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Hydrodynamic fields in fluctuating environment:

the emergent phononic and tachyonic-like excitations
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Using functional methods, we investigate in a low-temperature liquid, the sound quanta de-
fined by the quantized hydrodynamic fields, under the effects of high-energy processes on the
atomic/molecular scale. To obtain in the molecular level the excitation spectra of liquids, we assume
that the quantum fields are coupled to an additive delta-correlated in space and time quantum noise
field. The hydrodynamic fields are defined in a fluctuating environment. After defining the gener-
ating functional of connected correlation functions in the presence of the noise field, we perform a
functional integral over all noise field configurations. This is done using a formal object inspired
by the distributional zeta-function method, named configurational zeta-function. We obtain a new
generating functional written in terms of an analytically tractable functional series. Each term of
the series describes in the liquid the emergent non-interacting elementary excitations with the usual
gapless phonon-like dispersion relation and additional excitations with dispersion relations with gaps
in pseudo-momenta space, i.e., tachyonic-like excitations. Furthermore, the Fourier representation
of the two-point correlation functions of the model with the contribution coming from all phononic
and tachyonic-like fields is presented. Finally, our analysis reveals that the emergent tachyonic-like
and phononic excitations yield a distinctive thermodynamic signature—a quadratic temperature
dependence of specific heat (CV ∝ T

2) at low temperatures, providing a theoretical foundation for
experiments in confined and supercooled liquids.

I. INTRODUCTION

Despite extensive studies, a unified mathematical
treatment to obtain the excitation spectra of amorphous
solids, liquids and glasses has not yet been achieved. For
liquids, to reach this treatment new ideas and tools must
be employed, since they are strongly interacting dynam-
ically disordered systems. In this work, we establish
a connection between gapped momentum states of ele-
mentary excitations and hydrodynamics via an effective
field theory in low-temperature liquids [1, 2], using the
functional integral formalism of field theory [3–9]. To
investigate elementary excitations under the effects of
high-energy processes present at the atomic/molecular
scale, when quantum fluctuations are dominant, we as-
sume that the hydrodynamic fields are coupled to an ad-
ditive delta-correlated noise field. It can be said that
in the atomic/molecular regime the quantum fields are
defined in a fluctuating environment. In the presence
of the noise, we define an augmented generating func-
tional of connected correlation functions. Performing
the functional integral over all configuration space of the
noise field in this augmented generating functional, we
obtain a functional series representing a new generating
functional. In the functional series we characterize ef-
fective actions describing emergent phononic excitations
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with the usual dispersion relation, i.e., sound quanta and
collective excitations with dispersion relations with gaps
in pseudo-momenta space, i.e., tachyon-like excitations.
With our approach, performing a configurational averag-
ing procedure, we describe the gapped momentum states
discussed by other methods, as for example the Keldysh-
Schwinger approach to dissipation [10, 11]. This situation
is similar to inelastic scattering of electromagnetic waves
where the wave frequency is modified by a medium with
randomness, modeled by a classical disorder potential.

Liquids are systems whose constituents undergo ran-
dom motion similar to that in gases. Also the average dis-
tance between its components are similar to that of solids,
however without long-range translational order. To
find the temperature dependence of the thermodynamic
quantities in liquids, one cannot expand the potential en-
ergy of the liquid in terms of squared atomic/molecular
displacements, since their displacements are large and
the inter-atomic/intermolecular interactions are strong.
There are also internal degrees of freedom associated with
rotation, which prevents a perturbative expansion based
in the vibrational dynamics due to the interference from
the configurational dynamics. Contrary to the situation
of crystals where the vibrational motion is decomposed
into independent normal modes, due to a unique length
scale, in liquids there is no small parameter to implement
a perturbative expansion [12]. To make things more com-
plex, liquids are characterized by diffusive phenomena
on short time scales and exhibit viscoelasticity proper-
ties. A system with features of both viscous fluids, that
generates shear stress for an inhomogeneous flow veloc-
ity and an elastic body that produces a shear stress in
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a static state without a flow. Therefore, for some time
scale sufficiently short, a liquid may be modeled as an
amorphous solid with structural disorder. As a general
rule, there are two kinds of disordered solids, those with
compositional disorder, with microscopic structural de-
fects and the amorphous solids with structural disorder,
with macroscopic structural inhomogeneities [13]. Sys-
tems with the combination of rigidity and disorder have
many peculiar properties. In a crystal, the mechanical
rigidity is related to the long-range periodic order. In
a disordered solid, long-range order of crystals are ab-
sent, but we still have a mechanical rigidity, by long-range
static stress correlations [14].

Due to great strategic interests, the vibrational spectra
of amorphous solids and structural glasses have received
a lot of attention in the last decades. One universal fea-
ture of some disordered crystals and glasses is an anoma-
lous low-energy excitation, the boson peak, observed in
inelastic scattering of light or neutrons. The vibrational
density of states is quite different from the prediction
of the Debye model of the quantized vibrational excita-
tions, i.e., a squared-frequency law [15, 16]. This un-
usual behavior is independent of the detailed structure
of the system. In Ref. [17] it was shown that the boson
peak is related to the Ioffe-Regel limit of the longitudi-
nal phonons, when the mean free path of the phonons
approaches their wavelength [18]. The elucidation of the
mechanism behind the boson peak is a natural step in
our understanding of the bosonic excitations in random
systems as disordered solids and glasses. There is a con-
sensus that the boson peak is related to the disordered
structure of glasses. One approach to discuss such phe-
nomenon is to use random differential equations, which
has been widely discussed in the literature. See for ex-
ample Refs. [19–24]. The situation is quite different for
some small length scales, for high-energy phonons. In
this case this approach is not appropriated and a mi-
croscopic theory of the solid-like structure is required.
Liquids are strongly interacting dynamically disordered
systems [25], since their behavior is similar to an amor-
phous solid without the emergence of solidity, a glass
state. These considerations led us to study the excitation
spectra at short wavelengths of low-temperature liquids
introducing randomness not in the differential operator,
but as an additive noise field, modeling a randomly fluc-
tuating environment.

The conventional approach to study classical liquids is
based on the general formalism of time-dependent corre-
lation functions and linear response theory [26, 27]. In
the framework of linearised hydrodynamics one can ob-
tain the macroscopic transport coefficients in terms of
the microscopic quantities. Defining τc as the mean col-
lision time of the constituents of the liquid, and the wave
number-frequency ω, for ωτc ≪ 1 one uses an effective
field theory, bounded from above in some energy scale,
with the hydrodynamic fields defining a continuum clas-
sical field theory [28–30]. One approach to use the hydro-
dynamic fields in the regime ωτc ≥ 1, on the molecular

scale, is the generalized hydrodynamics, which considers
frequency and wave number-dependent transport coeffi-
cients. Leaving the regime where liquids are not able
to oppose to tangential stresses, it is possible to show
the appearance of shear waves in liquids [31, 32]. An-
other way to access the regime ωτc ≥ 1 was presented by
Frenkel [33, 34], with the propagation of solid-like collec-
tive modes in liquids, using Maxwell analysis. Maxwell
discussed a quite simple model for viscoelastic materials,
that exhibit a behavior between a pure viscous liquid
and an elastic solid. In liquids there is a viscous flow
on long time scale and elastic behavior for very short
time scale. Frenkel defines τf , the liquid relaxation time,
i.e., the average time that atoms/molecules spend to tra-
verse the interatomic/intermolecular spacing. For times
shorter than τf , the behavior of the system is that of
a disordered solid with rigid disordered structure, with
shear elastic waves. There is an interpolation between
the pure elastic solid behavior and the pure dissipative
response of a fluid. Using this approach it is possible
to obtain a microscopic picture of the liquid state with
the dispersion relation with gaps in momentum space,
that for instance has been discussed in different areas
of physics [35–44]. The energy spectra of such systems
share some similarities with the tachyons spectrum in
quantum field theory [45–53]. At this point two inter-
esting questions may be formulated: (i) can we include
in the model the effects of degrees of freedom associated
with the underlying microscopic theory without making
use of the generalized hydrodynamics or some molecular-
scale description? (ii) still using hydrodynamic fields, is
it possible to obtain the gapped momentum states with-
out using the Maxwell-Frenkel viscoelastic theory?

Using the functional formalism, we develop a new the-
oretical framework to obtain the bosonic excitation spec-
tra of low-temperature liquids in the regime with frequen-
cies satisfying ωτc ≥ 1, i.e., the short-time behavior of the
correlation functions. Our approach is an oversimplifica-
tion of the effects of high-energy processes over sound
quanta, when quantum effects are dominant. To take
into account short-time processes, we define an effective
model of non-hydrodynamics degrees of freedom, intro-
ducing an additive noise field. This noise field represents
unknown quantum processes at small distances or a quan-
tum vacuum noise [54, 55]. Using the definition of the
usual generating functional of connected correlation func-
tions, one defines a generating functional in the presence
of the noise field, an augmented generating functional.
After integrating out the noise, we obtain a new gener-
ating functional, written in terms of a functional series.
In each term of the series, one can show that there are
two kinds of noise-induced quasi-particles. Those obey-
ing the usual gapless phonon-like linear dispersion rela-
tion and also elementary excitations with dispersion re-
lations with gaps in pseudo-momenta space respectively.
Considering a low temperature regime, our analysis also
reveals that the emergent phononic and tachyonic-like
excitations yield a quadratic temperature dependence of
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the specific heat, i.e., CV ∝ T 2.
Recent developments in the field theory of liquids have

revealed deep connections between symmetry breaking,
topological properties, and the emergence of the k-gap
phenomenon. Particularly notable is the work of Baggi-
oli et al. [56], who demonstrated that the k-gap in liquids
can be understood through a symmetry-based approach
involving phase relaxation of Goldstone modes. Their
framework shows that nonaffine displacements in the de-
formation field of liquids lead to a breaking of higher-
form global symmetries, resulting in the characteristic
diffusive-to-propagating crossover of shear waves in liq-
uids. This topological interpretation provides a funda-
mental theoretical basis for understanding tachyonic-like
excitations in liquids, complementing our functional ap-
proach.
The structure of this work proceeds as follows. In Sec.

II we will briefly outline the quantization of the acoustic
waves in liquids. In Sec. III we discuss the phononic
field with the effects of an additive noise field, defining
the augmented generating functional of connected corre-
lation functions. In Sec. IV we integrate out the noise in
this generating functional, using a formal object, named
configurational zeta-function. In Sec. V we discuss the
two-point correlation functions of the model with the
emergence of phononic and gapped momentum states.
In Sec. VI we study the canonical quantization of the
tachyonic-like fields. The calculation of the specific heat
in liquids with tachyonic-like excitations is presented in
Sec. VII. Finally, conclusions are given in Sec. VIII. In
this work, we use the units ~ = kB = 1.

II. THE QUANTIZED ACOUSTIC WAVES IN

LIQUIDS

In spite of considerable efforts, an unifying physi-
cal modeling of liquid structure and its thermodynamic
properties is still in construction, due to complexity of
the liquid behavior at different scales [57–59]. As we dis-
cussed, liquids have viscoelastic properties, since on short
time scales their behavior resembles that of an amor-
phous solid with structural disorder, while on longer time
scales they behave as a viscous fluid. To investigate dy-
namical variables using space-time correlation functions
and understand the microscopic structure of a liquid at
the molecular scale, one must compare wavelengths with
both the mean free path lc and the mean collision time
τc of the liquid components. There are three different
regimes for the wave numbers and frequencies. The re-
gion klc ≫ 1, ωτc ≫ 1, represents the free-particle regime
where the distances and times involved in the processes
are quite short. The components of the liquid move inde-
pendently of each other. The range of intermediate wave
numbers and frequencies, known as the kinetic regime
where klc ≈ 1, ωτc ≈ 1. For such frequencies the wave-
length is about the same size as the mean free path, which
violates the assumption that the hydrodynamic fields are

defined in the continuum. Therefore one has to take
into account the molecular structure of the liquid and
the current treatment is based in the microscopic equa-
tions of motion of the elementary components. Finally
the hydrodynamical regime where klc ≪ 1, ωτc ≪ 1.
In this regime the behavior of the liquid is described by
phenomenological equations for the hydrodynamic fields,
the temperature, the mass density and local velocity of
the liquid, i.e., T (t,x), ρ(t,x) and v(t,x). One way to
proceed is to develop the method of fluctuating hydro-
dynamics where we have a set of stochastic differential
equations for the fluctuating variables δρ(t,x), δv(t,x)
and δT (t,x). Here in this work we are not interested to
discuss the equations of fluctuating hydrodynamics in-
cluding a fluctuating Fourier law, therefore we consider
the hydrodynamics of a liquid at low temperatures, above
the glass-transformation temperature.

As we discussed, to obtain the excitation spectra in
liquids, on a macroscopic scale and large time intervals
one can start discussing the hydrodynamics treatment
of liquids, which is based in a continuum approximation
with local conservation laws. From these conservation
laws one can obtain the hydrodynamic density-density
time correlation functions and the dynamic structure fac-
tors. From the dynamic structure factors one can obtain
information on collective dynamics from hydrodynamics
to atomic/molecular regime, with light scattering exper-
iments. Nonetheless, on a microscopic scale, the nature
of the vibration modes is determined by the interaction
between its constituents, which need a quantum mechan-
ical description. For this system with very large number
of degrees of freedom, to study high-energy processes on
the atomic/molecular-scale we use a formalism that uni-
fies quantum mechanics with the classical theory of fields,
i.e., quantum field theory.

With respect to these considerations a remark is ap-
propriate. From the quantum Nyquist theorem, the spec-
tral electromagnetic or scalar field density has a classical
limit, where thermal fluctuations dominate and a quan-
tum regime of low temperatures, where quantum effects
dominate [60]. The quantum regime requires low tem-
peratures and high frequencies, which is exactly the sit-
uation discussed in this work. The quantum fluctuations
are dominant and the liquid can be viewed as two weakly-
coupled subsystems: phonons and the remainder of the
liquid, as discussed by Andreev [61]. Because of these
conditions we assert that the noise field models quantum
processes on the molecular scale.

Instead of basing our discussion on a classical diffu-
sion equation we are interested in studying the emergent
elementary excitations based on the quantization of the
hydrodynamic fields. For a compressible fluid in ther-
modynamic equilibrium, the acoustic wave equation is
obtained by linearizing the fluid dynamics equations for
small disturbances around the constant equilibrium den-
sity and pressure. We thus have

p(t,x) = p0 + δp(t,x), (1)
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ρ(t,x) = ρ0 + δρ(t,x), (2)

v(t,x) = δv(t,x), (3)

where ρ0 and p0 are the constant equilibrium density and
pressure respectively. Assuming that the acoustic pertur-
bation involves no rotational flow we can write δv = ∇δχ.
Using the Euler and the mass balance equations and as-
suming that the acoustic perturbation is adiabatic, we
obtain a linear, lossless wave equation for δρ(t,x) given
by

(

1

u20

∂2

∂t2
−∆

)

δρ(t,x) = 0, (4)

and a similar equation for δχ(t,x). The constant u0 is the
longitudinal speed of sound. We would like to stress that
a real liquid has finite viscosity and the liquid is not curl-
free everywhere. In general acoustic processes, rotational
effects are confined to the vicinity of the boundaries. As-
suming an impenetrable boundary, we have the Neumann
boundary conditions. We write n.∇δρ(t,x)|∂V = 0. To
study a simplified model, it is convenient to leave aside
viscosity effects and consider periodic boundary condi-
tions. In this way the translational invariance in the sys-
tem is maintained.
The classical fields of the collective modes can be quan-

tized. To proceed, let us discuss the quantization of the
hydrodynamic fields. To define the elementary excita-
tions of the acoustic waves, the sound quanta, we im-
pose that the classical hydrodynamics fields δχ(t,x) and
δρ(t,x) are Heisenberg operators obeying the equal-time
commutation relations

[δχ(t,x), δχ(t,x′)] = [δρ(t,x), δρ(t,x′)] = 0 (5)

and also

[δχ(t,x), δρ(t,x′)] = −iδ(x− x′). (6)

Using the noncommutativity algebra of the field opera-
tors and that the positive frequency modes associated to
the hydrodynamic fields are given by up(t,x) where

up(t,x) = ei(p.x−ω(p)t), (7)

one can write the Fourier representation for the hydro-
dynamic field operators δρ(t,x) and δχ(t,x). They are
given by

δρ(t,x) =
∑

p

i

(

ω(p)

2V

)
1
2
(

apup(t,x)− a†
p
u∗
p
(t,x)

)

(8)

and

δχ(t,x) =
∑

p

(

1

2ω(p)V

)
1
2
(

apup(t,x) + a†
p
u∗
p
(t,x)

)

,

(9)

where ap and a†
p
are annihilation and creation operators

of elementary excitations with angular frequency ω(p)
and pseudo-momentum p. We assume that phonon an-
gular frequency is written as ω(p) = u0|p| [62, 63]. This
linear dispersion relation is a reasonable approximation
for phonon wavelengths much longer than the liquid in-
termolecular distance, and satisfies the condition

lim
p→0

ω(p) = 0. (10)

To proceed we have to implement the physical condition
of the Wightman axioms: the states of this physical sys-
tem are realized as elements of a Hilbert space [64]. The
construction of the Hilbert space of multi-quasi-particles
states is straightforward. The state without elementary
excitations is the Fock vacuum state |Ω0〉 of the phononic
field. It is defined using that ap|Ω0〉 = 0 ∀ p. All the
excited states can be created by acting on the Fock vac-
uum state the local hydrodynamic field operators, i.e., a†

p

and ap. An arbitrary state of the Hilbert space is given
by a linear superposition of multi-elementary excitations
states. It can be represented as

|Ψ〉 =
∞
∑

q=0

1

(q!)
1
2

∫

ψq(p1, ...pq) a
†
p1
...a†

pq

q
∏

i=1

(d3pi)|Ω0〉, (11)

where ψ0 ∈ C and ψq for q ≥ 2 are symmetric functions.
We have

〈Ψ|Ψ〉 =
∞
∑

q=0

∫

|ψq(p1, ...pq)|
2

q
∏

i=1

(d3pi) <∞. (12)

The above representation defines the Fock space of the
system. We define also the causal two-point correlation
function for the phononic field as

G(2)(t,x; t′,x′) = −i〈Ω0|T [δρ(t,x)δρ(t
′,x′)]Ω0〉, (13)

where T [...] is the Dyson-time ordered product. Sub-
stituting the Fourier representation of the field operator
δρ(t,x), defined in Eq. (8), in the Eq. (13) one obtains
that the causal correlation function can be written as

G(2)(t,x; t′,x′) = −
i

V
∑

p

ω(p)

2

(

θ(t)up(t,x) + θ(−t)u∗
p
(t,x)

)

, (14)

where θ(x) is the Heaviside step function. The Fourier
representation of the causal correlation function of the
phonons can be readily derived. It can be written as

Ḡ(2)(υ,p) =
ω2(p)

υ2 − ω2(p) + iδ
, (15)

where the infinitesimal term in the denominator indicates
in what half-plane of complex frequency the correspond-
ing integrals will converge. In the following we use both
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formalisms, the canonical and the functional formalism
concomitantly.
The action functional for a phononic field in a liquid

or in a solid at moderate temperature with some ordered
structure is given by

S(δρ) = S0(δρ) + Sint(δρ) (16)

where the second nonlinear contribution must be a poly-
nomial of the field. It appears if we quantize the acous-
tic waves in solids, where the quantization of the clas-
sical fields of the collective modes includes one longitu-
dinal and two transverse acoustic modes and the pres-
ence of anharmonicity introduces phonon-phonon inter-
actions, resulting in the Landau-Rumer finite life-time of
such excitations [65–67]. The free action functional of
the liquid is written as

S0(δρ) =
1

2

∫

d4x

[

δρ(t,x)

(

1

u20

∂2

∂t2
−∆

)

δρ(t,x)

]

, (17)

where ∆ is the Laplace operator which acts on scalar
functions defined in a finite time interval ([ta, tb]) and
in V ⊂ R3 and u0 is the longitudinal speed of sound

wave. We assume that tb− ta ≫ V
1
3

u0
. The eigenfunctions

of (−∆) form a complete basis in the functional space
L2(V ) of measurable and square-integrable functions on
V . In the following we discuss the functional approach
that can be used to describe the propagation of quantized
acoustic waves, i.e., sound quanta in the liquid.
The functional integral representation for the vacuum

persistence functional of the scalar field theory in the
presence of a external scalar source j(t,x) is given by the
functional integral

Z(j) = N

∫

Dδρ exp

(

iS(δρ) + i

∫

d4x j(t,x)δρ(t,x)

)

,

(18)
where Dδρ denotes integration over all functions δρ(t,x)
of space and time, and N is the normalization factor,
using that Z(j)|j=0 = 1. Since S(δρ) is the action inte-
gral for the classical field theory, the functional integrals
are over all classical field histories. The functional Z(j)
is the generating functional of the vacuum expectation
value of chronological ordered products of the field oper-
ators. Note that the Z(j)|j=0 has a pure formal meaning
since, even using the normal ordering : Sint(δρ) : we have
a kind of a complex measure in the function space, i.e.,
Dµ(δρ) = N exp (iS(δρ))Dδρ.
The usefulness of Z(j) is that it permits one to con-

struct the correlation functions, i.e., the vacuum expec-
tation value of chronological ordered products of the
field operators, by performing a suitable number of func-
tional differentiations with respect to the source. For
an arbitrary theory with interaction action Sint(δρ) and
G0(t,x; t

′,x′), the free two-point correlation function
we construct a perturbative theory (the Stueckelberg-
Feynman-Dyson series) writing the generating functional

as

Z(j) = N exp

[

i

∫

d4xSint

(

1

i

δ

δj(t,x)

)]

exp

[

i

2

∫

d4x

∫

d4x′ j(t,x)G0(t,x; t
′,x′)j(t′,x′)

]

. (19)

The coefficients of the expansion Z(j) in a Taylor func-
tional series in j(t,x) determine the correlation functions
of the model. The perturbative theory is obtained ex-
panding Z(j) in powers of the coupling constant. The
correlation functions are given by the sum of all dia-
grams with n external legs, including the disconnected
diagrams. The vacuum diagrams are cancelled by the
normalization factor.
Before starting the discussion of the effects of the

fluctuating environment over quasi-particles, there is a
problem that deserves to be discussed. For an elastic
medium at finite temperature the effects of anharmonic-
ity Sint(δρ) 6= 0 are to introduce interaction between the
phonons. Due to these contributions, the condensation of
an infinite number of tachyonic-like excitations into the
vacuum could in principle avoid the formation of gapped
momentum states. The question that arises is the iden-
tification of gapped momentum states in the presence of
phonon-phonon interactions. One can show that in this
case the effective model with additive and multiplicative
noise is able to generate elementary excitations of the
system with gapped momentum states.

III. THE PHONONIC FIELD THEORY IN A

FLUCTUATION ENVIRONMENT: A QUANTUM

NOISE FIELD

Let us start discussing the Frenkel approach for short
time processes in liquids accessing the solid-like regime.
Frenkel defines the liquid relaxation time τf , and a crit-
ical angular frequency defined as ωF = 2π

τf
. For times

shorter than the liquid relaxation time τf , the local struc-
ture of the liquid remains static, similar to that of a solid.
Therefore for times shorter than τf , i.e., high frequencies
ω ≥ ωF , the system supports one longitudinal mode and
two transverse modes. The dispersion relation obtained
is

ω(p) = −
i

2τf
+
(

u2p2 −
1

4τ2f

)
1
2

, (20)

where u is the transverse speed of sound. There is a
critical value for the pseudo-momentum where we have
propagating modes. This dispersion relation character-
izes a solid-like elastic regime in liquids.
Here, we develop a substantially different approach

to obtain results similar to those found in the litera-
ture. Our starting point is an effective model of the non-
hydrodynamics degrees of freedom. In the kinetic regime,
instead of using Frenkel’s ideas or discuss the microscopic
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equations of motion in the molecular-scale we are intro-
ducing an additive quantum noise field in the model, a
randomly fluctuating environment. We discuss free the-
ories, integrating the noise in the augmented generat-
ing functional of connected correlation functions. The
problem raised is how the quantized hydrodynamic fields
change after integrated out the noise field? Since noise
also induces local fluctuations in the quantum fields, af-
ter this procedure, we are analysing noise-induced effects
over quantized acoustic perturbations. Besides the linear
dispersion relation of the phonon field, emerging disper-
sion relations with gaps in pseudo-momenta space. This
is exactly the case of tachyonic field theory where the
cone of revolution that describes the usual dispersion re-
lation becomes a single-sheeted hyperboloid of revolu-
tion.
The use of randomness in analog models in field the-

ory is not new. For instance the literature has been dis-
cussing the effects of quantum gravity in matter fields
using randomness or non-linear optics [68–72]. Here we
analyse a new situation not considered previously in all of
these works. Our approach using a noise field is fully suf-
ficient to induce emergent non-interacting elementary ex-
citations in the liquid, both as phononic-like excitations
and as quasi-particles with dispersion relations contain-
ing gaps in pseudo-momenta space, i.e., tachyonic-like
excitations. The simplest case of stochastic processes are
random functions of one variable, usually regarded as the
time. The theory of random functions of several variables
is a natural generalization to the case of one variable. We
consider a noise field h(t,x) of time and the points in a
finite volume V ⊂ R3. Since the perturbation theory is
based in the free two-point correlation function, we dis-
cuss only the free field theory.
Let us discuss the introduction of the solid-like regime.

Suppose a supercooled liquid, where the temperature of
the liquid is below the freezing point without crystalliza-
tion [73, 74]. In this case we start from the Navier-Stokes
equation, with the coefficient of bulk and shear viscosity.
Using a linearized equation, an adiabatic assumption and
also a linearized equation of continuity one obtains a lossy
wave equation [75]. For the linearised case the differential
equations for the sound waves in viscous media is given
by

∂2ϑλ(t,x)

∂t2
= ∆

(

c2λ +Dλ

∂

∂t

)

ϑλ(t,x). (21)

The sound wave ϑλ(t, x) have two components: longi-
tudinal and transverse defined as ϑl(t,x) and ϑt(t,x)
respectively. In the above equation cλ and Dλ are the
speed of propagation and a parameter proportional to
the diffusion constant of the λ branch. The subscript λ
also refers to the longitudinal and transverse displace-
ment fields. Here we assume the following hypothesis:
(i) for a short time scale any liquid behaves like a solid,
and are able to oppose to tangential stresses, with the
presence of transverse acoustic modes, and (ii) to take
into account the molecular environment we use a random

noise hλ(t,x). Using (i) and (ii) the acoustic perturba-
tions are described by the following wave equations:

(

1

c2λ

∂2

∂t2
−∆

)

ϑλ(t,x) + hλ(t,x) = 0, (22)

where again cλ are the sound speeds and ϑλ are the elas-
tic waves, i.e., displacement of the “solid structure” as
discussed in Ref [76]. Here we use cl = u0 and ct = u
as the longitudinal and transverse sound speeds, respec-
tively. These quantities will be used in the action func-
tional that describe the system in this solid-like regime
as the sum of both components, i.e., S0 = Sl + St where

Sλ(ϑλ,hλ) =

∫

d4x

[

1

2
ϑλ(t,x) ·

(

1

c2λ

∂2

∂t2
−∆

)

ϑλ(t,x)

+hλ(t,x) · ϑλ(t,x)

]

, (23)

in which λ = l, t. As usual, we define the e
(λ)
i , the

transverse and longitudinal polarization vectors, where

pie
(λ)
i = 0, for λ = 2, 3 and pie

(λ)
i = |p|, for λ = 1. We

have e
(1)
i = (1, 0, 0), e

(2)
i = (0, 1, 0) and e

(3)
i = (0, 0, 1).

Note that we are assuming that different polarizations
are decoupled from each other. In the liquid, this as-
sumption can be used. Also, since at low temperatures
there is an attenuation of the longitudinal high frequency
phonons [77], here we discuss only the transverse dis-
placements. Therefore we can write the action functional
for each transverse component, where we are writing for
simplicity ϕ(t,x) = ϑt(t,x) and h(t,x) = ht(t,x) for the
transverse components. The free action functional for
each transverse degree of freedom with the contribution
of the quantum noise field can be defined by

S(ϕ, h) =

∫

d4x

[

1

2
ϕ(t,x)

(

1

u2
∂2

∂t2
−∆

)

ϕ(t,x)

+h(t,x)ϕ(t,x)

]

. (24)

Before proceeding, let us consider a system with both a
classical field and random noise, defined by the equation

(

1

u20

∂2

∂t2
−∆

)

ξ(t,x) + η(t,x) = 0, (25)

where u0 is the speed of longitudinal sound. The above
equation is a stochastic partial differential equation of
hyperbolic type [78]. Although it describes a stochas-
tic dynamical system, the behavior of its solution is
quite different from those solutions of stochastic pro-
cesses in diffusion equations, where time and space vari-
ables play different rules, as for example a non-linear
stochastic reaction-diffusion partial differential equation
[79]. The above equation describes in one spatial dimen-
sion a string under the effect of a sandstorm [80]. It can
be solved giving ξ(0,x) = ξ0(x) and ∂

∂t
ξ(0,x) = v0(x),

for (t,x) ∈ [0, t]×R3. One can use that η(t,x) is a white-
noise in space and time. The white-noise can be viewed
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as a random variable with values in the space of gener-
alized functions. The solution of this linear equation is a
distributional-value solution. A generalized random noise
is a random linear functional η(f) where f(t,x) is an ar-
bitrary function C∞ of compact support in (0,∞) × R3

[81]. We have

E[η(t,x)] = B1(t,x), (26)

E[η(t,x)η(t′,x′)] = B2(t,x; t
′,x′), (27)

where E[...] implies averaging over an ensemble of ran-
dom parameter samples. The generalized random field is
obtained using the formula

η(f) =

∫

d4x η(t,x)f(t,x), (28)

where we can associate a certain continuous generalized
field with every continuous random field. Since Gaussian
processes must be indexed by a family of test functions,
we have the mean value functional

E[η(f)] = B1(f) (29)

and the covariance functional

E[η(f1)η(f2)] = B2(f1; f2) (30)

for the families of test functions f1 and f2. Finally, to dis-
cuss the localization of waves in amorphous media, one
can consider wave equations with random differentials
operators. The usual way to discuss the energy spec-
trum of elementary excitations in such disordered sys-
tems is to use a multiple scattering theory performing
configurational average procedures.
Going back to our problem with the functional integral

over all classical field histories, the basic idea is that we
are considering an augmented functional1 Z(j, h) i.e., the
usual generating functional of n-point correlation func-
tions of the model augmented by an additive white-noise
field. Note that in the path integral formalism the formal
oscillatory behavior of the integrand leads us to conclude
that the sum over field configurations is dominated by the
field configuration of stationary phase, i.e., the solution
to the classical field equation. The functional integral
representation of this augmented functional is

Z(j, h) =

N ′

∫

Dϕ exp

(

i S(ϕ, h) + i

∫

d4x j(t,x)ϕ(t,x)

)

.

(31)

1 Instead of using the terminology noisy functional we prefer to

use augmented functional, i.e., a functional of the noise field and

also of the source.

The Z(j, h) corresponds to the functional integral Z(j) in
the presence of the noise field. There are some similarities
between our approach to the one used in a pure classical
scenario studying the functional formulation of the prob-
lem of turbulence, where the classical fluid described by
a Navier-Stokes equation is under the effect of a random
force [82]. Since we have that Z(j, h)|h=0 = Z(j), and
also that Z(j, h)|j=0 = Z(h), this augmented functional
also satisfies that Z(h)|h=0 = 1.
To define a generating functional of correlation func-

tions in the field theory with the presence of the noise,
we define

Dχ = N ′′eiC(h)Dh, (32)

where

C(h) = −
1

2 σ2

∫

d4x
(

h(t,x)
)2
. (33)

The N ′′ is a immaterial normalization factor that will be
omitted in subsequent calculations and Dh is a purely
formal notation.
To proceed, one can consider another augmented

generating functional, i.e., the usual generating func-
tional of connected correlation functions defined with
the noise field, i.e., the augmented functional W (j, h) =
−i lnZ(j, h), also for a specific configuration in functional
space of the noise field. First, integrating out the noise,
using Eqs. (32) and (33) we define the new functional
Q
[

W (j, h)
]

as

Q
[

W (j, h)
]

=

∫

DχW (j, h). (34)

Taking the average of a random variable over the en-
semble of realizations or integrating out the noise field
using the functional integral formalism are conceptually
different procedures. We will now turn to interpreta-
tion issues. When we average over a random variable we
use the symbol E

[

...
]

. The average of a random variable
is used in statistical field theory and also in Euclidean
field theory, with analytically continued vacuum expec-
tation values of field operators. The Euclidean program
suggests that many problems in field theory are really
problems in probability theory. In systems governed by
classical physics, the formalism is based in a measure
space, i.e., a set X together with a sigma-algebra of sub-
sets of X and a measure defined in that algebra, i.e., a
non-negative and countable additive set function. A real
random variable is a measurable real value function on
X . Since the noise field h(t,x) is not a random variable
in the formal sense, integrating the noise in some func-
tional we use the symbol Q

[

...
]

. We can consider Q
[

...
]

as the “expectation value” of a functional over some spe-
cific complex measure. In the path integral formalism
Z(j) is the vacuum persistence functional in the pres-
ence of a scalar source, i.e., a functional integral over
all classical field histories. Discussing an effective model
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on the molecular-scale description, the Eq. (34) is not
a functional integral over the noise field histories. It is
only a functional integral over all configuration space of
the noise field, “averaging” W (j, h). We will show that
it is possible to write Q

[

...
]

as a functional series, with
effective actions. For each term of the series there is a
functional integral over all classical fields histories, eval-
uated for finite temporal intervals.

Another problem arises in close connection with the
above remarks. An alternative choice is integrating the
noise field in the generating functional Z(j, h), defining
Q
[

Z(j, h)]. In the case of random fields, in the study of
statistical mechanics of disordered systems, this kind of
average E[Z(h)] is called an annealed average. One com-
putes the average of the partition function and next de-
fines the average Gibbs energy given by lnE

[

Z(h)]. One
should keep in mind that there are two essential reasons
to discuss Q

[

W (j, h)] instead of lnQ
[

Z(j, h)]:
(i) First, we assume a linear coupling between the noise
and the hydrodynamic field. Also we assume a local
coupling, which depends only on the value of the hy-
drodynamic field at a single point. This defines a local
theory. To describe complex anomalous systems, frac-
tional derivative models have been used to explain com-
plex viscoelastic behavior of various material systems,
the relaxation behavior of non-Newtonian fluids, shear
flow and also fluctuation in viscous fluids. Also, to de-
scribe sub- and super-diffusive anomalous diffusion, with
non-Markovian correlations one can use the Riemann-
Liouville differential and integral operators of non-integer
order [83–85]. These are non-local operators. Liquids at
small length scales must be modeled as dynamical dis-
ordered solids. Therefore, instead of using the non-local
operators, an oversimplification is to integrate out the
noise in an extensive quantity, similar to the Gibbs free
energy, i.e., the generating functional of connected corre-
lation functions.
(ii) The second one and the most convincing reason to
work with Q

[

W (j, h)] instead of Q
[

Z(j, h)] is the fol-

lowing. Working with Q
[

Z(j, h)] it is possible to show
that the effects of the noise field is to generate only one
tachyonic-like field in the liquid. The energy spectrum
of the elementary quasi-particles must contains phononic
and tachyonic-like excitations.

Strictly speaking, in the kinetic regime, a rather natu-
ral way to find modified dispersion relations for the ele-
mentary excitations of the liquid is to perform the func-
tional integral of the augmented generating functional
W (j, h) i.e., evaluating Q

[

W (j, h)]. This procedure to

work with Q
[

W (j, h)
]

is similar to the one used in sta-
tistical field theory, but with a substantially different in-
terpretation. As we discussed, the Eq. (34) means a
functional integral over all noise field configurations in a
function space. In the theory of classical random fields,
with randomness and competing interactions, the free en-
ergy must be self-averaging over all the realizations of the
random variable i.e., performing E

[

W (j, h)
]

.

There is another aspect in our problem which has to be

considered. There are different approaches in the litera-
ture, discussing systems with quenched disorder in sta-
tistical mechanics and also statistical field theory, to in-
tegrate out the disorder to obtain E

[

W (j, h)
]

. One of
them is the replica “trick”, which is still lacking a well-
established mathematical ground [86, 87]. For other ap-
proaches see Refs. [88–91]. We have to integrate out the
noise in the augmented generating functional W (j, h).
For a generic C(h) we define the functional integral

Q
[

W (j, h)
]

= −i

∫

Dχ lnZ(j, h). (35)

If we are able to find a theoretically tractable expres-
sion for Q

[

W (j, h)
]

, we are able to determine how the
presence of the noise affects the behavior of the noiseless
system, obtaining the excitation spectra of the liquid.
At this point we would like to compare our approach

with the standard continuum effective quantum field the-
ory [92]. There are some similarities and differences with
the standard approach. On the molecular-scale descrip-
tion we are defining an effective model of these non-
hydrodynamics degrees of freedom, introducing an addi-
tive noise field. We integrate out the noise field defining
a functional integral over all noise field configurations.
In the standard effective theories to obtain an effective
action describing the low energy dynamics of the light
modes of some model, one integrates out high momentum
modes in the generating functional of correlation func-
tions, as in the Euler-Heisenberg Lagrangian or in sys-
tems with hierarchy of scales, employing the Appelquist-
Carazzone theorem [93–95]. However, our effective de-
scription of the system is not related with the standard
continuum effective quantum field theory, since we are
integrating the noise in the generating functional of con-
nected correlation functions.

IV. EMERGENT PHONONIC AND

TACHYONIC-LIKE EXCITATIONS IN A LIQUID

WITH QUANTUM NOISE FIELD

An alternative method that has been discussed in the
literature to represent E

[

W (j, h)
]

in a tractable way is
the distributional zeta-function method [96–103]. Given
a measure space (X,Σ, ρ) and a measurable f : X →
(0,∞), we define the associated generalized ζ-function
as

ζ ρ,f (s) =

∫

X

f(ω)−s dρ(ω)

for those s ∈ C such that f−s ∈ L1(ρ), where in the
above integral f−s = exp

(

−s log(f)
)

is obtained using
the principal branch of the logarithm. Note that (i) if
X = R+, Σ is the Lebesgue σ-algebra, ρ is the Lebesgue
measure, and f(ω) = ⌊ω⌋ we retrieve the classical Rie-
mann zeta-function [104]; where ⌊x⌋ means the integer
part of x, (ii) if X and Σ are as in item i, ρ(E) counts the
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prime numbers in E and f(ω) = ω we retrieve the prime
zeta-function [105–108], (iii) if X , Σ, and f are as in item
ii and ρ(E) counts the non-trivial zeros of the Riemann
zeta-function, with their respective multiplicity, we ob-
tain the families of superzeta-functions [109], and finally
(iv) if X , Σ, and f are as in item ii and ρ(E) counts the
eigenvalues of an elliptic operator, with their respective
multiplicity, we obtain the spectral zeta-functions [110].
It is worth noting that the series representation given by
the distributional zeta-function shares formal similarities
with Ruelle’s statistical mechanics zeta-function of mod-
els [111]:

ζS(z, β) =

∞
∑

n=1

zn

n
Zn(β), (36)

where n = 1, 2, ... and Zn(β) is a family of partition func-
tions for a finite model of size n. The variable z is a
scaling variable for taking the thermodynamic limit.
Here we adapt the method for the case of path integrals

including the noise field. Using the augmented functional
integral Z(j, h) given by Eq. (31), the distributional zeta-
function, Φ(s), becomes a configurational zeta-function,
and is defined formally as

Φ(s) =

∫

Dχ
1

Z(j, h)s
, (37)

for s ∈ C. A new generating functional given by Eq. (35)
tracing out the additive noise can be written as

Q
[

W (j, h)
]

= i(d/ds)Φ(s)|s=0+ , Re(s) ≥ 0, (38)

where one defines the complex exponential n−s =
exp(−s logn), with logn ∈ R. Using analytic tools, and
following Klein and Brout [112] we define a new gener-
ating functional Q

[

W (j, h)
]

, where the noise field was
integrated out. The integrated generating functional can
be represented as

Q
[

W (j, h)
]

= i

∞
∑

k=1

(−1)kak

kk!
Q [(Z(j, h)) k]

+ i ln(a)− iγ − iR(a, j), (39)

where a is a dimensionless arbitrary constant, γ is the
Euler-Mascheroni constant, R(a), given by

R(a, j) = −

∫

Dχ

∫ ∞

a

dy

y
exp
(

−Z(j, h)y
)

. (40)

In the functional series we have

Q
[

(Z(j, h))k
]

=

∫

Dχ
(

Z(j, h)
)k
. (41)

For large a, |R(a)| is quite small, therefore, the dominant
contribution to the integrated generating functional is
given by the “moments” of the generating functional of
correlation functions of the model. We get

Q
[

W (j, h)
]

= i

∞
∑

k=1

(−1)k

kk!
Q
[

(Z(j, h)) k
]

, (42)

where the a constant was absorbed in the functional mea-

sures. Using that � =
(

1
u2

∂2

∂t2
−∆

)

we define the follow-

ing constants (N0(k)), and (N
(k)
l ) given by

(N0(k))
−1

=
∫

Dψ(k) exp

[

i

2

∫

d4xψ(k)(t,x)
(

�− kσ2
)

ψ(k)(t,x)

]

(43)

and for l ≥ 2

(

N
(k)
l

)−1

=

∫

Dφ
(k)
l exp

(

i

2

∫

d4xφ
(k)
l (t,x)�φ

(k)
l (t,x)

)

. (44)

Each term of the functional series is written as a product
of k functional integrals. We have

Q
[(

Z(h, j)
)k]
∣

∣

∣

k=1
=

N0(k)

∫

Dψ(k) exp

(

iS2

(

ψ(k), j
(k)
ψ

)

)

∣

∣

∣

k=1
(45)

and

Q
[(

Z(h, j)
)k]
∣

∣

∣

k≥2
=

N0(k)

∫

Dψ(k) exp

(

iS2

(

ψ(k), j
(k)
ψ

)

)

N
(k)
φ

∫ k
∏

l=2

Dφ
(k)
l exp

(

iS
(k)
1

(

φ
(k)
l , j

(k)
φl

)

)

, (46)

where N
(k)
φ =

∏k
l=2 N

(k)
l and Dφ

(k)
l are products of in-

tegration over all functions φ
(k)
l (t,x) of space and time.

The notation
(

φ
(k)
l

)

means that we are considering in

the k-term of the functional series, the l-th component of
the multiplet with k components. In this case, the new

effective actions S
(k)
1

(

φ
(k)
l , j

(k)
φl

)

and S2

(

ψ(k), j
(k)
ψ

)

are

written as

S
(k)
1

(

φ
(k)
l , j

(k)
φl

)

=

k
∑

l=2

∫

d4x
[

φ
(k)
l (t,x)j

(k)
φl

(t,x)+

1

2
φ
(k)
l (t,x)

( 1

u2
∂2

∂t2
−∆

)

φ
(k)
l (t,x)

]

(47)

and

S2

(

ψ(k), j
(k)
ψ

)

=

∫

d4x
[

ψ(k)(t,x)j
(k)
ψ (t,x)+

1

2
ψ(k)(t,x)

( 1

u2
∂2

∂t2
−∆− kσ2

)

ψ(k)(t,x)
]

. (48)

From the above equation it is clear that integrating the
noise field in the generating functional Z(j, h), defining
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Q
[

Z(j, h)] is exactly the term k = 1 in the functional
series. In conclusion, the effects of the noise field is to
generate only one tachyonic-like field in the liquid.

Now let us define the functionals Z
(k)
ψ

(

j
(k)
ψ

)

and

Z
(k)
φl

(

j
(k)
φl

)

as

Z
(k)
ψ

(

j
(k)
ψ

)

= N0(k)

∫

Dψ(k) exp
(

iS2

(

ψ(k), j
(k)
ψ

))

(49)
and for l ≥ 2

Z
(k)
φl

(

j
(k)
φl

)

= N
(k)
l

∫

Dφ
(k)
l exp

(

iS
(k)
3

(

φ
(k)
l , j

(k)
φl

))

(50)

where S
(k)
3

(

φ
(k)
l , j

(k)
φl

)

is the action for the l-th phononic

field in the k−th term of the series. We have obtained
that in each term of the functional series defined by Eq.
(42) is represented by products of k functional integrals,
one of them for the tachyonic-like field and the others for
the k− 1 functional integrals for the phononic fields. All
the mathematical tools needed to obtain these results
were developed in earlier papers [113–117]. We adopt
a modified functional integral in order to proceed us-
ing Eqs. (45)-(48). In the k-th term of the series, we
are using the notation ψk(t,x), in order to specify this
particular field. We impose that this field ψk(t,x) is as-
sumed to possess non-vanishing Fourier components only
for p2 ≥ kσ2. This is exactly the approach used by Fein-
berg, Arons and Sudarshan in the canonical quantization
of tachyons to avoid imaginary frequencies [47, 48]. Since
both effective actions defined by Eq. (47) and Eq. (48)
describe free quantum field theories for the tachyonic-like
and phononic fields, all the 2n-point correlation func-
tions of the model are written in terms of the two-points
correlation functions associated to the tachyonic-like and
phononic fields.

V. THE TWO-POINT CORRELATION

FUNCTIONS FOR THE PHONONIC AND

TACHYONIC-LIKE FIELDS

The aim of this section is to obtain the two-point cor-
relation functions for the phononic and tachyonic-like
fields. Since the scalar source j(t,x) was introduced as
a device to define the generating functionals of the the-
ory, one has the freedom to choose a particular source
distribution. This point will be clarified latter. It is also
convenient to define the quantity

Q
[

(Z(h, j))k
]

∣

∣

∣

k=1
= Z

(1)
ψ

(

j
(1)
ψ

)

(51)

and

Q
[

(Z(h, j))k
]

∣

∣

∣

k≥2
= Z

(k)
ψ

(

j
(k)
ψ

)

k
∏

r=2

Z
(k)
φr

(

j
(k)
φr

)

. (52)

To proceed, let us define the coefficient c
(1)
k = (−1)k

kk! .
Substituting Eq. (52) in Eq. (42) the functional series is
written as

Q
[

(W (h, j))
]

= ic
(1)
1 Z

(1)
ψ (j

(1)
ψ )

+ i

∞
∑

k=2

c
(1)
k Z

(k)
ψ

(

j
(k)
ψ

)

k
∏

r=2

Z
(k)
φr

(

j
(k)
φr

)

. (53)

As usual, to make contact with the two-point correlation
functions of the model we must perform two functional
derivatives with respect to the sources of the model. We
have

δ2Q
[

(W (h, j))
]

δj
(k)
ψ (t,x)δj

(k)
ψ (t′,x′)

∣

∣

∣

∣

j
(k)
ψ

=0

=

ic
(1)
1

δ2Z
(1)
ψ

(

j
(k)
ψ

)

δj
(k)
ψ (t,x)δj

(k)
ψ (t′,x′)

∣

∣

∣

∣

j
(k)
ψ

=0

+

i
k
∏

r=2

Z(k)
r

(

j
(k)
φr

)

∞
∑

k=2

c
(1)
k

δ2Z
(k)
ψ

(

j
(k)
ψ

)

δj
(k)
ψ (t,x)δj

(k)
ψ (t′,x′)

∣

∣

∣

∣

j
(k)
ψ

=0

,

(54)

and

δ2Q
[

(W (h, j))
]

δj
(k)
φl

(t,x)δj
(k)
φl

(t′,x′)

∣

∣

∣

∣

j
(k)
φl

=0

=

i

∞
∑

k=2

c
(1)
k Z

(k)
ψ (jψ)

k
∏

r=2

δ2Z
(k)
φr

(j
(k)
φr

)

δj
(k)
φl

(t,x)δj
(k)
φl

(t′,x′)

∣

∣

∣

∣

j
(k)
φl

=0

. (55)

Using the fact that Z
(k)
φl

(

j
(k)
φl

)

|
j
(k)
φl

=0
= 1 and also that

Z
(k)
ψ

(

j
(k)
ψ

)

|
j
(k)
ψ

=0
= 1 we define two distinct functionals

and functional series. We can write two functional series,
using the Eq. (53). They are

Q[W (h, j)]
∣

∣

∣

j
(2)
φl

=j
(3)
φl
...=j

(k)
φl

=0
= i

∞
∑

k=1

c
(1)
k Z

(k)
ψ

(

j
(k)
ψ

)

,

(56)

for all l we have j
(k)
φl

= 0 and

Q[W (h, j)]
∣

∣

∣

j
(1)
ψ

=j
(2)
ψ
...=j

(k)
ψ

=0
= i

∞
∑

k=2

c
(1)
k

k
∏

r=2

Z
(k)
φr

(

j
(k)
φr

)

.

(57)
In a noiseless system one defines the correlation functions
and the connected correlation functions. These correla-
tion functions can be defined by performing a functional
expansion of the generating functional of correlation and
connected correlation functions respectively. It is to be
noted that the same construction can be done for a sys-
tem under the effects of an additive noise. Let us define
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the following functional series. We have

Z
(k)
ψ

(

j
(k)
ψ

)

=

∞
∑

n=1

in−1

n!

∫ n
∏

s=1

d4xs j
(k)
ψ (t1,x1)...j

(k)
ψ (tn,xn)

×G
(n)

ψ(k)

(

t1,x1; ...; tn,xn, k
)

, (58)

and for the l-th phononic component of the k-th multiplet
we have

Z
(k)
φl

(

j
(k)
φl

)

=

∞
∑

n=1

in−1

n!

∫ n
∏

s=1

d4xs j
(k)
φl

(t1,x1)...j
(k)
φl

(tn,xn)

×G
(n)

φ
(k)
l

(

t1,x1; ...; tn,xn
)

. (59)

From here, what follows is straightforward. Us-
ing functional derivatives we obtain the n-point

correlation functions G
(n)

φ
(k)
l

(

t1,x1; ...; tn,xn
)

and

G
(n)

ψ(k)

(

t1,x1; ...; tn,xn
)

of the model, i.e. the origi-

nal connected correlation functions modified by the
effects of the noise field. We have

δnZ
(k)
ψ

(

j
(k)
ψ

)

δj
(k)
ψ (t1,x1) . . . δj

(k)
ψ (tn,xn)

∣

∣

∣

∣

j
(k)
ψ

=0

=

in−1G
(n)

ψ(k)(t1,x1; ..; tn,xn; k), (60)

and

δnZ
(k)
φl

(

j
(k)
φl

)

δj
(k)
φl

(t1,x1) . . . δj
(k)
φl

(tn,xn)

∣

∣

∣

∣

j
(k)
φl

=0

=

in−1G
(n)

φ
(k)
l

(t1,x1; ..; tn,xn). (61)

Let us defineG
(2)

ψ(k)(t,x; t
′,x′) as the causal two-point cor-

relation function of the tachyonic-like field in the k-th
term of the series. We have

δ2Q[(Z(h, j))k]

δj
(k)
ψ (t,x)δj

(k)
ψ (t′,x′)

∣

∣

∣

∣

j
(k)
ψ

=0

= iG
(2)

ψ(k)(t,x; t
′,x′; k).

(62)

Also, G
(2)

φ
(k)
l

(t,x; t′,x′) is defined as the causal correlation

function for the l-th phononic field in the k-th term of
the series. It is written as

δ2Q[(Z(h, j))k]

δj
(k)
φl

(t,x)δj
(k)
φl

(t′,x′)

∣

∣

∣

∣

j
(k)
φl

=0

= iG
(2)

φ
(k)
l

(t,x; t′,x′). (63)

A straightforward calculation gives that causal two-point
correlation function of the tachyonic-like field in the k-th

term of the series is written as

G
(2)

ψ(k)(t,x; t
′,x′; k) = N0(k)

∫

Dψ(k) ψ(k)(t,x)ψ(k)(t′,x′)

exp

[

i

2

∫

d4xψ(k)(t,x)
( 1

u2
∂2

∂t2
−∆− kσ2

)

ψ(k)(t,x)

]

.

(64)

In the same way, it is possible to show that causal two-
point correlation function of the l−th phononic field in

the k-th term of the series is written as G
(2)

φ
(k)
l

(t,x; t′,x′)

is

G
(2)

φ
(k)
l

(t,x; t′,x′) = N
(k)
l

∫

Dφ
(k)
l φ

(k)
l (t,x)φ

(k)
l (t′,x′)

exp

[

i

2

∫

d4xφ
(k)
l (t,x)

(

1

u2
∂2

∂t2
−∆

)

φ
(k)
l (t,x)

]

. (65)

From now on we will assume that the multiplet of k − 1

phononic fields φ
(k)
l has all the same elements, i.e., we de-

fine φ
(k)
2 (t,x) = φ

(k)
3 (t,x) = · · · = φ

(k)
k (t,x) ≡ φ(k)(t,x).

Therefore, N
(k)
2 = N

(k)
3 = · · · ≡ N

(k)
k . And in this way

we will have k − 1 equations equal to Eq. (65).
Using the previous results, we can write the two-point

correlations function associated with the tachyonic-like
and phononic fields. We have

Ḡ
(2)
ψ (t,x; t′,x′) =

N
∑

k=1

c
(1)
k G

(2)

ψ(k)(t,x; t
′,x′; k), (66)

and

Ḡ
(2)
φ (t,x; t′,x′) =

∞
∑

k=2

c
(1)
k

k
∏

l=2

G
(2)

φ
(k)
l

(t,x; t′,x′). (67)

Note that in the Eq. (66) the summation ends in N .
This will be clarified in the next section. The absence
of tachyonic-like and phononic condensates are given by
the equations

Ḡ
(1)
ψ (t,x) =

N
∑

k=1

c
(1)
k G

(1)

ψ(k)(t,x; k) = 0, (68)

and

Ḡ
(1)
φ (t,x) =

∞
∑

k=2

c
(1)
k

k
∏

l=2

G
(1)

φ
(k)
l

(t,x) = 0. (69)

Since any field theory is determined by its correlation
functions, the effects of noise field is to produce free
phononic and gapped momenta excitations in the liquid.
There is an important point that we would like to stress.
To discuss the regime ωτc ≈ 1, we introduced a noise
field which was integrated out. The tachyonic-like field
must describe the behavior of the collective modes in the
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kinetic regime. There are some experiments that mea-
sure the low-frequency elastic behavior in confined liquid
at room temperature [118, 119]. If we interpret that the
noise field simulates not only the non-hydrodynamic de-
grees of freedom for ωτc ≥ 1 but also the quantum vac-
uum noise which increases in confined systems we provide
a possible explanation for the solid-like behavior of con-
fined liquids at low-frequencies.
In the next section we will discuss the canonical quan-

tization of these tachyonic-like fields defined in the func-
tional series, after the noise field was integrated out.

VI. THE CANONICAL QUANTIZATION OF

THE TACHYONIC-LIKE EXCITATIONS

The aim of this section is to perform the canonical
quantization of the tachyonic-like fields defined by the
functional series, and also discuss the gapped momentum
states in our model. From Eq. (48) we have two kinds
of frequencies. The real frequencies, for p2 ≥ kσ2, where
ωk(p) = (p2 − kσ2)

1
2 , and the imaginary frequencies for

p2 < kσ2 where ωk(p) = ∓i(kσ2 − p2)
1
2 . For each term

of the series, the frequencies can be written as

ωk(p) =∓ iuθ(kσ2 − p2)(kσ2 − p2)
1
2+

uθ(p2 − kσ2)
(

p2 − kσ2
)

1
2 . (70)

For kσ2 > p2 the life-time of the quasi-particles is domi-
nated by decaying pole terms of the tachyon-like excita-
tions. In general, inelastic scattering of phonons in disor-
dered medium limit the phonon life-time. The noise field
is able to model the environment of an amorphous mate-
rial, leading to a dispersive behavior of the tachyonic-like
excitations. For each term of the series, critical pseudo-
momenta values exist at the gapped pseudo-momenta
states where tachyonic-like fields begin to propagate. To
implement the canonical quantization of the gapped mo-
menta states ψ(k)(t,x), we employ the Feinberg, Arons
and Sudarshan approach. We restrict ourselves to field
operators possessing non-vanishing Fourier components
only for p2 ≥ kσ2. In this case the energy spectrum of
the model is real and this procedure eliminates the dis-
persive and unphysical behavior of the solutions. Each
term in the series contains one tachyonic-like field with

dispersion relation with a gap in pseudo-momentum. One
defines the angular frequencies νk(p) associated to the
gapped momenta excitations as

νk(p) = u
(

p2 − kσ2
)

1
2 . (71)

Comparing Eq. (20) with the above equation shows that
the behavior of the collective excitations resembles the
gapped momenta states in the solid-like elastic regime
of wave propagation. The result of the literature where
the volume of the phase space available to collective ex-
citations reduces with temperature, here is related to the
strength of the noise. One important point is that there
is a threshold for the pseudo-momentum |pc| where above
such critical value there is a breakdown of the linear dis-
persion relation, i.e., |pc| ≤ 2π

lc
, where lc is the mean

free path of the constituents of the liquid. This critical
pseudo-momentum defines a critical k in the functional
series that we call N , in the quantized hydrodynamic
model. We have

N = kc = ⌊σ−2|pc|
2⌋, (72)

where ⌊ξ⌋ denotes the largest integer ≦ ξ. The positive
frequency modes associated to the tachyonic-like fields

are v
(k)
p (t,x), where

v(k)
p

(t,x) = ei(p.x−νk(p)t), (73)

The positive frequency modes associated to the

tachyonic-like fields are v
(k)
λp (t,x), where

v
(k)
λp (t,x) = ei(p.x−νk(p)t). (74)

As defined in Eq. (III) the sound wave has longitudi-
nal and transverse components. We were studying only
the transverse components of the wave ui(t,x), intro-

ducing a index i and the polarization vectors e
(λ)
i in our

tachyonic-like fields we can connect it to our initial quan-
tity ui(t,x). The λ = 2, 3 denotes the transverse polar-
izations, and since the noise only has transverse compo-
nents the tachyonic-field has the same structure.
The Fourier expansion of the tachyon-like field opera-

tor ψ
(k)
i (t,x) (for i = 2, 3) is given by

ψ
(k)
i (t,x) =

∑

p2≥kσ2

3
∑

λ=2

i

(

νk(p)

2V

)
1
2

e
(λ)
i

(

b
(k)
λp v

(k)
λp (t,x)−

(

b
(k)
λp

)†(

v
(k)
λp (t,x)

)∗

)

, (75)

where b
(k)
λp and

(

b
(k)
λp

)†
are the annihilation and creation

operators for the tachyonic-like fields, with polarization

λ. As we discussed before, the e
(λ)
i are the transverse

polarization vectors, where pie
(λ)
i = 0, for λ = 2, 3 and

pie
(λ)
i = |p|, for λ = 1. We have e

(1)
i = (1, 0, 0), e

(2)
i =

(0, 1, 0) and e
(3)
i = (0, 0, 1). The commutation relation
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between the annihilation and creation operators are the
standard ones giving by

[

b
(k)
λp , b

(k)
λ′p′

]

= 0
[(

b
(k)
λp

)†
,
(

b
(k)
λ′p′

)†]

= 0, (76)

and

[

b
(k)
λp ,
(

b
(k)
λ′p′

)†]

= δλλ′δ(p− p′). (77)

Therefore we get new kinds of vacuum states. The old

one |Ω0〉 and the ones |Ω
(k)
b 〉 associated for each term of

the functional series defined by

b
(k)
λp |Ω

(k)
b 〉 = 0, ∀ p. (78)

Using the functional series the tachyonic-like Fock vac-
uum state can be written, making use of the tachyonic-
like vacuum Fock states of each term of the series. For
the case of the tachyonic-like excitations there is an up-
per bound in the absolute values of pseudo-momentum
space. We have the vacuum states

|Ω
(1)
b 〉, |Ω

(2)
b 〉, ..., |Ω

(N−1)
b 〉, |Ω

(N)
b 〉. (79)

We write

|ΩT 〉 = |Ω
(1)
b 〉 ⊗ |Ω

(2)
b 〉 ⊗ ...⊗ |Ω

(N−1)
b 〉 ⊗ |Ω

(N)
b 〉. (80)

The Hamiltonian of the tachyonic-like fields defined by
the functional series is given by

HT =
1

2

N
∑

k=1

∑

p2≥kσ2

3
∑

λ=2

νk(p)

[

(b
(k)
λp )

†b
(k)
λp + b

(k)
λp (b

(k)
λp )

†

]

,

(81)

where we are using the Eq. (72). Since the ground states
of the tachyonic-like sector of the theory are cyclic with
respect to the polynomials of the tachyonic-like fields, an
arbitrary state of the Hilbert space is constructed with

the generic |Ω
(k)
b 〉 Fock vacuum state and is given by a lin-

ear superposition of multi-elementary tachyonic-like ex-

citations states, which we denote as |ℵ
(k)
λ 〉

|ℵ
(k)
λ 〉 =

∞
∑

q=0

1

(q!)
1
2

∫

ϑ(k)q (p1, ..,pq) (b
(k)
λp1

)†...(b
(k)
λpq

)†
q
∏

i=1

(d3pi)|Ω
(k)
b 〉,

(82)

where ϑ
(k)
0 ∈ C and ϑ

(k)
q for q ≥ 2 are symmetric func-

tions. We have

〈ℵ
(k)
λ |ℵ

′(k)
λ 〉 = δλλ′

∞
∑

q=0

∫

|ϑ(k)q (p1, ...pq)|
2

q
∏

i=1

(d3pi) <∞.

(83)
The above representation defines the Fock space that can

be generated using the |Ω
(k)
b 〉 tachyonic-like Fock vacuum

state. Note that due to the condition |p| ≥ kσ2, the set

of functions that we used to expand the field operator
does not form a complete set. We have to impose the
new completeness relation
∑

p2≥kσ2

v
(k)
λp (t,x)

(

v
(k)
λp (t

′,x′)
)∗
|t=t′=0 = fk(x− x′) (84)

where

fk(x− x′) = δ3(x− x′) +
1

2π2

kσ2 cos kσ2 − sinkσ2

kσ2|x− x′|
.

(85)

With the new completeness relation one can calculate
the expectation value of the Dyson time-ordered product
associated with the tachyon-like field in the k−th term
of the functional series.

G
(2)

ψ
(k)
ij

(t,x; t′,x′) = −i〈Ωb|T [ψ
(k)
i (t,x)ψ

(k)
j (t′,x′)]|Ωb〉δij .

(86)

Substituting the Fourier representation of the tachyonic-
like field operator, defined in Eq. (75), in the Eq. (86)
one obtains the causal propagator for the tachyonic-like
field in the k-th term of the series in this model. It is
written as

G
(2)

ψ(k)(t,x; 0,0) = −
i

V

∑

p2≥kσ2

3
∑

λ=2

νk(p)

2

(

θ(t)v
(k)
λp (t,x) + θ(−t)

(

v
(k)
λp (t,x)

)∗
)

.

(87)

One can write the Fourier components of the above equa-
tion. We can write the Fourier representation of the two-
point correlation function of the model with the contri-
bution coming from all tachyonic-like fields represented

by G
(2)

ψ(k)(υλ,p). We have

Ḡ
(2)
ψ (υ,p) =

1

2

N
∑

k=1

c
(1)
k νk(p)

(

1

υ − νk(p) + iδ
−

1

υλ + νk(p)− iδ

)

,

(88)

where again the infinitesimal term in the denominator
indicates in what half-plane of complex frequency the
corresponding integrals will converge. We rewrite the
above equation in terms of sum over p, where the volume
V appears. We have

Ḡ
(2)
ψ (υ) =

1

V

N
∑

k=1

c
(1)
k

∑

p2≥kσ2

ν2k(p)

υ2 − ν2k(p) + iδ
. (89)

From the dispersion relation of νk(p) given by Eq. (71)
for large k’s the contribution of tachyonic-like fields van-
ishes, due to the breakdown of the linear dispersion rela-
tion for large pseudo-momenta. Therefore in the summa-
tion we have a finite number of terms. The discrete sum



14

over p can be replaced by a continuous integral using
that

∑

p

→
V

(2π)3

∫

d3q. (90)

Introducing a Debye quasi-momentum cut-off qD we

write Ḡ
(2)
ψ (υ) as

Ḡ
(2)
ψ (υ) =

u2

2π2

N
∑

k=1

c
(1)
k

∫ qD

kσ2

dq
q4 − kσ2q2

υ2 + kσ2 − q2
. (91)

It is clear that the same discussion can be performed
for the phononic field. Using Eqs. (15) and (69) we can
write the Fourier representation for the causal correlation
functions. The total contribution of the phonons in the
functional series can be written as

Ḡ
(2)
φ (υ,p) =

∞
∑

k=2

c
(1)
k

[

ω2(p)

υ2 − ω2(p) + iδ

]k−1

. (92)

The above expression is quite interesting. Again, it is
possible to rewrite the above equation in terms of sums
over all the pseudo-momenta p. We get

Ḡ
(2)
φ (υ) =

1

V

∑

p

∞
∑

k=2

c
(1)
k

(

ω2(p)

υ2 − ω2(p) + iδ

)k−1

. (93)

VII. SPECIFIC HEAT IN LIQUIDS WITH

TACHYONIC-LIKE EXCITATIONS

As we have shown in previous sections, liquids pos-
sess a distinct excitation spectrum characterized by
gapless longitudinal phonons and k-gapped transverse
(tachyonic-like) modes. These unique features should
manifest in macroscopic thermodynamic properties, par-
ticularly in the specific heat at low temperatures. Here,
we derive the temperature dependence of the specific heat
in liquids with k-gapped modes and compare our predic-
tions with experimental results.

A. Theoretical prediction of T
2 scaling

The specific heat at constant volume CV can be gen-
erally expressed in terms of the partition function Z(h)
as follows:

CV = β2
∞
∑

k=1

ck
∂2

∂β2
E[Zk(h)] (94)

where β = 1/T is the inverse temperature, and the expec-
tation value E[Zk(h)] is taken over the statistical ensem-
ble. For systems with phononic excitations, the partition
function can be related to the functional determinant of

the corresponding operators. After some algebra, we ob-
tain that at low temperatures, the specific heat of liquids
with k-gapped excitations scales as:

CV ∝ T 2. (95)

This calculation reveals that, in contrast to the famil-
iar T 3 scaling in crystalline solids (Debye law), liquids
with tachyonic-like excitations show a T 2 law. Interest-
ingly, this prediction of a quadratic temperature depen-
dence for the low-temperature specific heat can also be
formally justified in the topological framework of Ref.
[56], by considering the hierarchy of relevant time and
frequency scales, and by clarifying the nature of the k-
gap arising from phase relaxation. At low temperatures,
thermally excited modes correspond to Matsubara fre-
quencies (ωn ∼ T ) that lie well below the collision fre-
quency 1/τc, but crucially, may still be above the Frenkel
frequency ωF = 2π/tf . In this regime, the transverse
shear modes, influenced by non-affine displacements and
the associated phase relaxation Ω⊥, exhibit a character-
istic momentum-gap (k-gap), with a critical propagation
frequency ωg ∼ Ω⊥ [56]. Importantly, this k-gap is not
an energy gap, but rather signifies a transition in the
nature of transverse modes—from diffusive below ωg to
propagative above it. At very low frequencies (ω < ωg),
these modes persist as diffusive, non-propagating degrees
of freedom, and thus remain thermally accessible even at
very low temperatures. This diffusive nature fundamen-
tally modifies the vibrational density of states g(ω) at
low frequencies, changing it from the Debye g(ω) ∼ ω2

behavior (typical of purely propagative phonons) to a
linear dependence g(ω) ∼ ω. It is precisely this linear
scaling of the vibrational density of states, induced by
the diffusive low-frequency transverse modes below the
k-gap, that naturally leads to a specific heat scaling as
CV ∼ T 2 at low temperatures. Furthermore, the pre-
dicted T 2 law may provide a theoretical foundation for
understanding the low-temperature specific heat behav-
ior often observed near the glass transition region. Phe-
nomenologically, the specific heat in this regime could be
described by the form CV = aT + bT 2, where a and b are
temperature independent constants. The linear term is
typically attributed to the contribution of two-level sys-
tems (TLS), characteristic of the glassy state and aris-
ing from local structural rearrangements, as discussed in
[120, 121]. Note that since there is no glassy state, and
thus no TLS in our model, we find a = 0. The quadratic
term, on the other hand, can be associated with collective
excitations in the supercooled liquid phase, which in our
model are longitudinal phonons and transverse k-gapped
modes.

B. Comparison with experimental data

Experimental data from confined benzene studies by
[120] align well with our theoretical predictions. Their
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adiabatic calorimetry measurements of benzene in MCM-
41 silica nanopores (< 2.9 nm) show specific heat de-
creasing dramatically at low temperatures more rapidly
than in typical glasses and without the significant lin-
ear term characteristic of TLS. While extracting a pure
T 2 dependence remains challenging, this sharp drop in
Cp qualitatively supports our predictions. Furthermore,
the suppression of the linear TLS contribution under con-
finement, as observed in [120] and expected theoretically,
makes the quadratric term — originating from the col-
lective modes captured by our model — the dominant
contribution, strengthening the consistency between our
theory and the experiment.
Despite the qualitative agreement, several factors can

lead to deviations from the ideal T 2 scaling: (i) Many
amorphous materials exhibit an excess contribution to
the specific heat at intermediate temperatures, known as
the boson peak. This feature corresponds to an excess
density of vibrational states above the Debye prediction
and can be related to defect scattering [56], suggesting
that liquids might show a milder effect related to config-
urational freezing, like the specific heat (Cp) hump ob-
served in confined benzene [120] and water [121]. (ii)
As real liquid samples inevitably fall out of equilibrium
at sufficiently low temperatures, some glass-like features
may emerge. In particular, TLS effects can introduce a
linear term in the specific heat. The experimental data
of confined liquids often show suppressed or absent TLS
contributions compared to standard glasses, suggesting
that equilibrated liquids have fewer frozen-in defects. (iii)
Finally, confinement imposes a minimum wavelength (ap-
proximately twice the pore diameter), cutting off modes
below a certain wavevector. This can further modify the
specific heat at very low temperatures, potentially lead-
ing to an exponential dependence if T falls below the
energy of the lowest allowed mode.

VIII. CONCLUSIONS AND PERSPECTIVES

There are in the literature many attempts to construct
a quantum field theory of free and interacting tachyons.
For particles with timelike four momenta we get a two-
sheeted hyperboloid of revolution around the energy axis.
We can choose the positive energy sheet, and the energy
is always positive definite. Dealing with spacelike four
momenta, we have that the (p0,p) surface is a single-
sheeted hyperboloid of revolution around the p0 axis.
Therefore a proper Lorentz transformation can change
the sign of the energy of the tachyon. The main prob-
lem in the quantum field theory of tachyons, is that
a frame dependence of observed phenomena cannot be
avoided. One can ask: is it possible to construct a system
in condensed matter where from the quantized acoustic
perturbations emerge simultaneously gapless phonon-like
excitations and quasi-particles with dispersions relations
with gaps in pseudo-momenta space, i.e., tachyonic-like
field excitations? Since liquids are predicted to have a

gap in momentum space rather than in frequency space,
it is an analog model for tachyons. Analog models do not
exactly reproduce nature, but we deal with a simplified
prototype, that has been used to capture properties of
the physical world and of theoretical models which are
still without experimental proofs. For instance, this line
of research, the so-called analog models in gravity be-
came extremely fertile with theoretical and experimental
grounds over the last forty years discussing mainly the
Hawking effect, where effective “event” horizons are gen-
erated in the laboratory [122, 123].

As we discussed, in spite of considerable efforts, a uni-
fying physical model of thermodynamic properties of liq-
uids is still in construction, due to the complexity of the
liquid behavior in different scales, as for example vis-
coelastic properties. There is an interpolation between
the pure elastic solid behavior and the pure dissipative re-
sponse of a fluid. Maxwell discussed a quite simple model
for viscoelastic materials, which is characteristic in liq-
uids. There is a viscous flow on long time scale and elastic
behavior for very short time scale. To discuss a solid-like
behavior in liquids Frenkel defines τf , the liquid relax-
ation time, i.e., the average time that atoms/molecules
spend to traverse the interatomic/intermolecular spac-
ing. For times shorter than τf , the behavior of the sys-
tem is that of a disordered solid with shear elastic waves.
This construction led to the theory of gapped momentum
states in liquids. In the present work we established in
low-temperature liquids the connection between gapped
momentum states of elementary excitations and hydro-
dynamics as an effective field theory. To achieve such
connection we use the functional integral formalism of
field theory. Here we aim to model the behavior of the
elementary excitations of the liquid taking into account
processes for frequencies satisfying ωτc ≥ 1 i.e., when
non-hydrodynamic degrees of freedom are dominant. To
model such degrees of freedom we are using an additive
delta-correlated in space and time noise field. We use the
fact that liquids at small scales or short time-scale must
be modeled as dynamical disordered solids.

To describe complex anomalous systems, fractional dif-
ferential operators and fractional differential equations
have been used to explain relaxation behavior of non-
Newtonian fluids, and also fluctuation in viscous fluids.
Instead of using the non-local fractional Laplacian, an
oversimplification is to assume a fluctuating environment
and trace out the noise in an extensive quantity, similar
to the Gibbs free energy, i.e., the generating functional
of connected correlation functions. In the path integral
formalism Z(j) is the vacuum persistence functional in
the presence of a scalar source, i.e., a functional integral
over all classical field histories. We can consider Q

[

...
]

as
the “expectation value” of a functional over some specific
complex measure. The Q

[

...
]

means a functional inte-
gral over all configuration space of the noise field, “av-
eraging” W (j, h), the augmented generating functional
of connected correlation functions. After integrating out
the noise field, we obtained a new generating functional



16

describing the emergent non-interacting elementary ex-
citations of the liquid, phononic and quasi-particles with
dispersion relations with gaps in pseudo-momenta space,
i.e., tachyonic-like excitations.
Our functional approach to emergent phononic and

tachyonic-like excitations in liquids can be viewed as
complementary to recent symmetry-based interpreta-
tions. Notably, Baggioli et al. [56] have developed a
unified topological field theory that explains the appear-
ance of the k-gap in liquids through phase relaxation of
Goldstone modes. Their work reveals that the funda-
mental distinction between solids and liquids lies in the
conservation (or lack thereof) of a two-form current re-
lated to the single-valuedness of the displacement field.
This perspective aligns with our findings on the emer-
gence of gapped momentum states due to quantum fluc-
tuations. The combination of our functional approach
with their symmetry-based framework provides a more
complete understanding of the emergence of tachyonic-
like excitations in liquids and their connections to topo-
logical properties of the medium.
Our theoretical framework predicts a distinctive low-

temperature thermodynamic signature of k-gapped flu-
ids, i.e., a quadratic temperature dependence of the spe-
cific heat (CV ∝ T 2). This scaling emerges naturally
from the distributional zeta-function approach when an-
alyzing how tachyonic-like excitations contribute to ther-
modynamic properties. Unlike crystalline solids with
their characteristic Debye T 3 law arising from three
acoustic phonon branches, liquids with k-gapped trans-
verse modes effectively possess reduced vibrational den-
sity of states at low frequencies. Future experimental
investigations of the specific heat of confined and su-
percooled liquids, similar to existing measurements in
benzene [120] and water [121], could provide additional
qualitative support for our theoretical predictions, par-
ticularly the precipitous decline in specific heat at low
temperatures without the characteristic linear term ob-
served in glasses. Although deviations of the T 2 behavior
are expected due to excess vibrational modes (manifested
as boson peak features) and experimental constraints, the
qualitative correspondence would reinforce our compre-

hensive model of liquids as systems exhibiting emergent
phononic and tachyonic-like excitations—effectively es-
tablishing a coherent framework linking microscopic dy-
namics to macroscopic thermodynamic phenomena.

Finally, propagating transverse modes with tachyonic-
like dispersion relations have been experimentally de-
tected in viscous liquids [124]. A natural continuation
of this work is to discuss the noise field effects in a vis-
cous liquid at finite temperature. In this case we start
from the Navier-Stokes equation, with the coefficient of
bulk and shear viscosity. Using a linearized equation,
an adiabatic assumption and also a linearized equation
of continuity one obtains a lossy wave equation given by
Eq. (21). Introducing a cut-off in the wave number, one
obtains propagating modes. In this case we obtain the
usual acoustic phonon branches with different sound ve-
locities. As we discussed, for an elastic medium at finite
temperature the effects of anharmonicity Sint(δρ) 6= 0
are to introduce interaction between the phonons, and in
principle can avoid the formation of gapped momentum
states. Next one has to introduce not only an additive
noise coupled with the quantized fields with transverse
and longitudinal modes, but also a multiplicative noise.
Even with the interaction between the phonons, one can
show that the effective model with additive and multi-
plicative noise is able to generate elementary excitations
of the system with gapped momentum states [125]. This
subject is under investigation by the authors.
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