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The Su-Schrieffer-Heeger (SSH) model, a prime example of a one-dimensional topologically nontrivial in-
sulator, has been extensively studied in flat space-time. In recent times, many studies have been conducted to
understand the properties of the low-dimensional quantum matter in curved spacetime, which can mimic the
gravitational event horizon and black hole physics. However, the impact of curved spacetime on the topological
properties of such systems remains unexplored. Here, we investigate the curved spacetime (CST) version of
the SSH model by introducing a position-dependent hopping parameter. We show, using different topological
markers, that the CST-SSH model can undergo a topological phase transition. We find that the topologically
non-trivial phase can host zero-energy edge modes, but those edge modes are asymmetric, unlike the usual SSH
model. Moreover, we find that at the topological transition point, a critical slowdown takes place for zero-
energy wave packets near the boundary, indicating the presence of a horizon, and interestingly, if one moves
even a slight distance away from the transition point, wave packets start bouncing back and reverse the direction
before reaching the horizon. A semiclassical description of the wave packet trajectories also supports these
results.

I. INTRODUCTION

One of the most astonishing predictions of Einstein’s the-
ory of general relativity1 is the potential existence of black
holes, i.e., space-time regions from where nothing can escape.
From then on, there have been efforts to simulate a black hole
horizon and the relevant curve spacetime (CST) physics in the
laboratories. In 1981, Unruh proposed a sonic horizon, which
is based on the observation that sound waves in flowing fluids,
in appropriate conditions, can be described by the same wave
equation as a scalar field in a curved space-time. The acoustic
horizon occurs if the velocity of the fluid exceeds the speed
of sound within the liquid, acting on sound waves exactly as
a black hole horizon does2,3. Further, there exist proposals
for black hole analogs based on light propagation in dielec-
tric media, liquid Helium 3, and Bose-Einstein condensates,
classical electronics circuits4–12. These works have provided
a setup for studying the CST physics in laboratories, which
has deepened the understanding of the curved spacetime and
gravity, e.g., one of the milestones of these studies was to re-
veal the relation between (1 + 1)D Jackiw-Teitelboim grav-
ity and the Sachdev-Ye-Kitaev model13–15. Only in the last
few years, there have been some studies that have focused on
the condensed matter properties in CST lattice systems, ask-
ing extremely fundamental questions like what will happen to
the fate of thermalization and localization in CST lattice mod-
els16–19.

On the other hand, one of the main goals of condensed mat-
ter physics is to deal with different phases of matter. Tra-
ditionally, phase transitions were characterized by order pa-
rameters within Landau’s free-energy theory framework and
symmetry breaking. In the past few decades, the identifica-
tion of new phases of matter that did not break any symmetry,
nor could be characterized by the usual order parameters, has
led to the appearance of topology in condensed matter sys-
tems. While 2D electronic systems, which displayed a quan-
tized Hall conductance20, are probably 1st known example of
such a condensed matter system where topology plays a cru-
cial role, in recent days, a new class of electronic materials
such as topological insulators21–26, topological crystalline in-

sulators27–29, and topological semimetals30–33 have emerged
as a material having nontrivial Bulk band topology that can
be exploited for application in low-power consumption elec-
tronic and spintronic devices due to the robustness of their
edge states to defects, which are topologically protected. In
this context, to understand how these materials behave in re-
alistic situations, it is important to first understand simple toy
models that show such a topological phase transition. One
such example of a toy model is the one-dimensional (1D)
Su-Schrieffer-Heeger (SSH) model, which is an example of
a topological insulator34. It is a tight-binding model of non-
interacting spinless electrons confined in a dimer chain, and
has been extensively studied both theoretically and experi-
mentally in the recent past35–39. The SSH model was initially
introduced to describe a 1D chain of polyacetylene, on which
electrons hop with staggered hopping amplitudes. There are
two sites in each unit cell of this model; thus, it is a two-band
model, and has winding number as its corresponding topolog-
ical invariant. In particular, the number of edge states on a
boundary of the system has a one-to-one correspondence to
the winding number associated with this model.

In this work, our main goal is to connect these two ex-
tremely different branches of physics, 1) curved spacetime
and black hole, and 2) topological systems in condensed mat-
ter. We propose a CST lattice model inspired by the two-band
SSH model. First, we investigate whether we can see the event
horizon physics or not. Next, we investigate whether the CST
version of the SSH model has a topologically non-trivial phase
or not. Remarkably, we answer both questions affirmatively in
this manuscript. We show using different topological markers
that the CST-SSH model also shows a topological phase tran-
sition. Most interestingly, exactly at the transition point, a
critical slowdown takes place for zero-energy wave packets,
which indicates the presence of a horizon.

This paper is organized as follows: We define our CST-SSH
model in Sec. II. Section. III shows the wave packet dynam-
ics and semi-classical analysis of the dynamics. We investi-
gate the gap of the spectrum and also the zero-energy states
in Sec. IV. We dedicate the Sec. V for different topological
markers to check the topological nature of the model, and
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Sec. VI shows the effect of quench across different topolog-
ical phases in CST-SSH. Finally, we summarize our findings
in Sec. VII.

II. CURVED SPACETIME SSH MODEL

In some recent studies19,40, an equivalence between the
Dirac equation in curved spacetime and a tight-binding con-
densed matter system with power law position-dependent
hopping has been demonstrated. As suggested, we can estab-
lish a direct connection between the continuum field theory
and a condensed matter system by considering a simple tight-
binding Hamiltonian in real space with nearest-neighbor (nn)
position-dependent hopping:

H =−
N−1

∑
n=1

tn
(
c†

ncn+1 +h.c.
)
, (1)

where c†
n and cn are fermionic-creation and annihilation op-

erators, and tn is a position-dependent hopping parameter.
In the thermodynamic limit, if tn = t (the nn hopping am-
plitude is constant for all sites), then the Hamiltonian can
be diagonalized very easily in the momentum space k. The
Hamiltonian will read as, H = ∑k ε(k)c†

kck, where c†
k and ck

are creation and annihilation operators in momentum space,
and ε(k) = −2t cosk. In case of position-dependent hopping
tn, with N → ∞, we can approximate the local band struc-
ture as ε(n,k) ∼ −2tn cosk, and the local Fermi velocity as
vF(n) ∼ ±2tn. Thus, the local velocity varies with spatial
coordinates, as the hopping here is position-dependent. In
the continuum limit, these kinds of lattice models are equiva-
lent to a massless Dirac field with the two-component spinor
Ψ̂ = (ψ̂+, ψ̂−)

T that obeys the following time-evolution equa-
tion40,

∂τ Ψ̂ = σ3

(
v(x)∂x +

1
2

dv
dx

)
Ψ̂, (2)

where, σi,(i = 1,2,3) are the Pauli matrices and v(x) is a
position-dependent velocity, relating to the hopping as v(x) =
2t(x). It is identical to the Dirac equation on (1+1) D space-
time in the massless limit. Thus, Eq. 1 is the low-energy dis-
crete version of a Dirac Hamiltonian in the continuum limit
with the equation of motion 2, and with the Rindler metric

ds2 =−v2(x)dτ
2 +dx2. (3)

At v(x) = 0, i.e., t(x) = 0, this Rindler metric possesses an
event horizon, as at that point, the local speed of light goes to
zero. If we let t(x) ∝ xσ , where σ is indicating the warping
of spacetime16, at x = 0, the lattice model will possess event
horizon for σ > 0: an gaussian wave-packet propagating in
this lattice will suffer eternal slowdown and never reaches the
origin, thus effectively forming an event horizon at the origin
in the lattice model.

In a similar spirit, in this work, we study the curved-space-
time version of the SSH model, which is described by the fol-

lowing Hamiltonian,

H =
N

∑
n=1

t1(n)c
†
n,Acn,B +

N−1

∑
n=1

t2(n)c
†
n,Bcn+1,A +h.c. (4)

where c†
n,A, cn,A (c†

n,B, cn,B) are fermionic creation and annihi-
lation operators at the A sub-lattice (B sub-lattice) of the nth
unit cell and t1(n) = t1

( 2n−1
2N−1

)σ and t2(n) = t2
( 2n

2N−1

)σ . In
the σ = 0 limit, the model maps exactly to the usual SSH
model, which has a topologically non-trivial (trivial) phase
when t1 < t2 (t1 > t2), and is followed by a topological tran-
sition when t1 = t234. We identify t1 and t2 as the intra- and
intercell hopping strengths, respectively.

III. WAVE-PACKET VS SEMICLASSICAL DYNAMICS

The first question we try to address here is whether we
see any event horizon physics for the Hamiltonian Eq. (4).
Hence, we first study the wave-packet dynamics. In this sec-
tion, we study the wave packet dynamics under the CST-SSH
Hamiltonian of a Gaussian wave packet and compare the re-
sults with the semiclassical set of coupled differential equa-
tions that govern wave packet trajectories. We consider the
following Gaussian wave packet,

ψ(x,τ = 0) =
1

4√
πω2

e−
1
2

(
x−x0

ω

)2

eip0x, (5)

which describes a normalized gaussian wave packet at time
τ = 0 centered at position x0 of the lattice, and having initial
momentum of p0, ω is the width of the wave packet. We
find that if t1 ̸= t2, the wave-packet first propagates towards an
edge and then returns from some point xmin, which we identify
as a ‘turning point’. This xmin depends on the details, e.g.,
initial momentum p0, the Hamiltonian parameters σ , t1, and t2
(see Fig. 10b). On the other hand, for t1 = t2 and p0 =−π/2,
it eternally slows down while evolving as it approaches the
edge x = 0, and never returns as shown in Fig. 10a. We can
identify it as the asymptotic localization of wave packets at
the origin, which mimics the key feature expected for wave
packet dynamics in the presence of a horizon.

We can dive deeper into the time evolution of the wave
packet by obtaining the semiclassical trajectories of the
Hamiltonian. For a position-dependent SSH model, the two
recursive energy eigenvalue equations can be written as,

t2(n−1)ψB,n−1 + t1(n)ψB,n = εψA,n (6)

t1(n)ψA,n + t2(n)ψA,n+1 = εψB,n (7)

Following the reference40, we introduce continuous function
ψ̃A/B(xn) which is related to the discrete ψA/B,n of the lat-
tice model as: ψ̃A/B(xn) = ψA/B,n, where, xn = n

N−1 is the
position of the n-th unit cell in the conituum space, with
ψ̃A(xn)− ψ̃B(xn) = δx = 1

2N−1 , the minimum distance on the
lattice. Expanding the wave functions in Taylor series, we
get a mapping between the discrete ψA/B,n±1 with continuous
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(a) (b)

(c) (d)

0.2

FIG. 1: Time evolution of Gaussian wave packet in the CST-SSH Hamiltonian of system size 2N = 1000 (500 unit cells): (a)
t1 = t2 = 1,σ = 1,ω = 25,x0 = 0.75, p0 =−π

2 , the wave packet experiences an eternal slowdown as it approaches the origin;
(b) t1 = 1, t2 = 1.9,σ = 1,ω = 25,x0 = .75, p0 =−π

2 , the wave-packet turns back before the origin; (c) peak position of the
Gaussian wave packet vs. time for different p0, at σ = 1,(t1, t2) = (1,1.9); (d) peak position vs. time for different t1/t2 ratios at

p0 =−π

2 . Dotted lines are numerical; solid lines are semiclassical predictions.

ψ̃A/B(xn) as ψA/B,n±1 = e±i2δxψ̃A/B(xn). The factor of two
comes as changing the unit cell from n to n± 1 corresponds
to moving 2δx in space to the right or left, and the minimum
length scale on the lattice is δx. We then end up with the
following pairs of equations,(

t2(x̂−2δx)e−2iδxp̂ + t1(x̂)
)

ψ̃B(x,τ) = i∂τ ψ̃A(x,τ) (8)

and, (
t1(x̂)+ t2(x̂)e2iδxp̂

)
ψ̃A(x,τ) = i∂τ ψ̃B(x,τ), (9)

where, ψ̃A/B(x,τ) = ψ̃A/B(x)e−iετ . Combining the two equa-
tions, we get the continuum Hamiltonian as a 2×2 matrix,

H̃ =

(
0 t1(x̂)+ e−2iδx p̂ t2(x̂)

t1(x̂)+ t2(x̂)e2iδx p̂ 0

)
,

which acts on the spinor Ψ(x,τ) =
(

ψ̃A(x,τ)
ψ̃B(x,τ)

)
. Now, neglecting

the commutation relation between x̂ and p̂, and then, rescal-
ing the momentum and time as p → p/δx and τ → τ/δx, we
could express the energy as follows, and with it, we can ob-
tain the equation of motion. The semiclassical equations of
motion (in one dimension) read:

ẋ =
∂E±
∂ p

, ṗ = − ∂E±
∂x

, (10)

where,

E±(x, p) = ±
√

t2
1 (x) + t2

2 (x) + 2 t1(x) t2(x) cos
(

2p
)

(11)

is the energy expression, and correspondingly, one can obtain
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equations of motion as,

ẋ =
∂E±
∂ p

= ∓
2t1(x) t2(x)sin

(
2p
)√

t2
1 (x)+ t2

2 (x)+2 t1(x) t2(x) cos(2p)
(12)

ṗ = − ∂E±
∂x

=∓
t1(x) t ′1(x) + t2(x) t ′2(x) + cos(2p)

(
t ′1(x) t2(x) + t1(x) t ′2(x)

)√
t2
1 (x)+ t2

2 (x)+2 t1(x) t2(x) cos(2p)

(13)

Solving these two coupled differential equations, one can eas-
ily obtain the semiclassical trajectories. Here, the ∓ signs just
indicate the direction of the propagation of the trajectories. In
figure 1c and 1d, the semi-classical trajectories are compared
with the peak position of exact dynamics results. The results
show extraordinary agreement. Moreover, the semiclassical
result can also mimic the event horizon physics for t1 = t2 and
p0 = −π/2. Semiclassical trajectories can also allow us to
predict the turning point for p0 ̸=−π/2. One can analytically
obtain the turning point by taking the conserved nature of the
average energy of wave packet from the semiclassical calcu-
lation. From equation 11, on obtains,

E2(x, p) = E2
0 (x0, p0) = t2

1 (x) + t2
2 (x) + 2 t1(x) t2(x) cos

(
2p
)

=⇒ cos(2p) =
E2

0 − (t2
1 (x) + t2

2 (x))
2 t1(x) t2(x)

.

(14)

Now, at the turning point (xmin, tmin), ẋ = 0, which implies
p = 0, substituting which in Eq. 14, one gets,

E0 = t1(xmin)+ t2(xmin) (15)

with the position dependent hoppings t1(xmin) ∼ t1xσ
min and

t2xmin) ∼ t2xσ
min. The Eq. 15 can be simplified to obtain the

xmin expression as,

xmin = x0

[ t2
1 + t2

2 + 2 t1 t2 cos
(

2p0
)

(t1 + t2)2

] 1
2σ (16)

Figure. 2 shows how the turning point varies with different
p0 values at different σ . The numerical and analytical turn-
ing points are extremely well lined up, solidifying the va-
lidity of semiclassical calculations. Moreover, the equation
suggests that for xmin to be zero, the two hoppings t1 and
t2 must be equal which leads a more simplified expression
xmin = x0(cos p)

1
σ , when p = ±π/2, only then xmin becomes

0. Hence, in case of t1 ̸= t2, the wave packet has no initial mo-
mentum p0 value for which the turning point becomes 0. It
also validates our previous numerical finding, i.e., only when
t1 = t2, the model can show the synthetic horizon effect, and
that too for p0 =−π/2, which also has been observed for the
tight binding lattice model16,19,40.

FIG. 2: For the CST-SSH model having system size
2N = 1000 (500 unit cells), t1 = 1, t2 = 1.5, plotting of

turning point by numerical calculation ( black dotted lines)
and from semiclassical formula 16 (colored dashed lines) at

different initial momenta p0 for different values of σ

IV. ANALYTICAL EXPRESSION FOR THE EXACT ZERO
ENERGY EIGENFUNCTIONS

From the wave-packet dynamics, it is apparent that the CST
SSH model can also mimic horizon physics. The next ques-
tion is, does this model show a topological phase transition?
Note that in the σ = 0 limit, this model is identical to the usual
SSH model and shows a topological phase transition when
t1 = t2 between topologically trivial phase (t1 > t2) and topo-
logically non-trivial phase (t2 > t1). The consequence of the
topologically non-trivial phase is that for t2 > t1, the Hamil-
tonian H (4) under open-boundary conditions has two zero-
energy states, and they are localized at the two edges. Now,
the automatic question arises, what will happen to the fate of
those edge states for σ > 0, will such edge states survive?
First, we perform a numerical check in Fig. 3. Figures in the
upper panel suggest that zero energy states still survive for fi-
nite σ , though the gap is becoming smaller with increasing σ .
Moreover, those states remain localized at the edges. How-
ever, unlike the usual SSH model, the states are asymmetric;
the left edge state seems to become more localized compared
to the right edge state with increasing σ .

It is reasonably straightforward to obtain those zero eigen-
states by solving the time-independent Schrödinger equation
for the Hamiltonian (4), and one can easily obtain two recur-
sive relations for two sub-lattices A and B.
For sublattice A:

t2(n−1)ψB,n−1 + t1(n)ψB,n = 0 (17)

For sublattice B:

t1(n)ψA,n + t2(n)ψA,n+1 = 0 (18)
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(a) (b) (c)

(d) (e) (f)

FIG. 3: Closing of the energy band gap and variation of zero energy eigen states variation with σ : (a)–(c) for a CST-SSH model
having system size 2N = 1000 (500 unit cells) with t1 = 0.5 and t2 = 1. Top row: Eigenvalue spectra for σ = 0,0.5, and 1

respectively. Bottom row (d)–(f): Corresponding zero-energy eigenstates profiles.

Now, from (17) ,

ψB,n =− t1(n+1)
t2(n)

ψB,n+1

=
(
− t1(n+1)

t2(n)

)(
− t1(n+2)

t2(n+1)

)
· · ·
(
− t1(N)

t2(N −1)

)
ψB,N

=
(
− t1

t2

)N−n
N

∏
m=n+1

( 2m−1
2(m−1)

)σ

ψB,N

(19)

Likewise, for sublattice B, we can obtain from (18),

ψA,n =− t1(n−1)
t2(n−1)

ψA,n−1

=
(
− t1

t2

)n−1 n−1

∏
m=1

(2m−1
2m

)σ

ψA,1

(20)

These two zero-energy eigenstates ψA,n and ψB,n will appear
on the left and right edges of the chain, respectively. ψB,N
and ψA,1 can easily be obtained by normalizing the eigen
states. For the standard SSH model, with σ = 0, both states
are identical, only one is peaked at the left edge, and the
other at the right. But with the introduction of σ , asymmetry
arises. The state on the right edge remains almost the same
for non-zero σ , and the peak height on the left edge keeps
increasing with σ . Figure. 4 shows how the right-to-left

peak ratio of probability densities varies with σ , showing
exact matching with the ratio calculation from the analytical
expression.

Another thing to note is the closing of the energy gap with
σ . We observe that the gap gradually closes with increasing
σ and becomes almost non-existent as σ reaches 1. From
Fig. 5, we observed that ∆E decreases with σ as ∆E ∝ N−σ

for a given fixed t1 and t2. Note that the finite-size system
on the lattice will always have a gap, and a typical gap be-
tween two adjacent energy eigenvalues decreases with system
size as N−1 (we have found the same for our model as well).
Thus, the ratio between ∆E and the typical gap in the spec-
trum scales as N1−σ , indicating the presence of isolated zero-
energy states even for non-zero σ < 1. The fact that N∆E
increases with N, suggests the system remains gapped even
in the thermodynamic limit for σ < 141. Nevertheless, we
also observe well-localized zero-energy edge states for the σ

higher than 1 as well. This can be attributed to the robustness
of the system’s topology.

V. TOPOLOGICAL SIGNATURES

In the previous section, the survival of the zero-energy edge
states for σ > 0 shows a signature that the CST-SSH Hamilto-
nian can also host the topologically non-trivial phase. In order
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FIG. 4: for t1 = 0.5, t2 = 1, ratio of right-to-left peak of
probability densities vs σ for system size 2N = 1000 ( 500

unit cells).Here the dotted lines represent the numerical
calculations and the dashed lines are from the analytical

expressions of the zero energy eigenstates 20,19

FIG. 5: for t1 = 0.5, t2 = 1 energy gap ∆E at various system
size N for different σ

to become more certain, one needs to understand the symme-
tries of the model, as well as some proper topological markers,
which are required. First, we investigate whether even after
the introduction of warping of spacetime (σ), the Hamiltonian
will still remain in the BDI category with winding number as
its topological invariant quantity, as it is observed for the usual
SSH model. Since the two position-dependent hopping terms
t1(n) and t2(n) are real, the time reversal operator acting on the
Hamiltonian T̂ HT̂−1 = H leaves it invariant. Moreover, the
Hamiltonian being a spinless fermionic system, T̂ 2 = I. For
chiral symmetry, first, we define Γ̂A = ∑

N
n=1 c†

n,Acn,A and Γ̂B =

∑
N
n=1 c†

n,Bcn,B as projectors on sublattice A and B42. Then,
the chiral operator is defined by Γ̂ = Γ̂A − Γ̂B, which anti-
commutes with the Hamiltonian Γ̂HΓ̂ =−H, since the bipar-
tite nature is maintained in the modified position-dependent
SSH model. This anti-commutation relation holds regard-
less of the position-dependent nature of the hopping ampli-
tudes42. Time reversal and Chiral symmetry being present
with T 2 = Γ2 = I, we can combine them as, Ĉ = T̂ Γ̂, which
can acts as a particle hole symmetry, i.e., an anti-unitary
operator that anti-commutes with the Hamiltonian, and also
Ĉ2 = I. Thus, this CST-SSH Hamiltonian remains in the
BDI category in the Altland-Zirnbauer tenfold classification

(a) (b)

FIG. 6: Local Topological Marker (LTM) for (a)σ = 0 and,
(b)σ = 1 for trivial (t1, t2) = (1,0.5) and topological phase
(t1, t2) = (0.5,1), for the CST-SSH model having system size

2N = 1000 (500 unit cells)

of topological insulators and superconductors43,44 with an in-
teger Z topological invariant like its standard counterpart in
the usual SSH model. So, the symmetries remain invariant
under the position-dependent hopping amplitude, and so does
the topological invariant, i.e., winding number. However, in
the CST-SSH model, the absence of translational symmetry
prevents us from utilizing the k-space to calculate the winding
number. Therefore, we adopt two real space markers to cal-
culate the topological invariants: (i) Local topological marker
(LTM), (ii) Mean chiral displacement (MCD).

A. Local Topological Marker

For a dimer chain with broken translational symmetry, the
Local Topological Marker (LTM) can give the value of the
topological invariant quantity in its bulk. We here obtain the
winding number in real space using LTM45,46. It is based on
the rearranged eigenfunctions corresponding to the ascending
eigenvalues. The Local topological Marker(LCM) can be de-
fined as:

ν(l) =
1
2 ∑

a=A,B
{(QBA[X,QAB])la,la +(QAB[QBA,X])la,la},

(21)
Here, X is the position operator. Q can be defined from
the modal matrix U, which is comprised of all the nor-
malized eigen vectors with ascending order, explicitly, U =
[U1,U2, ...Un,Un+1, ...UN ]. Here, U− = [U1,U2, ...Un], and
U+− = [Un+1,Un+2, ...UN ] are corresponds to below and
above the band gap energy spectrum. Then one can de-
fine the projectors as P− = U−UT

− and P+ = U+UT
+, and

Q as, Q = P+ − P−, which further can be decomposed as,
Q = QAB +QBA = ΓAQΓB +ΓBQΓA, where Γ = ΓA −ΓB is
the chiral operator. More about the formula and the operators
can be found in the appendix of45,46. From the figure 6, we
observe that even for σ = 1, the LTM shows the same wind-
ing number for the CST-SSH Hamiltonian as its usual SSH
counterpart. While t2 > t1, the LTM shows ν = 1, indicating
topologically non-trivial phase, and for t1 > t2, ν = 0 signify-
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(a) (b) (c)

FIG. 7: (a).(b): Time dependent MCD for both topological (red) with (t1, t2) = (0.5,1) and trivial (blue) with
(t1, t2) = (1,0.5)for (a) σ = 0, for the CST-SSH model having system size 2N = 1000 (500 unit cells) (b) σ = 1, (c)Fluctuation

measurement as Var(C(t)) vs σ for different system sizes N

ing the trivial phase. There is no apparent difference between
the standard and the position-dependent hopping SSH model
for this static marker.

B. Mean Chiral Displacement

The previous topological measure was a static measure; in
this section, we use a dynamical topological measure, which
we call Mean Chiral Displacement (MCD), can be used to
detect the winding number. The MCD is defined as,

C(τ) = 2⟨ψ(τ)|ΓX|ψ(τ)⟩, (22)

where |ψ(τ)⟩ = e−iHτ |ψi⟩, i.e., |ψ(τ)⟩ is the time evolved
state of an initially localized state at n = N/2 unit cell in the A
sublattice, i.e., |ψi⟩. Γ, X are chiral and displacement opera-
tors, respectively. In the figure 7, we show the time-dependent
MCD for both the trivial and topological phases, where it os-
cillates and converges to 0 in the case of a trivial phase and, on
the other hand, saturates to 1 in the case of a topological phase
for the usual SSH model. On the other hand, for σ ̸= 0 also,
the MCD oscillates around its respective winding number, but
the fluctuations are much higher compared to σ = 0, though
the average MCD remains the same. We, then, measure the
fluctuation by computing the long-time variance of the MCD
for different σ . Interestingly, we observe that this fluctuation
is at most when σ = 1. Figure. 7c (c) shows that with in-
creasing system size, fluctuation for a particular σ increases,
and, for a particular system size, it is maximum around σ = 1.
Overall, the MCD results complement our previous results for
the static measure. This indeed proves that, like the usual SSH
model, even the CST-SSH model displays two topologically
distinct phases corresponding to winding numbers 0 (when
t2/t1 < 1) and 1 (when t2/t1 > 1).

VI. QUENCH DYNAMICS: FROM TOPOLOGICAL TO
TRIVIAL PHASE

In this section, we study the quench dynamics across the
topological transition point. We prepare our initial state |ψi⟩
as one of the zero-energy eigenstates of the CST-SSH Hamil-
tonian for t2 > t1. Note, this is the topologically non-trivial
phase, having two edge modes. Then, we quench across the
transition point in the topologically trivial phase. It implies
t2 < t1 for the post-quench Hamiltonian, which we identify as
H f . The survival probability of the initial state after quench is
given by47,48,

Pi(τ) = |⟨ψi|e−iH f τ |ψi⟩|2. (23)

It is basically a measurement of the likelihood of the zero-
energy eigenstate of a topologically nontrivial Hamiltonian
remaining the same after the unitary time evolution of the
state in another Hamiltonian with winding number 0. Fig-
ure. 8 shows the variation of the survival probability with time
for the usual SSH model, i.e, σ = 0, and for the CST-SSH
model with σ = 0.5. We quench from (t1, t2) = (0.5,1) to
(t1, t2) = (1,0.5). For the initial state, i.e., localized at the
right edge, the time evolution of the survival probability is
almost identical for the usual SSH and the CST-SSH model
[see Fig. 8 (a)]. The survival probability goes to zero rea-
sonably quickly. However, the dynamics are quite different
between these two models for the left edge mode. While for
the usual SSH, the dynamic is almost indistinguishable from
that obtained for the right edge mode, for σ > 0, the survival
probability seems to oscillate between 0 and 1. We find that
the oscillation period increases with increasing σ . The fact
that dynamics is identical for usual SSH and not for CST-SSH
is not too surprising, given that we found in Sec. IV that both
edge states are symmetric for σ = 0, and asymmetry kicks in
as soon as σ > 0. However, it still does not explain why the
survival probability of the left-edge states oscillates. Hence,
we plot the absolute value of the time-evolved wavefunction
in Fig. 9, and find that for the CST-SSH model, while under
time evolution, the right edge state moves toward the other
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(a) (b)

FIG. 8: Measurement of survival probability Pi(t) from winding number 0 (with(t1, t2) = (1,0.5))to 1(with (t1, t2) = (0.5,1) )
for (a) right edge zero energy eigen state and, (b) left edge zero energy eigen state, for the CST-SSH model having system size

2N = 1000 (500 unit cells)

(a) (b)

FIG. 9: For the CST-SSH model having system size 2N = 1000 (500 unit cells), Time evolution of the zero energy eigenstates:
(a) left, and, (b) right edge zero energy eigenstate of a Hamiltonian with winding number 1, in another Hamiltonian with

winding number zero. Inset of Fig. (a) shows the semiclassical dynamics near the origin, where the left edge state is located.
Inset of Fig. (b) shows the semiclassical dynamics where the right edge state is located.

side of the lattice, while the left edge mode kind of remains
there. If one tracks the peak position, one finds that it moves a
bit to the right and then again comes back, keeping up this to-
and-fro motion. This is precisely what gets manifested in the
survival probability plot. Moreover, we find the same picture
even when solving the semi-classical equation of motion (see
inset of Fig. 9).

VII. SUMMARY AND DISCUSSION

In this paper, we investigate the topological properties of
the CST-SSH model. First, we analyze the energy spectrum

and find that when the intercell hopping is larger than the in-
tracell hopping, a pair of zero-energy states emerges. These
states are localized at the two edges of the lattice. However,
unlike in the conventional SSH model, these edge states are
not symmetric. We also find that, similar to the usual SSH
model, the spectrum exhibits a gap whenever the intra- and
intercell hopping amplitudes are unequal. However, this gap
scales to zero with system size as N−σ . Since the typical
gap of a finite-size system scales as N−1, σ < 1 implies that
the spectrum remains gapped in the thermodynamic limit41.
Moreover, we use various topological markers, both static and
dynamic, which show a clear signature of a topological phase
transition between a topologically trivial phase and a non-
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trivial phase with winding number 1. On the other hand, we
find that the physics of the event horizon manifests only at the
transition point, where a critical slowdown occurs for zero-
energy wave packets near the boundary. The wave-packet dy-
namics results are also supported by an analytical calculation
of semiclassical trajectories. With the advancement of cold-
atom experiments, there is potential for our predictions to be
verified in the near future49–51, which could enrich our under-
standing of both black hole physics and topology.
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Appendix A: Extended CST-SSH model

TABLE I: Comparison of Numerical Average MCD and
Variance for different winding numbers ν at σ = 0 and 1.

σ = 0 σ = 1
ν Average Variance Average Variance
0 0.0001 0.0019 0.0045 0.0815
1 0.9983 0.0112 1.0043 0.0854
2 1.9988 0.2234 2.0209 0.5753
3 2.9975 0.1090 3.0113 0.4434
4 3.9824 0.3301 4.0085 1.0546

In this section, we consider the extended CST-SSH model.
In the main text, we focus on the model where the hopping is
only of the nearest-neighbour type. Here, we consider even
higher-order hopping. In the context of the usual SSH model,

a similar model was studied in Ref.47, which was called the
extended SSH model. Such models can host more than one
edge mode on each lattice edge. By choosing suitable pa-
rameters, one can have even topological phases with a higher
winding number in such models. Here we study the CST ver-
sion of such models, where hopping is position dependent,
and the model reads as,

Hext =
N

∑
n=1

(
t1(n)c†

n,Acn,B

)
+

N−1

∑
n=1

(
t2(n)c†

n+1,Acn,B

)
+

N−2

∑
n=1

(
t3(n)c†

n+2,Acn,B

)
+

N−3

∑
n=1

(
t4(n)c†

n+3,Acn,B

)
+

N−4

∑
n=1

(
t5(n)c†

n+4,Acn,B

)
+H.c.,

(A1)

Where, t1(n) = t1
( 2n−1

2N−1

)σ , t2(n) = t2
( 2n

2N−1

)σ are the near-
est neighbor intracellular and intercellular position-dependent
hoppings, and, t3/4/5(n) = t3/4/5

( 2n
2N−1

)σ , are the second,
third and fourth intercellular position-dependent hoppings, re-
spectively. We have calculated the local topological marker
(LTM) and the Mean Chiral Marker (MCD) for this extended
Hamiltonian. First, we consider t3 = t4 = t5 = 0, and in this
limit, the Hamiltonian Hext is the same as the Hamiltonian
(4). In case of both σ = 0 and 1, we get back the winding
number ν = 0 and 1 for (t1, t2) = (1,0.5),(0.5,1), respec-
tively using both LTM and MCD markers. Figure. 10 shows
that for parameters (t1, t2, t3, t4, t5) = (0,0.2,0.5,0.2,0.4),
(0.1,0.5,0.35,0.6,0), (0.25,0.15,0.5,0.2,0.4), one obtains
winding number ν = 2, 3, 4, respectively for σ = 0 and σ = 1.
However, the MCD data fluctuates quite a bit more for σ = 1
as compared to those for σ = 0. Hence, we make a table. I,
and mention long-time average and fluctuation of MCD data
for both σ = 0 and 1. These results show that topological fea-
tures in the CST version of the SSH type models survive even
for the extended CST-SSH model, which strengthens our main
findings in the main text, i.e., the robustness of the topological
signature in the curved spacetime models.
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