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We propose a way to generate a one-dimensional topological superconductor from a monolayer
of a transition metal dichalcogenide coupled to a Bernal-stacked bilayer of graphene under a dis-
placement field. With proper gating, this structure may be tuned to form three parallel pads of
superconductors creating two planar Josephson junctions in series, in which normal regions sepa-
rate the superconductors. Two characteristics of the system which are essential for our discussion
are spin orbit coupling induced by the transition metal dichalcogenides and the variation of the
Fermi velocities along the Fermi surface. We demonstrate that these two characteristics lead to
one-dimensional topological superconductivity occupying large parts in the parameter space defined
by the two phase differences across the two junctions and the relative angle between the junctions
and the lattice. An angle-shaped device in which this angle varies in space, combined with proper
phase tuning, can lead to the formation of domain walls between topological and trivial phases,
supporting a zero-energy Majorana mode, within the bulk of carefully designed devices. We derive
the spectrum of the Andreev bound states and show that Ising spin-orbit coupling leaves the topo-
logical superconductor gapless, and the Rashba spin-orbit coupling opens a gap in its spectrum.
Our analysis shows that the transition to a gapped topological state is a result of the band inversion
of Andreev states.

Topological superconductors have been a coveted goal
in the last two decades, due to their unique physical
properties and their potential applications for topologi-
cal quantum information processing. Of particular inter-
est have been one-dimensional (1D) topological super-
conductors, due to the localized Majorana zero modes
that they carry at their ends. Several ways for engineer-
ing such superconductors were proposed, all combining
superconductivity, spin-orbit coupling, and breaking of
time-reversal symmetry. For most proposed ways super-
conductivity was induced by the proximity effect, spin-
orbit coupling was intrinsic to the one-dimensional sys-
tem, and time-reversal symmetry was broken by coupling
a Zeeman field to the electron spin [1–13].

In this work we consider a setup in which spin-orbit
coupling is induced into the conducting system by the
proximity of a transition metal dichalcogenide (TMD)
layer to a Graphene bi-layer; superconductivity is intrin-
sic to the combined system or achieved by proximity;
and time-reversal symmetry is broken by the application
of phase differences across Josephson junctions, with or
without the application of a Zeeman field. Furthermore,
we introduce a new tuning knob, the relative angle β be-
tween the Josephson junction and the underlying lattice,
and show how it affects the formation of a topological
superconductor.

Our setup consists of a structure similar to Ref.[14],
comprising four layers: a bottom gate, a layer of transi-
tion metal dichalcogenide (TMD, e.g., WSe2), a Bernal
stacking bilayer graphene (BBG), and a split top gate
(See Fig. 1(A) ). In our case, the top gate is divided into
three stripes. The angle between the stripes and the un-
derlying Graphene lattice is β.

Tuning the potentials of the bottom and top gates con-

trols the density n and the displacement field D acting
on the system. This allows one to adjust the system to
achieve a superconducting state (S) or a normal state
(N). The creation of two gaps in the top gate leads to
the formation of an SNSNS structure that creates two
Josephson junctions in series (we will later on name it
2JJ), with the two external superconductors being semi-
infinite and the middle superconductor having a width
Ws. We note that the three stripes of the top gate may
be replaced by superconducting pads, in which case the
superconductivity is induced into the system by proxim-
ity rather than being intrinsic.

Once the 2JJ is generated, there are two additional
important tuning parameters that control the system’s
properties - the two-phase differences between the three
superconductors, represented by the phases θ and ϕ,
where θ is the phase of the order parameter on the central
superconductor, and ±ϕ are the phases of the external
superconductors.

Earlier works, particularly Ref.[15–18], found that
when the electronic band structure leads to two branches
with very different Fermi velocities vfs, vfl (s, l stand for
small and large) in the direction that crosses the junc-
tion, a 1D topological superconductor may be generated
by tuning two phase differences across two Josephson
junctions, with no need for a Zeeman magnetic field.
Having a setup that is free of magnetic fields is desir-
able due to their adverse effects on superconductivity.
A necessary condition for such a topological supercon-
ductor is that θ and ϕ form a discrete vortex (DV).
When that happens, the formation of a topological su-
perconductor is easiest to understand in the limit where
ξs ≪ Ws ≪ ξl, where Ws is the width of the middle
superconductor and ξs ∝ vfs and ξl ∝ vfl are the co-
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FIG. 1. (A) A schematic of the system we consider, that
consists of Bernal stacked bi-layer of graphene in proximity
to TMD (which is not shown), on which patterned gates de-
fine superconducting (light blue) and normal (white) regions.
The angle β between the superconducting areas and the arm-
chair orientation of the graphene bi-layer determines the ve-
locity difference between the two Fermi branches. With an
adjustment of the phase difference between the superconduc-
tors that form two Josephson junctions, we can bring the sys-
tem into a topological state supporting Majorana zero modes.
(B) Fermi surface of TMD/BBG heterostructure (β = π/2)
in a perpendicular displacement field D = 1 V/nm and
µ = −12.653 meV and µ = −12.2 meV. For Fermi energy
smaller than −12.652 meV we have three Fermi pockets (FP)
per valley and for larger – one Fermi surface (FS) per val-
ley. The kx̃ and kỹ are the coordinates in momentum space
aligned with zig-zag and armchair directions, respectively.

herence lengths for the two velocity branches, which are
proportional to vfs, vfl. In that limit, one branch, with
coherence length ξl, is hardly affected by the middle su-
perconductor and is insensitive to the phase of the middle
superconductor, while the other, with coherence length
ξs, experiences the system as two Josephson junctions
in series and is, therefore, sensitive to both phase differ-
ences. This difference leads to single gap-closing lines in
the ϕ, θ parameter plane, which then leads to topological
regions in that plane, see Fig. 2(F).

Two aspects of the BBG/TMD structure contribute
unique features to this system: the band structure and
the dominance of Ising spin-orbit coupling. We find that
the angle β controls the degree of difference between the
velocities of the two branches perpendicular to the junc-
tion due to the highly anisotropic nature of the Fermi
surface. Consequently, β can tune the system between
topological and non-topological states. The boundary
between such regions contains a Majorana zero mode.
Furthermore, we find that the effects of Ising and Rashba
spin-orbit couplings on the phase diagram are different.

The structure we consider, BBG [19] in a heterostruc-
ture with monolayers of TMD [20, 21], carries two or four
Fermi surfaces, one or two in each valley, which are C3

symmetric, but are anisotropic due to trigonal warping,
see Fig. 1(B). It is extensively studied both theoretically
[14, 19, 22] and experimentally[20, 21].

Generally, the Hamiltonian of the 2JJ system that we
consider is described in terms of valleys ηz = ±1, spins

sz = ±1 and particle-hole τz = ±1. We use a conven-
tion in which the electron spin direction is τzsz. In this
convention, s-wave pairing is s-independent. The Hamil-
tonian then is,

H =
[
ϵ(ηzk)− µ+ αIηzsz + αRk× s

]
τz

+B · s+∆x(y)τx +∆y(y)τy,
(1)

where ϵ(kx, ky) is the band energy, αI is the Ising spin-
orbit coupling constant, αR is the Rashba spin-orbit con-
stant, B = (Bx, By, 0)

T is an in-plane magnetic field, k
is measured from the center of the valley, and ∆x,y(y)
is superconducting order parameter that defines the 2JJ.
Notice that since the x, y directions are determined by
β, the dependence of ϵ on k is rotated when β is varied,
Fig. 1.

Assuming the junction is translation invariant in the
x-direction, kx is a good quantum number and can be
considered as a parameter, we can state that the Hamil-
tonian (1) is of class D, for which states may be classified
as either trivial or topological. A transition between triv-
ial and topological states occurs when there is a single
gap closing at kx = 0 [23, 24].

We analyze the Hamiltonian (1) in two complementary
ways. In the first part, we employ symmetry arguments
and approximate solutions to examine the properties of
the spectrum of the two Andreev modes that are closest
to zero energy. In the second part, we evaluate eigenval-
ues and study them for the full Hamiltonian analytically,
using a symmetry argument to select appropriate cou-
plings. In both parts, we separate between the cases of
β = 0 and β ̸= 0. For each of these two cases we study
the effects of Ising coupling, magnetic field, and Rashba
coupling on the junction band structure and topology.

As we now show, when the spin-orbit coupling is en-
tirely of the Ising type, the topological region is always
gapless due to the gap being closed at kx ̸= 0, and
becomes gapped only when Rashba spin-orbit coupling
is introduced. Furthermore, we find that due to the
structure of the Fermi surface, the phase diagram in the
ϕ, θ plane strongly depends on β, allowing for Majorana
modes to be placed in regions where β is changed.

We first focus on the case β = 0 and search for solu-
tion of linearized BdG equation. The low-energy Andreev
mode Eb(kx) (with b denoting the velocity branch) may
be analytically derived in the absence of Rashba coupling
and a magnetic field, by linearizing the kinetic term in
the BdG equations. In the limit in which the normal
regions are wide, such that there are many sub-gap An-
dreev states for each kx, the linearized BdG equation
yields

cos

(
Ep,b(kx)

ET
n,b

− ϕ

)
= − cos(θ)Rb, (2)
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where p is an integer that enumerates the mode,

Rb = max

(
tanh

(
∆

ET
sc,b

)
− Γ, 0

)
,

b = s, l label the velocity branches and Γ is a phenomeno-
logical suppression factor of the Andreev reflection am-
plitude Rb ≥ 0. The Thouless energy for the supercon-
ducting region is:

ET
sc,b(kx) =

vbf(kx)

Ws
,

where Ws is the width of the superconducting region.
The energy ET

n,b(kx) is defined for the normal region in
a similar way.

In the limit where the normal regions are narrow
(En

T ≫ ∆) we find a single set of in-gap modes:

Eb

∆
= ± cos

ϕ± arccos
(

2 cos(θ)Rb+cos(ϕ)(1−Rb)
(1+Rb)

)
2

(3)

Gapless states correspond to Eb = 0. As can be seen
in the expressions for Eb, when a gapless solution exists
for some particular values of θ, ϕ, kx it may still exist
around these values because the changes in θ, ϕ may be
compensated by a change in Rb, which is determined by
kx. Gap closings may then disappear or be created only
in pairs, either at kx = 0, in which case they correspond
to a topological transition, or at kx ̸= 0. This stability of
the zero energy states may be understood from symmetry
considerations, as we now discuss.

Symmetry consideration. For β = 0 the Hamiltonian
(1) anti-commutes with the Particle-hole anti-unitary op-
erator P̂ = Kηxsyτy, with K being complex conjugation
that flips the sign of the momentum. In the absence
of Rashba coupling, the Hamiltonian anti-commutes also
with a particle-hole operator that is local in kx, given
by P̂kx

= K̃ηxsyτy, where K̃ is a complex conjugation
that leaves kx intact. As we now show, when either
{P̂kx , H} = 0 or [H, sz] = 0 the topological region is
gapless, and hence Rashba spin-orbit coupling is essen-
tial for a gap to open in that region.

When {H, P̂kx
} = 0, the spectrum of H(kx) is sym-

metric around zero energy. When there are two zero en-
ergy states at kx = k0, close to k0 the Hamiltonian may
be written in the two-dimensional Hilbert space spanned
by these two states. All Hermitian operators may then
be described in terms of a set of Pauli matrices ρi with
i = 0, . . . , 3 acting within this subspace, and the opera-
tor P̂kx

may be represented in that subspace as the prod-
uct of complex conjugation and a Pauli matrix ρx. The
only form of the Hamiltonian allowed by the condition
{H,Kρx} = 0 is then hρz, with h being a real function
of δkx = kx − k0 and the other system parameters, in
particular ϕ, θ and the magnetic field B. The two states
are degenerate when h = 0. Thus, a small change in

FIG. 2. (A) Fermi velocities (expressed in units of energy
v′f = ℏvf/a, where vf is Fermi velocity and a = 2.46 Å. The
energy scale 300meV corresponds to ≈ 105m/s) in different
valleys (K+ and K−) as a function of angle β (ky = 0), for
µ = −12.652 meV and µ = −12.5 meV. (B) and (C) The
spectrum of 2JJ for β = 0 near the upper part (B) of the
phase diagram and the lower part (C) for µ = −12.5, a = 0.1,
|d| = 1, B = 0 and ∆ = 0.17. In panel (B), the conduction
and the valence band of the lowest Andreev levels have oppo-
site spins and the topological area is a consequence of band
inversion of the Andreev spectrum. The value of sz of the
negative energy band close to E = 0 differs between neighbor-
ing topological triangles. Panel (C) shows that when Rashba
coupling is added, left and right Fermi pockets can undergo
a band inversion earlier than the middle Fermi pocket. (D)
A deviation from high symmetry point β = 0 to β ̸= 0, at
which a threshold of Rashba coupling is required for the spec-
trum to be gapped. Panels (E) and (F) represent the minimal
gap EM = Qminkx,b |EA

b /∆| of Andreev state in 2JJ over the
phase space without (E) with (F) Rashba SO coupling, where
Q = −1 in the topological area and Q = 1 in trivial. White
lines correspond to the maximal topological area according to
the DV condition. B and B′ label topological gapless phases
and A and A′ are gapped trivial phases related by spin flip.

ϕ, θ,B may be compensated by a small change in δk to
keep h = 0, rendering the junction’s spectrum gapless.
This is indeed reflected in the energies from Eq. (2) and
from Eq. (3), in which a small change in θ, ϕ may be
compensated by a small change in Rs/l, which depends
on kx. Moreover, this gapless area is the area at which
the phases form a discrete vortex. The topological nature
of this vortex allows us to define this gapless state as a
topological nodal superconductor.

The topological gapless phase and the topological peri-
odic table. The gapless phase we study here possesses
D-class symmetries in d = 1. It is a 1D analog to the
Weyl semimetal (WS) phase that occurs in 3D. Similar
to our discussion, the existence of the WS phase [25]
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is argued by fixing one momentum component, say kz,
in the 3D Brillouin zone and evaluating the topological
invariant of the resulting 2D system as a function of kz.
A change of that invariant requires a gap closure, which
forms a Weyl cone. Our case for β = 0 is similar to that
of a WS phase in which the system possesses a crystalline
symmetry that makes the d = 2 Hamiltonian invariant
to kz → −kz, such that the d = 2 system of fixed kz has
the same symmetry class of its d = 3 parent phase. Moti-
vated by this observation, we propose the following gen-
eral principle regarding the periodic table of topological
insulators and superconductors: If a topological symme-
try class contains a sequence of dimensions d1 = d2 − 1
characterized both by Z2 invariants, it becomes possible,
in the presence of an additional non-local symmetry, to
realize a topologically gapless phase in dimension d2.

Andreev Band inversion. In the absence of P̂kx break-
ing terms, the spectrum may be gapped only when the
Hilbert space of nearly zero-energy states is larger than
two-dimensional, e.g., four-dimensional. This happens
in general when zero-energy states at two different val-
ues of kx move toward one another. In particular, it
happens when k0 approaches zero, since for β = 0 the
spectrum is even with respect to kx. The spectrum may
be gapped also by having a term that breaks the relation
{H, P̂kx

} = 0. Examples to this are Rashba spin-orbit
coupling and a space-dependent magnetic field with a
wave vector that couples the two valleys and leads to a
term B · s⃗ηx. When the gapping happens with two gap-
less points that merge at k0 = 0, the transition between
trivial and topological superconductor is a band inversion
of two Andreev bands, see Fig. 2(B).

This general structure may be understood in another
way. When the normal regions between the supercon-
ductors are small, there are eight sub-gap energy modes.
We will focus on the four lowest among them, which are
described by the energies in Eq. (3) with a plus sign be-
fore the arccos function. The subgap spectrum may then
be described in terms of a 4 × 4 Hamiltonian, which we
span by two sets of Pauli matrices λ and s, where s is
the same as that appearing in Eq. (1) while λ acts on the
particle-hole space and is related to τ by a unitary trans-
formation that is spin-independent. We write the diago-

nalized 4× 4 Hamiltonian as H =
El

A+Es
A

2 λz +
El

A−Es
A

2 sz.
This Hamiltonian anti-commutes with the particle-hole
operator, which may be chosen here to be Kλysy. At
the transition, then, the two states of zero energy differ
both by their λz and sz values, i.e., they have the same
eigenvalue of λzsz. For an operator to couple these two
states and open a gap, it must therefore flip both λz and
sz. However, for such an operator to flip both of these
numbers and still anti-commute with the particle-hole
operator, it must be odd under kx → −kx.

These observations allow us to analyze the effect of
various perturbations on the low energy Andreev modes.

FIG. 3. (A) β − αR qualitative phase diagram of a 2JJ. The
phases of the superconductors are fixed in the middle of a
topological region. The diagram shows two gapped regions
(Trivial and Topological) and a gapless region. The gapless
region connects between gapped trivial and topological su-
perconductors. The angle βt represents the alignment angle
of the device with respect to the tangential direction of the
Fermi pockets that separates the trivial and the topological
states. (B) A possible configuration for a 2JJ device oriented
on the lattice of BBG in such a way that, for some value of
θ and ϕ, it acquires a trivial region in one half of the device
and topological region at another, with Majorana zero modes
between them. The β1 = 0 and β2 are corresponding angles,
and color crosses are phase-controlling fluxes. (C) Phase dia-
gram for the case of four velocity branches, for µ = −15 meV
and β = 0. The colored regions represent gapped topological
phases. The diagram shows that the topological region can
expand when the system has two bands per valley instead of
one. (D) Phase diagram for β1 = 0 (the shaded blue region is
topological) and β2 = π/24 (the shaded gold region is topo-
logical). The chemical potential is µ = −12 meV. In a knee
geometry with angle π/24, when both parts are topological
(the blue and gold regions overlap), there is no MZM at the
knee. When only one of them is topological, the knee hosts
an MZM.

The energy modes in Eq. (3) are calculated by lineariz-
ing the BdG equations, thus setting normal reflections to
zero, and by setting the magnetic field and the Rashba
spin-orbit coupling to zero as well. Normal reflection
does not flip the spin, and will therefore introduce terms
of the form Vxλx + Vyλy. These terms would not couple
the two states close to zero energy, and would therefore
not open a gap. An in-plane Zeeman field will introduce
terms of the form bxsx+bysy. Again, these terms will not
open a gap, for the same reason. Finally, Rashba spin-
orbit coupling, being odd with respect to kx → −kx, will
be able to couple two states of the same λzsz, and will
therefore open a gap that will have band inversion.

We now turn to the case β ̸= 0. In the case of β ̸= 0 the
Hamiltonian does not anti-commute with P̂kx

. However,
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in the absence of Rashba coupling and Zeeman field, it
commutes with sz. For every β and for any kx Eq. (3) still
holds, but the dispersion is not symmetric with respect
to kx → −kx. Thus, crossing points of the modes with
two opposite values of sz do not necessarily occur at zero
energy. Close to these points the effective Hamiltonian
may be written as E0 + αδkxsz, where δkx = kx ∓ k0,
and there are then four crossing points of the zero en-
ergy line, again making the topological region gapless.
Furthermore, in this case, infinitesimal Rashba coupling
removes the degeneracy at E0, but does not gap the spec-
trum at zero energy, necessitating a threshold value of
the Rashba coupling to introduce a gapped topological
region. A schematic plot of the resulting phase diagram
in the β-αR plane is given in Fig. 3(A).

When β ̸= 0 the zero dimensional system defined when
kx is fixed has no symmetry, and thus belongs to class
A, which follows a topological classification of Z. Again,
transitions between different values of the topological in-
variant as a function of kx result in gap closures and
gapless 1D superconductivity. Since for class A the spec-
trum is not symmetric around zero, single gap crossings
are allowed. More generally, then, we see that if in the
sequence of dimension d1 = d2 − 1 the d1 dimension cor-
responds to a symmetry class with Z invariant and d2
corresponds to a symmetry class with Z2 invariant it be-
comes possible to realize a topological gapless phase in
d2 dimension.

The β-dependence of the phase diagram may be used
in geometries in which β varies along the junction. For
example, Fig. 3(B) shows a knee-like 2JJ, where β varies
on the two sides of the knee by an obtuse angle, and where
each end of the junction has a phase controlling loop, to
control θ and ϕ. The variation of β gives rise to different
phase diagrams for each orientation, see Fig 3(D). This
geometry creates a spatial mismatch of 2JJ topological
properties and, for some particular θ and ϕ, gives rise to
a topological domain wall that supports a Majorana zero
mode at the knee itself.

Before concluding, we employ the band structure cal-
culations described in Appendix A.1 to compute the
phase diagram as a function of ϕ, θ, and the chemical
potential µ. As shown in Fig. 3(C), the gapped topolog-
ical region is highly sensitive to the chemical potential.
When the chemical potential is such that two bands are
being filled in each valley (see the inset to Fig. 3(C) for
the band structure in one valley) the topological region
expands. In the absence of normal reflection each of the
bands forms a phase diagram of its own as a function
of θ, ϕ. In regions where both bands form topological
superconductors, normal reflection may turn both to be
trivial, in view of the Z2 nature of the classification of
Class D.

To summarize, we studied a 2JJ geometry made of a
two-dimensional structure of Bernal bi-layer of graphene
tunnel coupled to a monolayer of a TMD material. We

found that when the spin-orbit coupling induced by the
TMD in the graphene bilayer is purely of the Ising type,
a region of topological superconductivity exists in the
phase diagram, but the topological region is gapless.
Spin-rotating couplings, such as Rashba coupling, is cru-
cial for the existence of a nonzero gap in the topological
region. We also showed that the relative direction of
the junction with respect to the lattice determines the
fraction of the phase diagram that is occupied by a topo-
logical state.
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APPENDIXES

A.1 Explicit derivation of perturbative effective Hamiltonian.

BBG tights binding model

We begin with the tight-binding Hamiltonian for bilayer graphene (BBG) under a perpendicular displacement field
D:

HBBG =


u/2 v0k

†
η −v4k†η −v3kη

v0kη fBBG + u/2 γ1 −v4k†η
−v4kη γ1 fBBG − u/2 v0k

†
η

−v3k†η −v4kη v0kη −u/2

 . (4)

Our basis is defined as ψη(k) = (ψη,A1(k), ψη,B1(k), ψη,A2(k), ψη,B2(k)), where η = ±1 corresponds to the valleys
±K = (± 4π

3a , 0). The term kη = a(ηkx + iky) represents the momentum dependence of the BBG Hamiltonian, with
a = 0.24 nm being the graphene lattice constant. The indices Ai/Bi denote sublattices, while i = 1, 2 labels the two
layers.

The parameters vj ≡
√
3
2 γj , along with γ1, fBBG, and u, define the band structure:

• γi – various hopping amplitudes;

• fBBG – on-site potential difference arising from stacking;

• u = −d⊥D/ϵBBG – interlayer potential difference induced by the displacement field, where d⊥ = 0.33 nm is the
interlayer separation and ϵBBG ≈ 4.3 is the relative permittivity of BBG.

From [29], we adopt the ab initio calculated parameters: the intralayer nearest-neighbor hopping is γ0 = 2.61 eV,
while the interlayer hopping amplitudes are γ1 = 361 meV, γ3 = 283 meV, and γ4 = 138 meV. The on-site potential
difference is fBBG = 15 meV.
This Hamiltonian differs from that used in [22], where a simplified version was considered, specifically setting

v3 = v4 = 0.

Adding of transition metal dichalcogenides top layer

We can treat the addition of the TMD top layer like a perturbation that affects the top layer of BBG; namely, we
take into account only virtual transitions between the top monolayer graphene (MLG) and TMD material. Notice
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that the chemical potential is always in the gap of the TMD. In this case, we can project the Hamiltonian on the BBG
bands. Transitions take place only from the BBG top layer to the TMD and lead to the following spin-dependent
Hamiltonian:

HSOC(k) = P1δHMLGP1, (5)

where P1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 – projection operator in basis mentioned above and

δHMLG =
fTMD

2
σzs0 +

λI
2
ησ0sz +

λR
2

(ησxsy − σysx) (6)

– proximity contribution of WSe2/MLG Hamiltonian. Where in MLG Hamiltonian σ and s is Pauli matrix that act
on sublattice (A,B) and spin degrees of freedom respectively, fTMD – internal displacement field that arise due to
stacking, λI is rising spin-orbit coupling constant and λR – Rashba coupling constant. It was described in work [31]
and added spin-orbit coupling potential that arises from the coupling between BBG and TMD material after stacking.

Full effective Hamiltonian, in this case, will be:

Heff = HBBG ⊗ s0 + P1δHMLGP1, (7)

In addition to all of the above, one can note that the spin-orbit coupling constants in the Hamiltonian depend on
the rotation angle of the TMD sheet relative to the BBG. The values of these parameters are obtained in paper [32]
in the case of MLG and can be extrapolated to the case considered in this article.

Brillouin-Wigner perturbation theory

It is well-known, that for generic momentum near K points the strongest hopping in BBG occurs between the B1
and A2 sites – γ1, hence we will treat:

Hγ1
=


0 0 0 0
0 0 γ1 0
0 γ1 0 0
0 0 0 0

⊗ s0, (8)

like initial Hamiltonian and all other terms:

H
′
=


u/2 v0k

†
η −v4k†η −v3kη

v0kη fBBG + u/2 0 −v4k†η
−v4kη 0 fBBG − u/2 v0k

†
η

−v3k†η −v4kη v0k −u/2

⊗ s0 +


λI

2 ηsz +
fTMD

2 s0
λR

2 (ηsy + isx) 0 0
λR

2 (ηsy − isx)
λI

2 ηsz +
fTMD

2 s0 0 0
0 0 0 0
0 0 0 0

 , (9)

as a perturbation.
Initial Hamiltonian and perturbation in new basis, where Hγ1 is diagonal, have the next form:

Hγ1 =


0 0 0 0
0 0 0 0
0 0 −γ1 0
0 0 0 γ1

 = γ1


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 1

 , (10)

H
′
=


1
2 (2wz + (u+ fTMD)s0) −kηv3s0

k†
ηv+s0+aR,η√

2

k†
ηv−s0+aR,η√

2

−k†ηv3s0 −u
2 s0 −kηv+√

2
s0

kηv−√
2
s0

kηv+s0+a†
R,η√

2
−k†

ηv+√
2
s0 (fBBG − fTMD

4 )s0 +
wz

2
1
2 (wz + (u− fTMD

2 )s0)
kηv−s0+a†

R,η√
2

k†
ηv−√
2
s0

1
2 (wz + (u− fTMD

2 )s0) (fBBG − fTMD

4 )s0 +
wz

2

 , (11)
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where we denote aR,η = λR

2 (ηsy + isx), v± = v0 ± v4 and wz = 1
2λIszη.Let us notice that we can label eigenstates by

a quantum number m = −1, 0, 1 in a next way:

Hγ1
|m⟩ = mγ1 |m⟩ . (12)

Our focus will be on the low energy subspace denoting m = 0. One can find that we can express our perturbation
through ladder operators Ti |m⟩ ∝ |m+ i⟩ and Ti = T †

−i:

H
′
= T−2 + T−1 + T0 + T1 + T2 + V, (13)

where:

T0 =


1
2 (2wz + (u+ fTMD)s0) 0 0 0

0 − 1
2us0 0 0

0 0 (fBBG − fTMD

4 )s0 +
wz

2 0

0 0 0 (fBBG − fTMD

4 )s0 +
wz

2

 , (14)

T1 =
1√
2


0 0 k†ηv+s0 + aR,η 0
0 0 −kηv+s0 0
0 0 0 0

kηv−s0 + a†R,η k†ηv−s0 0 0

 , (15)

T2 =
1

2


0 0 0 0
0 0 0 0
0 0 0 0

0 0 (wz + (u− fTMD

2 )s0) 0

 , (16)

V =


0 −kηv3s0 0 0

−k†ηv3s0 0 0 0
0 0 0 0
0 0 0 0

 = v3s0


0 −kη 0 0

−k†η 0 0 0
0 0 0 0
0 0 0 0

 . (17)

For H
′
we have the next stationary Schrödinger equation:

(E −Hγ1 − T−2 − T−1 − T0 − T1 − T2 − V ) |ψ⟩ = 0. (18)

From it, according to Brilluen-Wigner perturbation theory, we will receive all possible ”excitation” of the lowest
energy level wave function and the effective Hamiltonian that describes it.

Let’s define projection to high energy states Q =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 and derive the iterative equation for wave-function

by direct action of projection operator to Schrödinger equation:

Q (E −Hγ1
− T−2 − T−1 − T0 − T1 − T2 − V ) |ψ⟩ = 0, (19)

We know that E, T0, V and Hγ1
don’t change our quantum number, hence [Q,E − T0 − V ] = 0. Substitution of this

equality leads to the equation:

(E − T0 − V −Hγ1
)Q |ψ⟩ = Q (T−2 + T−1 + T1 + T2) |ψ⟩ , (20)

Q |ψ⟩ = 1

(E − T0 − V −Hγ1
)
Q (T−2 + T−1 + T1 + T2) |ψ⟩ , (21)

where last equality is well defined in terms of inverse operator due to the fact that we act in a high-energy state,
according to projection operator, so the absolute value of the lowest eigenvalue |λ| of E−T0−V −Hγ1

stay in vicinity
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of γ1, namely |λ| ∼ γ1. We want to find low-energy effective Hamiltonian, which corresponds to low-energy wave
functions:

|ψ0⟩ = (1−Q) |ψ⟩ . (22)

Inserting it into Eq. (21) we receive:

|ψ⟩ = |ψ0⟩+
1

(E − T0 − V −Hγ1
)
Q (T−2 + T−1 + T1 + T2) |ψ⟩ ,

= |ψ0⟩+ Â |ψ⟩ .
(23)

So let’s divide our perturbed wave function labelled by order of 1
γ1
, namely

∣∣ψ(i)
〉
= ...+O( 1

γi+1 ):∣∣∣ψ(0)
〉
=
∣∣∣ψ(0)

0

〉
, (24)

∣∣∣ψ(1)
〉
=
∣∣∣ψ(1)

0

〉
−
(

1

Hγ1

Q

)
(T1 + T−1)

∣∣∣ψ(1)
0

〉
. (25)

The Wave function is a 4-dimensional vector on spin and zero energy (m = 0) spaces and we will treat it as a
2-dimensional that is block-diagonal on spin space. Consequently Effective Hamiltonian in this case will be:

Hi
eff =

〈ψ(i)
1

∣∣∣H ∣∣∣ψ(i)
1

〉 〈
ψ
(i)
1

∣∣∣H ∣∣∣ψ(i)
2

〉〈
ψ
(i)
2

∣∣∣H ∣∣∣ψ(i)
1

〉 〈
ψ
(i)
2

∣∣∣H ∣∣∣ψ(i)
2

〉 . (26)

In the zeros order effective Hamiltonian has a next form:

H0
eff =

(
1
2 (2wz + (fTMD + u)s0) −kηv3s0

−k†ηv3s0 − 1
2us0

)
(27)

and in first:

H1
eff = H0

eff +
1

2γ1

 (v+ − v−)(|kη|2(v+ + v−)s0 + kηaR,η + k†ηa
†
R,η) −(v+ + v−)

(
(v2

++v2
−)

(v++v−) (k
†
η)

2s0 + k†ηaR,η

)
−(v+ + v−)

(
(v2

++v2
−)

(v++v−) (kη)
2s0 + kηa

†
R,η

)
(v+ − v−)|kη|2 (v+ + v−) s0

 .

(28)
One interesting phenomenon can be extracted from this Hamiltonian – the decay of renormalized Rashba Spin-Orbit

coupling in low energy subspace according to the properties of BBG. Also, that claim was independently received in
the supplementary materials of the work [60].

A.2 Explicit construction of BdG Hamiltonian

We construct the BdG Hamiltonian using the material Hamiltonian in the standard way, accounting for a subtle
aspect arising due to the presence of two valleys, η = ±1, in a material with a hexagonal lattice. Specifically, we
derive Eq. (28) the effective low-energy Hamiltonian Heff,η, which have zero-momentum points at the K and K ′

points, respectively. To formulate the BdG model, we must return to the real zero points after diagonalizing this
Hamiltonian. This can be achieved using the translation operator Uη = exp(iηKx), leading to the relation:∑

η

∫
dk⃗ψ⃗†

η(k⃗)Hv,ηψ⃗η(−k⃗) =
∑
η

∫
dk⃗ψ⃗†

η(ηKx̂+ k⃗)
(
UηHv,ηU

†
η

)
ψ⃗η(ηKx̂− k⃗), (29)

where k⃗ is the 2D momentum vector, ψη(k⃗) is the annihilation operator in the η-valley, Hv,η is the projection of
effective Hamiltonian on to valence band, and the operator Uη acts as:

Uηψ⃗η(k⃗) = ψ⃗η(ηKx̂+ k⃗). (30)
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Where we emphasise that operators are 2-dimensional cause we have two spins at each valley.
To construct the BdG Hamiltonian, we define the Nambu-Gor’kov spinor basis as:

Ψ(k⃗) =


ψ⃗η=1(Kx̂− k⃗)

ψ⃗η=−1(−Kx̂− k⃗)

ψ⃗†
η=1(Kx̂+ k⃗)

−ψ⃗†
η=−1(−Kx̂+ k⃗)

 , (31)

and write the resulting BdG Hamiltonian as:

HBdG =

∫
dk⃗Ψ†(k⃗)


U+Hv,+(k⃗)U

†
+ 0 U−∆̂U+ 0

0 U−Hv,−(k⃗)U
†
− 0 U+∆̂U−

U†
−∆̂

∗U†
+ 0 −U†

+H
†
v,+(−k⃗)U+ 0

0 U†
+∆̂

∗U†
− 0 −U†

−H
†
v,−(−k⃗)U−

Ψ(k⃗). (32)

where ∆̂ = ∆s0 in spin space
Simplifying further, we note the property U†

η = U−η, which allows us to rewrite the Hamiltonian as:

HBdG =

∫
dk⃗Ψ†


U+ 0 0 0
0 U− 0 0

0 0 U†
+ 0

0 0 0 U†
−




Hv,+(k⃗) 0 ∆̂ 0

0 Hv,−(k⃗) 0 ∆̂

∆̂∗ 0 −H†
v,−(−k⃗) 0

0 ∆̂∗ 0 −H†
v,+(−k⃗)



U†
+ 0 0 0

0 U†
− 0 0

0 0 U+ 0
0 0 0 U−

Ψ.

(33)

Thus, we demonstrate that the BdG Hamiltonian in the k = 0 basis can be translated directly to one centred
around the K and K ′ points.

A.3 Spectrum of spin-orbit coupled 2JJ

The sub-gap excitation spectrum can be directly derived in 2JJ systems made from spin-orbit coupled van der
Waals materials under the zero normal scattering limit. This simplification is feasible because, unlike 2D electron
gases in semiconductors, these materials exhibit dominant Ising spin-orbit coupling for small momenta, significantly
simplifying the calculations.
Let’s start with the expansion of our Hamiltonian near the Fermi energy:

H = −ivf,b(kx)∂y (34)

where vf.b is momentum dependent Fermi velocity on branch b = s, l. Thus, we can regularly write BdG Hamiltonian:

H =

(
−ivf,b(kx)∂y ∆(y)

∆∗(y) ivf,b(kx)∂y

)
(35)

where

∆(y) = ∆e−iϕΘ(Ws/2 +Wn − y) + ∆eiθ (Θ(y +Ws/2)−Θ(y −Ws/2)) + ∆eiϕΘ(y −Ws/2−Wn) (36)

is the superconducting order parameter.
Matching of the boundary conditions through the junction gives us the following equation for energy:

cs

(
1

exp (−i (ϕ+ νb))

)
=

(
exp(ike,bWn) 0

0 exp(ikh,bWn)

)

×

 exp
(

iκ−,bWs

2

)
exp

(
iκ+,bWs

2

)
exp (i (νb − θ)) exp

(
iκ−,bWs

2

)
exp (−i (θ + νb)) exp

(
iκ+Ws

2

) 
×

 exp
(
− iκ−,bWs

2

)
exp

(
− iκ+,bWs

2

)
exp (i (νb − θ)) exp

(
− iκ−,bWs

2

)
exp (−i (θ + νb)) exp

(
− iκ+,bWs

2

) −1

×
(

exp(ike,bWn) 0
0 exp(ikh,bWn)

)(
1

exp (i (ϕ+ νb))

)
,

(37)
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where νb = arccosE/∆, ke/h,b = ± E
vf,b(kx)

and κ± = ±i
√
∆2−E2

vf,b(kx)
.

After some simple math transformations, one can obtain the final equation:

sin (νb + ϕ− (ke,b − kh,b) 2Wn) sin(νb)

(
−i cot

(
1

2
Ws(κ−,b − κ+,b)

))
−cos (νb + ϕ− (ke,b − kh,b) 2Wn) cos(νb) = − cos (θ) .

(38)

Solution for β ̸= 0

The corresponding solution for the arbitrary angle of the pads can be obtained by direct rotation of our coordinate
system: {

kx̃ → cos (β) kx ± sin (β) (−i∂y)
−i∂ỹ → ∓ sin (β) kx + cos (β) (−i∂y)

(39)

where ± refers to electrons and holes respectively, it results in the gap closings of the form depicted in Fig. 2. From
such plots, we can understand that we will have no gap for any relative angle (for large β gap closings will occur in
other Fermi pockets). Thus one can conclude that we must have two ”directions” on Pauli matrices for non-trivial
topological superconductivity.

Also, it can be observed that outside the high symmetry point, β = 0, exists minimal energy that we will need to
pay to open a gap in the topological region. This takes place because the branch touching points arise not in zero
energy but shifted to non-zero positive and negative energy with respect to particle-hole symmetry (see Fig. 2(D)).
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