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ABSTRACT
An understanding of how turbulent energy is partitioned between ions and electrons in weakly

collisional plasmas is crucial for modelling many astrophysical systems. Using theory and simulations
of a four-dimensional reduced model of low-beta gyrokinetics (the ‘Kinetic Reduced Electron Heating
Model’), we investigate the dependence of collisionless heating processes on plasma beta and imbalance
(normalised cross-helicity). These parameters are important because they control the helicity barrier,
the formation of which divides the parameter space into two distinct regimes with remarkably different
properties. In the first, at lower beta and/or imbalance, the absence of a helicity barrier allows the
cascade of injected power to proceed to small (perpendicular) scales, but its slow cascade rate makes
it susceptible to significant electron Landau damping, in some cases leading to a marked steepening
of the magnetic spectra on scales above the ion Larmor radius. In the second, at higher beta and/or
imbalance, the helicity barrier halts the cascade, confining electron Landau damping to scales above the
steep ‘transition-range’ spectral break, resulting in dominant ion heating. We formulate quantitative
models of these processes that compare well to simulations in each regime, and combine them with
results of previous studies to construct a simple formula for the electron-ion heating ratio as a function
of beta and imbalance. This model predicts a ‘winner takes all’ picture of low-beta plasma heating,
where a small change in the fluctuations’ properties at large scales (the imbalance) can cause a sudden
switch between electron and ion heating.

Keywords: Solar Wind (1534) — Plasma astrophysics (1261) — Interplanetary turbulence (830)

1. INTRODUCTION

Plasma turbulence is a ubiquitous feature of many space and astrophysical systems, including the solar wind (Gol-
dreich & Sridhar 1995; Bruno & Carbone 2013; Chen 2016), the solar corona (Cranmer & van Ballegooijen 2005; van
Ballegooijen et al. 2011), accretion flows (Ichimaru 1977; Quataert & Gruzinov 1999), and the intracluster medium
(Takizawa 1999; Kunz et al. 2022). Typically, such systems are weakly collisional, in that their characteristic dynamical
timescales are often shorter than those associated with inter-particle collisions (Boltzmann 1896; Landau 1965). As a
result, free energy injected into the plasma by large-scale mechanisms often cannot dissipate directly, and thus must
be processed by turbulence to the small scales on which heating can occur. Understanding the mechanisms responsible
for this heating and the partitioning thereof between the plasma species (ions and electrons) is crucial in constructing
accurate predictive models of the (thermo-)dynamics of such systems. For example, this partitioning can influence the
radiative properties, macroscopic transport coefficients, and pressure anisotropy of the plasma, and therefore plays a
crucial role in determining observable signatures and large-scale behaviour.

In many such environments – broadly, any time there exists a spatial asymmetry — the plasma turbulence is
observed to be imbalanced, meaning it is energetically dominated by Alfvénic fluctuations propagating in one direction
along the equilibrium magnetic field. This imbalance can arise naturally when the plasma is driven by large-scale
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motions or gradients that preferentially inject fluctuations propagating in one direction, as is the case in, e.g., the
solar wind launched from the solar corona (Parker 1965). The presence, or otherwise, of non-zero imbalance can
have significant implications for the heating channels available to a system. In particular, the recent work of Adkins
et al. (2024) demonstrated that imbalanced Alfvénic turbulence can manifest two fundamentally different regimes of
turbulent heating depending on the size of the plasma beta (the ratio of the thermal to magnetic pressures) relative
to some critical value that depends on the energy imbalance in the outer-scale fluctuations. Below this critical value,
the injected free energy is allowed to undergo a Kolmogorov-style (Kolmogorov 1941) cascade to small perpendicular
scales, as in standard theories of low-beta Alfvénic turbulence (Howes et al. 2008; Schekochihin et al. 2009; Howes
2010; Kawazura et al. 2019; Schekochihin et al. 2019). Above this critical beta, however, the constraints imposed on
the turbulence by the simultaneous conservation of free energy and some generalised helicity gives rise to the so-called
‘helicity barrier’ (Meyrand et al. 2021; Squire et al. 2022, 2023; Adkins et al. 2024; Johnston et al. 2025), which
prevents energy from cascading past the ion Larmor radius ρi to reach these small perpendicular scales. This causes
the turbulence to grow to large amplitudes, creating fine parallel structure that excites ICW fluctuations and heats the
ions, which absorb the majority of the injected power (Squire et al. 2022, 2023; Zhang et al. 2025), with only a small
fraction heating electrons. This helicity-barrier-mediated turbulence has many features that agree with measurements
of the low-beta solar wind, including those of the ion velocity distribution function (see, e.g., Marsch 2006; He et al.
2015; Bowen et al. 2022, 2024; McIntyre et al. 2024), helicity (Huang et al. 2021; Zhao et al. 2021), and properties of
the steep spectral slopes of the electromagnetic fields in the ‘transition range’ on scales comparable to the ion Larmor
radius which have been observed for decades (Leamon et al. 1998; Alexandrova et al. 2009; Sahraoui et al. 2009) and,
more recently, by Parker Solar Probe (PSP) (Bowen et al. 2020a; Duan et al. 2021; Bowen et al. 2024). The helicity
barrier may also have an important impact on plasmas in other astrophysical contexts, e.g., by altering the emission
properties of black-hole accretion flows, with implications for interpreting images from the Event Horizon Telescope
(Wong & Arzamasskiy 2024).

A key limitation of this paradigm arises from the fact that investigations of the helicity barrier in imbalanced solar-
wind turbulence have thus far been conducted without accounting for the effects of electron kinetics. This omission is
particularly significant given that such plasmas are either weakly collisional or collisionless, meaning that their kinetic
six-dimensional phase space allows for the nonlinear transfer of free energy to small scales in velocity space (‘phase
mixing’), and thus the heating of electrons through Landau damping (Landau 1946). In this work, we consider electron
heating in both balanced and imbalanced Alfvénic turbulence. Using equations derived in a low-beta asymptotic limit
of gyrokinetics (the ‘Kinetic Reduced Electron Heating Model’, KREHM; Zocco & Schekochihin 2011; Loureiro et al.
2016), we demonstrate that, as was the case in Adkins et al. (2024), the turbulence, and resultant heating, is divided
into two different regimes depending on the value of the electron beta βe relative to some critical value that corresponds
to a curve in the beta-imbalance parameter space. Below this critical beta, electron Landau damping reduces the flux
of energy arriving to the smallest perpendicular scales, leading to a steepening of the associated perpendicular energy
spectra that becomes more pronounced with increasing imbalance due to the decrease in the cascade rate relative to
that of Landau damping. We predict, and demonstrate numerically, that at sufficiently high imbalances this steepening
can even become comparable to the steep transition-range spectra observed in the presence of the helicity barrier, an
effect not captured by standard theories of kinetic, low-beta Alfvénic turbulence (see, e.g., Howes et al. 2008). Above
the critical beta, we show that the helicity barrier is once again active even in the presence of electron kinetics.
Assuming critically-balanced fluctuations, we show that the parallel electron heating rate due to Landau damping is
dominated by scales above the spectral break, and derive a formula for this heating rate that shows good agreement with
simulations. We note that in neither regime do we find a significant effect of the so-called ‘plasma echo’ (Gould et al.
1967; Malmberg et al. 1968) that could otherwise reverse the cascade in velocity space through ‘phase unmixing’ (see,
e.g., Schekochihin et al. 2016; Adkins & Schekochihin 2018) and thereby suppress parallel electron heating. Finally,
we consider the implications of our results for heating in the context of the low-beta solar wind, outlining a model for
the electron-ion heating ratio as a function of βe and the normalised cross-helicity σc. This model predicts a ‘winner
takes all’ picture of solar-wind heating: depending on the values of the electron beta and the imbalance, the heating
is either entirely dominated by the electron channel (below the critical beta) or the ion one (above it) due to the fact
that the electron-ion heating ratio is a strong function of imbalance. In particular, we expect dominant ion heating
in typical parameter regimes of interest in the solar wind, consistent with a wide array of observations. Our model
makes use of the empirically observed scaling for the location of the spectral break in perpendicular wavenumber space
k∗⊥ρi ∼ (1− σc)

1/4 (Meyrand et al. 2021; Squire et al. 2023), which, as a subsidiary result, we explain theoretically.
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The remainder of this paper is organised as follows. Section 2 motivates and outlines the KREHM system of
equations used for the theoretical arguments and simulations throughout this work (section 2.1), before considering
their linear dispersion relation (section 2.2) and nonlinearly conserved invariants (section 2.3). Details of the numerical
implementation and simulation parameters are also briefly discussed (section 2.4). Section 3 considers the dynamics
of both balanced and imbalanced turbulence within these model equations. We first consider the impact of imbalance
on a constant-flux style cascade of energy (section 3.1), demonstrating significant spectral steepening in the presence
of high imbalance. We then investigate electron Landau damping in the presence of the helicity barrier (section 3.2),
before then discussing the intermediate regime (section 3.3). Motivated by our findings, we outline, in section 4,
a model of heating in the context of the low-beta Alfvénic solar wind. Readers uninterested in engaging with the
underlying theory may skip ahead to section 4, working backwards where further clarification is required. Our results
are then summarised and the implications thereof discussed in section 5.

2. KINETIC REDUCED ELECTRON HEATING MODEL

Fundamental studies of magnetised plasma turbulence are often conducted within the framework of gyrokinetics,
which describes low-frequency, low-amplitude fluctuations on perpendicular scales much smaller than those associated
with the variation of the local background magnetic field B0 = B0b0. These fluctuations exhibit a strong spatial
anisotropy, with characteristic wavenumbers satisfying k∥ ≪ k⊥, for components parallel and perpendicular to b0,
respectively. The gyrokinetic system of equations (Howes et al. 2006; Schekochihin et al. 2009; Abel et al. 2013) can be
derived from the Vlasov-Maxwell system by averaging over the fast timescale associated with the frequency Ωs of the
Larmor motion of the particles under the assumption of this spatial anisotropy, which appears to be well-satisfied in the
solar wind (Chen et al. 2013; Chen 2016). In the limit of low plasma-beta, where the ion thermal speed is much smaller
than the Alfvén speed, further simplifications can be made. The weak coupling between Alfvénic and compressive
fluctuations in this regime allows ion kinetics to be neglected even at ion-Larmor scales (Schekochihin et al. 2019).
The resulting equations constitute the ‘Kinetic Reduced Electron Heating Model’ (KREHM, Zocco & Schekochihin
2011; Loureiro et al. 2016), which has recently been applied to studies of electron heating in turbulence dominated by
kinetic Alfvén waves (Zhou et al. 2023a,b). KREHM couples the equations of reduced magnetohydrodynamics (RMHD,
Kadomtsev & Pogutse 1974; Strauss 1976) and electron reduced magnetohydrodynamics (ERMHD, Schekochihin et al.
2009; Boldyrev et al. 2013) to the kinetic electron physics. While the formal derivation of KREHM assumes that the
electron beta βe = 8πn0eT0e/B

2
0 is comparable to the electron-ion mass ratio, βe ∼ me/mi (Zocco & Schekochihin

2011; Adkins et al. 2022), the model remains valid for βe ≲ 1 more generally, provided the equilibrium temperature
ratio of ions to electrons, τ ≡ T0i/T0e, is of order unity (n0e is the equilibrium density of electrons).

2.1. Model equations

In KREHM, the electron dynamics are encoded in the drift-kinetic equation

dδfe
dt

+ v∥∇∥δfe =
e

T0e

(
1

c

∂A∥

∂t
+∇∥ϕ

)
v∥f0e + C[δfe], (1)

which describes the evolution of the perturbed electron distribution function δfe = δfe(r,v, t) around a homogeneous
Maxwellian equilibrium f0e = f0e(|v|). These perturbations are advected by the E × B flow due to the perturbed
electrostatic potential ϕ:

d
dt

=
∂

∂t
+ u⊥ ·∇⊥, u⊥ =

c

B0
b0 ×∇⊥ϕ, (2)

while their parallel motion is along the exact magnetic field, viz., including the perturbation of the magnetic-field
direction arising from the parallel component of the magnetic-vector potential A∥:

∇∥ = b ·∇ =
∂

∂z
+

δB⊥

B0
·∇⊥, δB⊥ = −b0 ×∇⊥A∥. (3)

The combination of terms in the brackets on the right-hand side of (1) can be recognised as (minus) the parallel electric
field (−e is the electron charge), while the final term is the collision operator. Although our investigations primarily
focus on collisionless dynamics, the role of collisions cannot be entirely disregarded: ‘phase mixing’ associated with the
parallel-streaming term on the left-hand side of (1) causes the distribution function to develop small scales in velocity
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space, where the associated velocity gradients can eventually become steep enough to activate collisions no matter how
small they are taken to be. We therefore assume that collisions have a negligible effect on δfe except at these scales,
where the collision operator acts as a direct sink of energy.

It is useful both conceptually (see, e.g., Zocco & Schekochihin 2011; Adkins et al. 2022) and numerically (see, e.g.,
Loureiro et al. 2016; Mandell et al. 2018; Mandell et al. 2024) to project the velocity-dependence of δfe onto an
appropriate polynomial basis. Given that v⊥ does not appear explicitly in (1), the perpendicular-velocity-dependence
of δfe can be integrated out of the problem, and we expand the remaining parallel-velocity-dependence as:1

gm(r, t) =
1

n0e

∫
d3v

Hm(v∥/vthe)√
2mm!

δfe(r, v∥, v⊥, t), (4)

δfe(r, v∥, v⊥, t) =

∞∑
m=0

Hm(v∥/vthe)f0e√
2mm!

gm(r, t), (5)

in which Hm are the Hermite polynomials, vthe =
√
2T0e/me is the thermal speed of electrons, with me their mass.

Applying (4) to (1), and making use of the recurrence and orthogonality relations of the Hermite polynomials (see,
e.g., Abramowitz & Stegun 1972), we arrive at the following equation for the Hermite moments of δfe:

dgm
dt

+
vthe√

2
∇∥

(√
m+ 1gm+1 +

√
mgm−1

)
=

e

T0e

(
1

c

∂A∥

∂t
+∇∥ϕ

)
vthe√

2
δm,1 + C[gm]. (6)

We have thus replaced our kinetic equation (1) with an infinite hierarchy of ‘fluid’ moments (6). These are coupled to
one another by the parallel-streaming term on the left-hand side which, in the linear regime, is responsible for the phase-
mixing of perturbations to the high Hermite numbers associated with small scales in velocity space m ∼ (δv∥/vthe)

−2

(Zocco & Schekochihin 2011; Kanekar et al. 2015; Parker et al. 2016). Perturbations at these scales are then dissipated
by the collision operator C[gm], the route by which energy lost from the lower-order moments due to Landau damping
(Landau 1946) becomes thermalised within this formalism.

The electrostatic potential ϕ appearing in (6) is related to the electron-density perturbation δne/n0e = g0 by
quasineutrality:

δne

n0e
=

δni

n0i
= −τ̄−1 eϕ

T0e
≡ −Z

τ
(1− Γ̂0)

eϕ

T0e
, (7)

where the operator Γ̂0 can be expressed, in Fourier space, in terms of the modified Bessel function of the first kind:
Γ0 = I0(αi)e

−αi , where αi = (k⊥ρi)
2/2. This becomes 1 − Γ̂0 ≈ −ρ2i∇

2
⊥/2 at large scales k⊥ρi ≪ 1, and 1 − Γ̂0 ≈ 1

at small scales k⊥ρi ≫ 1; the former limit is why (7) is sometimes referred to as the gyrokinetic Poisson equation.
Similarly, the parallel magnetic-vector potential A∥ is related to the parallel-velocity perturbation u∥e/vthe = g1/

√
2

by Ampére’s law:

−en0eu∥e = j∥ =
c

4π
b0 · (∇⊥ × δB⊥) ⇒ u∥e =

c

4πen0e
∇2

⊥A∥. (8)

The ion thermal speed does not enter into (8) as it is formally small in the low-beta limit, and so the electrons are
uniquely responsible for carrying the plasma current.

Using (7) and (8), we can write our system of equations as
d
dt

τ̄−1 eϕ

T0e
− c

4πen0e
∇∥∇2

⊥A∥ = 0, (9)

d
dt
(
A∥ − d2e∇

2
⊥A∥

)
= −c

[
∂ϕ

∂z
+∇∥

(
τ̄−1ϕ−

δT∥e

e

)]
, (10)

where the parallel-temperature perturbation δT∥e/T0e =
√
2g2 and all higher-order moments are determined from

dgm
dt

+
vthe√

2
∇∥

(√
m+ 1gm+1 +

√
mgm−1

)
= C[gm], m ⩾ 2. (11)

1We note that this definition of gm is different to that adopted by Zocco & Schekochihin (2011); Loureiro et al. (2016); Zhou et al.
(2023a), etc., who demand that the first two moments of gm must vanish, viz., g0 = g1 = 0. We prefer to include the electron density and
parallel-velocity perturbations in our definition of gm, but this choice is purely aesthetic, and does not affect the physics encoded in the
overall set of equations.
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We have chosen here to separate out the first two kinetic moments, (9) and (10), which are responsible for the Alfvénic
dynamics central to the discussions that follow.

Together, (9), (10), and (11) form a closed system of equations describing the evolution of a strongly-magnetised, low-
beta plasma on scales above the electron-Larmor radius k⊥ρe ≲ 1. If the electrons are assumed to be isothermal along
exact (equilibrium plus perturbed) field lines, then the parallel-temperature perturbation appearing in (10) vanishes,
and the remaining equations are those of isothermal KREHM (see, e.g., Adkins et al. 2024). We note, however, that
such an approximation is only valid on scales much larger than the electron-inertial scale k⊥de ≪ 1 (see section 2.2),
wherein the equations of isothermal KREHM reduce to those of FLR-MHD (Meyrand et al. 2021). Nevertheless, given
that the isothermal KREHM system simultaneously captures the RMHD, ERMHD, and inertial-Aflvén wave (Loureiro
& Uzdensky 2016; Milanese et al. 2020) regimes, the KREHM system that we consider here is the simplest possible
extension to these reduced fluid systems that captures the effects of electron kinetics.

2.2. Linear dispersion relation

Linearising and Fourier-transforming (9)-(11), we find the following dispersion relation for the (real) frequency ω

and damping rate γ:

(ω − iγ)2 − k2∥v
2
ph

[
1− τ̄

1 + τ̄

(
δT∥e/T0e

)
k

(eϕ/T0e)k

]
= 0, (12)

where the Fourier-space amplitude of the parallel-temperature perturbation is given by(
δT∥e

T0e

)
k

= −
(

2ζ2

k2⊥d
2
e

− τ̄

)[
1 + 2

(
ζ2 − 1

2

)
(1 + ζZ)

]
τ̄−1

(
eϕ

T0e

)
k

. (13)

with ζ = (ω − iγ)/
∣∣k∥∣∣vthe the normalised frequency and Z = Z(ζ) the plasma dispersion function (Faddeeva &

Terent’ev 1954; Fried & Conte 1961). It is evident from (12) that when there is no coupling to the kinetic hierarchy
— i.e., in the isothermal limit — the system supports forwards- and backwards-propagating modes of real frequency
ω = ±k∥vph(k⊥), where the perpendicular-wavenumber-dependent phase velocity is given by the isothermal result
(Adkins et al. 2024):

vph(k⊥) = k⊥ρs

(
1 + τ̄

1 + k2⊥d
2
e

)1/2

vA. (14)

In (14), ρs =
√
Z/2τρi is the ion-sound radius, related to the (thermal) sound speed by cs = ρs/Ωi, and vA =

B0/
√
4πn0imi is the Alfvén speed.

On scales much larger than the electron-inertial scale k⊥de ≪ 1, the real part of the numerical solution to (12) is
well-approximated by (14), as can be seen from panel (a) of figure 1. In the same limit, the damping rate is given by
the kinetic-Alfvén-wave (KAW) one (see, e.g., Howes et al. 2006; Zocco & Schekochihin 2011):

γ =

√
π

4

∣∣k∥∣∣vthek
2
⊥d

2
e. (15)

One can readily see from figure 1, or indeed from comparing (14) and (15), that the damping rate is smaller than the
linear frequency at scales k⊥de ≲ 1, where |γ|/ω ∼ k⊥de/(1 + τ̄) ≲ 1. It also transpires that this remains true even at
scales k⊥de ≳ 1, where both (14) and (15) cease to be applicable and no analytic solution to (12) can be found. This
is, perhaps, an indication that the effects of the kinetic physics could simply be to provide another dissipation channel
for the electrons without significantly altering the turbulent dynamics supported by the ‘fluid’ moments (9) and (10).
In other words, the dynamics will still be well-described by interactions between waves which, on large scales k⊥de ≲ 1,
have phase velocities closely approximated by the isothermal result (14). This means that the isothermal limit remains
a useful starting point for gathering intuition about the turbulent dynamics (Adkins et al. 2024). In particular, it
will be useful to introduce the eigenfunctions of the forwards- and backwards-propagating modes associated with the
isothermal limit. These generalised Elsässer potentials can be expressed, in Fourier space, as

Θ±
k ≡

√
1 + k2⊥d

2
e

[
c

B0

vph(k⊥)/vA
(k⊥ρs)2

τ̄−1ϕk ∓
A∥k⊥√
4πn0imi

]
, (16)
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Figure 1. Solutions to the KREHM dispersion relation (12) normalised to
∣∣k∥∣∣vthe, plotted as a function of perpendicular

wavenumber k⊥ρi, and for τ = Z = 1. The colours indicate different values of βe(me/mi)
−1. Solid lines are the numerical

solutions to (12), while the dashed lines in the left- and right-hand panels are (14) and (15), respectively. The horizontal dotted
lines indicate the asymptotic values of the frequency and damping rate as k⊥ → ∞, while the vertical dotted lines indicate
k⊥de = 1. It is clear that the damping rate is always smaller than the frequency irrespective of perpendicular wavenumber
and/or the value of βe(me/mi)

−1.

and have the property that on the largest scales k⊥ ≪ ρ−1
i , d−1

e , they reduce to the standard RMHD Elsässer potentials
(Elsässer 1950), viz.,

lim
k⊥→0

b0 ×∇⊥Θ
± = z± ≡ u⊥ ± δB⊥√

4πn0imi
. (17)

We stress that while (16) are not the linear eigenfunctions of the full system of equations (9)-(11), they nevertheless
provide a useful basis for our investigation of imbalanced turbulence in KREHM.

2.3. Nonlinear invariants

Gyrokinetics conserves the so-called free energy, which is the sum of the quadratic norms of the magnetic perturba-
tions, as well as the perturbations of the distributions of both ions and electrons away from equilibrium. Being derived
in a subsidiary limit of gyrokinetics, the KREHM system (9)-(11) inherits this property, with the free energy taking
the form (Zocco & Schekochihin 2011; Loureiro et al. 2016; Adkins et al. 2022):

W =

∫
d3r

V

[
e2n0e

2T0e

(
ϕτ̄−1ϕ

)
+

e2n0e

2T0e

(
τ̄−1ϕ

)2
+

∣∣∇⊥A∥
∣∣2 + d2e

(
∇2

⊥A∥
)2

8π

]
+Wkin., (18)

for a plasma of volume V . The first term in (18) is the free energy in the isothermal limit — consisting of, from left
to right, the energies associated with the perturbations of the electrostatic potential, electron density, (perpendicular)
magnetic field and parallel electron velocity — while

Wkin. =
n0eT0e

2

∞∑
m=2

g2m (19)

is the energy contained in all of the higher-order kinetic moments. We note that at large scales k⊥ ≪ ρ−1
i , d−1

e , this
latter contribution becomes vanishingly small, i.e., Wkin. ≪ W , and we recover from the remainder the usual expression
for the free energy in RMHD (see, e.g., Schekochihin et al. 2009).
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Another quadratic quantity of interest is the generalised helicity :

H = −e2n0evA
cT0e

∫
d3r

V
τ̄−1ϕ

(
A∥ − d2e∇

2
⊥A∥

)
, (20)

which reduces to the MHD cross-helicity at k⊥ ≪ ρ−1
i , d−1

e , and is proportional to the magnetic helicity at ρ−1
i ≪

k⊥ ≪ d−1
e . While the free energy (18) is conserved by nonlinear interactions irrespective of the presence, or otherwise,

of the kinetic moments, this is not true for the generalised helicity (20). Indeed, we show in section 3 that the helicity is
only conserved in the isothermal limit, where the local source/sink due to parallel gradients of the parallel-temperature
perturbation vanishes [see (26)]. Nevertheless, we will demonstrate that, under certain conditions, the influence of this
helicity source/sink on the overall dynamics becomes negligible, allowing the turbulence to be effectively treated as
helicity-conserving.

2.4. Numerical setup

In what follows, the KREHM system (9)-(11) is solved using a modified version of the pseudospectral code TURBO
(Teaca et al. 2009) in a triply-periodic box of size Lx = Ly = Lz = L with n2

⊥ × nz Fourier modes. A total of M
Hermite modes are evolved, with M = 2 corresponding to the isothermal limit in which only (9) and (10) are solved.
Although the behaviour of the simulations appears to converge for a relatively low number of Hermite moments (see
appendix A), we opted to be conservative and set M = 32 in the majority of our simulations to ensure adequate
resolution in velocity space. Time is measured in units of the parallel Alfvén time tA = Lz/vA. Hyperdissipation is
introduced in the perpendicular direction by replacing the time-derivative on the left-hand sides of (9)-(11) by

d
dt

+ ν⊥∇8
⊥. (21)

Hyperdissipation is not employed in the parallel direction as fluctuations at small parallel scales (large parallel
wavenumbers) are sufficiently low-amplitude due to the effects of Landau damping. Convergence in velocity space
is ensured by introducing hypercollisions of the form

C[gm] = νcol.m
6gm, m ⩾ 3, (22)

that model the effects of collisional dissipation.1 The coefficients ν⊥ and νcol. are adaptive, viz., they are re-evaluated
at each timestep to esnure that dissipation occurs near the grid scale, maximising the inertial range in both position
and velocity space (details of the numerical implementation can be found in Meyrand et al. 2025). Fluctuations are
forced at large scales at k⊥ = 4π/L, |kz| = 2π/L through the form of negative damping acting on the Θ± fields
(Meyrand et al. 2021); this method allows the rates of free-energy and helicity injection to be controlled exactly while
producing sufficiently random motions to generate turbulence. All of the simulations listed in table 1 have τ = Z = 1,
though we will retain dependencies on these parameters in analytical expressions for the sake of completeness.

3. LANDAU DAMPING IN IMBALANCED ALFVÉNIC TURBULENCE

Motivated by observations of the solar wind, we consider turbulence that is imbalanced, meaning that it has sig-
nificantly more energy content in outward-propagating Alfvénic structures than in inward-propagating ones. In our
system, we associate these outward- and inward-propagating structures with the Elsasser potentials Θ+ and Θ−, re-
spectively, as, despite not being linear eigenfunctions of the kinetic system, these correspond to z+ and z− fluctuations
on the largest perpendicular scales. An imbalanced system naturally possesses some non-zero (generalised) helicity;
this is made obvious by writing the (free) energy (18) and (generalised) helicity (20) directly in terms of the generalised
Elsässer potentials (16) as

W =
n0imi

4

∑
k

(∣∣k⊥Θ+
k

∣∣2 + ∣∣k⊥Θ−
k

∣∣2)+Wkin., (23)

H =
n0imi

4

∑
k

∣∣k⊥Θ+
k

∣∣2 − ∣∣k⊥Θ−
k

∣∣2
vph(k⊥)/vA

. (24)

1Collisions within the KREHM system of equations are often modelled by exploiting the fact that the Hermite polynomials are
eigenfunctions of the differential part of the Dougherty (Dougherty 1964) or Lenard-Bernstein (Lenard & Bernstein 1958) collision operators.
This gives rise to a collision term of the form C[gm] = νcol.mgm for m ⩾ 3 (Zocco & Schekochihin 2011; Loureiro et al. 2016; Mandell
et al. 2018; Adkins et al. 2022; Mandell et al. 2024). The hypercollisions (22) are a straightforward generalisation of this that allows us to
capture collisionless dynamics while maximising the range of unaffected scales in velocity space.
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Resolution M σε ρi/L de/L βe(me/mi)
−1 Sims

Steepened cascade 1283 2 0.0 0.10 0.1000 1.0 1
1283 32 0.0 0.10 (0.0043, 0.1000) (1.0, 550.9) 3
1283 2 0.6 0.10 0.1000 1.0 1
1283 16 0.6 0.10 (0.0043, 0.1000) (1.0, 550.9) 3
1283 2 0.8 0.10 0.1000 1.0 1
1283 32 0.8 0.10 (0.0043, 0.1000) (1.0, 550.9) 3

Isothermal restart 2563 2 0.8 0.04 0.0017 550.9 1
2563 32 0.8 0.04 0.0017 550.9 9

Beta scan 1283 16 0.6 0.10 (0.0043, 0.1000) (1.0, 550.9) 10
1283 32 0.8 0.10 (0.0043, 0.1000) (1.0, 550.9) 10

Hermite scan 1283 (4, 32) 0.0 0.10 0.1000 1.0 8
1283 (4, 32) 0.0 0.10 0.0043 550.9 8
1283 (4, 32) 0.8 0.10 0.1000 1.0 8
1283 (4, 32) 0.8 0.10 0.0043 550.9 8

Table 1. The parameters used for the KREHM simulations considered in this paper. All simulations have τ = Z = 1. Values in
parentheses indicate the minimum and maximum values for the corresponding column, with the final column (‘sims’) indicating
the number of simulations in a given set. Note that a value of M = 2 corresponds to an isothermal simulation.

The associated energy imbalance σ̃c = H/W can be large, with measured values of the normalised cross-helicity (or
RMHD imbalance) σc = limk⊥→0 σ̃c often exceeding |σc| ≳ 0.9 (McManus et al. 2020). This means the effects of
non-zero helicity on the turbulence are often significant in the solar wind.

To investigate such a regime, we consider the case where the energy (18) and helicity (20) are injected into our
KREHM system at constant rates εW and εH by some large-scale stirring of turbulent fluctuations, denoting the
resultant injection imbalance — the ratio of the injected flux of helicity to that of the energy — as σε = |εH |/εW .
Adkins et al. (2024) showed that, under these conditions, the simultaneous conservation of both nonlinear invariants
within the isothermal KREHM system gave rise to a critical value of the electron beta

βcrit
e =

2Z

1 + τ/Z

me

mi

1

σ2
ε

, (25)

separating two dramatically different types of turbulent dynamics. Specifically, in systems where βe was below the
threshold given by (25), the free energy injected at the largest perpendicular scales would undergo an Alfvénic cascade
down to scales k⊥ρe ≲ 1, where it would dissipate, giving rise to the turbulent heating of electrons. Systems with βe

exceeding (25), on the other hand, were unable to support such a constant-flux solution, inevitably forming a helicity
barrier (Meyrand et al. 2021; Squire et al. 2022, 2023). This restricted the cascade of free energy beyond the ion
Larmor scale k⊥ρi ∼ 1, leaving most of the injected energy, apart from the balanced component, to accumulate at
larger scales k⊥ρi ≲ 1, where it would, presumably, eventually contribute to ion heating. Heuristically, the breakdown
of the constant-flux solution can be traced to the perpendicular-wavenumber dependence of the phase velocity in the
denominator of (24). For βe ≫ βcrit

e , the phase velocity increases significantly at scales below the ion Larmor radius
(see figure 1), creating a disparity in the scaling of the fluxes of the free energy and helicity that cannot be reconciled
within a constant-flux framework. At sufficiently low βe, however, this increase in phase velocity becomes negligible
(see again figure 1), allowing a constant-flux solution to be restored.

The findings of Adkins et al. (2024) did not account for the potential turbulent dissipation channel offered by
electron Landau damping, neglected within the isothermal approximation. In particular, as we noted in section 2.3,
the inclusion of electron kinetics means that the helicity (20) is no longer conserved, with its time derivative now being
given by

1

n0eT0e

dH
dt

= εH + ε̃H + . . . , (26)
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where ‘. . . ’ stands for terms arising from the perpendicular hyperviscosity (21), and

ε̃H = −evA
T0e

∫
d3r

V
τ̄−1ϕ∇∥

δT∥e

T0e
(27)

is the rate-of-change of helicity due to the presence of kinetic effects, vanishing in the isothermal limit. We note that
this term is sign non-definite, allowing it to act as either a source or sink of helicity. This, combined with the presence
of kinetic damping and the associated non-conservation of the ‘fluid’ energy W −Wkin., means that it is not obvious
a priori that the conclusions of Adkins et al. (2024) will carry over into the kinetic regime, motivating the present
study. In the following sections section 3.1 and section 3.2, we conjecture, and numerically verify, theories of electron
Landau damping in the βe ≲ βcrit

e and βe ≫ βcrit
e limits, respectively, before considering the intermediate regime in

section 3.3.

3.1. Imbalance-steepened cascade

For values of the electron beta sufficiently below (25), the isothermal KREHM system is able to support a local,
Kolmogorov (1941) style cascade that carries the injected flux of energy and helicity from the outer (injection) scale,
through some putative inertial range, to the dissipation scale (see section 3.1 of Adkins et al. 2024). Let us suppose,
and verify a posteriori, that such a cascade is also supported within the kinetic system. However, Landau damping
allows energy to be removed from the cascade at every (perpendicular) scale, meaning that the assumption that the
rates of energy injection into the forward- and backward-propagating fluctuations

ε± =
εW ± εH

2
=

1± σε

2
, (28)

will be equal to the associated flux of Θ± energy throughout the inertial range is no longer valid. Following Howes
et al. (2008, 2011), we assume that the nonlinear interactions remain local1 and estimate the spectral energy fluxes
Π±(k⊥) as

Π±(k⊥) ∼
(
t±nl

)−1

(
k⊥Θ

±
k⊥

)2
c2s

, (29)

where here, and in what follows, Θ±
k⊥

refers to the characteristic amplitude of the Elsässer potentials at each scale
k−1
⊥ , rather than to the Fourier transform of the field (16). Formally, Θ±

k⊥
can be defined by(

k⊥Θ
±
k⊥

)2
c2s

=
1

n0eT0e

∫ ∞

k⊥

dk′⊥ E±
⊥(k′⊥), E±

⊥(k⊥) = 2πk⊥

∫ ∞

−∞
dk∥

n0imi

4

〈∣∣k⊥Θ±
k

∣∣2〉 , (30)

where E±
⊥(k⊥) is the 1D perpendicular energy spectrum of Θ± [cf. the first term in (23)], and in which the brackets

denote an ensemble average. An alternative definition would be via a second-order structure function (see, e.g.,
Davidson 2013). Perturbations of other fluctuating quantities will similarly be taken to refer to their characteristic
amplitude at a given perpendicular scale.

3.1.1. Nonlinear times and critical balance

In order to proceed, we need an expression for the nonlinear times appearing in (29). However, determining these
is not a straightforward task, remaining an open research question even in the RMHD regime (Schekochihin 2022).
Indeed, it is the disparity between the amplitudes of the strong Θ+ and weak Θ− perturbations observed in highly
imbalanced (ε+/ε− ≫ 1) turbulence that makes it challenging to construct a self-consistent theory of such turbulence
without invoking assumptions that are difficult to rigorously justify. For example, Lithwick et al. (2007) assumed
that both fields undergo local, strongly-turbulent cascades, which had the immediate implication that the ratio of the
nonlinear times exhibits the same scaling as the ratio of the field amplitudes, viz.,

t+nl

t−nl
∼

Θ+
k⊥

Θ−
k⊥

∼ Π+

Π− > 1, (31)

1The fact that the interactions remain local is not guaranteed; the nonlinearities in (9)-(11) readily allow for the coupling between modes
at disparate wavenumbers. While some theories of imbalanced turbulence are non-local (see, e.g., Beresnyak & Lazarian 2008; Schekochihin
2022), we choose to consider a local theory in order to focus on understanding the effect of the Landau damping on the turbulence, rather
than present a comprehensive phenomenology of imbalanced turbulence.
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where the last estimate follows from combining the first with those for the energy fluxes (29). As pointed out by
Lithwick et al. (2007), this has the counterintuitive implication that the weaker Θ−

k⊥
perturbation, which is advected

by the stronger Θ+
k⊥

perturbation at some faster rate (t−nl)
−1, can nevertheless coherently advect Θ+

k⊥
at the slower

rate (t+nl)
−1. Furthermore, implicit in (31) is the assumption that the counter-propagating field is the only source of

nonlinear advection available. While this is always satisfied in the RMHD regime (k⊥ρi ≪ 1), the dispersive nature of
the KREHM linear modes (14) on scales below the ion-Larmor radius (k⊥ρi ≳ 1) makes nonlinear interactions between
co-propagating modes possible, allowing, in principle, a turbulent cascade to be supported by a single component Θ±

(Cho 2011; Kim & Cho 2015; Voitenko & De Keyser 2016, see also appendix B). The extent to which such interactions
contribute to the cascade, and whether they enable a steady-state turbulence that is qualitatively different from the
RMHD case, remains an open subject of research.

Additional complications arise when considering the parallel coherence of the two fields. In this context, theories often
invoke the assumption of critical balance (Goldreich & Sridhar 1995, 1997; Boldyrev 2005; Nazarenko & Schekochihin
2011): that the characteristic (linear) time associated with propagation along field lines ∼ ω at some parallel scale
k−1
∥ is comparable to the nonlinear advection rate at each perpendicular one k−1

⊥ . However, it is not immediately clear
how such a critical-balance condition should be formulated in the presence of strong imbalance. Given the disparity
of nonlinear times implied by (31), one possibility would be to take the nonlinear rate to be the faster one, viz.,

ω(k∥, k⊥) ∼ (t−nl)
−1. (32)

Lithwick et al. (2007) argue that the parallel wavenumber appearing in (32) should be the same for both fields because
Θ+

k⊥
perturbations separated by a distance (k−∥ )

−1 (the parallel coherence length of the weaker field) are advected by
completely spatially decorrelated Θ−

k⊥
perturbations, which would then imprint their parallel coherence length onto

the Θ+
k⊥

ones, implying that k−∥ ∼ k+∥ ∼ k∥.
Given these complexities (and indeed others; see §9.1 of Schekochihin 2022), the precise scalings of the fields Θ±

in imbalanced turbulence remains uncertain. This uncertainty is only further exacerbated by the presence of kinetic
effects considered here. Rather than attempting to resolve these issues, we will instead proceed by assuming that (31)
and (32) are a reasonable first approximation to the turbulent dynamics in the absence of any kinetic effects. As such,
the theory that we present here makes no illusions of being a comprehensive phenomenological theory of imbalanced
turbulence, but should instead be viewed as an exploration of the possible effects of electron Landau damping in such
a regime.

3.1.2. Elsässer fluxes

With these caveats in mind, let us return to (29). Had the energy fluxes therein been constant with perpendicular
wavenumber, and equal to their injected values (28), we would have been able to obtain an estimate for the fluctuations
of the Elsässer potentials given (31). However, since this is not the case, the perpendicular-wavenumber dependence of
these fluxes must first be determined by another constraint. We impose this constraint by assuming that they satisfy
the evolution equation for the Θ± perpendicular energy spectra, analogous to the simplest models used for isotropic
hydrodynamic turbulence (Batchelor 1953):

1

n0eT0e

∂E±
⊥

∂t
= −∂Π±

∂k⊥
− 2γ

E±
⊥

n0eT0e
+ S±(k⊥). (33)

Here, S±(k⊥) is a source term satisfying ∫ ∞

0

dk⊥ S±(k⊥) = ε±, (34)

that represents the injection of energy, usually assumed to be localised at some outer scale ko⊥ that lies on the largest
scales within the system.

In writing (33), we have made a key assumption that the only additional effect of the electron kinetics on the Aflvénic
cascade is to provide a linear damping of the energy spectrum, with the damping rate γ being given by the solution
of the linear dispersion relation (12). This has important, and indeed quite restrictive, consequences for the behaviour
of the Hermite moments (11) that we will now briefly discuss. In particular, it is not a foregone conclusion that the
energy injected into the kinetic hierarchy, via the temperature perturbation in (10), will undergo phase mixing to small
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scales in velocity space. This is obvious from the second term on the left-hand side of (11): while energy can undergo
phase mixing towards higher m through its coupling to the m + 1 moment, it can also, in principle, undergo phase
unmixing towards lower m via its coupling to the m − 1 moment. While only the former of these is allowed in the
linear regime (Kanekar et al. 2015), nonlinear effects are able to give rise to the plasma echo (Schekochihin et al. 2016;
Adkins & Schekochihin 2018; Nastac et al. 2024) that returns energy from small scales in velocity space via phase
unmixing. This can cause kinetic turbulence to resemble fluid turbulence in that it is only allowed to cascade to small
spatial scales in order to reach dissipation (see, e.g., Meyrand et al. 2019), rather than also having access to Landau
damping as another dissipation channel. We will find, however, in agreement with the results of Zhou et al. (2023a),
that echoes do not seem to play a significant role in the dynamics, insofar as they do not invalidate the assumption of
linear damping. This is discussed further section 3.1.4.

Looking for a steady-state solution of (33), and using (29) and (30) to estimate the energy spectra in terms of the
energy fluxes, (33) can be written as

∂Π±

∂k⊥
+

2γt±nl
k⊥

Π± = S±. (35)

Then, making use of (31) and (32), (35) becomes

∂Π±

∂k⊥
+

2c±γ

k⊥ω

(Π±)
2

Π− = S±. (36)

The added factors c± are to account for the fact that both of the estimates (31) and (32) ignored factors of order
unity. In general, these factors will be functions of the dimensionless parameters of the plasma, but we will here treat
them as constant. Assuming that the forcing due to the source S± is localised at k⊥ = ko⊥, and noting that the ratio
γ/ω is independent of k∥, (36) can be solved exactly for wavenumbers k⊥ > ko⊥:

Π−(k⊥) = ε− exp

[
−
∫ k⊥

ko
⊥

dk′⊥
k′⊥

2c−
γ(k′⊥)

ω(k′⊥)

]
, (37)

Π+(k⊥) = ε+

[
1 +

∫ k⊥

ko
⊥

dk′⊥
k′⊥

2c+
γ(k′⊥)

ω(k′⊥)

ε+

Π−(k′⊥)

]−1

. (38)

Finally, the perpendicular energy spectra can be estimated in terms of these fluxes as

E±
⊥(k⊥) ∼

[
Π±(k⊥)

ε±

]2/3 [
E±

⊥(k⊥)
]iso

, (39)

where
[
E±

⊥(k⊥)
]iso are the perpendicular energy spectra in the isothermal limit, in which the fluxes are constant and

equal to their values at the outer scale. Note that in the balanced regime where ε+ = ε− and c+ = c−, both (37) and
(38) are equal to each other and to the balanced solution of Howes et al. (2008), given an appropriate choice of the
factors c±.

Let us take a moment to examine the behaviour of these expressions in detail. Since the damping rate is strictly
positive at all perpendicular wavenumbers (see figure 1), the flux of Θ− (37) is a decreasing function of perpendicular
wavenumber, which will (exponentially) steepen the resultant spectrum in comparison to the isothermal/constant-flux
limit. Interestingly, (37) depends on the imbalance only through its value at the outer scale ε−. This is a consequence
of the fact that, if (31) is to be believed, Θ− is always advected by Θ+, a field that is either comparable to or larger than
it, and whose associated nonlinear rate (t−nl)

−1 is always comparable to the linear frequency ω [see (32)], irrespective
of imbalance. The same is not true for the Θ+ flux (38), whose integrand has an explicit dependence on the ratio
of the flux of Θ− to the value of the Θ+ flux at the outer scale ε+. This is because as the imbalance increases, the
nonlinear rate for the stronger field (t+nl)

−1 becomes increasingly subdominant to the linear frequency ω, rendering
the effects of the otherwise weak Landau damping more significant. Any decrease in the flux of Θ+ is thus further
accentuated at large imbalances ε− ≪ ε+, with a similarly accentuated steepening of the spectrum. Why this is
inevitable becomes clear if one considers the k⊥ → ∞ behaviour of (37) and (38). In this limit, the ratio γ/ω becomes
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Figure 2. Time-averaged one-dimensional perpendicular energy fluxes and spectra for the Θ+ field from the balanced (σε = 0.0)
‘steepened cascade’ simulations in table 1. (a) Energy flux Π+(k⊥) computed directly from the nonlinear terms in (9) and (10),
normalised to the total energy flux εW . The horizontal dotted line indicates the value of the flux (28) expected if the system were
to maintain a constant-flux cascade. (b) Perpendicular energy spectrum E+

⊥(k⊥), defined in (30). The dotted line shows the
expected spectral scalings in the isothermal limit (see Adkins et al. 2024). In both panels, colours indicate the different values
of βe(me/mi)

−1, with solid lines corresponding to the results of direct numerical simulations and dashed lines the theoretical
predictions for c+ = c− = 2: (37) or (38) [panel (a)]; or (39) [panels (b)].

a constant independent of perpendicular wavenumber (see figure 1), from which it is straightforward to show that

Π+(k⊥) ∼ Π−(k⊥) ∝ ε−
(
k⊥
ko⊥

)−1

, (40)

viz., both fluxes have the same small-scale asymptotic scaling. Given that, if ε− ≪ ε+, the flux of Θ+ is much larger at
the outer scale than the flux of Θ−, this means that the former must decrease faster with perpendicular wavenumber
than the latter.

3.1.3. Testing imbalance-steepened cascade theory

To test these predictions, we consider the set of simulations in table 1 labelled ‘steepened cascade’, consisting of
three KREHM simulations at different values of βe(me/mi)

−1, as well as a fourth isothermal KREHM simulation for
comparison, in both the balanced (σε = 0.0) and imbalanced (σε = 0.6, 0.8) regimes. Unless otherwise stated, all of
the data shown from the ‘steepened cascade’ simulations is time-averaged over the last 20% of the simulation time.

In figures 2 and 3, we plot the time-averaged, one-dimensional perpendicular energy fluxes Π±(k⊥) and spectra
E±

⊥(k⊥) from these simulations, where the former is calculated directly by summing the contributions of nonlinear
transfers above and below a particular k⊥ of interest. First, let us focus on the balanced regime, with results for the
Θ+ field shown in figure 2 (the Θ− field exhibits identical behaviour). For the isothermal simulation (black curves),
the energy flux of Θ+ [panel (a)] is approximately constant (as a function of perpendicular wavenumber), and equal
to its injected value (28). Note that in this case, the entirety of the injected free energy εW = ε+ + ε− is carried by
the turbulence to small scales, where it is then dissipated by the perpendicular hyperdissipation (21). This is not true
for the kinetic simulations, however, in which the measured fluxes appear to be well-reproduced by the theoretical
predictions (37) and (38), up to the scale at which the effects of (21) start to become significant. The dependence of
this ‘cascade steepening’ on βe is a consequence of the behaviour of the solutions to the linear dispersion relation (12):
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while always smaller than the real frequency, the linear damping rate is strongest at scales k⊥de ≳ 1 (see the right-
hand panel of figure 1), and so we expect its effects to be more pronounced at lower values of βe, for which de lies on
scales comparable to ρi. This is what we indeed observe, where the simulation with βe(me/mi)

−1 = 1.0 (de/ρi = 1.0,
red curves) has fluxes that are significantly more affected by the damping than, e.g., those of the simulation with
βe(me/mi)

−1 = 550.9 (de/ρi = 0.04, blue curves). In the latter, the damping rate is significantly smaller than the
linear frequency across the full range of resolvable scales. There is also good agreement with the energy spectra (39) up
to the dissipation scale [see panel (b) and inset], with departures likely a consequence of the fact that the relationship
between the fluxes and spectra implied by (29) is only approximate.

Figure 3 shows how the effects of this cascade steepening are enhanced for Θ+ in the imbalanced regime for σε =

0.6, 0.8. For the simulations with βe(me/mi)
−1 = 1.0 (red curves), the flux of Θ+ is reduced almost to zero, which is

consistent with the prediction (38) [panels (a),(b)]. The corresponding spectrum is steepened significantly relative to
the isothermal case, reaching a steep ∼ k−4

⊥ scaling at small scales [panels (e),(f)]. The reduction in both the spectrum
and flux of Θ− remains comparable to that observed in the balanced case, as expected from (37). Conversely, the
simulations with higher βe (green and blue curves) diverge markedly from the predictions of section 3.1.2. The Θ+

fluxes are reduced far more than would be expected from the balanced results [cf. panel (a) of figure 2], and the spectra
exhibit a pronounced ∼ k−4

⊥ break across k⊥ρi ∼ 1, while the Θ− fluxes are hardly affected. This is to be expected: at
the values of the injection imbalance considered here, these simulations have βe ≳ βcrit

e [βcrit
e (me/mi)

−1 = 2.78, 1.56 for
σε = 0.6, 0.8, see (25)], meaning that they are expected to develop a helicity barrier, placing them in a nonlinear regime
entirely different from that which we have been considering in this section. However, we included these simulations to
highlight the following key observation: the spectral steepening induced by electron Landau damping in a Kolmogorov-
type cascade can yield spectra that are rather similar to those produced by the helicity barrier. The emergence of
steep scalings in both cases means that steep ‘transition-range’ spectra could be observed in the solar wind even in
the βe ≪ 1 regimes where the helicity barrier is not expected to form. We will discuss the implications of this result
further in section 5.

3.1.4. Dynamics in Hermite space

Before moving onto a more careful analysis of the βe ≫ βcrit
e regime, we will first examine the dynamics in Hermite

space that accompany the behaviour discussed in section 3.1.3. It will be useful to introduce the two-dimensional
(k⊥,m) spectrum of the energy contained in the Hermite moments:

E⊥,m(k⊥) = 2πk⊥

∫ ∞

−∞
dk∥

n0eT0e

2

〈
|gm,k|2

〉
, (41)

in which gm,k is the Fourier component of the m-th Hermite moment, and the brackets once again denote an ensemble
average. In the linear regime, it is straightforward to show that the scaling of the one-dimensional Hermite spectrum

Em =

∫ ∞

ko
⊥

dk⊥ E⊥,m(k⊥), (42)

is Em ∼ m−1/2 in the large-m limit (Zocco & Schekochihin 2011; Kanekar et al. 2015; Schekochihin et al. 2016). In
figure 4(a),(b), we plot (42) for the kinetic simulations at σε = 0.0, 0.8 shown in figures 2 and 3. Those with higher
values of the electron beta approximately follow the linear scaling, while the simulations with βe(me/mi)

−1 = 1.0

(red curves) show steeper ∼ m−1 scalings. This latter deviation from the linear prediction can be understood as
follows. The linear Hermite scaling relies on the assumption that the rate of linear phase mixing, approximated in
the large-m limit by ∼

∣∣k∥∣∣vthe/
√
m ∼ (vthe/

√
m)(k2⊥A∥/B0) (Zocco & Schekochihin 2011; Schekochihin et al. 2016),

is significantly faster than the nonlinear-advection rate ∼ (c/B0)(k
2
⊥ϕ) [cf. (2) and (3), respectively]. As noted by

Zhou et al. (2023a), this means that at each perpendicular scale there is some Hermite number mcr at which the
rates of nonlinear advection and phase mixing balance, and above which we expect the effects of nonlinear advection
to dominate. Using equipartition between the energies appearing in (18) to relate the amplitudes of ϕ and A∥, it is
straightforward to show that this Hermite number is bounded from above by 2mcr ≲ βe(me/mi)

−1 at all perpendicular
wavenumbers. We would thus expect the Hermite spectrum to be steepened by the effects of perpendicular advection
for the simulations with βe(me/mi)

−1 ⩽ 1.0, which is what is observed. We note, however, that mcr was not resolved
in the simulations with higher values of βe(me/mi)

−1 due to computational constraints, meaning that the presence,
or otherwise, of echos in this regime remains an open question.
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Figure 3. Time-averaged, one-dimensional perpendicular energy fluxes and spectra for the imbalanced ‘steepened cascade’
simulations in table 1, with the left- and right-hand columns showing σε = 0.6, 0.8, respectively. (a)-(d) Energy fluxes Π±(k⊥)
computed directly from the nonlinear terms in (9) and (10), normalised to the total energy flux εW . The horizontal dotted lines
indicate the values of the fluxes (28) expected if the system were to maintain a constant-flux cascade. (e)-(h) Perpendicular
energy spectra E±

⊥(k⊥), defined in (30). The dotted lines show the expected spectral scalings in the isothermal limit (see Adkins
et al. 2024). In both cases, the colours indicate the different values of βe(me/mi)

−1, with solid lines corresponding to the results
of direct numerical simulations and dashed lines to the theoretical predictions for c+ = c− = 2: (37) [panels (a),(b)]; (38) [panels
(c),(d)]; or (39) (remaining panels). The simulations with βe(me/mi)

−1 = 16.5, and βe(me/mi)
−1 = 550.9 do not conform well

to the theoretical predictions as they have formed a helicity barrier (see section 3.3) and thus do not lie in the relevant regime.
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Figure 4. Time-averaged Hermite spectra and fluxes for the ‘steepened cascade’ simulations in table 1, with the left- and
right-hand columns showing the balanced (σε = 0.0) and imbalanced (σε = 0.8) regimes, respectively. The colours indicate
the different values of βe(me/mi)

−1 (these are same as in figures 2 and 3). (a),(b) One-dimensional Hermite spectrum (42),
normalised to its value at m = 2, with the dotted lines showing approximate scalings. (c),(d) Hermite flux Γm normalised to
the total energy flux εW , the value of latter being indicated by the horizontal dashed line.

It is important to note that the presence of this steepening does not invalidate our assumption that the kinetic
moments act to provide a linear damping of the energy, as described in (33); the linear scaling of the Hermite spectrum
itself is not a necessary condition for this to hold. This becomes evident when considering the one-dimensional flux
of energy through Hermite space Γm, which is a direct measure of the rate of energy transfer from the fluid moments
(9) and (10) into the higher moments in velocity space, viz., the rate of damping of the Elsässer energy. We compute
Γm directly from the parallel-streaming term in (11) by summing the contributions of energy transfers above and
below a particular m of interest, the results of which are shown in figure 4(c),(d). There is a positive, approximately
constant (as a function of m) flux of energy from the fluid moments to the high values of m associated with small
scales in velocity space, and on which the effects of hypercollisions (22) become significant. This is consistent with the
picture that all of the energy arriving into the kinetic hierarchy at m = 2 undergoes nearly unhindered phase mixing
to dissipative scales in velocity space; if echoes were playing a significant role in the dynamics, we would expect Γm to
be either significantly steepened, small, or perhaps negative. Furthermore, it is clear from figure 4(c),(d) that a greater
fraction of the total energy flux εW is carried to small velocity-space scales at higher imbalance, as would be expected
from the predictions of section 3.1.2; likewise, Γm is closer to being constant in the imbalanced case, consistent with
the slower nonlinear advection of Θ+. However, we must acknowledge a potential caveat: the steepening of Γm seen
for βe(me/mi)

−1 = 1.0 [figure 4(c), red curve] suggests the possibility that in the truly collisionless limit (M → ∞),
only a small fraction of the energy may ultimately be dissipated at small scales in velocity space. While this remains
an open question, computational constraints prevent us from testing it directly. We note that our conclusion that
the kinetic moments act as an effective linear damping mechanism may seem to be at odds with the findings of
Meyrand et al. (2019), who found, in the context of KRMHD (Schekochihin et al. 2009), that phase mixing was almost
entirely suppressed by plasma echo effects. While this difference could be attributed to not resolving mcr in most
of our simulations, another reason may be the fact that the kinetic component of KRMHD is passive — in that it
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is (nonlinearly) advected by the Aflvénic dynamics without coupling directly back to it — which is not the case in
KREHM, though a more careful comparative study of these two regimes would be required in order to confirm this.

3.2. Landau damping in the presence of the helicity barrier

Let us now turn our attention to the βe ≫ βcrit
e regime, in which we expect the helicity barrier to manifest. Assuming,

for the moment, an absence of electron kinetic physics, the helicity barrier exhibits several key characteristics that
are observed consistently in both reduced fluid models (Meyrand et al. 2021; Adkins et al. 2024) and hybrid-kinetic
simulations (Squire et al. 2022, 2023; Zhang et al. 2025). Initially, the breakdown of the constant-flux assumption
restricts the cascade of free energy to only the balanced portion of the flux (approximately 2ε−), confining the remainder
to large perpendicular scales. The resultant growth in turbulent amplitudes on these scales causes a sharp spectral
break to form across the ion Larmor radius, with a steep ∼ k−4

⊥ scaling below it. The perpendicular scale of the
break moves towards larger scales in time, with its location in perpendicular-wavenumber space k∗⊥ approximated by
(Meyrand et al. 2021; Squire et al. 2023)

k∗⊥ρi ∼ (1− σc)
1/4

. (43)

In appendix B, we argue that this scaling arises because the spectral break occurs at the point in perpendicular
wavenumber space where co-propagating interactions (i.e., Θ± with Θ±) begin to be able to compete with the counter-
propagating ones. A similar idea was originally proposed by Voitenko & De Keyser (2016) in an attempt to explain
the transition-range spectra often observed in the solar wind, although their resultant theory of spectral scalings relied
on the assumption of constant flux, which is impossible to satisfy in the presence of the helicity barrier.

The eventual saturation of the helicity barrier occurs when the energy confined to scales k⊥ ≲ k∗⊥ grows to sufficiently
large amplitudes that it can access small parallel scales and the associated mechanisms of dissipation. In Meyrand
et al. (2021); Adkins et al. (2024), this saturation was artificial, arising from the use of parallel hyperdissipation,
required for numerical convergence. In Squire et al. (2022, 2023), saturation occurred via perpendicular heating of the
ions by high-frequency ion-cyclotron waves (ICWs) excited at parallel scales k∥di ∼ 1 that lie outside of the gyrokinetic
approximation. However, the inclusion of electron Landau damping in the KREHM system of equations introduces
the possibility of saturation within the gyrokinetic approximation via electron heating, a possibility not yet studied
within the helicity-barrier paradigm.

3.2.1. Nonlinear heating rate

To achieve saturation, there must be a balance between the terms appearing on the right-hand side of the free-energy
budget:

1

n0eT0e

dW
dt

= εW −D∥ −D⊥, (44)

in which D⊥ is rate of perpendicular (hyper)-dissipation that models the sink of energy at small perpendicular scales,
e.g., k⊥ρe ∼ 1, and D∥ is the rate of parallel dissipation due to the effects of electron Landau damping. The latter
can be written explicitly in terms of the hypercollision operator (22) as

D∥ =

∫
d3r

V

∞∑
m=3

νcol.m
6|gm|2. (45)

As discussed above, the helicity barrier allows only the balanced portion of the energy to be cascaded to small
perpendicular scales where it could be dissipated. However, the presence of (even potentially weak) electron Landau
damping at all scales means that, in practice, even less energy is dissipated by perpendicular dissipation than in a
conventional constant-flux cascade model, viz., it is bounded from above, D⊥ ≲ 2ε− ≪ εW . Consequently, if the
system is saturated (dW/dt = 0), the vast majority of the injected energy flux is expected to be dissipated by D∥, for
which we will now develop a theory.

Adopting an analogous approach to section 3.1, we once again assume that the electron kinetics acts to provide a
linear damping of the total energy, which allows us to write the perpendicular spectrum of the parallel dissipation (45)
as

D∥(k⊥) ∼ 2γ(k⊥)
E+

⊥(k⊥)

n0eT0e
, (46)
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where γ is the linear damping rate, and we have assumed that the turbulence is sufficiently imbalanced that the total
energy is dominated by that of the Θ+ fluctuations. The parallel-dissipation rate appearing in (44) should, in principle,
include contributions from (46) at all perpendicular scales in the system. However, we assume that contributions from
scales below the break k⊥ ≳ k∗⊥ are negligible due to the steep ∼ k−4

⊥ scaling of the Θ+ energy spectrum there1, and
thus that the total parallel-dissipation rate is dominated by its contributions from scales above the break, viz.,

D∥ ≃
∫ k∗

⊥

ko
⊥

dk⊥ 2γ(k⊥)
E+

⊥(k⊥)

n0eT0e
. (47)

We now estimate γ, which depends on k⊥ both explicitly and through its implicit dependence on k∥(k⊥). Given that
the break lies on scales k∗⊥ ≲ ρ−1

i ≪ d−1
e [see (25)] for βe ≫ βcrit

e , the relevant damping rate appearing in (47) will be
the KAW one (15). We assume that the parallel wavenumber appearing therein is determined by the critical-balance
condition (32); though such an assumption is questionable, it appears to be borne out by the agreement seen between
our presently developing theory and later numerical simulations. Given that the rate of linear damping is significantly
smaller than the linear frequency associated with the phase velocity (14) on these scales (see figure 1), this linear
frequency is taken to be the linear rate appearing in (32), viz.,

ω ∼ k∥vph ∼ k∥vthek⊥de(1 + τ̄)1/2 ∼ (t−nl)
−1. (48)

There is potentially another rate to consider, the phase-mixing rate ∼ k∥vthe — this is much faster than the KAW
frequency appearing in (48), a fact which perhaps calls into question the validity of this balance. However, a large
phase-mixing rate simply implies that any energy that leaves the low-order ‘fluid’ moments (9) and (10) associated
with the Alfvénic dynamics is carried quickly through the higher-order kinetic moments to dissipative scales in velocity
space. What matters from the perspective of the Alfvénic dynamics is the rate of linear damping, which here is much
smaller than the linear frequency in (48).

Next, we estimate the nonlinear time t−nl balancing appearing in (48) as the nonlinear E×B advection rate associated
with the stronger field. Comparing (2) and (16), neglecting any possible anisotropy in the perpendicular plane, and
using the fact that τ̄ /(1 + τ̄) ∼ 1 at all perpendicular scales, allows us to rearrange (48) for k∥vthe as

k∥vthe ∼ Ωi
ρs
de

(k⊥ρs)
2

(
Θ+

k⊥

ρscs

)

∼ Ωi

(
ρs
de

)
(ko⊥ρs)

(α−1)/2
(k⊥ρs)

(3−α)/2

(
W+

n0eT0e

)1/2

. (49)

The second estimate in (49) follows from assuming that the perpendicular energy spectrum of Θ+ follows E+
⊥ ∝ k−α

⊥ ,
on scales k⊥ ≲ k∗⊥, and that the associated free energy is dominated by its outer-scale contribution [the first estimate
in (58)]. Finally, inserting (49) into (15), the damping rate appearing in (47) is given by

γ(k⊥)

Ωi
= c∥

(
de
ρs

)
(ko⊥ρs)

(α−1)/2
(k⊥ρs)

(7−α)/2

(
W+

n0eT0e

)1/2

, (50)

where the added constant c∥ is to account for the fact that the scaling estimates (48)-(49) ignored factors of order
unity.

Together, (47) and (50) constitute our theoretical prediction for the rate at which the free energy (18) is dissipated by
electron Landau damping in the presence of the helicity barrier. For typical values of α, (50) is an increasing function
of k⊥, meaning that the integral in (47) will be dominated by its value at the upper bound k∗⊥. However, given that
approximating the integral by this value, as we later do in section 4.3.1, requires there to be sufficient separation
between the outer scale ko⊥ and k∗⊥ — a range that gets increasingly small as the imbalance increases [see (43)] and
is necessarily limited by numerical resolution — we retain the integral in (47) for the purposes of our comparisons to
simulations.

1This imposes constraints on the parallel scales of the turbulence. Suppose that at scales k⊥ ≳ k∗⊥, the parallel and perpendicular
wavenumbers are related by the scaling k∥ ∼ kr⊥, for some positive constant r. Then, the damping rate has a scaling with perpendicular
wavenumber that is at most as sharp as γ ∼ k2+r

⊥ , meaning that, from (46), the spectrum of the parallel dissipation on these scales will be
at least as steep as D∥ ∼ k−2+r

⊥ . Thus, in order to neglect the contributions from these scales, we require that r < 1, a constraint satisfied
by the predictions of standard theories of balanced turbulence (see, e.g., Schekochihin et al. 2009).
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Figure 5. Timetraces of: (a) the energy W+/n0eT0e of the Θ+ fluctuations; and (b) the perpendicular dissipation rate
normalised to the total energy flux εW for the ‘isothermal restart’ simulations in table 1. The black lines indicate the isothermal
simulation, while the colours correspond to each of the individual kinetic simulations. The horizontal dotted line in panel (b)
indicates the value at which the rate of perpendicular dissipation is equal to the balanced portion of the injected energy flux,
viz., D⊥ = 2ε−.

3.2.2. Dependence on amplitude

The parallel-dissipation rate (47) depends on the turbulent amplitudes through the explicit presence of the Θ+

spectrum in the integrand, as well as through the implicit dependence of k∗⊥ on the imbalance. In order to test
these predictions over a range of amplitudes, we consider a set of simulations, labelled ‘isothermal restart’ in table 1,
consisting of nine kinetic KREHM simulations that were restarted from a single isothermal one. The isothermal
simulation was run up to t/tA = 10, with the energy growing in time due to the presence of the helicity barrier
[figure 5(a), black line], and the perpendicular dissipation rate roughly equal to the balanced portion of the injected
energy flux, that which is allowed through the barrier (D⊥ ≈ 2ε−). The growth of W+ is nearly linear (in time)
because there is no parallel dissipation in the isothermal simulations, as discussed in section 2.4. Each of the kinetic
simulations are restarted with gm = 0 for m ⩾ 2 at unit intervals from t/tA = 2 to t/tA = 10, and run until the
perpendicular dissipation rate reached a level comparable to that before the restart, as in figure 5(b). The large spikes
in the perpendicular dissipation rate seen here are initial transients due to the fact that restart adds (M −1)×n2

⊥×nz

new Fourier modes into the simulation. All of the following data is shown from the final time in each restart. This
restart method was used due to the prohibitive computational cost of running high-resolution kinetic simulations to
the long times required in order to see the dependence of (50) on turbulent amplitude. All of the simulations have
βe(me/mi)

−1 = 550.9 (βe = 0.3).
In figure 6(a), we plot the one-dimensional perpendicular energy spectra E±

⊥(k⊥) for each of the kinetic simulations.
There is a clear break in the Θ+ spectrum between the ∼ k

−3/2
⊥ and ∼ k−4

⊥ regimes. The perpendicular wavenumber
of the break k∗⊥, indicated by the coloured points in figure 6, moves towards larger scales with time, and its scaling
with imbalance appears to conform well to the one expected (43), as can be seen from the inset in panel (b). We have
taken the break position to be the perpendicular wavenumber at which the measured spectral scaling exponent passes



19

Figure 6. Spectra for the ’isothermal restart’ simulations in table 1, with the colours the same as those in figure 5. (a)
One-dimensional perpendicular energy spectra (30), with the solid and dashed lines corresponding to E+

⊥(k⊥) and E−
⊥(k⊥),

respectively, and the dotted lines showing expected scalings in the isothermal limit (see Adkins et al. 2024). The black lines
show the spectra of the isothermal simulation at t/tA = 10. The coloured points indicate the value of the Θ+ spectrum at the
measured position of the spectral break k⊥ = k∗

⊥. (b) One-dimensional perpendicular spectra of the parallel-dissipation rate
D∥(k⊥), normalised to the total energy flux εW . The coloured points indicate the value of the dissipation spectrum at each of
the measured break positions from panel (a). The inset panel plots these as a function of 1−σc, with the dotted line the scaling
(43).

through the midpoint between the −3/2 and −4 isothermal ones.1 Panel (b) shows the one-dimensional perpendicular
spectrum of the parallel-dissipation rate D∥(k⊥), normalised to the total energy input εW . The coloured points are
taken from the aforementioned spectral fit from panel (a). It is clear that the peak of this dissipation occurs around
the same scale as the break, i.e., at k⊥ = k∗⊥, with the dissipation spectrum exhibiting a steep scaling at smaller
scales. This is consistent with our expectation that contributions to the overall parallel-dissipation rate from scales
k⊥ ≳ k∗⊥ are smaller than those on larger scales. We note that while the Θ+ spectrum is slightly steeper than in the
isothermal case in the k⊥ > k∗⊥ transition range because Landau damping is not entirely negligible there, the impact

1The spectral slopes are determined by performing local logarithmic polynomial fits to the power spectrum over a sliding window in
wavenumber space. The resulting slope values are then smoothed using a Gaussian filter to reduce noise and ensure a more robust estimate
of the spectral exponent.
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Figure 7. The parallel-dissipation rate D∥ (45) for the kinetic ‘isothermal restart’ simulations in table 1, normalised to the
total energy flux εW , as a function of the energy in the Θ+ fluctuations. The colours are the same as those in figure 5. The
circles and crosses correspond to the measured and theoretical values, respectively, with the latter given by (47) for c∥ = 4.2 in
(50).

our theory is minimal given these scales contain an insignificant fraction of the total energy. Indeed, figure 7 shows
good agreement between the measured and theoretical parallel-dissipation rates, the latter being given by (47), in
which we have set α = 3/2 and c∥ = 4.2 in (50), and evaluated the integral directly from the measured spectrum.
Although obtaining exact agreement depends on this value of c∥, it is clear that the theory reproduces the measured
scaling of the parallel-dissipation rate with the free energy of the Θ+ fluctuations, supporting the assertion that the
effect of the electron Landau damping is to damp the turbulence at the linear rate.

The dynamics in Hermite space also appear to support these assumptions. In figure 8(a), we plot the one-dimensional
Hermite spectrum (42), which follows the linear ∼ m−1/2 scaling for all of the simulations. Unlike in section 3.1.4, there
is no evidence of any (nonlinear) steepening on the Hermite spectrum, which is consistent with being in the βe ≫ βcrit

e

limit [see the discussion following (42)]. Additionally, figure 8(b) shows a positive, approximately constant (as a
function of m) flux of energy from the fluid moments to the high values of m where it dissipates on the hypercollisions
(22): all of the energy injected into the kinetic hierarchy at m = 2 undergoes unhindered phase mixing to dissipative
scales in velocity space. As expected, the simulations restarted at higher amplitudes have a higher Hermite flux Γm,
and thus a greater overall parallel-dissipation rate (see figure 7)

3.2.3. Dependence on beta

The only explicit dependence of the predicted parallel-dissipation rate (47) on βe comes from the damping rate (50),
suggesting that the former should inherit the same scaling, viz., D∥ ∝ 1/

√
βe [recall that de/ρs =

√
2Zme/(βemi)].

However, such a scaling cannot be tested directly in our simulations. As discussed in section 3.2.1, the presence of the
helicity barrier constrains the fraction of the total injected energy flux εW that can be dissipated at small perpendicular
scales, limiting it to the balanced portion, viz., D⊥ ≲ 2ε−. Consequently, at saturation the remaining energy flux must
be dissipated through electron Landau damping, meaning that we will always find (numerically) that D∥ ≳ εW − 2ε−,
independent of the value of βe. This constraint effectively introduces an implicit βe dependence into the value of k∗⊥
in the upper limit of the integral in (47) — to maintain D∥ ≳ εW − 2ε−, the large-scale Θ+ amplitudes must grow
sufficiently, increasing the imbalance and causing k∗⊥ to shift towards larger scales, irrespective of the damping rate
(50). Note that this would not be the case in a real physical system due to the existence of other dissipation channels,
e.g., perpendicular ion heating due to ICWs, which we discuss further in section 4. Given that we cannot directly
measure the beta dependence of the parallel-dissipation rate, we propose to instead consider an effective damping rate
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Figure 8. Hermite spectra and fluxes for the ‘isothermal restart’ simulations in table 1, with the colours once again the same
as in figure 5. (a) One-dimensional Hermite spectrum (42), normalised to its value at m = 2, with the dotted line showing
the linear scaling. (b) Hermite flux Γm normalised to the total energy flux εW , the value of the latter being indicated by a
horizontal dashed line.

[cf. (46) and (47)]:

γeff =

[∫ k∗
⊥

ko
⊥

dk⊥ D∥(k⊥)

]/[
2

∫ k∗
⊥

ko
⊥

dk⊥
E+

⊥(k⊥)

n0eT0e

]
, (51)

which provides a proxy for the perpendicular-wavenumber-dependent damping rate (50). Our theory predicts that γeff
also has the same scaling with βe, viz., γeff ∝ 1/

√
βe.

To test this prediction, we consider the set of simulations labelled ‘beta scan’ in table 1, which consists of otherwise-
identical simulations at various values of βe logarithmically spaced in the range 1.0 ⩽ βe(me/mi)

−1 ⩽ 550.9, and for
values of the injection imbalance of σε = 0.6, 0.8. In figure 9, we plot the effective damping rate (51) for each of these
simulations, averaged over times following the initial transient (t/tA ≳ 1), and with k∗⊥ calculated as in section 3.2.2.
The simulations at βe ≫ βcrit

e reproduce the scaling expected from (50) well, while those at lower values depart from
it. These deviations arise for two main reasons. First, (50) is derived from the KAW damping rate (15), which
applies only at scales k⊥de ≲ 1 (see figure 1). For βe ≫ βcrit

e , this condition holds for the largest scales dominating
the parallel-dissipation rate. However, as βe decreases, de approaches ρi from the small-scale side, and the linear
damping rate deviates from (15). In particular, the damping rate at scales k⊥de ≳ 1 is independent of beta, and so
we would expect the scaling of the effective damping rate (51) to become weaker at lower values, which is manifest
in figure 9. A second, and arguably more important reason, for the discrepancies at lower beta is that the dynamics
underlying the helicity barrier become less dominant: for βe ≲ βcrit

e , the helicity barrier vanishes completely, with the
system transitioning to the imbalance-steepened-cascade regime described in section 3.1, and in which (51) ceases to
be applicable. Due to the dependence of βcrit

e on the injection imbalance [recall (25)], this transition happens at a
higher beta as σε is decreased, manifest in figure 9. While our results show that the helicity barrier is certainly absent
for the lowest values of beta that we have considered [βe(me/mi)

−1 = 1.0, the left-hand most point in figure 9], what
is not obvious is the nature of the transition between these two regimes, and indeed whether the critical beta (25)
needs to be modified for the fully kinetic KREHM system. This is the subject to which the next section is devoted.
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(25)

Figure 9. The effective damping rate (51) for the ‘beta scan’ simulations in table 1, normalised to the total energy flux εW , as a
function of the normalised electron plasma beta βe(me/mi)

−1 (which is also indicated by the colours). The injection imbalances
of σε = 0.6, 0.8 are shown by the circle and square markers, respectively. The vertical dotted lines indicate the values of the
critical beta (25) for each injection imbalance, while the curved dotted line shows the expected scaling γeff ∝ β

−1/2
e at βe ≫ βcrit

e .

3.3. Intermediate regime

In Adkins et al. (2024), the critical beta (25) arose as a result of the simultaneous conservation of both the (free)
energy (18) and (generalised) helicity (20) in the isothermal limit. The fact that these two nonlinear invariants were
conserved at every perpendicular scale allowed the use of Kolmogorov-type arguments to obtain a condition for the
existence of a constant-flux cascade, which in turn led to (25). Unfortunately, the same arguments cannot be repeated
here because neither the energy flux nor the helicity flux remains constant: the former due to electron Landau damping
(responsible for the cascade steepening discussed in section 3.1), the latter due to the presence of the source/sink of
helicity (27). Nevertheless, it appears that the transition between the imbalanced-steepened-cascade and helicity-
barrier regimes is still controlled by the critical beta (25), even if the transition that it demarcates is less ‘sharp’ than
in the isothermal case.1

To see this, we plot, in figure 10, the one-dimensional perpendicular energy fluxes and spectra for the σε = 0.8 ‘beta
scan’ simulations in table 1, for which βcrit

e (me/mi)
−1 = 1.56. Let us first consider the simulation with βe(me/mi)

−1 =

550.9 (purple curves), which, given the results of section 3.2, certainly lies in the helicity-barrier regime. While the
Θ− flux [panel (b)] is nearly perfectly constant as a function of k⊥, the Θ+ flux [panel (a)] displays a sharp decrease
at large scales before becoming approximately constant at small scales. This behaviour is typical of the helicity
barrier (Meyrand et al. 2021; Squire et al. 2022, 2023; Adkins et al. 2024; Johnston et al. 2025), which only allows
the balanced portion of the injected energy flux (≈ 2ε−) to cascade past the scale of the break, which here lies at
k∗⊥ρi ≈ 0.7. On the other hand, the simulation with βe(me/mi)

−1 = 1.0 (red curves) shows a decrease in both the
Θ+ and Θ− fluxes that continues to even the smallest scales in the simulation, behaviour that is well described by the
imbalance-steepened cascade theory of section 3.1. As βe is increased from this value, the Θ+ flux gradually flattens
at small scales, with the Θ− flux instead flattening throughout the inertial range. For βe(me/mi)

−1 ≳ 16.5 (neon
green), both fluxes have behaviour very similar to those in the βe(me/mi)

−1 = 550.9 simulation. This means that for
1.0 ≲ βe(me/mi)

−1 ≲ 16.5 there is some ‘intermediate’ regime in which the dynamics lie on some continuum between
the imbalance-weakened cascade (section 3.1) and helicity-barrier (section 3.2) regimes. Such a transition is reflected
in the increase of the energy imbalance σ̃c = H/W with βe that is manifest in figure 11. In the presence of the helicity

1In the simulations considered by Adkins et al. (2024), useful measures of the turbulence were completely distinct on either side of (25),
irrespective of the value of the injection imbalance σε (see, e.g., their figures 2 and 3).
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Figure 10. Time-averaged, one-dimensional perpendicular energy fluxes and spectra for the σε = 0.8 ‘beta scan’ simulations
in table 1, with the left- and right-hand columns showing results for the Θ+ and Θ− fields, respectively. (a),(b) Energy fluxes
Π±(k⊥) computed directly from the nonlinear terms in (9) and (10) and normalised to the total energy flux εW . The horizontal
dotted lines indicate the values of the fluxes (28) expected if the system were to maintain a constant-flux cascade. (c),(d)
Perpendicular energy spectra E±

⊥(k⊥), defined in (30). The colour indicate the different values of βe(me/mi)
−1. The dotted

lines show spectral scalings as labelled.

barrier, the growth of the large-scale Θ+ amplitudes leads directly to an increase in σ̃c, which continues until electron
Landau damping becomes large enough to saturate the barrier. This lower Landau damping means that we would
expect simulations with βe ≫ βcrit

e to have higher energy imbalances (at a given time) than those at βe ≪ βcrit
e , which

is indeed what we observe. The finite width of the intermediate regime (also seen for σε = 0.6) arises as a result of the
presence of electron kinetics disrupting the robust helicity-barrier formation observed in the isothermal limit — either
by damping the barrier directly or disrupting the conservation of generalised helicity (20). In particular, we expect
that at a given time (or at saturation if another method of parallel dissipation is present), the imbalance will increase
with βe until the point where electron Landau damping is effectively negligible, after which the imbalance will become
approximately independent of beta. Figure 11 is tentative evidence that the ‘effective’ critical beta in the presence
of electron Landau damping occurs at a higher βe than the theoretical prediction (25), though more simulations at a
variety of injection imbalances would be required to confirm this.

A final feature to note is that the Θ+ spectrum [panel (c) in figure 10] shows a steep ∼ k−4
⊥ scaling for all values of

βe(me/mi)
−1, as we saw previously in figure 3. Of course, the extent of the steepening observed in the Θ+ spectrum in

the imbalanced-weakened cascade regime will itself depend on the (injection) imbalance [recall (37) and (38)], meaning
that the difference in the spectrum between the imbalanced-weakened cascade and helicity-barrier regimes should
be more obvious at lower imbalances. This has the interesting implication, already noted in section 3.1, that steep
‘transition range’ spectra should be observed in the highly-imbalanced solar wind irrespective of the value of βe and,
therefore, the presence, or otherwise, of the helicity barrier. We discuss this further in section 5.
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(25)

Figure 11. The energy imbalance σ̃c = H/W for the ‘beta scan’ simulations in table 1, averaged over the last 20% of the
simulation time, as a function of the normalised electron plasma beta βe(me/mi)

−1 (which is also indicated by the colours).
The injection imbalances of σε = 0.6, 0.8 are shown by the circle and square markers, respectively. The vertical dotted lines
indicate the values of the critical beta (25) for each injection imbalance.

4. CONSEQUENCES FOR SOLAR-WIND HEATING

Our theory, supported by numerical simulations, predicts that the nature of the turbulence, and thus the resultant
heating, is different depending on whether the system lies above or below the critical beta (25). For βe ≲ βcrit

e — the
imbalanced-steepened cascade regime, section 3.1 — the presence of electron Landau damping reduces the flux of energy
arriving to the smallest perpendicular scales, leading to a steepening of the associated perpendicular energy spectra
that becomes more pronounced with increasing imbalance. For βe ≳ βcrit

e — the helicity-barrier regime, section 3.2 —
a helicity barrier forms, allowing only the balanced portion of the energy flux to continue its cascade past the spectral
break at k∗⊥. The electron Landau damping is then dominated by scales k⊥ ≲ k∗⊥ due to the steep ∼ k−4

⊥ ‘transition
range’ spectra below the break, which results in a specific form of the parallel-dissipation rate (47). The intermediate
regime (section 3.3) represents a gradual shift between the imbalanced-steepened cascade and helicity-barrier regimes,
where neither process is fully dominant. As βe increases past βcrit

e , the turbulence transitions from being strongly
affected by electron Landau damping at all perpendicular scales to a state where a helicity barrier begins to form but
is still partially disrupted by kinetic effects. This transition occurs over a finite range of βe, rather than at a sharp
threshold as was the case in the isothermal limit (Adkins et al. 2024). Because significant spectral steepening occurs in
both regimes under different conditions, distinguishing between the imbalance-weakened cascade and helicity-barrier
regimes based on spectra alone can be challenging (see figure 3 or figure 10), regardless of the presence, or otherwise,
of an intermediate regime.

We have, however, not yet engaged with the question of what will be the saturated amplitudes and electron-ion
energy partition obtained by the turbulence in either of these regimes. This is due, in part, to the fact that any
attempt to address this question solely within the KREHM framework is ultimately insufficient for application to real
physical systems due to the absence of non-trivial ion physics within the model. In particular, there is no route by
which any of the injected energy flux can be dissipated on ions. This omission is particularly significant given that ions
are observed to be hotter than electrons in the solar wind, which implies that the ratio of the electron to ion heating
rates, Qe/Qi, must be less than unity for at least some portion of its outward propagation (Cranmer et al. 2009;
Bandyopadhyay et al. 2023). This is further complicated by the fact that in the helicity-barrier regime, the saturated
amplitude reached by the turbulence is determined entirely by the mechanisms of dissipation at small parallel scales
(see, e.g., Meyrand et al. 2021; Squire et al. 2022, 2023; Adkins et al. 2024), which, as discussed in section 3.2, can lie
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outside the gyrokinetic approximation. In lieu of attempting to predict both the electron-ion heating ratio and this
saturated amplitude simultaneously, we assume that the system has reached some steady state with a given saturated
amplitude, from which we then develop a theory for Qe/Qi by synthesising insights from our study of KREHM with
those from previous investigations of ion heating. Given the assumptions under which KREHM is derived, we restrict
our considerations to plasmas with βe ≲ 1.

4.1. Heating channels

Steady-state energy conservation requires that the total injected energy flux must be balanced by the total heating
rate, which can be expressed as a sum of the contributions from each plasma species, viz.,

n0eT0eεW = Q⊥e +Q∥e +Q⊥i +Q∥i, (52)

where Q⊥s and Q∥s are, respectively, the parallel and perpendicular heating rates of species s. Note that in the
following discussion we will ignore the contribution to the heat from minor-ion species (e.g., He2+), since their dilute
nature suggests that they will make at most a modest contribution. Let us now briefly review the physical mechanisms
that may contribute to each of the terms in (52), providing context for our discussion of the imbalance-steepened
cascade and helicity-barrier regimes that follows in section 4.2 and section 4.3, respectively. The interested reader may
find a more comprehensive review of these mechanisms for balanced turbulence in Howes (2024).

4.1.1. Perpendicular electron heating

Perpendicular electron heating Q⊥e occurs due to small-scale dissipation resulting from perpendicular (finite-Larmor-
radius induced) phase mixing that occurs on scales k⊥ρe ≳ 1 (Schekochihin et al. 2009), as well as the viscosity or
resistivity arising from finite electron collisionality. While we formally neglected collisions within our analysis, the cas-
cade of energy to fine (perpendicular) spatial scales means that collisions will inevitably always be activated, no matter
how small their collision frequency is taken to be. While viscosity typically becomes important on scales k⊥ρe ≳ 1,
resistivity may become dynamically important on scales larger than this. We can estimate the perpendicular scale at
which this occurs by balancing the linear frequency and the resistive rate, viz., ω ∼ k2⊥d

2
eνei, which, approximating

ω ∼ k∥vph by the isothermal result (48) and assuming that τ is not small, becomes (cf. Schekochihin et al. 2009):

k⊥ρe ∼ k∥λmfpi
√
βe

(
Z

τ

)3/2

, (53)

where λmfpi = vthi/νii is the mean-free-path for ion-ion collisions, and νss′ is the collision frequency between species s

and s′. Since the parallel scales of the turbulence are always comparable to or smaller than those at the outer scale, the
right-hand side of (53) is bounded from below by the value of k∥λmfpi at the outer scale. For a value of ko∥λmfpi = 103,
typical of the solar wind, the right-hand side of (53) is greater than unity for even the extreme values of βe = me/mi

and τ = 10. This implies that perpendicular electron heating, whether through viscosity or resistivity, is confined
to scales k⊥ρe ≳ 1 for βe ≲ 1. While this conclusion may seem obvious, it has the important implication that the
energy flux available to be dissipated by Q⊥e is that which remains after all of the other mechanisms of dissipation
are accounted for, which are each active on larger perpendicular scales.

4.1.2. Parallel electron heating

Parallel electron heating Q∥e can, in principle, arise from two distinct mechanisms. The first is so-called ‘transit-time
damping’ (Barnes 1966), which relies on the thermal pressure being sufficiently large that it can excite compressive
magnetic-field perturbations that are subsequently damped on mirror-resonant electrons. However, in the βe ≲ 1 limit
considered here, the magnetic pressure dominates over the thermal one, suppressing such perturbations and rendering
the effects of transit-time damping largely negligible. The only remaining mechanism for parallel electron heating is
then electron Landau damping, which has already been discussed at length in this paper. As such, we will not dwell
on it further here, except to emphasise the following key point. In balanced turbulence, significant electron Landau
damping is typically, for βe ≳ me/mi, localised on scales k⊥ρi ≳ 1 (Howes et al. 2008, 2011; Howes 2024) due to the
perpendicular-wavenumber dependence of the linear damping rate (see section 2.2) meaning that it is vanishingly small
on larger scales. In imbalanced turbulence, however, we have seen that significant electron Landau damping can occur
even on scales k⊥ρi ≲ 1, increasing the fraction of the injected energy flux that is, in principle, able to contribute to
parallel electron heating. This distinction will be key for the considerations that follow.
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4.1.3. Perpendicular ion heating

Two widely studied mechanisms of perpendicular ion heating Q⊥i in the solar wind are stochastic heating and
quasilinear cyclotron resonant diffusion. In the former, ions are heated by random/uncorrelated deflections from
turbulent fluctuations on scales comparable to the ion Larmor radius, leading to the diffusive heating of the ion kinetic
distribution function in perpendicular velocities (McChesney et al. 1987; Johnson & Cheng 2001; Chandran et al. 2010;
Xia et al. 2013; Hoppock et al. 2018; Arzamasskiy et al. 2019; Cerri et al. 2021). In the latter, resonant interactions
between the ions and waves around the ion-Larmor frequency Ωi cause ions to undergo quasilinear diffusion along
contours of constant energy in the frame moving at the phase velocity of the waves (Kennel & Engelmann 1966; Stix
1992; Schlickeiser & Achatz 1993), heating the plasma. While these have traditionally been considered as separate
mechanisms of ion heating, recent work by Johnston et al. (2025) argues that both stochastic and quasilinear heating can
be thought of as two limits of some continuum controlled by the broadening of the fluctuations’ frequency spectrum.
Unbroadened fluctuations well-approximated by a single frequency ω and wavenumber k cause quaslinear-heating-
like behaviour, while fluctuations that are broadened to a level comparable to ω itself cause stochastic-heating-like
behaviour (having more power in ω < t−1

nl fluctuations). Johnston et al. (2025) argue that the broadening is directly
related to imbalance: imbalanced turbulence is energetically dominated by Θ+ fluctuations that have linear frequencies
exceeding their nonlinear rate (the quasilinear-heating limit), while the two are comparable in balanced turbulence (the
stochastic-heating limit). Thus, in what follows, we will consider perpendicular ion heating as the unified effect of both
mechanisms, rather than treating them as distinct processes. Importantly, assuming critical balance, both mechanisms
require sufficiently high amplitudes in order to contribute meaningfully to the energy balance in (52). Chandran et al.
(2010); Xia et al. (2013) found that a minimum amplitude for the velocity fluctuations at scales comparable to the
ion Larmor radius of δuρi/vthi ∼ 1 was required for the onset of stochastic heating, and Johnston et al. (2025) argued
that a very similar threshold also applies in the quasilinear limit.

4.1.4. Parallel ion heating

In a similar vein to electrons, parallel ion heating Q∥i arises from either ion transit-time damping or ion Landau
damping. The former is once again weak at βe ≲ 1 for the same reasons as those discussed in section 4.1.2. However,
unlike in the electron case, ion Landau damping is also weak in this regime for the same reason that the ion kinetics
were neglected within KREHM: the typical frequencies of the (Aflvénic) perturbations are significantly faster than the
parallel-streaming rate of the ions. This means that the Landau resonance responsible for the damping occurs far out
in the ‘tail’ of the ion distribution function (ω/k∥ ∼ vph ≫ vthi), where both its gradient and the associated number
of particles are small, preventing ions from efficiently resonating with the turbulent fluctuations and suppressing the
associated rate of damping. As a result, parallel ion heating is expected to be dynamically unimportant except at
sufficiently high βi ∼ 1 (where ω/k∥ ∼ vthi) and so we will henceforth neglect it from our analysis.

4.2. Imbalance-steepened cascade regime

Let us first consider the βe ≲ βcrit
e regime, in which the cascade of energy to small perpendicular scales is not inhibited

by the presence of a helicity barrier. Previous studies of balanced gyrokinetic turbulence have shown that electron
heating significantly exceeds ion heating when the cascade is predominantly Alfvénic in character, i.e. negligible energy
is contained in the compressive fluctuations (Howes et al. 2008; Howes 2010; Howes et al. 2011; Kawazura et al. 2019;
Howes 2024). We note, however, that it is possible to obtain significant perpendicular ion heating (via either of
the mechanisms discussed in section 4.1.3) at larger amplitudes that lie outside the gyrokinetic approximation (see,
e.g., Arzamasskiy et al. 2019; Cerri et al. 2021). Now, the results of section 3.1 indicate that the presence of non-
zero imbalance enhances the overall dissipation of the energy flux relative to the balanced case when considering the
electron dynamics in isolation [note, in particular, the dependence of the Θ+ flux (38) on the imbalance]. This enhanced
dissipation steepens the perpendicular energy spectrum (see figure 3) on scales k⊥ρi ∼ 1 where ion heating is usually
most significant. Consequently, the turbulent amplitudes at these scales are reduced compared to the balanced case,
which would, presumably, further weaken the ion heating. Thus, we expect electron heating to remain dominant in the
imbalance-steepened cascade regime, except when driven extremely strongly. Mathematically, this can be expressed
as

Qe

Qi
= G(σc, βe, τ, Z, k

o
⊥ρi, . . . ) ≫ 1, (54)
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for some function G that depends on the parameters of turbulence including, but not limited to, the normalised cross-
helicity, electron beta, temperature ratio, charge, and outer scale, listed here from left to right. This function could be
evaluated explicitly through analogous methods to those used in Howes et al. (2008); Howes (2024) or Chandran et al.
(2010); Xia et al. (2013) — taking into account the effect of non-zero imbalance by modifying the perpendicular energy
fluxes according to the prescription of section 3.1.2 — though to do so here would be beyond the scope of the current
study. This result is, in some sense, a natural consequence of continuity: imbalanced turbulence without a helicity
barrier must transition smoothly to the balanced regime at lower levels of imbalance, and (54) reflects this continuity
in the partitioning of heating between electrons and ions, combined with the expectation that the spectral steepening
due to electron Landau damping should further reduce ion heating. The same is not true for the helicity-barrier regime,
the subject of the following section.

4.3. Helicity-barrier regime
4.3.1. Electron heating rate

In the presence of the helicity barrier, the amount of injected energy flux that is allowed to cascade past the spectral
break, i.e., to scales k⊥ ≳ k∗⊥, is limited to the balanced portion ≈ 2ε−. While the results of section 3.2 show that
electron Landau damping is not entirely negligible on scales k∗⊥ ≲ k⊥ ≲ ρ−1

e , its effects are most significant for the
imbalanced portion of the energy at k⊥ ≲ k∗⊥ [see the dissipation spectra in figure 6(b)]. This means that the balanced
portion of the flux survives to the smallest scales, being roughly constant as a function of perpendicular wavenumber
[see figure 10(a),(b) for the highest beta simulations], and so we expect that the perpendicular electron heating rate
will be well-approximated by1

Q⊥e ∼ 2n0eT0eε
−. (55)

Given the constancy of ε−, we can express it straightforwardly in terms of the amplitudes at the outer scale ko⊥ [note
that this is not the case for ε+, which is a decreasing function of perpendicular wavenumber due to the helicity barrier;
see figure 10(a)]. Then, (55) can be written as

Q⊥e

n0imiv2thiΩi
∼ 2(ko⊥ρi)

(
z̃+ko

⊥

vthi

)(
z̃−ko

⊥

vthi

)2

∼ 2(ko⊥ρi)

(
1− σc

1 + σc

)( z̃+ko
⊥

vthi

)3

, (56)

where the final expression is obtained by using the definition of the normalised cross-helicity and (31) to relate the
outer-scale amplitudes to the imbalance. In (56), z̃±k⊥

≡ k⊥Θ
±
k⊥

are the characteristic amplitudes of the ‘Elsässer fields’
corresponding to the generalised Elsässer potentials (16) [see (30)], which reduce to their RMHD counterparts z±k⊥
on large scales k⊥ρi ≪ 1. We will adopt this notation throughout the remainder of section 4 in order to make the
connection to the RMHD limit more explicit in expressions that follow.

To estimate the parallel electron heating rate Q∥e, we return to our expression for the parallel-dissipation rate (47).
Recall that in deriving our expression (50) for the damping rate appearing therein, we assumed that the perpendicular
energy spectrum of Θ+ followed E+

⊥ ∝ k−α
⊥ on scales k⊥ ≲ k∗⊥. As discussed following (50), for typical values of α,

this means that the integral in (47) will be dominated by its value at the upper bound k∗⊥. Assuming that there exists
sufficient separation between this and the outer scale ko⊥, as would be the case in a realistic plasma system, we can
evaluate the integral directly, yielding:

D∥

Ωi
≃

4(α− 1)c∥

3(3− α)

(
de
ρs

)
(ko⊥ρs)

3(α−1)/2
(k∗⊥ρs)

(9−3α)/2

(
W+

n0eT0e

)3/2

. (57)

From (23), we can estimate the free energy of the Θ+ fluctuations appearing in (57) by assuming that it is dominated
by its outer-scale contribution, viz.,

W+

n0eT0e
∼

(
ko⊥Θ

+
ko
⊥

cs

)2

∼

(
z̃+ko

⊥

cs

)2

. (58)

1The appearence of the factor of n0eT0e in (55) is due to our definition of ε− as a rate, with units of inverse time [see, e.g., (44)].
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Finally, using the fact that Q∥e ∼ n0eT0eD∥ [see (44)], we can write down an estimate for the electron heating rate:

Q∥e

n0imiv2thiΩi
∼ Z3/2c1e

τ

(
me

βemi

)1/2

(ko⊥ρi)
3(α−1)/2

(k∗⊥ρi)
(9−3α)/2

(
z̃+ko

⊥

vthi

)3

, (59)

in which c1e = 23/2(α− 1)c∥/(9− 3α) is an order-unity constant. The form of (59) highlights the important role that
imbalance plays in determining the magnitude of the parallel electron heating. For α < 3, (59) contains a positive power
of k∗⊥ which, by (43), means that it is proportional to some positive power of 1− σc. The reason for this dependence
is somewhat intuitive: higher imbalances causes the break to shift to larger scales where the linear Landau-damping
rate is weaker [see (50)], thus decreasing Q∥e. Additionally, this heating is more effective at lower beta due to the fact
that the linear Landau damping rate reaches its maximum at k⊥de ∼ 1 [see figure 1(b)], which moves to larger scales
as βe is decreased, although we emphasise that we must always have βe ≳ βcrit

e in (59) in order for the prediction to
be valid.

4.3.2. Ion heating rate

Let us now turn our attention to the ion heating rate. As we have seen, the presence of the helicity barrier leads to
the growth of turbulent amplitudes on scales k⊥ ≲ k∗⊥. Hybrid-kinetic simulations of the helicity barrier (Squire et al.
2022, 2023; Zhang et al. 2025) have shown that by increasing the turbulent amplitudes it enhances the perpendicular
ion heating, allowing it to play a significant role in the overall energy balance. To model this Q⊥i, we adopt equation
(1) of Johnston et al. (2025):

Q⊥i

n0imiv2thiΩi
= c1iξ

3
i F (ξi, . . . ), (60)

since it appears to capture ion heating across a wide variety of different turbulence properties, including in the presence
of the helicity barrier. In (60), c1i is some order-unity empirical constant (Chandran et al. 2010; Johnston et al. 2025),
ξi = (k⊥ρi)

1/3(z̃+k⊥
/vthi) is a normalised measure of the turbulent amplitudes, and F (ξi, . . . ) is some suppression factor

that accounts for the (exponentially) small number of particles that are able to be resonant with the lowest-frequency
fluctuations. In principle, F (ξi, . . . ) a function of other parameters of the system (e.g., imbalance), as well as ξi itself,
but we will not engage further with the details of this suppression factor here, focussing instead on a regime where
the ion heating is allowed to play a significant role in the dynamics and for which F (ξi, . . . ) ∼ 1. As in Johnston
et al. (2025)1, the scale k−1

⊥ in ξi is taken to be the scale of the spectral break k∗⊥
−1 which, again assuming that the

perpendicular spectrum of Θ+ follows E+
⊥ ∝ k−α

⊥ , allows us to write the perpendicular ion heating rate (60) as2

Q⊥i

n0imiv2thiΩi
∼ c1i (k

o
⊥ρi)

3(α−1)/2
(k∗⊥ρi)

(5−3α)/2

(
z̃+ko

⊥

vthi

)3

. (61)

Unlike in (59), there is no dependence on βe due to the fact that (60) was derived without any knowledge of the
electron dynamics. Finally, following the discussion of section 4.1.4, we assume that the parallel ion heating rate can
be neglected when compared with the perpendicular one, such that Qi ≈ Q⊥i — this is theoretically justified for
quasilinear heating at βe ≪ 1, and is supported by hybrid-kinetic simulations of the helicity barrier (Squire et al. 2022,
2023; Zhang et al. 2025).

4.3.3. Electron-ion heating ratio

Summing the parallel and perpendicular electron heating rates [(56) and (59), respectively], dividing the result by
the ion heating rate (61), and using

k∗⊥ρi = c∗(1− σc)
1/4, (62)

1More generally, the z̃+k⊥
appearing in ξi is the characteristic turbulent amplitude at k⊥ρi ≲ 1 corresponding to the perpendicular scale

k−1
⊥ at which the fluctuations reach their highest frequency, with the associated parallel scale k−1

∥ determined from the critical-balance
condition (32). For example, in the balanced regime, this scale would be k⊥ρi ∼ 1 (Johnston et al. 2025), for which (60) becomes the
original stochastic-heating formula (Chandran et al. 2010). In the presence of the helicity barrier, however, this will occur at k⊥ = k∗⊥,
since, as was the case for the electron heating rate in section 3.2, the existence of the sharp spectral break means that there is little energy
available to be thermalised at k⊥ ≳ k∗⊥.

2The specific dependence of (61) on k∗⊥ is a result of our implicit assumption of isotropic fluctuations in the perpendicular plane, for
which α = 5/3. This would have to be modified in the presence of dynamically-aligned and/or anisotropic fluctuations, though how to do
so in the presence of a non-constant flux remains an open research question, and it is entirely possible that (61) could still be true even in
the presence of such fluctuations. To avoid these potential complications, we will use the isotropic result α = 5/3 whenever we explicitly
evaluate (61) and other expressions involving it.
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Figure 12. A contour plot of the electron-ion heating ratio Qe/Qi (63) as a function of the electron beta βe and normalised
cross-helicity σc for Z = 1, τ = 2, α = 5/3, with the constants therein taking values c1i = 1.1 (Johnston et al. 2025), c1e = 2.0
(evaluated using c∥ = 4.2, the value from our simulations; see figure 7 and the surrounding discussion), and c∗ = 2.0 (Squire
et al. 2023). The hatching indicates the region below the critical electron beta (25) (black dashed line, evaluated using the
results of Lithwick et al. 2007) in which (63) is no longer valid, and the electron-ion heating ratio must be evaluated by other
methods (see section 4.2).

for some constant c∗, we obtain an expression for the electron-ion heating ratio in the presence of the helicity barrier:

Qe

Qi
=

c1ec
2
∗

c1i

Z3/2

τ

(
me

βemi

)1/2

(1− σc)
1/2

+
2

c1i

(
ko⊥ρi
c∗

)(5−3α)/2
(1− σc)

1−(5−3α)/8

1 + σc
. (63)

The first and second terms in (63) correspond to the contributions from parallel and perpendicular electron heating,
respectively. For α > 1/3, the first has a weaker dependence on 1 − σc than the second, meaning that we expect the
parallel contribution to dominate over the perpendicular one at higher imbalance, even if the overall electron heating
rate remains subdominant to the ion one. Conversely, the perpendicular component will dominate over the parallel
one at higher βe due to the fact that the electron Landau damping rate becomes vanishingly small in this regime,
while the flux of energy to small scales remains approximately constant.

It is important to note that (63) cannot be considered a complete prediction for Qe/Qi because, unlike in the
imbalance-steepened cascade case, the normalised cross-helicity is itself implicitly a function of both Qe and Qi.
However, it can still be used to make nontrivial predictions about the relative importance of the electron and ion
heating rates. In particular, an important implication of (63) is that, in the saturated state, ion heating will generally
dominate over electron heating in the helicity-barrier regime. The requirement for helicity-barrier formation set by the
critical beta (25) is me/mi ≲ βcrit

e ≲ βe. Given that σc ⩾ 0, ko⊥ρi ≪ 1, and τ ≳ 1 in observations of the imbalanced
solar wind, the contribution from the first term in (63) will always be negligible in comparison to the second for any
plasma with a value of βe sufficiently high to form a helicity barrier. This, coupled with the strong dependence of
the latter on imbalance, means that we find Qe ≲ Qi at even modest imbalances. To illustrate this, we plot (63) as a
function of βe and σc for a set of representative parameters in figure 12. It is immediately obvious that ion heating
dominates over the vast majority of the parameter space where the helicity barrier operates, becoming comparable to
the electron heating rate only for βe ≈ βcrit

e . This provides post-hoc justification for the use of the isothermal electron
approximation in the imbalanced hybrid-kinetic simulations of Squire et al. (2022, 2023); Zhang et al. (2025) — with
all of the cases therein having βe ⩾ 0.3 and σc ⩾ 0.6 in the saturated state — and is consistent with solar-wind
observations (Cranmer et al. 2009; Bandyopadhyay et al. 2023).

Together, the combination of (54) and (63) paint what could be described as a ‘winner takes all’ picture of solar-wind
heating: depending on the values of the electron beta and the imbalance, it is either entirely dominated by the electron
channel, at lower beta and/or imbalance, or the ion one, at higher beta and/or imbalance. There are, of course, a
number of important simplifications that were made in arriving at (54) and (63) that could change this conclusion.
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The most straightforward of these is our neglect of the suppression factor in the ion heating rate (60) which could
significantly decrease it relative to the electron one, modifying (63) by a more-than-order-unity amount. Furthermore,
careful readers will have noticed that it is possible for both of the predicted parallel electron and perpendicular ion
heating rates [(59) and (61), respectively] to exceed the injected energy flux n0eT0eεW ∝ z̃−ko

⊥
(z̃+ko

⊥
)2, meaning that

the system will have to adjust in ways not accounted for here to ensure that energy remains conserved. For example,
restoring the suppression factor in (61) would mean that a small decrease in the turbulent amplitudes would lead to
a proportionally larger decrease in Q⊥i (Chandran et al. 2010; Xia et al. 2013). More generally, as stated above, the
normalised cross-helicity σc will itself be determined by Qe and Qi, meaning that these individual rates may have to
be modified when simultaneously present in a turbulent system. Unfortunately, the exact manner in which this has to
be done will have to be informed by simulations involving both kinetic species, a task that lies outside the scope of this
paper. Nevertheless, we expect that the scaling of (63) with amplitude (implicit in its dependence on σc) will remain
robust in the presence of such complexities. Specifically, for a fixed minus field, any increase in the amplitude of the
energetically dominant plus field will act to decrease the relative electron heating rate while simultaneously enhancing
the ion one, thereby reinforcing the distinct separation between electron- and ion-dominated heating regimes.

5. SUMMARY AND DISCUSSION

The findings of this paper demonstrate the crucial role of imbalance in determining the available dissipation channels
and resultant heating in turbulent kinetic plasma systems. Using the KREHM system of equations, derived in the
low-beta asymptotic limit of gyrokinetics, we showed that the critical beta (Adkins et al. 2024)

βcrit
e =

2Z

1 + τ/Z

me

mi

1

σ2
ε

, (64)

remains the boundary between two fundamentally different regimes of turbulence and heating even in the presence of
electron kinetics. Below this threshold, electron Landau damping reduces the otherwise constant flux of the injected free
energy from large to small perpendicular scales, resulting in a steepening of the electromagnetic energy spectra. This
steepening becomes significantly more pronounced at higher imbalances [see (37), (38), and the following discussion],
and can even exhibit steep slopes on scales comparable to the ion Larmor radius [see figure 3, panels (e),(f)]. This
steepening can be distinguished the typical steepening associated with the ‘transition range’ because it will not display
the spectral flattening on smaller scales that usually accompany the latter. This is the regime of dominant electron
heating, where the majority of the free energy injected on the largest perpendicular scales is dissipated on electrons in
a manner similar to previous theories of low-beta, Alfvénic turbulence in the balanced regime (see, e.g., Howes et al.
2008; Schekochihin et al. 2009; Kawazura et al. 2019; Schekochihin et al. 2019). Systems with βe above (64), however,
cannot sustain this ‘imbalance-steepened cascade’. Instead, a helicity barrier forms (section 3.2), preventing all but
the balanced portion of the injected free energy from cascading past the ion Larmor scale k⊥ρi ∼ 1 and resulting in a
significant increase in the turbulent amplitudes at larger scales k⊥ρi ≲ 1. As in previous work (Meyrand et al. 2021;
Squire et al. 2023), the location of the break in perpendicular-wavenumber space k∗⊥ is shown numerically to scale as
k∗⊥ρi ∼ (1− σc)

1/4 [see inset of figure 6(b)], and we provide a novel theoretical justification of this scaling in appendix
B. The existence of the associated steep spectral slopes at k⊥ ≳ k∗⊥ means that the parallel electron heating rate due
to Landau damping is dominated by scales k⊥ ≲ k∗⊥, allowing us to derive an analytical expression for this heating rate
that shows good agreement with numerical simulations (see figure 7). Predicting the electron-ion heating ratio Qe/Qi

(63) by combining our results with those from previous investigations of ion heating reveals that the helicity-barrier
regime remains one of dominant ion heating even in the presence of electron dissipation at these largest scales. This
is because the electron heating rate has a stronger dependence on k∗⊥ρi than the ion one [cf. (59) and (61)], and so its
relative heating rate will decrease faster as the imbalance and/or outer-scale amplitudes are increased.

Taken together, our results appear to suggest a ‘winner takes all’ picture of kinetic plasma heating in low-beta
imbalanced Alfvénic turbulence — the heating is dominated by either ions or electrons depending on the characteristics
of the plasma at large scales, here captured through the electron plasma beta βe and the normalised cross-helicity σc.
Such a picture has clear implications for observations. Given that much of the solar wind typically has me/mi ≪
βe ≲ 1 (Bruno & Carbone 2005), we would expect these plasmas to display clear features of helicity-barrier-mediated
turbulence. This is indeed the case (McIntyre et al. 2024): ions are hotter than electrons (Cranmer et al. 2009;
Bandyopadhyay et al. 2023); there is significant power in ICWs around k∥ρi ∼ 1 (Huang et al. 2020; Bowen et al.
2020b, 2024) due, in this paradigm, to quasilinear ion heating (see Squire et al. 2022, 2023; Zhang et al. 2025; Johnston
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et al. 2025); and electromagnetic spectra observed by PSP usually show a steep ‘transition range’ scaling ∼ k−4
⊥ around

k⊥ρi ∼ 1 that has been seen in all simulations of the helicity barrier (Meyrand et al. 2021; Squire et al. 2022, 2023;
Adkins et al. 2024; Zhang et al. 2025; Johnston et al. 2025). Our work also has interesting implications for observations
of plasmas that are highly imbalanced but are at sufficiently low beta that the helicity barrier is not expected to form
(βe ≲ βcrit

e ), such as in the low corona. In particular, the fact that the steepening of the electromagnetic fields due
to electron Landau damping becomes more pronounced with increasing imbalance means that it should be possible to
observe very steep spectra in the absence of other features of the helicity barrier, such as significant power in ICWs.

There are, of course, a number of important questions left unanswered by this work. The arguments presented
in Meyrand et al. (2021) and Adkins et al. (2024) for the breakdown of the constant-flux cascade solution, and
the resultant formation of the helicity barrier, relied on the simultaneous conservation of both free energy (18) and
generalised helicity (20) throughout the inertial range; neither of these invariants are conserved in the presence of
electron kinetics (see section 2.3). While our model based only on Landau damping provides a good fit to numerical
results, we have not addressed the role played by the non-conservation of the generalised helicity in this context.
In particular, this non-conservation of helicity may play a central role in the finite width in βe of the ‘intermediate
regime’ (see section 3.3) between the imbalance-weakened cascade and helicity-barrier ones. Understanding what sets
this transition width — and whether the effective shift of the critical beta (25) towards higher βe seen in figure 11
persists at all imbalances — may be key to more accurately determining the boundary in parameter space between
the regimes of dominant electron and ion heating, which could have important consequences for studies of the solar
wind seeking to model its global properties. More broadly, the model for the electron-ion heating ratio proposed in
section 4 is necessarily incomplete since Qe/Qi depends on the imbalance through the normalised cross-helicity, which,
in the helicity-barrier regime, will itself be determined by the heating mechanisms that went into (63). Unfortunately,
determining both Qe/Qi and σc self-consistently is a challenging task, given that capturing the dominant mechanisms
of ion heating in the helicity-barrier regime requires resolving the full six-dimensional phase-space structure of the
ion distribution function even before electron kinetics are added. Assuming that the effects of plasma echoes remain
insignificant, the results of section 3 suggest that the effects of electron kinetics across a range of betas and imbalances
could be well-approximated by, e.g., a ‘Landau-fluid’ closure (Hammett & Perkins 1990; Hammett et al. 1992, 1993;
Dorland & Hammett 1993; Beer & Hammett 1996; Snyder et al. 1997; Passot & Sulem 2004; Goswami et al. 2005;
Passot et al. 2017). Using hybrid-kinetic simulations with such a closure for electrons (see, e.g., Finelli et al. 2021) may
thus be a promising path forward in the absence of full kinetic simulations. Despite these potential challenges, however,
advancing our understanding of this ‘winner takes all’ picture of heating that is emerging in the context of imbalanced
Alfvénic turbulence is essential since it could have broad implications for plasma turbulence across a diverse array of
astrophysical environments, including the solar wind, solar corona, accretion flows, and the intracluster medium.
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Figure 13. The parallel-dissipation rate D∥ (45), normalised to the total energy flux εW , as a function of M for each set
of parameters in the ‘Hermite scan’ set of simulations from table 1. The values of the injection imbalance σε and normalised
electron beta βe(me/mi)

−1 for each panel are indicated by the column and row headers, respectively. The horizontal dashed
line indicates the value for M = 32.

APPENDIX

A. CONVERGENCE IN NUMBER OF EVOLVED HERMITE MOMENTS M

Within the numerical framework discussed in section 2.4, the otherwise infinite hierarchy of Hermite moments
represented by (11) is closed via truncation, i.e., setting gm = 0 for m > M . Such a truncation is valid only if
the amplitudes of modes with m ⪅ M are small enough that the absence of a mode at m = M + 1 does not
significantly affect the results; the hypercollisions (22) are added in an attempt to ensure that this is the case. Here,
using the simulations labelled ‘Hermite scan’ in table 1, we investigate the convergence of various properties of the
KREHM system of equations with the number of evolved Hermite moments M , finding that a relatively low number
of evolved moments is required in order to reproduce the correct numerical behaviour. In order to cover the number
of different regimes considered in this paper, we perform convergence tests at the smallest and largest values of βe

used [βe(me/mi)
−1 = 1.0 and βe(me/mi)

−1 = 550.9, respectively] in both the balanced (σε = 0.0) and imbalanced
(σε = 0.8) regimes. For each, M is varied in steps of four over the range 4 ⩽ M ⩽ 32. All of the following data
presented has been averaged over the last 20% of the simulation time.

As could have been anticipated, a value of M = 4 is insufficient to allow the numerical scheme to behave properly,
with those simulations significantly under- or over-estimating the parallel-dissipation rate (45), as can be seen from
figure 13. This is a result of the improper behaviour of the one-dimensional Hermite spectrum (42), with the m = 2

moment having a higher amplitude than the m = 1 moment (see figure 14), likely due to the reflection of energy
from the boundary in Hermite space provided by the truncation. As M is increased, the Hermite spectra quickly
start reproducing the same scaling as the M = 32 simulations before being cut off by the effects of the hypercollisions
(22), with the parallel-dissipation rates behaving similarly. If the latter is taken as the primary metric for assessing
convergence in M , then a value of M = 12 appears sufficient to accurately capture the same behaviour as at larger M .
We note, however, that it is possible that the convergence observed here could change if the steepening of the Hermite
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Figure 14. The one-dimensional Hermite spectra Em (42) for the ‘Hermite scan’ set of simulations from table 1, normalised
to the value of the M = 32 spectrum at m = 2, with the colours indicating the value of M for each spectrum. The values of the
injection imbalance σε and normalised electron beta βe(me/mi)

−1 for each panel are indicated by the column and row headers,
respectively. The dashed lines show approximate scalings of the spectra with m.

flux Γm observed at low beta [see figure 4(c), red curve] meant that it became zero for some m ⩽ M , though this does
not seem likely from the set of simulations conducted in this paper.

B. JUSTIFICATION OF k∗⊥ SCALING

In this appendix, we demonstrate that the scaling (43) corresponds to the point in perpendicular wavenumber space
where co-propagating interactions begin to have an effect on the nonlinear dynamics. It is worth emphasising that the
existence such interactions does immediately imply that a larger proportion of the injected energy flux will now be
allowed to propagate to small scales. Rather, it signifies the breakdown of a specific property of RMHD: that the linear
eigenmodes coincide with the functions that also nullify the nonlinear interactions between co-propagating modes.

We take as our starting point the equations of FLR-MHD (Meyrand et al. 2021):

d
dt

τ̄−1 eϕ

T0e
− c

4πen0e
∇∥∇2

⊥A∥ = 0, (B1)

dA∥

dt
+ c

(
∂ϕ

∂z
+∇∥τ̄

−1ϕ

)
= 0, (B2)

which represent the simplest model capable of capturing the dynamics of the helicity barrier. These can be obtained
from (9) and (10) in the limit of k⊥de → 0 while maintaining k⊥ρi ∼ 1, corresponding to a regime where βe is
sufficiently large that the effects of electron kinetics can be neglected (me/mi ≪ βe ≪ 1). Despite this only ever being
an approximation, this is precisely the regime in which the scaling (43) was measured by Meyrand et al. (2021); Squire
et al. (2022, 2023).
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Given that the break is located at scales k⊥ρi ≪ 1 for sufficiently imbalanced (helicity-barrier-mediated) turbulence,
it will be useful to work in terms of the standard Elsässer potentials [cf. (16)]:

lim
k⊥→0

Θ± = ζ± ≡ c

B0
ϕ∓

A∥√
4πn0imi

, (B3)

that are the stream functions for the RMHD Elsässer fields z± (Schekochihin et al. 2009). Without loss of generality,
(B1) and (B2) can then be recast in these variables as:

∂

∂t
τ̄−1ζ± ∓ vA

2

∂

∂z

[(
1 + τ̄−1

)
τ̄−1 ∓ ρ2s∇

2
⊥
]
ζ+ +∓vA

2

∂

∂z

[(
1 + τ̄−1

)
τ̄−1 ± ρ2s∇

2
⊥
]
ζ−

+
1

4

{
ζ+,

(
τ̄−1 + ρ2s∇

2
⊥
)
ζ+
}
+

1

4

{
ζ−,

(
τ̄−1 + ρ2s∇

2
⊥
)
ζ−
}
+

1

4

{
ζ+,

(
τ̄−1 − ρ2s∇

2
⊥
)
ζ−
}

+
1

4

{
ζ−,

(
τ̄−1 − ρ2s∇

2
⊥
)
ζ+
}
∓ τ̄−1

4

{
ζ+ − ζ−,

(
1 + τ̄−1

) (
ζ+ + ζ−

)}
= 0, (B4)

where {. . . , . . .} = b0 · [∇(. . . )×∇(. . . )] is the standard Poisson bracket. Though this representation is entirely
equivalent to (B1)-(B2), it has the advantage of explicitly separating the large-scale co-propagating (ζ± with ζ±) and
counter-propagating (ζ± with ζ∓) nonlinear interactions.

Recalling (7), we can expand the τ̄−1 operator in the long-wavelength limit as

τ̄−1 = −
(
1 +

3

8
ρ2i∇

2
⊥

)
ρ2s∇

2
⊥ + . . . , (B5)

from which it is straightforward to show that all co-propagating vanish to leading order, giving the equations of Elsässer
RMHD (Schekochihin et al. 2009; Schekochihin 2022):

∂

∂t
∇2

⊥ζ
± ∓ vA

∂

∂z
∇2

⊥ζ
± +

{
ζ∓,∇2

⊥ζ
±}− {∂aζ±, ∂aζ∓} = 0. (B6)

At next order, one obtains modifications to both the linear terms and nonlinearities between counter-propagating
fluctuations, but also additional nonlinear terms of the form{

ζ±, ρ2i∇
4
⊥ζ

±} or ∇2
⊥
{
ζ±, ρ2s∇

2
⊥ζ

±} , (B7)

that describe co-propagating interactions. Formally, these terms are smaller than those in (B6) by a factor of k2⊥ρ
2
i ≪ 1

if the turbulence is balanced, i.e. when ζ+ ∼ ζ−. At sufficiently high imbalance, however, it is possible for these terms
to compete with those in (B6). Defining the characteristic Elsässer amplitudes ζ±k⊥

analogously to Θ±
k⊥

[see (30)], we
can, neglecting any possible anisotropy in the perpendicular plane, estimate the size of the nonlinearities in (B6) and
(B7) as, respectively, {

ζ∓,∇2
⊥ζ

±} ∼ k4⊥ζ
+
k⊥

ζ−k⊥
,
{
ζ±, ρ2i∇

4
⊥ζ

±} ∼ k4⊥(k⊥ρi)
2
(
ζ±k⊥

)2
. (B8)

Noting that the nonlinearities involving co-propagating ζ− fluctuations will always be subdominant for ζ− ≪ ζ+, we
can estimate, by balancing the two terms in (B8), the scale at which the co-propagating ζ+ fluctuations nonlinearly
compete with the counter-propagating ones:

k⊥ρi ∼

(
ζ−k⊥

ζ+k⊥

)1/2

∼
(
W−

W+

)1/4

. (B9)

The final estimate in (B9) assumes that both fields have approximately the same slope on scales above (B9), which
seems to be the case in simulations of strongly-imbalanced turbulence (see, e.g., Beresnyak & Lazarian 2009; Meyrand
et al. 2021; Schekochihin 2022). Finally, noting that σc ≈ 1−W−/W+ at large imbalance, this estimate becomes (43).

It would thus appear that the scaling of the break position with imbalance is correlated with the importance of
nonlinear interactions between co-propagating fluctuations of the larger field within the turbulence. If true, this has
interesting consequences for studies of imbalanced RMHD turbulence. The validity of the RMHD system of equations
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(B6) is predicated on the assumption that there is no special scale at k⊥ρi ≪ 1, since the equations are manifestly
scale invariant. However, the existence of some special scale, particularly one which shifts to longer wavelengths as
the imbalance increases, restricts the range of perpendicular wavenumbers where RMHD remains valid. While weak
scaling of (B9) with imbalance suggests this restriction of the range of validity of RMHD will be relatively minor, the
existence of this scale has important consequences for the thermodynamics of heating in imbalanced turbulence due
to the role that it plays in the evolution of the helicity-barrier-dominated state that was considered in section 3, and
the fact that it could lead to an improved phenomenology of the transition range.

REFERENCES

Abel, I. G., Plunk, G. G., Wang, E., et al. 2013, Rep. Prog.
Phys., 76, 116201, doi: 10.1088/0034-4885/76/11/116201

Abramowitz, M., & Stegun, I. A. 1972, Handbook of
Mathematical Functions

Adkins, T., Meyrand, R., & Squire, J. 2024, J. Plasma
Phys., 90, 905900403, doi: 10.1017/S0022377824000771

Adkins, T., Schekochihin, A. A., Ivanov, P. G., & Roach,
C. M. 2022, J. Plasma Phys., 88, 905880410,
doi: 10.1017/S0022377822000654

Adkins, T. G., & Schekochihin, A. A. 2018, J. Plasma
Phys., 84, 905840107, doi: 10.1017/S0022377818000089

Alexandrova, O., Saur, J., Lacombe, C., et al. 2009, Phys.
Rev. Lett., 103, 165003, doi: 10.1017/jfm.2019.394

Arzamasskiy, L., Kunz, M. W., Chandran, B. D. G., &
Quataert, E. 2019, Astrophys. J., 879, 53,
doi: 10.3847/1538-4357/ab20cc

Bandyopadhyay, R., Meyer, C. M., Matthaeus, W. H.,
et al. 2023, Astrophys. J. Lett., 955, L28,
doi: 10.3847/2041-8213/acf85e

Barnes, A. 1966, Phys. Fluids, 9, 1483,
doi: 10.1063/1.1761882

Batchelor, G. K. 1953, The Theory of Homogeneous
Turbulence (Cambridge: Cambridge University Press)

Beer, M. A., & Hammett, G. W. 1996, Phys. Plasmas, 3,
4046, doi: 10.1063/1.871538

Beresnyak, A., & Lazarian, A. 2008, Astrophys. J., 682,
1070, doi: 10.1086/589428

—. 2009, Astrophys. J., 702, 1190,
doi: 10.1088/0004-637X/702/2/1190

Boldyrev, S. 2005, Astrophys. J., 626, L37,
doi: 10.1086/431649

Boldyrev, S., Horaites, K., Xia, Q., & Perez, J. C. 2013,
Astrophys. J., 777, 41, doi: 10.1088/0004-637X/777/1/41

Boltzmann, L. 1896, Vorlesungen über Gastheorie (Leipzig:
J. A. Barth)

Bowen, T., Bale, S. D., Chandran, B. D. G., et al. 2024,
Nature Astron., doi: 10.1038/s41550-023-02186-4

Bowen, T. A., Mallet, A., Bale, S. D., et al. 2020a, Phys.
Rev. Lett., 125, 025102,
doi: 10.1103/PhysRevLett.125.025102

Bowen, T. A., Mallet, A., Huang, J., et al. 2020b,
Astrophys. J. Suppl., 246, 66,
doi: 10.3847/1538-4365/ab6c65

Bowen, T. A., Chandran, B. D. G., Squire, J., et al. 2022,
Phys. Rev. Lett., 129, 165101,
doi: 10.1103/PhysRevLett.129.165101

Bruno, R., & Carbone, V. 2005, Living Rev. Solar Phys., 2,
4, doi: 10.12942/lrsp-2013-2

—. 2013, Living Rev. Solar Phys., 10, 2,
doi: 10.12942/lrsp-2013-2

Cerri, S. S., Arzamasskiy, L., & Kunz, M. W. 2021,
Astrophys. J., 916, 120, doi: 10.3847/1538-4357/abfbde

Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E., &
Germaschewski, K. 2010, Astrophys. J., 720, 503,
doi: 10.1088/0004-637X/720/1/503

Chen, C. H. K. 2016, J. Plasma Phys., 82, 535820602,
doi: 10.1017/S0022377816001124

Chen, C. H. K., Boldyrev, S., Xia, Q., & Perez, J. C. 2013,
Phys. Rev. Lett., 110, 225002,
doi: 10.1103/PhysRevLett.110.225002

Cho, J. 2011, Phys. Rev. Lett., 106, 191104,
doi: 10.1103/PhysRevLett.106.191104

Cranmer, S. R., Matthaeus, W. H., Breech, B. A., &
Kasper, J. C. 2009, Astrophys. J., 702, 1604,
doi: 10.1088/0004-637X/702/2/1604

Cranmer, S. R., & van Ballegooijen, A. A. 2005, Astrophys.
J. Suppl., 156, 265, doi: 10.1086/426507

Davidson, P. A. 2013, Turbulence in Rotating, Stratified
and Electrically Conducting Fluids (Cambridge:
Cambridge University Press)

Dorland, W., & Hammett, G. W. 1993, Phys. Fluids B, 5,
812, doi: 10.1063/1.860934

Dougherty, J. P. 1964, Phys. Fluids, 7, 1788,
doi: 10.1063/1.2746779

Duan, D., He, J., Bowen, T. A., et al. 2021, Astrophys. J.
Lett., 915, L8, doi: 10.3847/2041-8213/ac07ac

Elsässer, W. M. 1950, Phys. Rev., 79, 183,
doi: 10.1103/PhysRev.79.183

http://doi.org/10.1088/0034-4885/76/11/116201
http://doi.org/10.1017/S0022377824000771
http://doi.org/10.1017/S0022377822000654
http://doi.org/10.1017/S0022377818000089
http://doi.org/10.1017/jfm.2019.394
http://doi.org/10.3847/1538-4357/ab20cc
http://doi.org/10.3847/2041-8213/acf85e
http://doi.org/10.1063/1.1761882
http://doi.org/10.1063/1.871538
http://doi.org/10.1086/589428
http://doi.org/10.1088/0004-637X/702/2/1190
http://doi.org/10.1086/431649
http://doi.org/10.1088/0004-637X/777/1/41
http://doi.org/10.1038/s41550-023-02186-4
http://doi.org/10.1103/PhysRevLett.125.025102
http://doi.org/10.3847/1538-4365/ab6c65
http://doi.org/10.1103/PhysRevLett.129.165101
http://doi.org/10.12942/lrsp-2013-2
http://doi.org/10.12942/lrsp-2013-2
http://doi.org/10.3847/1538-4357/abfbde
http://doi.org/10.1088/0004-637X/720/1/503
http://doi.org/10.1017/S0022377816001124
http://doi.org/10.1103/PhysRevLett.110.225002
http://doi.org/10.1103/PhysRevLett.106.191104
http://doi.org/10.1088/0004-637X/702/2/1604
http://doi.org/10.1086/426507
http://doi.org/10.1063/1.860934
http://doi.org/10.1063/1.2746779
http://doi.org/10.3847/2041-8213/ac07ac
http://doi.org/10.1103/PhysRev.79.183


36

Faddeeva, V. N., & Terent’ev, N. M. 1954, Tables of Values
of the Function
w(z) = exp

(
−z2

)
(1 + 2i/

√
π
∫ z

0
exp

(
t2
)
dt) for Complex

Argument (Moscow: Gostekhizdat, English translation:
New York: Pergamon Press, 1961)

Finelli, F., Cerri, S. S., Califano, F., et al. 2021, AA, 653,
A156, doi: 10.1051/0004-6361/202140279

Fried, B. D., & Conte, S. D. 1961, The Plasma Dispersion
Function (New York: Academic Press)

Goldreich, P., & Sridhar, S. 1995, Astrophys. J., 438, 763,
doi: 10.1086/175121

—. 1997, Astrophys. J., 485, 680, doi: 10.1086/304442
Goswami, P., Passot, T., & Sulem, P. L. 2005, Phys.

Plasmas, 12, 102109, doi: 10.1063/1.2096582
Gould, R. W., O’Neil, T. M., & Malmberg, J. H. 1967,

Phys. Rev. Lett., 19, 219,
doi: 10.1103/PhysRevLett.19.219

Hammett, G. W., Beer, M. A., Dorland, W., Cowley, S. C.,
& Smith, S. A. 1993, Plasma Phys. Control. Fusion, 35,
973, doi: 10.1088/0741-3335/35/8/006

Hammett, G. W., Dorland, W., & Perkins, F. W. 1992,
Phys. Fluids B, 4, 2052, doi: 10.1063/1.860014

Hammett, G. W., & Perkins, F. W. 1990, Phys. Rev. Lett.,
64, 3019, doi: 10.1103/PhysRevLett.64.3019

He, J., Wang, L., Tu, C., Marsch, E., & Zong, Q. 2015,
Astrophys. J. Lett., 800, L31,
doi: 10.1088/2041-8205/800/2/L31

Hoppock, I. W., Chandran, B. D. G., Klein, K. G., Mallet,
A., & Verscharen, D. 2018, J. Plasma Phys., 84,
905840615, doi: 10.1017/S0022377818001277

Howes, G. G. 2010, Mon. Not. R. Astron. Soc., 409, L104,
doi: 10.1111/j.1745-3933.2010.00958.x

—. 2024, J. Plasma Phys., 90, 905900504,
doi: 10.1017/S0022377824001090

Howes, G. G., Cowley, S. C., Dorland, W., et al. 2006,
Astrophys. J., 651, 590, doi: 10.1086/506172

—. 2008, J. Geophys. Res., 113, A05103,
doi: 10.1029/2007JA012665

Howes, G. G., Tenbarge, J. M., & Dorland, W. 2011, Phys.
Plasmas, 18, 102305, doi: 10.1063/1.3646400

Huang, S. Y., Zhang, J., Sahraoui, F., et al. 2020,
Astrophys. J. Lett., 897, L3,
doi: 10.3847/2041-8213/ab9abb

Huang, S. Y., Sahraoui, F., Andrés, N., et al. 2021,
Astrophys. J. Lett., 909, L7,
doi: 10.3847/2041-8213/abdaaf

Ichimaru, S. 1977, Astrophys. J., 214, 840,
doi: 10.1086/155314

Johnson, J. R., & Cheng, C. 2001, Geophys. Res. Lett., 28,
4421, doi: 10.1029/2001GL013509

Johnston, Z., Squire, J., & Meyrand, R. 2025, arXiv
e-prints, arXiv:2409.07015

Kadomtsev, B. B., & Pogutse, O. P. 1974, Soviet Phys.
JETP, 38, 283

Kanekar, A., Schekochihin, A. A., Dorland, W., & Loureiro,
N. F. 2015, J. Plasma Phys., 81, 305810104,
doi: 10.1017/S0022377814000622

Kawazura, Y., Barnes, M., & Schekochihin, A. A. 2019,
Proc. Nat. Acad. Sci., 116, 771,
doi: 10.1073/pnas.1812491116

Kennel, C. F., & Engelmann, F. 1966, Phys. Fluids, 9,
2377, doi: 10.1063/1.1761629

Kim, H., & Cho, J. 2015, Astrophys. J., 801, 75,
doi: 10.1088/0004-637X/801/2/75

Kolmogorov, A. N. 1941, Dokl. Acad. Nauk SSSR, 30, 299,
doi: 10.1098/rspa.1991.0075

Kunz, M. W., Jones, T. W., & Zhuravleva, I. 2022, in
Handbook of X-ray and Gamma-ray Astrophysics
(Springer Nature Singapore), 56,
doi: 10.1007/978-981-16-4544-0_125-1

Landau, L. 1946, Zh. Eksp. Teor. Fiz., 16, 574
Landau, L. D. 1965, in Collected Papers of L. D. Landau,

ed. D. ter Haar (Oxford: Pergamon Press), 163
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus,

W. H., & Wong, H. K. 1998, J. Geophys. Res., 103, 4775,
doi: 10.1029/97JA03394

Lenard, A., & Bernstein, I. B. 1958, Phys. Rev., 112, 1456,
doi: 10.1103/PhysRev.112.1456

Lithwick, Y., Goldreich, P., & Sridhar, S. 2007,
Astrophys. J., 655, 269, doi: 10.1086/509884

Loureiro, N. F., Dorland, W., Fazendeiro, L., et al. 2016,
Comp. Phys. Comms., 206, 45,
doi: 10.1016/j.cpc.2016.05.004

Loureiro, N. F., & Uzdensky, D. A. 2016, Plasma Phys.
Control. Fusion, 58, 014021,
doi: 10.1088/0741-3335/58/1/014021

Malmberg, J. H., Wharton, C. B., Gould, R. W., & O’Neil,
T. M. 1968, Phys. Rev. Lett., 20, 95,
doi: 10.1103/PhysRevLett.20.95

Mandell, N. R., Dorland, W., Abel, I., et al. 2024, J. Plasma
Phys., 90, 905900402, doi: 10.1017/S0022377824000631

Mandell, N. R., Dorland, W., & Landreman, M. 2018,
Journal of Plasma Physics, 84, 905840108,
doi: 10.1017/S0022377818000041

Marsch, E. 2006, Living Rev. Solar. Phys., 3, 1,
doi: 10.12942/lrsp-2006-1

McChesney, J. M., Stern, R. A., & Bellan, P. M. 1987,
Phys. Rev. Lett., 59, 1436,
doi: 10.1103/PhysRevLett.59.1436

http://doi.org/10.1051/0004-6361/202140279
http://doi.org/10.1086/175121
http://doi.org/10.1086/304442
http://doi.org/10.1063/1.2096582
http://doi.org/10.1103/PhysRevLett.19.219
http://doi.org/10.1088/0741-3335/35/8/006
http://doi.org/10.1063/1.860014
http://doi.org/10.1103/PhysRevLett.64.3019
http://doi.org/10.1088/2041-8205/800/2/L31
http://doi.org/10.1017/S0022377818001277
http://doi.org/10.1111/j.1745-3933.2010.00958.x
http://doi.org/10.1017/S0022377824001090
http://doi.org/10.1086/506172
http://doi.org/10.1029/2007JA012665
http://doi.org/10.1063/1.3646400
http://doi.org/10.3847/2041-8213/ab9abb
http://doi.org/10.3847/2041-8213/abdaaf
http://doi.org/10.1086/155314
http://doi.org/10.1029/2001GL013509
http://doi.org/10.1017/S0022377814000622
http://doi.org/10.1073/pnas.1812491116
http://doi.org/10.1063/1.1761629
http://doi.org/10.1088/0004-637X/801/2/75
http://doi.org/10.1098/rspa.1991.0075
http://doi.org/10.1007/978-981-16-4544-0_125-1
http://doi.org/10.1029/97JA03394
http://doi.org/10.1103/PhysRev.112.1456
http://doi.org/10.1086/509884
http://doi.org/10.1016/j.cpc.2016.05.004
http://doi.org/10.1088/0741-3335/58/1/014021
http://doi.org/10.1103/PhysRevLett.20.95
http://doi.org/10.1017/S0022377824000631
http://doi.org/10.1017/S0022377818000041
http://doi.org/10.12942/lrsp-2006-1
http://doi.org/10.1103/PhysRevLett.59.1436


37

McIntyre, J. R., Chen, C. H. K., Squire, J., Meyrand, R., &
Simon, P. A. 2024, arXiv e-prints, 2407.10815

McManus, M. D., Bowen, T. A., Mallet, A., et al. 2020,
Astrophys. J. Suppl., 246, 67,
doi: 10.3847/1538-4365/ab6dce

Meyrand, R., Kanekar, A., Dorland, W., & Schekochihin,
A. A. 2019, Proc. Nat. Acad. Sci., 116, 1185,
doi: 10.1073/pnas.1813913116

Meyrand, R., Squire, J., Mallet, A., & Chandran, B. D. G.
2025, J. Plasma Phys., 91, E29,
doi: 10.1017/S0022377824001181

Meyrand, R., Squire, J., Schekochihin, A., & Dorland, W.
2021, J. Plasma Phys., 87, 535870301,
doi: 10.1017/S0022377821000489

Milanese, L. M., Loureiro, N. F., Daschner, M., &
Boldyrev, S. 2020, Phys. Rev. Lett., 125, 265101,
doi: 10.1103/PhysRevLett.125.265101

Nastac, M. L., Ewart, R. J., Sengupta, W., et al. 2024,
Phys. Rev. E, 109, 065210,
doi: 10.1103/PhysRevE.109.065210

Nazarenko, S. V., & Schekochihin, A. A. 2011, J. Fluid
Mech., 677, 134, doi: 10.1017/S002211201100067X

Parker, E. N. 1965, Space Sci. Rev., 4, 666,
doi: 10.1007/BF00216273

Parker, J. T., Highcock, E. G., Schekochihin, A. A., &
Dellar, P. J. 2016, Phys. Plasmas, 23, 070703,
doi: 10.1063/1.4958954

Passot, T., & Sulem, P. L. 2004, Phys. Plasmas, 11, 5173,
doi: 10.1063/1.1780533

Passot, T., Sulem, P. L., & Tassi, E. 2017, J. Plasma Phys.,
83, 715830402, doi: 10.1017/S0022377817000514

Quataert, E., & Gruzinov, A. 1999, Astrophys. J., 520, 248,
doi: 10.1086/307423

Sahraoui, F., Goldstein, M. L., Robert, P., & Khotyaintsev,
Y. V. 2009, Phys. Rev. Lett., 102, 231102,
doi: 10.1103/PhysRevLett.102.231102

Schekochihin, A. A. 2022, J. Plasma Phys., 88, 155880501,
doi: 10.1017/S0022377822000721

Schekochihin, A. A., Cowley, S. C., Dorland, W., et al.
2009, Astrophys. J. Suppl., 182, 310,
doi: 10.1088/0067-0049/182/1/310

Schekochihin, A. A., Kawazura, Y., & Barnes, M. A. 2019,
J. Plasma Phys., 85, 905850303,
doi: 10.1017/S0022377819000345

Schekochihin, A. A., Parker, J. T., Highcock, E. G., et al.
2016, J. Plasma Phys., 82, 905820212,
doi: 10.1017/S0022377816000374

Schlickeiser, R., & Achatz, U. 1993, J. Plasma Phys., 49,
63, doi: 10.1017/S0022377800016822

Snyder, P. B., Hammett, G. W., & Dorland, W. 1997,
Phys. Plasmas, 4, 3974, doi: 10.1063/1.872517

Squire, J., Meyrand, R., & Kunz, M. W. 2023, Astrophys. J.
Lett., 957, L30, doi: 10.3847/2041-8213/ad0779

Squire, J., Meyrand, R., Kunz, M. W., et al. 2022, Nature
Astron., 6, 715, doi: 10.1038/s41550-022-01624-z

Stix, T. H. 1992, Waves in Plasmas (New York, NY:
American Institute of Physics)

Strauss, H. R. 1976, Phys. Fluids, 19, 134,
doi: 10.1063/1.861310

Takizawa, M. 1999, Astrophys. J., 520, 514,
doi: 10.1086/307497

Teaca, B., Verma, M. K., Knaepen, B., & Carati, D. 2009,
Phys. Rev. E, 79, 046312,
doi: 10.1103/PhysRevE.79.046312

van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R.,
& DeLuca, E. E. 2011, Astrophys. J., 736, 3,
doi: 10.1088/0004-637X/736/1/3

Voitenko, Y., & De Keyser, J. 2016, Astrophys. J., 832,
L20, doi: 10.3847/2041-8205/832/2/L20

Wong, G. N., & Arzamasskiy, L. 2024, Astrophys. J., 962,
163, doi: 10.3847/1538-4357/ad1827

Xia, Q., Perez, J. C., Chandran, B. D. G., & Quataert, E.
2013, Astrophys. J., 776, 90,
doi: 10.1088/0004-637X/776/2/90

Zhang, M. F., Kunz, M. W., Squire, J., & Klein, K. G.
2025, Astrophys. J., 979, 121,
doi: 10.3847/1538-4357/ad95fc

Zhao, G. Q., Lin, Y., Wang, X. Y., et al. 2021,
Astrophys. J., 906, 123, doi: 10.3847/1538-4357/abca3b

Zhou, M., Liu, Z., & Loureiro, N. F. 2023a, Proc. Nat.
Acad. Sci., 120, e2220927120,
doi: 10.1073/pnas.2220927120

—. 2023b, Mon. Not. R. Astron. Soc., 524, 5468,
doi: 10.1093/mnras/stad2231

Zocco, A., & Schekochihin, A. A. 2011, Phys. Plasmas, 18,
102309, doi: 10.1063/1.3628639

http://doi.org/10.3847/1538-4365/ab6dce
http://doi.org/10.1073/pnas.1813913116
http://doi.org/10.1017/S0022377824001181
http://doi.org/10.1017/S0022377821000489
http://doi.org/10.1103/PhysRevLett.125.265101
http://doi.org/10.1103/PhysRevE.109.065210
http://doi.org/10.1017/S002211201100067X
http://doi.org/10.1007/BF00216273
http://doi.org/10.1063/1.4958954
http://doi.org/10.1063/1.1780533
http://doi.org/10.1017/S0022377817000514
http://doi.org/10.1086/307423
http://doi.org/10.1103/PhysRevLett.102.231102
http://doi.org/10.1017/S0022377822000721
http://doi.org/10.1088/0067-0049/182/1/310
http://doi.org/10.1017/S0022377819000345
http://doi.org/10.1017/S0022377816000374
http://doi.org/10.1017/S0022377800016822
http://doi.org/10.1063/1.872517
http://doi.org/10.3847/2041-8213/ad0779
http://doi.org/10.1038/s41550-022-01624-z
http://doi.org/10.1063/1.861310
http://doi.org/10.1086/307497
http://doi.org/10.1103/PhysRevE.79.046312
http://doi.org/10.1088/0004-637X/736/1/3
http://doi.org/10.3847/2041-8205/832/2/L20
http://doi.org/10.3847/1538-4357/ad1827
http://doi.org/10.1088/0004-637X/776/2/90
http://doi.org/10.3847/1538-4357/ad95fc
http://doi.org/10.3847/1538-4357/abca3b
http://doi.org/10.1073/pnas.2220927120
http://doi.org/10.1093/mnras/stad2231
http://doi.org/10.1063/1.3628639

	Introduction
	Kinetic reduced electron heating model
	Model equations
	Linear dispersion relation
	Nonlinear invariants
	Numerical setup

	Landau damping in imbalanced Alfvénic turbulence
	Imbalance-steepened cascade
	Nonlinear times and critical balance
	Elsässer fluxes
	Testing imbalance-steepened cascade theory
	Dynamics in Hermite space

	Landau damping in the presence of the helicity barrier
	Nonlinear heating rate
	Dependence on amplitude
	Dependence on beta

	Intermediate regime

	Consequences for solar-wind heating
	Heating channels
	Perpendicular electron heating
	Parallel electron heating
	Perpendicular ion heating
	Parallel ion heating

	Imbalance-steepened cascade regime
	Helicity-barrier regime
	Electron heating rate
	Ion heating rate
	Electron-ion heating ratio


	Summary and discussion
	Convergence in number of evolved Hermite moments M
	Justification of k* scaling

