it an incomplete approach
to generating Kronecker subspaces. The first problem is that the Kronecker states are obtained
only for the W-class, corresponding to the possible set of partitions that belong to ΛWn , which
is only a part of all the possible sets λ where Kronecker states appear. The next problem is that
the W-Kronecker state is unique in each set λ, making it impossible to use this construction
to build all Kronecker subspaces when their dimensions are more than one. Nevertheless,
when possible, this algorithm can be used to find a first Kronecker state from a set of kλ
orthogonal Kronecker states, showing one privileged direction on the multiplicity space of
the invariant subspace. We will show how the W-state stitching can be understood in the
Kronecker subspaces as a W-Kronecker-state stitching, allowing us to overcome the previous
limitations.

6.2 W-Kronecker-state stitching

In the same sense that we build generic qubit states by using W-states and bipartite states
as building blocks, we can build generic Kronecker states by using W-Kronecker states and
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bipartite Kronecker states as building blocks. The first important property of Kronecker
states is that they are independent of the parameters of the state. Therefore, we introduce a
graphical notation for three parts, W-Kronecker states and bipartite Kronecker states, that are
in correspondence with the W-state and bipartite state representations as:

∣∣KW
λ1λ2λ3

〉
=

λ1

λ2
λ3 , ⟨Kµµ| =

µ
,

where now λi labels the irreps appearing in the i-th part and, for the bipartite state, we always
have the same partition µ on both sides, so we put it in the middle. In this context, we do not
need to define any operations in the Kronecker subspaces. Now, consider the simple process of
stitching together two W-Kronecker states with one bipartite Kronecker state in a graph like
the one shown in Figure 5.1:

λ1

λ2

λ3

≀ ≀
λ6

λ4

λ5

µ

= ⟨Kµµ|EF
∣∣KW

λ1λ2λ3

〉
ABE

∣∣KW
λ4λ5λ6

〉
CDF

,

we labeled the parts with letters to clarify what parts we were stitching. By expanding each
Kronecker state on the right side in their coefficients, we have:

λ1

λ2

λ3 λ6
λ4

λ5

µ

≀ ≀ =

 1

f [µ]

∑
q[µ]

〈
µ, q[µ]

∣∣
E

〈
µ, q[µ]

∣∣
F


·

 ∑
q[λ

1]q[λ
2]q[λ

3]

KW
λ1λ2λ3,q[λ

1]q[λ
2]q[λ

3]

∣∣∣λ1, q[λ1]〉
A

∣∣∣λ2, q[λ2]〉
B

∣∣∣λ3, q[λ3]〉
E


·

 ∑
q[λ

4]q[λ
5]q[λ

6]

KW
λ4λ5λ6,q[λ

4]q[λ
5]q[λ

6]

∣∣∣λ4, q[λ4]〉
C

∣∣∣λ5, q[λ5]〉
D

∣∣∣λ6, q[λ6]〉
F


By contracting the bras and the kets labeled with the same letters, we get:

λ1

λ2

λ3 λ6
λ4

λ5

µ

=
δµ,λ3δµ,λ6

f [µ]

∑
q[µ]qλ

KW
λ1λ2µ,q[λ

1]q[λ
2]q[µ]

KW
λ4λ5µ,q[λ

4]q[λ
5]q[µ]

∣∣λ, qλ
〉
.

From this calculation, we have the first condition of the construction: Kronecker states can
only be contracted when the same partition appears in both the W-Kronecker states and the
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bipartite Kronecker state used to connect them. In this sense, without loss of generality, we
will consider only the graphs satisfying this condition and then the graph state obtained from
the stitching can be parametrized by the graph G, the list of inner partitions µ, and the list of
external partitions λ:

λ1

λ2

λ3

λ4

µ

=
∣∣∣ψµ,λ 〉

. (6.4)

Now, let us act on this state with the corresponding irreps of Sn in each external edge with a
permutation π:

Dλ1(π)⊗Dλ2(π)⊗Dλ3(π)⊗Dλ4(π)
∣∣∣ψµ,λ 〉

=

⟨Kµµ|EF
(
Dλ1(π)⊗Dλ2(π)⊗ I

∣∣KW
λ1λ2µ

〉
ABE

)(
Dλ3(π)⊗Dλ4(π)⊗ I

∣∣KW
λ3λ4µ

〉
CDF

)
,

using the invariance of Kronecker states and moving the remaining actions to the bipartite
state, we get: (

⟨Kµµ|EF D
[µ](π−1)⊗D[µ](π−1)

) ∣∣KW
λ1λ2µ

〉
ABE

∣∣KW
λ3λ4µ

〉
CDF

.

Then, due to the invariance of the bipartite Kronecker state, we have:

Dλ1(π)⊗Dλ2(π)⊗Dλ3(π)⊗Dλ4(π)
∣∣∣ψµ,λ 〉

=
∣∣∣ψµ,λ 〉

.

The resultant state is invariant under the diagonal actions of Sn, showing that the obtained
graph state belongs to the invariant subspace, regardless of the inner partition:∣∣∣ψµ,λ 〉

∈ [λ]Sn , ∀µ ⊢ n, 2.

So, by stitching W-Kronecker states with bipartite Kronecker states, the obtained state is again
a Kronecker state. We will call this construction Graph-Kronecker states, and we will change
the notation as: ∣∣∣ψµ,λ 〉

→
∣∣∣K∧µ,

λ

〉
,

the ·
∧
symbol is used again to signify that the obtained state is not generally normalized. We

will show later that these obtained Kronecker states are not necessarily W-Kronecker states,
but first, let us generalize and recapitulate what we did here.

The properties discussed previously for graph Kronecker states are generic for any graph
construction. We will state those properties as fundamental in the W-Kronecker-state stitching:
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• Stitching W-Kronecker states with bipartite Kronecker states can only be done when
the connecting partitions are the same. Given this condition, the obtained state is a
Kronecker state.

This construction is very simple once the W-Kronecker states are known. Now, we want to
show that with this construction, it is possible to overcome the limitations of W-Kronecker
states. In contrast with W-Kronecker states, the external partitions of graph Kronecker states
are not restricted to the polytope ΛWn , even though the sets of partitions appearing in the
vertices correspond to W-Kronecker states, which are restricted to the polytope. In Equation
(6.4), we showed the simplest construction that one can imagine for graph Kronecker states,
and we will see how this is already useful to go beyond W-Kronecker states. In this case, we
have two vertices, with sets (λ1λ2µ), and (λ3λ4µ), which corresponding to W-Kronecker states,
each belonging to ΛWn , this is, the restriction corresponding to theW class is:

λ1 + λ2 + µ ≤ n, λ3 + λ4 + µ ≤ n.

By using the triangular inequalities of partitions:

λ1 − λ2 ≤ µ, λ2 − λ1 ≤ µ, λ3 − λ4 ≤ µ, λ4 − λ3 ≤ µ, (6.5)

one gets that restrictions of the W-class are transmitted to the external partitions as:

n ≥ λ1 + λ2 + λ3 − λ4,

n ≥ λ1 + λ2 + λ4 − λ3,

n ≥ λ1 + λ3 + λ4 − λ2,

n ≥ λ2 + λ3 + λ4 − λ1.

These restrictions are stronger than the polytopeKRON [CHM07] defined in (4.30), meaning
that not all the sets are accessible, but they are also weaker than ΛWn , meaning that sets of
irreps not allowed for the W-class can be obtained with this graph. For example, consider the
set (λ1λ2λ3λ4) = (1111) in n = 3, with kλ = 3; this set is not allowed for the W-Kronecker
states because:

λ1 + λ2 + λ3 + λ4 > n;

nevertheless, we can find µ partitions for , such that both sets of partitions on vertices are
W-Kronecker states. For example, when taking µ = 1, we have two sets (λ1λ2µ) = (111), and
(λ3λ4µ) = (111) where both belong to ΛWn , so, we can calculate a graph Kronecker state from
contracting one part in each of two copies of the W-Kronecker state

∣∣KW
111

〉
, that we calculated

in Equation (4.8), which is the only Kronecker state in that subspace. Then we have for the
graph-Kronecker state:∣∣∣K∧1,

1111,3

〉
=

2

3
(|0000⟩ − |0011⟩+ |0101⟩+ |0110⟩+ |1001⟩+ |1010⟩ − |1100⟩+ |1111⟩) ,
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where we omitted the label λ = 1111 in the basis elements, and the two basis elements of [1]
in n = 3 were labeled as |0⟩ = q

[1]
1 , |1⟩ = q

[1]
2 . We can notice that the resultant state is not

normalized in general. Then, the normalized graph Kronecker state is:∣∣∣K1,

1111,3

〉
=

1

2
√
2
(|0000⟩ − |0011⟩+ |0101⟩+ |0110⟩+ |1001⟩+ |1010⟩ − |1100⟩+ |1111⟩) .

One can check that all the one-part reduced density matrices are proportional to the identity,
so, with this construction, we can achieve Kronecker states that are not W-Kronecker states.
Moreover, this state corresponds to the generic state of four qubits Gabcd shown in table 2.2,
where the parameters are fixed to a = c = 0, b = d = 1√

2
; it has been discussed that represen-

tatives of this family are LME states, as expected for Kronecker states.

We can generate many graph Kronecker states for the same external partitions. For this simple
example, another possible value of µ allows the construction: µ = 0. When picking the inner
partition to be µ = 0, the two sets of partitions for the vertices are (λ1λ2µ) = (110) and
(λ3λ4µ) = (110). In this case, the [0] irrep is the trivial representation, a one-dimensional
representation. The Kronecker states for the vertices are, in fact, bipartite Kronecker states:∣∣KW

110

〉
= |K11⟩ |0⟩0 =

1√
2
(|00⟩+ |11⟩) |0⟩0 ,

where we kept the reduced notation for the basis elements of [1], and we labeled the only base
element of [0] as |0⟩0. In this case, the contraction described by the graph Kronecker state is
just a product, ∣∣∣K0,

1111,3

〉
= ⟨00|0

1√
2
(|00⟩+ |11⟩) |0⟩0 ·

1√
2
(|00⟩+ |11⟩) |0⟩0

=
1

2
(|0000⟩+ |0011⟩+ |1100⟩+ |1111⟩) .

This graph state is a product state of two entangled states of two parts, but interestingly, it is
still an LME state; all the one-part reduced density matrices are proportional to the identity.
Then, the W-Kronecker-state stitching procedure not only works for obtaining Kronecker
states out of the set of partitions belonging to ΛWn but also allows us to calculate more than
one graph Kronecker state for the same set of partitions; in this sense, this mechanism allows
one to build Kronecker subspace up to some point. For the example, we found two different
Kronecker states for the same external partitions. In this case, the obtained Kronecker states
are orthogonal (the reason for this will be explained later in subsection 6.3.1), but this is not
a general construction property. However, with these two states, we already have two basis
elements for the Kronecker subspace ([1]⊗ [1]⊗ [1]⊗ [1])S3 , which is a three-dimensional
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subspace, kλ = 3, so we are missing one more. Next, let us highlight the property of all states
in the Kronecker subspace of being LME. With the two obtained states, we can find Kronecker
states with any complex linear combination. For example, take,∣∣∣K∧⋆

1111,3

〉
=

√
2·
∣∣∣K1,

1111,3

〉
+
∣∣∣K0,

1111,3

〉
=

1

2
(|0101⟩+ |0110⟩+ |1001⟩+ |1010⟩)+|0000⟩+|1111⟩ .

By calculating the one-part reduced density matrices of the obtained state, one checks that it is
an LME state, and the same will be obtained for any complex linear combination of the obtained
graph Kronecker states. However, the invariant subspace in this case is three-dimensional; so,
there is one Kronecker state orthogonal to the obtained ones that is still missing to define a basis
for the Kronecker subspace. For this, we would need to explore the graph constructions with
the hope that at some point, with some graph and some set of inner partitions, another graph
Kronecker state, linearly independent to

∣∣∣K0,

1111,3

〉
and

∣∣∣K1,

1111,3

〉
, can be obtained. However,

performing this task without any guiding principle is very inefficient. Later, we will see how
such a guiding principle can be obtained from the connection between W-state stitching and W-
Kronecker-state stitching. Before delving into this problem, we will summarize and generalize
the observations made in this section.

Generalities of W-Kronecker-state stitching

In this section, we have introduced the W-Kronecker-state stitching procedure and obtained
some interesting features from a simple example. We will summarize those features here and
present how they are understood in a generic graph-Kronecker state construction:

(i). W-Kronecker-state stitching can only be done when the partition labels in the contracted
parts are the same. Given this, we can separate the labels as inner partitions (or irreps),
that are contracting parts, labeled by µi, and external partitions, that are the ones that are
free after the construction, labeled by λi. We will label λ to the set of external partitions,
µ to the set of inner partitions, and (λ,µ)v, to the triplet of partitions appearing in the
vertex v.

(ii). The resultant state after stitching W-Kronecker states, it is a Kronecker state in λ, which
will be labeled as: ∣∣∣K∧µ,G

λ

〉
,

where G is the graph used for the construction, and the value of n is made explicit. It
should be clear from the notation that the obtained state is generally not normalized.

(iii). Graph Kronecker states can be obtained for sets λ outside of ΛWn . However, depending on
the graph used, the setλmay be restricted by the restrictions on the triplets (λ,µ)v ∈ ΛWn .
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(iv). It is possible to calculate as many Kronecker states as the number of sets of compatible
inner partitions such that in all the vertices, (λ,µ)v ∈ ΛWn . This set is defined for each
graph and the external partitions; we will name it µG

λ , and it is defined as:

µG
λ = {µ|(λ,µ)v ∈ ΛWn , ∀v ∈ G}. (6.6)

In general, the obtained Kronecker states from a graph G are not orthogonal, nor even
linearly independent. However, from them, it is possible to obtain, using any orthogonal-
ization method, a subset of mutually orthogonal Kronecker states. The size of this subset
is the effective Kronecker coefficient associated with the graph kGλ and cannot be greater
than kλ, i.e.,

kGλ ≤ kλ.

Now, we are in a position to ask the next question. Under what conditions can we ensure that
for a graph G, the obtained graph Kronecker states span completely the Kronecker subspace,
i.e., kGλ = kλ ?. To solve this question, we will exploit again the multi-copy setting, but now on
graph states.

6.3 Schur transfrom in graph states

In chapter 5, we used the W-state stitching and the pushing rules to identify graphs that allow
us to obtain the different SLOCC classes for three and four-qubit systems. In this section, we
will show an existing underlying structure on the graph construction for qubit states, and
Kronecker states that connect their properties, allowing us to obtain a criterion for a complete
construction of Kronecker subspaces. At the same time, it gives us information about the qubit
states from their graph structure.

Let us start by recalling once more the Schur transform for W states, in particular forW3 states:

|W3⟩⊗n =
⊕
λ∈ΛW

n

ηλ

∣∣∣Φ∧λ(W3)
〉 ∣∣KW

λ

〉
, (6.7)

with λ = λ1λ2λ3 a set of three partitions,
∣∣KW

λ

〉
the unique W-Kronecker state in the invariant

subspace[λ]Sn , and ∣∣∣Φ∧λ(W3)
〉
=

1√
3nn!

∑
ω

√
Aλ,ω |λ,ω⟩ ,

is a vector on {λ}. On the other hand, for bipartite states, if the state is entangled, it can
be obtained by SLOCC actions on the maximally entangled state ⟨Φ+|. As discussed in the
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previous chapter, this can be expressed with one of two possible parametrizations: the Φ-stitch
and the Ψ-stitch. We will only represent the Φ-stitch option,

⟨ς| =
〈
Φ+
∣∣u(v1, w1)⊗A(w2).

Nevertheless, it should be understood that the Ψ-stitch option is equally valid. The Schur
transform of the n-fold tensor product of ⟨ς| reads as:

(⟨ς|)⊗n =
⊕
µ⊢n,2

√
p(µ|v1w1w2)

(〈
Φµµ(Φ

+)
∣∣V {µ}(u(v1, w1))⊗ V {µ}(A(w2))

)
⟨Kµµ| , (6.8)

where u(v, w) is defined in Equation (5.5), A(w) is defined in Equation (5.6), and V {µ}(B) is
the matrix representation of B in the irrep {µ} ofGL2. Now, in a similar way as we introduced
graphical notations for W-states and for W-Kronecker states that appear in [λ]Sn in the Schur
transform of W-states, we define a graphical notation for the states that appear in {λ} in the
Schur transform of W-states, including the ηλ factor; namely,

∣∣∣Φ∧λ(W3)
〉

ηλ

∣∣∣Φ∧λ(W3)
〉
=

{λ1}

{λ2}

{λ3} .

Similarly for the state appearing in {µ}⊗ {µ} in the Schur transform of bipartite states, where
now the edges have operations on them; in the same way as for the W-state stitching, we use
arrows and balls to denote the representation of the respective single-copy operation:

√
p(µ|v1w1w2)

(〈
Φµµ(Φ

+)
∣∣V {µ}(u(v1, w1))⊗ V {µ}(A(w2))

)
=

{µ}v1, w1 w2

.

Having defined those last graphical objects, we can rewrite the Equation (6.7) graphically as:( )⊗n

=
⊕
λ∈ΛW

n

{λ1}

{λ2}

{λ3} ⊗
λ1

λ2

λ3 , (6.9)

and similarly for Equation (6.8) we have:(
v1, w1 w2

)⊗n

=
⊕
µ⊢n,2

{µ}v1, w1 w2

⊗
µ

. (6.10)

Stitching can also be applied to the states of {λ}, but we will not explore it deeper than saying
that given a graph G, we can obtain a state by stitching the states correspondent toW states
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using the states corresponding to bipartite states. In this sense, the obtained state will be labeled
as : ∣∣∣Φ∧µ,G

λ,Θ⃗

〉
,

where Θ⃗ is the list of parameters used in the stitching, λ label external partitions of the graph
and µ label inner partitions as usual. With this, we have all the tools and definitions to exploit
the connections between graph constructions.

First, consider any qubit graph state obtained from W-state stitching. This state is calculated as
the contraction of the s stitches with wW states according to the structure of the graph. Next,
we tensorize the state:

∣∣ψG
Θ⃗

〉⊗n
=

(
s⊗
j

〈
ςj
∣∣)⊗n( w⊗

i=1

|W3⟩

)⊗n

. (6.11)

The Schur transform on the last expression can thus be understood in two ways. First, we can
apply it to the copies of the state

∣∣∣ψG
Θ⃗

〉
following the generic Schur transform from Equation

(6.2). On the other hand, we can apply the Schur transform on the right hand side of the
equation, on the stitches and the W states as in Equations (6.9) and (6.10). The states in the
Schur basis can be stitched together to build states in {λ} and [λ]Sn with the same graph G to
obtain: ⊕

λ

√
p
(
λ|ψG

Θ⃗

) kλ∑
s=1

∣∣Φλ,s

(
ψG
Θ⃗

)〉
|Kλ,s⟩ =

⊕
λ

∑
µ∈µG

λ

∣∣∣Φµ,G

λ,Θ⃗

〉 ∣∣∣Kµ,G
λ

〉
,

where µG
λ is the set of tuples of inner partitions compatible with the graph G and the external

partitions λ, as described in Equation (6.6). The previous equation states that under the Schur
transform, the graph structure is preserved in the spaces {λ} and [λ]Sn . Equating terms with
the same λ on both sides, we obtain:√

p
(
λ|ψG

Θ⃗

) kλ∑
s=1

∣∣Φλ,s

(
ψG
Θ⃗

)〉
|Kλ,s⟩ =

∑
µ∈µG

λ

∣∣∣Φµ,G

λ,Θ⃗

〉 ∣∣∣Kµ,G
λ

〉
. (6.12)

It is then possible to identify a correspondence between Kronecker graph states and basis states
of the Kronecker subspaces as:

|Kλ,s⟩ =
∑
µ∈µG

λ

Cµ,G
λ,s

∣∣∣Kµ,G
λ

〉
. (6.13)

139



6.3. SCHUR TRANSFROM IN GRAPH STATES

with Cµ,G
λ,s a set of coefficients that make explicit the correspondence. The correspondence

obtained in the last equation means that any Kronecker state |Kλ,s⟩ appearing in the Schur basis
of the graph state

∣∣∣ψG
Θ⃗

〉
, can be obtained as a linear combination of the graph Kronecker states,

obtained with the same set of external partitions and the same graph
∣∣∣Kµ,G

λ

〉
. However, as the

graph Kronecker states are not linearly independent in general, there are many equivalent
ways of expressing the states |Kλ,s⟩ in terms of graph Kronecker states labelled by different
sets of inner partitions µ. Despite this, the previous equation ensures that if a Kronecker state
|Kλ,s⟩ appear in the Schur transform of the multiqubit graph state, this can be obtained as a
linear combination of some of the possible graph Kronecker states. In other words, the span
of the Kronecker subspace in both sets of Kronecker states are the same. Knowing this, if for
some graph the effective Kronecker coefficient is not complete, kGλ < kλ, then the possible
Kronecker states appearing in the Schur basis of the qubit states cannot span the Kronecker
subspace completely. Thus, the possible Kronecker states on the left side of Equation (6.13)
also depend on the graph structure of the state.

The previous results are very important and give us information on how to generate all
Kronecker subspaces and the states related to a graph. It is worth highlighting that this relation
is independent of the parameters of the multiqubit graph state. This is the case because the
stitching parameters Θ⃗ only appear in the states in {λ}. We can conclude that the relation in the
Kronecker subspaces includes all the possible graph states that can be obtained from the same
graph, regardless of the specific stitches (Φ-stitch or Ψ-stitch) and the stitching parameters.
We will use this connection to state the first theorem, which gives a guide on how to span
completely Kronecker subspaces:

Theorem 1. LetG be a graph withN external edges, and kGλ the effective Kronecker coefficient in
a given set ofN external partitions λ, i.e., the dimension of the Kronecker subspace spanned by the
graph when considering all the possible sets of inner partitions µG

λ . Then, G generates completely
any Kronecker subspace of N parts (i.e., kGλ = kλ, ∀λ ⊢ n, 2), if G can be used to generate all the
SLOCC classes corresponding to stable orbits of N qubits.

Proof. To prove this theorem, we start by recalling the result from [GW11], where it was shown
that the set of states SLOCC equivalent to critical states, or, in other words, the set of SLOCC
stable orbits, is dense in the total Hilbert space H. Then, the remaining orbits, i.e., strictly
semi-stable and unstable orbits, are of measure zero compared with the stable orbits.

Now, note that when integrating n copies of rank-one projectors onto pure qubit states of N
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parties, with the uniform measure induced by the Haar measure,Dψ, we have:∫
Dψ (|ψ⟩⟨ψ|)⊗n ∼=

⊕
λ⊢n,2

Psym
{λ} ⊗ P [0]

λ .

The resultant is a matrix proportional to the identity, due to the Schur lemma. Then, it is
clear that the resultant matrix is invariant under the multi-local actions of GL2 and Sn. Then,
again, by Schur’s Lemma, the multi-local Schur transform corresponds to the projector onto
the invariant subspace of the tensor product of irreducible representations on both groups.
Psym

{λ} is the projector onto the invariant subspace of {λ} under multi-local GL2 actions, and
P [0]

λ is the projector onto the invariant subspace of [λ] under Sn actions, i.e., the Kronecker
subspace, which can be obtained from any complete set of Kronecker states, defining the
invariant subspace. This projector is given by

P [0]
λ =

kλ∑
s=1

|Kλ,s⟩ ⟨Kλ,s| .

Thus, the set of pure states of full measure in the total Hilbert space spans completely any
Kronecker subspace. Note that the span of the Kronecker subspace from graph-Kronecker
states obtained with the graph G is equal to the span of the Kronecker subspace in the Schur
basis of all possible qubit states obtained with the same graph G. Then, if the obtained graph
qubit states from G are dense in the total Hilbert space H, the graph G spans completely any
Kronecker subspace of N parts.

This theorem gives us sufficient conditions on graphs for calculating any Kronecker subspace
of N parts: we must refer first to the W-stitching procedure to identify what graphs generate
all the SLOCC stable orbits, and then, we can use any of those graph; for example, the graph
with less vertices, to build all the graph Kronecker states,

{∣∣∣Kµ,G
λ

〉
,∀µ ∈ µG

λ

}
. We can obtain

a complete basis for any Kronecker subspace from this set.

We call graphs with the property given in Theorem 1, i.e., graphs that generate the SLOCC
stable orbits of N qubits, sufficient graphs. Then, the problem of completely building the Kro-
necker subspace is solved by finding sufficient graphs. The previous chapter already presented
sufficient graphs for N = 3 and N = 4. We will show later how the Kronecker subspace
construction can be made with those graphs. Moreover, we know from the connection with
ZW-calculus that with W-state stitching, it is possible to generate any multiqubit state because
ZW-calculus is complete [Ng18]. Then, it will always be possible to find a set of graphs {Gi},
such that any Kronecker subspace of N parts can be obtained from them.
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The dual relation of Kronecker subspaces in Equation (6.12) not only allows us to make obser-
vations on the graph Kronecker construction from the graph multiqubit construction but also
permits us to gain information on the qubit states of a given graph based on the restrictions
of the graph Kronecker states. For this, let us define an incomplete graph in λ as a graph G
that cannot span completely the Kronecker subspace [λ]Sn , i.e., kGλ < kλ; then we have the
following theorem:

Theorem 2. Let G be an incomplete graph on a set of partitions λ. Then, the dimension of the
Kronecker subspace spanned by any qubit state that can be obtained from G can be at most kGλ .

Proof. From equation (6.13), we can see that if some graph-qubit state obtained from a graph
G for a given set λ in its Schur basis has a set of k

ψG
Θ⃗

λ orthogonal Kronecker states, then, each
Kronecker state can be obtained as a linear combination of some graph Kronecker states of the
same graph G, hence, k

ψG
Θ⃗

λ ≤ kGλ .

This theorem was already discussed as a consequence of the relations of the Kronecker sub-
spaces of equation (6.12); however, it is worth pointing it out because it allows to identify
SLOCC classes that are different from theW class, but for which nevertheless the entangle-
ment concentration protocol can be applied. This depends on the result of the projection in
local irreps as follows. Consider a graph G and the set of tuples of external partitions where
the effective Kronecker coefficient is one: λGEC := {λ | kGλ = 1}. Then, the entanglement
concentration protocol can be applied whenever the projection on the local irreps gives, as a
result some set λ ∈ λGEC . It will be an interesting task for the future to study the implications
of this result.

Theorem 1 and 2 show how the stitching structure permits us to infer properties from qubit
states to Kronecker states and vice-versa. In the next section, we show how, for a special kind
of graph, the graph Kronecker states obtained, and the qubit graph states obtained from such
graphs are special, showing that this connection may be deeper what one might guess at a first
glance.

6.3.1 One edge reducible graphs

Some interesting properties can be obtained when focusing on graphs that can be separated in
two by “cutting” only one edge. We call these One-edge reducible (OER) graphs and denoted as
G = ( ). Such graphs correspond to any construction expressed as two subgraphs G1 and G2

142



CHAPTER 6. KRONECKER STATES FROMW-STITCHING

stitched with one edge, called the reducible edge. These graphs can always be represented as :

1
2
.
.
.
N1 N1 + 1

.
.
.
.N

G1 G2

,

where represents a generic graph. These kinds of graphs have some interesting properties

for Kronecker and qubit states. First, let us consider Kronecker states obtained from an OER,
denoted by

∣∣∣Kµ,(ϵ, )
λ

〉
, where ϵ is the inner partition used in the reducible edge. Then, this

state can be factored as:
|Kµ,ϵ,

λ ⟩ ∝
〈
Kϵϵ

∣∣∣Kµ1,G1

λ1ϵ

〉 ∣∣∣Kµ2,G2

λ2ϵ

〉
where G1,2 are the two sub-graphs obtained when cutting the reducible edge, and µi,λi refer
to the sets of inner and outer partitions in the separated graph Gi. From the relation between
CGC and Kronecker states in Equation (6.1), this equation can be rewritten as:∣∣∣Kµ,(ϵ, )

λ

〉
=

1√
(f [ϵ])3

∑
qλ,q[ϵ]

C
[λ1],[ϵ],(µ1,G1)

qλ1 ,q[ϵ]
C

[λ2],[ϵ],(µ2,G2)

qλ2 ,q[ϵ]

∣∣qλ
〉

where (µi, Gi) is a label for the CGC associated with the graph from where it is obtained.
Next, we pick another Kronecker state for the same set λ, obtained with an OER, but with the
partition in the reducible edge being ϵ′ and the same separation λ1λ2. Then, the inner product
of these states is:

〈
Kµ,(ϵ, )

λ

∣∣∣Kµ′,(ϵ′, ′)
λ

〉
∝

∑
q[ϵ],q[ϵ

′]

∑
qλ1

C
[λ1],[ϵ],(µ1,G1)

qλ1 ,q[ϵ]
C

[λ1],[ϵ],(µ′
1,G

′
1)

qλ1 ,q[ϵ
′]

·

∑
qλ2

C
[λ2],[ϵ],(µ2,G2)

qλ2 ,q[ϵ]
C

[λ2],[ϵ′],(µ′
2,G

′
2)

qλ2 ,q[ϵ
′]

 .

By using orthogonality relations of CGC, we get that:〈
Kµ,(ϵ, )

λ

∣∣∣Kµ′,(ϵ′, ′)
λ

〉
∝ δϵϵ′ . (6.14)

Then, if the partitions in the reducible edge are different, the obtained graph Kronecker states
are orthogonal. With this, a subset of orthogonal Kronecker states can be obtained and lead,
for OER Kronecker states, to a meaningful way to label the multiplicities of the Kronecker
subspace (at least some of them) with the different ϵ values. This construction offers a natural
meaning for the multiplicities that can be obtained from OER graphs.
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There is one more result for the OER graph states. But now for the qubit graph states. Consider
anN -partite qubit state and the separation betweenN1 parts from the remainingN −N1 parts,
withN1 ≤ N −N1. Then, the rank of the reduced density matrix for any of the parties could be
at most 2N1 ; however, if the state can be obtained from an OER graph, with the reducible edge
separating N1 parts from the remaining N −N1 parts, then, the rank of the reduced density
matrix for any of the parties can be at most 2. This restriction is a result of the Keyl-Werner
theorem in Section 3.5.1. When taking copies of the state, a projective measurement on the irrep
corresponding to the separation, the probability of the irrep measured will be concentrated
asymptotically on partitions around the spectrum of the reduced density matrix, ρ{N1}, with
{N1} the smaller set of separated parts. As the ϵ irrep can only take values on partitions of at
most two parts, i.e., ϵ ⊢ n, 2, the rank of the reduced density matrix cannot be greater than
2. In this sense, the Kronecker graph structure again provides information on possible qubit
graph states.

Now we dedicate the rest of this chapter to the process of Building Kronecker subspaces in the
cases of three and four qubits, for which in the last chapter, we found the graphs that span
densely the total Hilbert space, then, those graphs can be used to generate any Kronecker
subspace.

6.4 Three-part Kronecker states

In this section, we will use the W-Kronecker-state stitching to obtain any Kronecker state
appearing in the Schur-Weyl decomposition for states of three qubits that, according to theorem
1, can be obtained from the graph that generates the full measure SLOCC class of three qubits.
As discussed in Section 2.3.2, there are six SLOCC classes for systems of three qubits; from them,
one is completely separable, three have a separable qubit, and two are genuinely entangled.
However, there is only one SLOCC class that corresponds to a stable orbit, which is the GHZ
class. To build completely the Kronecker subspace of any set of partitions of three parts, due to
theorem 1, we need a graph such that GHZ-class can be obtained from it. In the W-stitching
procedure for three qubits in Section 5.3.1, we showed that the graph that allows us to obtain
the GHZ class is:

|GHZ⟩ ∼= .

Then, when fixing a set of external partitions λ = λ1λ2λ3, we can obtain Kronecker states of
three parts for each compatible set of inner partitionsµ = µ1µ2µ3, by building graph Kronecker
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states as:

∣∣∣∣Kµ,

λ

〉
∝ µ1 µ2

µ3λ1 λ2

λ3

,

By using all the set of compatible inner partitions with λ, i.e., µ ∈ µλ , the span of the obtained
graph Kronecker states will be of dimension kλ, meaning that with those graph Kronecker
states it is possible to build an orthogonal basis of kλ Kronecker states for any Kronecker
subspace of three parts with λ ⊢ n, 2. The explicit equation for obtaining the graph Kronecker
states from the W-Kronecker states in this graph is:∣∣∣∣Kµ,

λ

〉
∝ ⟨Kµ1µ1| ⟨Kµ2µ2 |

〈
Kµ3µ3

∣∣KW
λ1µ1µ3

〉 ∣∣KW
λ2µ2µ3

〉 ∣∣KW
λ3µ1µ2

〉
,

where the repeated partitions give the position for the projections. This equation can be written
in a more useful way for doing the computations. By writing the bipartite and W Kronecker
states in their coefficient expansions given by Equations (4.4) and (4.19), for this case, we have:∣∣∣∣Kµ,

λ

〉
∝
∑
qλ

(∑
qµ

KW
λ1µ1µ3,q[λ

1]q[µ
1]q[µ

3]K
W
λ2µ2µ3,q[λ

2]q[µ
2]q[µ

3]K
W
λ3µ1µ2,q[λ

3]q[µ
1]q[µ

2]

)∣∣λ, qλ
〉
.

(6.15)
As the process of W-Kronecker-state stitching leads to an unnormalized state, we can use the
unnormalized coefficients of W-Kronecker states shown in Equation (6.3), and then, the use of
Equation (6.15) is straightforward.

We will show the calculation of one of these graph-Kronecker states to give a clearer idea
of how the method works. The first case where a Kronecker state out of the restriction of
W-states, i.e., with a set of partitions outside of ΛWn , is for n = 4 with λ = 222. Note how
λ1 + λ2 + λ3 = 6 > 4, showing that this set is out of the polytope ΛW4 . The first step is to find
the set of tuples of inner partitions µ such that for the graph with external partitions λ, in
each vertex v, the triplets of partitions (λ,µ)v belong to ΛW4 . In this case, all the triplets in the
vertices are:

(λ,µ)1 = 2µ1µ3, (λ,µ)2 = 2µ2µ3, (λ,µ)3 = 2µ1µ2.

The only possible set of inner partitions, where each vertex belongs to ΛW4 , is µ = 111. It is
possible to build only one graph Kronecker state in this set of external partitions; however,
the Kronecker coefficient is kλ = 1. Hence, there is only one possible Kronecker state. In fact,
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due to theorem 1, we can state that for any set λ of three parts, the set of compatible inner
partitions in this graph is at least as big as the Kronecker coefficient:

kλ ≤ |µλ |.

Continuing with the calculation of the graph Kronecker state, we have that the basis elements
for each partition are, for the three-dimensional irrep [1]:

{q[1]1 = {0, 0, 0, 1}, q[1]2 = {0, 0, 1, 0}, q[1]3 = {0, 1, 0, 0}} → ,

and for the two-dimensional irrep [2]:

{q[2]1 = {0, 0, 1, 1}, q[2]2 = {0, 1, 0, 1}} →

The W-Kronecker state appearing in all vertices is the same, and we already calculated it in
Equation (4.32), but with a different order in the irreps. By reordering the state, we have:∣∣∣K∧W

211

〉
=

1√
6

(∣∣∣q[2]1 , q
[1]
1 , q

[1]
2

〉
+
∣∣∣q[2]2 , q

[1]
1 , q

[1]
3

〉
+
∣∣∣q[2]1 , q

[1]
2 , q

[1]
1

〉
+
∣∣∣q[2]2 , q

[1]
3 , q

[1]
1

〉)
+

1

2
√
3

(∣∣∣q[2]1 , q
[1]
2 , q

[1]
2

〉
−
∣∣∣q[2]1 , q

[1]
3 , q

[1]
3

〉
−
∣∣∣q[2]2 , q

[1]
2 , q

[1]
3

〉
−
∣∣∣q[2]2 , q

[1]
3 , q

[1]
2

〉)
.

where the label λ = 211 in the kets was omitted. Now, using Equation (6.15), we have:∣∣∣∣K111,

222

〉
∝ ⟨K11| ⟨K11|

〈
K11

∣∣∣K∧W

211

〉 ∣∣∣K∧W

211

〉 ∣∣∣K∧W

211

〉
.

Then, we can obtain an unnormalized state where the first coefficient is:

K
∧111,

222,q
[2]
1 q

[2]
1 q

[2]
1

=
∑

q[µ
1]q[µ

2]q[µ
3]

K
∧

211,q
[2]
1 q[µ

1]q[µ
3]K
∧W

211,q
[2]
1 q[µ

2]q[µ
3]K
∧W

211,q
[2]
1 q[µ

1]q[µ
2] =

1

4
√
3
.
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By doing the same with all the coefficients, we get the unnormalized graph state:∣∣∣∣K∧111,

222

〉
=

1

4
√
3

(∣∣∣q[2]1 q
[2]
1 q

[2]
1

〉
−
∣∣∣q[2]1 q

[2]
2 q

[2]
2

〉
−
∣∣∣q[2]2 q

[2]
1 q

[2]
2

〉
−
∣∣∣q[2]2 q

[2]
2 q

[2]
1

〉)
,

which, after normalization, corresponds to∣∣∣∣K111,

222

〉
=

1

2

(∣∣∣q[2]1 q
[2]
1 q

[2]
1

〉
−
∣∣∣q[2]1 q

[2]
2 q

[2]
2

〉
−
∣∣∣q[2]2 q

[2]
1 q

[2]
2

〉
−
∣∣∣q[2]2 q

[2]
2 q

[2]
1

〉)
.

This state is the same in (4.8), and as discussed, this state is unique when considering three
two-dimensional irreps; nevertheless, it is the only example that can be shown in the paper in
its coefficient expansion.

The next set of external partitions that are not achieved with theW class is for n = 5,λ = 222,
and as the dimension of the irrep [2] is f [2] = 5; states in [λ] have 125 coefficients in general.
In particular, this Kronecker state only has 39 no-null coefficients but is still long enough to
avoid the coefficient expansion. A useful way to visualize states of three parts used in [BM18]
is to represent the coefficients of the state in a three-dimensional graph, where each axis
represents the basis elements of the three parts ordered lexicographicallywith the corresponding
Yamanouchi symbols. The size of the point represents the magnitude of the coefficients, and
the color represents the sign of the coefficient. By using this representation, we show the

state
∣∣∣∣K111,

222

〉
in Figure 6.1. It is worth highlighting that for this case, the set of compatible

inner partitions is not unique, µ1 = 111 and µ = 112 are compatible, but as the Kronecker
coefficient is kλ = 1, both graph-Kronecker states are the same after normalization:

n = 5 :

∣∣∣∣K111,

222

〉
=

∣∣∣∣K112,

222

〉
.

These constructions exhibit structural relations between the different ways of obtaining the
same Kronecker state that should be studied more deeply in the future, as it . In the next
subsection, we will show how to span Kronecker subspaces of three parts for some values of n.

Kronecker subspaces for three parts

One of the most interesting applications of this method is to obtain a vector space full of
Kronecker states, i.e., a Kronecker subspace. In table 6.1 we show the sets of partitions λ from
n = 6 up to n = 12, where the Kronecker coefficient is greater than one, kλ > 1, and the
column ΛWn tells whether the set λ is inside or outside of the polytope of the W class. One
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Figure 6.1: Graphical representation of the graph Kronecker state of three parts with λ = 222 and µ = 111. Each axis represents the basis
elements of each part, the size of the point represents the magnitude of the coefficients, and the color represents the sign of the coefficient: red
for positive and yellow for negative.

useful expression for calculating Kronecker coefficients for triplets of partitions with at most
two rows is introduced in [Ros01]. In our notation this expression corresponds to:

kλ1λ2λ3 = (y−x)(y ≥ x), x = max

(
0,

⌈
λ1 + λ2 + λ3 − n

2

⌉)
, y =

⌈
λ1 + λ2 − λ3 + 1

2

⌉
,

(6.16)
where the partitions are ordered as λ1 ≤ λ2 ≤ λ3.

The first case where the dimension is greater than 1 (kλ > 1) is for n = 6 with the partition
λ = 222 with kλ = 2. This partition belongs to ΛW6 , then, one of the Kronecker states that we
will use to define the basis of the Kronecker subspace is

∣∣KW
222

〉
. Recalling the notation for the

orthogonal basis of Kronecker states {|Kλ,s⟩}, this is:

n = 6 : |K222,1⟩ =
∣∣KW

222

〉
.

We will use the W-Kronecker construction to obtain one linearly independent Kronecker state.
For this set, the compatible inner partitions for the graph are:

µ222 = {022, 111, 112, 113, 122, 222}.
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n λ kλ ΛWn
6 222 2 ✓
7 222 2 ✓
8 222 2 ✓
8 233 2 ✓
9 222 2 ✓
9 233 2 ✓
9 333 2 ✓
10 222 2 ✓
10 233 2 ✓
10 244 2 ✓

n λ kλ ΛWn
10 333 2 ✓
10 334 2 ✓
10 444 2 ×
11 222 2 ✓
11 233 2 ✓
11 244 2 ✓
11 333 2 ✓
11 334 2 ✓
11 344 2 ✓
11 444 2 ×

n λ kλ ΛWn
12 222 2 ✓
12 233 2 ✓
12 244 2 ×
12 255 2 ✓
12 333 2 ✓
12 334 2 ✓
12 344 2 ✓
12 345 2 ✓
12 444 3 ✓
12 455 2 ×

Table 6.1: Triplets of partitions λ = λ1λ2λ3 with Kronecker coefficients greater than 1. The symbol✓in the last column means that the
correspondent triplet is inside the W polytope defined by ΛW

n , and the symbol × means that the triplet is outside of the W polytope.

The state obtained from the first set is the same W-Kronecker state; with any other inner set,
it is possible to build a basis for the Kronecker subspace. In particular, we can choose the
state obtained with µ = 111, then, applying a Gram-Schmidt process we obtain an orthogonal
Kronecker state:

n = 6 : |K222,2⟩ =
√
1961

40

(∣∣∣∣K111,

222

〉
+

19√
1961

∣∣KW
222

〉)
and then {|K222,1⟩ , |K222,2⟩} define an orthonormal basis for the Kronecker subspace. Unfor-
tunately, as was discussed before, the dimension of each vector grows exponentially with n,
which does not allow us to write the vectors explicitly here, for this example, the dimension is
given by f [2]×f [2]×f [2] = 9×9×9 = 729, and the number of no null entries in the Kronecker
states used as a basis are 192 and 231 respectively. Remarkably, the basis for this Kronecker
subspace is obtained on a personal computer in few seconds using this construction. We show
in Figure 6.2 the graphical representation of the two basis elements for ([2]⊗ [2]⊗ [2])S6 .

Now we will show how to obtain an orthonormal basis for some Kronecker subspaces with
kλ = 2 up to n = 9.

n=7

For n = 7 we have the triplet λ = 222, with dimensions fλ = (14, 14, 14), by defining:

n = 7 : |K222,2⟩ =
4

5

√
34

15

(∣∣∣∣K111,

222

〉
+

13

4
√
34

∣∣KW
222

〉)
.

Then, an orthonormal basis for the Kronecker subspace is defined by: {
∣∣KW

222

〉
, |K222,2⟩}.
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.
Figure 6.2: Graphical representation of the two orthogonal Kronecker states defining the basis of ([2]⊗ [2]⊗ [2])S6

n=8

In n = 8 the first triplet with kλ = 2 is λ = 222, with dimensions fλ = (20, 20, 20), by
defining:

n = 8 : |K222,2⟩ =
√
730

21

(∣∣∣∣K111,

222

〉
+

17√
730

∣∣KW
222

〉)
.

Then, an orthonormal basis for the Kronecker subspace ([2] ⊗ [2] ⊗ [2])S8 is defined by:
{
∣∣KW

222

〉
, |K222,2⟩}.

There is another triplet with kλ = 2 given by λ = 233, with dimensions fλ = (20, 28, 28),
defining:

n = 8 : |K233,2⟩ =
1

5

√
418

7

(∣∣∣∣K122,

233

〉
+ 9

√
3

418

∣∣KW
233

〉)
.

Then, an orthonormal basis for the Kronecker subspace ([2] ⊗ [3] ⊗ [3])S8 is defined by:
{
∣∣KW

233

〉
, |K233,2⟩}.
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n=9

For n = 9 we have three triplets, the first one is λ = 222 with dimensions fλ = (27, 27, 27),
defining:

n = 9 : |K222,2⟩ =
1

28

√
20221

14

(∣∣∣∣K122,

233

〉
+ 43

√
5

20221

∣∣KW
222

〉)
.

Then, the orthonormal basis is defined by: {
∣∣KW

222

〉
, |K222,2⟩}. The second triplet is λ = 233,

with dimensions fλ = (27, 48, 48), defining:

n = 9 : |K233,2⟩ =
1

4

√
6169

105

(∣∣∣∣K122,

233

〉
+

67√
6169

∣∣KW
233

〉)
.

So, the orthonormal basis is given by: {
∣∣KW

233

〉
, |K233,2⟩}. The last triplet is λ = 333 with

dimensions fλ = (48, 48, 48), defining:

n = 9 : |K333,2⟩ =
32

7
√
15

(∣∣∣∣K122,

333

〉
+

17

32

∣∣KW
333

〉)
.

Then, the basis is defined by: {
∣∣KW

333

〉
, |K333,2⟩}.

The number of triplets with Kronecker coefficient equal to two, grows fast from this point.
Because of this we will jump directly to the first case where the Kronecker coefficient is greater
than two.

n=12

For n = 12, there are twelve sets of partitions with kλ > 1, but the most interesting case is
λ = 444 that is the first case where the Kronecker coefficient is greater than two, kλ = 3. In
this set of partitions, the dimensions are: fλ = (275, 275, 275). For this case we will show the
one possible set for the basis and the graphical representation of the states, that have more than
2.5 million of coefficients. The first basis element is the W-Kronecker state |K444,1⟩ =

∣∣KW
444

〉
,
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whose graphical representation is:

|K444,1⟩ = .

It would be intriguing to explore the significance of the fractal-like structure in this representa-
tion.

The other two basis elements of the Kronecker subspace can be obtained as:

|K444,2⟩ =
1

16

√
22206361

85470

(∣∣∣∣K133,

444

〉
− 571√

22206361

∣∣KW
444

〉)
,

|K444,3⟩ =
1

252

√
339845

2

(∣∣∣∣K222,

444

〉
+ 13476

√
6

2974663285
|K444,2⟩+ 233

√
7

1461751

∣∣KW
444

〉)
.

It is clear that the orthogonalization problem becomes more complicated with higher values of
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n and kλ. The graphical representation of these states are:

|K444,2⟩ = , |K444,3⟩ = .

It can be seen that this graph has a structure that is significantly different from theW-Kronecker
state. This structure is less “pyramidal” and some interesting patterns can be noticed on it. It
can be noticed that the W-Kronecker states structure is special. When comparing the represen-
tations of W-Kronecker states with non-W-Kronecker states this structural difference is always
present. It would be interesting to study this characteristic in the future.

With this we finish the exploration in the case of three-parts Kronecker states. All the Kronecker
states presented here were calculated in exact form, as square roots of rational numbers. This
results highlight the efficiency of the method. Now we show the case of four-part Kronecker
states, and explore some interesting results.

6.5 Four-part Kronecker states

When considering the Kronecker states of four parts, the Kronecker coefficient explodes
quickly, reaching values greater than 10 for n = 6 and more than 100 for n = 12. Despite
the complexity, the stitching algorithm allows an exhaustive protocol to build completely the
Kronecker subspace. For four-qubit states, the full measure SLOCC family is named Gabcd class
in the classification of [VDD+02], also discussed in Section 2.3.2. From the results presented in
Section 5.4 and Theorem 1, we can conclude that all Kronecker subspaces of four parts can be
obtained from the following graph:

.
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However, there are many possible diagrams for obtaining four-part states, and it is worth
exploring their structures and implications in constructing Kronecker states. The simplest
diagram for obtaining four qubit states is:

λ1

λ2

λ3

λ4

µ
.

This graph is simple, but the generated Kronecker subspace is already greater than the
W−Kronecker subspace, as seen in Section 6.2. Besides the aspects discussed in this graph, we
can notice that this is an OER graph. Then, according to the Equation (6.14), if we calculate
graph Kronecker states for the same set of external partitions λ, with different values of µ,
they will be orthogonal between each other. In particular, as there are no more inner partitions
than the reducible one, we have that the dimension of the Kronecker subspace spanned by the
graph is exactly the number of compatible inner partitions µ with the set λ, kλ = |µλ |,
which is a unique property of this graph. By recalling the second property of OER graphs,
we know that any qubit state represented by this graph has reduced density matrices in the
partition 12 - 34 of rank at most two.

In Table 6.2 we show the sets λ = λ1λ2λ3λ4 with invariant subspace, kλ ̸= 0, up to n = 6,
removing those with some partition λi = 0, because they correspond to three parts Kronecker
states knowing that f [0] = 1. The table shows the Kronecker coefficient of each set and the
effective Kronecker coefficient of some graphs, obtained by orthogonalizing all the graph
Kronecker states from the compatible sets µG

λ .

It is clear from Table 6.2 that this graph does not completely generate Kronecker subspaces.
Some sets λ cannot be achieved, and the dimension of the generated Kronecker subspace is, in
general, lower than kλ from many of the sets. This characterization also gives information for
the qubit states. As with this graph, the subfamilies La002 and L003 are obtained, then, from the
table, we can read what sets of partitions can appear in the Schur transform of any state in
these subfamilies. It has to be highlighted that despite this graph is not completely symmetric,
the order of the partitions in λ used for the construction does not affect the results shown in 6.2.

The next graph to consider is obtained with four W-vertices and four stitches:

λ1

λ2

λ3

λ4

.
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n λ kλ kλ kλ kλ = kλ kλ kλ
3 1111 3 2 2 3 2 3
4 1111 4 3 3 4 3 4
4 1112 2 1 1 2 1 2
4 1122 2 1 (211111) (211) 2 2
4 2222 3 1 1 3 2 3
5 1111 4 3 3 4 3 4
5 1112 3 2 2 3 2 3
5 1122 4 2 (322222) 4 (322) 4
5 1222 4 1 (222111) 4 2 4
5 2222 6 2 2 6 3 6
6 1111 4 3 3 4 3 4
6 1112 3 2 2 3 2 3
6 1113 1 1 1 1 1 1
6 1122 5 3 (433333) 5 (433) 5
6 1123 2 1 1 2 1 2
6 1133 2 1 (211111) 2 (211) 2
6 1222 6 2 (333222) 6 3 6
6 1223 4 1 (222111) 4 2 4
6 1233 1 0 (100000) 1 (100) 1
6 1333 1 0 (111000) 1 1 1
6 2222 13 3 4 13 6 13
6 2223 4 1 1 4 1 4
6 2233 5 1 (211111) 5 (322) 5
6 3333 4 1 1 3 2 4

Table 6.2: Sets λ, with their respective Kronecker coefficient and the dimension of the Kronecker subspace generated by each graph. The
values with parentesis correspond to different orderings of the external partitions in non-symmetric graphs
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6.5. FOUR-PART KRONECKER STATES

Note how this graph is less symmetric than the previous one, and there are six different
orderings of external partitions:

1
= λ1

λ2

λ3

λ4

,
2
= λ1

λ3

λ2

λ4

,
3
= λ1

λ4

λ2

λ3

4
= λ2

λ3

λ1

λ4

,
5
= λ2

λ4

λ1

λ3

,
6
= λ3

λ4

λ1

λ2

This graph generally spans a larger Kronecker subspace than the previous one. The restrictions
in the external partitions become weaker by the addition of structure, allowing a greater set of
compatible inner partitions. As the positions of external partitions become relevant, we show
in Table 6.2 a list of effective Kronecker coefficients for each order when they are not all the
same. This graph is also an OER and allows us to obtain more orthogonal Kronecker states
than the previous graph. Nevertheless, there is still one more OER graph that is optimal in this
sense.

The following graph is another possible construction with four vertices and four stitches:

λ1 λ2

λ3λ4

.

This graph is the first non-OER graph and leads, as described in Appendix B, to broader SLOCC
families of four qubits. As we show in 6.2, this fact seems connected with considerable growth
in the Kronecker subspaces that can be obtained. Up to n = 6, all Kronecker subspaces can be
obtained completely with this graph, except from the set λ = 3333, where only three of four
dimensions can be spanned. For larger n values, more sets of external partitions with kλ < kλ
appear.

When considering graphs of six vertices and seven stitches, one interesting graph is the
following:

λ1

λ2

λ3

λ4

,
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Note that this is an OER graph that is stitching together two graphs, the most general
graph of three qubits. This graph is the simpler OER graph, where each subgraph is the most
general. Then, with this graph, we can obtain the greatest set of mutually orthogonal graph
Kronecker states for any partitions λ. This graph has three inequivalent orderings:

λ1

λ2

λ3

λ4

,

λ1

λ3

λ2

λ4

,

λ1

λ4

λ3

λ2

,

in Table 6.2 is shown that this graph generally spans a smaller Kronecker subspace than , but
it has the advantage that all graph Kronecker states, with different partitions in the reducible
edge, are orthogonal between them. Some other interesting graphs are the following:

, , ,

The first graph has more structure than , but up to n = 6, the spans of Kronecker subspaces
for both are the same. On the other hand, is not a sufficient graph, in the sense of Theorem
1, but still generates completely any Kronecker subspace up to n = 11. It would be necessary to
reach higher values of n to find at what point starts to fail in building Kronecker subspaces.

Finally, the following graph, with six vertices and seven stitches:

,

is the graph that generates the full measure family Gabcd of four qubits, then, Theorem 1,
ensures that kλ = kλ always. Then, building all the possible graph Kronecker states from the
inner partitions µλ , it is possible to obtain a set of mutually orthogonal Kronecker states to
define the base of any invariant subspace. By using this algorithm, we were able to calculate
exactly (with roots of rational numbers) a set of bases for any Kronecker subspace of four parts
up to n = 9, where the most remarkable set is λ = (3333) with kλ = 39, each part with a
dimension fλ = 48, showing how efficient is the construction.
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6.5. FOUR-PART KRONECKER STATES

Due to the complexity of the obtained states, it is impossible to present their coefficient
expansion here, and the graphical representation used for three-part Kronecker states cannot
be used here either. Despite this, we will present here the largest case for n = 9 and state
explicitly what sets of inner partitions should be used to generate a complete basis for the
Kronecker subspace. For this, we will fix the labels of inner and external partitions as:

λ1

λ2

µ2

µ1

µ3

µ7

µ6 µ5

µ4

λ3

λ4

,

When using n = 9 and λ = 3333, there are 3074 possible sets of inner partitions; from those, a
minimal set from which can be built the base of the Kronecker subspace is defined by 39 sets
that we will label µi with i ∈ {1, . . . , 39}:

µ1 = 0300033, µ2 = 0310133, µ3 = 0320233, µ4 = 0321122,

µ5 = 0330333, µ6 = 0331222, µ7 = 1210132, µ8 = 1210133,

µ9 = 1210134, µ10 = 1220232, µ11 = 1220233, µ12 = 1220234,

µ13 = 1221122, µ14 = 1230332, µ15 = 1230333, µ16 = 1231221,

µ17 = 1231222, µ18 = 1231223, µ19 = 1231243, µ20 = 1240432,

µ21 = 1241322, µ22 = 1241323, µ23 = 1241332, µ24 = 2120231,

µ25 = 2120232, µ26 = 2120233, µ27 = 2120234, µ28 = 2121122,

µ29 = 2121123, µ30 = 2130331, µ31 = 2130332, µ32 = 2130333,

µ33 = 2131221, µ34 = 2131222, µ35 = 2140431, µ36 = 2140432,

µ37 = 2141321, µ38 = 3030330, µ39 = 3030331.

, (6.17)

We can apply the Gram-Schmidt process to the corresponding 39 graph Kronecker states
to find an orthogonal base of Kronecker states labeled as |Kλ,s⟩ with s ∈ {1, . . . , 39}. The
Figure 6.3 is the graphical representation of the matrix of inner products between the graph
Kronecker states

∣∣∣Kµi,

λ

〉
( in x axis) with the set of orthogonal Kronecker states |Kλ,s⟩

(in y axis). It can be noticed that in general the graph states are not linearly independent,
and the Grand Schmidt process is not trivial. Calculating this basis of 39 Kronecker states,
where most of them have more than 2.5 million coefficients, took a couple of hours, show-
ing the efficiency of the approach. It is also noteworthy from the previous matrix that gray
spaces under the diagonal line, represent orthogonality between graph states and the built
basis elements of the Kronecker subspace. Then, even in complicated graphs like this, it is
possible to obtain directly orthogonal graph-Kronecker states. Finding all the orthogonality
conditions for the graph-Kronecker states is an interesting open problem of the approach.
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Figure 6.3: Graphical representation of the matrix of inner products between the graph Kronecker states
∣∣∣∣Kµi,

λ

〉
in x axis, and the set of

orthogonal Kronecker states
∣∣Kλ,s

〉
in y axis. The states in x axis are ordered according to the sets µ listed in Equation (6.17). The height of

the bar represent the magnitude of the coefficient and the color its sign: red for positive and yellow for negative.

Having such conditions will make this approach even more efficient. For example, for the
previous example, we had to look at 2254 graph-Kronecker states to define completely the basis.

The software developed to calculate the W-Kronecker states, the graph Kronecker states, and
the orthogonal Kronecker states can be found in the following link:

https://github.com/waltherlgo/Kronecker-states .

We expect to soon have a repository with the Clebsh-Gordan coefficients of the symmetric
group that can be obtained from this construction.

Five parts case

We finish this chapter by exploring the case in five parts. By Theorem 1, we know that any
Kronecker subspace can be obtained from a graph that generates all the SLOCC stable orbits of
five qubits. Nevertheless, there is so far no known classification in this case, so there are no
criteria to find a sufficient graph firsthand.
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A good first approach to this problem is to calculate the polynomial invariants in each graph
because it is known that a state in generic families cannot have null invariants [HLT17]. Nev-
ertheless, we will need a way to calculate such invariants and, as far as we know, there are
no closed expressions for them; only the structure of the algebra of invariants is described
in [LT05]. It is stated that such invariants could be generated by a set of five polynomials of
degree 4, one of degree 6, five of degree 8, one of degree 10, and five of degree 12, and in the
same paper a process is described to find a possible set for those of degree 4 and 6, however,
due to the complexity of the constructions, the authors stop there.

In order to ensure that a state has no null invariants, we need to calculate all of the generators.
As they define a ring, we must check that they are algebraically independent so that no algebraic
function of the invariants is null generically. It turns out that, as a secondary result of this
research, we found a practical way to find polynomial invariants from graphical constructions.
In Section 7.2, we show how it is possible to calculate a set of polynomial invariants according to
the structure of generators for the case of five qubits. Moreover, we found that those invariants
are algebraically independent and can be used at least to discard non-generic states.

We start by noting that 17 polynomial invariants define the set of primary generators of the
algebra of invariants of five qubits, so if we want all of them to be independent for a given
graph, the required parameters of the “cleaned” graph must be at least 16, that along with a
scale factor, complete the 17 parameters. This relation was already seen for the case of three
qubits, where four polynomials define the algebra of invariants, and the graph for the generic
state after cleaning retains three parameters. Then, when considering a scale factor s, any
generic state can be reproduced, as shown in the last part of the previous chapter. By requiring
that the graph has more than 16 parameters after cleaning, we found that the generic graph
must have at least 15 vertices.

Next, we used the invariants shown in Section 7.2, and by calculating the Jacobian matrix,
we found that from the more than 60, 000 possible graphs with 15 vertices, no one has a set
of 17 independent invariants. We attempted to repeat the process with graphs of 17 vertices,
but we rapidly found that the set of 17 invariants is algebraically independent for many of
them. Some of those graphs are presented in Figure 6.4 in a three-dimensional representation
because the complexity of the graphs makes the two-dimensional representation confusing. It
is reasonable to think that Kronecker subspaces of five parts can be built from these graphs as
a parametrization for generic five qubit states.

In this chapter, we presented the main results of our research, achieving the goal of a structural
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Figure 6.4: Three-dimensional representation of two graphs with 17 vertices. When building multiqubit states from these graphs, the set
of 17 polynomial invariants presented in Section 7.2 are algebraically independent, making them good candidates for building Kronecker
subspaces of five parts and generic states of five qubits.

method to calculate Multipartite Locally Maximally Entangled states by building the invariant
subspace of the tensor product of irreps of the symmetric group Sn. For this, we replicate the
method of W-state stitching with W-Kronecker states, showing that by doing so, it is possible
to overcome the limitations inherent to the W class in the same way that W-states can be used
to build generic states. We also show how the connection between both constructions gives a
criterion for building anyN -partite Kronecker subspace by using a graph that generates densely
the Hilbert space ofN qubits. We expect that these results will allow us to exploit the properties
of Kronecker states in quantum information applications and, through the connection with
Clebsch Gordan coefficients of the symmetric group Sn, also make progress in other research
areas such as quantum chemistry and nuclear physics where they are used. The next chapter
shows some secondary results that arose in the course of this investigation.

161



6.5. FOUR-PART KRONECKER STATES

162



7
Other results

Throughout our research, our main motivation was explicitly constructing Kronecker sub-
spaces in multipartite systems. However, during this investigation, we uncovered several
other intriguing findings that, while not essential for Kronecker subspace construction, hold
significant relevance on their own. In this chapter, we present these noteworthy results.

Firstly, we introduce a novel method for calculating irreducible representations of Sn. To the
best of our knowledge, this method has not been reported previously. We achieve this by using
the well-known Clebsch Gordan Coefficients of GL2 along with Schur-Weyl Duality.

Additionally, we present a graphical framework that helps comprehend SLOCC invariants. This
framework offers an intuitive tool for naturally defining invariant polynomials in multipartite
scenarios; when combined with the rules outlined in Section 5.3, this graphical approach enables
themanual computation of invariants. This construction showcases the efficacy of our approach.

Finally, we show an interesting result on the asymptotic behavior of Kronecker states associated
with the multipartiteW-SLOCC class, which shows how, for this particular class, we can achieve
a generalization of the Keyl Werner theorem in subsection 3.5.1 can be achieved.
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7.1 Building Sn irreps from Schur-Weyl duality

We know that Schur-Weyl duality connects the irreducible representations of the general linear
group GLd and the symmetric group Sn with copies of Hilbert spaces in quantum systems.
In particular, Schur-Weyl duality says that it is possible, by using the Schur transform, to
block-diagonalize the actions of both groups on the Hilbert space into their irreducible rep-
resentations. In Section 3.4, we showed how the Schur transform can be performed on qubit
systems only by using the Clebsch Gordan coefficients of SL2, which we showed in Equation
(3.25). In the same section, we showed that when applying the Schur transform on elements of
Sn acting on the computational basis, such representation can be decomposed in the different
irreps [λ] of Sn, each with a multiplicity given by the dimension of the corresponding irrep
{λ} in GL2. This diagonal decomposition already gives shape to the irreps of Sn without any
other algorithm; then, the Schur transform can be used to build any representation of Sn in
irreps of at most two rows.

We will show with an example how this construction is achieved. Let us calculate the represen-
tation of the permutation (23) in the irrep [1] in n = 3 (or [21] in the long notation). First, we
write the matrix corresponding to this permutation acting on the computational basis of three
qubits. This matrix is obtained by applying the permutation to all the basis elements, which
gives the map represented by the permutation. In this case, we have the matrix

(23) =



1
1

1
1

1
1

1
1


which can be seen more easily as

(23) = |000⟩ ⟨000|+ |001⟩ ⟨010|+ |010⟩ ⟨001|+ |011⟩ ⟨011|
+ |100⟩ ⟨100|+ |101⟩ ⟨110|+ |110⟩ ⟨101|+ |111⟩ ⟨111| .

We want to compute the matrix entries that correspond to

D[1](23)ij =
〈
1, q

[1]
i

∣∣∣ (23) ∣∣∣1, q[1]j 〉 ,
where the basis elements of irrep [1] can be represented by the modified Yamanouchi symbols

q
[1]
1 = {001}, q

[1]
2 = {010}.
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Note that from the Schur transform, we know how to calculate the change of basis to the Schur
basis |λ, ω, q⟩, that simultaneously decomposes the computational basis into the irreps of GL2

and Sn, and what we want is to calculate the change to the basis of irreps of Sn, |λ, q⟩. We can
then fix one value for ω in the Schur transform, and the obtained representation corresponds
to one of the copies of the irreps of [λ] in the Schur basis. This is the case because each value of
ω only represents a multiplicity of the same irrep in Sn. In this example, by picking ω = 1 (or
equivalently, any other value for ω such that λ ≤ ω ≤ n−λ), we have the following expression
for the matrix entries:

D[1](23)ij =
〈
1, 1, q

[1]
i

∣∣∣ (23) ∣∣∣1, 1, q[1]j 〉
=
〈
1, 1, q

[1]
i

∣∣∣ (|000⟩ ⟨000|+ |001⟩ ⟨010|+ |010⟩ ⟨001|+ |011⟩ ⟨011|

+ |100⟩ ⟨100|+ |101⟩ ⟨110|+ |110⟩ ⟨101|+ |111⟩ ⟨111|)
∣∣∣1, 1, q[1]j 〉

.

where we just replaced the matrix entries of (23) in the computational basis representation.
Note that the value of ω = 1 makes all the elements in the computational basis with weight
different from one to be canceled. Then, we are left with:

D[1](23)ij =
〈
1, 1, q

[1]
i

∣∣∣ (|001⟩ ⟨010|+ |010⟩ ⟨001|+ |100⟩ ⟨100|)
∣∣∣1, 1, q[1]j 〉 .

Now, let us fix the element of the irrep matrix we want to find, for example, the one corre-
sponding to q[1]1 q

[1]
1 . Then, expanding the previous expression, we get:

D[1](23)11 = ⟨1, 1, {0, 0, 1}|001⟩ ⟨010|1, 1, {0, 0, 1}⟩+ ⟨1, 1, {0, 0, 1}|010⟩ ⟨001|1, 1, {0, 0, 1}⟩
+ ⟨1, 1, {0, 0, 1}|100⟩ ⟨100|1, 1, {0, 0, 1}⟩ .

Now it is clear that each inner product in the last equation is a CGC of the Schur transform as
defined in Equations (3.28), then we have:

D[1](23)11 = Γ
1,{001}
001 Γ

1,{001}
010 + Γ

1,{001}
010 Γ

1,{001}
001 + Γ

1,{001}
100 Γ

1,{001}
100

These values can be obtained from Equation (3.25). Replacing the values from the table and
repeating for all the entries of the irrep matrix, we can obtain the following:

D[1](23)11 =
−1

2
, D[1](23)12 =

√
3

2
,

D[1](23)21 =

√
3

2
, D[1](23)22 =

1

2
.
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With these values, we can build the irrep matrix to be:

D[1](23) =

(
−1

2

√
3
2√

3
2

1
2

)
.

We used the Young-Yamanouchi algorithm to obtain the same irrep matrix in Equation (3.2.3).
In a general case, this process can be summarized as follows:

D[λ](π)i,j =
∑
s∈ω

⟨λ, ω, qi|s⟩ ⟨πs|λ, ω, qj⟩ =
∑
s∈ω

Γλ,qis Γλ,qiπs ,

where one chooses one possible weight λ ≤ ω ≤ n− λ, and the sum is over sequences s in the
computational basis with weight equal to ω.

This method allows us to compute directly the matrix for any permutation, not only adjacent
transpositions. This difference with the Young-Yamanouchi algorithm is useful when finding
specific matrices that do not correspond to adjacent transpositions. In Appendix A, we show
how this construction facilitates the computation of states and matrices in the Schur transform
for certain quantum systems.

7.2 Invariants

As discussed in Chapter 2, the SLOCC invariants are the first filter for classifying the SLOCC
classes; however, their construction has been proposed by following a mathematical procedure
known as the Omega process [TLT06][OD09], which requires a basic understanding of covariant
theory and are hard to compute in general. In this section, we will show a natural construction
for invariants obtained from the graphical point of view, which can be used along with the
pushing and stitching rules in 5.3 to simplify the calculation of invariants by hand. First, note
that the matrix obtained from the • and Z-ball corresponds to the two-dimensional Levi-Civita
tensor:

=

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 1
−1 0

)
= εij.

Moreover, this object works as an inverter of unit-determinant matrices because BεijBT = εij
with B ∈ SL2. This process corresponds graphically to moving matrices through the ε object
as:

v1, w1 w2 = −w2 1/v1,−w1 .

Therefore, when the same unit-determinant matrix acts on both sides of the Levi-Civita tensor,
we can eliminate both by the previous property:

w2 (v1, w1) (v1, w1) w2 = . (7.1)
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Another useful property is that the Z-ball anti-commutes with •:

= − . (7.2)

We can exploit these properties to build SLOCC invariants by stitching copies of any qubit state
in a way that we always connect the same parts from different copies in each contraction with
ε, with no free qubits (external edges) at the end. For example, consider the simplest case of a
two-qubit state. We will use the notation for generic graph states, in this case of two qubits:

.

We can then build an invariant by stitching together two copies of the same state, contracting
the first qubit of the first copy, with the first qubit of the second copy, and the same with the
second qubit:

(1)

(2)

. (7.3)

where the (1) and (2) label the qubit associated to each stitch. The quantity represented is
invariant under SLOCC equivalence, i.e., the local actions of matrices in SL2 on each of the
external edges. Any state in the same SLOCC class as the state represented by can be written
up to a global factor as some unit-determinant matrices action on qubits one and two:

.

Then, the construction for this state is:

(1)

(2)

=

(1)

(2)

,

where we applied the property in Equation (7.1). As it is the same for any state in the same
SLOCC orbit, it is an SLOCC invariant. Furthermore, the resultant quantity is always a
polynomial of degree equal to the number of copies of the coefficients of the state. Then, it is,
by definition, a SLOCC polynomial invariant.

Invariant for two qubits
Now we show how the rules in Section 5.3 allows to calculate the invariants in some con-
structions. We also show how the invariant allows us to differentiate between entangled and

167



7.2. INVARIANTS

separable states in the case of two qubits. Let us consider first the separable states, using
|ψ⟩ = |11⟩, which is represented by the graph , building the graph representation in (7.3),
we have:

vii.1
= 0.

This invariant is zero because it corresponds to the operation (⟨1|XZ |1⟩)2 = 0. Instead, for
an entangled state, for example |ϕ+⟩, we have:

iv,iii.3
= = 2.

Here, we slid the Z-balls, multiplied them, and repeated the same with •s. For the entangled
state, the value is not zero as expected and is equal to 2 because it is equivalent to calculating
(⟨00| + ⟨11|)(|00⟩ + |11⟩) = 2. There is one graph construction where both classes can be
obtained depending on one parameter:

,

which leads to an entangled state when the ball is not Z and a separable state for the Z−ball
as it is seen in rule (xi.1). When calculating the invariant for a generic parameter of the ball,
we have the following:

v v (7.4)

To calculate this invariant, some properties from qubit graph construction are very useful. First,
note the following equivalence:

= =
√
2

√
2 =

√
2

1√
2 . (7.5)

In the first equality, we used the rotation of W states in the upper and lower lines, as shown in
rule (ix). In the next step, we used the equivalence from the rule (xi.1) with v = 1. In the last
step, we slid the ball through one of the • and then multiplied the •s together (rules (iii) and
(iv)). Another recurrent object in the invariant calculation is:

v = v =
1 + v2

v
+ v =

1 + 2v2

v
,
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where the expression obtained in Appendix B in Equation (B.5) was used. With these simplifi-
cations, we can calculate the invariant of Equation (7.4) as:

v v =
√
2 · vv 1√

2 =
√
2v · 1√

2v = (2 + 2v2).

Note how the invariant is null for the parameter v = i, i.e., the Z-ball, which leads to a separable
state, and not null for any other value, which leads to an entangled state as it is shown in rule
(xi.1) . This simple example shows how the pushing process leaves only parameters that can be
used to modify the SLOCC classes on the graph state. This construction is the only invariant
for two qubits, and it can be checked that it is proportional to the concurrence in Equation
(2.8).

Invariant for three qubits
We can use the same procedure to build an invariant for three qubits. We may be tempted to
build an invariant from two copies:

;

however, note how by the anticommutation in Equation (7.2) we have that:

= − .

The graphs on both sides of the previous equation are equal because reordering the copies, or
rotating the graph construction relates them. Then, the only way that the previous equation
holds is that the invariant is zero:

= − = − = 0.

To build a non-zero invariant, we need to use more copies. With three copies, it is impossible
to contract all the parts. Hence, the next option to consider is four copies. We can build the
following invariant with four copies:

(1) (1)
(3)

(3)

(2) (2) .
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For three-qubit states, it is known that the three-tangle can differentiate between theW state
and the GHZ state. We can calculate this proposed invariant in both cases easily using the
stitching and pushing rules. For the W state, because it is symmetrical under exchanging
the parts, we can remove the labels of the parts. When putting this state in the previous
construction, we have:

= = − .

In the previous equation, we slid, pushed, and multiplied the Z-balls, canceling between them.
Now we can use the rule (x.3) from Section 5.3, in both loops, with v = 1 to get:

− = −4 · = 0.

Then, this invariant is null for any state in theW−SLOCC class. For the GHZ−SLOCC class,
we use the triangle graph in Equation(5.18) obtaining the following:

= − .

Again, we pushed, slid, pushed, and multiplied the Z-balls at first. Then, using the property in
Equation (7.5), pushing the balls that appear and multiplying them together, we obtain:

= −2 · 1√
2

1√
2

= −4 · .

An equivalence that can be obtained by stitching together a triangle with a W state is the
following:

=
√
2 ·

√
2

Applying this equivalence in the invariant, we get:

−4 · = −8 · = −8 · = −16.
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We pushed one of the balls through one • and multiplied by the other ball to cancel them. We
also slid and multiplied the •s to cancel them. It is clear that the invariant is not null for the
GHZ class. This process showed how the pushing and stitching rules allow us to calculate
invariants easily. We also showed how the graph structures of the states have an intrinsic
significance for SLOCC classification. The invariant presented in Equation (7.2) is proportional
to the three-tangle τ123 in Equation (2.9). It has to be the case because there is only one invariant
for three-qubit systems.

Invariants for four qubits

For the case of four-qubit states, it is known that the invariant ring is defined by one invariant
of degree two (B), two of degree four (L,M ), and one of degree six (Dxy) [HLT17]; however,
their deduction is somewhat complicated. With this graphical language, we can define an
equivalent set of invariants in a natural way as complete contractions. We will present different
constructions for invariants and show the equivalence of the obtained expressions with those
of the B,L,M and Dxy invariants defined in [HLT17]. The invariant of degree 2 (built from
two copies) is:

B0 := = 2B.

To obtain degree-four invariants, we must contract four copies of the state. This can be done in
several different ways; for example, we can propose the following two graphs:

D1 := =, D2 := ,

where now we use colors to label each contracted part, according to:

(1) = , (2) = , (3) = , (4) = .

The invariant D1 is equivalent to a combination of L andM invariants as D1 = −(8M + 4L),
while D2 corresponds to D2 = 4M + 8L. Some other invariants can be obtained from four
copies of the state, but two independent ones are enough to generate the invariant algebra. An
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invariant of degree six, can be obtained from the graph:

F = .

This invariant is related to the ones defined in [HLT17] as: F = 4MB+2LB−6Dxy . With this
graph invariant and the previous three invariants, we can define the polynomial ring similarly
as the invariants B,L,M , and Dxy do.

Invariants for five qubits
For five-qubit states, there is no defined set of invariants to the best of our knowledge. In
[LT05], the number of invariants needed to generate the invariant algebra is proposed, and
a set for the invariants of lower degrees is proposed. However, due to the complexity of the
obtained expressions, the authors only give expressions for some of the invariants. Here, we
will present a complete set of invariants that agrees with the degrees proposed in [LT05]. In
that paper, it is stated that for five-qubit systems, the set of primary invariants, i.e, a maximal
set of algebraically independent invariants, should be composed of five invariants of degree
four, one of degree six, five of degree eight, one of degree ten, and five of degree twelve. Here,
we present a set of such invariants with the appropriate degrees, conforming to a set of 17
algebraically independent polynomials. To obtain five invariants of degree four, we can use the
following constructions:

D1 := , D2 := , . . . ,

where we used olive for the color of the fifth part. We obtain a different invariant for each
choice of the part connecting the copies up with the copies down. Then, we can obtain five
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invariants of degree four that we checked to be algebraically independent. For the invariant of
degree six, we propose the following construction:

F0 := .

For invariants of degree eight, we propose a construction based on the invariants of degree
four of four qubits:

H1 := ,
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and similarly for H2, H3, H4 and H5, where each choice of the part connecting between sides
corresponds to a different invariant. For the invariant of degree ten, we propose the following:

J0 :=

The last set of five invariants of degree twelve can be obtained as:

L1 := .

A different invariant can be obtained by changing the part used to connect the two sides. Using
the Jacobian matrix, we checked that the 17 invariants proposed here are independent and
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may work as a complete basis for the invariant ring of five qubits. The same approach could be
extended for systems of more qubits. Knowing the number of invariants and their respective
degrees is very helpful for the construction.

7.3 Rate exponents of multi-qubit quantum states in the
W SLOCC class

The last secondary result in this chapter concerns the Kronecker state stitching when specializ-
ing to multipartite states in the W class. These states are very interesting because knowing
the local spectra of each part uniquely determines the state, which is not a general property of
multi-qubit states. Recalling from Section 4.4, N -partite states in the W-SLOCC class can be
parametrized as: ∣∣ψW〉 =√c0r|0⟩+

N∑
i=1

√
cir|1i⟩,

where 0 is a sequence of N zeros, 1i is a sequence with a “1" at position i and zeros in the
remaining (N − 1) positions. The coefficients cir are real with

∑N
i=0 c

i
r = 1, and r labels the

local spectra of ψW . Another property of W-class states is that when separating one of the
qubits of the state, it is possible to rewrite the state as:

∣∣ψW〉 =√c0r |0⟩
∣∣0̃〉+√c1r |1⟩

∣∣0̃〉+
√√√√ N∑

i=2

cir |0⟩ |1̄⟩ , |1̄⟩ = 1√∑N
i=2 c

i
r

(
N∑
i=2

√
cir
∣∣1̃i〉) ,

where
∣∣1̃i〉 (∣∣0̃〉) is the state |1i⟩(|0⟩) without the first |0⟩. Note how the state in the previous

equation has the same structure as a W-class state of two parts. It is worth noting that
∣∣0̃〉 , |1̄⟩

are orthonormal, so we can directly find the reduced density matrix in the separated part, by
tracing the remaining parts:

ρ1 =
〈
0̃
∣∣ ρ ∣∣0̃〉+ ⟨1̄| ρ |1̄⟩ =

(
c0r +

∑N
i=2 c

i
r

√
c0rc

1
r√

c0rc
1
r c1r

)
.

This structural relation can be generalized; we can group in the same way any subset S of the
N parts, {S} ⊂ {N}. Then by calculating the reduced density matrix for the subset S, ρS ,
tracing out all the complementary parts to S we obtain:

ρS =

(
c0r +

∑
i/∈S c

i
r

√
c0r
∑

i∈S c
i
r√

c0r
∑

i∈S c
i
r

∑
i∈S c

i
r

)
. (7.6)
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Then, any reduced density matrix is of rank two. This result can also be obtained from the
rule (ix) of the stitching and pushing rules in Section 5.3 and the OER properties for qubit
states. N -partite states in the W class are SLOCC equivalent toWN states, which can be built
by stitching together any twoW states with N1 + 1 and N −N1 + 1 parts with a Ψ stitch,

1
2

.

.

.

.
.
N1 N −N1

.
.

.

.

.
2

1

× =

1
2

.

.

.

.
.
. .

.
.

.

.

.
.N

.

Then, N -partite states in the W-class have as graph representative an OER graph in each
possible separation. Then, the rank of any possible reduced density matrix is of rank at most
two. From the density matrices in Equation (7.6), it is possible to obtain the following relation
for the eigenvalues:

λS(1− λS) =
∑
i/∈S

cir

(∑
i∈S

cir

)
For the marginal spectra, i.e., the eigenvalues of the one-particle reduced density matrices, we
get

ri2(1− ri2) = cir(1− cir − c0r). (7.7)
Note how the relation between coefficients cir and the set of local eigenvalues of ψW , r, is made
explicit. This functional relation will allow us to make interesting observations in applying
Schur-Weyl duality in this class.

We stated before in subsection 4.4 that the Schur transform applied toW-class states corresponds
to: ∣∣ψW〉⊗n =

⊕
λ∈ΛW

n

ηλ

∣∣∣Φ∧λ

(
ψW
)〉 ∣∣KW

λ

〉
,

where ΛWn is the polytope that defines the possible sets of partitions λ appearing in the Schur
basis of W class states, defined in Equation (4.31). The factor ηλ relates the unnormalized state∣∣∣Φ∧λ(ψ

W )
〉
and the normalized state

∣∣Φλ(ψ
W )
〉
as :∣∣Φλ(ψ

W )
〉
=

ηλ√
p(λ|ψW )

∣∣∣Φ∧λ(ψ
W )
〉
,

and p(λ|ψ) is the probability of ending up in a set of partitionsλ after a projective measurement
in the set of partitions λ. The unnormalized state is:∣∣∣Φ∧λ(ψ

W )
〉
= n!−(N−2)/2

n∑
ω0=0

(c0r)
ω0/2

ω0!

∑
ω

cr
ω/2
√
Aλ,ω |λ,ω⟩ , (7.8)
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and we define the following quantities:

cω/2r =
N∏
i=1

(cir)
ωi/2, Aλ,ω =

N∏
i=1

Aλi,ωi , Aλ,ω =
(n− λ− ω)!

(ω − λ)!
. (7.9)

We want to find the asymptotic behavior of the probability of measuring some set of partitions
λ if the state has a set of local spectra r. In other words, we want to find the exponential rate
of the probability:

p(λ|r) = e−nR(λ̄|r) → R(λ|r) = − 1

n
log(p(λ|r)), (7.10)

we will see later how this rate depends on the set of normalized partitions λ = λ/n. Let us
now define the norm of the unnormalized state:

Zλ(ψ) =
〈
Φ
∧

λ(ψ)
∣∣∣Φ∧λ(ψ)

〉
= n!−(N−2)

∑
(ω0,ω)

c0r
ω0

ω0!2
cωrAλ,ω, (7.11)

that is related with the factor ηλ and the probability as:

ηλ =

√
p(λ|ψ)
Zλ(ψ)

. (7.12)

According to [BM18], the factor ηλ cannot depend on the parameters of the state. Then, the
probabilities for two different states in the W class are related by

p(λ|ψ) = p(λ|ψ′)
Zλ(ψ)

Zλ(ψ′)
.

We can see that the rate in Equation (7.10) of two different states are related as:

R(λ̄|r) = R(λ̄|r′)− ζ(λ̄|r′) + ζ(λ̄|r), (7.13)

where we defined a rate for the norm Zλ(ψ) as:

ζ(λ̄|r) = 1

n
log(Zλ(ψ)). (7.14)

The rate of Zλ(ψ) can be calculated from its definition in Equation (7.11) as:

ζ(λ̄|r) = 1

n
log(Zλ(ψ)) =

1

n
log

n!−(N−2)
∑
(ω0,ω)

c0r
ω0

ω0!2
cωrAλ,ω

 .
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Using the Stirling formula and the definitions in Equation (7.9), it is possible to show that this
rate is given by:

ζ(λ|r) = sup
ω∈Ω

[
H2(ω

0) +
N∑
i=0

ωi log cir + α(ωi, λ
i
)

]
, (7.15)

where H2(x) = −x log x− (1− x) log(1− x) is the binary entropy, and

α(ω, λ) = (1− λ− ω) log
(
1− λ− ω

)
− (ω − λ) log

(
ω − λ

)
.

ωi = ωi

n
and λi = λi

n
are the normalized weights and partitions, ω̄ = ω̄0, ω̄1, . . . ω̄N is the set

of normalized weights including the zero-th weight, and we define λ0 = 0. Ω ⊂ RN+1 is the
convex domain defined by:

λ
i ≤ ωi ≤ 1− λ

i
,

N∑
i=0

ωi = 1.

The supremum of equation (7.15) can be obtained as the solution of the following set of
equations:

(ω0)2 = κc0r,

ωi(1− ωi) = λ
i
(1− λ

i
) + κcir,

where κ is a Lagrange multiplier that is fixed by the condition
∑N

i=0 ω
i = 1. Using the solution

in the expression for ζ(λ|r) we obtain

ζ(λ|r) = − log(κ) +
∑
i

(1− λ
i
) log

(
1− λ

i − ωi
)
+ λ

i
log
(
ωi − λ

i
)
.

Following from Equation (7.13), we use the fact that the rate function R(λ|r) must vanish
where the probability p(λ|ψ) is maximized, which, by the Keyl-Werner theorem in subsection
3.5.1, must occur when λ = r. Then, labeling W class states with their sets of eigenvalues,
we will pick two states such as ψ = ψr, and ψ′ = ψλ. Therefore, for a given set of reduced
partitions λ,

R(λ|r) = ζ(λ|λ)− ζ(λ|r).

When r = λ is satisfied, the solution for the extremization problem is ωi = ciλ with κ = c0λ,
where the ciλ coefficients are solutions to Equation (7.7) with r = λ. Hence,

ζ(λ|λ) = − log
(
c0λ
)
+
∑
i

(1− λ
i
) log

(
1− λ

i − cλ
i
)
+ λ

i
log
(
cλ

i − λ
i
)
, (7.16)
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and the rate becomes

R(λ|r) = − log

(
κ

c0λ

)
+
∑
i

(1− λ
i
) log

(
1− λ

i − ωi

1− λ
i − cλi

)
+ λ

i
log

(
ωi − λ

i

cλi − λ
i

)
.

This solution is a multi-local version of the rate obtained by the Keyl-Werner theorem that
corresponds to the relative entropy as shown in Equation (3.30). Achieving this rate is an
interesting result on its own; however, we will see how it can be used along with the techniques
introduced in this document to understand the construction of the Kronecker subspace spanned
by the W-SLOCC class.

7.3.1 Asymptotic construction of Kronecker states in the W-SLOCC
class

Now, we want to turn our attention to the representative normalized state of the W-SLOCC
class in N qubits:

|WN⟩ =
1√
N

N∑
i=1

|1i⟩ .

One important property of this state is that it can be obtained by stitching any two W states
|WN1+1⟩ , |WN−N1+1⟩ states using the Ψ stitch, which corresponds to the state |W2⟩. This
property can be seen graphically as:

1
2

.

.

.

.
.
N1 N −N1

.
.

.

.

.
2

1

× =

1
2

.

.

.

.
.
. .

.
.

.

.

.
.N

,

where we generalized the notation ofW3 to vertices with N edges, as shown in rule (ix) in
Section 5.3, to symbolize the WN state. This decomposition is not unique, and moreover,
we could take WN1+1 and separate it as WN2+1 and WN1−N2+2, and repeat the process of
separation as much as we want. We could consider a generic construction from taking P states
WN1+1,WN2+1, . . . ,WNP+1 with

N =
P∑
i=1

Ni,

To be stitched with a P parts state corresponding to〈
W P

∣∣ = ⟨WP |σ⊗P
x .
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This construction can be seen graphically as:

1
2

.

.

.

.
.
. .

.
.

.

.

.
.N

=

√
P
∏P

i=1(Ni + 1)

N

NP .
.
2
1N1

.
2 1

.

.
.. .

.
.

.
..

.

. . (7.17)

By convenience, we are choosing the Ni + 1 part as the one to be contracted in each |WNi+1⟩
state. Now, we take n copies of the state in its two representations:


1

2
.

.

.

.
.
. .

.
.

.

.

.
.N


⊗n

=

(
P
∏P

i=1(Ni + 1)

N

)n/2


NP .

.
2
1N1

.
2 1

.

.
.. .

.
.

.
..

.

.


⊗n

.

Similarly, as in Equation (6.11), we apply the Schur transform on both sides, obtaining:

⊕
λ

{λ1}
{λ2}
.

.

.

.

.
. .

.

.

.

.

.

.
{λN}

⊗

λ1
λ2

.

.

.

.

.
. .

.

.

.

.

.

.λN

=

(
P
∏P

i=1(Ni + 1)

N

)n/2⊕
λ

∑
µ

{λN} .
.

.

.
{λN1}

.

{λ2}{λ1}

.

.
..

.
.

.

.

..
.

.

(µ1)
(µP )

⊗

λN .
.

.

.
λN1

.

λ2 λ1

.

.
..

.
.

.

.

..
.

.

µ1

µP
,

(7.18)
where we are using the graphical notation for {λ} and [λ]Sn parts as introduced in Chapter 6.
This case is special because we can obtain explicitly the state in {λ} part. As all the objects
used in this construction belong to the W-SLOCC class, we can explicitly compute each state
using Equation (7.8). The different states are: First, the state in {λ} of the Schur transform of
WN :

{λ1}
{λ2}
.

.

.

.

.
. .

.

.

.

.

.

.
{λN}

= ηλ

∣∣∣Φ∧λ(WN)
〉
= ηλ

n!−(N−2)/2

√
Nn

∑
ω

√
Aλ,ω |λ,ω⟩ .

The second state is the W-Kronecker state of N parts:

λ1
λ2

.

.

.

.

.
. .

.

.

.

.

.

.λN

=
∣∣KW

λ

〉
.
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The next is the graph state in {λ}, which can be calculated explicitly as:

{λN} .
.

.

.
{λN1}

.

{λ2}{λ1}

.

.
..

.
.

.

.

..
.

.

(µ1)
(µp)

= ηµ

〈
Φ
∧

µ(WP )
∣∣∣ P⊗
i=1

ηλi,µi

∣∣∣Φ∧λi,µi(WNi+1)
〉

= ηµ

(
P∏
i=1

ηλi,µi

) n!−(N−2)/2√(
P
∏P

i=1(Ni + 1)
)n
∑

ω

√
Aλ,ω |λ,ω⟩ .

The last state is the graph Kronecker state:

λN .
.

.

.
λN1

.

λ2 λ1

.

.
..

.
.

.

.

..
.

.

µ1

µP
=
〈
KW

µ

∣∣ P⊗
i=1

∣∣KW
λi,µi

〉
.

where λi is the subset of external partitions in the i-th subgroup in the graph construction.
Replacing all these states in Equation (7.18) and simplifying the proportionality factors we
obtain:⊕
λ

ηλ
∑
ω

√
Aλ,ω |λ,ω⟩

∣∣KW
λ

〉
=
⊕
λ

∑
µ

ηµ

(
P∏
i=1

ηλi,µi

)∑
ω

√
Aλ,ω |λ,ω⟩

〈
KW

µ

∣∣ P⊗
i=1

∣∣KW
λi,µi

〉
This expression is simplified because both states in {λ} are proportional. Then, equating terms
with the same λ on both sides, and simplifying we have:

ηλ
∣∣KW

λ

〉
=
∑
µ

ηµ

(
P∏
i=1

ηλi,µi

)〈
KW

µ

∣∣ P⊗
i=1

∣∣KW
λi,µi

〉
.

For the right side of the equation, we will label the normalized graph Kronecker state as:∣∣∣Kµ
λ1|λ2|...|λP

〉
=
√
fµ
〈
KW

µ

∣∣ P⊗
i=1

∣∣KW
λi,µi

〉
,

with fµ =
∏P

i f
µi and the notation λ1|λ2| . . . |λP refers that we are interpreting the graph

Kronecker state
∣∣∣KW

λi,µi

〉
as a bipartite Kronecker state of the partition µi and copies of µi in
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λi for the normalization. Then, we have:

∣∣KW
λ

〉
=
∑
µ

ηµ

(∏P
i=1 ηλi,µi

)
√
fµηλ

∣∣∣Kµ
λ1|λ2|...|λP

〉
. (7.19)

Note that the W-Kronecker state in the left side of the equation is unique in a set λ; then, all
the possible graph Kronecker states obtained with different sets of inner partitions µ must
be combined in a special way to keep the structure of W-Kronecker states. So, we define the
normalized coefficients

Cµ
λ1|λ2|...|λP =

η2µ

(∏P
i=1 η

2
λi,µi

)
fµη2λ

,
∑
µ

Cµ
λ1|λ2|...|λP = 1.

These coefficients tell the weight of the graph state built from the set µ of inner partitions
in the construction in the W-Kronecker state. This coefficient can also be interpreted from
Equation (7.19) as the square of the probability of having a set of inner irrepsµ once that the set
of external partitions is determined as λ. Note how the relation in the previous equation must
hold for any state in the W-SLOCC class because the Kronecker subspace is independent of the
parameters of the state. Our goal now is to find, in the asymptotic limit, the inner partitions
that are more relevant in constructing the W-Kronecker state of N parts. For this, let us recall
the definition of ηλ from Equation (7.12). By picking the states to be the ones with the set of
marginal spectra according to the set of irreps, the coefficients are given by:

Cµ
λ1|λ2|...|λP =

p(µ|ψµ)Zλ(ψλ)
∏P

i=1 p(λ
i, µi|ψλi,µi)

fµp(λ|ψλ)Zµ(ψµ)
∏P

i=1 Zλi,µi(ψλi,µi)
.

Defining a rate function for the coefficients as:

C µ
λ1|λ2|...|λP = lim

n→∞
− 1

n
log
(
Cµ
λ1|λ2|...|λP

)
, (7.20)

we can use the rate of the dimensions of irreps from Equation (3.21), and the rate definitions
from (7.10) and (7.14). By replacing everything we obtain:

C µ
λ1|λ2|...|λP = R(µ|µ)− ζ(λ|λ)−R(λ|λ) + ζ(µ|µ)

+
P∑
i=1

H(µi) + ζ(λ
i
, µi|λi, µi)−R(λ

i
, µi|λi, µi).
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By the Keyl-Werner theorem, the rates of the form R(λ|λ) vanish, then, we obtain:

C µ
λ1|λ2|...|λP = −ζ(λ|λ) + ζ(µ|µ) +

P∑
i=1

H(µi) + ζ(λ
i
, µi|λi, µi).

We want to calculate the set µ∗ that minimizes this rate. In other words, we want to find the set
of inner partitions that maximizes asymptotically the coefficient. We will calculate the partial
derivative in each inner partition µi to find this set. We can use the Equations (7.16) and (7.7)
to show that

∂ζ(λ|λ)
∂λ

i = log

(
ciλ − λ

i

1− λ
i − ciλ

)
.

By using this result and the partial derivative in the binary entropy,

∂H(µi)

∂µi
= log

(
1− µi

µi

)
,

we get that the derivatives for each inner partition µi of the rate of the coefficients are given
by:

∂C µ
λ1|λ2|...|λP

∂µi
= log

(
(1− µi)(cNi+1

λi,µi
− µi)(ciµ − µi)

µi(1− µi − cNi+1
λi,µi

)(1− µi − ciµ)

)
,

where we introduced the states ψλi,µi as the Ni + 1 parts W class state with marginal spectra
(λi, µi) and coefficients cλi,µi , and the state ψµ the P parts W class state with marginal spectra
µ and coefficients cµ. The expression in the last equation is only zero when

(1− µi)(cNi+1
λi,µi

− µi)(ciµ − µi) = µi(1− µi − cNi+1
λi,µi

)(1− µi − ciµ).

This condition can be simplified to:

(1− 2µi)(µi(1− µi)− cNi+1
λi,µi

ciµ) = 0.

Then, each local minimum is achieved for the solution to:

µi(1− µi) = cNi+1
λi,µi

ciµ. (7.21)

On the other hand, note that µi is the local eigenvalue for the P parts state ψµ in the i-th part,
then from (7.7) we have:

µi(1− µi) = ciµ

(
P∑

j ̸=i,1

cjµ

)
. (7.22)
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Simultaneously, µi is the local eigenvalue of the Ni + 1 part of the state ψλi,µi , then we have:

µi(1− µi) = cNi+1
λi,µi

(
Ni∑
j=1

cj
λi,µi

)
. (7.23)

Then, by combining the expressions in the last three Equations (7.21), (7.22), and (7.23), we can
note that the minimization condition fixes:

cNi+1
λi,µi

=
P∑

j ̸=i,1

cjµ, ciµ =

Ni∑
j=1

cj
λi,µi

.

With this, we can find that a global minimum is achieved when the condition of the previous
equation is satisfied for each part. Then, the global minimum for the rate in Equation (7.20) is
obtained by the following coefficients:

cNi+1
λi,µi

=
N∑

j=1|λj /∈λi

cjλ , ciµ =
N∑

j=1|λj∈λi

cjλ,

where all the minimization conditions in Equation (7.21) are satisfied simultaneously for all
partitions µi. We can finally conclude that values Cµ

(λ1,λ2,...,λP )
are exponentially concentrated

around the set of partitions µ such that for each µi

µi(1− µi) =

 N∑
j=1|λj /∈λi

cjλ

 N∑
j=1|λj∈λi

cjλ

 , (7.24)

which can be understood as the partitions resulting from the grouping selected to build the full
state. This result can be understood better in the next sense: first, recall the construction used
to build theWN state in Equation (7.17); then, after picking a set λ we have for the Kronecker
states:

λ1
λ2

.

.

.

.

.
. .

.

.

.

.

.

.λN

=
∑
µ

Cµ
λ1|λ2|...|λP

√
fµ

λN .
.

.

.
λN1

.

λ2 λ1

.

.
..

.
.

.

.

..
.

.

µ1

µP
.

We can find each µi for the concentration by first solving the set of equations:

ciλ(1− ciλ − c0λ) = λ
i
(1− λ

i
) ,∀i ∈ {1, 2, . . . , N},
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to get the set {ciλ}. Then, we separate this set according to the separation given by µi; for
example, for µ1, we have:

λN .
.

.

.
λN1

.

λ2 λ1

.

.
..

.
.

.

.

..
.

.

µ1

µP
→

λN .
.

.

.
λN1

.

λ2 λ1

.

.
..

.
.

.

.

..
.

. ,

then, according to (7.24) we find µ1 as the solution for:

µ1(1− µ1) =

(
N1∑
j=1

cjλ

)(
N∑

j=N1+1

cjλ

)
. (7.25)

Note that this is a very strong functional correlation since a similar construction can be per-
formed in any possible separation of sets λi, and the relation still holds. This result shows
that as a function of µ, the coefficient Cµ

λ1|λ2|...|λP concentrates at the reduced partitions µi that
satisfies a similar relation as the satisfied by the marginal spectra of the W class of Equation
(7.7). Remembering that the coefficients Cµ

λ1|λ2|...|λP are the square of the probability of having
a set of inner irreps µ when the set of external partitions is fixed as λ. This can be seen
easily from Equation (7.19). The previous result tells that such probability is asymptotically
concentrated in the set of inner partitions that maximizes the rate, given by Equation (7.25),
which exhibits a relation equivalent to the relation of the spectra in W class states.

This result again shows how the W class is a special kind of multipartite entangled states with
a nice mathematical structure that allows to perform calculations that are generally harder for
states in other classes. In this case, the W class structure allowed us to calculate explicitly the
states in GL2, which is much harder for states that do not belong to the W class. Because of
this nice structure of the W class, we think that W states must be considered elemental pieces
for studying multipartite entanglement, as we did in the previous chapters.

The results presented in this chapter are secondary because they are not needed to calculate
Kronecker subspaces. However, they are relevant on their own in the fields of representation
theory, SLOCC classification, and the quantum marginal problem, respectively. Because of this,
we decided to include them in a separate chapter and not several appendices. This permits us
to highlight their relevance independently from the main content of this document.
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8
Conclusions and Future work

Entanglement is crucial in quantum physics, marking a fundamental difference between classi-
cal and quantum behaviors. It is the foundation of various quantum protocols with no classical
equivalent. However, understanding the entanglement structure becomes increasingly complex
in a multipartite setup. In this thesis, we used the representation theory of the symmetric
group, Sn, and the General Linear group of dimension two, GL2, for generating vector spaces
of multipartite locally maximally entangled states, which we named Kronecker subspaces.
Kronecker subspaces appear in the invariant subspace of the decomposition into irreps of the
tensor product of irreps of Sn. With the method described in this document, particularly in
Section 6, we calculated maximally entangled states of several systems of three parts. The most
impressive case for three-partite states is a three-dimensional Kronecker subspace, where each
local Hilbert space is of dimension 275. For the four-partite case, we made it to calculate a basis
for a Kronecker subspace of dimension 39, where each local Hilbert space is of dimension 48.
All these calculations were made in exact form, obtaining states with coefficients as roots of
rational numbers. Numerical approaches can be used to obtain even larger Kronecker subspaces.

In this dissertation, we have presented significant results related to problems in multipartite
entanglement. We introduced a graphical construction of multipartite qubit states usingW3

states and bipartite states as building blocks. This construction is called theW-state stitching,
which can be easily understood graphically. We show how the parameters of the bipartite
states used in this construction can be decomposed as operations on theW3 states (or vertices)
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conveniently, and by that permits using the inherent continuous symmetry ofW3 states. This
symmetry helps to identify the crucial parameters for classifying states under SLOCC. By
translating these symmetries into a graphical tool, namely parameter pushing, it is possible
to associate specific topologies in the stitching procedure to SLOCC classes. This association
allows manipulating SLOCC classes using the remaining parameters after the pushing process.
This novel approach enhances our comprehension of multipartite entanglement and offers
practical tools for analyzing and working with it.

Through stitching and pushing techniques, we have discovered topologies that enable us to
obtain any three-qubit pure state and four-qubit pure state. This method has also allowed us
to establish explicit connections with the classification of four qubits presented in [VDD+02].
Moreover, our graphical approach provides a natural way to construct Invariants in multi-qubit
systems. Typically, Invariants are complex mathematical constructs, but our technique allows
us to understand and manually compute many of these objects. This innovative approach not
only simplifies the introduction of complex concepts like invariant theory from a physical
standpoint but also helps to clarify the role of invariants as initial filters in SLOCC classifi-
cation. Firstly, we demonstrated how the unique invariant for three qubits arises from this
approach. Furthermore, we show how to construct a basis for the invariant ring in four-qubit
systems. We propose 17 independent invariants for the five-qubit scenario to conclude our
invariant exploration. These invariants, due to their intricate nature, have previously remained
unresolved. Importantly, our approach is not limited to specific qubit counts, and the principles
established within this construction can be applied to systems with any number of qubits.

In our research, we demonstrate how the stitching process can be used to construct subspaces
of multipartite maximally entangled states. This construction involves applying the Schur
transform on graph states, which allows for the identification of the Sn and GL2 subspaces
linked with the graph. By recognizing that the Sn part corresponds to a subspace of maximally
entangled states, which we call the Kronecker subspace, we can build it from the structure
of the graph and the easily computable Kronecker states of the W class. This construction
enables us to build all Kronecker subspaces present in the decomposition of three and four
qubits. We also provide the conditions on the graph to reproduce all the Kronecker subspaces
for any number of qubits.

In this document we presented significant progress in calculating Kronecker states and, hence,
in calculating Clebsch-Gordan coefficients of the symmetric group. By endowing the problem
with physical significance, we have developed an efficient algorithm that addresses this chal-
lenge. This method enables us to calculate three-partite Clebsch-Gordan coefficients exactly
up to n = 12, where a single set of irreps λ generates three orthonormal vectors with more
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than 20 million coefficients. Similarly, for four-part systems, we can calculate Clebsch-Gordan
coefficients exactly up to n = 9, resulting in 39 orthonormal vectors with more than 5× 106

coefficients for one set of irreps λ. The primary limitation of this algorithm is the ability to
store Kronecker vectors and achieve orthogonalization with exact precision.

Our research has contributed to the mathematical understanding of multipartite entanglement
and has provided practical solutions. We have successfully applied our methods to classify
entanglement, define and compute invariants, and explicitly construct subspaces of multipartite
maximally entangled states. This work sheds light on the complexities of multipartite entangle-
ment and demonstrates the effectiveness of our approaches in addressing the key challenges in
this field.

Future work

The study of multipartite entanglement is given a new perspective through the results and
methods presented here, but some interesting questions remain to be answered. In this context,
we have compiled a list of some of these questions.

The investigation was motivated by the need to gain a deeper understanding of the mathemati-
cal structure of Kronecker states. These states are a particular type of maximally entangled
states that establish a vector space structure and have symmetries under the diagonal action
of the symmetric group. This intrinsic property makes Kronecker states significant in quan-
tum information protocols, such as Quantum Error Correction, Quantum Secret Sharing, and
probing issues like the superadditivity of communication capacity through quantum channels.
With a more refined comprehension of the mathematical intricacies of Kronecker states, their
applicability and impact in various applications can now be further explored.

The concept of stitching for constructing multi-qubit states leads to intriguing observations.
Complex graphs can be simplified to equivalent graphs defined by their SLOCC classes. For
instance, any graph describing three-qubit states must correspond to a triangle graph as it
encompasses all possible three-qubit states. Identifying such equivalences holds promise for
devising classification methods applicable to systems extending beyond four qubits.

When constructing graph Kronecker states, it is common to observe different combinations of
inner partitions (denoted by µ) leading to orthogonal Kronecker states, even when the corre-
sponding graph is not OER. On the other hand, achieving orthogonality between two graph
Kronecker states can be computationally challenging in high-dimensional spaces. Therefore,
finding conditions that establish direct orthogonality between Kronecker states is paramount.
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In this study, we show that within the realm of qubit systems,W states and bipartite states can
serve as fundamental building blocks for constructing any multi-qubit state, spanning the entire
spectrum of possible entanglement classes. This perspective provides a pathway to quantify
multipartite entanglement by assessing the number ofW states and the corresponding graph
architecture needed to reproduce a given state accurately. This conceptual framework could
lead to formulating a resource theory centered around these ideas, establishing a systematic
methodology for understanding the essence of multipartite entanglement.
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A
Sn representations in Two-type quantum
systems

One useful application from the method shown in section 7.1 for building Sn representations
is found when considering a quantum system with two types of quantum states ρ0, ρ1 whose
Schur transformation needs to be computed. Such a system can be considered a linear array of
two kinds of particles, as shown in Figure A.1.

Figure A.1: Two-type quantum system

The same sequence can always be obtained by applying a permutation π on an ordered sequence
with the same number of states in each of the two kinds (See Figure A.2). Then, the particular

Figure A.2: Ordered Two-type quantum system
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distribution is completely defined by the permutation π (which is not unique) and the number
of particles in each type n0, n1 with n = n0 + n1. Let us first to consider the ordered system
ρn0,n1 and its Schur transform

ρn0,n1 = ρ⊗n0
0 ⊗ ρ⊗n1

1 ∼
⊕
λ⊢n,d

V {λ}(ρ)⊗ Ω[λ](n0, n1)

where V {λ}(ρ) is the matrix representation of ρ in the irrep {λ}, and Ωλ(n0, n1) is a representa-
tion in the irrep [λ] of Sn. As ρ⊗n0

0 and ρ⊗n1
1 are completely symmetric, each of them belongs to

the trivial subspace [n0] and [n1] in Sn respectively in the correspondent Schur transform. This
means that the possible partitions λ in the joint Schur transform are restricted to d = 2, and
Ω

[λ]
(n0,n1)

must be a rank 1 matrix [SMM+19]. On the other hand, ρ is an invariant state under
all permutations of the first n0 elements and under all permutations of the last n1 elements (or
any combination of both). The projectors to each subset of permutations are

L[λ]
n0

=
1

n0!

∑
π∈ln0

D[λ](π) , R[λ]
n1

=
1

n1!

∑
π∈rn1

D[λ](π), (A.1)

where D[λ](π) is the matrix representation of permutation π in irrep [λ], ln0 is the set of all
permutations in the first n0 elements, and rn1 is the set of all permutations in the last n1

elements. The projector to the invariant subspace associated to ρn0,n1 in [λ] is L[λ]
n0R

[λ]
n1 which is

also a rank one projector, due to the invariance of L and R. This particular property allows us
to identify

Ωλ(n0, n1) = Lλn0
Rλ
n1
. (A.2)

Moreover, this relation tells that the Sn representations of systems with the same permutation
symmetry are equal up to normalization, as they belong to the same one-dimensional space.
Due to its rank, the matrix Ωλ(n0, n1) can be written from its only normalized eigenvector∣∣∣Ω[λ]

n0,n1

〉
as:

Ω[λ](n0, n1) =
∣∣Ω[λ]

n0,n1

〉 〈
Ω[λ]
n0,n1

∣∣ (A.3)
This vector can be obtained by computing the Schur transform for any pure state with the
same symmetry as ρn0,n1 and the simplest one is a sequence of qubits with n0 qubits in state 0
and n1 qubits in state 1 whose Schur transform can be obtained from Equation (3.27). The Sn
part is then ∣∣Ω[λ]

n0,n1

〉
∝
∑
q

n∏
i=1

Γλi,ωi,i
qi,si

|λ, q⟩ (A.4)

where s is the ordered qubits sequence s = |0⊗n01⊗n1⟩. All of these arguments for unordered
sequences still apply with the difference that projectors cannot be understood as Left and Right
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projectors. However, the invariant subspace is still rank one, allowing the Schur transform
computation using binary sequences. For example, for Figure A.1, the Sn part of the Schur
transform can be obtained from the sequence s = |0100010111010110⟩. So, for any two-type
system which can be translated to a sequence s, its Sn part of Schur transform is obtained with

∣∣Ω[λ]
s

〉
=

√
λ!(1 + n− λ)!

n0!(1 + n− 2λ)(n− n0)!

∑
Y

n∏
i=1

Γλi,ωi,i
yi,si

|λ, q⟩ (A.5)

where the normalization factor was written explicitly. To understand the implications and
simplicity of this approach, we will use it as an example. Consider a system of 6 quantum states
of two types as shown in Figure A.3 for this we can compute the Sn part of Schur transform for

Figure A.3: A system with six quantum states of two types

partitions [λ] = {[0], [1], [2], [3]} with the sequence s = |011001⟩. Let us compute explicitly
the vector for λ = 1, whose Yamanouchi symbols are

q
[1]
1 = {0, 0, 0, 0, 0, 1}, q

[1]
2 = {0, 0, 0, 0, 1, 0}, q

[1]
3 = {0, 0, 0, 1, 0, 0},

q
[1]
4 = {0, 0, 1, 0, 0, 0}, q

[1]
5 = {0, 1, 0, 0, 0, 0}

(A.6)

Then replacing in A.5 we obtain

∣∣∣Ω[1]
011001

〉
=

√
1!(1 + 6− 1)!

3!(1 + 6− 2(1))3!

(
Γ0,0,1
0,0 Γ0,1,2

0,1 Γ0,2,3
0,1 Γ0,2,4

0,0 Γ0,2,5
0,0 Γ1,3,6

1,1 |1, {0, 0, 0, 0, 0, 1}⟩

+Γ0,0,1
0,0 Γ0,1,2

0,1 Γ0,2,3
0,1 Γ0,2,4

0,0 Γ1,2,5
1,0 Γ1,3,6

0,1 |1, {0, 0, 0, 0, 1, 0}⟩
+Γ0,0,1

0,0 Γ0,1,2
0,1 Γ0,2,3

0,1 Γ1,2,4
1,0 Γ1,2,5

0,0 Γ1,3,6
0,1 |1, {0, 0, 0, 1, 0, 0}⟩

+Γ0,0,1
0,0 Γ0,1,2

0,1 Γ1,2,3
1,1 Γ1,2,4

0,0 Γ1,2,5
0,0 Γ1,3,6

0,1 |1, {0, 0, 1, 0, 0, 0}⟩
+Γ0,0,1

0,0 Γ1,1,2
1,1 Γ1,2,3

0,1 Γ1,2,4
0,0 Γ1,2,5

0,0 Γ1,3,6
0,1 |1, {0, 1, 0, 0, 0, 0}⟩

)
(A.7)

By using the Equation (3.25) we can calculate the vector to be:∣∣∣Ω[1]
011001

〉
= 2

(
− 1

2
√
5

∣∣∣1, q[1]1

〉
+

1√
30

∣∣∣1, q[1]2

〉
+

1

3
√
2

∣∣∣1, q[1]3

〉
− 1

6

∣∣∣1, q[1]4

〉
− 1

2
√
3

∣∣∣1, q[1]5

〉)
(A.8)
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Being
∣∣∣Ω[1]

011001

〉
proportional to λ representation in Schur basis for any six particles pure state

with the same symmetry as 011001. We can easily compute Ω matrix obtaining

Ω
[1]
011001 =

∣∣∣Ω[1]
011001

〉〈
Ω

[1]
011001

∣∣∣ =



1
5

−
√

2/3

5

−
√

2/5

3
1

3
√
5

1√
15

−
√

2/3

5
2
15

2
3
√
15

−
√

2/15

3

−
√

2/5

3

−
√

2/3

5
2

3
√
15

2
9

−
√
2
9

−
√

2/3

3

1
3
√
5

−
√

2/15

3
−

√
2
9

1
9

1
3
√
3

1√
15

−
√

2/5

3

−
√

2/3

3
1

3
√
3

1
9


(A.9)

which is proportional to λ representation in Schur basis for any six particles mixed state
with the same symmetry as 011001. Note this system is invariant to permutations l =
{I, (14), (15), (45), (145), (154)}, r = {I, (23)(26)(36)(236)(263)} and to any product of
them. By using Equation A.2 we have that

Ω
[1]
011001 =

(
1

3!

∑
π∈l

D[1](π)

)(
1

3!

∑
π∈r

D[1](π)

)
(A.10)

Doing this same computation by the Young Yamanouchi algorithm in 3.2.3 requires first
computing the five adjacent transpositions of S6 in irrep λ = 1, then identifying all the subsets
of permutations that left the system 011001 invariant, obtaining each of those permutations as
products of adjacent transpositions, compute them, and finally add them up, a considerably
more complicated task.
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B
Hands on Stitching and Pushing

In this appendix we are going to use the W-state stitching and the parameters pushing to study
what states can be obtained from different graphs. Some of the rules and definitions presented
in Section 5.3 were obtained by this study. We start this with the simplest construction with
only one W state.

One stitch

The most simple case is stitching two parts of the sameW state ending up in one free edge, i.e.,
a one qubit state:

∝
v

.

Here, we pushed both arrows leaving a ball inside. From here we will omit all the outer
decorations after pushing , and the equalities will be changed by similarity (under SLOCC)
symbols where it corresponds. Note how we can separate the ball in two and making it cross
the •, then we have:

v
∼=

v
=

√
v

√
v

=
√
v ·

1√
v

√
v1√

v ∼= = |1⟩
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This is the simplest application of the ball self-destruction rule (rule (viii)). We use the previous
symbol for the qubit |1⟩ and from it we can also name |0⟩:

= |0⟩ , = |1⟩ . (B.1)

We also have to consider the case with the Ψ stitch, this case is:

∼= =

(
1 + v2

v

)
|0⟩ =

(
1 + v2

v

)
· .

Note how v can be any value, but for the specific values v = ±i we get a null state. or the
specific values v = ±i the ball corresponds to ±iσz with σz the pauli matrix, we can move out
the proportionality factor ±i, then we introduce a special notation for Z-balls:

±i
= ±i ∼= σz.

The Z-ball has the property that it is its own inverse. Then, for the case with the Ψ stitch we
have two options:

∝ , = 0, . (B.2)

With this we complete the cases of one W state and one stitch. The next graph corresponds to
stitching twoW states with one stitch, obtaining a four-qubit state, which is

.

We can now push the inner operations to the outer parts

.

As the outer actions corresponds to SLOCC operations, we can drop them and get a representa-
tive for the obtained class:

1

2

3

4

= |0000⟩+ |0101⟩+ |0110⟩+ |1001⟩+ |1010⟩ = |0000⟩+
∣∣Ψ+

〉 ∣∣Ψ+
〉
.

Labels in outer edges specify the order of the qubits in the state, however, we omit them when
they are not necessary. It can be checked that in the classification of [VDD+02], this is an state
in the La002(Labc2 , b = 0, c = 0) class, in particular one can find the correspondence:

I ⊗X ⊗
(

0 a/2
1 0

)
⊗
(

2/a 0
0 1

)
·
1

2

3

4

=
2

a
|La002⟩ .
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We still have to consider the Ψ stitch. Then, for this case we have:

∼=
1

2

3

4

= |0001⟩+ |0010⟩+ |0100⟩+ |1000⟩ ∝ |W4⟩ .

This is a very interesting case for us, note that the sameW4 state will be obtained if we gather
the outer parts in a different way. We now generalize the notation to vertices with n edges to
symbolize theWn state, then we have the following equivalences:

1

2

3

4

=

1

2

3

4

= . (B.3)

This construction and symmetry is the rule (ix). This state in Verstraette classification is
L003(Lab3 , a = 0, b = 0), the operation that put W4 in the form of the representative in
[VDD+02] is given by:

I ⊗ I ⊗ Y ⊗ Y · = i
√
2 |L003⟩ (B.4)

These are all the possible constructions with only one stitch. Now we consider the cases with
two stitches.

Two Stitches

The next diagram consists on stitching two W states, but, in this case, with two stitches,
obtaining a two qubits state. The graph for this case is the following:

∼=
v

.

In this pushing process, we used the property of pushing black arrows, leaving a ball and an
arrow on the other edges, for both black arrows it was chosen to leave balls inside the graph
and arrows on the outer edge. Next, both balls can be combined in just one. From now on,
white arrows on outer edges will be omitted from the beginning as they can be pushed freely
out. In this case, the parameter of the ball works as a switch between two classes. Then, the
first case with the Z- ball is:

= |11⟩ =
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For any other value of v we have an entangled state:

v
=

1 + v2

v
|00⟩+ v |11⟩ =

√
1 + v2

√
1+v2

v
(B.5)

One important case is when v = 1, which means no ball, then we have:

= 2 |00⟩+ |11⟩ =
√
2 ·

√
2
.

When considering the cases with the Ψ stitch, in this graph we have first with one Φ stitch and
one Ψ stitch:

v

∼= ,

Where we applied the ball self-destruction rule. The unique state (up to SLOCC) obtained here
is :

= = .

In the first equality, we used the rotational property of theW4 state that we obtained before
and it corresponds to the rule (ix). In the next step, we used the operations on qubits from rule
(vii). The recurrent use of rules and properties is very important in the construction. Now, we
have to consider the case with two Ψ stitches:

v

=

v

∈


= 0, =


.

The two cases in the previous equation correspond to the two cases from (B.2), or equivalently
from rule (x). With this construction we finish the options with two stitches. With two stitches
is also possible to obtain five-qubit states; however, there is no known classification for this
case.

198



APPENDIX B. HANDS ON STITCHING AND PUSHING

B.1 Three-qubit states

Now, we will use the rules in the section 5.3 to analyze the case for stitching threeW states
with three stitches, obtaining a three-qubit state. The graph we are interested is:

∼= ∼= ∼= .

Here, the fact that balls can be moved through the line and absorbed by dark arrows was used
(rules iii,iv and vi). For the case with three Φ stitches, a ball remains after pushing the black
arrows. This ball can go through the path with three vertices (an odd number), the ball can be
self destroyed. This is a unique state which corresponds to:

= |001⟩+ |010⟩+ |100⟩+ |111⟩ ,

which is related to the GHZ state as:

(σzH)⊗ (σzH)⊗ (σzH) · =
√
2 |GHZ⟩ , (B.6)

where H is the Hadamard matrix of order two. Now, we must consider the cases with one Ψ
stitch. As the graph is symmetric, we only will consider the Ψ stitch in one position:

∼= = .

In the first part we pushed the black arrows leaving one ball inside. This construction separates
in two cases due to rule (xi.1) :

= ∼= , = = .
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B.2. FOUR-QUBIT STATES

The first case is an state in theW class, and the second case is an AB−C class state. Note how
the position of the Psi stitch can change which qubit is separable, allowing the BC − A and
the AC −B classes. For the case with two Ψ stitches, the ball is again self-destroyed, getting
the unique state corresponding to the W state:

= = .

The last case with three Ψ stitches still contains one ball after pushing the arrows. Then, one
has:

= ,

which separates in two cases according to rule (xi):

= = , = 0.

Obtaining the A−B − C (separable) class and the null state, respectively. With this diagram,
all the SLOCC classes for three qubits are obtained. Now we will explore the case of four qubits,
which is much more complicated.

B.2 Four-qubit states

According to Equation (5.11), for obtaining four qubits states we can achieve it with (s =
1, ω = 2), (s = 4, ω = 4), (s = 7, ω = 6) . . . . The cases with one stitch were already analyzed
in Section B. When considering four stitches the problem gets more complicated, there are four
ways of doing the stitching, i.e., there are four inequivalent graphs with four vertices and four
inner edges (Here we discarded the graphs obtained from stitching two parts of the sameW ).
Those graphs are:

, ,

, .
(B.7)

In this part, we will compute the different states that can be obtained from the stitching in each
graph. We only emphasize the construction and the map with the classification in [VDD+02]
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for the first time that a new SLOCC family or subfamily appears. For subfamily, we refer to
a state that can only reproduce a family where one or more parameters are not independent.
After pushing parameters in the first graph from the previous equation we have the following:

∼= ,

which breaks into two options: the first one for a generic ball:

= ∼= ,

which was already obtained. The second option is when the ball is a Z-ball. However, this case
separates again in two. One when the arrow is not zero:

= ∼= =
∣∣L0203⊕1̄

〉
,

which corresponds to a separable qubit and aW3 class state. For the classification in [VDD+02],
this state is exactly L0203⊕1̄

(La203⊕1̄
, a = 0). The other option is when the arrow is zero (or no

arrow):
= = .

This state has two separable qubits and two entangled. It corresponds exactly to theL0202(La2b2 , a =
0, b = 0) state. When considering cases with Ψ stitches, only one configuration leads to a
different state:

∝ =

This is a completely separable state, corresponding to the state L0002(Labc2 , a = 0, b = 0, c = 0)
as:

I ⊗X ⊗X ⊗ I · = |L0002⟩ .

For the second graph in Equation (B.7), the pushing process is:

∼= .

From the two qubit rules (xi), we have two options, first, when the ball is not Z , we have:

= = ,

the state is equivalent to the one obtained with one stitch. But for the case with Z we have:

= =

(
v1 · +

)(
v2 · +

)
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B.2. FOUR-QUBIT STATES

This state is new in the construction and can be seen clearly that corresponds to the product
of two bipartite entangled states. In the classification of SLOCC families, this state is int the
subfamily Ga000(Gabcd, b = 0, c = 0, d = 0) .The correspondence with the representative is
given by:(

0 1/v1
1/v1 −1/v21

)
⊗I⊗

(
0 1/v2

1/v2 −1/v22

)
⊗I·
(
v1 · +

)(
v2 · +

)
=

2

a
|Ga000⟩ .

Any other configuration leads to states previously obtained. For the third graph in Equation
(B.7), the case with all the stitches being Φ stitches is:

∼= . (B.8)

In this case, the parameter of the arrow works as a switch between subfamilies:

=

 v = 1

∈ L04 ,

v ̸= 1

∈ La2a2

 .

The first case in the previous expression belongs to the subfamily L04(La4 , a = 0), and the
second one belongs to La2a2(La2,b2 , b = a). The mappings for both states with their respective
representatives are given by:

I ⊗
(

0 1
−1 1/2

)
⊗
(

1 1
−1 1

)
⊗
(

2 −2
i i

)
·

1

= U(23) (4 |L04⟩) ,

(
0 a

1−v2
1 0

)
⊗
(

1 v
1−v2

0 a
1−v2

)
⊗
(

−v 1
1 −v

)
⊗ I ·

v

= U(231) |La2a2⟩ .

Where U(π) refers to a permutation that must be applied over the representative state. We
can note how adding more structure to the graph allows for new subfamilies. With this graph,
these two are the only new subfamilies. The last graph in Equation (B.7) can be cleaned as:

∼= .
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This is the first case where the parameter works not only as a switch between SLOCC families,
but also as a continuous parameter. We can achieve three new subfamilies with this graph. The
first one when the argument of the ball is 1 (which means no ball):

I ⊗
(

0 1

1/
√
2 0

)
⊗
(

1 0

0
√
2

)
⊗X · = π(24)

(
2

a

∣∣∣Ga(a/
√
2)(a/

√
2)0

〉)
.,

whereGa(a/
√
2)(a/

√
2)0 is a subfamily ofGabcd where the parameter d is zero, and the parameters

b and c depend on a. The second subfamily, when the ball is a Z-ball:

Y ⊗
(

0 1
(1+I)a

2
0

)
⊗
(

(I−1)a
2

0
0 1

)
⊗
(

−I 0
0 1

)
· = π(24)

∣∣La(ia)02〉 ,
with La(ia)02 a subfamily of Labcd. And the last case:

(
1 1
1 −1

)
⊗

(
a a2−b2

4b

a b2−a2
4b

)
⊗

(
1
a+b

1
2
√
ab

1
a+b − 1

2
√
ab

)
⊗

(
1

2
√
ab

1
a−b

1
2
√
ab

1
b−a

)
·

2
√
ab

(a−b)

=
2

b(a− b)

∣∣∣Gab(
√
ab)(

√
ab)

〉
,

with Gab(
√
ab)(

√
ab) a subfamily of Gabcd, with c and d as functions of a and b. We can see from

here how the complexity of the subfamilies and the mapping grows with the complexity of the
graphs. Up to this point we have analyzed all the graphs obtained with four stitches, however, no
full family of the classification could be obtained with these configurations. When considering
graphs with seven stitches and sixW states, a considerable big number of subfamilies appear,
because of this in Section 5.4 we only show the graphs for each full SLOCC family. It would
be interesting to study completely the entanglement properties that share states that can be
obtained from the same graph. In terms of the invariants that we propose in Section 7.2, it is
clear that the topology of the graph is related with the calculation of invariants of the states,
which are used to measure the entanglement of the system.
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C
FromW-state stitching to ZW calculus

The graphical process that we introduced for building multiqubit states in 5 named W-state
stitching, is closely related to those known as ZX-calculus [Coe23], ZW-calculus [Had15], and
ZXW calculus [PWS+23]. We will focus this appendix on showing how the relation with the
ZW-calculus can be made explicit, and hence, we can ensure that any multiqubit state can be
obtained with the W-state stitching by using the ZW completeness for qubit systems.

The scheme of the ZW-calculus consists in a set of generators, which will be the most basic
diagrams, and a set of rules which indicates the operations that can be performed between
the basic diagrams. In this appendix we will show the equivalence between the generators of
ZW-calculus and objects in our construction, which are the only necessary pieces to prove the
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completeness. The set of generators of the ZW-calculus are the following :

= |001⟩+ |010⟩+ |100⟩ ,

= |000⟩+ |111⟩ ,

= |01⟩+ |10⟩ ,

= |00⟩+ r |11⟩ ,

= |00⟩ ⟨00|+ |01⟩ ⟨10|+ |10⟩ ⟨01| − |11⟩ ⟨11| .

(C.1)

In this notation, lines pointing up correspond to indices of a ket, while lines pointing down are
indices of a bra. Let us now to express the relation of each of the objects in our notation. The
first genertor is simply the W state, that compared with our notation is the same representation
besides of the meaning of the direction of the lines:

⇒ . (C.2)

The second generator in Equation (C.1) is the GHZ state, that according to Equation (B.6) is
obtained from local operations of the graph . The local operations are σz ·H , which can be
parametrized graphically as:

σz ·H =
1√
2

(
1 1
−1 1

)
=

−1
1√
2
, 1√

2

≀ .

Then, the GHZ state can be represented graphically in both notations as:

⇒ ,

where all the black arrows have parameters v = w = 1√
2
, while the white arrows have parame-

ters v = −1.
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The third generator is simply |W2⟩ = |Ψ+⟩ that we represent as:

⇒ . (C.3)

The next generator can be easily built in our notation equally with a line with a ball as:

⇒
√
r ·

1√
r

. (C.4)

The last generator is the fermionic SWAP operation, and it is the hardest one to translate.
However, we can achieve this in many different parametrizations. We will only present the
simplest one that we found so far:

⇒ 1√
2
·

−1
1
2

1
4

√
2,
√
2

1
2
, 1
2

−2

1
2

−1

2

1
2
,−1

2≀ ≀

. (C.5)

With this all the generators of ZW calculus can be translated to our representation. This means
that as ZW calculus is complete, and any qubit operation can be implemented, then, with our
construction we can build any multiqubit state. We already showed how any state of three and
four qubits can be obtained explicitly; but with this connection we can ensure that any state
can be reproduced graphically.
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