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The deterministic and time-reversal symmetric dynamics of isolated quantum systems is at odds
with irreversible equilibration observed in generic thermodynamic systems. Standard approaches
at a reconciliation are based on agent-specific restrictions on the space of observables or states
and do not explain how a single macroscopic quantum system achieves equilibrium dynamically.
We instead argue that quantum theory is an effective theory and requires corrections to accu-
rately describe systems approaching the thermodynamic limit. We construct a minimal extension
of quantum theory which is practically identical to quantum mechanics for microscopic systems,
yet allows isolated, macroscopic systems to thermalize, with an objective notion of thermalization.
A fluctuation-dissipation relation guarantees physicality constraints including norm preservation,
energy conservation, no superluminal signalling and the emergence of microcanonical equilibrium
statistics. We further discuss the inclusion of objective collapse, thereby realizing a falsifiable theory
of spontaneous universal irreversibility which describes the quantum-to-classical crossover dynamics
of macroscopic quantum systems. This model admits spontaneous symmetry breaking, quantum
state reduction and objective quantum thermalization for individual systems while realizing an
emergent hybrid, Born-Maxwell-Boltzmann-Gibbs-microcanonical distribution for ensembles.

Introduction — The irreversible approach of physical
systems towards equilibrium is ubiquitous in nature and
underlies the widespread success of equilibrium statistical
mechanics at all length scales [1–3]. However, how equi-
librium is achieved dynamically, within closed quantum
systems undergoing time-reversal symmetric and deter-
ministic dynamics (such as via Schrödinger’s equations)
remains a foundational open question [4–6], which we
term the quantum thermalization problem (QTP).

The unitary evolution of the Schrödinger equation en-
sures that probability amplitudes do not change in the
energy basis, up to a dynamical phase. This implies that
the memory of the initial state is preserved and that the
wavefunction remains time dependent and cannot con-
verge to any time-independent equilibrium state. Thus,
although desirable, the strongest notion of an irreversible
approach to equilibration for an isolated system, one at
the level of the (pure) quantum state, valid for all possi-
ble observables of the given system, is trivially disallowed
within standard quantum dynamics [4–6].

Within the confines of standard quantum theory only
various effective or weaker notions of irreversibility are
tenable, which generally propose restrictions on the space
of states or observables. These restrictions are motivated
via epistemological arguments based on agent-specific
considerations as to which observables are ‘viable’ or
‘physical’ and proceed via prescribing a subset AR ⊂ A
as relevant, out of all possible quantum observables in A.
Confined to this restricted algebra of observables, AR,
such approaches are confined to ensemble averaged in-
sights using coarse-grained mixed density operators (nor-
mal states on the subset AR are generically mixed [7])
and such density matrices do not describe how a single
system undergoes irreversible dynamics [8, 9].

Further, since these restrictions are based on epistemic
motivations, such as what may or may not be accessible
to a given agent, different restricted sets AR and A′

R

may be seen as viable choices of observables for different
agents. Although specific agents may interact with na-
ture in specifically constrained ways, one cannot assume
that nature interacts with itself in any particularly con-
strained way. Thus trivially, physical systems behave in-
dependent of what is practically knowable in a particular
situation. Therefore, such restricted sets of observable
algebras cannot be utilized to construct any objective
notion of irreversibility or equilibration, a notion which
should remain valid for all possible observables and hence
all possible agents investigating a given quantum system.

In this article, we take the view that quantum the-
ory, specifically its dynamical equations develop signifi-
cant corrections or modifications for systems with large
number of degrees of freedom, i.e. for systems approach-
ing the thermodynamic limit. Our motivation derives
from objective collapse theories [9–22], which aim at re-
solving the quantum measurement problem via modifi-
cations of quantum theory. The irreversible and ran-
dom phenomenon of quantum state reduction or wave-
function collapse during measurements (with physical
devices) also cannot be accounted for within the time-
reversal symmetric equations, such as the non-relativistic
Schrödinger equation, and constitutes the quantum mea-
surement problem [7, 9, 10, 23, 24]. Objective collapse
theories resolve this problem by introducing small mod-
ifications to Schrödinger’s equation in such a way that
the unitary time evolution of microscopic particles is un-
affected in any noticeable way, while the effect of the
modifications dominate the dynamics in the macroscopic
regime and cause quantum superpositions of large ob-
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jects to reduce to classical configurations. In this context,
quantum systems approaching the thermodynamic limit
are also understood to be in the quantum-to-classical
crossover regime: a regime where classicality is expected
to emerge from the underlying quantum theory of its con-
stituents.
A typical objective collapse theory, however, cannot

lead to any universal notion of thermalization, since
the information of the initial conditions of the entire
closed system remain partially preserved via the so called
martingale condition, allowing the emergence of Born’s
statistics [10, 17, 19]. Following this line of thought,
corrections leading to objective collapse and those cor-
rections leading to thermalization may be treated sepa-
rately [9], the latter being the focus of this article.
After a brief discussion of thermalization in classical

and quantum systems, we review the strongest possible
notion of quantum thermalization, that at the level of
pure states and we discuss the requirements of a modi-
fied quantum theory of objective quantum thermalization
(OQT). A generic form of an OQT model is argued, and
we demonstrate how a fluctuation-dissipation relation en-
forces physicality conditions, such as norm preservation,
and ensures the absence of superluminal signalling. En-
sembles of systems are shown to evolve via a (linear)
quantum semi-group.
The ensemble expectations of the energy and the long

time steady states of the OQT model are then used to ex-
tract stringent constraints to the theory. Using these con-
straints, a unique form of the OQT model is established
which allows systems to equilibrate to a microcanonical
distribution, with a notion of equilibration that is valid
for all possible observables. The dynamical emergence
of microcanonical equilibrium distributions, entropy in-
crease and the conservation of average energy are en-
sured within the constrained model. We further discuss a
concrete thought experiment constructing protocols, at-
tempting to signal faster than light using the OQT model
and show that it is disallowed in the model, given a cer-
tain locality condition.
Finally, we consider the integration of the OQT model

with the previously established objective collapse models.
The OQT model and objective collapse models are shown
to play complimentary roles, resolving both the quantum
measurement problem and the quantum thermalization
problem within the same theory. We term these models of
Spontaneous Universal Irreversibility (SUI) because they
constitute a minimal modification of quantum dynamics
which allow macroscopic systems to spontaneously ex-
hibit irreversible and stochastic behaviour and approach
classical equilibrium states.
Focusing on a recently proposed objective collapse

model which extends spontaneous symmetry break-
ing to the dynamical regime, we show that the hy-
brid SUI model describes three well known sponta-
neous irreversible phenomena for thermodynamic quan-

tum systems—quantum state reduction, spontaneous
symmetry breaking and objective thermalization. Our
results open up new possibilities of observational tests of
fundamental physics and we hope to motivate a critical
re-analysis of quantum interpretations and the founda-
tions of equilibrium statistical mechanics.

Classical Considerations—Already in the classi-
cal regime, epistemic restrictions are employed to ex-
plain how physical systems approach equilibrium. An
isolated classical system evolves under deterministic,
time-reversal symmetric Hamiltonian dynamics, which
by itself cannot lead to any irreversibility; moreover, spa-
tially bound systems exhibits Poincaré recurrences, re-
turning arbitrarily close to its initial state infinitely many
times [2, 3, 25, 26]. Both these issues, the problem of
reversibility and the problem of recurrences [2, 25], reap-
pear in the quantum regime for isolated systems [4–6].

Classical equilibration stands on two pillars—Gibb’s
ensemble approach and Boltzmann’s single system ap-
proach [2]. Both approaches rely heavily on long time
averages and coarse-graining the phase (state) space to
allow (mixed) densities instead of (pure) delta measures
and also, coarse-graining the space of observables, moti-
vated by what may be reliably known in a specific sce-
nario, to a specific agent [2–5, 27, 28].

In the Gibbs ensemble approach, coarse (mixed) prob-
ability densities (instead of delta measures) are em-
ployed, implying a lack of knowledge of the system’s
finer details or an uncertainty in the initial condi-
tions. This is augmented with further coarse-graining
of the phase space cells itself, restricting the investiga-
tion to macroscopic observables—smooth functions on
the coarse phase space. Finally, one must also argue
some manner of ergodicity [2, 3, 27]—that long time aver-
aged quantities approach phase space ensemble averages
under an appropriately coarse-grained thermal probabil-
ity density or time invariant measure. However, phys-
ical systems where equilibration is expected, have not
been definitively proved to possess constrained condi-
tions such as ergodicity or more stronger properties like
mixing [2, 27]. Usually, ergodicity with an appropri-
ate coarse-grained measure, is justified by focusing on
particular systems, most notably classical chaotic sys-
tems which showcase exponential divergent trajectories
of nearly identical initial conditions [2, 3]. This allows a
notion of ensembles of systems approaching equilibrium,
however, this notion is not valid for all possible observ-
ables of a given system. Thus, different agents with dif-
fering coarse-graining of the phase space and possessing
different observables may not agree on what constitutes
equilibrium.

Boltzmann provided the first microscopic derivation
of the second law of thermodynamics, by establishing
the celebrated H-theorem—showing the increase in en-
tropy in a classical ideal gas—while making the so called
Stosszahlansatz or molecular chaos assumption, neglect-
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ing correlations [2, 3, 25, 28]. However, following ar-
guments by Loschmidt and Zermelo that the assump-
tion is not consistent with the time-reversal symmetric
and deterministic Hamiltonian laws of classical mechan-
ics, Boltzmann developed two connected ideas arguing
for the increase of entropy—the notion of typicality and
the idea that the universe started from a lower entropic
state [2, 3].

Boltzmann’s typicality observes that the phase space
may be decomposed into sectors, where the observable
expectation values of each microstate in the largest sec-
tors converge to a thermal expectation, for certain ‘vi-
able’ macroscopic observables. Thus, typically, the sys-
tems spend the largest time traversing the overwhelm-
ingly large equilibrium sectors where these macroscopic
observables have appropriate thermal expectation values.
Note that such statements do not forbid a system from
spending timescales as large as the age of the universe
out of equilibrium, before entering an equilibrium sec-
tor [29, 30]. Further, the fact that such equilibrium sec-
tors dominate the phase space, does not imply that non-
equilibrium states do not exist; in fact they may be pre-
pared in laboratories and in some sense, the dynamical
world at large, including biological systems, are indeed
out of equilibrium [2, 25, 26]. Mathematical statements
on the non-equilibrium sectors approaching measure zero
in the thermodynamic limit, do not imply their negligi-
ble contribution to the physical world at large [2, 25].
Finally, to account for the observed increase in entropy,
one further argues that the universe started in a low en-
tropy state, such that there many more ways of reaching
a higher entropic state [2, 3, 25].

Note crucially that the expectation values of only a
restricted set of observables, converge to thermal expec-
tation values, and such considerations allow at best an
agent-dependent notion of what seems to be at equi-
librium. One agent restricted to certain energy and
time scales, determining their coarse-graining and cho-
sen macroscopic observables, may not agree with other
agents with access to more fine-grained observables.
Thus, in both the above approaches, the increase in en-
tropy, the approach to equilibrium and ultimately the
derived thermodynamics are a consequence of the lack of
knowledge of physical agents, not a fundamental prop-
erty of the physical systems in and of itself.

Quantum Conundrums—Similar issues persist in the
quantum case, and the arguments used towards a resolu-
tion of the QTP. Early works by von Neumann extend-
ing the notion of ergodicity and typicality to the quan-
tum case, already suggest the requirement of restricting
the space of observables (allowing only macroscopic ob-
servables which commute) and the state space, in addi-
tion to other requirements such as no resonances [30–
32]. Consequent works by the Austin-Brussels group,
although motivated by similar goals as this article—to
universally account for irreversibility—focused on special

systems and observables while employing a strict ensem-
ble worldview, abandoning the treatment of single sys-
tems [26, 33–36].

The Zubarev school also attempted to explain quan-
tum equilibration by instead focusing on non-standard
modifications of the master equations [37], however it is
now well known that non-standard, especially non-linear
modifications of the master equations may result in su-
perluminal signalling [9, 38–40]. Other approaches em-
ploy the quantum Boltzmann equations which focus on
neglecting correlations (like the classical Boltzmann ap-
proach) and approximating the analogous quantum colli-
sion terms in the master equations [41, 42]. Note that
both approaches employ epistemic restrictions on the
space of observables and neglect single systems.

Contemporary approaches towards a resolution of the
QTP, such as the eigenstate thermalization hypothe-
sis (ETH)[4–6, 43–46], coupled with insights from open
quantum systems and the decoherence paradigm [47–49],
both, prescribe a restricted set of observables as ‘phys-
ically accessible’ and admit purely agent-dependent no-
tions of irreversibility. Again, such notions are only valid
for specific, coarse and non-uniquely decomposable en-
sembles (with epistemic restrictions) and cannot consti-
tute an agent independent or objective notion of equi-
librium (for all possible observables), nor can it explain
how a single quantum system can undergo irreversible
behaviour.

Decoherence [47, 48] based approaches towards a reso-
lution, focus on ensembles of a subsystem, or equivalently
a restriction of observables to only subsystem observables
AS ⊂ A. Normalized states on these restricted set of ob-
servables (AS) are generically mixed sub-system density
operators, corresponding to the marginalized state of the
subsystem averaged over all possible environment states.
These mixed, coarse-grained densities are non-uniquely
decomposable and are confined to ensembles, which triv-
ially implies their inability to describe a single instance of
irreversible evolution. In other words, decoherence does
not explain how a single setup can undergo irreversible
and random dynamics [8, 9, 17, 50]. Further a different
choice of sub-systems may showcase the presence of cor-
relations and persistent memory of the initial conditions,
thus leading to various agents (with access to different
subsystems) disagreeing on what constitutes equilibrium.

Recently, the eigenstate thermalization hypothesis
(ETH) has been subject to extensive investigations. ETH
considers only those observables viable or physical which,
in the energy basis, possess smoothly varying diagonal
elements, while off-diagonals are suppressed and scale
inversely with the system size [4–6, 43, 44, 46]. These
preferred, physically viable, coarse-grained observables,
AE ⊂ A may seem thermalized, while other observables
in A will trivially never thermalize. The expectation val-
ues of these ETH-observables (AE), for most states in
the Hilbert space confined to a narrow interval of energy,
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approximately converge on thermalized expectations and
more so if the observable diagonal elements do not ap-
preciably change within the energy window of interest.

Notions of quantum typicality—that almost every pure
state yields thermal expectations for coarse macroscopic
observables—are further used to augment ETH, yet again
do not realize an agent-independent notion of thermal-
ization, one valid for all possible observables of a sys-
tem [6, 29, 51, 52]. Further, restricting to certain coarse
algebra of observables, imply that normal states on these
algebras are mixed [7], i.e. the density matrices are mixed
and non-uniquely decomposable, which describe only en-
sembles and thus how an individual quantum system in
a pure micro-state undergoes an irreversible approach to
equilibrium is not described. Note, observables such as
|E〉 〈E′| + |E′〉 〈E| ∈ A with large off-diagonals in the
energy basis (|E〉 , |E′〉) are not ETH observables, and
they remain coherent and do not equilibrate within stan-
dard quantum theory. It is always possible to construct
such ETH-violating observables which are typically ar-
gued away as being un-physical or inaccessible (to spe-
cific agents). Thus again ETH does not constitute an
agent-independent notion of equilibration. Further, it is
well known than ETH is evaded in many systems such
as in integrable systems [4, 5], systems with quantum
scarring [53] and many-body localization [46, 54].

Recently, it has been shown that given the initial condi-
tions and observables, the question of whether any given
Hamiltonian yields thermalized expectations or not, can
be mapped onto the Turing halting problem, and is thus
undecidable within the mathematical framework of quan-
tum theory and its axioms [55]. These issues further mo-
tivate us to explore a different route via modifying the
standard axioms and instead focus on falsifiable effects
of such modifications.
In summary, the various notions of quantum thermal-

ization admitted within standard quantum theory are
agent dependent notions and do not explain how a sin-
gle quantum system can undergo irreversible dynamics.
Thus our main goals are to construct a viable notion
of single system irreversibility and an agent-independent
notion of equilibration. We will show that acknowledging
the possibility that quantum theory is effective and may
require corrections beyond the interval of its validity, i.e.
for systems approaching the thermodynamic limit, allows
us to recover a stringently constrained modified quantum
theory, which achieves both these goals, while being ex-
perimentally falsifiable.

Objective quantum thermalization — In view of
modifying quantum theory to allow irreversible dynam-
ics, objective collapse theories motivate our main ap-
proach. Objective collapse theories modify the quantum
dynamical evolution such that they are practically indis-
tinguishable from quantum theory for microscopic sys-
tems, while for macroscopic systems allow an objective
notion of quantum state reduction or wave-function col-

lapse, applicable for all observables of an isolated sys-
tem [10, 17–21, 56]. Crucially, ensembles of isolated
systems undergoing objective collapse dynamics, at long
times, follow a dynamical map, ρ̂ → ρ̂B where ρ̂B is a
statistical distribution corresponding to Born’s rules. In
an analogous way, we are specifically interested in a mod-
ified quantum theory which can admit a dynamical map
for ensembles, corresponding to the strongest notion of
thermalization for isolated systems, wherein the state it-
self thermalizes, ρ̂ → χ̂, where χ̂ is a thermalized density
matrix corresponding to an equilibrium distribution at-
tained by an ensemble of isolated systems, such as the
microcanonical distribution.
This strongest notion of thermalization is trivially not

admissible via the unitary dynamics of Schrödinger’s
equation which preserves the memory of the initial state.
Indeed, our approach, in contrast to previous approaches
focus on explicitly changing the dynamics of isolated
quantum systems, which allow an objective resolution of
the QTP, independent of any choice of (thermodynamic)
systems, initial states or preferred observables. Further,
we ensure that the modifications scale with the system
size and thus for small systems, the modified dynamics is
practically indistinguishable from quantum theory while
large systems thermalize objectively. Due to the differ-
ing dynamics of large quantum systems from its standard
expectations, such theories are in principle falsifiable via
direct experimentation in the mesoscopic regime, similar
to objective collapse theories [22, 56–58]
We will now construct a model allowing objective ther-

malization for a macroscopic, isolated, quantum system
with Hamiltonian Ĥ. We consider a (not necessarily fi-
nite) countable Hilbert space, H with energy eigenstates,
Ĥ |µ〉 = Eµ |µ〉. To construct the model we first argue
that unlike objective collapse models which possess the
so called martingale property [10, 17, 19], any objective
thermalization model cannot posses this martingale prop-
erty in the energy basis, since this would preserve the
information of the initial conditions [9]. Thus, a viable
starting point for the so-called thermalization operators
in any modified quantum theory allowing an objective no-
tion of thermalization, must present possible transitions
between energy eigenstates. The primitive operator al-
lowing such transitions is L̂µν = |µ〉 〈ν|, which determines
the form of an un-normalized quantum (Ito) stochastic
process [10, 38, 59] on H, given by (~ = 1) :

d |ψ〉 = −iĤ |ψ〉 dt+
∑

µ,ν

dĜµν |ψ〉 , (1)

dĜµν |ψ〉 := Dµν

[

L̂µν − 〈L̂µν〉
]

|ψ〉 dWµν
t

+ Jµν
[

〈L̂†
µν〉L̂µν −

1

2
L̂†
µνL̂µν −

1

2
〈L̂µν〉〈L̂†

µν〉
]

|ψ〉 dt.

Here, |ψ〉 is the time dependent wave function and Ĥ
is the standard Hamiltonian, while dĜµν is the stochas-
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tic modification, to be constrained further. If dĜµν =
0, ∀µ, ν, Eq. (1) reduces to the standard Schrödinger
equation evolving isolated systems. Here 〈Ô〉 = 〈ψ| Ô |ψ〉
is the usual (time dependent) quantum expectation value
for an individual system in the state |ψ〉.
To ensure that these modifications are significant for

macroscopic quantum objects, the strength of the modifi-
cations must scale with the (effective) number of degrees
of freedom of the system implying that dĜµν is exten-
sive and proportional to a phenomenological coupling N .
Within each dĜµν there are two terms controlling the
rate of transitions, one is non-linear and deterministic,
with the coupling Jµν , while the other term is stochas-
tic, coupled via Dµν . Both terms must be proportional
to N , as further clarified by the fluctuation dissipation
relationship discussed below. Note that both coefficients
are non-negative real-valued numbers, and are not sym-
metric, i.e. Jµν 6= Jνµ and Dµν 6= Dνµ.

The factor dWµν
t indicates real valued Gaussian in-

crements of independent standard Wiener processes (i.e.
corresponding to the Brownian motionWt =

∫

dWt with
W0 = 0) [60, 61]. In the above expression note that dWµν

t

and dW νµ
t are increments of independent Wiener pro-

cesses. We use the convention that each dWµν
t is sampled

from a Gaussian distribution with standard deviation√
dt and implies the standard time independent expec-

tation values, E [dWµν
t ] = E [Wµν

t ] = E [dt dWµν
t ] = 0,

E [dWµν
t dWµν

s ] = 0 for t 6= s and at equal times,

E

[

dWµν
t dWµ′ν′

t

]

= δµµ′δνν′dt or simply, (dWµν
t )2 = dt

[60, 61]. Here E[ · ] indicates the average over an ensemble
of realizations of the Wiener process and hence, trajecto-
ries of Eq. (1). Note that we assume that this stochastic
influence arises from physics beyond quantum mechanics,
and it is not an averaged description of the influence of
unobserved quantum degrees of freedom.

We now consider constraints such that the modifica-
tions do not change the kinematic character of quan-
tum theory. Particularly, norm-conservation is upheld in
the dynamics of Eq. (1) by observing a fluctuation dis-
sipation relationship (FDR) between the stochastic and
deterministic components of the modifications [17, 19].
Concretely, using the norm, Nψ = 〈ψ|ψ〉 and applying
Ito’s lemma, dNψ = 〈dψ|ψ〉+〈ψ| dψ〉+〈dψ| dψ〉 , we find
its change, dNψ = 0 (at all times) with an FDR of the
form (Dµν)2 = Jµν ∝ N . This implies that within an
ensemble of identically prepared systems, each ensemble
member individually undergoes the stochastic and norm-
conserved dynamics of Eq. (1) while the FDR is upheld.

To find how the ensemble evolves we consider the
evolution of the pure state projector, Ψ̂ := |ψ〉 〈ψ|,
which describes how a single ensemble member evolves.
Here the ensemble constitutes individual systems evolv-
ing via Eq. (1) with differing stochastic trajectories. The
stochastic average over these, E[Ψ̂] = ρ̂, yields how the
entire ensemble density evolves. To compute this, we

use Ito’s lemma, dΨ̂ = |dψ〉〈ψ| + |ψ〉〈dψ| + |dψ〉〈dψ|,
and average over the stochastic components to obtain
the evolution of the corresponding statistical operator or
density matrix, with E[dΨ̂] = dρ̂. This yields the linear
master equations of the Gorini-Kossakowsky-Sudarshan-
Lindblad (GKSL) form [49, 62, 63], given by (~ = 1):

∂ρ̂

∂ t
= −i

[

Ĥ , ρ̂
]

+ N
∑

µ,ν

Jµν
(

L̂µν ρ̂L̂
†
µν −

1

2

{

L̂†
µνL̂µν , ρ̂

})

. (2)

Here ρ̂ is the noise averaged statistical operator (density
matrix) for an ensemble of systems undergoing the dy-
namics of Eq. (2) with the FDR, (Dµν)2 = Jµν . The
proportionality factor scaling with the system size, N
has been extracted from the definition of the coupling
constants. Note that the above master equation, unlike
those obtained in objective collapse theories, resembling
dephasing GKSL equations [10, 17, 19], takes a form ex-
plored in the context of open system equilibration via
detailed balance [64, 65]. This will allow us to constrain
the model further so that an appropriate steady state
is reached, given the system Hamiltonian. However, we
stress here that in this model, a (linear) quantum semi-
group is obtained for the dynamics of an ensemble of iso-
lated systems and unlike other approaches, does not inte-
grate out inaccessible parts of the setup. Instead the mas-
ter equations results from averaging over the modified
stochastic quantum dynamics for each ensemble member,
which are single instances of isolated systems undergoing
the dynamics of Eq. (1) with the FDR.
Equilibrium, Energy and Entropy Constraints—
Having obtained the ensemble dynamics of isolated quan-
tum systems in Eq. (2), we will now show that constraints
arising from its equilibrium steady states and the aver-
age energy conditions, impose stringent constraints on
the model and the form of Jµν . This will allow us to
construct an energy conserving theory of objective quan-
tum thermalization viable for isolated systems.
Our main goal is ensure that for any (non-equilibrium)

state ρ̂, the dynamics of Eq. (2) guarantees that a steady
equilibrium state is reached at long times. Denote these
steady states corresponding to an equilibrium density
(statistical) operator as χ̂, which is time independent,
mixed and diagonal in the energy basis. χ̂ is diagonal
since it represents an average over an ensemble and off-
diagonal contributions are necessarily averaged out, as
noted in both the quantum microcanonical ensemble and
canonical ensemble, which are diagonal in the energy ba-
sis [1, 4–6, 29, 52]. We will obtain these steady states as
solutions of the constraints below, however it is impor-
tant to note that χ̂ ultimately represents the physically
observed equilibrium distribution, reached by an ensem-
ble of identical, isolated (macroscopic) quantum systems.
Imposing the steady state condition, ∂ρ̂

∂t
= 0, in Eq. (2),
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we find the first (operator) constraint, Ĉχ = 0, towards
achieving the equilibrium steady state χ̂, given by:

Ĉχ :=
∑

µ,ν

Jµνχν

(

|µ〉 〈µ| − |ν〉 〈ν|
)

.

Here, χν = 〈ν| χ̂ |ν〉 and
∑

ν χν = 1 since Tr[χ̂] = 1.
Phrased differently, if the dynamics of Eq. (2) leads to
a long time equilibrium steady state of the form χ̂, then
the constraint Ĉχ = 0 must be satisfied.
Consider now the change in the average energy of

the ensemble using Eq. (2) and E = Tr[ρ̂ Ĥ ]. Let the
(standard) Hamiltonian be Ĥ =

∑

µEµ |µ〉 〈µ|. The
constraint ensuring energy conservation while describ-
ing thermalization in ensembles of isolated systems is
CE(t) = 0 where CE(t) := dE/dt. In other words, for
an ensemble of isolated systems undergoing the dynam-
ics of Eq. (2), the average energy is conserved if and only
if the constraint, CE(t) = 0 is satisfied at all times, and
for all states on the Hilbert space. Without assuming
any restriction on ρ̂, this constraint takes the form:

CE(t) :=
∑

µ,ν

Jµν ρνν
(

Eµ − Eν
)

.

Here, ρµν = 〈µ| ρ̂ |ν〉 is time dependent and in general,
may be any state. Since any physically viable, objec-
tive thermalization model cannot allow for unrestricted
changes in ensemble averaged energies, but must yield
a long time equilibrium state, we must solve for both
Ĉχ = 0 and CE(t) = 0 together and obtain a form of Jµν .
To do this, first we using an ansatz, Jµν = AµBν in

Ĉχ = 0 and CE(t) = 0, which yield the following two
suggestive expressions respectively:

Ĉχ :
∑

µ

Aµ
∑

ν

χν B
ν

(

|µ〉 〈µ| − |ν〉 〈ν|
)

= 0,

CE(t) :
∑

µ

Aµ
∑

ν

Bν
(

Eµ − Eν
)

ρνν = 0.

It is seen that both conditions may be uniquely met by
the asymmetric choice of Bν = 1 yielding Aµ/Z = χµ
with

∑

µA
µ = Z, observed from the promising equali-

ties:

Ĉχ :
∑

µ

(

Aµ

Z − χµ

)

|µ〉 〈µ| = 0, (3)

CE(t) :
∑

µ

Eµ
Aµ

Z =
∑

ν

Eν ρνν . (4)

The first equality encodes the requirement that the
Hilbert space of the quantum system must possess a time
invariant thermal state χ̂ and is related to the quantum
semi-group in Eq. (2) via Jµν = Aµ = χµ ( ∀µ, ν with
Z = 1). The second equality ensures energy conser-
vation in the ensembles, and shows again that the Aµ

must be weights of a probability distribution. Note that
while the right hand side is time dependent and equals
Tr[ρ̂Ĥ], the left hand side is independent of time, with
∑

µ EµA
µ = Tr[χ̂Ĥ ], using Eq. (3). Then, if the condi-

tion in Eq. (4) holds at initial times, it will hold for all
times since Eq (2) is a quantum semi-group.
However, multiple solutions of χ̂ are possible which sat-

isfy the above constraints. This is not unexpected given
the fact that in a differing setting of (standard) open
quantum systems, Eq. (2) may be interpreted as the re-
duced dynamics of a sub-system after averaging out an
inaccessible environment. Thus, in the scenario of a sin-
gle conserved quantity which is the energy, χ̂ may be

associated with a canonical distribution, χ̂β = e−βĤ/Z,

where Z = Tr[e−βĤ ] is the partition function and β is
set appropriately at initial times. Note that χ̂β satisfies
the above constraints and we can always expect such a
distribution to exist in a macroscopic system. However,
since we are interested in isolated systems, we instead fo-
cus on the quantum microcanonical distribution denoted
χ̂E , which is the expected long time equilibrium distri-
bution for an ensemble of isolated, macroscopic quantum
systems.
The quantum microcanonical distribution [1, 29, 52]

for an ensemble of identical quantum systems with en-
ergies between E and E ± δE, is given by an equally
weighted sum, χ̂E = 1

D

∑

µ P̂µ where the sum is over all

energy eigenstates, P̂µ = |µ〉 〈µ| which possess energies

Tr[Ĥ P̂µ] ∈ [E − δE,E + δE] ∀µ. Here D is the num-
ber of such micro-states such that Tr[χ̂] = 1. Further
we expect for any macroscopic quantum system, such a
χ̂E exists and satisfies Eq. (4), for all possible quantum
states, ρ̂, with the same energy, Tr[ρ̂Ĥ ] = Tr[χ̂EĤ ].
However, we still need to determine δE, which must

be derived from the initial conditions of the (isolated)
system. To do this, we focus on the evolution of the
variance of the energy, V = 〈Ĥ2〉 − 〈Ĥ〉2. Using Eq. (2),
Jµν = χµ and Eq. (4) we find:

V̇ =
∑

µ

E2
µ χµ −

∑

ν

E2
ν ρνν .

The above expression shows that the change in the vari-
ance of the ensemble’s energy depends on the difference
between the variance of the steady state, χ̂ and the state
undergoing the evolution, ρ̂. With the choice of the
steady states, corresponding to the canonical distribu-
tion χ̂β , it is seen that the variance of the energy will
always evolve, for any initial (non-equilibrium) state and
converge to that of χ̂β . However, with the choice of
χ̂E , the microcanonical ensemble, if we further identify
±δE =

√
V as the variance in the energy of the initial

state, we fix the conditions such that the average en-
ergy variance also does not change. Here, we thus make
an assumption, which must ultimately be tested in ex-
periments. We fix the model such that a macroscopic
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quantum system known to be in a non-equilibrium state
with energy E and variance V = δE2, approaches at long
times a microcannonical distribution χ̂E , which is diag-
onal and uniformly distributed at all energy eigenstates
lying in the microcannonical window of [E−δE,E+δE].
This agrees with the conventional definitions of the mi-
crocanonical ensemble [1, 29, 52].

We further note that although the choice of χ̂β does
not keep energy eigenstates (except the ground state)
stable under evolution, the choice of χ̂E using the above
prescription keeps energy eigenstates stable. Concretely,
if the initial state is a non-degenerate energy eigenstate,
|φ〉 = |i〉, the choice of χ̂E = |i〉 〈i| is fixed by its zero
variance and preserves the initial state under the action
of Eq. (2), with the above constraints. Finally, since
we expect closed systems to evolve to a microcanonical
distribution, the choice of χ̂E is ultimately more prefer-
able and ensures a consistent notion of objective quantum
thermalization for isolated systems.

Note that the above procedure may be generalized to
settings with multiple conserved quantities. While in
the case of the canonical solutions χ̂β, these would cor-
respond to the generalized Gibbs ensemble [46], in the
case of microcanonical solutions, χ̂E , one simply ensures
that conserved quantities remain preserved. Thus for
each symmetry Ŝ of the Hamiltonian, we must ensure
that ∂

∂t
〈Ŝ〉 = 0, establishing further constraints. Us-

ing Eq. (2), one scenario in which these constraints are
satisfied is if Ŝ commutes with L̂µν , showing that transi-
tions are allowed only for micro-states within the sectors
fixed by the initial value of the conserved quantity, de-
noted S = 〈Ŝ〉 and its variance δS2 = 〈Ŝ2〉 − 〈Ŝ〉2, like
in the previous case. Then in this scenario, the micro-
canonical distribution is given by, χ̂(E,S) = 1

D

∑

ψ P̂ψ

where P̂ψ = |ψ〉 〈ψ| are projections onto the energy ba-
sis, and the sum is over all energy eigenstates, such that
〈ψ|Ĥ |ψ〉 ∈ [E − δE,E + δE] and further, 〈ψ|Ŝ|ψ〉 ∈
[S − δS, S + δS] for each micro-state. As before, D is
the number of such micro-states such that Tr[χ̂] = 1. A
more detailed analysis of the constraints pertaining to
multiple conserved quantities is left for the future. For
our treatment, it suffices that a microcanonical χ̂ exists
for any given (thermodynamic) system.

With these constraints satisfied, we are now in a po-
sition to write down the final expressions for the modi-
fied quantum dynamics, allowing an objective notion of
thermalization, with stable end states as an appropri-
ate quantum microcanonical distribution, χ̂E with en-
ergy as its conserved quantity. Individual macroscopic
quantum systems with (initial) quantum energy expec-
tation, Eψ = 〈ψ| Ĥ |ψ〉 and variance Vψ = 〈Ĥ2〉 − 〈Ĥ〉2
evolve as per the following (norm preserving) quantum

stochastic process:

d |ψ〉 = − i

~
Ĥ |ψ〉 dt+

∑

µ,ν

dĜµνχ |ψ〉 , (5)

dĜµνχ |ψ〉 :=
√
Aµ

[

L̂µν − 〈L̂µν〉
]

|ψ〉 dWµν
t

+Aµ

[

〈L̂†
µν〉L̂µν −

1

2
L̂†
µν L̂µν −

1

2
〈L̂µν〉〈L̂†

µν〉
]

|ψ〉 dt.

Here, Aµ =
(

αN
~

)

χµE where χµE = 〈µ| χ̂E |µ〉, which ac-
counts for the dimensions. The energy (density) scale of
the modification is denoted by α, and the factor of N
makes explicit the requirement that the modification’s
strength must scale with the size of the system. As ex-
plained above, χ̂E is an equally weighted (diagonal) dis-
tribution over all possible energy eigenstates with ener-
gies in the microcanonical interval, [Eψ −

√

Vψ, Eψ +
√

Vψ] (set at initial times). While individual systems
evolve via Eq. (5), the master equations for the evolution
of ensembles is given by:

~
∂ρ̂

∂ t
= −i

[

Ĥ , ρ̂
]

+ αN Λχ( ρ̂ ), (6)

Λχ( ρ̂ ) =
∑

µ,ν

χµE L̂µν ρ̂ L̂
†
µν − ρ̂.

The above master equations evolve density (statistical)
operators via the GKSL generator, Λχ. Together, Eq. (5)
and Eq. (6) realize a physically viable model of objective
quantum thermalization (OQT) for isolated and macro-
scopic quantum systems. Since N scales with the sys-
tem size, the effect of the modifications is larger for
more macroscopic systems, thus admitting a quantum-
to-classical transition from entangled states to classical
configurations [9, 10].

To show that states evolve via Eq. (6) to equilibrium,
we may compute the trace distance, Dχ = Tr[(ρ̂− χ̂E)

2].

Using Eq. (6), we find Ḋχ = −ωDχ ( where ω = 2αN/~),
showing that the trace distance exponentially decreases
over time, Dχ = Dχ(0) exp(−ω t), where Dχ(0) is the
trace distance at initial times. This shows that all states
ρ̂ which are not already the steady states, approach χ̂. It
also implies that quantum Poincaré recurrences or anal-
ogous entanglement reversal events [2, 5] do not occur
for macroscopic systems undergoing the OQT dynamics.
This further implies, that the (von Neumann) entropy
is non-decreasing for all states which are not already at
equilibrium.

Note that the stochastic nature of the dynamics of each
ensemble member (Eq. (5)), itself, generates entropy for
ensembles, due to the stochasticity of the individual tra-
jectories, similar to objective collapse models [17]. This
is seen readily by noting the evolution of the von Neu-
mann entropy, S = −Tr[ρ̂ log ρ̂], for ensembles evolv-
ing via Eq. (6). The change in the entropy is given by,
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Ṡ = −Tr
[

log ρ̂ ∂
∂t
ρ̂
]

since ∂
∂t
Trρ̂ = 0. Evaluating further

using Eq. (6), we find (with αN/~ = 1):

Ṡ = Tr

[

(

ρ̂− χ̂E
)

log ρ̂

]

= D[ χ̂E || ρ̂ ] +Hχ − S.

Here, D[ χ̂ || ρ̂ ] = Tr[χ̂ log χ̂ ] − Tr[χ̂ log ρ̂] (if supp(χ̂) ⊂
supp(ρ̂) and +∞ otherwise) is the Umegaki quantum
relative entropy, which is non-negative [66, 67] and de-
creases under CPTP maps [66, 67] such as Eq. (6). In the
above expression, Hχ = −Tr[χ̂E log χ̂E ] = logD, which
is the von Neumann (Shannon) entropy of the associated
microcanonical distribution andD denotes its dimension.
Since Hχ > S, necessarily for all non-equilibrium states,

the above expression implies that we have Ṡ > 0 for
all non-equilibrium states and Ṡ ≥ 0 generically. This
shows the emergence of the second law of thermodynam-
ics and a modified quantum H-theorem, independent of
considerations such as the specifics of the macroscopic
system, its initial states or any agent-dependent restric-
tions. Since the total ensemble approaches an appropri-
ate microcanonical distribution, χ̂E , all sub-system ob-
servables also thermalize appropriately [1, 52].
Summarizing, the OQT model predicts that macro-

scopic quantum systems thermalize generically, at the
level of the microscopic pure states and such a notion
of thermalization is independent of considerations on the
space of observables or states. Hence, the model in
Eq. (5) and Eq. (6) showcase an objective notion of quan-
tum thermalization, one independent of all agent-specific
arguments or approximations. The OQT model also ad-
mits a notion of irreversibility for each individual system
through the dynamics of Eq. (5). Since each ensemble
member remains pure (Eq. (5) maps pure states to pure
states), the von Neumann entropy in the individual sys-
tem do not increase. For the entire ensemble, as shown
above, the von Neumann entropy does increase and ap-
propriately maximizes in each setting.
Contrary to other approaches towards resolving the

QTP, in our approach, the entropy increase in ensem-
bles is associated to the underlying stochastic dynamics
of each individual system. Further, for individual sys-
tems, there is a well-defined notion of distance from any
particular equilibrium measure, whether it is χ̂E above,
or any other coarser measure. Thus, this framework al-
lows us to account for the expectation that generic ther-
modynamic quantum systems should thermalize (at the
level of ensembles), while clarifying that pure states of in-
dividual systems, at long times remain fluctuating near
equilibrium, accommodating the possibility that out of
equilibrium phenomena in single systems—such as the
ticking of clocks and active biological systems [2, 26, 33],
can exist within this paradigm.
In contrast to objective collapse theories, various sim-

ilarities and differences may be noted with the OQT
model presented above. Firstly, the form of Eq. (5) is a
stochastic Schrödinger equation similar to other collapse

models, although, probability weights in the analogous
collapse bases are not Martingale processes, which opens
up the possibility of superluminal signalling due to the
lack of Born’s rules [38–40]. However, superluminal sig-
nalling is not allowed in the OQT model presented, as
will be discussed shortly.

Another subtle difference is that the OQT model re-
quires a specification of an average energy, Eψ-sector,
which in turn controls the structural specifications of
Eq. (5) and Eq. (6). Once the Eψ-sector (and variance)
is specified corresponding to the energy of the initially
identical ensemble members, Eq. (5) results in a scram-
bling dynamics for each ensemble member (controlled by
the instances of the stochastic contributions), while the
noise-averaged ensemble distribution approaches χ̂E . In
other words, the thermalization model is not apriori de-
fined for all setups, but is obtained in each case via an
analysis of the Hamiltonian, similar to the construction
of a recently proposed class of objective collapse models
motivated by spontaneous symmetry breaking [9, 17–19].

Note that an important shortcoming of the OQTmodel
is that it is driven by uncorrelated white noise, which
cannot constitute a physical process [9, 17, 19]. How-
ever, the model may be viewed as an effective Marko-
vian description of a colored noise driven model of OQT.
This mapping is made precise via the so called multiscale
noise homogenization procedure—a temporal renormal-
ization scheme on the space of colored noise driven mod-
els [9, 17, 19]. The key take away of such a procedure
would be that multiple colored noise models would ulti-
mately flow to Eq. (5) and Eq. (6) [9, 17, 19]. Further,
the model is constructed for countable spectrum of en-
ergy eigenstates, and may be generalized to the contin-
uum setting by employing multi-parameter Wiener pro-
cesses or spacetime white noise [9, 19]. The analysis of
physical consistency in such continuum and colored noise
driven models is left for future studies.

Further, analogous to open problems in relativistic col-
lapse models [68], the construction of OQT models in the
relativistic regime remains another challenge and is left
for future investigations. In this context, the formulation
in Eq. (5) via the Eψ-sectors, may be particularly advan-
tageous towards treating quantum systems in the strict
thermodynamic limit, as well as quantum field theories,
where these Eψ-sectors map on to disjoint super-selection
sectors, wherein each such sector furnishes its own rep-
resentation of the operator algebra [7].

Superluminal signalling — Having constructed a
physically viable OQT model, we will now show that it
does not allow faster than light communication or sig-
nalling. Unphysical scenarios allowing superluminal sig-
nalling, is a common issue encountered in modified quan-
tum theories [38–40]. It is linked to the possibility that
spatially separated parties can infer each others actions
faster than light, given the modified dynamics on the
entire Hilbert space. Residual non-linearites in the mas-
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ter equation are one key indication of such possibilities,
since ensembles evolving via non-linear master equations
do not remain equivalent and allow superluminal sig-
nalling [38–40]. Since the master equation in Eq. (6) is
linear and of the GKSL form, it is assured that there is
no superluminal signalling as long as the thermalization
operators, L̂µν have local support [40]. This is re-verified
presently by an explicit calculation, following the witness
of superluminal signalling established in Ref. [40].

Consider the usual setup of Alice and Bob in their spa-
tially separated labs with a tensor product Hilbert space,
HA⊗HB. They have access to an ensemble of entangled
particles. One may imagine that Alice additionally pos-
sesses a macroscopic quantum system (like a quantum gas
in a box) and Alice’s share of a high energy, entangled
particle impinges on it. While Alice’s system equilibrates
using the modified dynamics of Eq. (5), Bob may perform
local operations and measurements on his entangled par-
ticle. For an ensemble of such setups, if Bob notices any
change in his measurements due to Alice’s share under-
going non-trivial dynamics, Alice has effectively sent a
signal to Bob faster than light. We will now see how
this is disallowed given that the thermalization of Alice’s
system is local.

Let Alice and Bob share an ensemble of arbitrary en-
tangled states of the form, |ΨAB〉 :=

∑

µ,σ ψµ,σ |µA〉 ⊗
|σB〉. While Bob has access to states, indexed by σ,
( |σB〉 ∈ HB ≡ CM ) which he can projectively mea-
sure, Alice has access to an N -state macroscopic system
( |µA〉 ∈ HA ≡ CN ) entangled with Bob’s share. Let
Alice’s macroscopic state now thermalize locally follow-
ing the dynamics of Eq. (5) and Eq. (6). This implies

that in particular, Ĝχ ≡ ĜAχ ⊗ ÎB, and the operators,

L̂µν ≡ L̂Aµν ⊗ ÎB, where |µA〉 , |νA〉 ∈ HA.

Since Bob has access to local projective measurements
and operators (̂IA ⊗ ÔB), he may only access the re-
duced state ρ̂B = TrA[ρ̂AB] [40]. Here, ρ̂B is the reduced
density matrix for Bob which is obtained after a par-
tial trace (TrA[.]) procedure on the entire density ma-
trix ρ̂AB. The change in Bob’s ensemble averages (for
local observables) due to Alice’s system thermalizing is
then given by ∂ρ̂B

∂ t
= TrA

[

∂
∂ t
ρ̂AB

]

= 0 unconditionally,
where ρ̂AB evolves via Eq. (6) with local thermalization
operators as described above. This clearly shows that a
spatially extended macroscopic entangled state may ther-
malize locally, however superluminal signalling is prohib-
ited within the dynamics of Eq. (5) and Eq. (6).

If ∂ρ̂B
∂ t

6= 0, typically due to non-linear expectation val-
ues in the master equation, then indeed Bob would have
been able to distinguish his ensemble before and during
objective thermalization, allowing Alice to effectively sig-
nal faster than light. Clearly this is not possible within
the proposed model with local thermalization operators,
since all non-linearities cancel given the FDR, which thus
is also seen to guarantee no superluminal signalling in the

theory. With these physicality requirements satisfied, we
now focus on incorporating objective collapse.
Spontaneous Universal Irreversibility—The objec-
tive quantum thermalization model (Eq. (5) and Eq. (6))
and the various objective collapse models [10, 17–20, 56]
showcase the possibility of a previously unrecognized
manner of universality in non-equilibrium phenomena
for quantum systems approaching the thermodynamic
limit [9]. In particular such models modify the deter-
ministic and time-reversal symmetric evolution of quan-
tum systems and allow them to undergo fundamentally
stochastic and irreversible dynamics observed in nature,
but disallowed in standard quantum dynamics. These
modifications are extensive and their strength depends
on the system size, fundamentally affecting microscopic
and macroscopic quantum matter differently and are thus
experimentally verifiable [56–58]. Together, a hybrid dy-
namics of both objective collapse and objective thermal-
ization is seen to resolve both the quantum measurement
problem and the QTP within the same theory [9].

This further draws attention to the possibility of an
unknown universal mechanism which could allow the
emergence of irreversibility and randomness fundamen-
tally. Note that in this view, the standard practice
of instantaneously substituting ‘by hand’, equilibrium
states, symmetry broken states or projected states (dur-
ing measurements) may be seen as a minimal, economical
way of mapping onto the observed physics [9]. Indeed,
since these are inherently dynamical and non-equilibrium
processes, the next refinement towards describing such
physics is in the Markovian approximation, where, due to
the various constraints, unique equations of the form de-
scribed here (Eq. (5) and Eq. (6)) in the context of ther-
malization, and those discussed in the context of other
objective collapse models [9, 10, 19, 56, 59] are the only
physically viable possibilities.

Following this line of thought, we may construct a
unique class of universal models showcasing fundamen-
tal quantum stochasticity and irreversibility for sys-
tems approaching the thermodynamic limit [1, 7, 69] or
equivalently, systems beyond the so called Heisenberg’s

cut [7, 9, 70], or indeed, systems in the quantum-to-

classical crossover regime [9, 10, 56]. Such terminol-
ogy, although used in different situations, may be seen
to indicate the same regime where quantum theory re-
quires modifications so as to account for the spontaneous
emergence of classicality. In particular, such modifica-
tions, employing hybrid models, with generators admit-
ting both objective collapse and objective thermalization
are henceforth termed models of Spontaneous Universal
Irreversibility (SUI). We will now briefly describe the con-
struction of one such model.

We consider a recently established objective collapse
model termed Spontaneous Unitarity Violations (SUV)
[17–21, 71, 72]. SUV is motivated by extending sponta-
neous symmetry breaking [69, 73] to the non-equilibrium
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regime and its dynamics allow macroscopic quantum ob-
jects to spontaneously break their symmetries, disallowed
in standard quantum dynamics. The same model applied
to a measurement setting—composed of a system under
measurement, macroscopic measurement devices and an
environment—allows the entire setup to undergo quan-
tum state reduction to classical states, where the devices
break a symmetry and allow measurements to be per-
formed [17–19], such as a pointer breaking translation
symmetry.
Unlike other collapse models [10, 56], there is no pre-

ferred basis chosen apriori, instead, in each situation the
SUV model uniquely determines the symmetry broken
basis of the setup’s Hamiltonian as its basis of wavefunc-
tion reduction [17, 19–21, 72]. Further, in the Markovian
regime, the SUV model reduces to an effective continu-
ous spontaneous localization (CSL) model, collapsing in
the symmetry breaking basis [19].
Since all three stochastic and irreversible phenomena—

spontaneous symmetry breaking, quantum measure-
ments and thermalization—occur only for systems ap-
proaching the thermodynamic limit [10, 69], a SUI model
constructed using the SUV model [9, 17–19] and the OQT
model (Eq. (5) and Eq. (6)) can function together seam-
lessly and yields a universally applicable theory of quan-
tum irreversibility in the non-relativistic regime.
In particular, such a model consists of two distinct

modifications, one allowing dynamical quantum state re-
duction and one allowing thermalization, given by the
(norm-preserving) quantum stochastic process (on the
entire Hilbert space H of the isolated setup):

d |ψ〉 = − i

~
Ĥ |ψ〉 dt+ dĜR |ψ〉+ dĜχ |ψ〉 . (7)

dĜR |ψ〉 = −JN
2~

∑

k

(

P̂k − 〈P̂k〉
)2

|ψ〉 dt

+

√

JN
~

∑

k

(

P̂k − 〈P̂k〉
)

|ψ〉 dW k
t .

Here, as before, |ψ〉 denotes the state of a single iso-
lated (thermodynamic) system with its standard Hamil-
tonian Ĥ . Further, dĜχ =

∑

µν dĜ
µν
χ , which is given

in Eq. (5), dĜχ generates objective thermalization and
allows systems to approach an appropriate notion of mi-
crocanonical equilibrium, χ̂, given conserved quantities.
Further, here, we consider the case of dĜR being the SUV
generator of wavefunction reduction in the Markovian
limit [9, 17, 19]. Other generators from different objective
collapse models [10, 56] may also be considered, but in all
such physically viable generators, stringent constraints
require that both stochastic contributions and determin-
istic contributions exist and are related by a fluctuation
dissipation relationship [9, 17, 19], as also seen in the
OQT model before. Further, just like the OQT model
(Eq. (5) and Eq. (6)) which allows the equilibrium mi-
crocanonical distribution χ̂ to emerge at long times, a

diagonal distribution corresponding to Born’s rules, ρ̂B,
emerges from the SUV dynamics at long times (Eq. (7)
with Ĥ = 0 and dĜχ = 0).
Given a measurement setting with initial state,

|ψ〉 =
∑

αi |i〉, represented in the collapse (symmetry-
broken) basis, the diagonal Born distribution is ρ̂B =
∑

k |αk|2 P̂k. Here the projectors P̂k = |k〉 〈k| projects
onto symmetry broken states, determined from Ĥ , which
crucially allows the SUV approach to model quantum
state reduction and spontaneous symmetry breaking as
two descriptions of the same irreversible and inherently
random phenomenon [17, 19–21, 71, 72].
The corresponding master equations for ensembles of

systems evolving via Eq (7) are (linear) GKSL master
equations with two contributions:

~
∂ρ̂

∂t
= −i

[

Ĥ , ρ̂
]

+ J N ΛR( ρ̂ ) + αN Λχ( ρ̂ ). (8)

Here, ΛR( ρ̂ ) :=
∑

k P̂kρ̂P̂k − ρ̂, generates reduction of
the wave-function in the symmetry breaking basis, which
allows an ensemble averaged description of both sponta-
neous symmetry breaking and quantum measurement in
their appropriate settings [19]. Λχ is defined in Eq. (6)
and generates objective thermalization in ensembles as
discussed before. Further, both models posses norm
preservation, energy conservation, and no-superluminal
signalling [17, 19], strengthening their viability as phys-
ically relevant models for the dynamics of isolated sys-
tems. These properties are ultimately related to the fluc-
tuation dissipation relationship which requires that the
deterministic and stochastic contributions of the modi-
fications must be related, which may possibly be a hint
towards their underlying origin [9, 17, 19].
Together, the combined effect of ΛR and Λχ de-

scribe competing, hybrid thermalization-reduction dy-
namics with long time steady, equilibrium distributions
denoted by ρ̂∞. If they exist, they are obtained by
the steady state condition in each situation, given by

i
[

Ĥ , ρ̂∞

]

= J N ΛR( ρ̂∞) + αN Λχ( ρ̂∞). The ρ̂∞ in-

terpolates between the diagonal Born distribution, ρ̂B,
and the microcanonical distribution, χ̂, allowing an uni-
fied description of quantum state reduction, sponta-
neous symmetry breaking and quantum thermalization,
for isolated macroscopic quantum systems. Since the
microcanonical distribution was identified by Maxwell,
Boltzmann and Gibbs in their respective works [2, 25],
we term the ρ̂∞ as a hybrid Born-Maxwell-Boltzmann-
Gibbs-microcannonical distribution. Further analysis of
the steady states, towards understanding the quantum-to
classical transitions in particular settings [9, 17, 26, 33]
is left for future studies.
SUI models thus possess the potential of an

un-ambiguous description of the quantum-to-classical
crossover physics in both individual systems and ensem-
bles. For microscopic systems the SUI models are prac-
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tically indistinguishable from standard quantum theory,
but due to their differing dynamics, yields falsifiable pre-
dictions for quantum systems approaching the thermo-
dynamic limit [56–58]. Further, although our considera-
tions in this article were restricted to non-relativistic sys-
tems, ultimately, our program aims to provide a unified
description of irreversibility and stochasticity in generic
space-times for generic quantum systems of particles and
fields at the quantum-to-classical crossover regime. The
construction of relativistic SUI models and the analysis
of dedicated experimental protocols falsifying them are
left for future studies.

Conclusions — The deterministic and time-reversal
symmetric nature of quantum dynamics poses a foun-
dational challenge in reconciling it with the irreversible
approach to equilibrium, held as an axiom in equilibrium
statistical theory. Standard approaches toward a rec-
onciliation employ epistemic restrictions, based on what
may be practically known by specific agents. However,
in such approaches, an agent-independent notion of equi-
librium in isolated systems, is not possible, nor is it un-
derstood how a single, isolated, macroscopic system irre-
versibly approaches equilibrium. Our work resolves this
tension by instead advocating that quantum mechanics
is an effective theory, requiring corrections to describe
the dynamics of systems approaching the thermodynamic
limit.

We proposed a minimal stochastic modification of
quantum dynamics, such that for small systems, the
modified dynamics is practically indistinguishable from
Schrödinger’s evolution, while macroscopic systems can
approach equilibrium dynamically. This objective quan-
tum thermalization (OQT) model ensures that macro-
scopic systems, governed by corrections scaling with sys-
tem size, evolve irreversibly toward thermal equilibrium
described by a microcanonical distribution. Crucially,
this approach to equilibrium is valid for single systems
as well as for all possible observables or initial states
of a given (macroscopic) system, transcending agent-
dependent restrictions inherent in other frameworks.

We showed that a fluctuation-dissipation relation guar-
antees that the model is norm-preserving and avoids su-
perluminal signalling, ensuring physical consistency. We
showed that constraints towards energy conservation and
equilibrium steady states may be simultaneously satisfied
and constructed an OQT model with increasing von Neu-
mann entropy in ensembles of isolated systems. The en-
semble was shown to converge to the micocanonical equi-
librium distribution at long times, for thermodynamic
systems, independent of further considerations. Owing
to the differing dynamics in macroscopic quantum sys-
tems, the OQT model presented in this article is falsi-
fiable via dedicated protocols in the mesoscopic regime;
which measure thermalization time scales, temporal cor-
relations and their scaling with system size, in isolated
quantum systems.

We also considered the integration of OQT with objec-
tive collapse theories, which yield a unified framework,
termed spontaneous universal irreversibility (SUI); ad-
dressing both the quantum measurement problem and
the quantum thermalization problem. We constructed a
particular SUI model which describes macroscopic sys-
tems undergoing stochastic dynamics that drive sponta-
neous symmetry breaking, wavefunction collapse, and ob-
jective thermalization, while remaining indistinguishable
from standard quantum theory for microscopic systems.
This hybrid model reconciles the emergence of classi-

cality and equilibrium thermodynamics from its quan-
tum mechanical constituents, resolving both the quan-
tum measurement problem and the quantum thermal-
ization problem, within the same theory. By ensuring
norm preservation, linear master equations and energy
conservation, the (non-relativistic) SUI model provides
a self-consistent theory of quantum irreversibility and
quantum-to-classical crossover dynamics, where the in-
terplay of stochastic collapse and thermalizing dynamics
results in emergent, long time equilibrium steady states,
corresponding to a hybrid Born-Maxwell-Boltzmann-
Gibbs-microcanonical distribution.

The investigation of such SUI models have deep foun-
dational significance as well as many practical applica-
tions. In the non-relativistic regime, apart from its ap-
plications in gaseous or condensed matter systems [5], the
SUI models further open up possibilities of finer analyses
and characterization of noise in quantum devices, such as
quantum computers, a pressing open problem [9, 74]. SUI
models are also interesting to consider in the relativistic
regime and in general space-times, an open problem with
both conceptual and technical subtleties [68].

Spontaneous symmetry breaking [69, 73] is a corner
stone of the standard model of particle physics and since
the SUI model provides its natural extension to the
non-equilibrium regime [17, 19–21, 71, 72], relativistic
SUI models are of considerable interest towards treating
quantum-to-classical transitions in the high energy set-
ting. This is made all the more interesting due to the
recent collider tests of quantum foundations [75, 76]. In-
deed, relativistic SUI models could be used to investigate
known conundrums of thermalization time scales in rela-
tivistic heavy ion-collision physics [77], as well as in phase
transitions and non-equilibrium physics in the setting of
early universe cosmology [78, 79], and in the black-hole
information paradox [80].

Crucially, note that although we have constructed
equations of motion admitting long time equilibrium
steady states, being the microcanonical and Born dis-
tribution, our analysis does not specify why these are
the preferred steady states distributions in the first place.
Thus, a key open problem is also the source of such modi-
fications, which would presumably inform these concerns.
In the context of objective collapse models, its origins
have been previously argued to emerge due to an insta-
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bility of superposed space-times of massive quantum ob-
jects [81, 82].

In closing, our results challenge conventional inter-
pretations of quantum theory and the emergence of
classicality and equilibrium. By positing stochasticity
in the fundamental dynamics of physical systems, our
framework lays bare an understanding of quantum-to-
classical transitions and the emergence of equilibrium,
offering a unified dynamical framework for sponta-
neous symmetry breaking, quantum state reduction
and equilibration. Our findings thus motivate and
encourage a re-assessment of the foundations of physics
via thorough theoretical and experimental exploration
of potential universal mechanisms which could underlie
the irreversibility and stochasticity that we observe in
the universe.
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