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Abstract

Missingness in variables that define study eligibility criteria is a seldom addressed
challenge in electronic health record (EHR)-based settings. It is typically the case
that patients with incomplete eligibility information are excluded from analysis with-
out consideration of (implicit) assumptions that are being made, leaving study con-
clusions subject to potential selection bias. In an effort to ascertain eligibility for
more patients, researchers may look back further in time prior to study baseline,
and in using outdated values of eligibility-defining covariates may inappropriately
be including individuals who, unbeknownst to the researcher, fail to meet eligibil-
ity at baseline. To the best of our knowledge, however, very little work has been
done to mitigate these concerns. We propose a robust and efficient estimator of the
causal average treatment effect on the treated, defined in the study eligible popu-
lation, in cohort studies where eligibility-defining covariates are missing at random.
The approach facilitates the use of flexible machine-learning strategies for component
nuisance functions while maintaining appropriate convergence rates for valid asymp-
totic inference. EHR data from Kaiser Permanente are used as motivation as well
as a basis for extensive simulations that verify robustness properties under various
degrees of model misspecification. The data are also used to demonstrate the use of
the method to analyze differences between two common bariatric surgical interven-
tions for long-term weight and glycemic outcomes among a cohort of severely obese
patients with type II diabetes mellitus.

∗ denotes co-last author (AWL and SH). This work was supported by NIH Grants R01 DK128150-01
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1 Introduction

Observational studies leveraging electronic health record (EHR) databases are seen as im-

portant alternatives to randomized clinical trials, particularly when trials may be infeasible

due to financial, ethical, or logistical constraints (1–3). In contrast to data collected in ran-

domized trials, however, EHR databases exist to record clinical activity and assist with

patient billing, and thus are not collected with any specific research purpose in mind. As

such, information that might be routinely collected in a trial or prospective observational

study may be unavailable or outdated for some patients in EHR-based studies (4).

Well designed trials and observational studies require that subjects meet a set of study

eligibility criteria (inclusion/exclusion criteria) to ensure analysis occurs on the intended

population of interest. While measurements necessary to determine inclusion in a research

study with primary data collection can be definitively ascertained through appropriate

screening prior to enrollment (5), missingness in variables that define study eligibility cri-

teria poses a serious challenge in EHR-based studies. In practice, subjects with incomplete

eligibility data are almost always excluded from analysis (6, 7), although this can result

in selection bias if subjects with observed eligibility data differ systematically from those

whose eligibility status can not be determined (8, 9).

Superficially, missing eligibility criteria may seem like a standard missing data problem.

Unlike other missing data problems, however, the concessions analysts make when faced

with missing eligibility, such as looking back further in time to ascertain eligibility, may

inadvertently include individuals who, unbeknownst to the analyst, are ineligible at study

baseline. Our work is motivated by the use of EHR data to understand long-term outcomes
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following bariatric surgery (10–15) among patients with type II diabetes mellitus (T2DM).

As such, it would be inappropriate to include patients with diabetes in the study.

To date, very few papers have considered the problem of selection bias due to missing

eligibility data. In early work, Pan and Schaubel (16) introduced an approach similar

to inverse probability weighting (IPW) for proportional hazards regression, and Heng et

al. (17) proposed a sensitivity analysis where subjects with missing eligibility criteria were

treated as eligible and later ineligible in two separate analyses, though neither paper had an

explicit focus on causal contrasts. More recently, Tompsett et al. (8) and Austin et al. (18)

proposed the use of multiple imputation for a single eligibility defining covariate, with the

latter focused on settings where that eligibility covariate was also the primary exposure of

interest. Benz et al. (9) introduced inverse probability of eligibility ascertainment weights

within a larger IPW framework for common challenges in EHR-based studies.

A notable limitation of the existing literature on missing eligibility criteria is the need

to specify all relevant models correctly (e.g., imputation, outcome, treatment, missingness

probability) to ensure consistent estimation of causal contrasts (9, 18). On the other

hand, estimating component models, or “nuisance functions”, in a flexible/nonparametric

manner via machine learning methods often yields slow rates of convergence, and thus

invalid statistical inference (19, 20). Additionally, standard machine learning models often

optimize loss functions that are not tied to specific causal contrasts, such as mean squared

prediction error, and thus may result in bias in causal quantities utilizing those predictions

(19, 21, 22). Tools from semiparametric theory can overcome some of these challenges,

leading to estimators that are robust to various degrees of model misspecification, converge

to desirable asymptotic distributions which facilitate valid statistical inference, and attain

nonparametric efficiency bounds (19, 20, 22–27).
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In this paper, we consider the setting where interest lies in using EHR data to estimate

the causal average treatment effect of a point exposure on a given outcome among patients

receiving a particular treatment in a targeted population of interest, articulated through

a study’s eligibility criteria. This is simply the causal average treatment effect on the

treated (ATT) among study eligible subjects—as will be made clear, explicit conditioning

on eligibility status makes apparent how restricting analysis to subjects with complete

information on eligibility defining covariates can introduce selection bias. Using a novel

factorization of the observed data likelihood, we identify this causal estimand and develop

various estimators based on semiparametric theory that are robust and asymptotically

normal, including one which attains a semiparametric efficiency bound.

The remainder of the paper is organized as follows. Section 2 provides background on

bariatric surgery and elaborates on comparisons between two procedures among a popula-

tion with obesity and T2DM. A detailed exploratory data analysis that motivates careful

consideration of missing eligibility criteria is presented. Section 3 formalizes notation, as-

sumptions, and the causal estimand of interest. Section 4 presents a new efficient influence

function-based estimator and details its properties, while Section 5 explores finite sample

properties of this estimator and others over numerous flexible estimation strategies in a

simulation study tied closely to the motivating application. The use of this method in the

motivating bariatric surgery study is presented in Section 6, and finally, Section 7 concludes

with discussion. Detailed proofs are provided in the Supplementary Material.
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2 Motivating Application

2.1 Bariatric Surgery for Patients with Obesity and T2DM

Bariatric surgery is an intervention to mitigate obesity and related comorbidities, with typ-

ical candidates having a body mass index (BMI) exceeding 35 kg/m2 (28). The primary

bariatric surgery procedures are Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy

(SG), with SG having surpassed RYGB in frequency in the past 15 years (10, 29, 30). SG

is a simpler, less invasive procedure that is offered by more surgeons, and is associated with

fewer short-term post-surgical complications (31). On the other hand, patients undergoing

SG may experience greater long-term re-operation risk (32) and less substantial long-term

weight loss (11). Though comparisons between RYGB and SG have been published, evi-

dence regarding their comparative effectiveness among patients with T2DM, particularly

for long-term outcomes is not considered definitive (7, 33–36). For example, the American

Diabetes Association recommends consideration of bariatric surgery for T2DM patients

with sufficiently large BMI as a form of weight and glycemic control, but doesn’t make

recommendations about whether SG or RYGB should be preferred (37).

Two important clinical outcomes of interest for T2DM patients following bariatric

surgery are relative weight change and remission of diabetes. These outcomes were previ-

ously examined in an EHR-based study by McTigue et al. (7), who found advantages to

RYGB over SG on both outcomes among T2DM patients between 20-79 years of age with

BMI ≥ . However, their analysis excluded at least 10% of surgical patients due to missing

eligibility criteria, the implications of which were not explored.

With this backdrop, we investigate relative weight change and remission of diabetes at

3 years post surgery for a population of 14,809 patients with obesity and T2DM undergoing
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RYGB or SG at one of three Kaiser Permanente (KP) sites (KP Washington, KP Northern

California, KP Southern California) between 2008-2011. Given that the rise in popularity of

SG has outpaced the rate at which long-term evidence has been generated for populations

with diabetes, we are particularly interested in possible long-term benefits that T2DM

patients who underwent RYGB would have forgone had they instead undergone SG.

Our study utilizes EHR data from DURABLE, an NIH-funded study examining long-

term outcomes of bariatric surgery across KP sites (11–13, 15, 38). Following prior work

(12, 15, 38), study eligibility criteria require that patients have T2DM, a BMI ≥ 35 kg/m2,

and age between 19-79 years. When studying T2DM remission, we additionally require

that patients have a DiaRem score of at least 3 points. DiaRem is a metric computed from

pre-operative patient characteristics including age, hemoglobin A1c % (A1c), and medica-

tion usage, and relates to the likelihood of experiencing T2DM remission following bariatric

surgery, with lower scores indicating greater chance of remission (39). This additional eli-

gibility restriction places particular emphasis on patients less likely to experience remission

(e.g., with greater disease severity), a population where differences between RYGB and SG

on T2DM remission rates may be more substantial (7).

2.2 Ascertainment of Eligibility

Following previous DURABLE studies (12), we define T2DM as a measurement of A1c

≥ 6.5% (fasting blood glucose ≥ 126 mg/dl), or via prescription for insulin or oral hypo-

glycemic medication. Metformin as the sole indicator of T2DM (e.g., subject 5 in Figure

1) is insufficient to establish diabetic status, and additionally requires an ICD-9 code of

250.x. Remission of T2DM is defined following Coleman et al. (12), as a measurement of

A1c < 6.5% following a period of at least 90 days without T2DM medication, or fasting
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Insulin Sulfonylureas Metformin Other

Figure 1: Hemoglobin A1c % (dark red dots) and diabetic medication usage for six patients undergoing
bariatric surgery, information that establishes T2DM status, and thus study eligibility in the 24 months
prior to surgery. A1c measurements are shown in relation to a cutoff of 6.5%, the typical clinical cutoff for
T2DM. For medications, points indicate the start of a prescription while shaded bars indicate duration.

blood glucose < 126 mg/dl following a period of at least 7 days without T2DM medication.

In practice however, determining which patients have T2DM at the time of surgery

using EHR data is a non-trivial task. To illustrate this complexity, Figure 1 depicts relevant

diabetes information for six surgical patients. Some patients have frequent observations of

A1c (e.g., subjects 1 and 2) making it straightforward to classify their diabetes status, with

T2DM confirmed by active insulin prescription at the time of surgery in the case of subject

1. In contrast, other subjects have little to no information on A1c prior to surgery (e.g.,

3-6). Despite having no pre-surgical A1c measure, subject 3 had an active prescription at

the time of surgery of an oral hypogylcemic medication, allowing positive T2DM status to

be established. Subjects 4 and 5 have no measures of A1c available prior to surgery, but

unlike subject 3, had no active prescriptions at the time of surgery. Finally, subject 6 has

multiple A1c measures exceeding 6.5% but all measures are more than 12 months outdated
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by the time of surgery. Altogether, there is substantial heterogeneity in the patterns and

frequency of observed information in the EHR making ascertainment of T2DM, and thus

study eligibility, easy for some patients and difficult or impossible for others.

In determining how far to look back in time to ascertain study eligibility, different papers

have used lookback windows of varying lengths (7, 9, 12, 15, 38), without consideration

as to how such decisions might influence study conclusions. To better explore possible

tradeoffs associated with this decision, we conduct analysis over a grid of 40 combinations

of lookback windows for BMI (1, 3, 6, 12 months) and T2DM ascertainment via lab values

(1, 3, 6, 12, 24 months) and medications (active prescription at the date of surgery, or

active within 12 months prior to surgery).

Observable information about the joint distribution of indicators for eligibility ascer-

tainment (R) and status (E) is shown in Figure 2. Panel A shows the number of surgical

patients for each possible observable pair (R,E) across combinations of lookback windows.

In the shortest of lookback window (1 month for BMI and diabetes labs; active T2DM

prescription at time of surgery), eligibility status is ascertainable for just 4,912 of 14,809

patients (33%) and missing for 9,897 patients (67%). By contrast, eligibility status is

deemed missing for just 361 patients (3.2%) when using the longest lookback windows,

which is likely the impetus for certain works adopting longer lookback windows.

For each patient, we can compute in how many of the 40 combinations they are as-

certained to be eligible (n11) and ineligible (n10). Panel B of Figure 2 shows the number

of patients with each unique combination of (n11, n10). When n10 = 0 or n11 = 0, sub-

jects are only ever ascertained to be eligible or ineligible, respectively, under combinations

where their eligibility status is not missing. Of note, for many subjects both n11 > 0 and

n10 > 0. That is, several subjects are ascertained to be ineligible under certain strategies
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Figure 2: A) Joint distribution of eligibility ascertainment (R) and status (E) across 40 different possible
ways to operationalize the study eligibility criteria. B) Distribution of (n11, n10) where nre denotes the
number of ways of operationalizing the study eligibility criteria that a subject has R = r, E = e. A similar
figure for the remission outcome is available in the Supplementary Materials.

for applying inclusion criteria but eligible in others (rather than only eligible/missing or

ineligible/missing). As such, simply applying the most relaxed operationalization of the

eligibility criteria may inadequately reflect certain patients’ eligibility status at surgery.

2.3 Unique Challenges of Missing Eligibility Data

Figures 1 and 2 serve to highlight that missing eligibility criteria is a distinct phenomenon

from other forms of missing data for a few reasons. To begin with, complete case analyses

that discard patients with missing outcomes or confounders do not risk inappropriately

including patients in analysis. As is apparent from Figure 2, minimizing exclusions due

to missing eligibility by looking back further in time may inadvertently include patients

in the study population who are not study eligible at the time of surgery (i.e., do not

have T2DM). On the other hand, looking back only a short time before surgery to collect
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the most accurate information yields rates of missingness as substantial as 70%. While

confounders missing with this frequency could plausibly be dropped from analysis and

treated as unmeasured, changing the eligibility criteria inherently changes the underlying

analysis population and correspondingly, the scientific question of interest. Furthermore,

when eligibility is missing with this frequency and longer lookbacks are employed, it can

be tricky to determine the intended population to which study conclusions are applicable.

3 Problem Set-up

3.1 Notation

Let A ∈ {0, 1} denote a binary treatment (e.g., RYGB vs. SG), Y ∈ R denote an outcome

of interest (e.g., relative weight change, or remission of diabetes) and L ∈ Rk denote a set of

baseline covariates that are (assumed) fully sufficient for three purposes: (1) to define study

eligibility, (2) control for confounding, and (3) predict missingness in eligibility status. We

denote eligibility defining covariates by Le and let E = g(Le, A) denote a binary indicator

of eligibility status, where g(·) is some fixed and known eligibility rule. In the context of our

motivating application, Le consists of BMI, age, A1c, DiaRem score (remission outcome

only) and usage of insulin or oral hypogylcemic medications, and the eligibility defining

rule is BMI ≥ 35 kg/m2, 19 ≤ age ≤ 79, and T2DM.

It is frequently the case that components of Le are missing which precludes ascertain-

ment of eligibility status E (Figure 1). We denote the subset of eligibility defining covariates

with any missingness by Le
m ∈ Rq, and let L∗ = L \Le

m. For example, age is an eligibility

defining covariate but is never missing in our application, and thus is in L∗, while remaining

eligibility defining covariates are missing to various degrees and therefore are part of Le
m.
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Remaining covariates L∗ include KP site, race, sex, age, estimated glomerular filtration

rate (eGFR), self-reported smoking status, hypertension, dyslipidemia, and calender year

of surgery. Finally, we let R be a binary indicator for each patient for whether or not

the set of covariates Le
m is completely observed, and consider a coarsened version of the

observed data, with data units given by O = (L∗, A, Y,R,RLe
m). Some commentary on

this possible discarding of information is offered in the discussion.

We observe a sample (O1, . . . , On) of n independent and identically distributed observa-

tions from some underlying and unknown data distribution P , with corresponding empirical

distribution Pn. For any P -integrable function f we define Pf = EP [f ] =
∫
f dP to denote

the expectation of f under P , and analogously define Pnf = 1
n

∑n
i=1 f(Oi) to express the

sample mean of f on data units (O1, ..., On). Lastly, we let Y (a) denote counterfactual

outcomes, that is the outcome that would have been observed under treatment A = a (40).

To simplify the exposition, we assume that there is no missing data outside of Le
m (partic-

ularly in A, Y or L∗). In the discussion, we offer some considerations for situations where

missing data also poses a challenge in outcomes and/or non-eligibility defining covariates.

3.2 Average Treatment Effect on the Treated and Study Eligible

The causal estimand of interest is the average treatment effect on treated individuals meet-

ing inclusion criteria for the study eligible population (ATTE), which we define as

θeligATT = E[Y (1)− Y (0) | A = 1, E = 1] (1)

Note, this is the estimand of interest for researchers targeting the ATT after applying care-

fully constructed inclusion/exclusion criteria. Explicitly conditioning on eligibility status

E = 1 in Equation (1) makes clear how the target population (inadvertently) can change
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when those missing eligibility are discarded. For example, when researchers discard subjects

without ascertainable eligibility status (R = 0), they are implicitly targeting the causal pa-

rameter θCC
ATT = E[Y (1) − Y (0) | A = 1, E = 1, R = 1]. In cases where θCC

ATT ̸= θeligATT, that

is, where the treatment effect among ascertainably eligible treated subjects differs from the

treatment effect among all treated subjects meeting the study eligibility criteria, we say

there is selection bias with respect to the ATTE.

3.3 Assumptions

We articulate two sets of assumptions to simultaneously address the potential for both

selection bias and confounding. The first set assumptions are standard causal inference

assumptions and need only hold among the study eligible population. This is particularly

salient for other applications comparing treatment to no-treatment, where study eligibility

is often designed to exclude patients who are not realistic candidates for treatment.

A1 (Consistency) Y (A) = Y when E = 1, almost surely

A2 (Positivity) ∃ ϵ > 0 such that ϵ ≤ P (A = 1 | L∗,Le
m, E = 1) ≤ 1− ϵ, almost surely

A3 (No Unmeasured Confounding) Y (a) ⊥⊥ A | L∗,Le
m, E = 1 for a ∈ {0, 1}

In the absence of missing eligibility, Assumptions 1-3 are sufficient to identify θeligATT, for

example via the g-formula, EP [Y | A = 1, E = 1]−EP [EP [Y | A = 0,L∗,Le
m, E = 1] | A = 1]

(40, 41). Given that Le
m, and thus E, may be missing, additional assumptions are required.

A4 (Eligibility Missing At Random) R ⊥⊥ (Y,Le
m) | L∗, A

A5 (Complete Case Positivity) ∃ ϵ > 0 such that ϵ ≤ P (R = 1 | L∗, A), almost surely

12



Assumption 4 is the core missing data assumption which states that whether or not

a patient’s eligibility status is observed is jointly independent of outcome and eligibility

defining covariates, conditional on all other completely observed information. While the

plausibility of various assumptions is application specific, Assumption 4 is most likely to be

violated when there are either unobserved drivers of missingness or when the actual values

of Le
m influence how closely a patient is followed by their doctor.

Bariatric surgery is commonly preceded by a 3-6 month period in which a patient has

greater levels of interaction with the health care system in an effort to monitor and encour-

age possible preoperative lifestyle changes, including weight loss and smoking cessation (42).

Thus, it seems plausible that whether or not measures of BMI and A1c or medication usage

are collected during this preoperative period would depend only on information recorded

in the EHR. Furthermore postoperative outcomes 3 years after surgery seem unlikely to be

related to the availability of BMI/T2DM information at the time of surgery except through

patient demographics, or factors widely available in pre-surgical workup, such as diagnoses

of obesity-related comorbidities like hypertension and dyslipidemia, smoking status, and

measures of kidney function like serum creatinine and eGFR.

Alternative MAR assumptions and analysis strategies they might motivate, including

the “removal” of Y from Assumption 4, are examined in the discussion. Though Assump-

tions 1-5 may be reasonably satisfied in our motivating study of bariatric surgery, the broad

class of observational studies satisfying these assumptions generally only requires that there

are no unmeasured confounders of treatment selection or drivers of missingness.

In theory, any given covariate could be relevant for only a single of the three stated

purposes of L. As articulated in Assumptions 2-3, all of L is taken to be necessary insofar

as the control of confounding is concerned. We feel this is appropriate as there exists
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ample evidence to suggest each covariate in Le
m and L∗ is a confounder for T2DM related

outcomes following bariatric surgery (7, 12, 15, 38). Furthermore, in EHR-based studies,

the exact set of covariates which predict missingness is unlikely to be fully understood by

researchers, and thus it would be reasonable for analysts to utilize all available information

in L∗ when trying to account for missingness in Le.

It is plausible that in other applications, a more refined partitioning of L which further

distinguishes confounders from covariates related only to eligibility status or ascertainment

could yield slightly more parsimonious versions of Assumptions 2-5. In the Supplementary

Materials, we offer some exploration of an alternative strategy to further partition L, and

comment on additionally complexities introduced.

One example of a covariate serving only a single of L’s stated purposes occurs when

study eligibility restricts to a single stratum of a categorical eligibility defining covariate

(e.g., positive T2DM). In such cases, that covariate would no longer be a confounder

among the study eligible population. Though we choose not to distinguish this further

partitioning of Le
m for ease of notation in subsequent sections, analysts might consider

dropping covariates of this form when modeling component nuisance functions outlined in

Table 1.

3.4 Factorization of the Observed Data Likelihood

In the presence of missing data, MAR assumptions allow for decompositions of the observed

data likelihood that facilitate identification and estimation strategies for causal contrasts of

interest (26). In the present context, Assumptions 4-5 motivate the following factorization:

p(O) = p(L∗)p(A | L∗)p(R | L∗, A)p(Le
m | L∗, A,R = 1)Rp(Y | L∗,Le

m, A,R = 1) (2)

14



Each component of Equation 2 is tied closely to nuisance functions which will play

a critical role through the remainder of the work. Namely, π(L∗) = P (A = 1 | L∗) is

a regression for treatment probability conditional on non-eligibility defining covariates,

and can be thought of as partial propensity score; η(L∗, A) = P (R = 1 | L∗, A) is

regression for being a complete case, which depends only on fully observed quantities;

λa(L
e
m;L

∗) = p(Le
m | L∗, A = a,R = 1) denotes the conditional density of partially ob-

served eligibility defining covariates given treatment and fully observed covariates, among

patients with complete information; and µa(L
∗,Le

m) = EP [Y | A = a,L∗,Le
m, R = 1] =

∫
y dP (y | L∗,Le

m, A = a,R = 1) is the mean outcome conditional on all other information,

among complete cases. Table 1 provides a summary of how these nuisance functions, as

well as others introduced below, are used in various estimation strategies for the ATTE.

While alternative MAR assumptions could motivate alternative ways of factorizing the

observed data likelihood, the factorization in Equation 2 has several appealing proper-

ties. Most important is that no component of the likelihood factorization conditions on

a covariate stratum with incomplete information. As such, each component corresponds

to a nuisance function which is readily estimable from the observed data. Moreover, by

construction, components of the factorization are variationally independent, meaning any

valid choice of conditional models for each of π, η, λ and µ can be used to construct a valid

joint density (26, 43). Critically, this allows analysts the flexibility to choose any mod-

eling strategy for each component nuisance functions separately, including both standard

parametric models as well as modern machine learning techniques.

3.5 Identification of the ATTE

Under Assumptions 1-5 identification θeligATT is possible, as summarized in Theorem 1.
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Function Definition Section Introduced Mechanism(s) θ̂CC θ̂IWOR θ̂IF θ̂EIF

π(L∗) P (A = 1 | L∗) 3.4 Treatment

η(L∗, A) P (R = 1 | L∗, A) 3.4 Ascertainment ✓ ✓ ✓
λa(Le

m;L∗) P (Le
m | L∗, A = a,R = 1) 3.4 Imputation

µa(L∗,Le
m) E[Y | L∗,Le

m, A = a,R = 1] 3.4 Outcome ✓ ✓ ✓ ✓
u(L∗,Le

m) P (A = 1 | L∗,Le
m, R = 1) 4.1 Treatment ✓ ✓

εa(L∗, Y ) P (E = 1 | L∗, Y, A = a,R = 1) 4.1 Imputation ✓
ξ(L∗, Y ) E

[
Eµ0(L∗,Le

m) | L∗, Y, A = 1, R = 1] 4.1 Imputation/Outcome ✓

γ(L∗, Y ) E
[
E

u(L∗,Le
m)

1−u(L∗,Le
m)

∣∣ L∗, Y, A = 0, R = 1
]

4.1 Imputation/Treatment ✓

χ(L∗, Y ) E
[
E

u(L∗,Le
m)

1−u(L∗,Le
m)

µ0(L∗,Le
m)

∣∣ L∗, Y, A = 0, R = 1
]

4.1 Imputation/Treatment/Outcome ✓
ν(L∗) E

[
E
(
Y − µ0(L∗,Le

m)
) ∣∣ L∗, A = 1, R = 1

]
4.4 Imputation/Outcome ✓

ωa(L∗) P (E = 1 | L∗, A = a,R = 1) 4.4 Imputation ✓

Table 1: Definition of nuisance functions and their uses in various estimators of the ATTE

Theorem 1 Under Assumptions 1-5, θeligATT is identified by the functional θ(P ) = β(P )
α(P )

where β(P ) = EP

[
ARE

η(L∗,1)

(
Y − µ0(L

∗,Le
m)

)]
and α(P ) = EP

[
ARE

η(L∗,1)

]
.

Briefly, the result is obtained by showing that under Assumptions 4-5, θ(P ) recovers the

standard g-formula for the ATT under causal Assumptions 1-3 (44, 45).

4 Robust and Efficient Estimation of the ATTE

4.1 An Efficient Influence Function-Based Estimator of the ATTE

Given the form of θ(P ), a natural choice of estimator for θ̂ is a plug-in estimator of the form

β̂/α̂, which in turn motivates the development of robust and efficient one-step estimators

for α(P ) and β(P ) (19, 46, 47). Towards that, we introduce the efficient influence functions

of α(P ) and β(P ) in Theorem 2.

Theorem 2 The efficient influence functions of α(P ) and β(P ) at P in the semiparametric

model induced by Assumption 4 (on the distribution of the coarsened observed data O) are

given by

α̇∗
P (O) = A

(
1− R

η(L∗, 1)

)
ε1(L

∗, Y ) +
ARE

η(L∗, 1)
− α(P ) (3)
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β̇∗
P (O) =

AR

η(L∗, 1)

[(
E − ε1(L

∗, Y )
)
Y−

(
Eµ0(L

∗,Le
m)− ξ(L∗, Y )

)]
+ A

(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)

− (1− A)R

η(L∗, 1)

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)]

− (1− A)
η(L∗, 0)

η(L∗, 1)

(
γ(L∗, Y )Y − χ(L∗, Y )

)
− β(P )

(4)

Both α̇∗
P and β̇∗

P introduce additional nuisance functions. Most directly interpretable

are u(L∗,Le
m) = P (A = 1 | L∗,Le

m, R = 1), the propensity score of treatment among

complete cases, and εa(L
∗, Y ) = P (E = 1 | L∗, Y, A = a,R = 1), the probability of

being eligible for the study conditional on all fully observed covariates, also among com-

plete cases. Three additional nuisance functions appear in β̇∗
P , which we refer to as nested

nuisance functions given the appearance of simpler, previously defined nuisance functions,

pre-multiplied by eligibility status E, within the outer most expectation of these more com-

plex nuisance functions: ξ(L∗, Y ) = EP

[
Eµ0(L

∗,Le
m) | L∗, Y, A = 1, R = 1], γ(L∗, Y ) =

EP

[
E u(L∗,Le

m)
1−u(L∗,Le

m)

∣∣L∗, Y, A = 0, R = 1
]
, and χ(L∗, Y ) = EP

[
E u(L∗,Le

m)
1−u(L∗,Le

m)
µ0(L

∗,Le
m)

∣∣L∗, Y, A =

0, R = 1
]
. One way to interpret these nested nuisance functions is that they attempt to

model treatment (e.g., via u) and/or outcome (e.g., via µ0) mechanisms by using marginal-

ization to account for the fact that eligibility status remains unknown, and thus random,

without complete knowledge of eligibility defining covariates Le.

Influence functions are by definition mean zero, so it is helpful to work with uncentered

influence functions, α̇P (O) = α̇∗
P (O) + α(P ) and β̇P (O) = β̇∗

P (O) + β(P ). With these, we

propose the estimator θ̂EIF by taking the ratio of one-step estimators for β(P ) and α(P ),

which each correspond to the sample mean of an estimated uncentered influence function:

θ̂EIF =
Pn[β̇P̂ (O)]

Pn[α̇P̂ (O)]
(5)
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In Equation (5), the notation P̂ is introduced to indicate that component nuisance

functions in Equations (3) and (4) are replaced by their corresponding estimated quantities.

In simpler studies where there is no missing eligibility data and all subjects included in

the study population are known to be eligible, θ̂EIF simplifies to the standard one-step

(doubly-robust) estimator for the ATT (45). We demonstrate this correspondence in the

Supplementary Materials.

4.2 Theoretical Properties of θ̂EIF

That θ̂EIF uses one-step estimators based on efficient influence functions for β(P ) and α(P )

rather than the efficient influence function for θ(P ) directly, θ∗P (O), is matter of practical

convenience in implementation; asymptotically the two approaches are equivalent (46, 47).

In any case, θ∗P (O) is useful in characterizing the asymptotic behavior of θ̂EIF.

Corollary 2.1 The efficient influence function of θ(P ) at P in a semiparametric model

induced by Assumption 4 is given by θ̇∗P (O) = 1
α(P )

(
β̇P (O)− θ(P )α̇P (O)

)

Corollary 2.1 follows from versions of the product rule and the chain rule for influence

functions (19, 46). Another pair of important quantities necessary to characterize the

asymptotic behavior of θ̂EIF are remainder terms Rα(P , P ) and Rβ(P , P ) from von Mises

expansions (19, 24) for α(P ) and β(P ), defined in the following lemma.

Lemma 1 α(P ) and β(P ) satisfy the von Mises expansions

α(P )− α(P ) = −
∫

α̇∗
P
(o)dP (o) +Rα(P , P )

β(P )− β(P ) = −
∫

β̇∗
P
(o)dP (o) +Rβ(P , P )

where the remainder terms (omitting inputs for brevity) are as follows:
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Rα(P , P ) = EP

[
A(ε1 − ε1)

(
1− η1

η1

)]

Rβ(P , P ) = EP

[
A

(
1− η1

η1

)(
Y (ε1 − ε1)− (ξ − ξ)

)
− RE

η1
(µ0 − µ0)

(
u(1− u)− u(1− u)

1− u

)

− (1− A)
(η0 − η0)

η1

(
Y (γ − γ)− (χ− χ)

)]

The rate of convergence for θ̂EIF is closely tied to the second-order remainder terms from

the von Mises expansions in Lemma 1, and thus depends on products of errors in nuisance

function estimation. Leveraging Lemma 1, we summarize the asymptotic behavior of θ̂EIF

in the following theorem, where ∥f∥2 = EP [f(O)2] denotes the squared L2(P ) norm.

Theorem 3 If ∥α̇P̂ − α̇P∥ = oP (1), ∥β̇P̂ − β̇P∥ = oP (1), α(P ) > 0, and P
[∣∣Pn

(
α̇P̂ (O)

)∣∣ ≥

ϵ
]
= 1 for some ϵ > 0, then

θ̂EIF − θ(P ) = Pn[θ̇
∗
P (O)] +OP

(
Rα(P̂ , P ) +Rβ(P̂ , P )

)
+ oP (n

−1/2)

Moreover, if Rα(P̂ , P )+Rβ(P̂ , P ) = oP (n
−1/2) then

√
n
(
θ̂EIF−θ(P )

) d→ N
(
0,VarP [θ̇

∗
P (O)]

)
,

whereby θ̂EIF attains the semiparametric efficiency bound induced by Assumption 4.

Corollary 3.1 Under the conditions of Theorem 3 and assuming that P (δ ≤ 1− û ≤ 1−δ)

for some δ > 0, P (η̂1 > ϵ) = 1 for some ϵ > 0, and EP [Y
2] ≤ M < ∞,

Rα(P̂ , P )+Rβ(P̂ , P ) = OP

(
∥µ̂0−µ0∥∥û−u∥+∥η̂1−η1∥

{
∥ε̂1−ε1∥+∥ξ̂−ξ∥

}
+∥η̂0−η0∥

{
∥γ̂−γ∥+∥χ̂−χ∥

})

Theorem 3 demonstrates that θ̂EIF converges faster than any component nuisance function,

even when flexible modeling choices are used. As illustrated by Corollary 3.1, the rate of

convergence for θ̂EIF is directly tied to error rates in estimation of component nuisance func-

tions. When these product errors are oP (n
−1/2)—for example, when all nuisance function
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error rates are oP (n
−1/4)—then θ̂EIF is not only

√
n−consistent and asymptotically normal,

but also attains the semiparametric efficiency bound induced by Assumption 4. In particu-

lar, careful examination of Corollary 3.1 illustrates that the remainder term Rα+Rβ will be

oP (n
−1/2) if (i) the product of errors for the standard ATT nuisance functions (µ0, u), and

(ii) the sum of product errors for missing data related nuisance functions (η0, η1, ε1, ξ, γ, χ)

are each oP (n
−1/2). The required rate conditions (e.g., oP (n

−1/4) for each nuisance func-

tion) are achievable under various structural assumptions, such as sparsity, smoothness, or

additivity. Under such conditions, asymptotically valid Wald-style (1− q)-level confidence

intervals are readily available, θ̂EIF±z1−q/2

√
1
n
Pn[θ̇∗P̂ (O)2], where zq denotes the q

th quantile

of the standard normal distribution.

4.3 Computation of θ̂EIF

Routines for estimation of influence function-based estimators like θ̂EIF typically involve

sample splitting or cross-fitting, particularly when using nonparametric and/or machine

learning techniques to estimate component nuisance functions (20). In sample splitting,

(O1, ..., On) is randomly split into two disjoint samples D0, D1, with D0 used to estimate

component nuisance functions as well as any hyperparameters for relevant machine learning

models. Models for nuisance functions trained on D0 are subsequently applied to obser-

vations from the held out dataset D1. Finally, the roles of D0 and D1 are reversed, and

estimation of θ̂EIF can proceed as in Equation 5 by averaging influence function contri-

butions for each subject. Given that u and µ0 appear in the respective targets for ξ, γ,

and χ, estimation of these nested nuisance functions requires predictions of µ̂0 and û on

training set D0 to even train models for ξ̂, γ̂, and χ̂. Despite this complication, estimation

of ξ, γ, and χ can proceed within traditional sample splitting routines. To illustrate this,
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we outline the entire procedure for computing θ̂EIF in a flexible manner in Algorithm 1.

We use k = 2 splits for illustrative purposes but analogous procedures work for k > 2.

Algorithm 1 (Computation of θ̂EIF) Let D0 and D1 be two disjoint, independent splits
of (O1, ...On) of sizes n0 and n1, respectively, with n = n0 + n1. The analytical procedure

to compute the estimator θ̂EIF of θ(P ) is given as follows:

1. Construct estimators η̂, û, ε̂1, and µ̂0 on n0 samples from D0

2. For O1, O2, ..., On0 ∈ D0, compute
{
Eµ̂0(L

∗
i ,L

e
mi
), E

û(L∗
i ,L

e
mi

)

1−û(L∗
i ,L

e
mi

)
, Eµ̂0(L

∗
i ,L

e
mi
)

û(L∗
i ,L

e
mi

)

1−û(L∗
i ,L

e
mi

)

}n0

i=1
,

and use these quantities to construct estimators ξ̂, γ̂, and χ̂, on n0 samples from D0.

3. For On0+1, On0+2, ..., On ∈ D1, construct plug-in estimates of uncentered influence
functions {α̇P̂0

(Oi)}ni=n0+1 and {β̇P̂0
(Oi)}ni=n0+1 using the nuisance estimators con-

structed in steps 1 and 2.

4. Repeat steps 1-3, swapping the roles of D0 and D1, to create sets {α̇P̂ (Oi)}ni=1 =

{α̇P̂0
(Oi)}ni=n0+1 ∪ {α̇P̂1

(Oi)}n0
i=1 and {β̇P̂ (Oi)}ni=1 = {β̇P̂0

(Oi)}ni=n0+1 ∪ {β̇P̂1
(Oi)}n0

i=1

(e.g., retaining influence function contributions from corresponding out-of-sample
nuisance function predictions).

5. Compute α̂ = n−1
∑n

i=1 α̇P̂ (Oi) and β̂ = n−1
∑n

i=1 β̇P̂ (Oi). Report θ̂EIF as in Eq. 5.

6. Compute
{
θ̇∗
P̂
(Oi) =

1
α̂

(
β̇P̂ (Oi)− β̂

α̂
α̇P̂ (Oi)

)}n

i=1
, and estimate V̂ar[θ̂EIF] = n−1Pn[θ̇

∗
P̂
(O)2]

We note that while neither outcome model, µ, nor propensity model, u, conditions on

E = 1, all contributions of these nuisance functions in β̇P (O) are pre-multiplied by eligibility

indicator E, and thus only eligible subjects’ values for these nuisances contribute to θ̂EIF.

Because both models already condition on R = 1, analysts might additionally restrict the

conditioning set of these models to include E = 1 and better model the contributions of

these nuisance functions for eligible patients if treatment and outcome mechanisms differ

drastically for eligibility status.

4.4 Alternatives to θ̂EIF

In completely nonparametric models, there is only a single influence function for a pathwise

differentiable statistical functional, and thus the influence function is the efficient influence

function. That is not the case in our problem, however, since Assumption 4 restricts the
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tangent space of possible nonparametric models. We derived the efficient influence functions

α̇∗
P and β̇∗

P by first finding nonparametric influence functions α̇′∗
P and β̇′∗

P for α(P ) and β(P ),

and subsequently projecting them onto the tangent space (Supplemntary Materials Section

3.3). The uncentered versions of these influence functions, α̇′
P and β̇′

P , are given by

α̇′
P (O) = A

(
1− R

η(L∗, 1)

)
ω1(L

∗) +
ARE

η(L∗, 1)

β̇′
P (O) = A

(
1− R

η(L∗, 1)

)
ν(L∗)+

RE

η(L∗, 1)

(
Y −µ0(L

∗,Le
m)

)[
A− (1−A)

u(L∗,Le
m)

1− u(L∗,Le
m)

]

α̇′
P and β̇′

P contain fewer nested nuisance functions and thus motivate an estimator which

is simpler to compute, using an analogous procedure to Algorithm 1 and Equation 5, and

replacing α̇P and β̇P with α̇′
P and β̇′

P , respectively.

θ̂IF =
Pn[β̇

′
P̂
(O)]

Pn[α̇′
P̂
(O)]

The estimator θ̂IF introduces two new nuisance functions, ωa(L
∗) = P (E = 1 | L∗, A =

a,R = 1), and ν(L∗) = EP

[
E
(
Y − µ0(L

∗,Le
m)

) ∣∣ L∗, A = 1, R = 1
]
. See that ω is very

similar to ε in that it models eligibility among complete cases given completely observed

information, only it doesn’t use outcomes Y when modeling this probability. Though ν is

a nested nuisance function, other nested nuisance functions ξ, γ and χ do not need to be

estimated for θ̂IF. While one would expect θ̂IF to be less efficient than θ̂EIF, θ̂IF is relatively

easier to implement, and could plausibly result in roughly the same (or less) small sample

bias without much of a loss (if any) in terms of efficiency. Altogether, this trade-off is one

we hope to explore and offer guidance on through this simulation study in Section 5.

Additionally, we consider two alternative estimators of θ(P ) which are easier compu-

tationally than θ̂EIF or θ̂IF. As a baseline, we consider θ̂CC, the complete case g-formula
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estimator for the ATT, where C denotes the set of eligible complete cases undergoing RYGB:

θ̂CC =
Pn

[
ARE

(
Y − µ̂0(L

∗,Le
m)

)]

Pn[ARE]
=

1

|C|
∑

i∈C

(
Yi − µ̂0(L

∗
i ,L

e
mi
)
)

This strategy is representative of the complete-case analyses that are common in practice,

and would be valid if θCC
ATT = θeligATT.

Examination of the the identification result in Theorem 1 additionally motivates the

following inverse weighted outcome regression (IWOR) estimator, θ̂IWOR.

θ̂IWOR =
Pn

[
ARE

η̂(L∗,1)(Y − µ̂0(L
∗,Le

m)
)]

Pn

[
ARE

η̂(L∗,1)

]

Unlike θ̂CC, which ignores the possibility of selection bias, θ̂IWOR accounts for the possibility

of selection bias and requires only a single extra nuisance function, η.

Finally, it is worth noting that there is equivalent form of θ̂EIF, which we denote θ̃EIF,

that uses the nuisance functions π and λ instead of u, and thus is more directly tied to

the likelihood factorization in Equation 2. Given that λ is a conditional density for Le
m,

which itself may be multi-dimensional, ratios of the form λ1(Le
m;L∗)

λ0(Le
m;L∗) (as is required by θ̃EIF)

would be difficult to estimate via nonparametric methods. For completeness, we provide

additional details on θ̃EIF in the Supplementary Materials, and illustrate the connection

between the conditional density ratio, λ1(Le
m;L∗)

λ0(Le
m;L∗) , and the propensity score ratio, u(L∗,Le

m)
1−u(L∗,Le

m)
.
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5 Simulation Study

5.1 Data Generation

To investigate finite sample performance of θ̂EIF and θ̂IF we conducted a simulation study

tied closely to our motivating bariatric surgery study. In this simulation study, interest

lies in the effect of RYGB vs. SG (A) on percent weight change 3 years post surgery (Y )

among patients with pre-diabetes or diabetes, defined as an A1c ≥ 5.7% (Le
m). Covariates

L∗ included health care site, sex, race, baseline BMI, age, smoking status, and eGFR.

To generate simulated datasets, we began by sampling covariate vectors L∗ from the

observed distribution in the DURABLE data to preserve the complex correlation structure

of L∗. Simulated treatment, outcome, and eligibility status (both Le
m and R) were gener-

ated using sampled covariates L∗ and models for the nuisance functions tied directly to the

likelihood factorization in Equation 2 (π, η, λ, µ). In particular, parametric models were

fit on a sample of 16,461 surgical patients from the DURABLE database to inform this

simulated data generation. Logistic regression was used for π and η, a gamma generalized

linear model (GLM) was used for λ, and linear regression was used for µ. The outcome

model µ was specified with several interactions between A × Le
m, A × L∗, and Le

m × L∗

in order to introduce additional complexity and make µ difficult to estimate well, perhaps

even with more flexible machine learning methods. Additional details, including complete

tables of nuisance function coefficients used to generate simulated data are available in the

Supplementary Materials.

1,000 simulated datasets were generated for each of n = 10, 000 and n = 25, 000 patients.

These sample sizes are reasonable in the context many EHR-based settings, including our

study of bariatric surgery for T2DM outcomes (n = 14, 809), the work of McTigue et
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al. (n = 9, 710) as well as previous DURABLE studies (n > 30, 000) (11, 31). Across

simulated datasets, 62% of patients were treated with RYGB (A = 1) and 70% of patients

had ascertainable eligibility (R = 1), of whom 57% were eligible (i.e., P (E = 1 | R = 1)).

5.2 Estimators

When implementing θ̂CC, we only estimated µ with the correct parametric specification,

so that any resulting bias was due to selection bias and not model misspecification. When

estimating θ̂IWOR, we considered versions where both µ and η were correctly specified, as

well as versions where only one of the two was correctly specified. For θ̂IWOR and the

two influence function-based estimators, we applied six nonparametric strategies to each

for flexible estimation of component nuisance functions using ensemble regression learners

from the SuperLearner package in R (48, 49).

The six strategies arise from all combinations of two distinct sets of libraries included in

the SuperLearner (SL) ensemble and three strategies for estimating the outcome regression

among SG subjects, µ0. The first set of SL libraries (SL1) included random forest (RF)

learners with several hyperparameter combinations, along with learners for linear model

(LM)/GLM, generalized additive model (GAM) (for binary variables), and multivariate

adaptive polynomial regression spline (Polymars). The second set (SL2) dropped LM/GLM

learners to test estimator behavior when the correct parametric model was not directly

among the family of candidate learners.

Given the complexity of interactions in the outcome model, we considered stratification

(e.g., estimating µ0 only on subjects with A = 0) and augmenting the design matrix with all

A×L interactions as alternatives to fitting a single outcome model µ on all complete cases.

The rationale is that fitting a single outcome model might inadequately capture the full
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scope of interactions in µ, and thus there could be some degree of model misspecification,

which may affect various estimators in different ways (Supplemental Figure S1).

5.3 Results

Table 2 presents relative bias and standard errors for all estimators, as well as coverage

of 95% confidence intervals for the two influence function-based estimators, θ̂EIF and θ̂IF.

Unsurprisingly, θ̂CC was biased by over 15%, even with correctly specified outcome model

µ, thereby demonstrating that selection bias can be a prominent concern when discarding

subjects with incomplete eligibility information. Performance of θ̂IWOR was very dependent

on model specification. When µ and η were both correctly specified, θ̂IWOR was unbiased,

but when either nuisance function was misspecified the resulting biases of 17% and 24%,

respectively, were worse than that of θ̂CC. Using nonparametric SuperLearner ensembles to

estimate µ, η did not guarantee unbiasedness, with plug-in bias ranging from 2-19%, with

bias worse in cases with greater estimation error for µ̂0 (Supplemental Figure S1).

Both influence function-based estimators were unbiased in all six nonparametric esti-

mation strategies and attained nominal coverage for 95% confidence intervals, despite a

degree of error in estimating µ̂0, and possibly other nuisance functions. Under each strat-

egy, θ̂IF had a standard error between 4-14% larger than the corresponding standard error

of θ̂EIF, demonstrating the additional modeling complexities did indeed increase efficiency.

Of note, the standard error of θ̂IWOR with correctly specified parametric models for µ, η

only matched the standard error for the θ̂EIF estimation strategy producing the smallest

standard error for n = 10, 000, and was 5% larger for n = 25, 000.

Altogether, these simulations demonstrate that both θ̂IF and θ̂EIF are implementable

with flexible, nonparametric estimation strategies for component nuisance functions, even
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in the presence of complex nested nuisance functions. The estimators retain good finite

sample properties for sample sizes typical of EHR-studies for bariatric surgery. Finally,

these simulations demonstrate that θ̂EIF attains noticeable efficiency gains if one is willing

to estimate slightly more complex nuisance functions (cf. θ̂IF).

6 Comparison of Bariatric Surgical Procedures

6.1 Methodological Details

Finally, we return to the bariatric surgery study introduced and discussed in Section 2.1.

For both the relative weight change and T2DM remission outcomes, we present results for

each estimator proposed in Section 4 across all 40 operationalizations of the study eligibility

criteria (Figure 2). Both influence-function based estimators, θ̂EIF and θ̂IF, were computed

using the SL1 set of SuperLearner libraries described in Section 5.2 to estimate relevant

nuisance functions. The complete-case estimator, θ̂CC, was computed using a linear model

for µ with pre-specified interactions between surgery type and select L∗ covariates. Finally,

the inverse-weighted outcome regression estimator, θ̂IWOR, used the same µ specification

as θ̂CC, and used a main-effects logistic regression for η. 95% confidence intervals for

both θ̂CC and θ̂IWOR were computed via bootstrapping using a normal approximation (50).

Additional methodological details are available in the Supplementary Materials, including

model specifications for each estimation procedure.

6.2 Study Results

To get a sense of how eligibility-related nuisance function estimates varied by lookback win-

dow (i.e., period of time one looks back to ascertain study eligibility), Figure 3 presents the
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distribution of estimates of complete case probability η̂ and eligibility probability ε̂ used in

computing θ̂EIF. The distribution of complete case probability displayed greater sensitivity

to the lookback length for diabetes labs than for BMI. This is not entirely surprising as A1c

measures were less commonly available (68.5% missing within 1 month prior to surgery,

19.2% missing within 6 months) than BMI measures (16.2% missing within 1 month prior to

surgery, 1.5% within 6 months), and thus T2DM was the main criterion driving missingness

in eligibility. Similarity between the rows of Figure 3 suggests that ascertainment of T2DM

was more affected by availability of lab measures than medications. The covariate-adjusted

average difference in observing complete eligibility information between RYGB and SG,

Pn[η̂1(L
∗)− η̂0(L

∗)], ranged from -6.1% to 7.6%. Differential missingness by procedure was

most prominent when the length of time for BMI and T2DM lookback windows differed.

Average values of ε1 ranged from 0.613 in the most stringent settings with to 0.300 in

the most relaxed, indicating that a higher proportion of subjects with complete information

were judged to be eligible in lookback windows with narrower scope. A related consideration

is whether the plausibility of MAR Assumption 4 also varies by lookback length. Given the

increased interaction a patient has with the health care system prior to surgery (42), it is

certainly plausible that Assumption 4 is most likely to hold within 6 months of surgery and

may be less likely to hold when looking 1-2 years prior to surgery to ascertain eligibility.

Point estimates and 95% confidence intervals for θ̂CC, θ̂IWOR, θ̂IF, and θ̂EIF across appli-

cation of eligibility for both outcomes are presented in Figure 4. Point estimates for θ̂CC

ranged from -7.1% to -6.2% for 3-year post surgical weight change and 3.7% to 8.2% for

T2DM remission, indicating that eligible subjects undergoing RYGB (with complete infor-

mation) experienced greater weight loss and rates of remission than had they undergone

SG instead. θ̂IWOR had the same range for weight change estimates as θ̂CC, but indicated
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Figure 3: Distributions of select nuisance function estimates from θ̂EIF related to ascertainment (η̂) and
eligibility (ε̂) for relative weight change outcome. An analogous figure for T2DM remission is available in
the Supplementary Materials. Results for BMI lookback of 3 months are similar to those of 1 month BMI
lookback, and omitted for space considerations.

greater differences in T2DM remission (range 5.2% to 10.3%). Point estimates for θ̂EIF were

attenuated towards the null by an average of 19.5% for relative weight change compared

to θ̂CC (range -6.6% to -4.5%), and 34.1% for T2DM remission (range 0.1% to 7.4%). Es-

timated standard errors were on average 5.3% larger for θ̂IF than corresponding standard

error estimates for θ̂EIF. Point estimates from influence-function based estimators were

most similar to those of θ̂CC and θ̂IWOR in longer lab lookbacks, with differences exceeding

6.5% in a 1-month T2DM labs lookback window. While θ̂EIF still shows significant weight

loss benefits to RYGB relative to SG, there is less evidence to suggest an RYGB advantage

for remission of T2DM, at least among patients with a DiaRem score of ≥ 3.

In addition to motivations related to the plausibility of MAR Assumption 4 and reducing

the risk of inappropriately including ineligible patients, one might also be willing to adopt

a more stringent lookback window for diabetes labs given the short time frame used in
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the definition of the remission outcome. Altogether, if shorter lookback time frames are

preferred, then we might conclude that patients undergoing RYGB would not be giving

up a substantial decline in T2DM remission rate had they received SG instead. As such,

remission of diabetes may be less significant of a factor in determining which surgical

procedure to recommend to prospective patients, as least relative to factors like durability

of weight loss and risk of complications associated with surgery.

BMI Lookback :  1 Month BMI Lookback :  6 Months BMI Lookback :  12 Months

D
iabetes via R

x:
A

ctive at S
urgery

D
iabetes via R

x:
A

ctive w
/in 12 M

onths
B

efore S
urgery

−8%

−6%

−4%

−2%

0%

−8%

−6%

−4%

−2%

0%

Difference in % Weight Change

BMI Lookback :  1 Month BMI Lookback :  6 Months BMI Lookback :  12 Months

D
iabetes via R

x:
A

ctive at S
urgery

D
iabetes via R

x:
A

ctive w
/in 12 M

onths
B

efore S
urgery

1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

−8%
−4%

0%
4%
8%

12%
16%

−8%
−4%

0%
4%
8%

12%
16%

Diabetes Labs Lookback Window (Months)

θ A
T

T
el

ig
 =

 E
[Y

R
Y

G
B

−
Y

S
G
 | 

A
 =

 R
Y

G
B

, E
lig

ib
le

 =
 1

]

θCC θIWOR θIF θEIF

Difference in Diabetes Remission Rate
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bariatric surgery type on eligible RYGB patients. Estimates are presented for difference in % weight change
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Finally, we note that in Figure 4, 95% confidence intervals for θ̂EIF and θ̂IF do not

monotonically get tighter with less stringent operationalization of study eligibility. There

seems to be a complex interplay between increasing the number of subjects with complete

information and the complexity of modeling certain nuisance functions. While increasing

the “R = 1” fraction corresponded to a greater number of patients deemed eligible (Figure
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2), more stringent lookbacks yielded in a smaller fraction of patients with complete eligi-

bility information (Figure 3). In particular, nested nuisances (γ, ξ, χ, ν) model compound

outcomes which pre-multiply by E, and thus may simultaneously have to contend with

greater degrees of zero-inflation and extreme values (Supplemental Figure S4).

7 Discussion

When designing and analyzing observational studies from EHR databases, the potential

for confounding bias is often considered paramount, with missing data frequently viewed

as a secondary consideration. While analysts might consider methods for dealing with

missing data in certain covariates or outcomes after finalizing their analysis population, it

is rare that they account for the possibility that discarding subjects without ascertainable

eligibility when building an analysis population can introduce selection bias. Towards

addressing this form of selection bias, we introduced a pair of estimators, θ̂EIF and θ̂IF

which are robust to various degrees of model misspecification, attain
√
n-convergence to

normal distributions even under flexible machine learning modeling strategies, and in the

case of θ̂EIF, can achieve semiparametric efficiency bounds.

In prior work, the multiple imputation strategy of Tompsett et al. (8) and Austin et el.

(18) requires modeling λ(Le
m;L

∗) directly. Such a task does not readily facilitate nonpara-

metric modeling strategies, particularly when Le
m is multidimensional. Of greater practical

concern however is how this strategy would be implemented in EHR-studies where 70% of

subjects are missing eligibility (Figure 1). Benz et al. (9) used IPW based on η(L∗, A),

which is a similar idea to θ̂IWOR. Their work focused on sequential target trial emulations

(an observational study design for time-to-event endpoints) and additional challenges in-

herent to that study design, including time-varying eligibility. Extensions of our work to
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designs where study eligibility can vary over time is a valuable direction for future research.

Critical to addressing the possibility of selection bias due to missing eligibility data is

the MAR assumption for Le
m (Assumption 4). Within our MAR statement we also assumed

that conditionally on fully observed covariates and treatment, eligibility ascertainment was

independent of the outcome. The set of studies that work with Assumption 4 is quite

broad, including Benz et al. (9), Tompsett et al. (8), and Austin et al. (18). Relaxation of

this assumption to remove Y from the joint independence is possible but would ultimately

entail integration of several nuisance functions over the entire conditional distribution of

Le
m, similar to the strategy used by Levis et al. (26) in the case of missing confounders.

Given the presence of multiple nested nuisance functions, this solution would likely pose

significant computational challenges, to the point where it might inhibit the practical use

of the resulting method.

For the purposes of developing θ̂EIF and θ̂IF, we worked with a coarsened version of

the data, treating Le
m as fully observed or completely missing. One benefit of such a

decision is that it avoids the complexities associated with non-monotone missingness. As-

sessing the plausibility of a version of Assumption 4 considering 2q−1 possible missingness

patterns may often be very challenging. More practically, the best existing methods for

non-monotone missingness under MAR (51) rely on parametric models which condition

on unobservable covariate strata (26). In practice, analysts may consider treating R as

an indicator for whether E is determined given the available information in Le
m to reduce

information loss, particularly if the portions of Le
m which are missing are not confounders.

The focus of this work was on missingness in eligibility-defining covariates Le, and thus

implicit to this work was the assumption that there was no missingness in other variables.

In practice, that is unlikely to be the case in complex EHR-based studies, and missing data
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can affect ascertainment of confounders, treatment, and outcomes, perhaps simultaneously.

In cases where outcomes Y or non-eligibility related covariates L∗ are missing with less

frequency than Le (Figure 2), imputation may be a reasonable approach. We adopted this

approach in our study and comment on specifics in the Supplementary Materials. If the

primary source of missing data came from L∗, the path of least resistance might be to

include the subset of L∗ which was missing within Le
m, but such an approach is likely to

introduce non-monotone missingness when multiple components of L∗ are missing, not to

mention reducing the likelihood that Assumption 4 holds.

When missing outcomes are of concern, analysts may consider θ̂IF instead of θ̂EIF, as the

former does not use Y in the conditioning set of any component nuisance function. One

area of future work is the case where Y and Le have a form of monotone missingness, for

example when Le is needed for the definition of Y as in the case for weight change post

surgery. Under this scenario, it seems possible to develop similar influence function-based

estimation strategies, albeit with additional assumptions.

Code Availability

All code for analysis and simulations is made available on GitHub at https://github.

com/lbenz730/semiparametric_missing_elig.
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S1 Identification of θeligATT (Proof of Theorem 1)

In this section, we will prove Theorem 1, that under Assumptions 1-5, θeligATT = EP [Y (1)−
Y (0) | A = 1, E = 1] is identified by the functional

θ(P ) =
β(P )

α(P )
=

EP

[
ARE

η(L∗,1)

(
Y − µ0(L

∗,Le
m)

)]

EP

[
ARE

η(L∗,1)

]

Lemma S1 Let A,B,C be random variables, with C ∈ {0, 1}. Then

E[A | B,C = 1] =
E[AC | B]

P (C = 1 | B)

This result follows immediately from the law of total expectation by observing that

E[AC | B] = E[A | B,C = 1]P (C = 1 | B) + 0× P (C = 0 | B)

Using this lemma, and Assumptions 1-5, we have that

P (E = 1 | A = 1) = EP [EP (E | L∗, A = 1) | A = 1)]

= EP [EP (E | L∗, A = 1, R = 1) | A = 1)] (A4, A5)

= EP

[
EP

(
RE

η(L∗, 1)

∣∣∣ L∗, A = 1

) ∣∣∣ A = 1

]
(Lemma S1, Defn. of η)

= EP

[
RE

η(L∗, 1)

∣∣∣ A = 1

]

=

EP

[
ARE

η(L∗,1)

]

P (A = 1)
(Lemma S1)

=
α(P )

P (A = 1)

Next, we have
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EP [EY | A = 1] = EP [EP (EY | L∗,Le
m, A = 1) | A = 1)]

= EP [EEP (Y | L∗,Le
m, A = 1) | A = 1)] (E = g(Le, A), fixed function of Le, A)

= EP [EEP (Y | L∗,Le
m, A = 1, R = 1) | A = 1)] (A4, A5)

= EP

[
EEP

(
RY

P (R = 1 | L∗,Le
m, A = 1)

∣∣∣ L∗,Le
m, A = 1

) ∣∣∣ A = 1

]
(Lemma S1)

= EP

[
E

η(L∗, 1)
EP [RY | L∗,Le

m, A = 1]
∣∣∣ A = 1

]
(A4, A5)

= EP

[
RE

η(L∗, 1)
Y

∣∣∣ A = 1

]

=
EP

[
ARE

η(L∗,1)Y
]

P (A = 1)
(Lemma S1)

EP [Eµ0(L
∗,Le

m) | A = 1] = EP

[
EP (R | L∗, A = 1,Le

m)

η(L∗, 1)
Eµ0(L

∗,Le
m)

∣∣∣ A = 1

]
(A4, A5)

= EP

[
EP

(
R

η(L∗, 1)
Eµ0(L

∗,Le
m)

∣∣∣ L∗,Le
m, A = 1

) ∣∣∣ A = 1

]

= EP

[
RE

η(L∗, 1)
µ0(L

∗,Le
m)

∣∣∣ A = 1

]

=
EP

[
ARE

η(L∗,1)µ0(L
∗,Le

m)
]

P (A = 1)

Applying Assumptions 1-3, the causal inference assumptions among study eligible sub-
jects, we have

EP [Y (1) | A = 1, E = 1] = EP [Y | A = 1, E = 1] =
EP [EY | A = 1]

P (E = 1 | A = 1)

EP [Y (0) | A = 1, E = 1] = EP [EP (Y (0) | A = 1, E = 1,L∗,Le
m) | A = 1, E = 1]

= EP [EP (Y (0) | A = 0, E = 1,L∗,Le
m) | A = 1, E = 1] (A2, A3)

= EP [EP (Y | A = 0, E = 1,L∗,Le
m) | A = 1, E = 1] (A1)

= EP [EP (Y | A = 0, E,L∗,Le
m) | A = 1, E = 1]

= EP [EP (Y | A = 0,L∗,Le
m) | A = 1, E = 1] (E = g(Le, A) fixed)

= EP [µ0(L
∗,Le

m) | A = 1, E = 1] (A4)

=
EP [Eµ0(L

∗,Le
m) | A = 1]

P (E = 1 | A = 1)
(Lemma S1)
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Combining pieces, we obtain the desired result, namely

θeligATT = EP [Y (1)− Y (0) | A = 1, E = 1]

=
EP

[
E
(
Y − µ0(L

∗,Le
m)

)
| A = 1

]

P (E = 1 | A = 1)

=

EP

[
ARE

η(L∗,1)

(
Y − µ0(L

∗,Le
m)

) ]/
P (A = 1)

α(P )/P (A = 1)

=
β(P )

α(P )
= θ(P )

S2 Alternative Representations of θ̂EIF and θ̂IF

S2.1 Reparameterization of β̇P (O) and β̇′
P (O)

The likelihood factorization in Equation (2) of the main paper was closely tied to four
nuisance functions, (π, η, λ, µ). Perhaps somewhat surprisingly then, π and λ did not
appear in any estimator for θ(P ). In this section, we show how both nuisance functions
actually are relevant to estimation of θ(P ), and why we chose an alternative nuisance
function parametrization which did not require estimation of either π or λ.

Using Bayes’ theorem, we see the following relationship between λ, η, π, and the com-
plete case propensity score u.

λ1(L
e
m;L

∗)

λ0(Le
m;L

∗)
=

p(Le
m | L∗, A = 1, R = 1)

p(Le
m | L∗, A = 0, R = 1)

=
p(Le

m,L
∗, A = 1, R = 1)/p(L∗, A = 1, R = 1)

p(Le
m,L

∗, A = 0, R = 1)/p(L∗, A = 0, R = 1)

=
p(A = 1 | Le

m,L
∗, R = 1)/p(L∗, A = 1, R = 1)

p(A = 0 | Le
m,L

∗, R = 1)/p(L∗, A = 0, R = 1)

=
u(L∗,Le

m)

1− u(L∗,Le
m)

[1− π(L∗)]η(L∗, 0)

π(L∗)η(L∗, 1)

This identity yields alternative parametrizations of β̇P (O) and β̇′
P (O), respectively, as fol-

lows:

β̇P (O) =
AR

η(L∗, 1)

[(
E − ε1(L

∗, Y )
)
Y−

(
Eµ0(L

∗,Le
m)− ξ(L∗, Y )

)]
+ A

(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)

− (1− A)R

η(L∗, 0)

π(L∗)

1− π(L∗)

[
E
λ1(L

e
m;L

∗)

λ0(Le
m;L

∗)

(
Y − µ0(L

∗,Le
m)

)
−
(
γ′(L∗, Y )Y − χ′(L∗, Y )

)]

− (1− A)
π(L∗)

1− π(L∗)

(
γ′(L∗, Y )Y − χ′(L∗, Y )

)

β̇′
P (O) = A

(
1− R

η(L∗, 1)

)
ν(L∗) +RE

(
Y − µ0(L

∗,Le
m)

)[ A

η(L∗, 1)
− (1− A)

η(L∗, 0)

π(L∗)

1− π(L∗)

λ1(L
e
m;L

∗)

λ0(Le
m;L

∗)

]
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where

γ′(L∗, Y ) = E
[
E
λ1(L

e
m;L

∗)

λ0(Le
m;L

∗)

∣∣∣ L∗, A = 0, R = 1, Y
]

and

χ′(L∗, Y ) = E
[
E
λ1(L

e
m;L

∗)

λ0(Le
m;L

∗)
µ0(L

∗,Le
m)

∣∣∣ L∗, A = 0, R = 1, Y
]

are versions of γ and χ induced by the switch from propensity score odds u(L∗,Le
m)

1−u(L∗,Le
m)

to

density ratio λ1(Le
m;L∗)

λ0(Le
m;L∗) .

In fact, the above versions of β̇P (O) and β̇′
P (O) were the original expressions we derived,

and follow much more directly from the likelihood factorization in Equation (2). The pres-

ence of density ratio λ1(Le
m;L∗)

λ0(Le
m;L∗) makes nonparametric estimation more challenging given that

both Le
m and L∗ can be multidimensional and in general, conditional density estimation is

a very challenging statistical problem. While other techniques for density ratio estimation
exist (1), our reparameterization follows the same technique as Diaz et al. (2).

When estimating θ(P ) using a one-step estimator for β(P ) based on this alternative
representation of β̇P (O) or β̇′

P (O), we denote such estimators by β̇P̃ (O) and β̇′
P̃
(O), respec-

tively, and corresponding estimators for θ(P ) by θ̃EIF and θ̃IF. A choice to use θ̃EIF and

θ̃IF rather than θ̂EIF or θ̂IF might be more appropriate if analysts had understanding of the
exact process giving rise to eligibility defining covariates Le. For completeness, we provide
summary of the asymptotics of these alternative estimators in Section S3.5.

S2.2 Correspondence Between θ̂EIF and One-Step Estimation of
the ATT

In the absence of missing eligibility data, R = 1 for all subjects. Suppose further that all n
remaining subjects are eligible for the study (E = 1). Such might be the case if analysis is
restricted to n eligible subjects in an EHR database with N > n subjects. This is analogous
to the typical way cohorts are built in observational studies for point exposures if missing
eligibility criteria is not an issue. We will show informally that when (R = 1, E = 1) for all

n subjects on which we observe data units (O1, ..., On), θ̂EIF simplifies to the usual one-step
estimator for the average treatment effect on the treated (ATT). Under this scenario

• R = 1, E = 1 for all subjects

• η(L∗, A) = 1 for A ∈ {0, 1} (All n patients are complete cases)

• εa(L
∗, Y ) = 1 for a ∈ {0, 1} (All n patients are study eligible)

5



Pn[β̇P (O)] = Pn

{
AR

η̂(L∗, 1)

[(
E − ε̂1(L

∗, Y )
)
Y−

(
Eµ̂0(L

∗,Le
m)− ξ̂(L∗, Y )

)]

+ A
(
ε̂1(L

∗, Y )Y − ξ̂(L∗, Y )
)

− (1− A)R

η(L∗, 1)

[
E

û(L∗,Le
m)

1− û(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)]

− (1− A)
η(L∗, 0)

η(L∗, 1)

(
γ(L∗, Y )Y − χ(L∗, Y )

)}

= Pn

{
− A

(
µ̂0(L

∗,Le
m)− ξ̂(L∗, Y )

)
+ A

(
Y − ξ̂(L∗, Y )

)

− (1− A)

[
û(L∗,Le

m)

1− û(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)]

− (1− A)
(
γ(L∗, Y )Y − χ(L∗, Y )

)}

= Pn

{
A
(
Y − µ̂0(L

∗,Le
m)

)
− (1− A)

[
û(L∗,Le

m)

1− û(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)]}

= Pn

{(
Y − µ̂0(L

∗,Le
m)

)[
A− (1− A)

(
û(L∗,Le

m)

1− û(L∗,Le
m)

)]}

Similarly,

Pn[α̇P (O)] = Pn

{
A

(
1− R

η̂(L∗, 1)

)
ε̂1(L

∗, Y ) +
ARE

η̂(L∗, 1)

}
= Pn[A]

Thus

θ̂EIF =
Pn[β̇P (O)]

Pn[α̇P (O)]
= Pn

{
1

Pn[A]

(
Y − µ̂0(L

∗,Le
m)

)[
A− (1− A)

(
û(L∗,Le

m)

1− û(L∗,Le
m)

)]}

which is nothing more than the one-step estimator (eg., doubly-robust) for the ATT (3–5).

A very similar argument yields the same result for θ̂IF.

S3 Proofs of Theoretical Properties

S3.1 von Mises Expansion of α(P ) and β(P ) with α̇∗
P (O) and β̇∗

P (O)
(Proof of Lemma 1)

Before proving Lemma 1, we will note that
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α(P ) = EP

[
ARE

η(L∗, 1)

]

= EP

[
AR

η(L∗, 1)
EP [E | L∗, A = 1, R = 1, Y ]

]

= EP

[
AR

η(L∗, 1)
ε1(L

∗, Y )

]

= EP [Aε1(L
∗, Y )]

where the last line follows by applying iterated expectation conditioning on L∗, A, Y and
than applying Assumption 4 (MAR) to note that EP [R | L∗, A = 1, Y ] = EP [R | L∗, A =
1] = η(L∗, 1). Similarly, we note that

β(P ) = EP

[
ARE

η(L∗, 1)

(
Y − µ0(L

∗,Le
m)

)]

= EP

[
AR

η(L∗, 1)
EP

[
E
(
Y − µ0(L

∗,Le
m)

)∣∣∣L∗, A = 1, R = 1, Y

]]

= EP

[
AR

η(L∗, 1)

(
Y ε1(L

∗, Y )− ξ(L∗, Y )
)]

(Defn. of εa, ξ)

= EP

[
A
(
Y ε1(L

∗, Y )− ξ(L∗, Y )
)]

where again the last line follows by applying iterated expectation conditioning on L∗, A, Y
and than applying Assumption 4 (MAR) to note that EP [R |L∗, A = 1, Y ] = EP [R |L∗, A =
1] = η(L∗, 1). Now to prove Lemma 1:

Rα(P , P ) = α(P )− α(P ) +

∫
α̇∗
P
(o)dP (o)

= α(P )− α(P ) + EP

[
A

(
1− R

η(L∗, 1)

)
ε1(L

∗, Y ) +
ARE

η(L∗, 1)
− α(P )

]

= EP

[
A

(
1− R

η(L∗, 1)

)
ε1(L

∗, Y ) +
ARE

η(L∗, 1)
−Aε1(L

∗, Y )

]

= EP

[
A

(
1− R

η(L∗, 1)

)
ε1(L

∗, Y ) +
ARε1(L

∗, Y )

η(L∗, 1)
−Aε1(L

∗, Y )

]
(It. Exp. on L∗, A,R, Y )

= EP

[
A

(
1− η(L∗, 1)

η(L∗, 1)

)
ε1(L

∗) +A
η(L∗, 1)ε1(L∗)

η(L∗, 1)
−Aε1(L

∗)

]
(It. Exp. on L∗, A, Y + A4)

= EP

[
A(ε1 − ε1)

(
1− η1

η1

)]

7



Rβ(P , P ) = β(P )− β(P ) +

∫
β̇∗
P
(o)dP (o)

= β(P )− β(P )+

EP

[
AR

η(L∗, 1)

{(
E − ε1(L

∗, Y )
)
Y−

(
Eµ0(L

∗,Le
m)− ξ(L∗, Y )

)}
+A

(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)

− (1−A)R

η(L∗, 1)

{
E

u(L∗,Le
m)

1− u(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)}

− (1−A)
η(L∗, 0)
η(L∗, 1)

(
γ(L∗, Y )Y − χ(L∗, Y )

)
− β(P )

]

= EP

[
AR

η(L∗, 1)

{(
E − ε1(L

∗, Y )
)
Y−

(
Eµ0(L

∗,Le
m)− ξ(L∗, Y )

)}
+A

(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)

− (1−A)R

η(L∗, 1)

{
E

u(L∗,Le
m)

1− u(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)}

− (1−A)
η(L∗, 0)
η(L∗, 1)

(
γ(L∗, Y )Y − χ(L∗, Y )

)
−A

(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)]

Adding and subtracting the term Eµ0(L
∗,Le

m) on line 1 and applying iterated expectation
(conditioning on L∗, A, Y,Le

m in line 2) yields

Rβ(P , P ) = EP

[
AR

η(L∗, 1)

{(
E − ε1(L

∗, Y )
)
Y−

(
Eµ0(L

∗,Le
m)+Eµ0(L

∗,Le
m)− Eµ0(L

∗,Le
m)− ξ(L∗, Y )

)}

− (1−A)R

η(L∗, 1)

{
E

u(L∗,Le
m)

1− u(L∗,Le
m)

(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)}

− (1−A)
η(L∗, 0)
η(L∗, 1)

(
γ(L∗, Y )Y − χ(L∗, Y )

)

−A
(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)
+A

(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)]

Next, we rearrange and combine terms and begin simplifying. In particular, we apply
additional iterated expectations in lines 1 (on L∗, A,R, Y ) and 3 (on L∗, A, Y , followed by
Assumption 4) of the below expression, and finally add and subtract γ(L∗, Y )Y in the final
term below.

Rβ(P , P ) = EP

[
A

(
1− η(L∗, 1)

η(L∗, 1)

){
Y
(
ε1(L

∗, Y )− ε1(L
∗, Y )

)
−
(
ξ(L∗, Y )− ξ(L∗, Y )

)}

− RE

η(L∗, 1)

(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

){
A− (1−A)

u(L∗,Le
m)

1− u(L∗,Le
m)

}

− (1−A)

(
η(L∗, 0)− η(L∗, 0)

)

η(L∗, 1)

(
γ(L∗, Y )Y+γ(L∗, Y )Y − γ(L∗, Y )Y − χ(L∗, Y )

)]

Applying iterated expectation once more (to line two, on L∗, A,R,Le
m), we arrive at the

8



desired result.

Rβ(P , P ) = EP

[
A

(
1− η(L∗, 1)

η(L∗, 1)

){
Y
(
ε1(L

∗, Y )− ε1(L
∗, Y )

)
−
(
ξ(L∗, Y )− ξ(L∗, Y )

)}

− RE

η(L∗, 1)

(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

){u(L∗,Le
m)

(
1− u(L∗,Le

m)
)
− u(L∗,Le

m)
(
1− u(L∗,Le

m)
)

1− u(L∗,Le
m)

}

− (1−A)

(
η(L∗, 0)− η(L∗, 0)

)

η(L∗, 1)

{
Y
(
γ(L∗, Y )− γ(L∗, Y )

)
−
(
χ(L∗, Y )− χ(L∗, Y )

)}]

= EP

[
A

(
1− η1

η1

)(
Y (ε1 − ε1)− (ξ − ξ)

)
− RE

η
(µ0 − µ0)

(
u(1− u)− u(1− u)

1− u

)

− (1−A)
(η0 − η0)

η1

(
Y (γ − γ)− (χ− χ)

)]

This finishes the proof of Lemma 1, by showing that the claimed von Mises expansions
are satisfied. An immediate consequence of Lemma 1—invoking Lemma 2 in (6)—is that
α̇∗
P (O) and β̇∗

P (O) are influence functions at P in a semiparametric model induced by
Assumption 4. As mentioned in the main paper, Assumption 4 restricts the tangent space
of the model, and as such demonstrating that the claimed von Mises expansions are satisfied
is not sufficient to prove that α̇∗

P (O) and β̇∗
P (O) the efficient influence functions. In order to

prove Theorem 2, that α̇∗
P (O) and β̇∗

P (O) are indeed the efficient influence functions in the
induced semiparmetric model, we will first show that α̇′∗

P (O) and β̇′∗
P (O) satisfy a different

set of von Mises expansions for α(P ) and β(P ), respectively, and thus are themselves
influence functions (Section S3.2). Then, we will go through the process of projecting
α̇′∗
P (O) and β̇′∗

P (O) onto the tangent space of the model, and show that projection yields
α̇∗
P (O) and β̇∗

P (O), thereby proving α̇∗
P (O) and β̇∗

P (O) are indeed the efficient influence
functions (Section S3.3)

S3.2 von Mises Expansion of α(P ) and β(P ) with α̇′∗
P (O) and β̇′∗

P (O)

Lemma S2 α(P ) and β(P ) satisfy the von Mises expansions

α(P )− α(P ) = −
∫

α̇′∗
P
(o)dP (o) +R′

α(P , P )

β(P )− β(P ) = −
∫

β̇′∗
P
(o)dP (o) +R′

β(P , P )

where the remainder terms (omitting inputs for brevity) are as follows:

R′
α(P , P ) = EP

[
A(ω1 − ω1)

(
1− η1

η1

)]

R′
β(P , P ) = EP

[
A

(
1− η1

η1

)
(ν − ν)− RE

η
(µ0 − µ0)

(
u(1− u)− u(1− u)

1− u

)]

The proof of Lemma S2 is very similar to that of Lemma 1, from the previous section.
Before proving Lemma S2, we note that
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α(P ) = EP

[
ARE

η(L∗, 1)

]

= EP

[
AR

η(L∗, 1)
EP [E | L∗, A = 1, R = 1]

]

= EP

[
AR

η(L∗, 1)
ω1(L

∗)

]

= EP [Aω1(L
∗)]

where the last line follows by applying iterated expectation conditioning on L∗, A. Addi-
tionally, we note that

β(P ) = EP

[
ARE

η(L∗, 1)

(
Y − µ0(L

∗,Le
m)

)]

= EP

[
AR

η(L∗, 1)
EP

[
E
(
Y − µ0(L

∗,Le
m)

)∣∣∣L∗, A = 1, R = 1

]]

= EP

[
AR

η(L∗, 1)
ν(L∗)

]
(Defn. of ν)

= EP [Aν(L
∗)] (It. Exp. on L∗, A)

Now to prove Lemma S2

R′
α(P , P ) = α(P )− α(P ) +

∫
α̇′∗
P
(o)dP (o)

= α(P )− α(P ) + EP

[
A

(
1− R

η(L∗, 1)

)
ω1(L

∗) +
ARE

η(L∗, 1)
− α(P )

]

= EP

[
A

(
1− R

η(L∗, 1)

)
ω1(L

∗) +
ARE

η(L∗, 1)
−Aω1(L

∗)

]

= EP

[
A

(
1− R

η(L∗, 1)

)
ω1(L

∗) +
ARω1(L

∗)
η(L∗, 1)

−Aω1(L
∗)

]
(It. Exp. on L∗, A,R)

= EP

[
A

(
1− η(L∗, 1)

η(L∗, 1)

)
ω1(L

∗) +A
η(L∗, 1)ω1(L

∗)
η(L∗, 1)

−Aω1(L
∗)

]
(It. Exp. on L∗, A)

= EP

[
A(ω1 − ω1)

(
1− η1

η1

)]

Next we have that

R′
β(P , P ) = β(P )− β(P ) +

∫
β̇′∗
P
(o)dP (o)

= β(P )− β(P ) + EP

[
A

(
1− R

η(L∗, 1)

)
ν(L∗) +

ARE

η(L∗, 1)

(
Y − µ0(L

∗,Le
m)

)

− (1−A)RE

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)
−Aν(L∗)

]

= EP

[
A

(
1− R

η(L∗, 1)

)
ν(L∗)−Aν(L∗) +

ARE

η(L∗, 1)

(
Y − µ0(L

∗,Le
m)+µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

)

− (1−A)RE

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)]
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Now rearranging terms, and applying iterated expectations, we have

R′
β(P , P ) = EP

[
A

(
1− η(L∗, 1)

η(L∗, 1)

)(
ν(L∗)− ν(L∗)

)
(It. Exp. on L∗, A,R, then again on L∗, A)

+
ARE

η(L∗, 1)

(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m))

)

− (1−A)RE

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

)]
(It. Exp. on L∗, A,R,Le

m)

= EP

[
A

(
1− η(L∗, 1)

η(L∗, 1)

)(
ν(L∗)− ν(L∗)

)
+

RE

η(L∗, 1)

(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

){
A− (1−A)

u(L∗,Le
m)

1− u(L∗,Le
m)

}]

= EP

[
A

(
1− η(L∗, 1)

η(L∗, 1)

)(
ν(L∗)− ν(L∗)

)

+
RE

η(L∗, 1)

(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

){
u(L∗,Le

m)−
(
1− u(L∗,Le

m)
) u(L∗,Le

m)

1− u(L∗,Le
m)

}]

where the final line follows from iterated expectations on L∗,Le
m, R. Omitting conditioning

terms we see that this error term is of second order

EP

[
A

(
1− η1

η1

)
(ν − ν) +

RE(µ0 − µ0)

η1

{
u(1− u)− u(1− u)

1− u

}]

This proves Lemma S2 and shows that both α̇′∗
P (O) and β̇′∗

P (O) are valid influence
functions for α(P ) and β(P ) at P , respectively, as were α̇∗

P (O) and β̇∗
P (O). In Section S3.3,

we will go through the process of projecting α̇′∗
P (O) and β̇′∗

P (O) onto the tangent space of
the model, and show that projection yields α̇∗

P (O) and β̇∗
P (O), thereby proving α̇∗

P (O) and
β̇∗
P (O) are indeed the efficient influence functions of α(P ) and β(P ).

S3.3 Derivation of α̇∗
P (O) and β̇∗

P (O) From α̇P (O) and β̇P (O) (Proof
of Theorem 2)

The observed data distribution P is restricted by the Assumption 4, namely that R ⊥⊥
Y | L∗, A. As such the tangent space of the model is also restricted as follows, assuming
that Le

m is completely observed or completely missing. We let ΛP denote the tangent space
of the model, which by Lemma 24 of (7) decomposes into orthogonal subspaces as follows:

ΛP = ΛL∗,A ⊕ ΛR|L∗,A ⊕ ΛY |L∗,A ⊕ ΛRLe
m|L∗,A,R,Y

where in the above
ΛW |V =

{
f(w, v) ∈ L0

2(P ) | EP [f | V ] = 0
}

Next, we introduce the projection operator Π. For any function f ∈ L2(P ),

Π(f,ΛW |V ) = EP [f(O) | W,V ]− EP [f(O) | V ]

Projection of α′∗
P (O) onto ΛP

First notice that because A
(
1− R

η(L∗,1)

)
ω1(L

∗) is mean zero given L∗, A, we have that
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α′∗
P (O) = A

(
1− R

η(L∗, 1)

)
ω1(L

∗)

︸ ︷︷ ︸
∈ΛR|L∗,A

+
ARE

η(L∗, 1)
− α(P )

Thus, we only need to project the latter two terms on ΛP . Furthermore, notice that term
α(P ) is a constant (given the distribution P ), it will cancel out in projection onto every
orthogonal subspace with conditioning statements, and thus we need only keep track of it
when projecting onto orthogonal subspace without conditioning statements.

Π

(
ARE

η(L∗, 1)
− α(P )

∣∣∣ ΛL∗,A,R

)
= E

[
ARE

η(L∗, 1)
− α(P )

∣∣∣ L∗, A,R

]
=

AR

η(L∗, 1)
ω1(L

∗)− α(P )

Π

(
ARE

η(L∗, 1)
− α(P )

∣∣∣ ΛY |L∗,A

)

= E
[

ARE

η(L∗, 1)

∣∣∣ L∗, A, Y

]
− E

[
ARE

η(L∗, 1)

∣∣∣ L∗, A

]

= E
[

AR

η(L∗, 1)
E[E | L∗, A = 1, Y, R = 1]

∣∣∣ L∗, A, Y

]
− E

[
AR

η(L∗, 1)
E[E | L∗, A,R = 1]

∣∣∣ L∗, A

]

= E
[

AR

η(L∗, 1)
ε1(L

∗, Y )
∣∣∣ L∗, A, Y

]
− E

[
AR

η(L∗, 1)
ω1(L

∗)
∣∣∣ L∗, A

]

= A
(
ε1(L

∗, Y )− ω1(L
∗)
)

(A4 and defn. of η)

Π

(
ARE

η(L∗, 1)
− α(P )

∣∣∣ ΛLe
m|L∗,A,R,Y

)
= E

[
ARE

η(L∗, 1)

∣∣∣ L∗, A,R, Y,Le
m

]
− E

[
ARE

η(L∗, 1)

∣∣∣ L∗, A,R, Y

]

=
ARE

η(L∗, 1)
− AR

η(L∗, 1)
E[E | L∗, A = 1, R = 1, Y ]

=
ARE

η(L∗, 1)
− AR

η(L∗, 1)
ε1(L

∗, Y )

Summing terms, we have

Π
(
α′∗
P (O),ΛP

)
= A

(
1− R

η(L∗, 1)

)
ε1(L

∗, Y ) +
ARE

η(L∗, 1)
− α(P )

which is exactly α∗
P (O). Thus, α∗

P (O) is the efficient influence function of α(P ).

Projection of β′∗
P (O) onto ΛP

We begin by presenting β̇′∗
P (O) with terms slightly rearranged, which will facilitate the

projection of terms onto the requisite orthogonal subspaces.
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β̇′∗
P (O) = A

(
1− R

η(L∗, 1)

)
ν(L∗) +

RE

η(L∗, 1)

(
Y − µ0(L

∗,Le
m)

)[
A− (1− A)

u(L∗,Le
m)

1− u(L∗,Le
m)

]
− β(P )

=
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

}
+ Aν(L∗)− β(P )︸ ︷︷ ︸

∈ΛL∗,A

− (1− A)R

η(L∗, 1)

u(L∗,Le
m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)}

where Aν(L∗)− β(P ) ∈ ΛL∗,A as EP [Aν(L
∗)] = β(P ). Thus we only need we will project

the components of the first and third term on each portion of the tangent space.

Π

(
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ ΛL∗,A,R

)
= E

[
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ L∗, A,R

]

=
AR

η(L∗, 1)

{
E
[
E
(
Y − µ0(L

∗,Le
m)

)∣∣∣ L∗, A,R

]
− ν(L∗)

}

=
AR

η(L∗, 1)

(
ν(L∗)− ν(L∗)

)

= 0

Π

(
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ ΛLe
m|L∗,A,R,Y

)

=
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

}
− E

[
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ L∗, A,R, Y

]

=
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

}
− AR

η(L∗, 1)

{
Y E[E | L∗, A,R, Y ]− E[Eµ0(L

∗,Le
m) | L∗, A,R, Y ]− ν(L∗)

}

=
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

}
− AR

η(L∗, 1)

{
ε1(L

∗, Y )Y − ξ(L∗, Y )− ν(L∗)

}

=
AR

η(L∗, 1)

{(
E − ε1(L

∗, Y )
)
Y−

(
Eµ0(L

∗,Le
m)− ξ(L∗, Y )

)}

Π

(
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ ΛY |L∗,A

)

= E
[

AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ L∗, A, Y

]
− E

[
AR

η(L∗, 1)

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ L∗, A

]

= E
[
A

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ L∗, A, Y,R = 1

]
− E

[
A

{
E
(
Y − µ0(L

∗,Le
m)

)
− ν(L∗)

} ∣∣∣ L∗, A,R = 1

]
(S1)

= A

(
Y E[E | L∗, A = 1, Y, R = 1]− E[Eµ0(L

∗,Le
m) | L∗, A = 1, Y, R = 1]− ν(L∗)

)

−A

(
E
[
E
(
Y − µ0(L

∗,Le
m)

) ∣∣∣ L∗, A = 1, R = 1
]
− ν(L∗)

)

= A
(
ε1(L

∗, Y )Y − ξ(L∗, Y )− ν(L∗)
)
−A

(
ν(L∗)− ν(L∗)

)

= A
(
ε1(L

∗, Y )Y − ξ(L∗, Y )− ν(L∗)
)
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Now for the final term, (1−A)R
η(L∗,1)

u(L∗,Le
m)

1−u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)}

Π

(
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)} ∣∣∣ ΛL∗,A,R

)

= E
[
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)} ∣∣∣ L∗, A,R

]

= E
[
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

EE[Y − µ0(L
∗,Le

m) | L∗, A = 0, R = 1,Le
m]

∣∣∣ L∗, A,R

]

= E
[
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

E
(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

)]

= 0

Π

(
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)} ∣∣∣ ΛLe
m | L∗,A,R,Y

)

=
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)}
− E

[
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)} ∣∣∣ L∗, A,R, Y

]

=
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)}

− (1−A)R

η(L∗, 1)

{
Y E

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

∣∣∣ L∗, A,R, Y

]
− E

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

µ0(L
∗,Le

m)
∣∣∣ L∗, A,R, Y

]}

=
(1−A)R

η(L∗, 1)

{
E

u(L∗,Le
m)

1− u(L∗,Le
m)

(
Y − µ0(L

∗,Le
m

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)}

Π

(
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)} ∣∣∣ ΛY | L∗,A

)

= E
[
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)} ∣∣∣ L∗, A, Y

]

− E
[
(1−A)R

η(L∗, 1)
u(L∗,Le

m)

1− u(L∗,Le
m)

{
E
(
Y − µ0(L

∗,Le
m)

)} ∣∣∣ L∗, A

]

= (1−A)
η(L∗, 0)
η(L∗, 1)

{
Y E

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

| L∗, A = 0, R = 1, Y

]
− E

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

µ0(L
∗,Le

m) | L∗, A = 0, R = 1, Y

]}

− (1−A)
η(L∗, 0)
η(L∗, 1)

{
E
[
EY

u(L∗,Le
m)

1− u(L∗,Le
m)

| L∗, A = 0, R = 1

]
− E

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

µ0(L
∗,Le

m) | L∗, A = 0, R = 1

]}

= (1−A)
η(L∗, 0)
η(L∗, 1)

(
γ(L∗, Y )Y − χ(L∗, Y )

)

The second/third to last lines follow from Lemma S1. That the 2nd term disappears in the
final line is because
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E
[
EY

u(L∗,Le
m)

1− u(L∗,Le
m)

| L∗, A = 0, R = 1

]
− E

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

µ0(L
∗,Le

m) | L∗, A = 0, R = 1

]

= E
[
E
(
Y − µ0(L

∗,Le
m)

) u(L∗,Le
m)

1− u(L∗,Le
m)

∣∣∣ L∗, A = 0, R = 1

]

= E
[
E
[
E
(
Y − µ0(L

∗,Le
m)

) u(L∗,Le
m)

1− u(L∗,Le
m)

| L∗, A = 0, R = 1,Le
m

]
| L∗, A = 0, R = 1

]

= E
[
E
(
µ0(L

∗,Le
m)− µ0(L

∗,Le
m)

) u(L∗,Le
m)

1− u(L∗,Le
m)

| L∗, A = 0, R = 1

]

= 0

Putting the pieces together we have that

Π
(
β′∗
P (O),ΛP

)
=

AR

η(L∗, 1)

[(
E − ε1(L

∗, Y )
)
Y−

(
Eµ0(L

∗,Le
m)− ξ(L∗, Y )

)]

+ A
(
ε1(L

∗, Y )Y − ξ(L∗, Y )
)

− (1− A)R

η(L∗, 1)

[
E

u(L∗,Le
m)

1− u(L∗,Le
m)

(
Y − µ0(L

∗,Le
m)

)
−
(
γ(L∗, Y )Y − χ(L∗, Y )

)]

− (1− A)
η(L∗, 0)

η(L∗, 1)

(
γ(L∗, Y )Y − χ(L∗, Y )

)
− β(P )

which is exactly β∗
P (O). Thus, β∗

P (O) is the efficient influence function of β(P ), concluding
the proof of Theorem 2.

S3.4 Asymptotic Behavior of θ̂EIF (Proof of Theorem 3)

Proof of Theorem 3
To prove Theorem 3, we follow arguments used for ratio parameters by (Kennedy et al.,
2023) (Theorem 3) (6) and Levis et al. (Theorem 1) (8). For ease of notation, we use the
shorthand P [f ] = EP [f(O)] for the mean of any function f under distribution P . We then
have that

θ̂EIF − θ(P ) =
Pn[β̇P̂ (O)]

Pn[α̇P̂ (O)]
− P [β̇P (O)]

P [α̇P (O)]

=
1

Pn[α̇P̂ (O)]

{
Pn[β̇P̂ (O)]− P [β̇P (O)]− θ(P )

(
Pn[α̇P̂ (O)]− P [α̇P (O)]

)}

Now applying the results of the von Mises expansions in Lemma 2, we have the following
decompositions:
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Pn[β̇P̂ (O)]− P [β̇P (O)] = (Pn − P )[β̇P (O)] + (Pn − P )[β̇P̂ (O)− β̇P (O)] +Rβ(P̂ , P )

Pn[α̇P̂ (O)]− P [α̇P (O)] = (Pn − P )[α̇P (O)] + (Pn − P )[α̇P̂ (O)− α̇P (O)] +Rα(P̂ , P )

Because our estimation procedure for θ̂EIF leverages sample splitting (Algorithm 1), Lemma
2 of (Kennedy, 2020) guarantees that (Pn−P )[β̇P̂ (O)−β̇P (O)] and (Pn−P )[α̇P̂ (O)−α̇P (O)]
are both oP (n

−1/2) (9). Plugging in these decompositions, and using the fact that Pn[α̇P̂ (O)]
is bounded away from zero, we have that

θ̂EIF − θ(P ) =
1

Pn[α̇P̂ (O)]
(Pn − P )

(
β̇P (O)− θ(P )α̇P (O)

)
+OP (Rα +Rβ) + oP (n

−1/2)

Next, we observe that

Pn[α̇P̂ (O)]− α(P ) = Pn[α̇P̂ (O)]− P [α̇P (O)]

= (Pn − P )
(
α̇P (O)

)
+ (Pn − P )

(
α̇P̂ (O)− α̇P (O)

)
+ P

(
α̇P̂ (O)− α̇P (O)

)

= OP (n
−1/2) +OP (n

−1/2) + oP (1)

= oP (1)
(S1)

where the third equality follows from the central limit theorem (term 1), Lemma 2 of

(Kennedy, 2020) (9) (term 2), and that for term 3,
∣∣∣P

(
α̇P̂ (O) − α̇P (O)

)∣∣∣ ≲ ∥α̇P̂ (O) −
α̇P (O)∥ = oP (1) by assumption. Recalling from Corollary 2.1 that θ̇∗P (O) = 1

α(P )

(
β̇P (O)−

θ(P )α̇P (O)
)
, observe that

1

Pn[α̇P̂ (O)]
(Pn − P )

(
β̇P (O)− θ(P )α̇P (O)

)
− (Pn − P )

(
θ∗P (O)

)

=

(
1

Pn[α̇P̂ (O)]
− 1

α(P )

)
(Pn − P )

(
β̇P (O)− θ(P )α̇P (O)

)

=
α(P )− Pn[α̇P̂ (O)]

Pn[α̇P̂ (O)]α(P )
·Op(n

−1/2) (Central Limit Theorem)

= op(1)Op(n
−1/2) (Equation (S1) and Pn[α̇P̂ (O)] bounded away from zero)

= oP (n
−1/2)

Combining pieces, we have the desired result, that

θ̂EIF − θ(P ) = Pn[θ̇
∗
P (O)] +OP (Rα +Rβ) + oP (n

−1/2)

16



Proof of Corollary 3.1
Since A ∈ {0, 1} is bounded, and P (η̂1 > ϵ) = 1 for some ε > 0, we have that

|Rα(P̂ , P )| =
∣∣∣∣∣EP

[
A(ε̂1 − ε1)

(
1− η1

η̂1

)]∣∣∣∣∣

≤ EP

[∣∣∣A
η̂1
(ε̂1 − ε1)(η̂1 − η̂1)

∣∣∣
]

≤ 1

ϵ
∥ε̂1 − ε1∥∥η̂1 − η̂1∥ (Cauchy-Schwarz)

= OP (∥ε̂1 − ε1∥∥η̂1 − η̂1∥)

Similarly, since EP [Y
2] ≤ M < ∞ is bounded by some constant M , we have that

∣∣∣∣∣EP

[
A
(
1− η1

η̂1

)(
Y (ε̂1 − ε1)

)]∣∣∣∣∣ ≤ EP

[∣∣∣AY
η̂1

(η̂1 − η1)(ε̂1 − ε1)
∣∣∣
]

≤
√
M

ϵ
∥ε̂1 − ε1∥∥η̂1 − η̂1∥ (Cauchy-Schwarz)

= OP (∥ε̂1 − ε1∥∥η̂1 − η̂1∥)
∣∣∣∣∣EP

[
− A

(
1− η1

η̂1

)
(ξ̂ − ξ)

]∣∣∣∣∣ ≤ EP

[
1

η̂1

∣∣∣(η̂1 − η1)(ξ̂ − ξ)
∣∣∣
]

≤ 1

ϵ
∥ε̂1 − ε1∥∥ξ̂ − ξ∥ (Cauchy-Schwarz)

= OP (∥ε̂1 − ε1∥∥ξ̂ − ξ∥)
Furthermore, since P [δ ≤ 1− û ≤ 1− δ] for some δ > 0, and R,E ∈ {0, 1}, we have that

∣∣∣∣∣EP

[
RE

η̂1
(µ0 − µ̂0)

(
u(1− û) + û(1− u)

1− û

)]∣∣∣∣∣ ≤ EP

[∣∣∣ RE

η̂1(1− û)
(µ0 − µ̂0)

(
u(1− û)− û(1− u)

)∣∣∣
]

≤ 1

ϵδ
∥µ̂0 − µ0∥∥u(1− û)− û(1− u)∥ (Cauchy-Schwarz)

= OP (∥µ̂0 − µ0∥∥û− u∥)

Finally

∣∣∣∣∣EP

[
(1− A)

(η0 − η̂0)

η̂1

(
Y (γ̂ − γ)

)∣∣∣∣∣ ≤ EP

[∣∣∣(1− A)Y

η̂1
(η̂0 − η0)(γ̂ − γ)

∣∣∣
]

≤
√
M

ϵ
∥η̂0 − η0∥∥γ̂ − γ∥ (Cauchy-Schwarz)

= OP (∥η̂0 − η0∥∥γ̂ − γ∥)
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∣∣∣∣∣EP

[
− (1− A)

(η0 − η̂0)

η̂1
(χ̂− χ)

∣∣∣∣∣ ≤ EP

[∣∣∣(1− A)

η̂1
(η̂0 − η0)(χ̂− χ)

∣∣∣
]

≤ 1

ϵ
∥η̂0 − η0∥∥χ̂− χ∥ (Cauchy-Schwarz)

= OP (∥η̂0 − η0∥∥χ̂− χ∥)

Combining pieces we have that

Rβ(P̂ , P ) = OP

(
∥µ̂0 − µ0∥∥û− u∥+ ∥η̂1 − η1∥

{
∥ε̂1 − ε1∥+ ∥ξ̂ − ξ∥

}
+ ∥η̂0 − η0∥

{
∥γ̂ − γ∥+ ∥χ̂− χ∥

})

and thus

Rα(P̂ , P )+Rβ(P̂ , P ) = OP

(
∥µ̂0−µ0∥∥û−u∥+∥η̂1−η1∥

{
∥ε̂1−ε1∥+∥ξ̂−ξ∥

}
+∥η̂0−η0∥

{
∥γ̂−γ∥+∥χ̂−χ∥

})

S3.5 Summary of Asymptotic Behavior of θ̃EIF, θ̂IF, and θ̃IF

In this section, we briefly summarize the asymptotic behavior of θ̃EIF, as well as θ̂IF and
θ̃IF. We omit formal proofs, but note that justification of results in this section are nearly
identical to the proofs of Theorem 3 and Corollary 3.1.

Asymptotic Behavior of θ̃EIF

Lemma S3 If ∥α̇P̂ − α̇P∥ = oP (1), ∥β̇P̃ − β̇P∥ = oP (1), α(P ) > 0, and P
[∣∣Pn

(
α̇P̂ (O)

)∣∣ ≥
ϵ
]
= 1 for some ϵ > 0, then

θ̃EIF − θ(P ) = Pn[θ̇
∗
P (O)] +OP

(
Rα(P̂ , P ) + R̃β(P̂ , P )

)
+ oP (n

−1/2)

where remainder term, omitting inputs for brevity, is given by

R̃β(P , P ) = EP

[
A
(
1− η1

η1

)(
(ε1 − ε1)− (ξ − ξ)

)

+
RE(µ0 − µ0)

λ1η1π + λ0η0(1− π)

{
λ1π

(η1
η1

− 1
)
+ (λ1π − λ1π) + λ1π

(
1− η0λ0(1− π)

η0λ0(1− π)

)}

+ (1− A)
π

1− π

{
Y (γ′ − γ′)− (χ′ − χ′)

}]

Moreover, if Rα(P̂ , P )+R̃β(P̂ , P ) = oP (n
−1/2) then

√
n
(
θ̃EIF−θ(P )

) d→ N
(
0,VarP [θ̇

∗
P (O)]

)
,

attaining the semiparametric efficiency bound induced by Assumption 4.

Corollary S3.1 Under the conditions of Lemma S3 and assuming that P (δ ≤ 1−π̂ ≤ 1−δ)

for some δ > 0, P (η̂a > ϵ) = 1 for some ϵ > 0, a ∈ {0, 1}, P (λ̂0 > c) = 1 for some c > 0
and EP [Y

2] ≤ M < ∞
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Rα(P̂ , P ) + R̃β(P̂ , P ) = OP

(
∥η̂1 − η1∥

{
∥ε̂1 − ε1∥+ ∥ξ̂ − ξ∥

}
+ ∥η̂0 − η0∥

{
∥γ̂ − γ∥+ ∥χ̂− χ∥

}

+ ∥µ̂0 − µ0∥
{
∥η̂1 − η∥+ ∥λ̂1 − λ1∥+ ∥π̂ − π∥+ ∥η̂0 − η0∥+ ∥λ̂0 − λ0∥

})

Asymptotic Behavior of θ̂IF

Analogous to Corollary 2.1, we note that an influence function for θ(P ) follows directly
from α̇′

P (O) and β̇′
P (O) by θ̇′∗P (O) = 1

α(P )

(
β̇′
P (O)− θ(P )α̇′

P (O)
)
.

Lemma S4 If ∥α̇′
P̂
− α̇P∥ = oP (1), ∥β̇′

P̂
− β̇P∥ = oP (1), α(P ) > 0, and P

[∣∣Pn

(
α̇′
P̂
(O)

)∣∣ ≥
ϵ
]
= 1 for some ϵ > 0, then

θ̂IF − θ(P ) = Pn[θ̇
′∗
P (O)] +OP

(
R′

α(P̂ , P ) +R′
β(P̂ , P )

)
+ oP (n

−1/2)

Moreover, if R′
α(P̂ , P )+R′

β(P̂ , P ) = oP (n
−1/2) then

√
n
(
θ̂IF− θ(P )

) d→ N
(
0,VarP [θ̇

′∗
P (O)]

)

Corollary S4.1 Under the conditions of Lemma S4 and Corollary 3.1

R′
α(P̂ , P ) +R′

β(P̂ , P ) = OP

(
∥η̂1 − η1∥

{
∥ν̂ − ν∥+ ∥ω̂1 − ω1∥

}
+ ∥µ̂0 − µ0∥∥û− u∥

)

Asymptotic Behavior of θ̃IF

Lemma S5 If ∥α̇P̂ − α̇P∥ = oP (1), ∥β̇P̃ − β̇P∥ = oP (1), α(P ) > 0, and P
[∣∣Pn

(
α̇P̂ (O)

)∣∣ ≥
ϵ
]
= 1 for some ϵ > 0, then

θ̃IF − θ(P ) = Pn[θ̇
∗
P (O)] +OP

(
R′

α(P̂ , P ) + R̃′
β(P̂ , P )

)
+ oP (n

−1/2)

where remainder term, omitting inputs for brevity, is given by

R̃′
β(P , P ) = EP

[
A
(
1− η1

η1

)
(ν − ν) +

RE(µ0 − µ0)

λ1η1π + λ0η0(1− π)

{
λ1π

(η1
η1

− 1
)
+ (λ1π − λ1π) + λ1π

(
1− η0λ0(1− π)

η0λ0(1− π)

)}]

Moreover, if R′
α + R̃′

β = oP (n
−1/2) then

√
n
(
θ̃IF − θ(P )

) d→ N
(
0,VarP [θ̇

′∗
P (O)]

)
.

Corollary S5.1 Under the conditions of Lemma S3 and Corollary S3.1

R′
α(P̂ , P ) + R̃′

β(P̂ , P ) = OP

(
∥η̂1 − η1∥

{
∥ω̂1 − ω1∥+ ∥ν̂ − ν∥

}
+ ∥η̂0 − η0∥

{
∥γ̂ − γ∥+ ∥χ̂− χ∥

}

+ ∥µ̂0 − µ0∥
{
∥η̂1 − η∥+ ∥λ̂1 − λ1∥+ ∥π̂ − π∥+ ∥η̂0 − η0∥+ ∥λ̂0 − λ0∥

})
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There are a few comments worth pointing out regarding these asymptotic results. To
begin with θ̂EIF and θ̃EIF have the same asymptotic distribution, and likewise with θ̂IF
and θ̃IF. Of course, the asymptotic results rely on slightly different assumptions regarding
respective von Mises remainder terms. Moreover, performance may not be the same in
finite samples. Given the appearance of λ in remainder terms for both θ̃EIF and θ̃IF, these
estimators may be unrealistic in practice unless Le

m is low dimensional and one is willing
to entertain a parametric model for Le

m.

It’s also worth noting that θ̂IF and θ̃IF do not attain the semiparametric efficiency bound
induced by Assumption 4. Nevertheless, studying the form of R′

α(P̂ , P )+R′
β(P̂ , P ), there is

some clear appeal to the estimator θ̂IF. To begin with, consistency only requires that η1 and
one of the typical ATT nuisance functions are consistent, even if nested nuisance function
ν is inconsistent. This is in contrast to θ̂EIF which requires η1 and η0 to both be consistent
if any nested nuisance function is inconsistent, which could be more challenging if there is
significant differential missingness by treatment status, and/or interactions between A and
L∗. Altogether, the optimal choice of estimator may be problem specific based on which
assumptions an analyst is most likely to entertain, as well as the complexity of component
nuisance functions.

S4 Additional Simulation Information

S4.1 Simulation Data Generating Process

Simulated data were generated following the factorization of the observed data likelihood
according to the following steps. In the below steps, we let βf and Xf respectively denote
the coefficient vector and design matrix relevant to nuisance function f(·).

1. Draw L∗ from the observed set of non-eligibility defining covariates in the DURABLE
database.

2. Sample surgery type A | L∗ ∼ Bernoulli
(
π(L∗)

)
where logit[π(L∗)] = βT

πXπ

3. Sample complete case indicatorR |L∗, A ∼ Bernoulli
(
η(L∗, A)

)
where logit[η(L∗, A)] =

βT
η Xη

4. Sample A1c according to (Le
m − 3) | L∗, A,R = 1 ∼ Gamma

(
αλ, b(L

∗, A)
)
with rate

parameter b(L∗, A) = αλ

EP [Le
m | L∗,A,R=1]

, and we parameterize log(EP [L
e
m | L∗, A,R =

1]) = βT
λXλ

5. Sample 3 year weight loss Y |L∗, A,R = 1, Le
m ∼ N

(
µA(L

∗, Le
m), σ

2
y

)
where µA(L

∗, Le
m) =

βT
µXµ

6. For subjects with R = 0, set the value of Le
m to be missing (NA).

Figure S1 illustrates estimates of µ̂0 on a single simulated dataset across the six flexible
strategies outlined in the main paper in comparison to estimates of µ̂0 from the correctly
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Figure S1: Estimates of µ̂0 on a single simulated dataset across 6 nonparametric strategies compared
with estimates of µ̂0 from the correctly specified parametric model. Points are stratified by surgical site
and self-reported smoking status, two covariates in L∗ which have interactions with surgical procedure A
in µ.

specified parametric model. Clearly there is some variability in how well these strategies can
estimate the complex form of µ, and thus perhaps the performance of different estimators
for θ(P ).
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S4.2 Simulation Parameters

Model Information
Value

Component Model Coefficient Covariate
(Intercept) 0.96
site[NC] -0.64
site[SC] -0.96

gender 2.7× 10−2

race 0.35

baseline bmi 1.6× 10−2

smoking status[former] -0.29
smoking status[never] -0.23

smoking status[no self report] -0.32

baseline age 3× 10−3

Treatment βπ

eGFR −5× 10−3

(Intercept) 0.38
site[NC] -0.38
site[SC] 0.79
gender -0.15
race 0.10

baseline bmi −2× 10−2

smoking status[former] 0.44
smoking status[never] 0.32

smoking status[no self report] -2.58

baseline age 1.1× 10−2

eGFR −1× 10−4

Missingness βη

bs type 0.50
(Intercept) 1.06
site[NC] 0.23
site[SC] -0.24
gender -0.10

race −6.9× 10−2

baseline bmi −7.5× 10−3

I(baseline bmiˆ2) 1× 10−4

smoking status[former] −5.7× 10−2

smoking status[never] −7.6× 10−2

smoking status[no self report] −9.4× 10−2

baseline age 9.2× 10−3

eGFR 7× 10−4

Eligibility Defining Covariate
βλ

bs type 0.10
αλ --- 4.83

(Intercept) -0.24

bs type 3.3× 10−2

site[NC] 0.18
site[SC] 0.14
gender -0.14

race −1.5× 10−2

baseline bmi −3.8× 10−3

smoking status[former] 3.8× 10−2

smoking status[never] 4.9× 10−2

smoking status[no self report] -0.15

baseline age 9.7× 10−4

eGFR 1.4× 10−4

baseline a1c 2.2× 10−4

bs type:baseline a1c 3.8× 10−3

gender:baseline a1c 4.8× 10−3

gender:baseline bmi 2× 10−3

smoking status[no self report]:bs type 0.17

smoking status[never]:bs type −2.4× 10−2

smoking status[former]:bs type −2.4× 10−2

site[NC]:bs type -0.12

βµ

site[SC]:bs type -0.10

Outcome

σ2
y --- 1× 10−2

Table S1: Coefficients values used to generate simulated datasets
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S5 Additional Data Application Information

S5.1 Methodological Details

In this section, we provide some additional details on the data application which were
omitted from the main text due to space constraints.

Model Specifications

• L∗: surgery site, race, sex, age, estimated glomerular filtration rate (eGFR), self
reported smoking status, hypertension, dyslipidemia, and calender year of surgery

• Le
m: baseline BMI, baseline A1c, T2DM medication usage, DiaRem score (remission

outcome only)

• A: RYGB (A = 1) vs. SG (A = 0)

• Y : % weight change at 3 years post surgery (continuous), remission of T2DM at any
point within 3 years post surgery (binary)

As mentioned in the main text, T2DM status is a discrete covariate which has no variance
among the study eligible population, and thus it is not included in modeling any component
nuisance functions, even though it may reasonably be considered in Le

m if desired. While
several medication types were considered for establishment of T2DM status, when modeling
nuisance functions, we only considered an indicator of insulin usage in the corresponding
lookback window, as insulin is typically utilized when other common T2DM medications
fail to achieve desired level of gylcemic control (10).

θ̂EIF and θ̂EF were estimated with the SL1 set of SuperLearner libraries. For nuisance
functions with continuous modeling targets (µ, ξ, γ, χ, ν), these libraries included random
forest (SL.ranger), linear models (SL.lm), and multivariate adaptive polynomial regres-
sion spline (SL.polymars). For binary modeling targets (η, u, ε, ω), these libraries included
random forest (SL.ranger), generalized linear models (SL.glm), and generlized additive
models (SL.gam). Rather than just use a single candidate random forest learner, all nui-
sance models used 27 candidate random forest learners over a grid of three important
hyperparameters.

• mtry (number of predictors that will be randomly sampled at each split): {0.5, 1, 2}×
⌊√p⌋, where p denotes the rank of the corresponding design matrix

• num.trees (number of trees used for prediction): {250, 500, 1000}

• min.node.size (minimal node size to split at): {5, 30, 50}

Finally, both outcome model µ and propensity score u were trained only using eligible
subjects. Given that the contributions of these nuisance functions to β(P ) are only non-
zero for eligible subjects, this is strictly decision of whether one believes they can model
these contributions better by including ineligible subjects, and thus increasing sample size,
or by getting a smaller but more narrow training set for the model which better reflects
the patient who ultimately contribute.
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θ̂CC and θ̂IWOR used a linear model for the outcome regression, also fit among ascer-
tainably eligible subjects by definition. The following A × L interactions were specified,
motivated by existing bariatric surgery literature (11, 12).

• % Weight Change: Sex, Age, Race, Baseline BMI

• Diabetes Remission: Sex, Age, Baseline A1c, DiaRem

Additional Missing Data Considerations
The focus of this work was on missingness in eligibility defining covariates Le, and thus
implicit to this work was the assumption that there was no missingness in other variables. In
practice, in EHR-based observational studies, there is likely to be missingness elsewhere,
which was the case in our data application. While the missingness was not nearly as
pervasive as in eligibility defining covariates, we describe additional missing data challenges
and our approach in dealing with such challenges in the data application.

In our application on bariatric surgery, there was no missingness in treatment A, which
may not be the case in all applications. Only a single covariate in L∗, baseline eGFR, was
missing for a small number of subjects. Estimated glucose filtration rate is a function of
serum creatinine, age, and sex (13), so whenever eGFR was missing it because a patient’s
serum creatinine value was not available. Similar to previous work by Benz et al. (14), we
imputed missing serum creatinine values (prior to operationalizing the eligibility criteria)
using a gamma GLM and used the imputed value to compute eGFR.

Recall that covariatesLe
m are used in two nuisance functions, µa(L

∗,Le
m) and u(L∗,Le

m),
and that furthermore, in our application, we estimated these models using eligible complete
cases (E = 1, R = 1) rather than all complete cases (R = 1) given that their respective
influence function contributions are multiplied by E and thus do not contribute if E = 0.
Nevertheless, because T2DM status could be established without a baseline A1c measure
for a small subset of patients, baseline A1c was not available for use as an important
confounder. For study eligible patients without available A1c, we imputed A1c values
using a gamma GLM as in previous work (14). Imputation was not used to retroactively
determine study eligibility (eg., to determine T2DM status or DiaRem score).

Finally, weight change at 3 years was computed following the method of Thaweethai et
al. (15), and could be missing if patients were missing a baseline BMI and/or were missing
a weight measure within ± 6 months of 3 years post-surgery. Given that outcomes Y are
in the conditioning set for several nuisance functions used by θ̂EIF, we decided to impute
weight outcomes when missing so that we could illustrate the use of θ̂EIF. In our application,
% weight change outcomes were missing far less frequently than study eligibility. In other
applications, outcome missingness might be more pervasive, which might motivate analysts
to consider using θ̂IF instead of θ̂EIF, as the former does not use Y in the conditioning set
of any component nuisance function. We used a two tiered approach towards imputing
outcomes: if baseline BMI was available, we imputed % weight change at 3 years via linear
regression using A,L∗, and baseline BMI as predictors; if baseline BMI was not available
we imputed % weight change at 3 years via linear regression using A,L∗.

That our (eligibility) complete case analysis closely matches the results reported by
McTigue et al. (12) suggests that the small amount of imputation did not substantively
drive any observed results.
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S5.2 Additional Figures
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Figure S2: Distribution of (n11, n10) for diabetes remission outcome, where nre denotes the number of
ways of operationalizing the study eligibility criteria that a subject has R = r, E = e. This figure is
analogous to Figure 2 in the main text, which shows the same distribution for the relative weight change
outcome.
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Figure S3: Distributions of select nuisance function estimates from θ̂EIF related to ascertainment (η̂) and
eligibility (ε̂) for diabetes remission outcome.
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Figure S4: Distributions of nested nuisance function estimates from θ̂EIF (ξ̂, γ̂, χ̂) and θ̂IF (ν̂) for relative
weight change outcome.
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S6 Alternative Covariate Partitioning

S6.1 Notation and Assumptions

In this section, we explore an alternative way of partitioning baseline covariates L. In
particular, we show that though this partitioning may facilitate assumptions which are
slightly more parsimonious than those in the main paper, identification of θeligATT is much
more complex. In this exploration, we partition L as follows:

• Le,c
m : Eligibility defining covariates with some degree of missingness, which are not

confounders

• Le,c
m : Eligibility defining covariates with some degree of missingness, which are con-

founders

• L∗,c: Completely observed covariates which are confounders

• L∗,c: Completely observed covariates which are not confounders (but may for example
be necessary to predict missingness in Le

The connection to this covariate partitioning and the one utilized in the majority of the
work is given by Le

m = (Le,c
m ,Le,c

m ) and L∗ = (L∗,c,L∗,c) Assumptions are as follows:

Assumption 1: Y (A) = Y | E = 1
Assumption 3′: Y (a) ⊥⊥ A | L∗,c,Le,c

m , E = 1 for a ∈ {0, 1}
Assumption 2′: ∃ ϵ > 0 such that 0 < ϵ ≤ P (A = 1 | L∗,c,Le,c

m , E = 1) ≤ 1 − ϵ < 1,
almost surely
Assumption 4: R ⊥⊥ (Y,Le

m) | L∗, A
Assumption 5: ∃ ϵ > 0 such that 0 < ϵ ≤ P (R = 1 | L∗, A), almost surely

While Assumptions 1, 4 and 5 remain unchanged, Assumptions 2′ and 3′ only require con-
founders Le,c

m and L∗,c rather than all of L.

We introduce some additional nuisance functions for identification of θeligATT in the following
section. Not all of these nuisance functions appear in the identification result, but several
are useful shorthand for quantities which appear at various points in the derivation process.

Λa(L
e,c
m ;L∗,c) = p(E = 1,Le,c

m | A = a,L∗,c, R = 1)

δa(L
e,c
m ;L∗,c) =

∫

L∗,c
p(Le,c

m | A = a,L∗,c, ℓ∗,c, R = 1)dℓ∗,c

κ(L∗,c) = P (A = 1 | L∗,c)

ρ(Le,c
m ,L∗,c) = P (A = 1 | E = 1,Le,c

m ,L∗,c, R = 1)

σ(L∗,c) = P (A = 1 | L∗,c, R = 1)
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S6.2 Identification of θeligATT Under Alternative Covariate Partition

Theorem S1 Under Assumptions 1, 2′, 3′, 4, and 5, θeligATT is identified by ζ(P )
α(P )

where

ζ(P ) = EP

[
REY

{
A

η(L∗, 1)
− (1− A)

η(L∗, 0)
· κ(L∗,c)ρ(Le,c

m ,L∗,c)
(
1− σ(L∗,c)

)
(
1− κ(L∗,c)

)(
1− ρ(Le,c

m ,L∗,c)
)
σ(L∗,c)

}]

α(P ) = EP

[
ARE

η(L∗, 1)

]

Proof : We first note that the following result holds unchanged, given that it only relied
on consistency (A1) and Lemma S1.

EP [Y (1) | A = 1, E = 1] = EP [Y | A = 1, E = 1] =
EP [EY | A = 1]

P (E = 1 | A = 1)

Moreover, the identification of EP [EY | A=1]
P (E=1 | A=1)

remains unchanged. In the notation of this
updated covariate partitioning, we have

P (E = 1 | A = 1) = EP [EP (E | L∗, A = 1) | A = 1)]

= EP [EP (E | L∗, A = 1, R = 1) | A = 1)] (A4, A5)

= EP

[
EP

(
RE

η(L∗, 1)

∣∣∣ L∗, A = 1

) ∣∣∣ A = 1

]
(Lemma S1, Defn. of η)

= EP

[
RE

η(L∗, 1)

∣∣∣ A = 1

]

=

EP

[
ARE

η(L∗,1)

]

P (A = 1)
(Lemma S1)

=
α(P )

P (A = 1)

EP [EY | A = 1] = EP [EP (EY | L∗,Le
m, A = 1) | A = 1)]

= EP [EEP (Y | L∗,Le
m, A = 1) | A = 1)] (E = g(Le, A), fixed function of Le, A)

= EP [EEP (Y | L∗,Le
m, A = 1, R = 1) | A = 1)] (A4, A5)

= EP

[
EEP

(
RY

P (R = 1 | L∗,Le
m, A = 1)

∣∣∣ L∗,Le
m, A = 1

) ∣∣∣ A = 1

]
(Lemma S1)

= EP

[
E

η(L∗, 1)
EP [RY | L∗,Le

m, A = 1]
∣∣∣ A = 1

]
(A4, A5)

= EP

[
RE

η(L∗, 1)
Y

∣∣∣ A = 1

]

=
EP

[
ARE

η(L∗,1)Y
]

P (A = 1)
(Lemma S1)
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Thus we have that

EP [Y (1) | A = 1, E = 1] =
EP

[
ARE

η(L∗,1)Y
]

α(P )

Things become more complicated for EP [Y (0) | A = 1, E = 1] because the set of covariates
to satisfy the assumption of no unmeasured confounding (Le,c

m ,L∗,c) is no longer sufficient
to define eligibility or satisfy MAR (A4). In particular

EP [Y (0) | A = 1, E = 1]

= EP [EP (Y (0) | A = 1, E = 1,L∗,c,Le,c
m ) | A = 1, E = 1]

= EP [EP (Y (0) | A = 0, E = 1,L∗,c,Le,c
m ) | A = 1, E = 1] (A2′, A3′)

= EP [EP (Y | A = 0, E = 1,L∗,c,Le,c
m ) | A = 1, E = 1] (A1)

= EP

[
EP

(
EP [Y | A = 0, E = 1,L∗,Le

m]
∣∣ A = 0, E = 1,L∗,c,Le,c

m

) ∣∣∣ A = 1, E = 1
]

= EP

[
EP

(
EP [Y | A = 0,L∗,Le

m]
∣∣ A = 0, E = 1,L∗,c,Le,c

m

) ∣∣∣ A = 1, E = 1
]

(E = g(Le, A), fixed)

= EP

[
EP

(
EP [Y | A = 0,L∗,Le

m, R = 1]
∣∣ A = 0, E = 1,L∗,c,Le,c

m

) ∣∣∣ A = 1, E = 1
]

(A4, A5)

= EP

[
EP

(
µ0(L

∗,Le
m)

∣∣ A = 0, E = 1,L∗,c,Le,c
m

) ∣∣∣ A = 1, E = 1
]

Repeated application of Lemma S1 yields

EP

[
EP

(
µ0(L

∗,Le
m)

∣∣ A = 0, E = 1,L∗,c,Le,c
m

) ∣∣∣ A = 1, E = 1
]

= EP

[
E

P (E = 1 | A = 1)
EP

(
µ0(L

∗,Le
m)

∣∣ A = 0, E = 1,L∗,c,Le,c
m

) ∣∣∣ A = 1

]
(Lemma S1)

= EP

[
EA

α(P )
EP

(
Eµ0(L

∗,Le
m)

P (E = 1 | A = 0,L∗,c,Le,c
m )

∣∣∣ A = 0,L∗,c,Le,c
m

)]
(Lemma S1)

= EP

[
EA

α(P )
EP

(
(1− A)

P (A = 0 | L∗,c,Le,c
m )

Eµ0(L
∗,Le

m)

P (E = 1 | A = 0,L∗,c,Le,c
m )

∣∣∣ L∗,c,Le,c
m

)]
(Lemma S1)

= EP

[
EP [EA | L∗,c,Le,c

m ]

α(P )

(1− A)

P (A = 0 | L∗,c,Le,c
m )

Eµ0(L
∗,Le

m)

P (E = 1 | A = 0,L∗,c,Le,c
m )

]

= EP

[
1− A

α(P )
· P (A = 1 | L∗,c,Le,c

m )P (E = 1 | A = 1,L∗,c,Le,c
m )

P (A = 0 | L∗,c,Le,c
m )P (E = 1 | A = 0,L∗,c,Le,c

m )
Eµ0(L

∗,Le
m)

]
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Next we see that

P (E = 1 | A = a,L∗,c,Le,c
m ) =

p(E = 1,Le,c
m | A = a,L∗,c)

p(Le,c
m | A = a,L∗,c)

(Bayes Rule)

=
p(E = 1,Le,c

m | A = a,L∗,c)∫
L∗,c p(L

e,c
m | A = a,L∗,c, ℓ∗,c)dℓ∗,c

=
p(E = 1,Le,c

m | A = a,L∗,c, R = 1)∫
L∗,c p(L

e,c
m | A = a,L∗,c, ℓ∗,c, R = 1)dℓ∗,c

(A4, A5)

=
Λa(L

e,c
m ;L∗,c)

δa(L
e,c
m ;L∗,c)

Similarly,

P (A = a | L∗,c,Le,c
m ) =

p(Le,c
m | A = a,L∗,c)P (A = a | L∗,c)∑1

a′=0 p(L
e,c
m | A = a′,L∗,c)P (A = a′ | L∗,c)

(Bayes Rule)

=
P (A = a | L∗,c)

∫
L∗,c p(L

e,c
m | A = a,L∗,c, ℓ∗,c)dℓ∗,c

∑1
a′=0 P (A = a′ | L∗,c)

∫
L∗,c p(L

e,c
m | A = a′,L∗,c, ℓ∗,c)dℓ∗,c

=
P (A = a | L∗,c)

∫
L∗,c p(L

e,c
m | A = a,L∗,c, ℓ∗,c, R = 1)dℓ∗,c

∑1
a′=0 P (A = a′ | L∗,c)

∫
L∗,c p(L

e,c
m | A = a′,L∗,c, ℓ∗,c, R = 1)dℓ∗,c

(A4, A5)

=
P (A = a | L∗,c)δa(Le,c

m ;L∗,c)∑1
a′=0 P (A = a′ | L∗,c)δa′(L

e,c
m ;L∗,c)

Thus our expression simplifies to

EP

[
1− A

α(P )
· P (A = 1 | L∗,c,Le,c

m )P (E = 1 | A = 1,L∗,c,Le,c
m )

P (A = 0 | L∗,c,Le,c
m )P (E = 1 | A = 0,L∗,c,Le,c

m )
Eµ0(L

∗,Le
m)

]

= EP

[
1− A

α(P )
· κ(L∗,c)Λ1(L

e,c
m ;L∗,c)(

1− κ(L∗,c)
)
Λ0(L

e,c
m ;L∗,c)

Eµ0(L
∗,Le

m)

]

= EP

[
1− A

α(P )
· κ(L∗,c)Λ1(L

e,c
m ;L∗,c)(

1− κ(L∗,c)
)
Λ0(L

e,c
m ;L∗,c)

EEP

(
R

η(L∗, 0)
Y

∣∣∣∣ A = 0,L∗,Le
m

)]
(Lemma S1)

= EP

[
1− A

α(P )
· κ(L∗,c)Λ1(L

e,c
m ;L∗,c)(

1− κ(L∗,c)
)
Λ0(L

e,c
m ;L∗,c)

EEP

(
R(1− A)

η(L∗, 0)
(
1− u(L∗,Le

m)
)Y

∣∣∣∣ L∗,Le
m

)]
(Lemma S1)

= EP

[
(1− A)REY

η(L∗, 0)
· κ(L∗,c)Λ1(L

e,c
m ;L∗,c)(

1− κ(L∗,c)
)
Λ0(L

e,c
m ;L∗,c)

]/
α(P )

Finally, we use a trick similar to the one in Section S2.1 to re-express the density ratio
Λ1(L

e,c
m ;L∗,c)

Λ0(L
e,c
m ;L∗,c) as a ratio of treatment probabilities.

30



Λ1(L
e,c
m ;L∗,c)

Λ0(L
e,c
m ;L∗,c)

=
P (E = 1,Le,c

m | A = 1,L∗,c, R = 1)

P (E = 1,Le,c
m | A = 0,L∗,c, R = 1)

=
P (E = 1,Le,c

m , A = 1,L∗,c, R = 1)/P (A = 1,L∗,c, R = 1)

P (E = 1,Le,c
m , A = 0,L∗,c, R = 1)/P (A = 0,L∗,c, R = 1)

=
P (A = 1 | E = 1,Le,c

m ,L∗,c, R = 1)/P (A = 1 | L∗,c, R = 1)

P (A = 0 | E = 1,Le,c
m ,L∗,c, R = 1)/P (A = 0 | L∗,c, R = 1)

=
ρ(Le,c

m ,L∗,c)
(
1− σ(L∗,c)

)

σ(L∗,c)
(
1− ρ(Le,c

m ,L∗,c)
)

Combining piece, we obtain the desired result, that

θeligATT = EP [Y (1) | A = 1, E = 1]− EP [Y (0) | A = 1, E = 1]

=
1

α(P )

{
EP

[
ARE

η(L∗, 1)
Y

]
− EP

[
(1− A)REY

η(L∗, 0)
· κ(L∗,c)ρ(Le,c

m ,L∗,c)
(
1− σ(L∗,c)

)
(
1− κ(L∗,c)

)(
1− ρ(Le,c

m ,L∗,c)
)
σ(L∗,c)

]}

=
ζ(P )

α(P )

Though θeligATT can still be identified under this alternative covariate partitioning, the
derivation of any influence function would likely entail something similar to Λa or δa,
possibility in a nested form. As such, further pursuing (efficient) influence function-based
estimation techniques may yield estimators which are computationally very difficult to work
with in practice.
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