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Abstract

Magneto-optic Kerr effect (MOKE) is a powerful probe of broken time-reversal

symmetry (T ), typically used to study ferromagnets. While MOKE has been observed

in some antiferromagnets (AFMs) with vanishing magnetization, it is often associated

with structures whose symmetry is lower than basic collinear, bipartite order. In

contrast, theory predicts a mechanism for MOKE intrinsic to all AFMs of A-type, i.e.

layered AFMs in which ferromagnetic layers are antiferromagnetically aligned. Here

we report the first experimental confirmation of this mechanism. We achieve this

by measuring the imaginary component of MOKE as a function of photon energy in

MnBi2Te4, an A-type AFM where T is preserved in combination with a translation.

By comparing the experimental results with model calculations, we demonstrate that

observable MOKE should be expected in all collinear A-type AFMs with out-of-plane

spin order, thus enabling optical detection of AFM domains and expanding the scope

of MOKE to few-layer AFMs.

The detection of broken time-reversal symmetry (T ) in quantum materials is of funda-

mental interest and practical relevance. Recent advances in the synthesis and exfoliation of

van der Waals magnets have highlighted the critical role of optical techniques in detecting

T -breaking in samples just a few atomic layers thick [1–9], whose small mass poses a chal-

lenge for bulk probes of magnetism. The magneto-optic Kerr effect (MOKE), which is the

difference in reflectivity for left and right circularly polarized (LCP and RCP) light, is rou-

tinely used for detection of ferromagnetic (FM) order. Which classes of antiferromagnetic

(AFM) order yield a measurable MOKE signal, and the underlying mechanism in each case,

are questions of long-standing fascination. Here we show that MOKE is a more powerful

and general probe of AFM order than previously thought, with implications for research

and applications of both bulk and few-layer AFMs.

Time reversal flips the direction of spin, turning a ferromagnet into its time-reversed

counterpart (Fig. 1a). The two configurations with opposite magnetization M , called do-

mains, enable the storage, processing, and retrieval of information in the form of a classical

0 or 1. Antiferromagnetic (AFM) order is also characterized by degenerate ground states

∗ vsunko@berkeley.edu
† jworenstein@lbl.gov
‡ d.ovchinnikov@ku.edu

2

mailto:vsunko@berkeley.edu
mailto:jworenstein@lbl.gov
mailto:d.ovchinnikov@ku.edu


Bulk ferromagnet

Bulk A-type antiferromagnet

Thin flakes

Even N

MnBi2Te4

Mn

Bi

Te

Odd N

a c

b

d

Figure 1. Schematics of representative magnetic structures. (a) Ferromagnet, where T

reverses the sign of the order parameter; (b) A-type antiferromagnet, where the sign reversal by

T can be undone by a translation by half a magnetic unit cell (S1/2); (c) Thin flakes of an A-type

antiferromagnet: flakes of odd layer number N have a net magnetic moment, while those with even

N do not. (d) Two layers of the MnBi2Te4 crystal and magnetic structure, demonstrating the

A-type AFM phase. Opposite spins are related by S1/2.

related by T , but M = 0 in each domain. In the simplest example neighboring spins are

antiparallel (Fig. 1b). AFMs play an integral role in critical technologies [10, 11], and inter-

est in their properties has continued to grow [12–15]. Zero magnetization can be a feature,

as the absence of the long-range magnetic dipolar interaction leads to enhanced scalability.

A non-zero M induces a difference in the index of refraction of LCP and RCP light,

yielding a mechanism for MOKE that is essentially the same in all FMs. MOKE is therefore

a reliable technique for distinguishing FM domains with high-spatial resolution. In contrast,

domains have been detected through MOKE only in a few AFMs [16–18], and the mechanism

that underlies this signal has been attributed to specific properties of individual compounds.

Here we focus on a class of AFMs in which the time-reversed states are related by trans-

lation by half the magnetic unit cell, S1/2, illustrated in bulk and thin flake forms in Figs. 1b

and c, respectively. We choose this class because the product T S1/2 ensures that the index
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of refraction of LCP and RCP light is the same as they propagate through an unbounded

medium, a condition that at first sight seems to stipulate the absence of MOKE, since it

is the difference of the two indices that causes MOKE in FMs. However, this conclusion is

incorrect: MOKE by its nature involves a bounding surface that breaks T S1/2, unless S1/2

is parallel to the surface. Therefore, T S1/2 imposes no constraints on MOKE at surfaces

that break translational invariance described by S1/2.

We investigate MnBi2Te4, a layered topological AFM with a Néel temperature of 25K [19],

as an example of a T S1/2 - symmetric AFM. Spins in individual Mn layers in MnBi2Te4 are

parallel to each other, and antiparallel to the spins in neighboring layers (Fig. 1d). This

order, called A-type, persists to the surface of MnBi2Te4 [20]. MOKE was recently reported

in the wavelength range of 500 − 1000 nm in thin flakes of MnBi2Te4, in samples with an

odd number of layers (N), which have a net magnetization, and in samples with an even N ,

which do not [21–24]. While symmetry permits MOKE for all N , it does not identify the

underlying mechanism.

Axion electrodynamics associated with topology was proposed as the mechanism for

MOKE in MnBi2Te4 [23, 25]. The discontinuity in the topological Z2 invariant at the

sample/vacuum interface manifests as a quantized surface Hall conductance, which is in-

distinguishable from a quantized trace of the magnetoelectric (ME) tensor in the static

limit [26]. The surface conductance gives rise to a traceful, non-quantized ME tensor above

zero frequency [25, 27]. Optical phenomena associated with a traceful ME tensor (collec-

tively known as axion electrodynamics [28]), provide a mechanism for MOKE [25, 29, 30],

as demonstrated in studies of the non-topological ME Cr2O3 [16].

A distinct mechanism for MOKE in T S1/2 symmetric AFMs was proposed by Dzyaloshin-

skii and Papamichail [31]. They treated the layered AFM as a stack of FMs with alternat-

ing spin direction. The dielectric tensor of each layer is assumed to be the same as in an

unbounded medium with the same FM order, and MOKE arises due to the variation in

dielectric properties as the wave propagates. In this ‘alternating FM’ approach the surface

conductance does not play a special role, in contrast to the axion electrodynamics mecha-

nism. To the best of our knowledge, MOKE arising from the alternating FM effect has not

been experimentally recognized prior to this work.

Below we report measurements of MOKE in ‘infinite’ (∼ 136 nm thick, Fig. S1) layer

MnBi2Te4 as a function of magnetic field, H, and wavelength of the optical probe, λ. We

4



find that non-zero MOKE appears in the M = 0 state, and that its spectrum is quantita-

tively captured by the alternating FM model [31], without invoking axion electrodynamics.

The alternating FM mechanism is allowed in all collinear AFMs whose spins are oriented

perpendicular to the layers, regardless of the number of layers, band topology or symme-

try, opening the door for MOKE studies of a broader class of AFMs than was previously

considered feasible.

THE EXPERIMENT: MAGNETIC FIELD, POSITION AND WAVELENGTH

DEPENDENCE

The complex MOKE angle is defined by the relation, Θ ≡ −iδr/r, where the reflectivities

of incident LCP and RCP light are given by r = r0±δr (the sign and polarization conventions

are defined in the Methods section). Throughout this paper we show measurements of the

imaginary part of Θ, which is known as reflection circular dichroism (RCD). We measure

RCD using a photoelastic modulator to vary the helicity of the incident light at 50 kHz,

using a setup illustrated in Fig. S2. The change in reflectivity synchronous with the helicity

modulation is proportional to RCD (see Methods for details of the experiment).

In Fig. 2a we compare the magnetic field dependence of RCD to that of bulk mag-

netization at 15K, measured on a sample from the same batch. RCD reveals two dis-

continuous features: a jump at HSF ≈ 3.4T and a hysteresis loop with a coercive field

of HC ≈ 1T. The jump corresponds to a spin-flop (SF) transition, illustrated in the

inset, which is also seen in magnetization. The corresponding magnetization increase is

∆MSF ≈ 1.2 (µB/Mn) ≈ 0.4Ms, where Ms = 3 (µB/Mn) is the ordered moment at 15K [32].

The hysteresis loop has no counterpart in bulk magnetization measurements, which find

M = 0 for H < HSF . Therefore, the two non-zero values of RCD at H = 0 correspond to

time-reversed states, each with M = 0. Further evidence for this interpretation is provided

by spatially resolved measurements (Fig. 2b) that reveal spontaneous formation of domains

with positive and negative RCD values in zero field, with distinct structures in different

H = 0 cooldowns.

The existence of two discontinuities in RCD vs. H provides an unusual opportunity to

compare the MOKE spectrum in a phase with M ̸= 0, that is the spin-flop (SF) phase,

and a T S1/2 -symmetric AFM (M = 0) phase in the same material. We measured the
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Figure 2. Magneto-optical measurements of MnBi2Te4. (a) Reflection circular dichroism

(RCD) measured at 525 nm as a function of magnetic field, showing a jump at the spin-flop transi-

tion (HSF ≈ 3.4T) and a hysteresis loop with a coercive field of HC ≈ 1T. A small setup-induced

background contribution has been subtracted (Fig. S5). RCD is compared with bulk magnetization

measurements taken at 15K with the field applied along the crystallographic c-axis (black line).

The inset illustrates the bulk spin-flop transition. (b) Spatially resolved RCD measurements at

H = 0, revealing AFM domain structures that change between cooldowns.

magnetic field dependence of RCD in the photon energy range from 1.34 eV (925 nm) to

3.22 eV (385 nm) (Fig. S6), and extracted RCD spectra in the two phases. In Fig. 3a we

compare the RCD spectrum corresponding to the SF transition with the RCD spectrum

in the AFM phase. The AFM spectrum is half of the difference between RCD at H = 0+

and H = 0−, where H = 0+ and H = 0− denote zero field as approached from positive

and negative fields. The SF spectrum, corresponding to the jump in magnetization across
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Figure 3. Spectroscopic signature of MOKE in antiferromagnetic MnBi2Te4. (a) Mea-

sured RCD spectrum at the spin-flop transition (purple) and at zero field (red), showing distinct

spectral shapes. For each photon energy, we measured the magnetic field dependence of RCD

(Fig. S6). The AFM spectrum is half of the difference between RCD on the downward (H = 0+)

and upward (H = 0−) field sweep, averaged across the hysteresis loop, between ±0.9T. The SF

spectrum is given by ΘSF = Θ(3.4T) − [Θ(3.2T)−Θ(0+)]. The error bars for the H = 0+ mea-

surement represent the standard deviation across this field range. The larger error bars for the SF

spectrum reflect the fact fewer measurements were used to extract the corresponding RCD value

(at H = 3.4T and H = 3.2T). (b) RCD spectra computed from the Lorentz model (Eq. 1, with

parameters from Table S1) for a ferromagnet (purple, schematic in panel c) and two antiferromag-

netic domains (red and blue, schematics in panel d). The ferromagnetic RCD is scaled by a factor

of 0.4 from that calculated for a saturated moment, to be directly comparable to the measured

RCD jump at the spin-flop transition.

the transition, is given by ΘSF = Θ(3.4T)− [Θ(3.2T)−Θ(0+)], because Θ(3.2T) is a sum

of the antiferromagnetic and magnetization contributions, while in the spin flop phase, at

3.4T, there is no antiferromagnetic contribution.

The two spectra are strikingly different, ruling out a small uncompensated bulk ferro-

magnetic moment as a trivial explanation for RCD at H = 0. Further, the fact that the

two spectra are rich in features creates an opportunity to constrain theories: a suitable

theoretical model should simultaneously reproduce both of them.
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LORENTZ MODEL: “INFINITE” AND “FINITE” SAMPLES

The RCD spectrum measured in the SF state is consistent with resonant MOKE in a

FM. Both the magnitude and zero crossing can be reproduced by a Lorentz oscillator whose

resonant photon energy differs for LC and RC polarized light. The corresponding dielectric

function is:

ε±(ω) = ε∞ +
f

(ω0 ± δω)2 − ω2 − iγω
, (1)

where f , ω0, and γ are oscillator strength, resonant frequency, and damping. These param-

eters, together with a background contribution, ε∞, are chosen to reproduce the measured

optical conductivity in the spectral range of interest, reported in Ref. [33]. The good agree-

ment between the measured quantities and those calculated from the Lorentz model is shown

in Fig. S3. Finally, δω, the difference in resonance frequency for LC and RC polarized light,

is chosen to fit the magnitude of the measured RCD. The purple curve in Fig. 3b shows that

the single oscillator model captures the main features of the observed ferromagnetic RCD

spectrum (Fig. 3a).

Our quantitative description of RCD in the ferromagnetic phase of MnBi2Te4 leads us to

consider the alternating FM model for the RCD in its AFM state: a stack of FM layers in

which the sign of δω alternates in neighboring layers. We use the transfer matrix formal-

ism [34], following the approach in Ref. [35], to calculate the reflection coefficient from the

stack. The number of layers is 100, and the thickness of each layer, d = 1.3nm, corresponds

to the separation between spins in MnBi2Te4. The simulated RCD spectra for the two T -

reversed AFM domains (Fig. 3d), are shown in red and blue in Fig. 3b. Remarkably, this

minimal model captures the spectral shape and the magnitude of RCD in the AFM phase of

MnBi2Te4, without introducing free parameters beyond those that describe the FM phase.

In the SI we extend this analysis by using a dielectric function computed from a density

functional theory (DFT) calculation to construct the alternating FM model, and we find

that this approach also yields the correct magnitude of RCD in the AFM phase (Fig. S4).

To the best of our knowledge, this is the first experimental evidence for an RCD arising

from an alternating FM model in an AFM.

Next, we show that the key features of RCD and transmission circular dichroism (TCD)

that are seen in few layer crystals in Ref. [23] can be understood within the same model. We

performed a series of revealing transfer matrix calculations, varying the number of layers
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Figure 4. Dependence of circular dichroism on the number of layers (a, b) Calculated

reflection (RCD) and transmission (TCD) circular dichroism as a function of layer number for even

and odd layer stacks, using the same model and parameters as in Fig. 3. (c, d) RCD and TCD

spectra for 8-layer (8L) and 9-layer (9L) AFM stacks.

while keeping the thickness of individual layers fixed. In Figs. 4(a,b) we plot the calculated

RCD and TCD, respectively, as a function of layer number at fixed photon energy. We

find that both RCD and TCD depend strongly on N if it is odd, but are independent of

N when it is even, consistent with the findings of Ref. [31]. When the slab thickness Nd

far exceeds the optical penetration depth, RCD in even and odd layer samples converge to

the same value, as expected. TCD vanishes for all even layer stacks, a phenomenon that

can be understood from a symmetry perspective: even layer stacks are symmetric under

a product of inversion and time-reversal symmetry, which prohibits circular dichroism in

transmission [23, 36–38].

Further, the dichroism spectra for even and odd layer stacks are strikingly different

(Fig. 4c, d). For N = 8, the RCD spectrum is identical to the spectrum of the bulk AFM

crystal (Fig. 3b), while spectrum for N = 9 resembles that of the bulk SF phase, as M ̸= 0
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for odd layer stacks. The maximum RCD is about three times larger for N = 9 than for

N = 8. However, these calculations assume that samples are suspended in vacuum, which

is not a realistic experimental scenario. The transfer matrix approach allows us to include

the substrate in the calculation of reflectivity [35], and we find that doing so preferentially

suppresses dichroism in odd-layer samples. In Fig. S7 we show that the maximum magnitude

of RCD for samples on sapphire and diamond substrates, used in Ref. [23], is approximately

equal in magnitude for even and odd layer stacks, while they maintain the characteristic

spectral shapes shown in Fig. 4c. We therefore find that the alternating FM model with

realistic parameters captures the main experimental results on N -even and N -odd flakes of

MnBi2Te4 reported in [23], as well as on ‘infinite’ layer flakes reported here.

BILAYER: THE EXACT SOLUTION AND THE PHYSICAL PICTURE

While the numerical results shown in the above section capture the experimental results,

the underlying physics is somewhat mysterious, and poses the following questions: why

does MOKE arise in T S1/2-symmetric AFMs within the alternating FM model, and what

influences its magnitude? Why is its value independent of the (even) number of layers?

Why does TCD vanish? To address these questions, we first consider the analytical solution

for MOKE in a bilayer, and then offer an intuitive physical picture, shedding light on the

experimental, numerical and analytical findings.

We consider a single bilayer of oppositely oriented FMs. Each layer is characterized by the

index of refraction n+δn, where the sign of δn is opposite for the two layers (Fig. 5a). First,

we utilize the transfer matrix approach to reproduce the expressions for the transmission

and reflection coefficients of such a bilayer, derived in Ref. [31]. MOKE in the physically

relevant limit (k0d ≪ 1 and δn ≪ n) is given by

ΘAFM = −k0nd
2δn

n2 − 1
= (−ik0nd)ΘFM , (2)

where ΘFM is the Kerr angle of the corresponding bulk ferromagnet, k0 = ω/c the wavevector

in vacuum, and n the average index of refraction of the two layers. The expression for

arbitrary layer thickness and δn is given in the Supplementary Information.

Eq. 2 showcases the common microscopic origin of the MOKE response of an AFM bilayer

and that of the corresponding ferromagnet, but it also reveals a surprising aspect of the link
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Figure 5. Illustration of the model for MOKE in an antiferromagnetic bilayer. (a)

Schematic representation of a bilayer, consisting of two layers of indices of refraction n1,2 = n± δn

when probed with circularly polarized light. δn is induced by the opposite magnetization in the

two layers, ±Mz. (b,c) Simplified representation of a bilayer, where the layers are replaced by two

infinitesimally thin sheets of conductances G1,2 = G0 ± δG, separated by a dielectric medium of

thickness d and index of refraction n. The propagation-induced differences between fields emitted

from the two sheets cancel in (b) transmission, but not in (c) reflection, leading to vanishing TCD

and non-zero RCD.

between them. It is natural to assume that a T S1/2 - symmetric type-A AFM can exhibit

nonzero MOKE only if strong absorption (governed by the imaginary part of n) leads to

disproportionate sampling of the top layer. However, Eq. 2 shows that this is not correct:

the magnitude of ΘAFM depends on the absolute value of the index, |n|, and is nonzero even

in the absence of dissipation. The phase of n appears in the phase shift between ΘAFM

and ΘFM , which manifests as the difference in the spectrum of RCD between AFM and FM

structures, as seen for example in Fig. 3a.

To gain further insight into the physical mechanism behind the alternating FM scenario,

we analyze a toy model (Fig. 5(b,c)) in which each of the two layers is replaced by an

infinitesimally thin ferromagnetic sheet of optical conductance G1,2, where 1, 2 are layer

indices. The sheets are separated by a non-magnetic medium of thickness d and index of

refraction n. For illustrative purposes we analyze a single reflection from each sheet.

We consider a circularly polarized plane wave propagating in the positive z direction with

amplitude E0. The electric field generates sheet currents,

K1,2 = G1,2E0e
∓ik0nd/2, (3)

where we have taken z = 0 as the midpoint between the sheets for convenience. The currents
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K1,2 radiate, emitting electric fields,

E1,2(z) =
µ0c

2
K1,2e

ik|z±d/2|, (4)

where c is the speed of light and µ0 the vacuum permeability.

The total transmitted electric field, given by the sum of E1(z) and E2(z) for z > d/2, is,

ET (z) = µ0cE0

(
G1 +G2

2

)
eikz = µ0cE0G0e

ikz. (5)

As ET (z) depends only on the average conductance G0, the TCD is zero. The toy model

shows that this is a consequence of cancellation of propagation factors. The incident wave

propagates an additional distance d in the medium beyond layer 1 to induce currents layer

2. However, the wave emitted by layer 1 must propagate through the medium to reach a

given point z > d/2. The total propagation factor, eiknz, for waves transmitted through the

bilayer is the same, and independent of d (Fig. 5b). The sum of fields emitted from the two

sheets therefore depends only on the sum of the currents, G1 +G2.

In contrast, the propagation factors for fields radiated in the−z direction add, rather than

cancel: the incident EM wave travels further to excite current in layer 2 and its radiated field

propagates further before reaching an observer at z < −d/2 (Fig. 5c). The total reflected

electric field is given by,

ER(z) =
µ0cE0

2
e−ik0z

(
G1e

−ik0nd +G2e
ik0nd

)
≈ µ0cE0e

−ik0z (G0 − δGik0nd) ,

(6)

where we used |k0nd| ≪ 1 in the expansion of the exponential. The term proportional to

δG gives rise to ΘAFM .

The toy model for a bilayer identifies the origin of nonzero ΘAFM as the change in the

electric field as it propagates, regardless of whether it is dominated by the real or imaginary

component of n. We see that absorption does not play a special role in generating MOKE.

Further, RCD does not depend on the layer number for even layers (Fig. 4a) because of the

exponential nature of propagation: the ratio of fields in two neighboring layers is exp (ik0nd),

independent of the number of layers. Thus the effects that yield RCD in two atomic layers

and in a semi-infinite AFM crystal are the same. These qualitative features found in the

toy model are retained when multiple reflections are included through the transfer matrix
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approach (Eq. 2, and Fig. 4).

CONCLUSION

In this paper we identify alternating FM layers as the origin of MOKE in an A-type

antiferromagnet with T S1/2 symmetry, therefore providing first experimental confirmation

of the mechanism proposed by Dzyaloshinskii and Papamichail [31]. Within this theory,

ΘAFM is entirely determined by the MOKE response of the ferromagnetic layers that are

the building blocks of the AFM, allowing us to test it directly by tuning MnBi2Te4 across

the spin-flop transition, thus accessing ΘAFM and ΘFM in the same crystal. Based on the

quantitative agreement between the measured RCD spectrum in the AFM phase and the

theoretical prediction based solely on the FM spectrum, we conclude that MOKE observed at

visible and near infrared wavelengths in MnBi2Te4 arises from alternating FM layers, rather

than axion electrodynamics associated with band topology. Axion electrodynamics may still

dominate the MOKE response at terahertz frequencies below the bulk band gap [25, 27, 39,

40], where the topological effects are enhanced, and there are no other optical transitions

that could overwhelm their contribution.

The effect we observe is not limited to MnBi2Te4, and is generically present in A-type

antiferromagnets with spins out of plane. We believe that it has not been recognized ex-

perimentally in part because the signal vanishes when averaged over atomic steps, naturally

present in as-grown bulk crystals. However, optical experiments in van der Waals materials

regularly probe surfaces that are atomically flat across the length scale of a laser beam. We

note that some previous sightings of MOKE in van der Waals AFMs with an even num-

ber of layers were conditionally attributed to extrinsic magnetization [22, 41, 42], given the

widespread conviction that intrinsic MOKE was forbidden by symmetry. While this expla-

nation is certainly plausible, our findings show that intrinsic MOKE in A-type AFMs is

always allowed, and other mechanisms should be considered when ΘAFM cannot account for

the magnitude, or the spectrum, of the observed signal.

Correctly estimating ΘAFM is therefore essential for interpretation of experimental results.

Our work suggests a strategy to do so, both in bulk and thin flakes. In bulk, it is sufficient to

combine measured ΘFM and optical conductivity with the analytical expression for ΘAFM

(Eq. 2). For thin flakes, it is important to consider the role of the substrate, which may
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suppress or enhance observed signals [35]; we suggest the transfer matrix approach as a

convenient way to do so. We note that |ΘAFM | is not generically small compared to the

noise floor of modern experimental setups: it is suppressed with respect to |ΘFM | only by

a factor of |k0nd| = |2πnd/λ|, which is more than an order of magnitude larger than d/λ

suggested by dimensional analysis.

Our findings show that MOKE is a powerful and general tool for investigating T S1/2

symmetric AFMs. In this work we used it to image time-reversed domains, as shown for

in Fig. 2b. Further, the nonzero ΘAFM enabled the discovery that a magnetic field can

select antiferromagnetic domains (Fig. 2a) in such magnets, challenging the conventional

view that antiferromagnets cannot be controlled by external magnetic fields. Uncovering

the mechanism behind field control is beyond the scope of this study, but we note that the

weakened exchange interaction at the surface is a plausible cause [20, 43]. In summary, our

results address fundamental questions concerning the origin of MOKE in AFMs, provide a

strategy for studying and controlling their domains, and elucidate results on exfoliated van

der Waals AFMs.
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METHODS

Complex MOKE: definitions

As discussed in the main text, MOKE is a manifestation of difference in reflectivity

between the light of two circular polarizations. The Jones vectors corresponding to the

circular polarizations are given by:

ê+ =
1√
2

1

i

 , (LCP for kz > 0, RCP for kz < 0) (M1)

ê− =
1√
2

 1

−i

 . (RCP for kz > 0, LCP for kz < 0), (M2)

capturing the fact that the LCP light becomes RCP upon reflection, and vice-versa. It is

convenient to use the ê± basis, rather than the LCP and RCP basis, so that reflection from

an ideal isotropic mirror is captured by the identity matrix.

Vectors and matrices can be transformed between the ê± basis and basis of linear (êx,y)

polarization using the following transformation matrices:

AC→L =
1√
2

1 1

i −i

 , AL→C =
1√
2

1 −i

1 i

 . (M3)

In the ê± basis, the reflection matrix corresponding to circular dichroism is given by:

rC =

r0 + δr 0

0 r0 − δr

 , (M4)

In the êx,y basis the reflectivity matrix is then equal to:

rL =

 r0 rxy

−rxy r0

 =

 r0 −iδr

iδr r0

 . (M5)

The complex Kerr angle is defined as:

Θ =
rxy
r0

= −i
δr

r0
, (M6)

and RCD is the imaginary part of Θ.
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RCD Measurements

The experimental setup is shown in Fig. S2. The cryostat is Quantum Design Opticool,

with a 7T magnet. Most measurements were done with a pulsed laser (output of Light

Conversion Orpheus optical parametric amplifier, seeded by a Carbide laser, repetition rate

300 kHz, pulse duration ∼ 250 fs), focused to a spot of lateral dimensions of ∼ 4µm. The

position dependent measurements (Fig. 2b) were done with a continuous wave laser, with

wavelength 532 nm, corresponding to the photon energy of 2.33 eV, which we found to offer

good signal to noise throughout the studied field range (Fig. 3a). Spatial resolution is

achieved by moving the sample underneath the focused laser spot using Attocube positioners.

Regardless of the laser source, the average power of 1µW reached the sample, the incident

light was vertically polarized, and chopped using a mechanical chopper.

The incident vertical polarization is rotated by 45 deg using a half wave plate. The

next element in the optical path is the photoelastic modulator (PEM) set to a 1/4 wave

modulation, therefore modulating light polarization between linear and circular at 50 kHz.

The light intensity was measured using a Si photo-diode, through the current input of the

Zurich Instruments lock-in amplifier. The intensity was simultaneously demodulated at the

chopper and at the PEM frequencies, yielding measured intensities Ic and IP . Im (Θ) is

found through their ratio as (see SI for a derivation):

Im (Θ) =
IP
Ic

1

πJ1 (π/2)
≈ IP

Ic

1

1.78073
, (M7)

where J1 is the Bessel function of first order. Extracting Im (Θ) through Eq. M7 has the at-

tractive feature that wavelength-dependent reflection and transmission properties of optical

elements, as well as the responsivity of the photodiode, do not influence the measured spec-

trum, since they cancel out in the ratio IP
Ic
. Nonetheless, we took into account the wavelength

dependence of the photodiode responsivity and the transmission though the beamsplitter to

ensure that the power incident on the sample is ≈ 1µW across the spectral range.

Imperfections of optical elements, coupled with the Faraday rotation the cryostat windows

and objective, result in a spurious field- and wavelength- dependent additive background

in the RCD measurements. We measured the background on a Si/SiO2 substrate, and

subtracted it from measurements on MnBi2Te4 (Fig. S5). Since the spectra in Fig. 3a were

obtained through differential measurements, it was not necessary to measure the background
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contribution for each photon energy.

Transfer matrix calculations

The reflection and transmission coefficients for the AFM stack are found numerically

through transfer matrix calculations, following the method detailed in Ref. [35]. This method

offers a computationally convenient way to satisfy boundary conditions on the electric and

magnetic fields at each interface, and captures the propagation through a uniform material

by a phase factor of exp (ink0d), where d is the thickness of the material, n the complex

index of refraction, and k0 = ω/c is the wave vector in vacuum.

We formulate the numerical transfer matrix calculation in the basis of linear polarization.

If the dielectric tensor is diagonal in the basis of circular polarization,

εC =

ε+ 0

0 ε−,

 (M8)

in the basis of linear polarization it is given by:

εL =
1

2

 ε+ + ε− i(ε− − ε+)

−i(ε− − ε+) ε+ + ε−

 . (M9)

This is the form of ε we use for transfer matrix calculations, with ε± given by Eq. 1. The

calculation will return the reflection matrix of the form given by Eq. M5, allowing us to

calculate the complex Kerr angle through Eq. M6, with its imaginary part corresponding to

the reflection circular dichroism. A matrix of similar form is found for transmission.

We can use the same formalism to calculate the reflection and transmission from more

complex structures. For instance, a calculation of reflection from a small N sample sus-

pended in vacuum is unrealistic since samples are necessarily placed on substrates. In

Fig. S7 we compare the reflection of a N = 8 and N = 9 layer sample suspended in vacuum

to the same samples on sapphire and diamond substrates, as was done in experiments in

Ref. [23]. We find that the N = 9 reflection is suppressed more than the N = 8 reflection,

making the magnitude of the even and odd layer RCD very similar to each other.
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Density functional theory

For our density functional calculations of the frequency-dependent dielectric function

for MnBi2Te4, we employ the Vienna ab-initio software package (VASP) [44]. We use the

generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) func-

tional [45]. The Projector-augmented wave (PAW) method [46] with the standard VASP

pseudopotentials is used, and we take Mn: 3d64s1; Bi: 5d106s26p3 and Te: 5s25p4 electrons

as valence. To approximately account for the localized nature of the unpaired d electrons

in Mn, we use the DFT+U method [47] and adopt the rotationally invariant method by

Dudarev et al. [48]. We set U=4 eV on the Mn atoms.

Given that MnBi2Te4 is a layered material, we implement van der Waals corrections, using

the DFT-D3 method of Grimme et al. [49]. We relax the bulk, primitive rhombohedral cell

of MnBi2Te4 using a Gamma-centered mesh of 13×13×5 to sample the Brillouin zone and

a kinetic energy cutoff of 600 eV for our plane-wave basis set. For the structural relaxation,

we neglect spin-orbit coupling (SOC), and enforce ferromagnetic order of the Mn ions using

spin-polarized collinear calculations. We use a Gaussian smearing for the partial occupancies

with a smearing width of 0.01 eV.

To calculate the frequency-dependent dielectric tensor within the independent particle

approximation (that is, neglecting local field effects), we use the method developed by Gajdoš

et al. [50]. For these calculations we include SOC self-consistently and enforce ferromagnetic

ordering with the spin axis perpendicular to the Mn layers. Having first obtained the

ground-state electronic density and corresponding Kohn-Sham states in a self-consistent

DFT calculation, the imaginary part of ε is calculated with these wavefunctions using the

following equation:

ε
(2)
αβ(ω) =

4π2e2

Ω
lim
q→0

1

q2

∑
c,v,k

2wkδ(ϵck − ϵvk − ω)

× ⟨uck+eαq|uvk⟩⟨uck+eβq|uvk⟩∗, (M10)

Here, wk is the weight of point k in the discrete summation over the Brillouin zone, Ω is

the volume of the unit cell, and the indices c and v denote conduction and valence bands

respectively, with ϵc and ϵv being their respective energies at the wavevector k. eα is the

unit vector in Cartesian direction α. To get the real part of the dielectric function we use
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the Kramers-Kronig transformation

ε
(1)
αβ(ω) = 1 +

2

π
P
∫ ∞

0

ω′ε
(2)
αβ(ω

′)

ω′2 − ω2 + iη
dω′, (M11)

Where P is the principal value and η is a Lorentzian broadening. For both the self-

consistent DFT calculation to obtain converged wave functions and evaluation of the dielec-

tric function, we use a 17×17×5 Gamma-centered mesh, and we use 540 bands to ensure

that we have sufficient unoccupied bands for convergence of the summation. We select a

Lorentzian broadening of 0.1 eV.

Crystal Growth, Sample Preparation and Thickness Measurements

MnBi2Te4bulk crystals were grown using a Bi-Te flux, following the previously reported

recipe in Ref. [32]. The magnetization data in fields up to 12T were collected using the AC

option of a Quantum Design physical property measurement system.

In this work, we study thin bulk samples (“infinite” layer) with a thickness of 136 nm,

corresponding to approximately 100 septuple layers. These samples are similar to bulk

crystals and are not air-sensitive, in contrast to atomically thin flakes which can degrade in

air over time [19, 21]. Nevertheless, care has been taken to minimize sample exposure to air

before measurements.

To obtain thin bulk samples with atomically flat surfaces suitable for RCD studies, we

used Scotch tape exfoliation of bulk crystals onto silicon wafers covered with 285 nm SiO2

(we used 3M Magic Scotch Tape). The silicon wafers were pre-treated with RF O2 plasma

(duration: 10 minutes; power: 80 W; O2 gas flow: 10 SCCM) before exfoliation to increase

adhesion of crystals and overall yield. The exfoliation process was performed entirely inside

a glovebox filled with inert argon gas, maintaining O2 and H2O levels below 0.1 ppm.

Once thin bulk samples of suitable dimensions were identified using an optical microscope,

they were transported for loading into the low-temperature cryostat with optical access using

a sealed container filled with argon. Care was taken to minimize air exposure during cryostat

loading. The height of the studied thin bulk sample was measured after RCD measurements

were completed using atomic force microscopy (Asylum Research Cypher S, tapping mode)

in air.
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Figure S1. Optical and atomic force microscopy characterization of thin bulk

MnBi2Te4. (a) Optical micrograph (bright field) of the region of interest. The black rectan-

gle outlines the area where RCD sweeps and maps were taken. The red rectangle shows the area

where the height was measured using atomic force microscopy. (b) Optical micrograph (dark field)

of the same region with a white rectangle demonstrating the area where RCD was measured. (c)

Atomic force microscopy image of the edge of the MnBi2Te4 thin bulk flake used for optical mea-

surements (outlined in the red rectangle in panel (a)). (d) The height profile measured along the

red line in (c) which measures the height of the thin bulk to be 136 nm.
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Figure S2. Optical setup used for reflection circular dichroism (RCD) measurements.

The laser beam is modulated by a mechanical chopper at frequency ωc, and directed toward the

sample via a series of optics which control light intensity and polarization. The first half-wave plate

(HWP1), placed between vertical polarizers P1 and P2, is used to control the intensity. HWP2 sets

the polarization angle to 45◦ with respect to the modulation axis of the photoelastic modulator

(PEM), which modulates the helicity of the beam at ωP = 50 kHz. A flip mirror (FM) directs the

light towards photodiode PD2 before the measurement at each wavelength, to ensure that the same

intensity reaches the sample at each wavelength. The beam is focused onto the sample by a 10x

objective (NA=0.25) that is outside of the cryostat. The reflected light is split by a beam splitter

(BS), and focused onto photdiode PD1. The signals are read through the Zurich Instruments MFLI

lock-in amplifier with two demodulators, at frequencies ωc and ωP . The current from PD1 is read

through the low-noise current input of the LIA, while the current from PD2 is transformed into

voltage by a transimpedance amplifier (TIA), and read through the voltage input of the same LIA.

γ/ω0 f/(ω2
0ε) ω0[eV ] δω[eV ] ε∞/ε

0.424 4.2 2.05 -0.0708 8.25 + 10.9 i

Table S1. Parameters of the Lorentz model (Eq. 1), used for the figures in the main text (Fig. 3b

and Fig. 4).
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Figure S3. Comparison of the experimental data to the Lorentz model. (a) Reflectance

(R), (b) the real part of conductivity (σ1) and RCD of a (c) ferromagnet and (d) antiferromagnet

calculated using the dielectric function described by the Lorentz model (Eq. 1, parameters listed in

Table S1), compared to experimental values. The experimental data for R and σ1 were published

in Ref. [33], while RCD is measured as a part of this work. The FM RCD curve from the model is

multiplied by 0.4, since the measured jump in RCD corresponds to 0.4 of the saturation magneti-

zation value at this temperature. The AFM RCD is calculated using the transfer matrix approach,

assuming that each layer shares the dielectric properties of the bulk FM, with alternating spin

orientation.
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Figure S4. Comparison of the experimental data to the quantities calculated from the

DFT calculation. (a) Reflectance (R), (b) the real part of conductivity (σ1) and RCD of (c) a

ferromagnet and (d) an antiferromagnet calculated using density functional theory, compared to

experimental values. The experimental data for R and σ1 were published in Ref. [33], while RCD

is measured as a part of this work. The DFT calculation is done for the polarized FM ground

state, and the ordered moment is found to be equal to 4.548µB/Mn. To directly compare with the

experimental data we introduce the following scaling: the DFT FM RCD is multiplied by 1.2/4.548,

reflecting the magnitude of the magnetization change at the spin-flop transition at 15K, while the

DFT AFM RCD curve is multiplied by 3/4.548, reflecting the fact that the ordered moment at

15K is 3µB/Mn. The AFM RCD is calculated using the transfer matrix approach, assuming that

each layer shares the dielectric properties of the bulk FM, with alternating spin orientation. The

DFT data in all four panels were rigidly shifted by 300meV.
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Figure S5. RCD background subtraction (a) RCD measured on a non-magnetic Si/SiO2

substrate, as well as RCD measured on MnBi2Te4 on upward and downward field sweeps. (b) The

measured signal with the background subtracted, also shown in Fig. 2a.
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Figure S6. RCD vs field for the range of wavelengths used in Fig. 3a. (a) The measured

RCD vs magnetic field, measured at a range of wavelengths. (b) Same as (a), but with the slope at

H = 0 subtracted for clarity. Setup artifacts contribute a field- and wavelength- dependent back-

ground to these measurements, however they do not impact the extracted values of RCD at H = 0

or across the spin-flop transition, because both are obtained through differential measurements,

that cancel the background effects (see Fig. 3a, and the corresponding caption). Curves are offset

for clarity.
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Figure S7. Comparison of RCD for samples suspended in vacuum and on two sub-

strates, sapphire and diamond. (a) RCD as a function of layer number, for photon energy of

2.15 eV. Odd-layer RCD is significantly suppressed for samples on substrates compared to the ones

suspended in vacuum. (b) RCD spectra for N = 8 and N = 9, showing that samples on substrates

exhibit smaller differences in RCD magnitude for even and odd layer flakes across the spectrum.

Calculation is done using the Lorentz model (Eq. 1), with parameters listed in Table S1. The

sapphire substrate is modeled with an energy independent dielectric constant ε = ε0
(
10 + 10−4i

)
,

and the diamond with ε = ε0
(
5.7 + 10−4i

)
, where we added the small imaginary components to

suppress multiple reflections, which give rise to the oscillatory component of the RCD v.s. energy.

The thickness of the substrates is taken to be 1 cm.
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The analytical solutions

Bulk ferromagnet

The reflectivity matrix of a ferromagnet in the ê± basis is:

rFM
C =

r0 + δr 0

0 r0 − δr

 =

1−n−δn
1+n+δn

0

0 1−n+δn
1+n−δn

,

 . (S1)

where n1,2 = n ± δn are the indices of refraction for ê+ and ê−, that is for LCP and RCP

incident light, respectively. This leads to:

δr =
1

2

(
1− n− δn

1 + n+ δn
− 1− n+ δn

1 + n− δn

)
=

−2δn

−δn2 + n2 + 2n+ 1
(S2)

and

r0 =
δn2 − n2 + 1

−δn2 + n2 + 2n+ 1
, (S3)

yielding the complex Kerr angle (Eq. M6):

ΘFM = (−i)

(
− 2δn

δn2 − n2 + 1

)
≈ −2iδn

n2 − 1
. (S4)

Antiferromagnetic bilayer

We use the transfer matrix method to analytically solve for the reflection and transmission

of an antiferromagnetic bilayer suspended in vacuum (Fig. 5a). The indices of refraction for

ê+ polarization of the two layers n1,2 = n± δn, and n1,2 = n∓ δn for ê−. The thickness of

the individual layers is d, and k0 = ω/c, were ω and c are the frequency and speed of light.

We formulate the calculation in the basis of circular polarization, so that the problem is

diagonal. We find that the transmission circular dichroism vanishes identically. In contrast,

for reflectivity we find:

δr

r0
=

2i δn n (cos (2dk0n)− cos (2dk0δn))

n(−δn2 + n2 − 1) sin (2dk0n) + δn(−δn2 + n2 + 1) sin (2dk0δn)
(S5)

The complex MOKE angle can be found using Eq M6. In the physically relevant limit of

dk0 ≪ 1, δn ≪ n, this expression reduces to
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ΘAFM = (−i)
δr

r0
≈ − 2δn

n2 − 1
(dk0n) = − 2iδn

n2 − 1
(−idk0n) = ΘFM(−idk0n) (S6)

where ΘFM stands for the complex Kerr angle of a bulk ferromagnet described by the n±δn

for ê+.

Photoelastic modulator and the RCD measurement

The time-dependent effect of the photoelastic modulator (PEM) can be captured in the

basis of linear polarization with the following Jones matrix:

JPEM =

 e−
1
4
iπ sin(tωP ) 0

0 e
1
4
iπ sin(tωP )

 , (S7)

where ωP is the angular frequency of polarization modulation. The modulated light is re-

flected from the sample, and focused onto a photodiode. The modulation of total reflectivity

that is synchronous with the polarization modulation is proportional to the imaginary part

of Θ, which can be seen from a Jones matrix calculation, outlined below.

The reflected electric field is given by,

Ex

Ey

 = rL × JPEM × 1√
2

1

1

 , (S8)

where rL is the sample reflectivity expressed in the linear basis. The measured quantity is

intensity,

I = |E|2
[
1

2
(1 + sgn (sin (ωct)))

]
, (S9)

where the square wave term in the square brackets accounts for the modulation by the

mechanical chopper at frequency ωc, and |E| is the absolute value of the reflected electric

field. Keeping only the first term in the Fourier transform of the square wave, we have:

I = |E|2
[
1

2
+

2

π
sin (ωct)

]
. (S10)

To calculate |E|2, we use Eqs. M5, S7 and S8, and find:

|E|2

|r0|2
= 1 +

∣∣∣∣rxyr0
∣∣∣∣2 + 2 Im

(
rxy
r0

)
sin

(
1

2
π sin (ωP t)

)
≈ 1 + 4J1

(π
2

)
Im (Θ) sin (ωP t) , (S11)
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where J1 (π/2) is the Bessel function of the first kind. In the last step we used the Jacobi-

Anger expansion, and omitted the quadratic term in rxy/r0. The key point is that this signal

contains information on Im (Θ).

The intensity can be expressed as:

I

|r0|2
=

(
1 + 4J1

(π
2

)
Im (Θ) sin (ωP t)

)[
1

2
+

2

π
sin (ωct)

]
(S12)

=
1

2
+

2

π
sin (ωct) + 2J1

(π
2

)
Im (Θ) sin (ωP t) +

8

π
J1

(π
2

)
Im (Θ) sin (ωP t) sin (ωct). (S13)

We simultaneously demodulate the measured intensity at ωc and ωP using a lock-in

amplifier, yielding currents Ic and IP , respectively. We find:

IP
Ic

= πJ1

(π
2

)
Im (Θ) , (S14)

or, equivalently,

Im (Θ) =
IP
Ic

1

πJ1 (π/2)
≈ IP

Ic

1

1.78073
. (S15)

10


	Universal Kerr effect in A-type antiferromagnets
	Abstract
	The experiment: Magnetic field, position and wavelength dependence
	Lorentz model: ``infinite" and ``finite" samples
	Bilayer: the exact solution and the physical picture
	Conclusion
	Acknowledgments
	References
	Methods
	Complex MOKE: definitions
	RCD Measurements
	Transfer matrix calculations
	Density functional theory
	Crystal Growth, Sample Preparation and Thickness Measurements

	Supplementary Information
	The analytical solutions
	Bulk ferromagnet
	Antiferromagnetic bilayer

	Photoelastic modulator and the RCD measurement



