
Fast, Space-Optimal Streaming Algorithms for Clustering and
Subspace Embeddings

Vincent Cohen-Addad∗ Liudeng Wang† David P. Woodruff‡ Samson Zhou§

Abstract

We show that both clustering and subspace embeddings can be performed in the streaming
model with the same asymptotic efficiency as in the central/offline setting.

For (k, z)-clustering in the streaming model, we achieve a number of words of memory which is
independent of the number n of input points and the aspect ratio ∆, yielding an optimal bound of
Õ
(

dk
min(ε4,εz+2)

)
words for accuracy parameter ε on d-dimensional points. Additionally, we obtain

amortized update time of d log(k) · polylog(log(n∆)), which is an exponential improvement over
the previous dpoly(k, log(n∆)). Our method also gives the fastest runtime for (k, z)-clustering
even in the offline setting.

For subspace embeddings in the streaming model, we achieve O(d) update time and space-
optimal constructions, using Õ

(
d2

ε2

)
words for p ≤ 2 and Õ

(
dp/2+1

ε2

)
words for p > 2, showing

that streaming algorithms can match offline algorithms in both space and time complexity.

∗Google Research. E-mail: cohenaddad@google.com.
†Texas A&M University. E-mail: eureka@tamu.edu
‡Carnegie Mellon University. E-mail: dwoodruf@andrew.cmu.edu.
§Texas A&M University. E-mail: samsonzhou@gmail.com.

ar
X

iv
:2

50
4.

16
22

9v
1

 [
cs

.D
S]

 2
2

A
pr

 2
02

5

mailto:cohenaddad@google.com
mailto:eureka@tamu.edu
mailto:dwoodruf@andrew.cmu.edu
mailto:samsonzhou@gmail.com

1 Introduction
The streaming model of computation is a powerful framework for processing large-scale datasets
that are too vast to be stored in memory. In the streaming setting, algorithms must quickly make
decisions based on a sequence of updates that are irrevocably discarded after processing, without the
possibility of revisiting past data. The primary challenge is to design algorithms that can efficiently
approximate, compute, or detect properties of the underlying dataset, while ensuring both fast
update time and using memory that is sublinear in both the dataset size and the length of the
data stream. This model is well-suited for applications in data summarization, where the goal is
to extract meaningful insights from large, evolving datasets. Such applications include clustering,
which is widely applied in domains such as customer segmentation, anomaly detection in network
traffic, and pattern recognition in sensor networks, as well as subspace embeddings, which reduce
dimensionality in areas including image processing, recommendation systems, and natural language
processing. Despite significant progress, it remained open whether such fundamental tasks inherently
require more space or time in the streaming model compared to their offline counterparts.

Clustering and data streams. Clustering is a fundamental problem that seeks to partition a
dataset so that similarly structured points are grouped together and differently structured points
are separated. Variations of clustering are used across a wide range of applications, including
bioinformatics, combinatorial optimization, computational geometry, computer graphics, data
science, and machine learning. In the Euclidean (k, z)-clustering problem, the input is a set X of n
points x1, . . . , xn ∈ Rd, a cluster parameter k > 0, and a positive integer exponent z > 0, and the
goal is to minimize the clustering cost across all sets C of at most k centers:

min
C⊂Rd,|C|≤k

cost(X, C) := min
C⊂Rd,|C|≤k

n∑
i=1

min
c∈C
∥xi − c∥z2.

For z = 1 and z = 2, respectively, the (k, z)-clustering problem corresponds to the well-known
k-median and k-means clustering problems.

For clustering in the standard insertion-only streaming model, the points x1, . . . , xn of X arrive
sequentially along with an input accuracy parameter ε > 0. The goal is for each time t ∈ [n] to find
a clustering Ct on the prefix Xt of the first t points of X with cost that is a (1 + ε)-multiplicative
approximation of the optimal clustering of Xt. To that end, note that a set C of k centers implicitly
defines the overall clustering, since each point is assigned to the closest cluster center. In fact, it is
not feasible to directly output a label for every point in X using space sublinear in n = |X|, and so
in some sense, outputting C is the most reasonable objective we can hope for. We also remark that
due to bit representation, input points cannot be represented in arbitrary precision and thus we
generally rescale the points in X to lie within the grid {1, . . . ,∆}d.

Subspace embeddings and data streams. Subspace embeddings are a fundamental tool in
dimensionality reduction, enabling the preservation of algebraic and geometric structure, while
significantly reducing data dimensionality. The problem has been extensively studied, with applica-
tions spanning theoretical computer science, machine learning, randomized linear algebra, scientific
computing, and data science. In the subspace embedding problem, the input is once again a set A
of n points x1, . . . , xn ∈ Rd, which induces a matrix A ∈ Rn×d, where typically n≫ d. Given an
accuracy parameter ε > 0, the goal is to construct a matrix M such that for all vectors x ∈ Rd,

(1− ε)∥Mx∥p ≤ ∥Ax∥p ≤ (1 + ε)∥Ax∥p,

– 1 –

where ∥ · ∥p denotes the Lp norm of a vector. In the standard insertion-only streaming model, the
rows of A arrive sequentially and at each time t ∈ [n], the goal is to find a subspace embedding for
the matrix At consisting of the first t rows of A.

Streaming algorithms and coresets. The most common approach for both fast and space-
efficient streaming algorithms for data summarization problems such as (k, z)-clustering and subspace
embeddings is to collect a small weighted subset of the points from the input dataset. For clustering,
this forms a (strong) coreset Zt at time t, which is a data structure that preserves the clustering cost
for any choice C of k centers, i.e., cost(Xt, C) ≈ cost(Zt, C). We can then perform an efficient (k, z)-
clustering algorithm on each coreset Zt to identify an optimal or near-optimal set of cluster centers.
For subspace embeddings, this forms a coreset Mt at time t, from which we can approximately
extract ∥Atx∥2 for any x ∈ Rd, i.e., ∥Mtx∥2 ≈ ∥Atx∥2. Naturally, smaller coreset constructions
correspond to both faster and more space-efficient algorithms.

In the offline setting where the input dataset X is given upfront and there are no space restrictions,
there exist coreset constructions for both clustering and subspace embeddings that sample a number
of weighted points that is independent of the size of the input. For (k, z)-clustering, there exist coreset
constructions [CSS21, CLSS22, HLW23, CLS+22] that sample Õ

(
min

(
1
ε2 · k2− z

z+2 , 1
min(ε4,ε2+z) · k

))
weighted points of X1, where we use Õ (f) for a function f to denote f · polylog(f). Similarly
for subspace embeddings, there exist coreset constructions that sample Õ

(
d
ε2

)
weighted rows of

A [DMM06a, DMM06b, Mag10, Woo14]. These coreset constructions have size that is independent
of the size n of the input dataset, which is especially important as modern datasets often consist of
hundreds of millions of points.

On the other hand, despite a long line of work on clustering in the streaming model [HM04,
HK07, Che09, FL11, BFLR19, CWZ23, WZZ23], all known results achieved space overheads with
dependencies in n, compared to the offline setting. A natural question is thus:

Is there an inherent space complexity cost for data summarization problems, such as
(k, z)-clustering and subspace embeddings, in the streaming model?

Input size and runtime. We remark that even in the offline setting, where the entire input is
given, Ω(nd) runtime is necessary simply to process a dataset of size n in d-dimensional space. Thus,
Ω(nd) runtime is necessary for both (k, z)-clustering and subspace embeddings without additional
assumptions on the input. The lower bound is matched by an offline algorithm that uses O (nd)
runtime for subspace embeddings by [CW13] and nearly matched, up to a logarithmic factor, by an
offline algorithm that uses O (nd log(n∆)) runtime for (k, z)-clustering by [DSS24]. We ask:

Is there an inherent time complexity cost for data summarization problems, such as
(k, z)-clustering and subspace embeddings, in the streaming model?

1.1 Our Contributions

We present a unified technique that resolves the above questions for both (k, z)-clustering and
subspace embeddings, showing there is no overhead for working in the streaming model for either
space complexity or time complexity. At a high level, the technique is summarized in Figure 1.
However, efficiently implementing each of the steps is challenging and requires structural properties
to each specific problem. We provide a technical overview of these steps in Section 1.2.

1Note that the bound is actually Õ
(

min
(

k3/2

ε2 , k
min(ε4,ε2+z)

))
for k-means and Õ

(
min

(
k4/3

ε2 , k
min(ε4,ε2+z)

))
for

k-median.

– 2 –

(1) Given a stream S of length n, use a crude sampling scheme to generate a stream S ′ of
length n1−Ω(1).

(2) Use S ′ and a refined sampling scheme that takes longer to compute but generates a stream
S ′′ of length polylog(n), omitting dependencies in other parameters.

(3) Finally, run merge-and-reduce on S ′′ to produce a coreset C.

(4) Produce an efficient encoding of C using a constant-factor global encoding.

Fig. 1: High-level summary of our approach

Clustering. We describe the applications of our technique in Figure 1 in the context of (k, z)-
clustering. Our first main result is the following:

Theorem 1.1 (Fast and space-optimal clustering). Given a set X of n points on [∆]d and
an accuracy parameter ε ∈ (0, 1), there is a one-pass insertion-only streaming algorithm that
uses Õ

(
dk

min(ε4,ε2+z)

)
words of space and d log(k) · polylog(log(n∆)) amortized update time and

outputs a (1 + ε)-strong coreset of X.

Theorem 1.1 has a number of implications. First, the amortized runtime of Theorem 1.1 is an
exponential improvement for dependencies in k and logn over existing work [HK20, BCLP23,
BCG+24]. Indeed, the fastest existing algorithm due to [BCLP23, BCG+24] uses amortized update
time k · polylog(n) for constant d, whereas we use log(k) · polylog(log(n∆)) amortized update
time. Thus, Theorem 1.1 is the first result to show that (k, z)-clustering can be performed in the
insertion-only streaming model with amortized update time sublinear in the number k of clusters.

In general, it is known that Ω(nk) runtime is necessary for even a constant-factor approximation
to the metric (k, z)-clustering problem [BCLP23], which would imply an Ω(k) lower bound for
update time amortized over the stream. However, inputs to data streams require bounded bit
precision and thus are intrinsically more appropriate for Euclidean (k, z)-clustering, where it was
previously unclear whether the Ω(nk) total runtime lower bounds held. Our result in Theorem 1.1
shows that they do not.

Streaming algorithm Amortized Update Time

[HK20] k2 · polylog(n∆)

[BCLP23, BCF24] k · polylog(n∆)

Theorem 1.1 (this work) log(k) · polylog(log(n∆))

Fig. 2: Table of (k, z)-clustering algorithms on data streams, omitting linear dependencies in the
dimension d. We remark that [HK20, BCLP23, BCF24] can handle the fully-dynamic setting,
whereas ours cannot. However, our algorithm uses sublinear space while theirs does not.

Additionally, Theorem 1.1 is the first result to achieve (k, z)-clustering on insertion-only streams
using Ok,d,ε(1) words of space, i.e., space usage independent of n. Despite a long line of work on
clustering in the streaming model [HM04, HK07, Che09, FL11, BFLR19, BBC+19, WZZ23], the
majority of previous results achieved space overheads that were polylogarithmic in n, compared to
the offline setting. In a recent breakthrough work, [CWZ23] gave a streaming algorithm for (k, z)-
clustering that uses ok,d,ε(log(n∆)) words of space. However, their algorithm requires exponential

– 3 –

time to process each stream item. Hence, the question remains whether we can achieve space
complexity independent of n altogether or even if we can achieve efficient update time with space
overhead that is even polylogarithmic in n. Theorem 1.1 shows that we can simultaneously
achieve both, i.e., space complexity (in words) entirely independent of n, while also achieving
log(k) · polylog(log(n∆)) amortized update time. In particular, our results match the best known
offline coreset constructions [CSS21, CLSS22] in terms of dependencies on d, k, and 1

ε in the
space, and thus match or improve upon the space usage of all previous streaming algorithms for
insertion-only streams across all factors. See Theorem 3.22 for a more formal statement and Figure 3
and Figure 2 for a comprehensive summary for the time and space complexity of existing results in
the streaming model.

Streaming algorithm Words of Memory

[HK07], z ∈ {1, 2} Õ
(

dk1+z

εO(d) logd+z n
)

[HM04], z ∈ {1, 2} Õ
(

dk
εd log2d+2 n

)
[Che09], z ∈ {1, 2} Õ

(
d2k2

ε2 log8 n
)

[FL11], z ∈ {1, 2} Õ
(

d2k
ε2z log1+2z n

)
Sensitivity and rejection sampling [BFLR19] Õ

(
d2k2

ε2 logn
)

Online sensitivity sampling Õ
(

d2k2

ε2 log2 n
)

Merge-and-reduce with coreset of [CLSS22] Õ
(

dk
min(ε4,ε2+z) log4 n

)
[CWZ23] Õ

(
dk

min(ε4,ε2+z)

)
· polylog(logn)

Theorem 1.1 (this work) Õ
(

dk
min(ε4,ε2+z)

)
Fig. 3: Table of (k, z)-clustering algorithms on insertion-only streams. We summarize existing results
with z = O (1), ∆ = poly(n), and the assumption that k > 1

εz for the purpose of presentation.

Moreover, we note that Theorem 1.1 also implies that we can efficiently compute the approxi-
mately optimal centers for (k, z)-clustering in the incremental setting as well. In particular, given
an insertion-only stream of n points that defines a dataset X on [∆]d, our one-pass streaming
algorithm uses d log(k) · polylog(log(n∆)) amortized update time and Õ (dk log(n∆)) bits of space,
and outputs an O (z)-approximation to (k, z)-clustering at all times in the stream. We show this
in Theorem 3.23. Additionally, Theorem 1.1 surprisingly even gives the best known runtime for
(k, z)-clustering in the offline setting.

Theorem 1.2. Given an dataset X of n in [∆]d, there is an algorithm that uses nd log(k) ·
polylog(log(n∆)) runtime and outputs an O (z)-approximation to the (k, z)-clustering problem.

Previously, the best existing (k, z)-clustering algorithms use (nd+nk)·polylog(n∆) runtime, by using
bicriteria approximations [AV07] in conjunction with dimensionality reduction [CEM+15, BBC+19,
MMR19, ISZ21] and importance sampling [HV20, CSS21, CLSS22] to construct a coreset, which is

– 4 –

then given as input to any polynomial-time approximation algorithm such as local search [GT08].
By comparison, Theorem 1.2 has exponentially better dependencies on both k and log(n∆).

In concurrent and independent works, techniques by [DSS24, lTHS24] can be used to achieve
offline algorithms for (k, z)-clustering that use O (nd log(n∆k)) runtime, while [lTS24] achieved
an algorithm that uses O

(
n1+Ω(1)d log(n∆k)

)
runtime, for the setting of ∆ = poly(n). In the

same spirit as Theorem 1.2, these works observed that the Ω(nk) lower bound of [BCLP23] is not
necessarily for Euclidean clustering. However, our result is faster across all settings.

Finally, we remark on the implications of our techniques to communication complexity. Our
approach in Theorem 1.1 uses a black-box reduction that utilizes an efficient encoding for any coreset
construction. For instance, if k < 1

ε2 , it may be desirable to use existing coreset constructions of
size Õ

(
k2

ε2

)
rather than Õ

(
k

εz+2

)
; our algorithm transitions to this case smoothly. In fact, our

algorithm actually uses Õ (dk log(n∆)) + dk
min(ε4,ε2+z) · polylog

(
k, 1

ε , log(n∆)
)

bits of space, i.e., the
1
ε factors do not multiply the log(n∆) factors. Therefore, our results are near-optimal with a recent
lower bound on the communication complexity of clustering [ZTHH24].

Subspace embeddings. We next show the applications of our technique in Figure 1 to the
problem of Lp subspace embeddings. In addition to structural results about efficient encodings for
Lp subspace embeddings, our main result is the following:

Theorem 1.3. Given a matrix A of n rows on [−M, . . . ,−1, 0, 1, . . . ,M]d, with M = poly(n)
and online condition number κ, there exists a one-pass streaming algorithm in the row arrival
model that outputs a (1 + ε)-strong coreset of A and amortized runtime is O (d) per update.
For p ∈ [1, 2], the algorithm uses Õ

(
d2

ε2

)
words of space, while for p > 2, the algorithm uses

Õ
(

dp/2+1

ε2

)
words of space.

We first emphasize that the amortized runtime of Theorem 1.3 translates to an offline algorithm
with O (nd) runtime. Since any offline algorithm requires O (nd) time to read the input, without
additional assumptions, our result is tight and shows that there is no inherent time complexity
separation between the offline setting and the streaming model for Lp subspace embeddings.

We next remark on the differing behaviors across the ranges of p. This is not a coincidence, as
[LWW21] showed that any constant-factor Lp subspace embedding for p ≥ 2 requires Ω(dmax(p/2,1)+1)
bits. Thus, our result has tight dependencies in terms of the dimension d.

Moreover, existing algorithms based on using merge-and-reduce with the optimal coreset con-
structions for Lp subspace embeddings require poly(d, logn) bits of space, e.g., Õ

(
d2

ε2

)
·polylog(n) for

p ≤ 2 [DMM06a, DMM06b, Sar06] and Õ
(

dp/2+1

ε2

)
· polylog(n) for p > 2 [CP15, WY23]. Similarly,

schemes based on online sampling also require poly(d, logn) bits of space, e.g., Õ
(

d2

ε2

)
· polylog(n)

for p ≤ 2 [CMP20] and Õ
(

dp/2+1

ε2

)
· polylog(n) for p > 2 [CP15, BDM+20, WY23]. Hence, it was

unknown whether there is an inherent separation between the offline setting and the streaming
model for coreset constructions for Lp subspace embeddings. Theorem 1.3 resolves this question,
showing that there is no overhead for the streaming model – we can perform Lp subspace embedding
in Od,ε(1) bits of space. See Figure 4 and Theorem 4.19 for more details.

– 5 –

Streaming algorithm Words of Memory

Merge-and-reduce with coreset of [DMM06a, DMM06b, Sar06], p ≤ 2 Õ
(

d2

ε2

)
· polylog(n)

Online leverage score sampling [CMP20], p = 2 Õ
(

d2

ε2 logn
)

Online sensitivity sampling [BDM+20], p ≤ 2 Õ
(

d3

ε2 logn
)

Online Lewis weight sampling [WY23], p ≤ 2 Õ
(

d2

ε2 logn
)

Theorem 1.1 (this work), p ≤ 2 Õ
(

d2

ε2

)
Merge-and-reduce with coreset of [DDH+09], p ≥ 1 Õ

(
dmax(p/2+1,p)+2

ε2 log3 n
)

Merge-and-reduce with coreset of [CP15], p ≥ 2 Õ
(

dp/2+1

poly(ε)

)
· polylog(n)

Online Lewis weight sampling [WY23], p > 2 Õ
(

dp/2+1

ε2

)
· polylog(n)

Theorem 1.1 (this work), p > 2 Õ
(

dp/2+1

ε2

)
Fig. 4: Table of Lp subspace embedding algorithms on insertion-only streams. We summarize
existing results with κ = poly(n) for the purpose of presentation.

1.2 Technical Overview

In this section, we provide a high-level intuition behind our framework and how to efficiently
implement each step in Figure 1. Recall that given a stream S of length n, we first use a crude
sampling scheme to generate a stream S ′ of length n1−Ω(1). Then, we use a refined sampling scheme
on S ′, which provides a significantly more efficient compression of the input, but requires longer
time to compute, resulting in a stream S ′′. However, because these operations are performed on
the input stream S ′ of length o(n), then these slower operations can be amortized into lower-order
terms that do not multiply a linear term in n. Finally, we run merge-and-reduce on S ′′ to produce
a coreset C, which we store using an efficient encoding to optimize the final space complexity.

1.2.1 Fast Update Time for Clustering

For any point x in a fixed dataset X, the (k, z)-clustering sensitivity of x is defined by s(x) =
maxC⊂Rd:|C|≤k

cost(x,C)
cost(X,C) , where the cost function is a sum of the z-th power of the distances [FL11,

FS12, BFL+21, CWZ23, WZZ23]. When the dataset is evolving, the online sensitivity of xt is
the (k, z)-clustering sensitivity of x with respect to Xt = {x1, . . . , xt}, so that it quantifies the
“importance” of xt with respect to the points of the stream that have already arrived. A standard
approach in streaming algorithms for (k, z)-clustering is to sample each point x with probability
proportional to its online sensitivity, resulting in poly

(
k, 1

ε , log(n∆)
)

samples.
To efficiently implement Figure 1, we first compute a crude but fast approximation to the

sensitivity of each point. Note that since the total sensitivity sums to O (k), then even nα-
approximation to the sensitivities, where α ∈ (0, 1), will sample nα · poly

(
k, 1

ε , log(n∆)
)

= o(n)
points, forming the new insertion-only stream S ′ of length o(n). Unfortunately, it is not clear how

– 6 –

to efficiently acquire even crude approximations to the online sensitivities; this is the main runtime
bottleneck in achieving o(k) amortized update time.

(k, z)-clustering sensitivity to (k, z)-medoids sensitivity. To that end, we first define the
(k, z)-medoids sensitivity of x with respect to the dataset X for (k, z)-clustering sensitivity by
τ(x) = maxC⊂X:|C|≤k

cost(x,C)
cost(X,C) ; we define the online sensitivities analogously. Note that for the

medoids formulation, the k centers must be among the input set X, which for our purposes will
be the coreset maintained by the algorithm, rather than the original input. Hence, we can assume
|X| = poly

(
k, d, log(n∆), 1

ε

)
. We show that the (k, z)-medoids sensitivity τ(x) is a constant-factor

approximation to the (k, z)-clustering sensitivity s(x) as follows.
First, note that the maximization of the ratio cost(x,C)

cost(X,C) is over a smaller search space for the
possible values of C in the medoids formulation and thus τ(x) ≤ s(x). To show s(x) ≲ τ(x), we
first recall that the optimal (k, z)-clustering and (k, z)-medoids clustering costs are within a factor
of 2O(z) due to the generalized triangle inequality. Hence if we fix C to be a set of centers that
maximizes s(x), let c be the closest center of C to x and let R be the set of points of X served by
c, then it suffices to show that there exists c′ ∈ X such that cost(x,c)

cost(R,c) ≈
cost(x,c′)
cost(R,c′) , as we can find a

2O(z)-approximate clustering of X \R using k − 1 other medoids.
For k-medoids, we perform casework on the size of the set P of points that are closer to x than

to c. If |P | < 0.99|R|, then by a simple Markov-type argument, we can show there exists some
y ∈ R \ P such that cost(y, c) ≤ 100

r · cost(R, c), but since y /∈ P , then y is closer to c than y is
to x. Thus by setting y to be a k-medoids center, it follows from the triangle inequality that the
cost of clustering R with y instead of c cannot change by much. Moreover, the distance between
x and y is similar to the distance between x and c, so that τ(x) ≈ s(x). On the other hand, if
|P | ≥ 0.99|R|, then there is a large number of points which are closer to x than to c by definition of
P and hence cost(x,c)

cost(R,c) = O (1) |R|. However, we can choose the point c′ of P farthest away from x,
so that cost(x,c′)

cost(R,c′) ≥
1

2|R| and thus τ(x) ≈ s(x) again.

Constrained (k, z)-medoids clustering with a fixed center. We next show how to approxi-
mately solve the constrained medoids clustering problem min cost(X,C) across all sets C ⊂ X of k
centers containing a center at p. Suppose C is the optimal such constrained clustering. Let S be a
constant-factor approximation to the optimal unconstrained (k, z)-medoids clustering on X, which
can be efficiently computed by local search [GT08]. We show that the best clustering obtainable
from swapping a center in S with {p} is a good approximation to C.

Specifically, let W be the set of k− 1 centers W ⊆ S such that W ∪ {p} has the minimum (k, z)-
medoids clustering cost on X, and let C ′ = W ∪{p}. Let Q be the set of at most k centers of S∪{p}
consisting of the nearest neighbors to C. For each y ∈ X, let πC(y) be the center in C closest to y
Then we can use the triangle inequality to charge cost(y,Q) in terms of cost(y, πC(y))+cost(πC(y), Q).
Since cost(πC(y), Q) ≤ cost(πC(y), S ∪ {p}) ≤ cost(πC(y), S), we can use the triangle inequality to
charge cost(πC(y), Q) to cost(y, C) + cost(y, S). Finally, because C ′ is the k centers among S ∪ {p},
summing across all y ∈ X we can upper bound cost(X,C ′) ≤ cost(X,Q) in terms of cost(X,C) and
cost(X,S) and hence, simply in terms of cost(X,C).

However, finding C ′ requires finding W , the best set of k − 1 centers W ⊆ S, which does not
immediately seem like an easy algorithmic task. To that end, we approximate cost(X,C ′) by first
performing the following bookkeeping on S. For each center s ∈ S, we compute the number ns (or

– 7 –

weight) of the points of X served by s. We then compute the distance rs from s to its closest center
in S \ {s} and show the clustering cost after removing s would approximately increase by ns · (rs)z.

Next, we need to update this information for each query p that we guess to serve x in the
optimal constrained solution. Rather than updating the information for each center s ∈ S, we
instead show that it suffices to update the information for just the nearest neighbor u ∈ S to p. We
then remove the center s with the smallest ns · (rs)z to find W and thus C ′. Finally, we show that
cost(X,S) + nc · (rc)z is both efficiently computable given our pre-processing information and also a
good approximation to cost(X,C ′).

Constrained (k, z)-medoids clustering with a fixed closest/serving center. Although C ′ is
a set of k centers that contains our guess p for the center that realizes the sensitivity of x, it may not
hold that p is the closest center in C ′ to x. Thus we must further utilize C ′ to approximately solve
the constrained clustering problem min cost(X,C) across all sets C ⊂ X of k centers containing a
center at p and no other centers that are closer to x than p. Let C be the optimal solution to this
constrained problem and let r := ∥x− p∥2. Our first observation is that any points served by some
center c ∈ C ′ in the ball Br/2(x) of radius r

2 around x must be served in C by a center outside the
interior of the ball Br(x) of radius r around x. In fact, if nb is the number (or weight) of points
served by centers of C ′ in Br/2(x), then we would expect these points to incur additional cost nb · rz

in cost(X,C).
Unfortunately, it is not true that cost(X,C ′) + nb · rz is a good approximation to cost(X,C)

because there may be a large number of points served by a single center q at some distance dq ∈
[

r
2 , r
)

from x. However, since we did not include these points in nb, then they are effectively not moved to
outside of Br(x). Hence, it is possible that cost(X,C) is significantly larger than cost(X,C ′)+nb ·rz.

The natural approach would be to include these points in the computation of nb, so that perhaps
we instead compute n′

b to be the number of points served by centers of C ′ inside Br(x) and then
effectively move them to a center Br(x) via cost(X,C ′) + n′

b · rz. This still does not work because
there can be a large number of points served by a center q inside but arbitrarily close to the boundary
of Br(x); in this case, cost(X,C ′) + n′

b · rz is a significant over-estimate of cost(X,C).
The crucial observation is that we do not need to handle either of these cases because in both

of these cases, there exists a different point p′ in the annulus between Br(x) and Br/2(x) that
approximately realizes the (k, z)-medoids sensitivity of x, such that these bad cases do not hold for
p′. In particular, these problematic centers would be outside the ball of radius ∥p′ − x∥2 centered at
x and so the resulting clustering is valid for the constraint of p′ serving x.

On the other hand, we must still ensure our approximation cost(X,C ′) + n′
b · rz does not

significantly overestimate the sensitivity. Thus if na is number of points served by centers in the
annulus between Br(x) and Br/2(x), we show that if nb ≥ na, then rz

cost(X,C′) is a good estimate to
cost(x,C)
cost(X,C) . Otherwise if nb < na, then we show that rz

cost(X,C′) is an overestimate of cost(x,C)
cost(X,C) but still

upper bounded by the desired (k, z)-medoids sensitivity τ(x), up to a constant factor.

Crude quadtree for crude approximations. Finally, to implement our crude sampling proce-
dure in Figure 1, we create a quadtree for the input set, e.g. [IT03, BIRW16, CLN+20]. Traditionally,
each cell of a level of a quadtree has half the side length of a cell of an adjacent level in the quadtree.
However, because we only seek nα-approximation, we permit each cell of a level to have side length
1

nα fraction of the side length of the adjacent level. This significantly decreases the number of levels
in the quadtree to a constant number of levels overall, provided that ∆ = poly(n), rather than

– 8 –

O (log ∆) levels in the standard quadtree. We then run the same algorithm above searching up the
levels of the quadtree rather than the radially outward ball.

Specifically, we estimate the distance of the center serving the point x whose sensitivity we wish
to approximate. Each estimate of a possible distance corresponds to a separate level in the quadtree.
For a fixed level β in the quadtree, we first take a constant-factor approximation to the unconstrained
(k, z)-clustering problem to find a crude-approximation to the optimal (k, z)-clustering constrained
to having a center in the same cell as x at level β. Our algorithm provides an estimate Ψ of
this cost by deleting the center that increases the overall cost the least, among the centers in the
constant-factor solution adjoined with a center in the same cell as x at level β. We then ensure that
x is served by a center at level β by moving all centers in the same cell as x before level β “upward”
until level β by computing the number (or weight) nβ of points served by these centers in Ψ and
again increasing Ψ by nβ · rz, where r is the distance estimated by the quadtree for a center serving
x at level β.

1.2.2 Optimal Space Clustering in the Streaming Model

The two most common approaches for (k, z)-clustering on insertion-only streams are merge-and-
reduce and online sensitivity sampling. Informally, merge-and-reduce partitions the stream into
consecutive blocks, builds a binary tree on the sequence of blocks, and then maintains a coreset
for the points corresponding to each node in the tree. On the other hand, the online sensitivity
approach samples each point xt of the stream with probability proportional to its online sensitivity,
a quantity that measures the importance of xt with respect to the points of the stream that have
already arrived. However, it is known these approaches cannot immediately be used to achieve our
goal of streaming algorithms with space (in words) independent of n. we describe these approaches
and others, as well as their shortcomings in more detail in Section 2.1.

Recent insight by [CWZ23] observed that merge-and-reduce requires space that is polylogarithmic
in the length of the input stream, while running online sensitivity sampling induces an insertion-only
stream S ′ of length poly

(
k, d, log(n∆), 1

ε

)
of weighted points that forms a (1 + ε)-coreset of the

input points. By running merge-and-reduce on S ′, we acquire a (1 +O (ε))-coreset for the original
stream using an algorithm that stores polyk,d,ε(log log(n∆)) weighted points.

Efficient encoding of coreset points. To achieve our goal of Ok,d,ε(1) space (in words), we
thus need a more efficient encoding of each point, rather than representing each point using
O (d log(n∆)) bits of space. Suppose we have a set C ′ of O (k) centers that is a constant-factor
approximation to the optimal (k, z)-clustering on X. We can noisily encode X by writing each
x ∈ X as x = πC′(x) + (x − πC′(x)), where πC′(x) is the closest center of C ′ to x. We then
round each coordinate of x − πC′(x) by rounding each coordinate to a power of (1 + ε′) for
ε′ = poly

(
ε, 1

d ,
1

log(n∆)

)
to form a vector y′. Hence, given C ′, each vector x′ = πC′(x) + y′

can be encoded using O
(
log k + d log 1

ε′

)
, since we can store the exponents of the offsets. It is

known [CWZ23, ZTHH24] that if X ′ is the set of all points of X rounded in this manner, then X ′

is a (1 + ε)-coreset for X. Moreover, we can round the weights of X ′ to powers of (1 + ε′), thereby
efficiently encoding each coreset in the merge-and-reduce framework to improve the overall space
complexity of the problem.

Unfortunately, storing C ′ itself uses O (kd logn) bits and the merge-and-reduce tree on S ′ has
height O

(
logk,d,ε(|S|)

)
= polylogk,d,ε(log(n∆)) and therefore requires at least the same number of

– 9 –

coresets to be simultaneous stored. Thus the total space remains O (kd logn) · polylogk,d,ε(log(n∆)).

Global encoding. To overcome this issue, we provide a single constant-factor approximation
to the global dataset, rather than providing a constant-factor approximation for each level of the
merge-and-reduce tree. Namely, we observe that whenever we need to do a merge operation at some
time t, we use the stored coreset to recompute a constant-factor approximation C ′ to Xt. For each
coreset for a subset Sv of data points representing a node v in the tree, we can then perform the
efficient encoding with respect to C ′ instead of a separate constant-factor approximation. Although
each encoding no longer guarantees (1 + ε)-multiplicative approximation to cost(Sv, C) for a query
set C of k centers, it still guarantees ε′ · (Xt, C) additive error to cost(Sv, C), which suffices for a
(1 + ε)-approximation to cost(Xt, C) after summing across all subsets Sv at time t.

1.2.3 Subspace Embeddings

Finally, we briefly describe how our framework in Figure 1 can achieve fast space-efficient algorithms
for subspace embeddings. However, it is not immediately obvious how to utilize a constant-factor
subspace embedding M ∈ Rm×d of the input matrix A ∈ Rn×d to achieve an efficient encoding,
especially since the dimensions are different. One possible approach is to project A onto M and
round the resulting rows, but the rounding process could result in large error to due cancellation of
rounded entries. For example, suppose that after the projection, there is a row r = (A,B) for some
large values of A,B > 0. By rounding each coordinate of r to the nearest power of (1 + ε′) for some
ε′ = poly

(
ε

d,log(nM)

)
, we obtain a row r′ = (A′, B′). Now for v = (B,−A), we have ⟨v, r⟩ = 0, but

⟨v, r′⟩ can be as large as ε′ · (|A|+ |B|). Moreover, this error can compound across all rows of the
matrix A so that the resulting additive error to the estimate ∥Av∥pp could be as large as ε′p · ∥A∥pp.

We instead observe that the correct procedure is to first multiply the matrix A with a precondi-
tioner so that none of its rows can contribute a large amount to the error. To that end, we first use
a well-conditioned basis to compute a preconditioner P ∈ Rd×d and multiply each row of A, so that
for all vectors x ∈ Rd with ∥Ax∥p = 1, we have that 1

poly(d) ≤ ∥APx∥p ≤ poly(d). In particular,
the maximum possible additive error ⟨v, r′⟩ for each row r can be charged to the sensitivity of r,
and it follows that the sum of the errors due to the rounding can be at most ε′ · poly(d). Since
ε′ = poly

(
ε

d,log(nM)

)
, then the overall error is O (ε), which achieves a subspace embedding because

∥Ax∥p = 1. For a row bt = atP, we then round each entry of bt to the nearest power of (1 + ε′)
and store the exponent as before. We can then also achieve a streaming algorithm by compressing
the entire merge-and-reduce tree, as before.

Fast runtime. Finally, we implement the approach in Figure 1 to achieve fast runtime. We first
produce crude but fast nα-approximations to the Lp sensitivities using the root leverage scores.
These can be quickly produced using a quadratic form of the constant-factor approximation that
we maintain at each time. In particular, given a constant-factor subspace embedding B to A,
the leverage score of a row ai with respect to A is a constant factor multiple of a⊤

i (B⊤B)−1ai.
Now we can approximate this quantity using ∥gZai∥22, where g is a random Gaussian vector and
Z = (B⊤B)−1/2. To relate this quantity to the Lp sensitivities, we show that the square root of
the leverage score is within poly(n) factors of the true Lp sensitivities. Thus by sampling each row
with the crude approximations, we then induce a stream of length o(n) for which we can amortize
existing approaches that use poly(d) update time. For more details, see the intuition in Section 4.

– 10 –

1.3 Preliminaries

Given an integer n > 0, we use the notation [n] to represent the set {1, . . . , n}. We use poly(n) to
represent a fixed polynomial in n and polylog(n) to represent poly(logn). We say an event occurs
with high probability if it occurs with probability at least 1− 1

poly(n) .
In this paper, we will focus on the Euclidean clustering, as opposed to inputs from a general

metric space. As is often standard in the streaming literature, we assume ∆ = poly(n) and thus we
allow each word of space to use Θ(log(nd∆)) bits of storage, so that we can store the weight and each
coordinate of each point using O (1) words of space. Thus for vectors x, y ∈ Rd, we use dist(x, y) to
represent the Euclidean distance ∥x− y∥2, so that ∥x− y∥22 = ∑d

i=1(xi− yi)2. More generally, given
a point x and a set S, we abuse notation by representing dist(x, S) := mins∈S dist(x, s). We also
recall the Lz norm of x is defined by ∥x∥z, where ∥x∥zz = ∑d

i=1 x
z
i . For a matrix A ∈ Rn×d, we use

∥A∥F to denote the Frobenius norm, so that

∥A∥2F =
∑
i∈[n]

j ∈ [d]A2
i,j .

For a fixed z ≥ 1 and sets X,C ⊂ Rd with X = {x1, . . . , xn} we use cost(X,C) to denote∑n
i=1 dist(xi, C)z.

We first recall the generalized triangle inequality:

Fact 1.4 (Generalized triangle inequality). For any z ≥ 1 and x, y, z ∈ Rd, we have

dist(x, y)z ≤ 2z−1(dist(x,w)z + dist(w, y)z).

Next, we recall the definition of a strong coreset for (k, z)-clustering.

Definition 1.5 (Coreset). Given an approximation parameter ε > 0, and a set X of points
x1, . . . , xn ∈ Rd with distance function dist, a coreset for (k, z) clustering is a set S with weight
function w such that for any set C of k points, we have

(1− ε)
n∑

t=1
dist(xt, C)z ≤

∑
q∈S

w(q)dist(q, S)z ≤ (1 + ε)
n∑

t=1
dist(xt, C)z.

We use the following coreset construction for (k, z)-clustering:

Theorem 1.6. [CLSS22, HLW23, CLS+22] Given an accuracy parameter ε ∈ (0, 1), there exists a
coreset construction for Euclidean (k, z)-clustering that samples Õ

(
min

(
1
ε2 · k2− z

z+2 , 1
min(ε4,ε2+z) · k

))
weighted points of the input dataset.

We next recall the standard Johnson-Lindenstrauss transformation:

Theorem 1.7 (Johnson-Lindenstrauss lemma). [JL84] Let ε ∈
(
0, 1

2

)
and m = O

(
1
ε2 logn

)
. Let

X ⊂ Rd be a set of n points. There exists a family of random linear maps Π : Rd → Rm such that
with high probability over the choice of π ∼ Π,

(1− ε)∥x− y∥2 ≤ ∥πx− πy∥2 ≤ (1 + ε)∥x− y∥2,

for all x, y ∈ X.

– 11 –

We next recall the following standard concentration inequality:

Theorem 1.8 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables such that
ai ≤ Xi ≤ bi, and let Sn = ∑n

i=1Xi. Then

Pr [|Sn − E [Sn] | > t] ≤ 2 exp
(
− t2∑n

i=1(bi − ai)2

)
.

2 Clustering
In this section, we describe the efficient encoding for coresets for (k, z)-clustering, as well as a global
encoding that be utilized to achieve a one-pass streaming algorithm on insertion-only streams for
(k, z)-clustering using Ok,d,ε(1) words of space. We begin with a number of preliminaries.

We first formally define the sensitivity and online sensitivity of each point x in a dataset X for
(k, z)-clustering.

Definition 2.1 (Sensitivities for (k, z)-clustering). The sensitivity of a point x ∈ X for (k, z)-
clustering in a metric space equipped with metric dist is

max
C:|C|≤k

cost(x,C)
cost(X,C) = max

C:|C|≤k

dist(x,C)z∑
x∈X dist(x,C)z

.

Definition 2.2 (Online sensitivity for (k, z)-clustering). Let x1, . . . , xn be a sequence of points
with metric dist and define Xt := {x1, . . . , xt} for all t ∈ [n]. The online sensitivity of xt for
(k, z)-clustering is

max
C:|C|≤k

cost(xt, C)
cost(Xt, C) = max

C:|C|≤k

dist(xt, C)z∑t
i=1 dist(xi, C)z

.

We have the following upper bound on the sum of the online sensitivities, i.e., the total online
sensitivity.

Theorem 2.3. [CWZ23] Let X = {x1, . . . , xn} ⊂ [∆]d be a sequence of n points and let σ(xt)
denote the online sensitivity of xt for t ∈ [n] for (k, z)-clustering, where z ≥ 1. Then

n∑
t=1

σ(xt) = O
(
22zk log2(nd∆)

)
.

We next recall the guarantees of online sensitivity sampling, in terms of both correctness and
sample complexity.

Theorem 2.4 (Online sensitivity sampling). [CWZ23] Given a sequence x1, . . . , xn of points, suppose
each point xt is sampled with probability pt ≥ min(1, γ · σ(xt)), where σt is the online sensitivity of
xt and γ = O

(
dk
ε2 log n∆

ε

)
and weighted 1

pt
if xt is sampled. Then with high probability, the weighted

sample is a (1 + ε)-strong coreset for (k, z)-clustering that contains at most O
(

dk2

ε2 log3 n∆
ε

)
points.

2.1 Background for Optimal Space Clustering in the Streaming Model

We first describe common approaches for clustering in the streaming setting. Even though they
incur logarithmic overheads in the size n of the dataset compared to offline coreset constructions,
their intuition will nevertheless be helpful towards our main algorithm.

– 12 –

Merge-and-reduce. Merge-and-reduce [BS80, HM04] is a standard approach on insertion-only
streams for (k, z)-clustering, as well as many other problems for which there exist coreset construc-
tions. Given a dataset X ⊂ [∆]d of size n, the number k of clusters, an accuracy parameter ε, a
failure probability δ, suppose there exists a coreset construction algorithm for (k, z)-clustering that
samples and reweights f(n, d, k, ε, δ) points of X. The merge-and-reduce framework first partitions
the stream into consecutive blocks of size f(n, d, k, ε′, δ′), where ε′ = ε

O(log n) and δ′ = δ
poly(n) . It

then creates a coreset with accuracy (1 + ε′) and failure probability δ′ for each block of the stream.
Each of these coresets uses space f(n, d, k, ε′, δ′) and can be viewed as the leaves of a binary tree
with height O (logn). For each node in the tree at depth ℓ, the merge-and-reduce framework then
takes the points that are in the coresets in its children nodes at depth ℓ+ 1 and constructs a coreset
with accuracy (1 + ε′) for these points.

Observe that the coreset at the root of the tree is a coreset for the entire dataset of the stream.
Moreover, each node is the coreset of the coresets of its children nodes, so the entire merge-and-reduce
process can be performed on-the-fly during the evolution of an insertion-only stream. Although
each level of the merge-and-reduce tree induces a multiplication distortion of (1 + ε′), the accuracy
of the root node is (1 + ε′)O(log n) = (1 + ε) due to the setting of ε′ = ε

O(log n) . Unfortunately, the
optimal coreset constructions sample Õ

(
k
ε2

)
· min

(
k, 1

min(ε2,εz)

)
points [CSS21, CLSS22] and in

fact for certain regimes of ε, coreset constructions for (k, z)-clustering provably require Ω
(

k
εz+2

)
points [HLW23, CLS+22]. Therefore setting ε′ = ε

O(log n) in the merge-and-reduce approach would
incur logn factors that are prohibitive for our goal.

Offline sensitivity sampling. Another common approach is to adapt offline coreset constructions
to the streaming model. In particular, recent efforts [CWZ23, WZZ23] have been made to adapt
the sensitivity sampling framework [FL11, FS12, BFL+21] to data streams. The sensitivity of each
point x among a dataset X ⊂ Rd of n points measures the “importance” of the point x with respect
to X, for the purposes of (k, z)-clustering and, as per Definition 2.1, is defined by

max
C⊂Rd:|C|≤k

cost(x,C)
cost(X,C) = max

C⊂Rd:|C|≤k

dist(x,C)z∑
x∈X dist(x,C)z

.

There exist many variants of the sensitivity sampling framework, but the most relevant approach
is sampling each point independently without replacement with probability proportional to its
sensitivity, a process that can be shown to admit a coreset construction with high probability.

In fact, the argument is relatively straightforward. The analysis first fixes a set C of k centers
and shows that sensitivity sampling preserves the cost of clustering X with C in expectation. It then
upper bounds the variance of the cost of clustering C on the sampled points to show concentration.
Although there can be arbitrary number of choices for C, for k centers among Rd, it suffices to only
show correctness-of-approximation on a net of size

(
n
ε

)O(kd), which can be handled by adjusting the
probability of failure for each choice of C and then applying a union bound.

Unfortunately, the sensitivity of a point x is defined with respect to the entire dataset X, which
is unknown at the time of arrival of x in a data stream, and thus the sensitivity of x cannot be
computed or even well-approximated at that point.

Online sensitivity sampling. Instead, recent works have focused on online sensitivity sampling,
where the elements of the dataset X are ordered by the time of their arrival in the data stream,

– 13 –

so that X = {x1, . . . , xn}, where x1 is the first item in the stream and xn is the last item in the
stream. The online sensitivity of a point xt is then, as per Definition 2.2, defined by

max
C⊂Rd:|C|≤k

cost(xt, C)
cost(Xt, C) = max

C⊂Rd:|C|≤k

dist(xt, C)z∑t
i=1 dist(xi, C)z

,

where Xt is the subset consisting of the first t points of X. Note that while the sensitivity of a point
xt measures the importance of xt with respect to the entire dataset X, the online sensitivity of xt

measures the importance of xt with respect to the prefix of size t, a quantity that can be computed
at the time of arrival of xt. In particular, since online sensitivity sampling produces a (1 + ε)-coreset
of Xt−1, then the previously sampled points can be used to approximate the online sensitivity of xt.

The online sensitivity framework then samples each point with probability proportional to
its online sensitivity. We remark that although this process seemingly induces dependencies in
the analysis, a standard martingale and coupling argument shows correctness of online sensitivity
sampling. Unfortunately, as a result of the sampling probability, the total number of points sampled
is proportional to the sum of the online sensitivities of the points, which can be shown to be at least
Ω(k log(n∆)). Thus online sensitivity sampling would again incur logn factors that are prohibitive
for our goal.

2.2 Efficient Encoding for Coreset Construction for (k, z)-Clustering

We now give our efficient encoding for a given coreset for (k, z)-clustering. Given a dataset X,
which can be viewed as either the original input or a set of weighted points that forms a coreset of
some underlying dataset, we first acquire a constant-factor approximation C ′ for (k, z)-clustering
on X. For each x ∈ X, let πC′(X) be the closest center of C ′ to x. We then write each x ∈ X
as x = πC′(x) + (x− πC′(x)), thereby decomposing x into the closest center πC′(x) and its offset
x − πC′(x) from the center. We show that for the purposes of (1 + ε)-approximation for (k, z)-
clustering, we can afford to round each coordinate of x − πC′(x) to a power of (1 + ε′), where
ε′ = poly

(
ε, 1

d ,
1

log(n∆)

)
, forming a vector y′. Finally, we can store C ′ and thus encode the vector

x′ = πC′(x) + y′ using O
(
log k + d log

(
1
ε , d, log(n∆)

))
bits, by storing the identity of πC′(x) and

the exponent of the offset for each of the d coordinates. We give the algorithm in full in Algorithm 1.
To show correctness of our encoding, we first recall the following fact.

Fact 2.5 (Claim 5 in [SW18]). Suppose z ≥ 1, x, y ≥ 0, and ε ∈ (0, 1]. Then

(x+ y)z ≤ (1 + ε) · xz +
(

1 + 2z
ε

)z

· yz.

Given a constant-factor approximation C ′, we now show that the rounding X ′ of the dataset X
by representing each point as a rounded offset from its closest center in C ′ is a strong coreset of X.

Lemma 2.6. Let ε ∈
(
0, 1

2

)
and let X ′ be the weighted dataset S defined by their offsets from the

set C ′ of centers from Algorithm 1. Then for all C ⊂ [∆]d with |C| ≤ k,

(1− ε) · cost(C,X) ≤ cost(C,X ′) ≤ (1 + ε) · cost(C,X).

Proof. Let C be any fixed set of at most k centers. We abuse notation so that for each x ∈ X, we
use x′ to denote the corresponding point c(x) + y, where y′ = x− c′(x) is the offset, and y is y′ with

– 14 –

Algorithm 1 Efficient Encoding for Coreset Construction for (k, z)-Clustering
Input: Data set X ⊂ [∆]d with weight w(·), accuracy parameter ε ∈ (0, 1), number of clusters k,

parameter z ≥ 1, failure probability δ ∈ (0, 1)
Output: (1 + ε)-coreset for (k, z)-clustering

1: ε′ ← poly(εz)
poly(k,log(nd∆)

2: Find a set C ′ of k centers that is a constant-factor approximation to (k, z)-clustering on X
3: for each x ∈ X do
4: Let c′(x) be the closest center of C ′ to x
5: Let y′ be the offset x− c′(x)
6: Let y be y′ with coordinates rounded to a power of (1 + ε′)
7: Let x′ = (c′(x), y), storing the exponent for each coordinate of y
8: X ′ ← X ′ ∪ {x′}
9: return (C ′, X ′)

its coordinates rounded to a power of (1 + ε′). Similarly, we use c′ to denote c(x) ∈ C ′. Thus, we
have ∥x− x′∥2 ≤ ε′ · ∥c′ − x∥2 for all x ∈ X.

For ease of presentation, we first write X ′ so that the weights are not rounded to a power of
(1 + ε′). By the triangle inequality,

cost(C,X ′) =
∑

x′∈X′

(dist(x′, C))z ≤
∑

x′∈X′

(dist(x′, x) + dist(x,C))z.

Since dist(x, x′) = ∥x− x′∥2 ≤ ε′ · ∥c′ − x∥2 = ε′ · dist(x,C ′), then

cost(C,X ′) ≤
∑

x′∈X′

(
ε′ · dist(x,C ′) + dist(x,C)

)z
.

By Fact 2.5,

cost(C,X ′) ≤
∑

x′∈X′

((
1 + ε

2

)
· (dist(x,C))z +

(
1 + 4z

ε

)z

· (ε′ · dist(x,C ′))z
)
.

Thus,
cost(C,X ′) ≤

(
1 + ε

2

)
· cost(C,X) +

(
1 + 4z

ε

)z

(ε′)z · cost(C ′, X).

Since C ′ is a constant-factor approximation to the optimal (k, z)-clustering of X, then there exists
a constant γ ≥ 1 such that cost(C,X ′) ≤ γ · cost(C,X). Hence,

cost(C,X ′) ≤
((

1 + ε

2

)
+
(

1 + 4z
ε

)z

(ε′)z · γ
)
· cost(C,X).

Then for ε′ = poly(εz)
poly(k,log(nd∆) , we have that

cost(C,X ′) ≤
(

1 + 2
3ε
)
· cost(C,X),

which almost gives the right hand side of the inequality (due to the notation X ′ representing the
output prior to the rounding of the weights).

– 15 –

Similarly, by triangle inequality and dist(x, x′) ≤ ε′ · dist(x,C ′),

cost(C,X) =
∑
x∈X

(dist(x,C))z

≤
∑
x∈X

(dist(x, x′) + dist(x′, C))z

≤
∑

x′∈X′

(
ε′ · dist(x,C ′) + dist(x′, C)

)z
.

By Fact 2.5,

cost(C,X) ≤
(

1 + ε

2

)
· cost(C,X ′) +

(
1 + 4z

ε

)z

(ε′)z · cost(C ′, X)

≤
(

1 + ε

2

)
· cost(C,X ′) +

(
1 + 4z

ε

)z

(ε′)z · γ · cost(C,X).

Then for ε′ = poly(εz)
poly(k,log(nd∆) , we have that

cost(C,X) ≤
(

1 + ε

2

)
· cost(C,X ′) + ε

100 · cost(C,X),

so that
(
1− 2

3 · ε
)

cost(C,X) ≤ cost(C,X ′), which almost gives the left-hand side of the inequality
(due to the notation X ′ representing the output prior to the rounding of the weights).

Finally, since the weights are rounded to a power of (1 + ε′), then the cost can only change by
(1 + ε′). Since ε′ = poly(εz)

poly(k,log(nd∆) , then it follows that

(1− ε) · cost(C,X) ≤ cost(C,X ′) ≤ (1 + ε) · cost(C,X).

We now give the full guarantees of Algorithm 1, which gives an efficient encoding of an input set X.

Lemma 2.7. Let X be a coreset construction with weights bounded by [1,poly(nd∆)]. Then X ′ is
a (1 + ε)-strong coreset for X that uses O (dk log(n∆)) + |X| · polylog

(
k, 1

ε , log(nd∆), log 1
δ

)
bits of

space.

Proof. Algorithm 1 then outputs a set (C ′, X ′) that encodes X ′ using C ′. By Lemma 2.6, we have
that for all C ⊂ [∆]d with |C| ≤ k,

(1− ε) · cost(C,X) ≤ cost(C,X ′) ≤ (1 + ε) · cost(C,X).

Thus, X ′ is a strong coreset for X.
It remains to analyze the space complexity of (C ′, X ′). We first require C ′ to encode S. Since

C ′ is a set of k centers, then C ′ can be represented using O (dk log(n∆)) bits of space. Additionally,
each point x′ in X ′ is encoded using O

(
d log

(
1
ε + logn+ log ∆

))
bits of space due to storing the

d coordinates of the rounded offset y. In particular, we do not store the explicit coordinates, but
rather their exponents. Moreover, we use log k bits to store the closest center c′(x). Finally, each
weight has weight poly(nd∆) and thus can be approximated to (1 + ε)-multiplicative factor by
storing the exponent, using O (log log(nd∆)) bits of space. Therefore, the output of the algorithm
is encoded using O (dk log(n∆)) + |X| · polylog

(
k, 1

ε , log(nd∆), log 1
δ

)
total bits of space.

– 16 –

2.3 Clustering in the Streaming Model

In this section, we show how to use a global encoding combined with the efficient encoding from the
previous section in order to achieve our main algorithm for (k, z)-clustering on insertion-only data
streams.

The main shortcoming of immediately applying the previous efficient encoding to each node of
a merge-and-reduce tree is that the constant-factor approximation requires O (kd log(n∆)) bits of
storage per efficient encoding, and there can be polylog(log(n∆)) such efficient encodings due to
the height of the merge-and-reduce tree on a data stream produced by online sensitivity sampling.
Instead, we provide a single constant-factor approximation to the global dataset and show that the
error of maintaining such a global constant-factor approximation does not compound too much over
the course of the stream.

The algorithm appears in full in Algorithm 2.

Algorithm 2 (k, z)-Clustering on Insertion-Only Stream
Input: Data set X = {x1, . . . , xn} ⊂ Rd that arrives as a data stream, ε ∈ (0, 1), number of clusters

k, parameter z ≥ 1
Output: (1 + ε)-coreset for (k, z)-clustering

1: Z ← ∅, λ← O
(

k
ε2 · log k logn

)
2: for each t ∈ [n] do
3: Let x̂t be the image of xt after applying a JL transform into O (logn) dimensions
4: Use Z ∪ {x̂t} to compute a O (1)-approximation σ̂(xt) to the online sensitivity of xt

5: p(xt)← min(1, λ · σ̂(xt))
6: With probability p(xt), sample xt into a stream S ′ with weight 1

p(xt)
7: Let Z be the running output of merge-and-reduce on S ′ using the efficient encoding for

coreset construction in Algorithm 1 with a global constant-factor approximation, for accuracy
ε

poly(log log n∆) and failure probability 1
poly(1

ε
,log(n∆))

8: return Z

We first show that given a partition X1 ⊔ . . .⊔Xm of X, we can apply Algorithm 1 and although
the output X ′

i from our efficient encoding will no longer necessarily be a strong coreset for each
corresponding Xi, the resulting error will only be an additive ε′ · cost(X,C), which suffices for our
purposes. Specifically, we will have ε′ = ε

poly(log log(nd∆) and ultimately have m = poly(log log(nd∆)).

Lemma 2.8. Let X1⊔ . . .⊔Xm = X be a partition of X for m = poly(log log(nd∆)). Let C ′ be a set
of k centers that is a set C ′ of k centers that is a constant-factor approximation to (k, z)-clustering
on X. For each i ∈ [m], let X ′

i be the set of rounded points corresponding to Xi from Algorithm 1.
Then for all i ∈ [m] and all C ⊂ [∆]d with |C| ≤ k,

| cost(X ′
i, C)− cost(Xi, C)| ≤ ε

poly(log lognd∆) · cost(X,C).

Proof. Note that by Lemma 2.6 with accuracy ε
poly(log log nd∆) , we have

| cost(X ′, C)− cost(X,C)| ≤ ε

poly(log lognd∆) · cost(X,C).

– 17 –

Since
| cost(X ′

i, C)− cost(Xi, C)| ≤
m∑

i=1
| cost(X ′

i, C)− cost(Xi, C)| ≤ ε · cost(X,C),

then the claim follows.

It remains to give the full guarantees of Algorithm 2 by showing correctness of the global encoding
and in particular, that there is no compounding error across the poly(log log(nd∆)) iterations.

Theorem 2.9. Given a set X of n points on [∆]d, let f
(
n, d,∆, k, 1

ε , z
)

be the number of points
of a coreset construction with weights [1,poly(nd∆)] for (k, z)-clustering. Then Algorithm 2 out-
puts a (1 + ε)-strong coreset of X and uses O (dk log(n∆)) + f

(
n, d,∆, k, polylog(log(nd∆))

ε , z
)
·

polylog
(

1
ε , log(nd∆)

)
bits of space.

Proof. We first show that with high probability, the following invariants are satisfied at each time:

(1) σ̂(x1), . . . , σ̂(xt) are constant-factor approximations to the online sensitivities σ(x1), . . . , σ(xt)
with respect to (k, z)-clustering

(2) At most poly
(
k, 1

ε , log(nd∆)
)

points have been sampled into S ′

(3) Z at time t is a (1 + ε)2-coreset to Xt := {x1, . . . xt}

We prove correctness by induction on t. The online sensitivity of the first point is 1 and it will
be correctly computed by the data structure. Thus we have that after the first step, we have
S ′ = Z = {x1} and the base case is complete.

Let Et be the event that the invariants hold at time t. Conditioning on Et−1 and in particular
the correctness of Z at time t− 1 being a (1 + ε)-strong coreset of Xt−1 := {x1, . . . , xt−1}, we have
that Z ∪ {xt} is a strong coreset of Xt := {x1, . . . , xt}. Thus we can use Z ∪ {xt} to compute a
constant-factor approximation to the online sensitivity σ(xt) of xt. By Theorem 1.7, it follows that
with high probability, we can instead use Z ∪ {x̂t} to compute a constant-factor approximation
σ̂(xt) to the online sensitivity σ(xt). Then by Theorem 2.4, S ′ after time t will be a (1 + ε)-strong
coreset for Xt with high probability.

By Theorem 2.4 through Theorem 2.3, we have that by sampling points with probabilities that
are constant-factor approximations to their online sensitivities, then the total number of sampled
points into S ′ is O

(
dk2

ε2 log3 n∆
ε

)
with high probability. Thus, Pr [Et] ≥ 1− 1

poly(n) .
Observe that merge-and-reduce will be correct if S ′ is a stream with length at most k ·

poly
(

1
ε , log(nd∆)

)
, since we set the failure probability to be 1

poly(1
ε

,log(n∆)) and merge-and-reduce
will consider at least k stream updates before applying a new coreset construction. Thus con-
ditioned on (1) the correctness of S ′ after time t being a (1 + ε)-strong coreset for Xt and (2)
the correctness of merge-and-reduce on S ′, we have that Z after time t will be a (1 + ε)-strong
coreset for S ′, and thus a (1 + ε)2-strong coreset for Xt, which completes the induction. That is,
Pr [Et | E1, . . . , Et−1] ≥ 1 − 1

poly(n) . The correctness guarantee then follows by rescaling ε and a
union bound over all t ∈ [n].

To analyze the space complexity, note that by the guarantees of the invariants, the total number of
sampled points into S ′ is O

(
dk2

ε2 log nd∆
ε

)
. However, S ′ is not maintained explicitly, but instead given

– 18 –

as input to the merge-and-reduce subroutine, which uses the efficient encoding for coreset construction
given in Algorithm 1 with accuracy ε

poly(log log(nd∆)) and failure probability 1
poly(1

ε
,log(nd∆)) . Thus by

Lemma 2.7, the total representation of Z uses O (dk log(n∆)) + dk2

ε2 · 22z · polylog
(

1
ε , log(n∆)

)
bits

of space.

3 Fast (k, z)-Clustering
In this section, we describe how our one-pass streaming algorithm on insertion-only streams for
(k, z)-clustering that uses Ok,d,ε(1) words of space can further be implemented using fast amortized
update time. In Section 3.2, we first implement our streaming algorithm using dk · polylog(log(n∆))
amortized update time. The o(log(n∆)) amortized update time of this algorithm is not only faster
than the k · polylog(n∆) amortized update time of [BCLP23], but also provides crucial structural
properties that will be ultimately used for our algorithm that uses d log k·polylog(log(n∆)) amortized
update time in Section 3.3. One of the such crucial properties is the proof in Section 3.1 that the
(k, z)-clustering sensitivities and the (k, z)-mediods sensitivities are within constant factors of each
other.

3.1 (k, z)-Clustering Sensitivities and (k, z)-medoids Sensitivities

In this section, we show that the sensitivity τ(x) for a point x with respect to the dataset X for
k-medoids is a constant-factor approximation to the sensitivity s(x) for a point x with respect to the
dataset X for (k, z)-clustering. Thus to acquire a constant-factor approximation to the sensitivity
s(x), it suffices to approximate the (k, z)-medoids sensitivity τ(x), and vice versa.

We first recall the well-known fact that the optimal (k, z)-clustering and (k, z)-medoids costs
are within a constant factor of each other. For the sake of completeness, we include the proof.

Lemma 3.1. For each X ⊂ [∆]d, the optimal (k, z)-clustering cost is a 2z+1-approximation of the
optimal (k, z)-medoid clustering cost.

Proof. Let C be an optimal (k, z)-clustering of X and for a fixed c ∈ C, let P be the subset of X
served by c. Let c′ ∈ P be the point closest to c. Then we have for all p ∈ P ,

∥c′ − p∥z2 ≤ 2z(∥c′ − c∥22 + ∥p− c∥22) ≤ 2z+1∥p− c∥22.

Therefore, cost(P, c′) ≤ 2z+1 · cost(P, c). The conclusion then follows by iterating over all c ∈ C.

We now show that the (k, z)-clustering and (k, z)-medoids sensitivities are within a constant
factor of each other.

Theorem 3.2. There exists a constant γ ≤ 2z+1 · 101 such that the sensitivity of a point x with
respect X for (k, z)-clustering is a γ-approximation to the sensitivity of x with respect to X for
(k, z)-medoids.

Proof. Let C be any set of k centers that achieves the sensitivity s(x) for (k, z)-clustering and let S
be any set of k centers that achieves the sensitivity τ(x) for (k, z)-medoids. Since S ⊆ X ⊆ [∆]d
and |S| ≤ k, then by the maximality characterization of sensitivity, we have τ(x) ≤ s(x).

– 19 –

Now, let c ∈ C be the closest center to x. Let R ⊂ X be the set of points served by c and let
r = |R|. Firstly, let w ∈ R be the farthest point from x. Then

max
c′∈X

costx, c′

cost(R, c′) ≥
∥w − x∥2∑

y∈R ∥w − y∥2
≥ ∥w − x∥2∑

y∈R ∥w − x∥2 + ∥y − x∥2
≥ 1

2|R| ,

since ∥w − x∥2 ≥ ∥y − x∥2 for all y ∈ R. Thus, ∥w−x∥2∑
y∈R

∥w−y∥2
≥ 1

2r .
Let P ⊆ R be the set of points y that are closer to x than to c. We perform casework on the

size |P | of P .
First, suppose |P | < 0.99r. Note that there are at most 0.01r points y such that cost(y, c) >

100
r · cost(R, c). Thus there are at least 0.99r points y such that cost(y, c) ≤ 100

r · cost(R, c). If
|P | < 0.99r, then there exists y ∈ R such that y /∈ P , so that cost(y, c) ≤ 100

r · cost(R, c) but
∥y − c∥2 ≤ ∥y − x∥2. But then if we set c′ = y, we have that ∥x− c′∥2 ≥ 1

2∥x− c∥2 and moreover,

cost(R, c′) ≤ 2z(cost(R, c) + |R| · cost(C, c′)) ≤ 2z(101 · cost(R, c)).

Hence we have
cost(x, c′)
cost(R, c′) ≥

1
2z+1 · 101

cost(x, c)
cost(R, c) .

The claim then follows by clustering X \R with the remaining k − 1 centers using Lemma 3.1.
Otherwise, suppose |P | ≥ 0.99r. Furthermore, it suffices to assume that there exist 0.99r

points y ∈ P such that cost(y, c) ≤ 100
r · cost(R, c), or else we could reach the same conclusion

as the previous case where |P | < 0.99r by moving c to such a point y. Since these points are
closer to x than to c by definition of P , then we have ∥y − c∥2 ≥ 1

2 · ∥x − c∥2. Thus we have
cost(R, c) ≥ 0.99r · 1

2 · ∥x− c∥
2
2. Hence, cost(x,c)

cost(R,c) ≤
4
r . On the other hand, by the above argument,

we have maxc′∈X
cost x,c′

cost(R,c′) ≥
1
2r and thus τ(x) is a 2z+1 · 8-approximation to s(x), after clustering

the remaining points in X \R with the other k − 1 centers.

Finally, we show that the sensitivities of points are preserved under coresets. That is, the
(k, z)-clustering sensitivity of x with respect to X is well-approximated by the sensitivity of x with
respect to a coreset Z of X.

Lemma 3.3. Let γ ≥ 1 be fixed and let Z be a γ-strong coreset for X. For p ∈ X, let sX(p) =
maxC:|C|≤k

cost(p,C)
cost(X,C) and let sZ(p) = maxC:|C|≤k

cost(p,C)
cost(Z,C) . Then

1
γ
· sZ(p) ≤ sX(p) ≤ γ · sZ(p).

Proof. Let S be a set of k centers in C that achieves the sensitivity with respect to Z, so that
sZ(p) = cost(p,S)

cost(X,S) . Since Z is a γ-strong coreset for X, then we have 1
γ · cost(Z, S) ≤ · cost(X,S) ≤

γ · (Z, S). Therefore, we have
1
γ
· sZ(p) ≤ sX(p) ≤ γ · sZ(p).

– 20 –

3.2 Fast Update Algorithm

In this section, we show that our streaming algorithm can be implemented using dk ·polylog(log(n∆))
amortized update time. We remark that by comparison, the algorithm of [BCLP23] uses k ·
polylog(n∆) amortized update time, which is exponentially larger in terms of the dependency in the
n and ∆ factors. On the other hand, we remark that the main point of [BCLP23] is to handle the
fully dynamic case, where insertions and deletions of points are both permitted, which we cannot
handle, though they also require the entire dataset to be stored.

We first use the following guarantee about quadratic runtime for the local search algorithm for
(k, z)-clustering.

Theorem 3.4. [GT08] For each constant z ≥ 1, there exists a polynomial time algorithm that
outputs a O (z)-approximation to (k, z)-clustering in time O

(
dn2).

We now show how the approximately solve the constrained clustering problem min cost(X,C)
across all sets C ⊂ X of k centers containing a center at a fixed center x. The algorithm is quite
simple. We compute a constant-factor approximation C to the optimal (k, z)-medoids clustering on
X. We then swap one of the centers of C with {x}, choosing the swap with the best subsequent
clustering cost.

Lemma 3.5. For a fixed constant γ ≥ 1, let C be a γ-approximation to the optimal (k, z)-medoids
clustering on X ⊂ [∆]d. Let S be the optimal (k, z)-medoids clustering on X ⊂ [∆]d containing
a center at a fixed x ∈ X. Let W be the set of k − 1 centers W ⊆ C such that W ∪ {x} has the
minimum (k, z)-medoids clustering cost on X, and let C ′ = W ∪ {x}. Then

cost(X,S) ≤ cost(X,C ′) ≤ (2z + 22z + 22z · γ) · cost(X,S).

Proof. Since C ′ is a set of k centers containing x and S is the optimal clustering among such sets of
k centers containing x, then cost(X,S) ≤ cost(X,C ′). It thus remains to prove the right-hand side
of the inequality.

Let S′ = C ∪ {p} so that |S′| = k + 1 and also C ′ ⊂ S′ with |S′ \ C ′| = 1. Let πS′ : S → C ′ be
the mapping that assigns each center s ∈ S to the closest center in S′, breaking ties arbitrarily. Let
Q = {πS′(s) | s ∈ S} and note that x ∈ Q since x ∈ S and x ∈ S′. Moreover, since |S| = k, then
|Q| = k, and since Q ⊂ S′ and C ′ is the best subset of S′, then cost(X,C ′) ≤ cost(X,Q).

Now for any p ∈ X, consider its contribution to cost(X,Q). Let πS : X → S be the mapping that
assigns each point x ∈ X to the closest center in S, breaking ties arbitrarily. Then by generalized
triangle inequality, c.f., Fact 1.4,

cost(p,Q) ≤ 2z · cost(p, πS(p)) + 2z · cost(πS(p), Q).

Since πS′ maps each center in S to its closest center in S′, then we have

cost(πS(p), Q) = cost(πS(p), S′).

Thus,
cost(p,Q) ≤ 2z · cost(p, πS(p)) + 2z · cost(πS(p), S′).

We also have by generalized triangle inequality, c.f., Fact 1.4,

cost(πS(p), S′) ≤ 2z · cost(πS(p), p) + 2z · cost(p, S′) = 2z · cost(p, S) + 2z · cost(p, S′).

– 21 –

Therefore,

cost(p,Q) ≤ 2z · cost(p, πS(p)) + 22z · cost(p, S) + 22z · cost(p, S′)
= 2z · cost(p, S) + 22z · cost(p, S) + 22z · cost(p, S′).

Summing across p ∈ X, we thus have

cost(X,Q) ≤ 2z · cost(X,S) + 22z · cost(X,S) + 22z · cost(X,S′).

Since C provides a γ-approximation to the optimal (k, z)-medoids clustering on X ⊂ [∆]d and S is
the optimal (k, z)-medoids clustering on X containing a center at x, then cost(X,C) ≤ γ ·cost(X,S).
Since S′ = C ∪ {p}, then cost(X,S′) ≤ cost(X,C) ≤ γ · cost(X,S) and thus we have

cost(X,Q) ≤ (2z + 22z + 22z · γ) · cost(X,S).

Finally, since cost(X,C ′) ≤ cost(X,Q), then the desired claim follows.

Algorithm 3 Approximation algorithm for finding (k, z)-medoids clustering containing a fixed
center
Input: Constant-factor approximation C ⊂ X ⊂ [∆]d for (k, z)–medoids clustering on X, query

point x ∈ X
Output: Constant-factor approximation for (k, z)-medoids clustering on X with a center at x

1: ψ ← nd∆, ψx ← ∅
2: for c ∈ C do
3: Let nc be the number of points in X assigned to c by C
4: if nc · ∥c− x∥z2 < ψ then
5: ψ ← nc ·minp∈C∪{x}\{c} ∥c− p∥z2, ψx ← c

6: return (ψx, cost(X,C) + ψ)

Unfortunately, we cannot afford to exactly compute the cost of the best replacement of a center
in C with {x}. Thus we show that by snapping the points served by each center c ∈ C and moving
these points all to the closest center if c is removed gives a good approximation to the cost of the
best swap. In particular, if nc is the number of points served by c and p is the closest center of
C ∪ {x} to c, then cost(X,C) + nc · ∥c− p∥z2 is a good approximation to the cost of replacing c with
x in C.

Lemma 3.6. Let Ψ = cost(X,C) + ψ be the output of Algorithm 3. Let S be the optimal (k, z)-
medoids clustering on X ⊂ [∆]d containing a center at a fixed x ∈ X. Then there exists a constant
γ = 2Θ(z) such that

cost(X,S) ≤ Ψ ≤ γ · cost(X,S).

Proof. Let W be the set of k−1 centers W ⊆ C such that W ∪{x} has the minimum (k, z)-medoids
clustering cost on X, and let C ′ = W ∪{x}. By Lemma 3.5, there exists a constant γ1 ≥ 1 such that

cost(X,S) ≤ cost(X,C ′) ≤ (2z + 22z + 22z · γ1) · cost(X,S).

We claim Ψ gives a constant-factor approximation to cost(X,C ′).

– 22 –

By generalized triangle inequality,

cost(X,C ′) ≤ 2z · cost(X,C) + 2z · cost(C,C ′) ≤ 2z · cost(X,C) + 22z · cost(X,C) + 22z · cost(X,C ′).

Let C be a γ2-approximation to the optimal unconstrained (k, z)-medoids clustering. Then
cost(X,C) ≤ γ2 · cost(X,C ′), so that

cost(X,C ′) ≤ 2z · cost(X,C) + 2z · cost(C,C ′) ≤ (2zγ2 + 22zγ2 + 1) · cost(X,C ′).

Hence, it suffices to show that Ψ gives a constant-factor approximation to cost(X,C) + cost(C,C ′).
Note that |C \C ′| = 1, then cost(C,C ′) = minc∈C nc ·minp∈C′ ∥c− p∥z2, where nc is the number

of points assigned to c by X. Thus, we have ψ = cost(C,C ′), so that

Ψ = cost(X,C) + cost(C,C ′).

Putting things together, we have that there exists a constant γ = 2Θ(z) such that

cost(X,S) ≤ Ψ ≤ γ · cost(X,S).

Unfortunately, we may not have time to compute the closest center p to each center c among
C ∪ {x} \ {c}. Thus we show that it suffices to just update the information for the center u ∈ C
that is closest to x.

Lemma 3.7. Let C be a constant-approximation to the optimal (k, z)-medoids clustering on
X ⊂ [∆]d. For a point x ∈ X, let u be the center of C closest to x, breaking ties arbitrarily. Then
for any center c ∈ C \ {u},

min
p∈C∪{x}\{c}

∥c− p∥z2 ≤ min
p∈C\{c}

∥c− p∥z2 ≤ 2z+1 min
p∈C∪{x}\{c}

∥c− p∥z2.

Proof. Note that the left-hand side of the inequality immediately holds because the minimization
is taken over a larger superset on the left-most term. We now justify the right-hand side of the
inequality.

Let p be the closest center of S \ {c} to c. Observe that if ∥c− p∥2 ≤ ∥c− x∥2, then p remains
the closest center of S ∪ {x} \ {c} to c and thus the claim holds.

Hence, it remains to consider the setting where ∥c− p∥2 < ∥c− x∥2. In this case, we have by
the optimality of p in S, ∥c− p∥2 ≤ ∥c− u∥2. Thus by generalized triangle inequality,

∥c− p∥z2 ≤ ∥c− u∥z2 ≤ 2z · ∥u− x∥z2 + 2z · ∥c− x∥z2.

Since u is the closest center in S to x and c ∈ S, then it follows that ∥u− x∥2 ≤ ∥c− x∥2 and thus

∥c− p∥z2 ≤ 2z+1 · ∥c− x∥z2.

To estimate the sensitivity of a point x, we enumerate over all possible centers p that serve x.
To that end, we show that Φ + nb · rz can only be an underestimate to the optimal (k, z)-medoids
clustering constrained to the center p being the closest to x.

– 23 –

Lemma 3.8. Let x ∈ X be a fixed point and p ∈ X be a fixed center with r = ∥x− p∥2. Let Q be a
constant-factor approximation to the optimal (k, z)-medoids clustering on X containing a center at
p and let Ψ be a constant-factor approximation to cost(X,Q). Let S be the optimal (k, z)-medoids
clustering on X containing a center at p and no center in the interior of Br(x). Let nb be the
number of points assigned to centers in Br/2(x). There exists a constant γ ≥ 1 such that

Ψ + nb · rz ≤ γ · cost(X,S).

Proof. Let Q be a ζ1-approximation to the optimal (k, z)-medoids clustering on X containing a
center at p. Since S is the optimal solution for a more constrained search space, i.e., sets of at most
k centers that contain a center at p and no center in the interior of Br(x), then we have

cost(X,Q) ≤ ζ1 · cost(X,S).

Let Ψ be a ζ2-approximation to cost(X,Q), so that

Ψ ≤ ζ1ζ2 · cost(X,S).

Now, consider a point y served by a center q ∈ Q inside Br/2(x). If ∥y − q∥2 ≥ r
4 , then we have

∥y − q∥2 + r ≤ 5 · ∥y − q∥2.

Otherwise, if ∥y− q∥2 < r
4 , then by triangle inequality, dist(y, S) ≥ dist(q, S)−∥y− q∥2 ≥ 3r

4 . Thus,

∥y − q∥2 + r ≤ ∥y − q∥2 + 2 · dist(y, S).

Taking both cases together, we have

∥y − q∥2 + r ≤ 5 · ∥y − q∥2 + 2 · dist(y, S).

Summing across all y and q, we have

cost(X,Q) + nb · rz ≤ 5 cost(X,Q) + 2 cost(X,S) ≤ (5γ + 2) · cost(X,S).

Since Ψ is a ζ2-approximation to cost(X,Q), then there exists a constant γ2 ≥ 1 such that

Ψ + nb · rz ≤ γ · cost(X,S).

Now we show that if there is a large number of points served by centers inside the ball Br/2(x)
of radius r

2 around x, where r := ∥x− p∥2, then Φ + nb · rz is a good estimate to the cost of the
optimal (k, z)-medoids clustering constrained to the center p being the closest to x.

Lemma 3.9. Let x ∈ X be a fixed point and p ∈ X be a fixed center with r = ∥x− p∥2. Let Q be a
constant-factor approximation to the optimal (k, z)-medoids clustering on X containing a center at
p and let Ψ be a constant-factor approximation to cost(X,Q). Let S be the optimal (k, z)-medoids
clustering on X containing a center at p and no center in the interior of Br(x). Let nb be the
number of points assigned to centers in Br/2(x) and let na be the number of points assigned to
centers in the annulus Br(x) \Br/2(x). If nb ≥ na, then there exist constants γ1, γ2 ≥ 1 such that

cost(X,S) ≤ γ1(Ψ + nb · rz) ≤ (γ1γ2) · cost(X,S).

– 24 –

Proof. We show that there exists a constant γ1 ≥ 1 with cost(X,S) ≤ γ1(Ψ + nb · rz). Observe that
this would imply by Lemma 3.8 that there also exists a constant γ2 ≥ 1 such that γ1(Ψ + nb · rz) ≤
(γ1γ2) · cost(X,S).

Recall that S is the optimal solution across sets of at most k centers that contain a center at p
and no center in the interior of Br(x).

Consider a point y served by a center q ∈ Q inside Br/2(x). Let πS(y) be the closest center in S
to y, breaking ties arbitrarily. By generalized triangle inequality,

cost(y, S) ≤ 2z · ∥y − q∥z2 + 2z · cost(q, πS(y)).

Summing across all y served by centers q ∈ Br/2(x) and noting that dist(q, S) ≤ 2r, we have

∑
y:πQ(y)∈Br/2(x)

cost(y, S) ≤ 8z · nb ·
(
r

2

)z

+ 2z ·
∑

y:πQ(y)∈Br/2(x)
cost(y,Q).

Next, consider a point y served by a center q ∈ Q inside Br(x) \ (Br/2(x)). Note that if
∥y − q∥2 ≥ r

4 , then ∥y − p∥2 ≤ ∥y − q∥2 + ∥q − p∥2 ≤ 9 · ∥y − q∥2. Otherwise if ∥y − q∥2 < r
4 , then

∥y − p∥2 ≤ ∥y − q∥2 + ∥q − p∥2 < 3r. Summing across all y ∈ X served by centers q ∈ Br/2(x) and
noting that nb ≥ na, we have

∑
y:πQ(y)∈Br(x)\(Br/2(x))

cost(y, S) ≤ 12z · nb ·
(
r

2

)z

+ 9 · 2z ·
∑

y:πQ(y)∈Br(x)\(Br/2(x))
cost(y,Q).

Finally, for the points y served by a center q ∈ Q outside Br(x), note that S can only have more
centers outside Br(x) than C because S cannot have centers inside Br(x) whereas C can. Thus by
optimality of S, ∑

y:πQ(y)∈X\(Br(x))
cost(y, S) ≤

∑
y:πQ(y)∈X\(Br(x))

cost(y, C).

Putting these together by summing across all y served by centers q ∈ Br/2(x), q ∈ Br(x)\Br/2(x),
and q ∈ X \Br(x), we have that there exists a constant ζ ≥ 1 such that

cost(X,S) ≤ ζ · 2O(z) ·
(

cost(X,Q) + nb ·
(
r

2

)z)
.

Since Φ is a ζ2-factor approximation to cost(X,Q), then there exists a constant γ1 such that

cost(X,S) ≤ γ1(Ψ + nb · rz).

Therefore, we have
cost(X,S) ≤ γ1(Ψ + nb · rz) ≤ (γ1γ2) · cost(X,S),

as desired.

On the other hand, if the number of points served by centers inside the ball Br/2(x) of radius
r
2 around x is small, then Φ + nb · rz may not be a good estimate to the cost of the optimal
(k, z)-medoids clustering S constrained to the center p being the closest to x. Nevertheless, we show
that it can provide an upper bound on cost(x,S)

cost(X,S) , while still being at most the sensitivity s(x) of x.

– 25 –

Lemma 3.10. Let x ∈ X be a fixed point and p ∈ X be a fixed center with r = ∥x− p∥2. Let s(x)
be the sensitivity of (k, z)-medoids clustering with respect to X. Let S be the optimal (k, z)-medoids
clustering on X containing a center at p and no center in the interior of Br(x). Let nb be the
number of points assigned to centers in Br/2(x) and let na be the number of points assigned to
centers in the annulus Br(x) \Br/2(x). If nb < na, then

1
γ1

cost(x, S)
cost(X,S) ≤

rz

Ψ + nb · rz
≤ 2z · γ2 · s(x),

for fixed constants γ1, γ2 ≥ 1.

Proof. Let Q be a ζ1-factor approximation to the optimal (k, z)-medoids clustering on X containing
a center at p and let Ψ be a ζ2-factor approximation to cost(X,Q). By Lemma 3.8, we have that
there exists a constant γ1 ≥ 1 such that

Ψ + nb · rz ≤ γ1 · cost(X,S).

Since S contains a center at p and no centers in the interior of Br(x), then cost(x, S) = rz. Then
we have

1
γ1
· cost(x, S)

cost(X,S) ≤
rz

Ψ + nb · rz
.

On other hand, for a set W of k centers that contains no center in the interior of Br/2(x) and a
center at p, so that we have r

2 ≤ dist(x,W) ≤ r and cost(X,W) ≤ γ2(Ψ + nb · rz) for some constant
γ2 ≥ 1. Thus by the maximality of sensitivity, we have

rz

Ψ + nb · rz
≤ 2z · γ2 ·

cost(x,W)
cost(X,w) ≤ 2z · γ2 · s(x).

Algorithm 4 BatchSens: Fast batch approximation of sensitivities
Input: Input set Z ⊂ [∆]d for (k, z)-medoids clustering, batch B of k query points
Output: Constant-factor approximation for the sensitivity of x for (k, z)-medoids clustering on

Z ∪B, for all x ∈ B
1: Compute S to be a constant-factor solution on Z ∪B for (k, z)-medoids clustering
2: for x ∈ B do
3: ŝ(x)← 0
4: for p ∈ Z ∪B do
5: Let Q be a constant-factor approximation of the optimal (k, z)-medoids clustering on X

containing a center at p ▷Only need to pre-process and compute once per p across all x
6: Use S to compute a constant-factor approximation Ψ of cost(X,Q) ▷Algorithm 3
7: r ← ∥x− p∥2
8: Let nb be the number of points assigned by Q to centers of Q in Br/2(x)
9: ŝ(x)← max

(
ŝ(x), rz

Ψ+nb·rz

)
10: return ŝ(x)

It follows that our algorithm in BatchSens provides constant-factor approximations to all
sensitivities x in the batch B.

– 26 –

Lemma 3.11. For a fixed x ∈ X, let s(x) be the sensitivity of (k, z)-medoids clustering with respect
to X. Let ŝ(x) be the output of Algorithm 4, for each x ∈ B, where B is the input batch. Then there
exist constants γ1, γ2 ≥ 1 such that

1
γ1
· s(x) ≤ ŝ(x) ≤ 2z · γ2 · s(x).

Proof. For each fixed p ∈ X, let S be the optimal (k, z)-medoids clustering on X containing a center
at p and no center in the interior of Br(x). Let nb be the number of points assigned to centers in
Br/2(x) and let na be the number of points assigned to centers in the annulus Br(x) \Br/2(x). We
perform casework on whether nb < na or nb ≥ na.

In the case where nb ≥ na, then by Lemma 3.9, we have

cost(X,S) ≤ γ1(Ψ + nb · rz) ≤ (γ1γ2) · cost(X,S).

Since cost(x, S) = rz, then it holds that rz

Ψ+nb·rz is a constant-factor approximation to cost(x,S)
cost(X,S) .

Otherwise if nb < na, then by Lemma 3.10,

1
γ1

cost(x, S)
cost(X,S) ≤

rz

Ψ + nb · rz
≤ 2z · γ2 · s(x),

for fixed constants γ1, γ2 ≥ 1. In particular, for the center p ∈ X that realizes the sensitivity s(x),
we have that rz

Ψ+nb·rz is an O (2z)-approximation to s(x). For centers q ∈ X that do not realize the
sensitivity, we have that rz

Ψ+nb·rz ≤ γ2 · s(x). Therefore,

1
γ1
· s(x) ≤ ŝ(x) ≤ 2z · γ2 · s(x).

It remains to analyze the amortized runtime of the algorithm BatchSens.

Lemma 3.12. Given a constant-factor coreset Z to X ⊂ [∆]d, there exists an absolute constant
C > 1 and an algorithm BatchSens that outputs C-approximations to the sensitivities to each of
the points x ∈ B in a batch B of k points of X, using amortized (|Z|+k log k)2

k · poly(d) time.

Proof. Consider BatchSens in Algorithm 4. By Lemma 3.3, to compute the sensitivity of x ∈ B
with respect to X, it suffices to compute the sensitivity of x ∈ Z ∪B, since Z is a constant-factor
coreset to Y and thus Z ∪B is a constant-factor coreset to X = Y ∪B. By Theorem 3.2, it suffices
to compute a constant-factor approximation to the (k, z)-medoids clustering sensitivity of x with
respect to Z ∪B. Hence, we want to compute maxC⊂Z∪B:|C|≤k

cost(x,C)
cost(X,C) . Correctness thus follows

by Lemma 3.11.
It remains to analyze the amortized runtime of BatchSens. First, note that it takes time

O
(
d(|Z|+ k)2) to compute a set S of k centers that serve as a constant-factor approximation to

Z ∪ B. We can then pre-process (Z ∪ B) in O
(
d(|Z|+ k)2) time so that for any x ∈ Z ∪ B, we

can find the set W of k − 1 centers of S that after adjoining with {x} achieves the best k-medoids
clustering on (Z ∪B) in O (k) time. Specifically, for each center s ∈ S, we can store the number ηs

of points assigned to s, as well as the distance ds to the closest center in S \ {s}.

– 27 –

We can then update the information in time O (d(k + |Z|)) for each query {p} to add to S, to
ultimately form Q. In particular, we find u ∈ S that is the nearest center of S to p and update du

to be ∥u− p∥2 if ∥u− p∥2 < du. By Lemma 3.7, the points served by the remaining centers all have
the distances to their nearest centers preserved up to a 2z+1-factor. Thus, we can approximate ψ in
Algorithm 3 up to a 2z+1-factor, along with the corresponding center ψp to be removed from S. By
Lemma 3.5, the resulting set Q of k centers is a 2O(z)-approximation to the optimal set S of centers
for (k, z)-medoids clustering that contains a center at x.

It remains to pre-process (Z ∪B) and S to efficiently compute the number of centers nb assigned
to centers of Q in Br/2(x) for each x ∈ B and each radius r := ∥x− p∥2 for all p ∈ (Z ∪B). To that
end, we can first sort the points y ∈ (Z ∪B) by their distances from x. Now we can scan radially
outward from x, finding the closest center in Z ∪B and iterating outward.

Given two centers u, v ∈ (Z ∪B), let Qu (resp. Qv) be the clustering Q induced by removing
the output of ϕu (resp. ϕv) from S ∪ {u} (resp. S ∪ {v}) by Algorithm 3 with query center u (resp.
v). In particular, suppose that after scanning radially outward from x, we first see u, followed
immediately by v. Since Br/2(x) is monotonically increasing as r increases, it suffices to simply
consider the additional centers in Qv \Qu. Since Qu and Qv are both formed by swapping a center
of S with {u} and {v} respectively, then we have |Qv \ Qu| ≤ 2. Hence, to compute nb for v, it
suffices to use the previous computation of nb for u and consider the number of points assigned to
at most two centers of Qu, which can be done in O (1) time.

Therefore, the total time to compute S and perform additional pre-processing is O
(
d(|Z|+ k)2).

For each possible center p ∈ (Z∪B), we useO (k + |Z|) time to update the pre-processing information
to obtain Ψ. For each point x ∈ B, we use O (dk log k) time to sort the points by their distances
from x. For each point x ∈ B and possible center p ∈ (Z ∪ B), we use O (1) time to compute nb.
Hence, the amortized runtime is d(|Z|+k log k)2

k .

Algorithm 5 Fast (k, z)-clustering
Input: Set X = {x1, . . . , xn} of points in [∆]d that arrive as a stream
Output: (k, z)-clustering coreset for X

1: S ← ∅, λ← O
(

kd
ε2 log(n∆)

)
2: Batch x1, . . . , xn into blocks B1, . . . , Bn/k of k updates
3: for b ∈ [n/k] do
4: Let Z be a coreset for block Bb−1
5: Call BatchSens to batch approximation of sensitivities for xt with t ∈ Bb

6: Sample points of Bb−1 into a stream S ′ using sensitivity sampling
7: Update Z by running merge-and-reduce on S ′

Putting together Theorem 2.9 and Lemma 3.12, we have:

Theorem 3.13. Given a set X of n points on [∆]d, let f
(
n, d,∆, k, 1

ε , z
)

be the number of points of
a coreset construction with weights [1,poly(nd∆)] for (k, z)-clustering. There exists an algorithm that
uses dk·polylog(log(nd∆)) amortized update time and O (dk log(n∆))+f

(
n, d,∆, k, polylog(log(nd∆))

ε , z
)
·

polylog
(

1
ε , log(nd∆)

)
bits of space, and outputs a (1 + ε)-strong coreset of X.

– 28 –

3.3 Filtering of Low-Sensitivity Points

In this section, we show that our one-pass streaming algorithm can be implemented in d log k ·
polylog(log(n∆)) amortized update time.

We first define a quadtree embedding. Due to the desiderata of fast update time, our construction
is somewhat non-standard. Given s = (s1, . . . , sd) ∈ Zd, t ∈ {0, 1, . . . , ℓ}, and a parameter z > 1,
we define the axis-aligned grid Gs,t,ζ over Zd with side length ζt, so that s = (s1, . . . , sd) lies on one
of the corners of the grid. Then for X ∈ R[∆]d , we define Gs,t,ζ(X) as the frequency vector over the
hypercubes of the grid Gs,t,ζ that counts the total number or weight of points in each hypercube.
Specifically, each cell of a grid of length ζt has closed boundaries on one side and open boundaries on
the other side, i.e., a cell containing (u1, . . . , ud) cannot also contain (v1, . . . , vd) for any vi ≥ ui + ζt.
We define TreeDists,ζ(x, y) to be

√
d · ζα, where α is the smallest integer such that x and y are in

two different cells of Gs,α,ζ or TreeDists,ζ(x, y) = 0 if no such grid exists. For our purposes, we will
set ζ = n1−c for a fixed constant c ∈ (0, 1) so that ℓ = O

(
1
c

)
for ∆ = poly(n).

We first show that the distance between a pair of points cannot be underestimated by the
quadtree.

Lemma 3.14. For every x, y ∈ [∆]d and every s = (s1, . . . , sd) ∈ Zd and ζ > 1, we have

dist(x, y) ≤ TreeDist
s,ζ

(x, y).

Proof. Since x, y ∈ [∆]d, then by an averaging argument there exists some coordinate for which
x and y are separated by distance ∥x−y∥2√

d
. Then x and y must be separated in grid Gs,α,ζ for

ζα ≤ ∥x−y∥2√
d

. Therefore, TreeDists,ζ(x, y) =
√
d · ζβ for ζβ > ∥x−y∥2√

d
. Then it follows dist(x, y) ≤

TreeDists,ζ(x, y).

We next bound the probability the distance between a pair of points is overestimated by the
quadtree for a fixed distortion rate.

Lemma 3.15. Given a set S and a parameter t > 2, let E be the event where no points of S are
within 1

t fraction toward the boundary of any cell in the grid that induces TreeDist. Then conditioned
on E, we have that for all x, y ∈ S,

TreeDist
s,ζ

(x, y) ≤ t ·
√
d · ζ · dist(x, y).

Moreover, we have
Pr [E] ≥ 1− d|S|

t
.

Proof. Observe that if x and y are first in the same cell at level i, then TreeDists,ζ(x, y) =
√
d · ζi.

However, because the cells at level i− 1 have length ζi−1 and conditioned on E , both of x and y are
at least 1

t fraction away from the boundary, then we have dist(x, y) ≥ ζi−1

t , which implies that

TreeDist
s,ζ

(x, y) ≤ t ·
√
d · ζ · dist(x, y).

Next, we note that for each coordinate, the probability that x is contained a distance that is within
1
t fraction toward the boundary is 1

t . The desired claim then follows from a union bound over all
x ∈ S and all d dimensions.

– 29 –

We now require the following generalization of the fast Euclidean k-means approximation
algorithm by [CLN+20] to (k, z)-clustering. We remark that the statement in [CLN+20] provides
a Oε(log k)-approximation to k-means in runtime Õ

(
nd+ (n log ∆)1+ε

)
. We briefly describe the

algorithm of [CLN+20] and the necessary adjustments to provide Theorem 3.16.
The algorithm of [CLN+20] first applies the Johnson-Lindenstrauss transformation [JL84] to

all the points to reduce the dimension to O (log k), which preserves all clustering costs within a
constant factor [MMR19, ISZ21]. It then constructs a standard quadtree embedding, which it uses
to adaptively sample a set C of k centers. Specifically, adaptive sampling randomly selects a point
of the input set to be the first center of C. It then iterates, iteratively choosing k − 1 additional
points from the input set, with probability proportional to the squared distance of the point from
the current set of centers. To do this quickly, [CLN+20] uses multiple independent instances of the
quadtree embedding to estimate the distance of each point from the current set of centers. Finally,
to roughly estimate the clustering cost induced by C, [CLN+20] applies a locality-sensitivity hashing
procedure to assign each point to its approximate nearest neighbor in C.

For (k, z)-clustering, we instead perform adaptive sampling by iteratively choosing each of the
input points with probability proportional to the z-th power of distances of the point from the
centers already opened in C. The O (log ∆) runtime of the algorithm of [CLN+20] is due to the
O (log ∆) levels in the quadtree used to estimate these distances. To achieve runtime independent
of O (log ∆), we instead use our crude quadtree with O (1) levels, to provide nΘ(1)-approximations
to these distances. Once C is acquired from adaptive sampling, we then estimate the clustering cost
by again using the crude quadtree to assign each point to its closest center in the quadtree, which
uses constant time per point, since the crude quadtree has O (1) levels. Finally, we remark that
unlike [CLN+20], we can perform the quadtree embedding multiple times to avoid any cases where
the distortion between pairs of points is too large. Thus we have:

Theorem 3.16. [CLN+20] For any constant α ∈ (0, 1) and N ≫ n, there exists a Nα-approximation
algorithm to (k, z)-clustering on X with n weighted points, that uses O (nd log(nd)) expected runtime.

To estimate the sensitivity of a point x, we now enumerate over the distances induced by all
levels of the quadtree for centers that serve x. To that end, we show that Ψ +nβ · dz/2 · ζβz can only
be an underestimate to the optimal (k, z)-medoids clustering constrained to β being the first level
in which the center serving x is in the same cell as x in the quadtree. In particular, the following
lemma should be considered the quadtree analog to Lemma 3.8 for the radial search.

Lemma 3.17. Let x ∈ X be a fixed point and p ∈ X. Suppose TreeDist preserves all pairwise
distances in X up to a factor of κ and suppose TreeDist(p, x) =

√
d ·ζβ. Let κ ≥ 2 be a parameter, so

that Q is a κ-factor approximation to the optimal (k, z)-medoids clustering on X containing a center
at p and let Ψ be is a κ-factor approximation to cost(X,Q). Let S be the optimal (k, z)-medoids
clustering on X containing a center at p and no center in the interior of Br(x), where r := ∥x− p∥2.
Let nβ be the weight of the points assigned to centers q ∈ Q such that TreeDist(x, q) ≤

√
d · ζβ−1.

There exists a constant γ ≥ 1 such that

Ψ + nβ · dz/2 · ζβz ≤ κO(z) · cost(X,S).

Proof. Since S is the optimal solution for a more constrained search space than Q, i.e., sets of at
most k centers that contain a center at p and no center in the interior of Br(x), then we have

κ2 · cost(X,S) ≥ κ · cost(X,Q) ≥ Ψ.

– 30 –

Now, consider a point y served by a center q ∈ Q such that TreeDist(x, q) ≤
√
d · ζβ−1. If

∥y − q∥2 ≥ r
4 , then

∥y − q∥2 + r ≤ 5 · ∥y − q∥2.
Otherwise, for ∥y − q∥2 < r

4 , then by triangle inequality, we have

dist(y, S) ≥ dist(q, S)− ∥y − q∥2 ≥
3r
4 .

Therefore,
∥y − q∥2 + r ≤ ∥y − q∥2 + 2 · dist(y, S).

Putting the two cases together, it follows that

∥y − q∥2 + r ≤ 5 · ∥y − q∥2 + 2 · dist(y, S).

Summing across all y ∈ X served by q such that TreeDist(x, q) ≤
√
d · ζβ−1,

cost(X,Q) + nβ · rz ≤ 5 cost(X,Q) + 2 cost(X,S) ≤ (5κ+ 2) · cost(X,S).

Since Ψ is a κ-approximation to cost(X,Q) and conditioned on the TreeDist procedure preserving
all pairwise distances in X up to a factor of κ and thus

√
d · ζβ is a κ-approximation to r, then

Ψ + nβ · dz/2 · ζβz ≤ κO(z) · cost(X,S),

for κ ≥ 2, i.e., bounded away from 1.

We next show that if there is a large number of points served by centers that are first in the
same cell as x in a level of the quadtree before β, then Ψ + nβ · dz/2 · ζβz is a good estimate to
the cost of the optimal (k, z)-medoids clustering constrained to x being served at a center that is
first in the same cell as x at level β in the quadtree. In particular, the following lemma should be
considered the quadtree analog to Lemma 3.9 for the radial search.

Lemma 3.18. Let x ∈ X be a fixed point and p ∈ X. Suppose TreeDist preserves all pairwise
distances in X up to a factor of κ and suppose TreeDist(p, x) =

√
d ·ζβ. Let κ ≥ 2 be a parameter, so

that Q is a κ-factor approximation to the optimal (k, z)-medoids clustering on X containing a center
at p and let Ψ be is a κ-factor approximation to cost(X,Q). Let S be the optimal (k, z)-medoids
clustering on X containing a center at p and no center in the interior of Br(x), where r := ∥x− p∥2.
Let nβ be the weight of the points assigned to centers q ∈ Q such that TreeDist(x, q) ≤

√
d · ζβ−1

and let nα be the weight of the points assigned to centers q ∈ Q such that TreeDist(x, q) ≥
√
d · ζβ.

If nβ ≥ nα, then there exist constants γ1, γ2 ≥ 1 such that

cost(X,S) ≤ κO(γ1z)
(
Ψ + nβ · dz/2 · ζβz

)
≤ κO(γ1γ2z) · cost(X,S).

Proof. We first show that there exists a constant γ1 ≥ 1 such that cost(X,S) ≤ κO(γ1z)
(
Ψ + nβ · dz/2 · ζβz

)
.

Observe that this would imply by Lemma 3.17 that there also exists a constant γ2 ≥ 1 such that
κO(γ1z)

(
Ψ + nβ · dz/2 · ζβz

)
≤ κO(γ1γ2z) · cost(X,S).

Consider a point y served by a center q ∈ Q with TreeDist(x, q) ≤
√
d · ζβ−1. Let πS(y) be the

closest center in S to y, breaking ties arbitrarily. By generalized triangle inequality,

cost(y, S) ≤ 2z · ∥y − q∥z2 + 2z · cost(q, πS(y)).

– 31 –

Summing across all y served by centers q with TreeDist(x, q) ≤
√
d ·ζβ−1 and noting that dist(s, q) ≤

2
√
d · ζβ conditioned on the correctness of TreeDist, as well as and noting that nβ ≥ nα, we have∑

y:TreeDist(x,πQ(y))≤
√

d·ζβ−1

cost(y, S) ≤ 2z · nβ ·
(
2
√
d · ζβ

)z
+ 2z ·

∑
y:TreeDist(x,πQ(y))≤

√
d·ζβ−1

cost(y,Q).

Next, consider a point y served by a center q ∈ Q with TreeDist(x, q) ≥
√
d · ζβ. We have

that if ∥y − q∥2 ≥ r
4 , then ∥y − p∥2 ≤ ∥y − q∥2 + ∥q − p∥2 ≤ 9 · ∥y − q∥2. Else if ∥y − q∥2 < r

4 ,
then ∥y − p∥2 ≤ ∥y − q∥2 + ∥q − p∥2 < 3r. Summing across all y served by centers q ∈ Q with
TreeDist(x, q) ≥

√
d · ζβ,∑

y:TreeDist(x,πQ(y))≥
√

d·ζβ

cost(y, S) ≤ 12z · nβ ·
(
r

2

)z

+ 9 · 2z ·
∑

y:TreeDist(x,πQ(y))≥
√

d·ζβ

cost(y,Q).

Conditioned on the correctness of TreeDist, we have that
√
d · ζβ is a κ-approximation to r.

Thus summing the two cases across all y ∈ X, we have that there exists a constant ζ ≥ 1 such that

cost(X,S) ≤ κζz ·
(
cost(X,Q) + nβ ·

(√
d · ζβ

)z)
.

Since Φ is a κ-factor approximation to cost(X,Q), then there exists a constant γ1 such that

cost(X,S) ≤ κO(γ1z)
(
Ψ + nβ · dz/2 · ζβz

)
.

Thus,
cost(X,S) ≤ κO(γ1z)

(
Ψ + nβ · dz/2 · ζβz

)
≤ κO(γ1γ2z) · cost(X,S).

On the other hand, if the number of points served by centers that are first in the same cell as x
in a level of the quadtree before β is small, then Ψ + nβ · dz/2 · ζβz may not be a good estimate to
the cost of the optimal (k, z)-medoids clustering constrained to x being served at a center that is
first in the same cell as x at level β in the quadtree. However, we next show that it can nevertheless
provide an upper bound on the cost(x,S)

cost(X,S) for any S where x is served by a center that is firs tin the
same cell as x at level β in the quadtree. Importantly, the quantity is at most the sensitivity s(x) of
x. In particular, the following lemma should be considered the quadtree analog to Lemma 3.10 for
the radial search.

Lemma 3.19. Let x ∈ X be a fixed point and p ∈ X. Suppose TreeDist preserves all pairwise
distances in X up to a factor of κ and suppose TreeDist(p, x) =

√
d · ζβ. Let s(x) be the sensitivity

of (k, z)-medoids clustering with respect to X. Let κ ≥ 2 be a parameter, so that Q is a κ-factor
approximation to the optimal (k, z)-medoids clustering on X containing a center at p and let Ψ
be is a κ-factor approximation to cost(X,Q). Let S be the optimal (k, z)-medoids clustering on X
containing a center at p and no center in the interior of Br(x), where r := ∥x− p∥2. Let nβ be the
weight of the points assigned to centers q ∈ Q such that TreeDist(x, q) ≤

√
d · ζβ−1 and let nα be the

weight of the points assigned to centers q ∈ Q such that TreeDist(x, q) ≥
√
d · ζβ. If nb < na, then

1
κO(γ1z)

cost(x, S)
cost(X,S) ≤

dz/2 · ζβz

Ψ + nβ · dz/2 · ζβz
≤ κO(γ2z) · s(x),

for fixed constants γ1, γ2 ≥ 1.

– 32 –

Proof. By Lemma 3.17, there exists a constant γ ≥ 1 such that

Ψ + nβ · dz/2 · ζβz ≤ κγz · cost(X,S).

Since S contains a center at p and no centers in the interior of Br(x), then cost(x, S) = rz. Then
conditioned on the correctness of TreeDist giving dz/2 · ζβz as a κz-approximation to rz, we have
that

1
κO(γ1z)

cost(x, S)
cost(X,S) ≤

rz

Ψ + nβ · dz/2 · ζβz
.

However, for a set W of k centers that contains a center at p but no center q with TreeDist(x, q) <√
d · ζβ−1, then we have

√
d·ζβ−1

κ ≤ dist(x,W) and cost(X,W) ≤ κγ2z(Ψ + nβ · dz/2 · ζβz) for some
constant γ2 ≥ 1. Thus by the maximality of sensitivity, we have

dz/2 · ζβz

Ψ + nb · rz
≤ κγ2z · cost(x,W)

cost(X,w) ≤ κ
γ2z · s(x).

Hence if TreeDist provides a κ-approximation to the pairwise distance of all points x ∈ X, then
the algorithm in RoughSens provides a κO(1)-factor approximations to all sensitivities x in the
batch B.
Lemma 3.20. For a fixed x ∈ X, let s(x) be the sensitivity of (k, z)-medoids clustering with respect
to X. Suppose TreeDist preserves all pairwise distances in X up to a factor of κ. Let ŝ(x) be the
output of Algorithm 6, for each x ∈ B, where B is the input batch. Then there exist constants
γ1, γ2 ≥ 1 such that

1
κγ1z

· s(x) ≤ ŝ(x) ≤ κγ2z · s(x).

Proof. For each fixed p ∈ X, let S be the optimal (k, z)-medoids clustering on X containing a center
at p and no center in the interior of Br(x). Let nβ be the weight of the points assigned to centers
q ∈ Q such that TreeDist(x, q) ≤

√
d · ζβ−1 and let nα be the weight of the points assigned to centers

q ∈ Q such that TreeDist(x, q) ≥
√
d · ζβ. We perform casework on whether nβ < nα or nβ ≥ nα.

In the case where nβ ≥ nβ, then by Lemma 3.18,

cost(X,S) ≤ κO(γ1z)
(
Ψ + nβ · dz/2 · ζβz

)
≤ κO(γ1γ2z) · cost(X,S).

Since cost(x, S) = rz, which is a κz-approximation to (dz/2 · ζβz) conditioned on the correctness of
TreeDist, then it holds that dz/2·ζβz

Ψ+nβ ·dz/2·ζβz is a κO(z) approximation to cost(x,S)
cost(X,S) .

Otherwise if nβ < nα, then by Lemma 3.19,

1
κO(γ1z)

cost(x, S)
cost(X,S) ≤

dz/2 · ζβz

Ψ + nβ · dz/2 · ζβz
≤ κO(γ2z) · s(x),

for fixed constants γ1, γ2 ≥ 1. In particular, for the center p ∈ X that realizes the sensitivity s(x),
we have that dz/2·ζβz

Ψ+nβ ·dz/2·ζβz is a κO(z) approximation to cost(x,S)
cost(X,S) . Furthermore, for centers q ∈ X

that do not realize the sensitivity, we have that dz/2·ζβz

Ψ+nβ ·dz/2·ζβz ≤ κO(γ2z) · s(x). Thus,

1
κγ1z

· s(x) ≤ ŝ(x) ≤ κγ2z · s(x).

– 33 –

Algorithm 6 RoughSens: Rough batch approximation of sensitivities
Input: Input set Z ⊂ [∆]d for (k, z)-medoids clustering, batch B of k query points, approximation

parameter α ∈ (0, 1)
Output: nα approximation for the sensitivity of x for (k, z)-medoids clustering on Z ∪B, for all

x ∈ B
1: κ← nα, ζ ← nι for sufficiently small ι < α ∈ (0, 1)
2: Compute S to be a constant-factor solution on Z ∪B for (k, z)-medoids clustering
3: for x ∈ B do
4: ŝ(x)← 0
5: Build a tree-embedding on Z ∪B
6: while there is a point of Z ∪ B within 1

κ -fraction of the distance to a cell in the tree
embedding do

7: Create a tree-embedding on Z ∪B
8: for each level ℓβ in the tree do
9: Let Q be a κ-factor approximation Q of the optimal (k, z)-medoids clustering on X

initially separated from x at level ℓβ
10: Use TreeDist to compute a constant-factor approximation Ψ of cost(X,Q)
11: Let nβ be the number of points served by centers of Q in the same cell as x before ℓβ
12: ŝ(x)← max

(
ŝ(x), dz/2·ζβz

Ψ+nβ ·(dz/2·ζβz

)
13: return ŝ(x)

We now analyze the properties of RoughSens. Since correctness is mostly given by Lemma 3.20,
the main consideration is the amortized update time.

Lemma 3.21. Given any constant α ∈ (0, 1) and a constant-factor coreset Z of size k ·polylog(logn)
to X ⊂ [∆]d, there exists an algorithm RoughSens that outputs nα-approximations to the sen-
sitivities to each of the points x ∈ B in a batch B of k points of X, using amortized d log(k) ·
polylog(log(n∆)) time, with probability at least 1− 1√

n
.

Proof. By Lemma 3.3, we can compute the sensitivity of x ∈ Z ∪ B as a good approximation to
computing the x ∈ B with respect to X, since Z is a constant-factor coreset to Y so that Z ∪ B
is a constant-factor coreset to X = Y ∪ B. Moreover, it suffices to compute a constant-factor
approximation to the (k, z)-medoids clustering sensitivity of x with respect to Z∪B, by Theorem 3.2.
Therefore, the goal is to compute a crude approximation to maxC⊂Z∪B:|C|≤k

cost(x,C)
cost(X,C) . Let E be

the event that TreeDist approximates all pairwise distances within a factor of 1
poly(d) · n

1
100p . Then

conditioned on E , correctness follows by Lemma 3.20. We remark that the algorithm iterates until
E occurs, so the dependency on E is not in the correctness, but rather than runtime.

Thus, we now analyze the amortized runtime of RoughSens. By Theorem 3.16, we use
kd log(kd) · polylog(log(n∆)) time to find a κ-approximation S of k centers that serve as a constant-
factor approximation to Z∪B. For ∆ = poly(n), the tree has heightO

(
1
ι

)
and thus by pre-processing

the number of points in each cell, the total time form Q across all levels is O
(

1
ι

)
. Similarly, we can

approximate Ψ up to a κ-factor, along with the corresponding center ψβ to be removed from S that
is consistent with Ψ.

– 34 –

It remains to pre-process (Z ∪B) and S to efficiently compute the number of centers nβ assigned
to centers of q ∈ Q in such that TreeDist(x, q) <

√
d · ζβ. Again, this is handled by pre-processing

all the points y ∈ (Z ∪B) in the quadtree by pre-computing the number of points in each cell at
each level, which takes total time k · polylog(logn) due to the size of X. Then by starting at β = 0
and iterating to β = O

(
1
ι

)
, we proceed up the tree to compute each nβ , using O

(
1
ι

)
time in total.

Therefore, the total time to compute S and perform additional pre-processing is kd log(kd) ·
polylog(log(n∆)). Across all possible levels β, we use O

(
1
ι

)
time to update the pre-processing

information to obtain Ψ and compute each value of nβ . Hence, the amortized runtime is d log(kd) ·
polylog(log(n∆)). Finally, we remark that if d ≥ O (logn), then we can apply the standard Johnson-
Lindenstrauss dimensionality reduction technique to achieve dimension O (logn), and thus the
resulting amortized runtime is d log(k) · polylog(log(n∆)).

Putting everything together, we have:

Theorem 3.22. Given a set X of n points on [∆]d, let f
(
n, d,∆, k, 1

ε , z
)

be the number of
points of a coreset construction with weights [1,poly(nd∆)] for (k, z)-clustering. There exists
an algorithm that uses d log(k) · polylog(log(n∆)) amortized update time and O (dk log(n∆)) +
f
(
n, d,∆, k, polylog(log(nd∆))

ε , z
)
· polylog

(
1
ε , log(nd∆)

)
bits of space, and outputs a (1 + ε)-strong

coreset of X.

Proof. We perform induction on the time t throughout the stream. Correctness at the first step
is immediate, since the first point is inserted into the batch. Now we suppose for our inductive
hypothesis that at time t− 1, we have both a constant-factor coreset and a (1 + ε)-coreset at time
t− 1.

Consider time t for our inductive step. Either the new point is added to the batch of size
k, in which case both coreset invariants are maintained, or we perform a sampling step on the
batching using crude approximations to the sensitivities as an initial filtering step, because the
batch has gotten too large. In the latter case, we first use the constant-factor coreset through
Lemma 3.21 to compute rough approximations to the (k, z)-sensitivities in a batch of k points. This
uses d log(k) · polylog(logn) amortized runtime and produces an insertion-only stream S of length
O
(
n1−Ω(1)

)
. We feed this insertion-only stream S as the input to Algorithm 5. By Theorem 3.13,

the algorithm uses dk polylog(log(n∆)) update time on the stream S of length o(n) to generate
both a constant-factor coreset and a (1 + ε)-factor coreset at time t, which completes our induction.
Since this is a lower-order term, then the total amortized runtime is d log(k) · polylog(logn).

Finally, we note the implications of Theorem 3.22 to dynamic (k, z)-clustering in the incremental
setting.

Theorem 3.23. Given an insertion-only stream of n points that defines a dataset X on [∆]d, there
exists a one-pass streaming algorithm that uses d log(k) · polylog(log(n∆)) amortized update time
and Õ (dk log(n∆)) bits of space, and outputs a O (z)-approximation to (k, z)-clustering at all times
in the stream.

Proof. By Theorem 1.6, there exists a coreset construction for Euclidean (k, z)-clustering that
samples Õ (k) weighted points of the input dataset. Thus, Theorem 3.22 guarantees a constant-
approximation coreset for X using d log(k)·polylog(log(n∆)) amortized update time. In fact, because

– 35 –

the proof of Theorem 3.22 uses induction over the course of the stream, it actually achieves a constant-
approximation coreset to every prefix of the stream. We can thus achieve a O (z)-approximation at
all times in the stream by applying a standard polynomial-time clustering approximation algorithm
such as local search, c.f., Theorem 3.4, each time the merge-and-reduce data structure is updated.
Moreover, note that by Theorem 2.4, the final input stream induced by online sensitivity sampling
to the merge-and-reduce data structure has length O

(
dk2 log3(n∆)

)
. By applying a standard

Johnson-Lindenstrauss transformation, c.f., Theorem 1.7, we can view d = O (logn). Therefore,
the total runtime of all iterations of local search is O

(
k2 log4(n∆)

)
· Õ

(
k2 logn

)
. Thus for n≫ k4,

the amortized runtime remains d log(k) · polylog(log(n∆)), due to the computation of the constant-
approximation coreset.

4 Subspace Embeddings
In this section, we describe our one-pass streaming algorithm on insertion-only streams for Lp

subspace embeddings that uses Ok,d,ε(1) words of space and amortized runtime O (d) per update.
Recall that in problem of Lp subspace embeddings, the rows of a matrix A ∈ Rn×d arrive one-by-one,
and the goal is to produce a matrix M ∈ Rm×d such that for a fixed ε ∈ (0, 1) and for all x ∈ Rd,
we have

(1− ε)∥Ax∥p ≤ ∥Mx∥p ≤ (1 + ε)∥Ax∥p.

Lp subspace embeddings are widely used in data compression applications where preserving
the geometry of data is critical, e.g., dimensionality reduction, compressed sensing, and lin-
ear/robust regression. Hence, there is a long line of active work studying Lp subspace embed-
dings [DMM06a, DMM06b, Sar06, DDH+09, CW09, CP15, CMP20, BDM+20, PPP21, MWZ22,
MMM+22, MMWY22, CSWZ23, MMM+23, WY23].

We first describe an efficient encoding for coresets for Lp embeddings, as well as a global encoding
that be utilized to achieve our streaming algorithm that uses Ok,d,ε(1) words of space. We then
describe how our algorithm can be implemented using O (d) amortized update time.

We first recall the following definition of leverage scores, which intuitively quantifies the impor-
tance of a row for L2 subspace embeddings.

Definition 4.1 (Leverage scores). The leverage score of a row ai ∈ Rd of a matrix A ∈ Rn×d is

max
x:∥Ax∥2=1

⟨a,x⟩2.

It is known that the leverage score for ai also admits the closed form a⊤
i (A⊤A)−1ai.

We first recall one of the possible generalizations of leverage scores to Lp subspace embeddings.

Definition 4.2 (Lp Lewis weights). The Lewis weight of a row ai ∈ Rd of a matrix A ∈ Rn×d for
Lp subspace embedding is the i-th diagonal entry of the unique diagonal matrix W such that for all
i ∈ [n]

Wi,i = ℓi(W
1
2 − 1

p A),

where ℓi denotes the i-th leverage score, i.e., the leverage score of the i-th row of the matrix W
1
2 − 1

p A.

– 36 –

The intuition for Lp Lewis weights is not obvious; they are the leverage scores of the matrix after
applying a proper change-of-density, where each row is weighted the number of times necessary to
preserve ∥Ax∥p when consider ∥A′x∥2, where A′ is the reweighted matrix [CP15]. An advantage of
using Lewis weights to sample rows over other quantities such as the Lp leverage scores [DDH+09] or
the Lp sensitivities [BDM+20, CD21] is that the Lp Lewis weights are known to admit the optimal
sampling complexity. On the other hand, for the special case of p = 2, [Sar06] showed the existence
of an oblivious subspace embedding with O

(
d
ε2

)
rows. Combining these methods, we have:

Theorem 4.3. [Sar06, CP15, WY23] Given a matrix A ∈ Rn×d, accuracy ε ∈ (0, 1), and p ≥ 1, let

f

(
d,

1
ε
, p

)
=

d
ε2 log d

ε polylog
(

d
ε

)
, p ∈ [1, 2)

O
(

d
ε2

)
, p = 2

dp/2

ε2 · polylog
(

d
ε

)
, p > 2

.

Then there exists a coreset construction for Lp subspace embeddings that consists of f
(
d, 1

ε , p
)

rows,
each with entry at most ∥A∥∞ · poly(n), which can be constructed in time polynomial in n and d.

We next define the generalization of Lp Lewis weights to the online setting.

Definition 4.4 (Online Lp Lewis weights). The online Lp Lewis weight of a row ai ∈ Rd of a
matrix A ∈ Rn×d is the Lewis weight of ai with respect to the matrix Ai = a1 ◦ . . . ◦ ai, i.e., the
submatrix of A consisting of the first i rows of A.

We recall the following upper bounds on the sum of the online Lewis weights.

Theorem 4.5. [BDM+20, WY23] Let A = {a1, . . . , an} ∈ Rn×d be a matrix of n rows and let σ(at)
denote the online Lewis weight of at for t ∈ [n] for Lp-subspace embedding, where p ≥ 1. Then for
p ∈ [1, 2],

n∑
t=1

σ(at) = d · polylog(nκ),

and for p > 2,
n∑

t=1
σ(at) = dp/2 · polylog(nκ),

where κ is the online condition number.

We now recall the full guarantees of online Lewis weight sampling.

Theorem 4.6 (Online Lewis weight sampling). [WY23] Given a sequence a1, . . . ,an ∈ Rn×d of
rows, suppose each point at is sampled with probability pt ≥ min(1, γ · σ(at)), where σ(at) is the
online Lewis weight of at and γ = O

(
log n

ε2

)
and multiplied by 1

pt
if at is sampled. Then with high

probability, the rescaled sample is a (1 + ε)-strong coreset for Lp-subspace embedding that has a
number of rows that is at most:

g

(
n, d,

1
ε
, κ, p

)
=
{

d
ε2 · polylog(nκ), p ∈ [1, 2]
dp/2

ε2 · poly(logp/2(nκ)), p > 2
.

– 37 –

We use standard approaches, e.g., Lemma 4.1 in [CW09] to upper bound the magnitude of the
logarithm of any nonzero singular value of a matrix with bounded integer entries. This in turn
upper bounds the logarithm of the online condition number.

Lemma 4.7. Suppose A ∈ Rn×d has integer entries bounded in magnitude by M . Then for any
nonzero singular value σi of A, we have | log σi| = O (d log(nM)).

Proof. We have that the characteristic polynomial of A⊤A is p(x) = det(x · Id −A⊤A). Note that
if A has rank r, then p(x) = xd−r ∏r

i=1(x − λi), where λi is the i-th eigenvalue of A⊤A, writing
λ1 ≥ λ2 ≥ . . . ≥ λr. Since all entries of A⊤A are integers, then the coefficients of p(x) are also
integers. Moreover, since the eigenvalues of A⊤A are non-negative, then ∏r

i=1 λi ≥ 1. Because all
entries of A⊤A are at most poly(ndM) in magnitude, then

λi ≤ λ1 ≤ ∥A⊤A∥F ≤ poly(ndM).

Since ∏r
i=1 λi ≥ 1, then we have that λi ≥ 1

poly(ndM)d . Since σ2
i = λi, then | log σi| = O (d log(nM)).

We next recall the following definition of a well-conditioned basis.

Definition 4.8 (Well-conditioned basis). Given a matrix A ∈ Rn×d of rank r, let p ∈ [1,∞) and q
be its dual norm, so that 1

p + 1
q = 1. Then matrix U ∈ Rn×d is an (α, β, p)-well-conditioned basis

for the column space of A if:

(1) The column space of A is the column space of U

(2)
∑

i∈[n],j∈[d] U
p
i,j ≤ αp

(3) For all x ∈ Rd, we have ∥z∥q ≤ β∥Uz∥p

One such construction of a well-conditioned basis gives the following properties:

Theorem 4.9. [DDH+09] Given a matrix A ∈ Rn×d of rank r, let p ∈ [1,∞) and q be its dual
norm, so that 1

p + 1
q = 1. There exists an (α, β, p)-well-conditioned basis U for the column space of

A such that:

• If p < 2, then α = r
1
p

+ 1
2 and β = 1

• If p = 2, then α =
√
r and β = 1

• If p > 2, then α = r
1
p

+ 1
2 and β = r

1
q

− 1
2

Moreover, U can be computed in time O
(
ndr + nr2 logn

)
.

For completeness, we briefly describe the construction of the well-conditioned basis of Theorem 4.9,
given by [DDH+09]. Given a QR decomposition A = QR, so that Q is any n× r matrix that is
an orthonormal basis for the span of A and R is an r × d matrix, define the set S = {x ∈ Rd |
∥Qx∥p ≤ 1} and the r × r matrix F so that ELJ = {x ∈ Rr | x⊤Fx ≤ 1} is the Löwner-John
ellipsoid of S, let G ∈ Rd×r be the full rank and upper triangular matrix such that F = G⊤G.
Then U := QG−1 is the desired (α, β, p)-well-conditioned basis for the column span of A.

We now define the Lp sensitivity of a row of a matrix, for the purposes of Lp subspace embeddings.

– 38 –

Definition 4.10 (Lp sensitivity). For a matrix A ∈ Rn×d, the Lp sensitivity of row at is the
quantity

max
y∈Rd:∥Ay∥p=1

|⟨at,y⟩|p .

Finally, we recall the following upper bound on the total Lp sensitivity for Lp subspace embedding.

Lemma 4.11 (Upper bounds on the sum of the Lp sensitivities). [CP15, CD21] For a matrix
A ∈ Rn×d, let s(at) denote the Lp sensitivity of the t-th row of A for Lp subspace embedding. Then∑n

t=1 s(at) ≤ d for p ≤ 2 and
∑n

t=1 s(at) ≤ dp/2 for p > 2.

4.1 Efficient Encoding for Coreset Construction for Lp Subspace Embedding

We now give our efficient encoding for a given coreset for Lp subspace embeddings. Given a matrix
A, which can be viewed as either the original matrix or a set of reweighted rows that forms a coreset
of some underlying matrix, we first acquire a constant-factor approximation M for Lp subspace
embedding on A. We then use the existence of a well-conditioned basis to compute a deterministic
preconditioner P ∈ Rd×d, so that MP−1 has condition number poly(d). Now for each row at of A,
let b′

t be atP with each coordinate rounded to a power of (1 + ε′) for ε′ = poly(ε)
poly(dp,log(nd) . We then

store the exponent of each rounded coordinate of B′, as well as M. The algorithm appears in full in
Algorithm 7.

Algorithm 7 Efficient Encoding for Coreset Construction for Lp Subspace Embedding
Input: Matrix A ⊂ {−M, . . . ,−1, 0, 1, . . . ,M}n×d, accuracy parameter ε ∈ (0, 1), failure probabil-

ity δ ∈ (0, 1)
Output: (1 + ε)-coreset for Lp subspace embedding

1: ε′ ← poly(ε)
poly(dp,log(nd∆)

2: Find a matrix M that is a constant-factor Lp subspace embedding on A ▷Theorem 4.3
3: Compute a deterministic preconditioner P of M using well-conditioned bases, such that MP−1

has condition number poly(d)
4: for each row a ∈ A do
5: Let b′ be aP with each coordinate rounded to a power of (1 + ε′)
6: B′ ← B′ ◦ b′, storing the exponent for each entry of b′

7: return (M,B′), from which estimate A′ can be constructed

Given a constant-factor subspace embedding M, we now show that the matrix B′ acquired by
rounding each row of AP can be used to construct a matrix A′ that is a strong coreset of A.

Lemma 4.12. Let ε ∈
(
0, 1

2

)
and let A′ = B′P−1, where B′ is the output of Algorithm 7 and P is

the deterministic preconditioner of M. Then for all x ∈ Rd,

(1− ε)∥Ax∥pp ≤ ∥A′x∥p ≤ (1 + ε)∥Ax∥pp.

Proof. Without loss of generality, we assume that A is full rank. Note that we can write Ax =
APP−1x and thus by rewriting y = P−1x, it suffices to show that for all y ∈ Rd

(1− ε)∥APy∥pp ≤ ∥A′Py∥pp ≤ (1 + ε)∥APy∥pp.

– 39 –

We remark that if A is not full rank, the task would be to show claim for all y in the column span
of P−1.

Let B = AP and observe that Algorithm 7 rounds all coordinates of each row bt = atP to their
closest power of (1 + ε′). Then we have∣∣⟨bt,y⟩p − ⟨b′

t,y⟩p
∣∣ ≤ ε′ · max

y∈Rd,∥y∥p=1
|⟨bt,y⟩|p .

For each t ∈ [n], let s(bt) denote the sensitivity of bt with respect to B, so that

s(bt) = max
y∈Rd

|⟨bt,y⟩|p

∥By∥pp
.

Recall that B = AP and P is a preconditioner for M, so that MP is well-conditioned. That is, for
any unit vector y ∈ Rd, we have

1
dpC
· ∥MPy∥pp ≤ ∥y∥pp ≤ dpC · ∥MPy|pp,

for a fixed constant C > 0. Since M is a constant-factor subspace embedding for A, then we
certainly have

1
dp(C+1) · ∥APy∥pp ≤ ∥y∥pp ≤ dp(C+1) · ∥APy|pp.

Thus it follows that
1

dp(C+1) · ∥By∥pp ≤ ∥y∥pp ≤ dp(C+1) · ∥By|pp.

Therefore,
max
y∈Rd

|⟨bt,y⟩|p ≤ s(bt) · dp(C+1),

so that ∣∣∥⟨bt,y⟩p − ⟨b′
t,y⟩p

∣∣ ≤ ε′ · s(bt) · dp(C+1).

Then by triangle inequality, we have

∣∣∣∥By∥pp − ∥B′y∥pp
∣∣∣ ≤ n∑

t=1

∣∣∥⟨bt,y⟩ − ⟨b′
t,y⟩

∣∣p ≤ ε′ ·
n∑

t=1
s(bt) · dp(C+1).

Since the sum of Lp sensitivities is at most d by Lemma 4.11, then∣∣∣∥By∥pp − ∥B′y∥pp
∣∣∣ ≤ ε′ · dp(C+2).

The desired claim then follows by the setting of ε′ = poly(ε)
poly(dp,log(nd∆) , recalling that By = APP−1x

and B′y = A′PP−1x.

We now give the full guarantees of Algorithm 7, which gives an efficient encoding of an input
matrix A.

– 40 –

Lemma 4.13. Let A ∈ Rm×d be a coreset construction with entries in {0} ∪
[

1
poly(n) ,poly(n)

]
. Let

f

(
d,

1
ε
, p

)
=

d
ε2 log d

ε polylog
(

d
ε

)
, p ∈ [1, 2)

O
(

d
ε2

)
, p = 2

dp/2

ε2 · polylog
(

d
ε

)
, p > 2

.

Then A′ is a (1 + ε)-coreset for A for Lp subspace embedding that uses O (f (d, 1, p)) · (d logn) +
md · polylog

(
d, 1

ε , log(ndκ), log 1
δ

)
bits of space.

Proof. Firstly, note that Algorithm 7 outputs a pair (M,B′) that encodes B′ using M. By
Lemma 4.12, we have that for all x ∈ Rd,

(1− ε)∥Ax∥1 ≤ ∥A′x∥1 ≤ (1 + ε)∥Ax∥1,

where A′ = B′P−1. Thus, A′ is a coreset for A.
It remains to analyze the space complexity of (M,B′). Since M is a constant-factor Lp subspace

embedding, then by Theorem 4.3, M can be represented using O (f(d, 1, p)) · d log(n) bits of space.
Furthermore, each offset b′ in B′ is encoded using O

(
d log

(
1
ε + log(ndκ)

))
bits of space due to

storing the d coordinates of the offset rounded to the power of (1 + ε′). Specifically, we store the
exponent of each offset after the rounding, rather than the explicit coordinates. Therefore, the output
of the algorithm is encoded using O (f (d, 1, p)) · (d logn) +md · polylog

(
d, 1

ε , log(ndκ), log 1
δ

)
.

4.2 Subspace Embedding in the Streaming Model

In this section, we show how to use a global encoding combined with the efficient encoding from
the previous section in order to achieve our main algorithm for Lp subspace embeddings in the
row-arrival model.

Similar to (k, z)-clustering, the main downfall of immediately applying the previous efficient
encoding to each node of a merge-and-reduce tree is that the constant-factor approximation requires
O
(
d2 log(nd)

)
bits of storage per efficient encoding, and there can be polylog(log(nd)) such efficient

encodings due to the height of the merge-and-reduce tree on a data stream produced by online
Lewis weight sampling. As before, we circumvent this issue by showing that we can instead consider
a single constant-factor approximation to the global dataset. We then show that the error of
maintaining such a global constant-factor approximation does not compound too much over the
course of the stream.

We give the algorithm in full in Algorithm 8.
We first show that given disjoint matrices Q1, . . . ,Qm of A, we can apply Algorithm 7 and

although the output Q′
i from our efficient encoding will no longer necessarily be a strong coreset for

each corresponding Qi, the resulting error will only be an additive ε′ · ∥Ax∥pp for a fixed x ∈ Rd,
which suffices for our purposes. Specifically, we will set ε′ = ε

poly(log log(nd) and m = poly(log log(nd)),
provided the entries of A are integers bounded in magnitude by poly(nd).

Lemma 4.14. Let Q1 ◦ . . . ◦Qm = A be a partition of A. Let M be a constant-factor Lp subspace
embedding on A. For each i ∈ [m], let Q′

i be the resulting matrix after applying the inverse of the
preconditioner to the rounded matrix resulting from Qi. Then for all i ∈ [m] and all x ∈ Rd,∣∣∣∥Q′

ix∥pp − ∥Qix∥pp
∣∣∣ ≤ ε

poly(log lognd) · ∥Ax∥pp.

– 41 –

Algorithm 8 Lp-Embedding on Insertion-Only Stream
Input: Matrix A = {a1, . . . ,an} ∈ Rn×d that arrives as a data stream, ε ∈ (0, 1), parameter p ≥ 1
Output: (1 + ε)-coreset for Lp-subspace embedding

1: Z← ∅, λ← O
(

d
ε2 · log d logn

)
2: for each t ∈ [n] do
3: Use Z ∪ {ât} to compute a O (1)-approximation σ̂(at) to the online Lewis weight of at

4: p(at)← min(1, λ · σ̂(at))
5: With probability p(at), sample 1

p(at) · at into a stream S ′

6: Let Z be the running output of merge-and-reduce on S ′ using the efficient encoding for
coreset construction in Algorithm 7 with a global constant-factor embedding, for accuracy

ε
poly(log log nd) and failure probability 1

poly(1
ε

,log(nd))
7: return Z

Proof. Note that by Lemma 4.12 with accuracy ε
poly(log log nd) , we have∣∣∣∥A′x∥pp − ∥Ax∥pp

∣∣∣ ≤ ε

poly(log lognd) · ∥Ax∥pp.

Since ∣∣∣∥Q′
ix∥pp − ∥Qix∥pp

∣∣∣ ≤ m∑
i=1

∣∣∣∥Q′
ix∥pp − ∥Qix∥pp

∣∣∣ =
∣∣∣∥A′x∥pp − ∥Ax∥pp

∣∣∣ ,
then the claim follows.

We now give the full guarantees of Algorithm 8 by showing correctness of the global encoding
and specifically, that there is no compounding error across the poly(log log(nd)) iterations.

Theorem 4.15. Given a matrix A of n rows on [−M, . . . ,−1, 0, 1, . . . ,M]d, with M = poly(n) and
online condition number κ, there exists a one-pass streaming algorithm in the row arrival model that
outputs a (1 + ε)-strong coreset of A and uses O (d) · f

(
d, 1

ε , p
)

words of space, where

f

(
d,

1
ε
, p

)
=

d
ε2 log d

ε polylog
(

d
ε

)
, p ∈ [1, 2)

O
(

d
ε2

)
, p = 2

dp/2

ε2 · polylog
(

d
ε

)
, p > 2

.

Proof. Consider Algorithm 8. We prove correctness by induction on t, claiming that after j ·
g
(
n, d, polylog(log(nκ))

ε , p
)

samples into S ′, then Z is a
(
1 +O

(
ε

poly(log log nd)

))j+1
coreset of At. The

online Lewis weight of the first row is always 1 and thus Z = a1 after the first step, and the
base case is complete. For the inductive hypothesis, we condition on the correctness of Z being a(
1 +O

(
ε

poly(log log nd)

))j
-coreset of At−1 = a1 ◦ . . . ◦ at−1 after j − 1 merges have occured. Then

Z ◦ at is a
(
1 + ε

poly(log log nd)

)
-coreset of At = a1 ◦ . . . ◦ at, so we can use Z ◦ at to compute a

constant-factor approximation to the online Lewis weight σ(at) of at. Note that merge-and-reduce
will be correct if S ′ is a stream with length at most g

(
n, d, polylog(log(nκ))

ε , p
)
, since the failure

– 42 –

probability is set to be 1
poly(1

ε
,log(n∆)) and merge-and-reduce will consider at least g

(
n, d, 1

ε , p
)

stream updates before applying a new coreset construction. Thus by Lemma 4.14 the correctness of
merge-and-reduce on S ′, we have that Z after time t will be a

(
1 +O

(
ε

poly(log log nd)

))j+1
-strong

coreset for Xt after j merges, which completes the induction. Finally, we have that by Theorem 4.5,
at most g

(
n, d, polylog(log(nκ))

ε , p
)

samples will be inserted into S, so that j ≤ polylog(nκ). The
correctness guarantee then follows by rescaling ε.

To analyze the space complexity, note that by Theorem 4.6 through Theorem 4.5, we have
that the total number of sampled rows into S ′ is n′ = O

(
g
(
n, d, 1

ε , p
))

, with high probability. We
do not maintain S ′, but instead feed S ′ as input to the merge-and-reduce subroutine. Hence, the
input to merge-and-reduce has size n′ and so each coreset implementation has size f

(
d, 1

ε , p
)
·

polylog(n′). We use the efficient encoding for coreset construction given in Algorithm 7 with
accuracy ε

poly(log log(nκ)) and failure probability 1
poly(1

ε
,log(n∆)) . Similar to the analysis of Lemma 4.13,

we recall that total representation of Z requires a constant-factor Lp subspace embedding M
that uses O (f (d, 1, p)) · (d logn) bits of space. We then use Lemma 4.14 to encode each of the
coresets of size f

(
d, 1

ε , p
)
· polylog(n′), using d · polylog

(
d, 1

ε , log(ndκ), log 1
δ

)
bits per row. Since

n′ = O
(
g
(
n, d, 1

ε , p
))

, it follows that there are at most polylog
(
d, 1

ε , log(ndκ), log 1
δ

)
such coresets.

Therefore, the total space required is

O (d logn) · f(d, 1, p) + f

(
d,

1
ε
, p

)
· polylog(n′) · d · polylog

(1
ε
, log(ndκ)

)
.

in bits, which is equivalent to O (d) · f
(
d, 1

ε , p
)

words of space, as desired.

4.3 Fast Algorithm for Subspace Embeddings

In this section, we show that our one-pass streaming algorithm can be implemented in O (d)
amortized update time. We first require a crude nα-approximation to the online Lewis weight for
each row that arrives in the stream. To that end, we first recall that the Lp sensitivity is a poly(d)
approximation to the Lp Lewis weights.

Lemma 4.16. [CP15, CD21] For a matrix A ∈ Rn×d, let s(at) := maxy∈Rd:∥Ay∥p=1 |⟨at,y⟩|p denote
the Lp sensitivity of the t-th row of A and let w(at) denote the Lp Lewis weight of at. Then

w(at)
d−1−p/2 ≤ s(at) ≤ w(at).

We first relate the square root of the leverage score of a row at in a matrix A with the p-th root
of the Lp sensitivity of at.

Lemma 4.17. For a matrix A ∈ Rn×d, let ξ(at) denote the square root of the leverage score of at

and let χ(at) denote the Lp sensitivity of at raised to the 1
p power, i.e., (s(at))1/p, where s(at) is the

Lp sensitivity of at. Then for p ∈ [1, 2], we have

s(at) ≤ ξ(at) ≤ n
1
p

− 1
2 · s(at),

and for p > 2, we have
ξ(at) ≤ s(at) ≤ n

1
2 − 1

p · ξ(at).

– 43 –

Proof. Note that for a fixed vector x ∈ Rd that is not in the kernel of A, we have that ⟨at,x⟩
∥Ax∥2

is
within a

√
n factor of ⟨at,x⟩

∥Ax∥p
, for p ∈ [1,∞). The claim then follows from the definition that the

square root of the leverage score is the maximum of ⟨at,x⟩
∥Ax∥2

across all possible such x, while the 1
p -th

root of the Lp sensitivity is the maximum of ⟨at,x⟩
∥Ax∥p

over all such possible x.

We next show that we can quickly compute crude approximations to the Lp Lewis weights by
instead computing crude approximations to the square root of the leverage scores of the rows of the
matrix.

Lemma 4.18. Given A ∈ Rn×d, let B ∈ Rm×d be a matrix such that 1
C ·A

⊤A ⪯ B⊤B ⪯ C ·A⊤A,
for some constant C, there exists an algorithm that computes a nα approximations to the Lp Lewis
weight using O (nnz(A)) runtime.

Proof. Recall that the leverage score of at with respect to A is a⊤
t (A⊤A)−1a⊤. Since 1

C ·A
⊤A ⪯

B⊤B ⪯ C · A⊤A, then a⊤
t (B⊤B)−1a⊤ is a C-approximation to the leverage score. Let Z =

(B⊤B)−1/2, so that ∥Zat∥22 is a C-approximation to the leverage score of at. Thus it suffices to find
an nα/2-approximation to ∥Zat∥2. To that end, observe that for a unit vector v ∈ Rd a random
Gaussian vector g ∈ Rd whose entries are independently drawn from N (0, 1), we have that

Pr
[
⟨v,g⟩ ≥ log2 n

]
≤ 1− 1

poly(n)

Pr
[
⟨v,g⟩ ≤ 1

n1/100p

]
≤ O

(1
n1/100p

)
.

Thus by the median over O
(

1
100p

)
values of ∥g(i)Mat∥2, we can approximately the leverage score

of at within n1/100p. Hence, we can also approximate the square root of the leverage score of at

within n1/100p. By Lemma 4.17, this results in a nα-approximation to the Lp Lewis weight of at.
For the runtime, observe that A⊤A over changes poly(d) times throughout the stream, so the

computation of g(i)M is a lower order term than the stream length, i.e., total runtime over all values
of M is o(n). To compute g(i)Mat from at uses O (d) time per row and in fact, input-sparsity time
over the entire matrix

Putting everything together, we have:

Theorem 4.19. Given a matrix A of n rows on [−M, . . . ,−1, 0, 1, . . . ,M]d, with M = poly(n) and
online condition number κ, there exists a one-pass streaming algorithm in the row arrival model that
outputs a (1 + ε)-strong coreset of A and uses O (d) · f

(
d, 1

ε , p
)

words of space, where

f

(
d,

1
ε
, p

)
=

d
ε2 log d

ε polylog
(

d
ε

)
, p ∈ [1, 2)

O
(

d
ε2

)
, p = 2

dp/2

ε2 · polylog
(

d
ε

)
, p > 2

.

Moreover, the amortized runtime is O (d) per update.

Proof. We proceed by induction on the time t. The correctness at the first time is clear, since the
initial nonzero row must be sampled. Now assuming that the correctness of both a constant-factor

– 44 –

coreset and a (1 + ε)-coreset at time t− 1, then at time t, either the row is added to the batch of
size k, in which case both coreset invariants are maintained, or the sampling procedure is performed
on the batch because the batch has gotten too large. In the latter case, we use the constant-factor
coreset through Lemma 4.18 to compute a crude approximation to the Lewis scores of each row
in a batch of k rows. This uses O (nnz(A)) total runtime and produces an insertion-only stream
of length O

(
n1−Ω(1/p)

)
. We then use this as the input to Algorithm 8. By Theorem 4.15, there

is poly(d) update time on the stream of length o(n) to generate both a constant-factor coreset
and a (1 + ε)-factor coreset at time t, which completes our induction. Thus for d ≪ n1/p, the
total runtime for Algorithm 8 is O (nd), and so the overall runtime is O (nd+ nnz(A)), which is
amortized runtime O (d).

Acknowledgments
The work was initialized while David P. Woodruff and Samson Zhou were visiting the Institute
for Emerging CORE Methods in Data Science (EnCORE) supported by the NSF grant 2217058.
The work was conducted in part while David P. Woodruff and Samson Zhou were visiting the
Simons Institute for the Theory of Computing as part of the Sublinear Algorithms program. David
P. Woodruff is supported in part by Office of Naval Research award number N000142112647 and
a Simons Investigator Award. Liudeng Wang and Samson Zhou were supported in part by NSF
CCF-2335411.

References
[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 1027–1035, 2007. 4

[BBC+19] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris
Schwiegelshohn. Oblivious dimension reduction for k-means: beyond subspaces and the
johnson-lindenstrauss lemma. In Moses Charikar and Edith Cohen, editors, Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pages 1039–1050. ACM, 2019. 3, 4

[BCF24] Sayan Bhattacharya, Martín Costa, and Ermiya Farokhnejad. Fully dynamic k-median
with near-optimal update time and recourse. CoRR, abs/2411.03121, 2024. 3

[BCG+24] Sayan Bhattacharya, Martín Costa, Naveen Garg, Silvio Lattanzi, and Nikos Parotsidis.
Fully dynamic k-clustering with fast update time and small recourse. In 65th IEEE
Annual Symposium on Foundations of Computer Science, FOCS, pages 216–227, 2024.
3

[BCLP23] Sayan Bhattacharya, Martín Costa, Silvio Lattanzi, and Nikos Parotsidis. Fully dynamic
k-clustering in Õ(k) update time. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems, NeurIPS, 2023. 3,
5, 19, 21

– 45 –

[BDM+20] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj
Upadhyay, David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the
online and sliding window models. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pages 517–528, 2020. 5, 6, 36, 37

[BFL+21] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou.
Efficient coreset constructions via sensitivity sampling. In Asian Conference on Machine
Learning, ACML, pages 948–963, 2021. 6, 13

[BFLR19] Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus. Streaming coreset
constructions for m-estimators. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 62:1–62:15,
2019. 2, 3, 4

[BIRW16] Arturs Backurs, Piotr Indyk, Ilya P. Razenshteyn, and David P. Woodruff. Nearly-
optimal bounds for sparse recovery in generic norms, with applications to k-median
sketching. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 318–337, 2016. 8

[BS80] Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: static-to-
dynamic transformation. J. Algorithms, 1(4):301–358, 1980. 13

[CD21] Xue Chen and Michal Derezinski. Query complexity of least absolute deviation
regression via robust uniform convergence. In Conference on Learning Theory, COLT,
volume 134, pages 1144–1179, 2021. 37, 39, 43

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC, pages 163–172, 2015. 4

[Che09] Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean
spaces and their applications. SIAM J. Comput., 39(3):923–947, 2009. 2, 3, 4

[CLN+20] Vincent Cohen-Addad, Silvio Lattanzi, Ashkan Norouzi-Fard, Christian Sohler, and
Ola Svensson. Fast and accurate k-means++ via rejection sampling. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems, NeurIPS, 2020. 8, 30

[CLS+22] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn,
and Omar Ali Sheikh-Omar. Improved coresets for euclidean k-means. In NeurIPS,
2022. 2, 11, 13

[CLSS22] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn.
Towards optimal lower bounds for k-median and k-means coresets. In STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages 1038–1051, 2022. 2,
4, 11, 13

[CMP20] Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. Theory
Comput., 16:1–25, 2020. 5, 6, 36

– 46 –

[CP15] Michael B. Cohen and Richard Peng. lp row sampling by lewis weights. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC,
pages 183–192, 2015. 5, 6, 36, 37, 39, 43

[CSS21] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset
framework for clustering. In STOC: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 169–182, 2021. 2, 4, 13

[CSWZ23] Yeshwanth Cherapanamjeri, Sandeep Silwal, David P. Woodruff, and Samson Zhou.
Optimal algorithms for linear algebra in the current matrix multiplication time. In
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
4026–4049, 2023. 36

[CW09] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC, pages 205–214, 2009. 36, 38

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference, STOC,
pages 81–90, 2013. 2

[CWZ23] Vincent Cohen-Addad, David P. Woodruff, and Samson Zhou. Streaming euclidean
k-median and k-means with o(logn) space. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 883–908, 2023. 2, 3, 4, 6, 9, 12, 13

[DDH+09] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Ma-
honey. Sampling algorithms and coresets for lp regression. SIAM J. Comput., 38(5):2060–
2078, 2009. 6, 36, 37, 38

[DMM06a] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-based methods. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 9th
International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems, APPROX and 10th International Workshop on Randomization and
Computation, RANDOM, Proceedings, pages 316–326, 2006. 2, 5, 6, 36

[DMM06b] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and
relative-error matrix approximation: Column-row-based methods. In Algorithms - ESA
2006, 14th Annual European Symposium, Proceedings, pages 304–314, 2006. 2, 5, 6, 36

[DSS24] Andrew Draganov, David Saulpic, and Chris Schwiegelshohn. Settling time vs. accuracy
tradeoffs for clustering big data. Proc. ACM Manag. Data, 2(3):173, 2024. 2, 5

[FL11] Dan Feldman and Michael Langberg. A unified framework for approximating and
clustering data. In Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC, pages 569–578, 2011. 2, 3, 4, 6, 13

[FS12] Dan Feldman and Leonard J. Schulman. Data reduction for weighted and outlier-
resistant clustering. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 1343–1354, 2012. 6, 13

– 47 –

[GT08] Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms
for facility location. CoRR, abs/0809.2554, 2008. 5, 7, 21

[HK07] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means
clustering. Discret. Comput. Geom., 37(1):3–19, 2007. 2, 3, 4

[HK20] Monika Henzinger and Sagar Kale. Fully-dynamic coresets. In 28th Annual European
Symposium on Algorithms, ESA, volume 173, pages 57:1–57:21, 2020. 3

[HLW23] Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean
(k, z)-clustering, 2023. 2, 11, 13

[HM04] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 291–300, 2004. 2, 3, 4, 13

[HV20] Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces:
importance sampling is nearly optimal. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC, pages 1416–1429, 2020. 4

[ISZ21] Zachary Izzo, Sandeep Silwal, and Samson Zhou. Dimensionality reduction for wasser-
stein barycenter. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems, NeurIPS, 2021. 4, 30

[IT03] Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In International
Workshop on Statistical and Computational Theories of Vision, ICCV Workshop, volume
120, 2003. 8

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. conference in modern analysis and probability (new haven, conn., 1982),
189–206. In Contemp. Math, volume 26, 1984. 11, 30

[lTHS24] Max Dupré la Tour, Monika Henzinger, and David Saulpic. Fully dynamic k-means core-
set in near-optimal update time. In 32nd Annual European Symposium on Algorithms,
ESA, pages 100:1–100:16, 2024. 5

[lTS24] Max Dupré la Tour and David Saulpic. Almost-linear time approximation algorithm
to euclidean k-median and k-means. CoRR, abs/2407.11217, 2024. 5

[LWW21] Yi Li, Ruosong Wang, and David P. Woodruff. Tight bounds for the subspace sketch
problem with applications. SIAM J. Comput., 50(4):1287–1335, 2021. 5

[Mag10] Malik Magdon-Ismail. Row sampling for matrix algorithms via a non-commutative
bernstein bound. CoRR, abs/1008.0587, 2010. 2

[MMM+22] Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, and
Samson Zhou. Fast regression for structured inputs. In The Tenth International
Conference on Learning Representations, ICLR, 2022, 2022. 36

– 48 –

[MMM+23] Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff, and Sam-
son Zhou. Near-linear sample complexity for Lp polynomial regression. In Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 3959–4025,
2023. 36

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of
johnson-lindenstrauss transform for k-means and k-medians clustering. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages
1027–1038, 2019. 4, 30

[MMWY22] Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active
linear regression for lp norms and beyond. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 744–753, 2022. 36

[MWZ22] Sepideh Mahabadi, David P. Woodruff, and Samson Zhou. Adaptive sketches for
robust regression with importance sampling. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pages
31:1–31:21, 2022. 36

[PPP21] Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights
subsampling. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 49:1–49:21, 2021. 36

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), Proceedings, pages 143–152, 2006. 5, 6, 36, 37

[SW18] Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace
approximation: Goodbye dimension. In 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pages 802–813, 2018. 14

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends
Theor. Comput. Sci., 10(1-2):1–157, 2014. 2

[WY23] David P. Woodruff and Taisuke Yasuda. Online lewis weight sampling. In Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 4622–4666,
2023. 5, 6, 36, 37

[WZZ23] David P. Woodruff, Peilin Zhong, and Samson Zhou. Near-optimal k-clustering in
the sliding window model. In Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems, NeurIPS 2023, 2023. 2,
3, 6, 13

[ZTHH24] Xiaoyi Zhu, Yuxiang Tian, Lingxiao Huang, and Zengfeng Huang. Space complexity of
euclidean clustering. arXiv preprint arXiv:2403.02971, 2024. 5, 9

– 49 –

	Introduction
	Our Contributions
	Technical Overview
	Fast Update Time for Clustering
	Optimal Space Clustering in the Streaming Model
	Subspace Embeddings

	Preliminaries

	Clustering
	Background for Optimal Space Clustering in the Streaming Model
	Efficient Encoding for Coreset Construction for (k,z)-Clustering
	Clustering in the Streaming Model

	Fast (k,z)-Clustering
	(k,z)-Clustering Sensitivities and (k,z)-medoids Sensitivities
	Fast Update Algorithm
	Filtering of Low-Sensitivity Points

	Subspace Embeddings
	Efficient Encoding for Coreset Construction for Lp Subspace Embedding
	Subspace Embedding in the Streaming Model
	Fast Algorithm for Subspace Embeddings

