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We investigate aspects of the relation between the quantum geometry of the normal state (NS) and
the superconducting phase, through the lens of non-locality. By relating band theory to quantum
estimation theory, we derive a direct momentum-dependent relation between quantum geometry
and the quantum fluctuations of the position operator. We then investigate two effects of the NS
quantum geometry on superconductivity. On the one hand, we present a physical interpretation
of the conventional and geometric contributions to the superfluid weight in terms of two different
movements of the normal state charge carriers forming the Cooper pairs. The first contribution
stems from their center-of-mass motion while the second stems from their zero-point motion, thereby
explaining its persistence in flat-band systems. On the other hand, we phenomenologically derive
an emergent Darwin term driven by the NS quantum metric. We show its form in one and two-body
problems, derive the effective pairing potential in s-wave superconductors, and explicit its form in
the case of two-dimensional massive Dirac fermions. We thus show that the NS quantum metric
screens the pairing interaction and weakens superconductivity, which could be tested experimentally
by doping a superconductor. Our work reveals the ambivalent relationship between non-interacting
quantum geometry and superconductivity, and possibly in other correlated phases.

INTRODUCTION

In crystalline systems without electronic correlations
the Bloch theorem states that the eigenstates are ex-
pressed as |ψn(k)⟩ = eik·r̂ |un(k)⟩, with |ψn(k)⟩ the
Bloch state and |un(k)⟩ its cell-periodic counterpart [1].
While the exponential factor is reminiscent of a free elec-
tron, the cell-periodic Bloch state is a consequence of
the crystalline potential, i.e. the Coulomb interaction
between an electron and the atomic nuclei composing
the lattice. The Bloch states can be seen as repre-
senting quasiparticles, hereafter called Bloch fermions,
which emerge from the electron-nuclei Coulomb interac-
tion, analogously to quasiparticles in Fermi liquid the-
ory which emerge from the electron-electron Coulomb in-
teraction. For example, certain materials harbor Bloch
states that mimic Dirac and Weyl fermions at low-energy
[2]. The cell-periodic Bloch state encapsulates the emer-
gent character of the Bloch fermion. Bloch’s theorem
then establishes that the system of independent electrons
in a crystalline lattice is formally equivalent to a gas of
free quasiparticles, whose quasi-character is a remnant
of the electron-nuclei Coulomb interaction. With the ad-
vent of topological and geometrical extensions of band
theory, it is now well-established that the cell-periodic
Bloch state can have significant influence on the proper-
ties of solids [1, 3–6].

The distinction between elementary electrons and
Bloch fermions is especially relevant when discussing
electronically correlated systems. As Bloch fermions dif-
fer from elementary electrons, interacting Bloch fermions
also a priori differ from interacting electrons. Approx-
imating Bloch fermions as electrons in an interacting
problem neglects the effects of quantum geometry of the
normal (non-interacting) state (NS) on the correlated
phase. However, it is now known that the NS quantum

geometry can significantly influence correlated phases.
For example, the NS geometry is essential to fractional
Chern insulators, zero-magnetic field analogues of frac-
tional quantum Hall phases, where the geometry’s uni-
formity in the Brillouin zone is instrumental for its sta-
bilization [7, 8]. Effects of the NS quantum geometry
have also been found in excitons [9–11] and supercon-
ductors [12–21]. In the present work, we focus on two
such effects. On the one hand it was discovered that the
NS quantum metric is a source of supercurrent, hereafter
referred to as the geometric supercurrent, that is insen-
sitive to whether the associated band is flat or dispersive
[12, 13]. Quantum geometry is known to be related to
the spread of Wannier functions through the localisation
tensor, whose gauge-invariant part is the integral of the
quantum metric over the Brillouin zone [22, 23]. This
has been used to interpret the geometric supercurrent as
coming from an interaction-driven distortion of the Wan-
nier functions’ spread which disrupts destructive intefer-
ences, thereby allowing the interacting particles to move
[5, 14]. On the other hand, it was argued that the NS
Berry curvature lowers the attractive interaction through
an emergent Darwin term, thereby weakening the super-
conducting phase [15]. These works point towards an
ambiguous relationship between the NS quantum geom-
etry and superconductivity, through a metric-curvature
competition.

In this work, we explore this ambivalent relation of the
NS quantum geometry towards superconductivity based
on the non-locality and emergence of Bloch fermions.
First, we develop a momentum-resolved relation between
quantum geometry and the quantum fluctuations of the
position operator. The quantum geometry then appears
as a quantifier of the non-locality of the Bloch fermion, it-
self a consequence of virtual interband transitions as well
as the emergence and quasiparticle character of Bloch
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fermions. Starting from the idea that the Cooper pair-
ing happens between Bloch fermions instead of elemen-
tary electrons [19], we then interpret the two effects men-
tioned above. First, the two contributions to the super-
fluid weight are associated with two independent move-
ments of the Bloch fermions. The conventional supercur-
rent is associated to their center-of-mass motion, which
disappears in flat band systems, while the geometric su-
percurrent is a result of their zero-point motions, which
persists in flat-band systems. Second, we show that the
same non-locality generates an emergent Darwin term
which screens the pairing interaction, and thus weakens
superconductivity. Therefore while the non-locality of
the NS charge carriers unlocks another type of supercur-
rent, it can also be detrimental to interaction effects. The
two effects we discussed thus appear as two sides of the
same coin, with non-locality as the generator of this am-
bivalent relationship between the NS quantum geometry
and superconductivity.

The paper is organised as follows. In Section I, we
briefly introduce multiparameter quantum estimation
theory and discuss its application to band theory. In
Section II, the conventional and geometric sources of su-
percurrent are interpreted based on Section I. In Section
III, we phenomenologically derive a generalized form of
the emergent Darwin term in one and two-body prob-
lems. We then compute the effective pairing potential
in s-wave superconductors, and discuss the example of
two-dimensional massive Dirac fermions.

I. EMERGENCE, NON-LOCALITY AND
QUANTUM GEOMETRY

In this section we first briefly review some aspects of
multiparameter quantum estimation theory, and apply it
to band theory.

A. Multiparameter quantum estimation theory

Multiparameter quantum estimation theory aims at
finding optimal experimental protocols as well as tight er-
ror bounds, when multiple parameters are simultaneously
estimated. References to the field include Refs. [24–33].
For our discussion, it is sufficient to consider pure states.
Let |ψ0⟩ be a quantum state representing a probe sys-
tem, then parametrised using a unitary matrix U(θ) into
|ψ(θ)⟩ = U(θ) |ψ0⟩ [24, 26, 28]. If the probe state is an
eigenstate of the Hamiltonian H0, then the parametrised
state is an eigenvector of H(θ) = U(θ)HU(θ)†.

The optimal error achievable in the estimation of the
parameters θ is given by the inverse of the quantum
Fisher information matrix (QFIM) Fµν(θ), through the
quantum Cramér-Rao bound [28, 33]

Cov(θ̂µ, θ̂ν) ≥
1

Fµν
. (1)

The operators θ̂ are estimators of the parameters θ, and
we have made the θ-dependences implicit. For pure
states, the QFIM reads [28, 33]

Fµν = 4Re[⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩ ⟨ψ|∂νψ⟩] (2a)
= 4gµν , (2b)

with ∂µ = ∂θµ and gµν = ReQµν the quantum metric.
Another formulation of the QFIM may be found by con-
sidering the generators of the parameters θµ, defined as
Ĝµ = i(∂θµU

†)U . It can be shown that the QFIM be-
comes

Fµν = 4Re
[
⟨ĜµĜν⟩ψ0

− ⟨Ĝµ⟩ψ0
⟨Ĝν⟩ψ0

]
(3a)

= 4ReCov|ψ0⟩(Ĝµ, Ĝν), (3b)

with ⟨Ĝµ⟩ψ0
= ⟨ψ0| Ĝµ |ψ0⟩ [26, 32, 33]. The QFIM, and

thus the quantum metric, is a consequence and quantifier
of the quantum fluctuations of the parameter generators.
In particular, the square root of the diagonal element Fµµ
is equal to the standard deviation of Ĝµ. The Berry cur-
vature Bµν = −2 ImQµν can also be expressed in terms
of the generators [26, 32],

Bµν = i ⟨ψ0| [Ĝµ, Ĝν ] |ψ0⟩ . (4)

The Berry curvature therefore stems from the non-
commutativity of the parameter generators in the probe
state. Applying the Heisenberg uncertainty relation then
gives [26]

FµµFνν ≥ 4B2
µν . (5)

The particularity of the multiparameter case is that the
generators of the different parameters θµ may not com-
mute, which drives a non-zero Berry curvature that acts
as a lower bound on the QFIM. In that case the asso-
ciated parameters are said to be incompatible, since the
non-trivial Berry curvature implies that they cannot be
simultaneously and perfectly estimated [26, 31, 32].

B. Application to band theory

The Bloch Hamiltonian is defined as

H(k) = e−ik·r̂Heik·r̂, (6)

with its eigenstates being the cell-periodic Bloch states
|un(k)⟩ = e−ik·r̂ |ψn(k)⟩ [1]. Seeing this definition as
a parametrisation process, the correspondence between
band theory and multiparameter quantum estimation
theory is then shown in Table I. The probe Hamil-
tonian is H, while its parametrized counterpart is the
Bloch Hamiltonian H(k). This implies that the esti-
mated parameters are the components of the crystalline
momentum k, and that the parametrizing unitary ma-
trix is U(k) = e−ik·r̂. The probe state is then given by
the Bloch state |ψn(k)⟩, and the analogue of |ψ(θ)⟩ is the
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Estimation theory Band theory
|ψ0⟩ |ψn(k)⟩
θ k

U(θ) exp
(
− ik · r̂

)
|ψ(θ)⟩ |un(k)⟩

Table I. Correspondence between band theory and multipa-
rameter quantum estimation theory.

cell-periodic Bloch state |un(k)⟩. We show in appendix A
that the quantum geometric tensor (QGT) indeed takes
the form of a covariance matrix,

Qnµν = Cov|ψn⟩(R̂µ, R̂ν), (7)

with the generator of kµ defined as R̂µ = −i(∂µU†)U .
Note that the relation between the QGT and the genera-
tors is mentioned in Ref. [34]. As shown in appendix A,
the generator can be further expressed as follows,

R̂µ =

∫ 1

0

eisk·r̂ r̂µe
−isk·r̂ds =

+∞∑
n=0

in

(n+ 1)!
adnk·r̂ r̂µ, (8)

with adA the adjoint representation, which obeys
adAB = [A,B] and adnAB = [A, adn−1

A B]. We inter-
pret the generators R̂ as dressed position operators. In
the low-energy limit, where k ≪ 1, the leading term is
given by the position operator, such that [25]

R̂µ ≃
k≪1

r̂µ. (9)

The QGT then becomes the covariance matrix of the po-
sition operator in the Bloch state. Hereafter, unless ex-
plicitly stated, we focus on the low-energy regime. Since
the Bloch fermion is represented by the Bloch state,
quantum geometry is then directly related to the quan-
tum fluctuations of the position of the Bloch fermion,
i.e. its non-locality. When pictured over time, this non-
locality may be viewed as the zero-point motions of the
Bloch fermion. In particular, the diagonal elements of
the quantum metric and the Berry curvature read

gnµµ(k) = ⟨ψn(k)| r̂2µ |ψn(k)⟩ − ⟨ψn(k)| r̂µ |ψn(k)⟩2 ,
Bnµν(k) = i ⟨ψn(k)| [r̂µ, r̂ν ] |ψn(k)⟩ . (10)

As the known relations between non-locality and quan-
tum geometry always involve an integration over the Bril-
louin zone [6, 22, 23, 35, 36], the present work has the
interest of yielding a momentum-resolved formulation of
this relation. gnµµ is the standard deviation of the posi-
tion in the µ-direction, and as such defines a length

√
gnµµ

which quantifies the Bloch fermion’s typical non-locality
around the average position ⟨r⟩n = ⟨ψn(k)| r̂ |ψn(k)⟩.
In the two-dimensional plane (µ, ν) the Bloch fermion
has a typical area of non-locality given by An

typ,µν =

π
√
gnµµg

n
νν , as pictured in Fig. 1a. Contrastingly, the

Berry curvature appears as the commutator of different

Figure 1. Relation between the non-locality of Bloch fermions
and quantum geometry in the (µ, ν) plane, visualized on the
honeycomb lattice. (a) The product of the square root of the
quantum metric elements defines a typical area of non-locality
around the average position, shown in grey. (b) A non-trivial
Berry curvature defines a minimal area of non-locality of the
Bloch fermion, shown in green.

elements of the position operator in the Bloch state. Ap-
plying the Heisenberg uncertainty relation, as done in
Sec. I A, gives√

gnµµ(k)g
n
νν(k) ≥

1

2
|Bnµν(k)|. (11)

The Berry curvature then puts a lower bound on the
typical area of non-locality, thus defining a minimal area
of non-locality An

min,µν = π
2 |B

n
µν | as shown in Fig. 1b.

Eq. (11) can be independently derived by using the semi-
positive definiteness of the QGT [6, 7]. In the low-energy
regime, the Berry curvature is non-trivial only if the po-
sition operators do not mutually commute in the Bloch
state. This observation holds beyond the low-energy
regime, since Eq. (8) shows that if the position operators
mutually commute, then R̂µ is exactly equal to r̂µ. As
the elementary electrons obey the mutual commutativity
of the position operators, this highlights the emergent
character and quasiparticle nature of the Bloch fermion,
and its importance for the existence of band topology.

The emergent non-locality of the Bloch fermion is remi-
niscent to that of the electron in relativistic quantum me-
chanics. Such electrons undergo erratic virtual electron-
positron transitions with a typical length given by the
Compton wavelength λc = ℏ/mc, where m is the elec-
tron’s mass and c the speed of light. These virtual pro-
cesses then outline a region of space in which the electron
is not localised, and relativistic effects must be taken into
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account [37]. In the case of Bloch states, virtual inter-
band processes, known to be the source of quantum ge-
ometry [1], outline an region of space in which the Bloch
state cannot be localised. This analogy is used in Sec.
III to derive a generalized form of the Darwin term pre-
viously found in the case where Bloch fermions are two-
dimensional massive Dirac fermions [15].

II. SUPERFLUID WEIGHT INTERPRETATION

Supercurrents formally originate from the electrody-
namic response of the superconductor through the Lon-
don equation, which in the static limit is encapsulated
in the superfluid weight [12, 14, 38]. Beyond a previ-
ously known contribution, dubbed conventional, coming
from the momentum derivatives of the band dispersion
[39], it was shown that the superfluid weight contains a
contribution driven by the derivatives of the cell-periodic
Bloch states [12]. In particular, when the band of in-
terest is distanced enough in energy from others, the so-
called isolated band limit, this geometric contribution is
shown to be driven by the normal state quantum met-
ric. Since this contribution is independent of the mo-
mentum derivatives of the band dispersion, it persists in
flat-band systems and has since garnered significant in-
terest [13, 14, 19, 38, 40, 41].

In this section, we discuss the interpretation of the con-
ventional and geometric superfluid weight, and the asso-
ciated supercurrents, based on Sec. I. The key point in
our argument is that the Cooper pairs are not formed by
electrons, but by Bloch fermions that have the emergent
property of having a non-locality quantified by the NS
quantum geometry. As transport stems from a movement
of charge, the two contributions to the superfluid weight,
and the associated supercurrents, are then associated to
two independent movements of the Bloch fermions form-
ing the Cooper pairs.

A. Conventional supercurrent

For a superconducting gap ∆, the conventional contri-
bution to the superfluid weight of the n-th band reads
[38]

Dn
conv,µν =

∑
k

∆2

E3
n

∂µϵn∂νϵn, (12)

where En =
√
(ϵn − µ)2 +∆2 with µ the chemical poten-

tial, and for simplicity we consider the zero temperature
limit. The conventional superfluid weight, and the sub-
sequent conventional supercurrent, is thus driven by the
momentum derivatives of the band dispersion. Since the
time derivative of the average position ⟨r̂⟩n is given by
∂kϵn, the conventional supercurrent can then be inter-
preted as a result of center-of-mass motion of the Bloch
fermions, as pictured in Fig. 2a.

Figure 2. (a) Overall movement of the Bloch fermion, asso-
ciated to the conventional superfluid weight (b) Zero-point
motion of the Bloch fermion, associated to the geometric su-
perfluid weight.

In the case of flat band systems where ϵn(k) is a con-
stant, the average position of the Bloch fermion stays
still. If the wavepacket is taken to be local, then the
charge carriers of flat band systems are immobile. How-
ever as a non-trivial quantum geometry implies that they
are non-local, they only stay immobile as a whole.

B. Geometric supercurrent

In the isolated band limit, the geometric contribution
to the superfluid weight of the n-th band is given by

Dn
geom,µν = 2∆2

∑
k

1

En
gnµν , (13)

where once again for simplicity we consider the zero tem-
perature limit, and ∆ is the superconducting gap. In
Sec. I we saw that the quantum metric quantifies the
typical non-locality of Bloch fermions, which can be seen
as its zero-point motion when pictured over time. As
such, we interpret the geometric contribution to the su-
perfluid weight as stemming from the zero-point motions
of the Bloch fermions forming the Cooper pairs. For flat
band systems, although the Bloch fermions stay still as
a whole, their true position still jitters around the aver-
age position through quantum fluctuations, as pictured
in Fig. 2. The geometric supercurrent thus also appears
as an uncertainty-driven supercurrent.

It was argued that since the integrated quantum metric
is linked to the spread of Wannier functions in real space
[22, 23], the interaction distorts the overlap between
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Wannier functions and disrupts their destructive inter-
ference. In this interpretation, while the non-interacting
particles forming the Cooper pairs are localized, the
Cooper pairs (i.e. the interacting particles) can hop
throughout the lattice using the interaction-induced over-
lap of the Wannier functions [6, 14]. This interaction-
driven mechanism for the geometric supercurrent con-
trasts with our interpretation. Indeed, we have argued
that the geometric supercurrent stems from the zero-
point motion of the non-interacting (in terms of electron-
electron interaction) particles forming the Cooper pairs.
Therefore, the geometric supercurrent would solely stem
from a property of the normal state that is inherited by
the superconducting state. Our interpretation is in ac-
cordance with the recent discovery that the geometric
superfluid weight stems from the band-projected pair-
ing matrix, and is thus a normal state property influenc-
ing superconductivity [19]. The geometric contribution
to the superfluid weight was also recently interpreted in
terms of virtual interband transitions [42], which is co-
herent with our results since virtual interband transitions
produce non-locality and quantum geometry [1].

Lastly, we focus on the topological and geometric
bound on the geometric superfluid weight [12, 14]. In-
deed, using the results of Sec. I we can rederive the
geometric and topological bounds on the geometric su-
perfluid weight and formulate a physical interpretation.
Young’ inequality together with Eq. (11) imply that

1

2

(
gnµµ + gnνν

)
≥
√
gnµµg

n
νν ≥ 1

2
|Bnµν |, (14)

from which we have gnµµ + gnνν ≥ |Bnµν |. For two-
dimensional systems, this reduces to the inequality
Tr gn ≥ |Bnxy|. We thus find the geometric bound

Dn
geom,µµ +Dn

geom,νν ≥
∑
k

2∆2

En
|Bnµν |. (15)

For two-dimensional isotropic systems where Dn
µν =

Dnδµν , one finds the geometric bound derived in Ref.
[38]. In particular, if the n-th band is exactly flat then
using the triangular inequality, and moving the summa-
tion to an integration, we find

Dn
geom ≥ 2∆2

En

∣∣∣∣ ∫
BZ

Bnxy
d2k

(2π)2

∣∣∣∣ = 4π∆2

En
|Cn|, (16)

which is the known topological bound on the geometric
superfluid weight [12, 38].

The fact that the geometric superfluid weight is
bounded from below by the Berry curvature can be in-
terpreted as follows. As argued in Sec. I, Eq. (11) im-
plies that the Berry curvature sets a minimal are of non-
locality of the Bloch fermion. It therefore also sets a min-
imal amount of zero-point motion. As such, the Berry
curvature then ensures (or protects) a minimal amount
of geometric supercurrent.

III. EMERGENT DARWIN TERM

In this section we generalise the emergent Darwin term
previously found in Ref. [15], with the non-locality of the
Bloch fermion as its driver. Our derivation is based on
the phenomenological derivation presented in Ref. [37]
for the elementary electron in relativistic quantum me-
chanics. We consider the low-energy regime.

A. One-body problem

Consider a Bloch state |ψn(k)⟩ with the associated
band dispersion ϵn(k), subject to an external potential
V (r̂). The Hamiltonian of interest is given by

H = ϵn |ψn⟩ ⟨ψn|+ V (r̂), (17)

where the k-dependences are implicit. In the following,
for an operator Ô we denote ⟨Ô⟩n = ⟨ψn| Ô |ψn⟩. The
projected Hamiltonian then reads

⟨H⟩n = ϵn + ⟨ψn|V (r̂) |ψn⟩ . (18)

As the Bloch fermion is non-local, the position operator
fluctuates around its average ⟨r̂⟩n. To second order in
the position fluctuation δr̂µ = r̂µ − ⟨r̂µ⟩n, we obtain

⟨H⟩n = ϵn + V (⟨r̂⟩n) +
1

2
⟨δr̂µδr̂ν⟩n∂µ∂νV (⟨r̂⟩n), (19)

adopting the Einstein summation convention, and where
∂µ = ∂rµ . The first order term vanishes by linearity of the
average ⟨·⟩n. From Eq. (9), we have ⟨δr̂µδr̂ν⟩n = Qnµν .
Additionally, assuming that the potential V is twice con-
tinuously differentiable around ⟨r̂⟩n, the resulting sym-
metry of partial derivatives under permutation yields

⟨H⟩n = ϵn + V (⟨r̂⟩n) +
1

2
gnµν∂µ∂νV (⟨r̂⟩n). (20)

Going to the local approximation ⟨r̂⟩n 7→ r then finally
yields the effective Hamiltonian containing the emergent
Darwin term,

Heff,n = ϵn + V (r) +
1

2
gnµν∂µ∂νV (r) (21)

As mentioned in Sec. I, the physical origin of the
emergent Darwin term is analogous to that of elementary
electrons in relativistic quantum mechanics [37]. Bloch
fermions undergo virtual interband transitions over a typ-
ical length quantified by quantum geometry, which blurs
their position over an associated area. Specifically, the
emergent Darwin term is driven by the Bloch fermion’s
typical non-locality, and thus by the quantum metric.
Contrastingly, the previously found expression of the
Darwin term in terms of the Berry curvature is asso-
ciated to the minimal non-locality of the Bloch fermion
[15].
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For two-dimensional massive Dirac fermions at the K
point, whose Bloch Hamiltonian and quantum geometry
are summarised is appendix B, Eq. (21) becomes

Heff,n = ϵn + V (r) +
λ2c
4
∆V (r), (22)

with λc the reduced Compton wavelength, explicited in
appendix B, and ∆ the Laplacian operator. The Dar-
win term in this case differs by a factor of two from the
full expression obtained by means of a Foldy-Wouthuysen
transformation [15, 37]. This discrepancy is also present
in the case of elementary electrons in relativistic quan-
tum mechanics, and originates from the phenomenologi-
cal character of the derivation [37].

Omitting this discrepancy, the peculiarity of two-
dimensional massive Dirac fermions is that its quantum
geometry is ideal at the K point [7], as shown in ap-
pendix B. Indeed, at the K point we have Tr gn = |Bnxy|
and

√
det gn =

√
gnxxg

n
yy = |Bnxy|/2. In that sense,

the ideality of the quantum geometry implies that for
two-dimensional massive Dirac fermions, the typical non-
locality coincides with the minimal one, and as such is
optimal.

B. Two-body problem

For the two-body problem, we consider two Bloch
states |ψn(k1)⟩ and |ψm(k2)⟩ with the associated band
dispersions ϵn(k1) and ϵm(k2), respectively. The respec-
tive Hilbert spaces are H1 and H2, such that the full
Hilbert space is H = H1 ⊗ H2. In the following, for
convenience we denote operators acting on H of the
form O ⊗ 1 and 1 ⊗ O as O1 and O2, respectively. Let
Pn(k) = |ψn(k)⟩ ⟨ψn(k)| be the projector on the Bloch
state |ψn(k)⟩. The Bloch states are then subject to
a translation-invariant potential V, depending only on
ρ̂ = r̂1 − r̂2. The two-body Hamiltonian is then defined
as

H2 = ϵnPn1 + ϵmPm2 + V (ρ̂), (23)

where the k-dependences are implicit. Define the two-
body state |Ψ⟩ = |ψn(k1)⟩ ⊗ |ψm(k2)⟩. The projected
Hamiltonian ⟨H2⟩Ψ = ⟨Ψ|H2 |Ψ⟩ reads

⟨H2⟩Ψ = ϵn + ϵm + ⟨Ψ|V (ρ̂) |Ψ⟩ . (24)

The average value of ρ̂ is given by

⟨ρ̂⟩Ψ = ⟨ψn| ⊗ ⟨ψm| r̂1 ⊗ 1− 1⊗ r̂2 |ψn⟩ ⊗ |ψm⟩ (25a)
= ⟨r̂1⟩n − ⟨r̂2⟩m, (25b)

with ⟨r̂2⟩n = ⟨ψn| r̂1 |ψn⟩ and ⟨r̂2⟩m = ⟨ψm| r̂2 |ψm⟩. As
in the one-body problem, we expand the potential V to
second order in the fluctuations δρ̂µ = ρ̂µ − ⟨ρ̂µ⟩Ψ and
find

⟨H2⟩Ψ = ϵn + ϵm + V (⟨ρ̂⟩Ψ) +
1

2
⟨δρ̂µδρ̂ν⟩Ψ∂µ∂νV (⟨ρ̂⟩Ψ),

(26)

with ∂µ = ∂ρµ . It is shown in appendix C that

⟨δρ̂µδρ̂ν⟩Ψ = Qnµν +Qmµν . (27)

We again assume that the potential V is twice con-
tinuously differentiable around ⟨ρ̂⟩Ψ, so that we have
(Qnµν +Qmµν)∂µ∂ν = (gnµν + gmµν)∂µ∂ν . Going to the local
approximation ⟨ρ̂⟩Ψ 7→ ρ, the effective two-body Hamil-
tonian is given by

Heff,2 = ϵn(k1) + ϵm(k2) + V (ρ)

+
1

2
(gnµν(k1) + gmµν(k2))∂µ∂νV (ρ), (28)

where we have reintroduced the momentum dependence.
The Darwin term of the two-body problem is thus simply
given by the sum of the two one-body Darwin terms. We
emphasize that the results obtained here are for a gen-
eral potential, and therefore a priori concern any type of
electronic correlation. We may also point out an impor-
tant difference between the Darwin term considered for
relativistic elementary electrons and its emergent coun-
terpart for Bloch fermions. In the case of elementary
electrons, V is taken to be the Coulomb potential such
that, in three dimensions, its Laplacian is δ(r) and only
the s-wave state is affected. However, here V may be the
pairing potential, whose Laplacian is not given by the
Dirac delta function. Therefore other types of pairing
beyond s-wave may be affected, as shown in Ref. [15].

Focusing on the case of superconductivity, where V is
a pairing potential, we assume spin is a good quantum
number so that Bloch states are indexed as |ψnσ(k)⟩.
As a paradigmatic example we further consider pairing
between time-reversed partners, i.e. of opposite spin
and momenta, in the same band. Time-reversal sym-
metry implies that gn↓µν(−k) = gn↑µν(k) ≡ gnµν(k) and
ϵn↓(−k) = ϵn↑(k) ≡ ϵn(k), so that the effective two-body
Hamiltonian becomes

Heff,2 = 2ϵn(k) + V (ρ) + gnµν(k)∂µ∂νV (ρ) (29)

1. Cooper problem

Based on Eq. (29) we consider the Cooper problem of
Bloch fermions within the same conduction band, and
related by time-reversal, following Refs. [15, 43]. Fur-
thermore, for simplicity, we consider s-wave pairing. Let
Ψ(ρ) be the pair wavefunction, with energy E. The pair
wavefunction and the pairing potential have the following
Fourier decomposition,

Ψ(ρ) =
∑
k

pke
ik·ρ, V (ρ) =

∑
k

Vkk′ei(k−k′)·ρ. (30)

The eigenvalue problem with the effective Hamiltonian
defined in Eq. (29) then yields [15, 43]

(E − 2ϵn(k))pk =
∑
k′

V eff
kk′pk′ , (31)
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where the effective interaction is given by

V eff
kk′ =

[
1− gnµν(k)(kµ − k′µ)(kν − k′ν)

]
Vkk′ . (32)

The normal state quantum metric, and thus the non-
locality of the Bloch fermions forming the Cooper pairs,
seem to drive a screening of the pairing interaction
through the emergent Darwin term. The extreme limit
where the interaction is completely screened hints toward
the existence of a geometric Pauli limit. Note that the
link between the QGT and the generators of the crys-
talline momentum has been invoked to interpret the ef-
fect of quantum geometry on energy shifts in excitonic
spectra, but in terms of an emergent Lamb shift rather

than a Darwin term [9].
Following the original Cooper problem, we find the fol-

lowing self-consistency equation [43, 44]

∑
k′

⟨V eff
kk′⟩

E − 2ϵn(k)
= 1, (33)

where the average ⟨·⟩ is the weighted average with respect
to the coefficients pk,

⟨O⟩ =
∑
k′

O pk′∑
k′
pk′

. (34)

We then expand the averaged effective interaction and
get

⟨V eff
kk′⟩ =

[
1− gnµν(k)kµkν

]
⟨Vkk′⟩+ 2gnµν(k)kµ⟨k′νVkk′⟩ − gnµν(k)⟨k′µk′νVkk′⟩. (35)

The pairing potential Vkk′ in the case of BCS s-wave
superconductivity is given by Vkk′ = −V 1D(k)1D(k

′)
[45]. 1D is the indicator function of the set D, which
gathers all points of the Brillouin zone such that ϵF ≤
ϵn(k) ≤ ϵF +ℏωD, with the Fermi level ϵF and the Debye
energy ℏωD. Since the band dispersion for massive Dirac
fermions is isotropic, the set D forms an annulus around
the k = 0 point. The summation/integration of the odd
function k′ 7→ k′νVkk′ will, by symmetry around k′ =
0, therefore vanish. The linear terms ⟨k′νVkk′⟩ are thus
not relevant to the effective interaction, and using the
expression of Vkk′ gives

⟨V eff
kk′⟩ = −

[
1− gnµν(k)(kµkν + ⟨k′µk′ν⟩)

]
V, (36)

with k,k′ ∈ D. From Eq. (35) and the positive
semidefiniteness of the quantum metric [34], we can then
indeed expect the quantum metric to weaken the pairing
interaction and the subsequent properties of the super-
conducting phase. We show in appendix D that the av-
eraged effective interaction for two-dimensional massive
Dirac fermions is given by

⟨V eff
kk′⟩
−V

= 1− λ2ck
2 + λ2c⟨k′2⟩(1 + λ2ck

2/2)

4(1 + λ2ck
2)2

. (37)

Since we are typically in a regime where the Debye
energy is much smaller than the band gap and Fermi
energy, we may approximately consider that the pairing
only happens in the Fermi surface, such that λ2c⟨k′2⟩ =
λ2ck

2 = λ2ck
2
F with kF the Fermi momentum, and thus

⟨V eff
kk′⟩ = −

(
1− λ2ck

2
F (4 + λ2ck

2
F )

8(1 + λ2ck
2
F )

2

)
V ≡ −Veff (38)

The quantum metric thus screens the pairing interac-
tion, as a function of λckF . The behavior of Veff as a

function of λckF may be physically interpreted by us-
ing the fact that λc is the length associated to the non-
locality of massive Dirac fermions, while

√
2k−1
F is their

mean separation length. In the low-doping regime where
λckF ≪ 1, the non-locality of the massive Dirac fermions
happens at a much smaller length than their separation.
The non-locality is thus effectively weak, and the quan-
tum metric-driven screening is also expected to be weak.
Indeed, in this regime we find Veff ≃ (1 − λ2ck

2
F /2)V . In

the intermediate regime where λckF ∼ 1, the screening
can be shown to be maximal at λckF =

√
2, i.e. exactly

when the non-locality happens on the same scale as the
interparticle separation. In this case, the effective inter-
action is approximately 17% lower than its bare value.
Finally, in the high-doping regime where λckF ≫ 1 and
the non-locality is much stronger than the interparti-
cle separation, the physical interpretation is less clear.
Nonetheless, one may argue that in this regime the Fermi
level is much higher than the band gap such that the
Cooper pairing happens on an energy scale far from the
valence band. The quantum geometry, and the subse-
quent screening, would therefore be weak and ultimately
vanish. However we find Veff = (7/8−1/(4λ2ck

2
F ))V , such

that the screening persists even in the λckF → ∞ limit.
This counterintuitive fact may be due to the phenomeno-
logical character of the derivation we have used, as seen
in Sec. III A.

The binding energy of the Cooper pair, given by EB =
−(E−2ϵF ), is then found by solving Eq. (33) in the same
manner as conventional BCS theory. This yields

EB = 2ℏωDe−2/λeff , (39)

with λeff = ρ(ϵF )Veff the effective BCS coupling constant,
and ρ(ϵF ) the density of states at the Fermi level. The
expression of the binding energy only differs from its con-
ventional BCS expression by the change from the bare
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BCS coupling constant λ = ρ(ϵF )V to the effective one.
More generally one can define an effective BCS Hamilto-
nian using Eq. (32), as done in Ref. [15]. Studying the
mean-field theory of the effective BCS Hamiltonian with
the same approximations we made to obtain Eq. (38)
also results in the same observation. The critical tem-
perature and superconducting gap then differ from their
conventional BCS expression by their dependence on the
effective coupling constant. Since the effective coupling
constant has an additional dependence on the Fermi mo-
mentum, the deviation of the critical temperature from
the original BCS value will also depend on kF . This fact
could be leveraged to experimentally probe the effect of
the Darwin term, by doping (e.g. via a gate voltage) a
superconductor.

CONCLUSION

In this work, we have investigated aspects of the rela-
tion between the quantum geometry of the normal state
and superconductivity. We started by relating band the-
ory to multiparameter quantum estimation theory. The
definition of the Bloch Hamiltonian then appears as a
parametrization process, and we then showed that the
quantum geometric tensor can be written as the co-
variance matrix in the Bloch state of dressed position
operators. In the low-energy limit, these operators re-
duce to the true position operator, thereby establishing
a momentum-resolved relation between quantum geom-
etry and its quantum fluctuations. The quantum met-
ric then quantifies the typical non-locality of the Bloch
fermion while the Berry curvature quantifies its minimal
non-locality. This non-locality is a consequence of the
emergent character of the Bloch fermion.

Upon these results, we then investigated the interpre-
tation of the superfluid weight. The fundamental idea
is that Cooper pairing happens between the charge car-
riers of the normal state, which are the Bloch fermions.
On the one hand, the center-of-mass motion of the Bloch
fermions drives the conventional supercurrent. On the
other hand, the non-locality and zero-point motion of the
Bloch fermions drives the geometric supercurrent, which
is independent of the center-of-mass motion. Therefore
even though the Bloch fermions are immobile as a whole
in flat band systems, their non-locality (and therefore
emergence) allows them to keep moving in a quantum me-
chanical sense. We thus argue that the geometric super-
current is a property of the superconducting phase that
is inherited from the normal state. We then rederived
and interpreted the geometric and topological bounds on

the geometric superfluid weight, from the fact that the
Berry curvature (and Chern number) protects a minimal
amount of zero-point motion.

Finally, in analogy to elementary electrons in relativis-
tic quantum mechanics, we derived the emergent Darwin
term associated to the non-locality of Bloch fermions,
when the latter is subject to an external potential. By in-
vestigating a generic one-body problem, we showed that
this Darwin term is driven by the quantum metric. We
then derived the form of the Darwin term in a generic
two-body problem, and specified it for a pairing poten-
tial between time-reversed partners. We then considered
the associated Cooper problem, and derived the form of
the effective pairing potential, where the NS quantum
metric is anticipated to screen the pairing interaction. In
the example of two-dimensional massive Dirac fermions
the pairing interaction is indeed screened. This screening
is strongest when the non-locality of the massive Dirac
fermions happens on the same scale as their typical sep-
aration. The fundamental properties of the supercon-
ducting phase, such as the binding energy, critical tem-
perature and superconducting gap, then differ from their
conventional BCS value by the replacement of the BCS
coupling constant by an effective one. The dependence
of these results on the Fermi momentum could be lever-
aged to experimentally probe the screening of the pairing
interaction from the emergent Darwin term.

The non-locality of the Bloch fermions, and their emer-
gence, thus appears to be central in understanding the
relation between the NS quantum geometry and super-
conductivity. It is the driver of an ambivalent relation-
ship which can on one side drive a supercurrent but on
the other side screen the associated interaction. While we
have discussed the case of superconductivity, other corre-
lated phases such as charge density waves could similarly
be affected.

Lastly, the non-trivial relationship between the NS
quantum geometry and superconductivity highlights the
complexity of topological superconductivity and the com-
posite character of the Cooper pairs [19].
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Appendix A: Derivation of Eqs. (7,8)

From |un(k)⟩ = U(k) |ψn(k)⟩ with U(k) = e−ik·r̂, the
derivative of the cell-periodic Bloch state reads

|∂µun⟩ = ∂µU |ψn⟩+ U |∂µψn⟩ . (A1)

Plugging the latter in the QGT yields
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Qnµν = ⟨∂µun|
(
1− |un⟩ ⟨un|

)
|∂νun⟩ =

(
⟨ψn| ∂µU† + ⟨∂µψn|U†)(

1− U |ψn⟩ ⟨ψn|U†)(∂νU |ψn⟩+ U |∂νψn⟩
)

(A2a)

=
(
⟨ψn| ∂µU†U + ⟨∂µψn|

)(
1− |ψn⟩ ⟨ψn|

)(
U†∂νU |ψn⟩+ |∂νψn⟩

)
(A2b)

= ⟨ψn| ∂µU†U
(
1− |ψn⟩ ⟨ψn|

)
U†∂νU |ψn⟩+

∑
m ̸=n

(
⟨ψn| ∂µU†U |ψm⟩ ⟨ψm|∂νψn⟩+ ⟨∂µψn|ψm⟩ ⟨ψm|U†∂νU |ψn⟩

+ ⟨∂µψn|ψm⟩ ⟨ψm|∂νψn⟩
)
. (A2c)

Since the Bloch states |ψn(k)⟩ are the eigenstates of the
k-independent Hamiltonian H, they form an orthonor-
mal basis by the spectral theorem [1]. Using this, for
m ̸= n we have

⟨ψm(k)|∂µψn(k)⟩ = lim
h→0

1

h

[
⟨ψm(k)|ψn(k + heµ)⟩

− ⟨ψm(k)| |ψn(k)⟩] = 0. (A3)

From (∂µU
†)U = −U†∂µU , the QGT then reads

Qnµν = −⟨ψn| ∂µU†U
(
1− |ψn⟩ ⟨ψn|

)
∂νU

†U |ψn⟩ (A4a)

= −Cov|ψn⟩
(
∂µU

†U, ∂νU
†U
)

(A4b)

= Cov|ψn⟩
(
− i∂µU

†U,−i∂νU†U
)

(A4c)

= Cov|ψn⟩
(
R̂µ, R̂ν

)
. (A4d)

The generators R̂µ are given by

R̂µ = −i∂µU†U = −i(∂µeik·r̂)e−ik·r̂. (A5)

An operator Â depending on a variable λ ∈ R obeys the
following identity [28, 46],

∂λe
Â =

∫ 1

0

esÂ∂λÂe
(1−s)Âds (A6a)

⇔ ∂λe
Âe−Â =

∫ 1

0

esÂ∂λÂe
−sÂds. (A6b)

For Â = ik · r̂ and λ = kµ, this yields

(∂µe
ik·r̂)e−ik·r̂ =

∫ 1

0

eisk·r̂∂µ(ik · r̂)e−isk·r̂ds (A7a)

= i

∫ 1

0

eisk·r̂ r̂µe
−isk·r̂ds. (A7b)

The generator R̂µ is then readily expressed as follows,

R̂µ =

∫ 1

0

eisk·r̂ r̂µe
−isk·r̂ds. (A8)

Using the identity eXY e−X = eadXY [47] and the linear-
ity of the adjoint representation, we further obtain

R̂µ =

∫ 1

0

eis adk·r̂ r̂µds =

(∫ 1

0

eis adk·r̂ds

)
r̂µ (A9a)

=

(
+∞∑
n=0

in adnk·r̂
n!

∫ 1

0

snds

)
r̂µ (A9b)

=

+∞∑
n=0

in

(n+ 1)!
adnk·r̂ r̂µ. (A9c)

Appendix B: 2d massive Dirac fermions

The low-energy Bloch Hamiltonian describing two-
dimensional massive Dirac fermions is given by [48]

H(k) = ℏvkxσx + ℏvkyσy +∆σz, (B1)

with σµ the Pauli matrices, v the Dirac velocity and
∆ the band gap. The band dispersions are ϵn =

n|∆|
√
1 + λ2ck

2, with n = ±1 and λc = ℏv/|∆| the re-
duced Compton wavelength. Quantum geometry is read-
ily computed by means of the Bloch vector bn = nh/|h|,
with H = h · σ [49],

gnµν =
1

2
∂µbn · ∂νbn, (B2a)

Bnµν = −1

2
bn · ∂µbn × ∂νbn. (B2b)

The Bloch vector is given by

bn =
1

ϵn

(
ℏvkx, ℏvky,∆

)
, (B3)

which directly yields

gnµν =
λ2c
4

(1 + λ2ck
2)δµν − λ2ckµkν

(1 + λ2ck
2)2

, (B4a)

Bnxy = −n sgn∆
2

λ2c
(1 + λ2ck

2)3/2
. (B4b)

At k = 0, i.e. at the K point, we have gnxy = 0 and
gnxx = gnyy = λ2c/4. Additionally, |Bnxy| = λ2c/2. At the K
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point we therefore have

Tr gn =
λ2c
2

= |Bnxy|, (B5a)√
det gn =

√
gnxxg

n
yy =

λ2c
4

=
1

2
|Bnxy|. (B5b)

Appendix C: Derivation of Eq. (27)

The fluctuation of ρ̂ is expressed as

δρ̂µ = ρ̂µ − ⟨ρ̂⟩µ = δr̂1µ − δr̂2µ, (C1)

with δr̂1µ = r̂1µ − ⟨r̂1µ⟩n and δr̂2µ = r̂2µ − ⟨r̂2µ⟩m The
second order fluctuations ⟨δρ̂µδρ̂ν⟩Ψ is expanded as fol-
lows,

⟨δρ̂µδρ̂ν⟩Ψ = ⟨δr̂1µδr̂1ν⟩Ψ − ⟨δr̂1µδr̂2ν⟩Ψ
− ⟨δr̂2µδr̂1ν⟩Ψ + ⟨δr̂2µδr̂2ν⟩Ψ. (C2)

Using the identity (A ⊗ B)(C ⊗ D) = AC ⊗ BD, the
cross-terms can be shown to vanish as follows

⟨δr̂1µδr̂2ν⟩Ψ = ⟨ψn| ⟨ψm|
(
r̂1µ ⊗ 1− ⟨r̂1µ⟩n

)(
1⊗ r̂2ν − ⟨r̂2ν⟩m

)
|ψn⟩ |ψm⟩ (C3a)

= ⟨ψn| ⟨ψm|
(
r̂1µ − ⟨r̂1µ⟩n

)
⊗
(
r̂2ν − ⟨r̂2ν⟩m

)
|ψn⟩ |ψm⟩ (C3b)

= ⟨r̂1µ − ⟨r̂1µ⟩n⟩n⟨r̂2ν − ⟨r̂2ν⟩m⟩m = 0, (C3c)

where for brevity we have denoted |ψn⟩ |ψm⟩ = |ψn⟩ ⊗
|ψm⟩. Physically, this means that since the Hilbert space
of interest is a tensor product of the Hilbert spaces of
the two Bloch fermions, the quantum fluctuations of
their respective position are uncorrelated and as such
⟨δr̂1µδr̂2ν⟩Ψ = ⟨δr̂1µ⟩Ψ⟨δr̂2ν⟩Ψ = 0. That way, the two
cross terms disappear and we have

⟨δρ̂1µδρ̂2ν⟩Ψ = ⟨δr̂1µδr̂1ν⟩Ψ + ⟨δr̂2µδr̂2ν⟩Ψ. (C4)

We further have

⟨δr̂1µδr̂1µ⟩Ψ = ⟨ψn| ⟨ψm| δr̂1µδr̂1ν ⊗ 1 |ψn⟩ |ψm⟩ (C5a)
= ⟨δr̂1µδr̂1ν⟩n = Qnµν . (C5b)

Similarly, ⟨δr̂2µδr̂2ν⟩Ψ = Qmµν . We thus finally obtain

⟨δρ̂µδρ̂ν⟩Ψ = Qnµν(k1) +Qmµν(k2), (C6)

where we have reintroduced the momentum dependences.

Appendix D: Calculation of ⟨V eff
kk′⟩ for 2d massive

Dirac fermions

From Eq. (B4), the elements of the quantum metric
for the conduction band n = +1 are given by

gnxx =
λ2c
4

1 + λ2ck
2
y

(1 + λ2ck
2)2

, gnyy =
λ2c
4

1 + λ2ck
2
x

(1 + λ2ck
2)2

, (D1)

and

gnxy = −λ
2
c

4

λ2ckxky

(1 + λ2ck
2)2

. (D2)

We therefore have

gnµνkµkν =
λ2c

4(1 + λ2ck
2)2

[
(1 + λ2ck

2
y)k

2
x + (1 + λ2ck

2
x)k

2
y

− 2λ2ck
2
xk

2
y

]
=

λ2ck
2

4(1 + λ2ck
2)2

. (D3)

For the quadratic average ⟨k′µk′ν⟩, the symmetry of the
set D can be invoked to show that ⟨k′xk′y⟩ vanishes. We
thus have

gnµν⟨k′µk′ν⟩ =
λ2c

4(1 + λ2ck
2)2

[
(1 + λ2ck

2
y)⟨k′x2⟩

+ (1 + λ2ck
2
x)⟨k′y2⟩

]
(D4a)

=
λ2c⟨k′2⟩+ λ4c(k

2
x⟨k′y2⟩+ k2y⟨k′x2⟩)

4(1 + λ2ck
2)2

. (D4b)

Supposing that the presence of quantum geometry
doesn’t introduce anisotropy in the Cooper pair’s wave-
function, for s-wave pairing the coefficients pk depend
only on the modulus of k. This isotropy means that
⟨k′x2⟩ = ⟨k′y2⟩ = ⟨k′2⟩/2, such that

gnµν⟨k′µk′ν⟩ =
λ2c⟨k′2⟩+ λ4ck

2⟨k′2⟩/2
4(1 + λ2ck

2)2
(D5a)

=
λ2c⟨k′2⟩(1 + λ2ck

2/2)

4(1 + λ2ck
2)2

. (D5b)

We thus obtain

⟨V eff
kk′⟩
−V

= 1− λ2ck
2 + λ2c⟨k′2⟩(1 + λ2ck

2/2)

4(1 + λ2ck
2)2

. (D6)


