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We propose the surface of topological superconductors as a platform for realizing two-dimensional
flat bands, where electron interactions play a crucial role. The surface flat bands originate from
topological features supported by two key mechanisms: (1) a trivial Chern number prevents the
zero-energy states from merging into the continuum of the bulk spectrum, thereby ensuring their
confinement within the superconducting gap; and (2) weak spin conservation allows the gap function
to exhibit phase winding. As a consequence, the surface exhibits a remarkably high density of states
at nearly zero energy. Such surface states are likely to be realized in the candidate topological
superconductor UTe2. Our results provide important insights into the interpretation of recent
Josephson STM experiments on UTe2.

Introduction.—Two-dimensional (2D) flat-band sys-
tems have garnered significant attention as ideal
platforms for exploring strong correlation effects [1–
3]. Moiré systems such as twisted multilayer graphene
and transition metal dichalcogenides, provide prominent
examples in which electron correlations within narrow
bands outweigh kinetic energy, giving rise to unconven-
tional superconductivity, correlated insulating phases,
and various topological phenomena [1, 2, 4–7]. In this
Letter, we propose that topologically originated flat
bands can emerge on specific surfaces of point-nodal
spin-triplet superconductors, and discuss their potential
realization in the candidate spin-triplet superconductor
UTe2 [8–10].

On the surface of a topological superconductor,
zero-energy states—known as surface Andreev bound
states—emerge as a hallmark of its topological na-
ture [11–17]. This topological character is fundamentally
linked to the odd-parity symmetry of the gap function,
which satisfies the Andreev condition ∆(k) = −∆(−k).
Consequently, observing surface Andreev bound states is
a powerful probe for identifying the pairing symmetry of
unconventional superconductors.

The presence of surface Andreev bound states directly
influences the surface density of states (sDOS). However,
such states do not necessarily lead to a distinctive
zero-bias peak in the sDOS. For instance, in point-nodal
superconductors, zero-energy flat bands connecting the
point nodes—also known as Fermi arcs—can emerge on
the surface, yet they do not produce a zero-bias peak in
the sDOS [18, 19]. Notable exceptions include high-Tc

cuprate superconductors [12, 20–22] and odd-parity
superconductors derived from topological insulators [23–
26]. In the former, the combination of bulk line nodes in
dx2−y2-wave pairing and the formation of Andreev bound

FIG. 1. Quasiparticle energy bands on the (011) plane for the
superconducting B3u state. A substantial number of Andreev
bound states form a 2D flat-band structure—referred to as the
“Andreev flatland”—within the superconducting gap ∆. The
red cones indicate the point nodes of the bulk superconducting
gap.

states on the (110) surface lead to 2D flat bands, resulting
in a sharp zero-bias peak in the sDOS. In the latter, the
dispersion of the gapless surface Andreev bound states is
intertwined with that of the surface Dirac cone inherited
from the parent topological insulator, forming a smooth
spectral connection between them. This continuous
linkage enhances the sDOS at zero energy. Since UTe2
is believed to be either a point nodal or a fully gapped
superconductor, and its normal state is topologically
trivial, these mechanisms are not directly applicable.

In this Letter, we reveal the topological origin of
surface Andreev bound states that form a 2D flat-band
structure extending over the surface Brillouin zone (BZ),
which we refer to as the “Andreev flatland”. As a
concrete example, we examine the (011) surface of
the superconducting B3u state, which is one of the
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possible pairing states proposed for the topological
superconductor candidate UTe2. The formation of the
Andreev flatland relies on two key factors: the cylindrical
Fermi surface and the orientation of the (011) surface.
The resulting surface states are protected by two distinct
topological mechanisms: (1) Nontrivial Berry phases
are defined at multiple high-symmetry points in the
(011) surface BZ, and the corresponding zero-energy
states remain confined within the superconducting gap
due to the triviality of the mirror Chern number.
This scenario can be viewed as a special case of the
Thouless pump mechanism, where a nontrivial phase
winding characterized by a Chern number guarantees
the emergence of surface states that connect bulk bands
with different topological characters [27–29]. (2) Weak
spin conservation intrinsic to the B3u state, allows the
gap function to exhibit nontrivial phase winding, leading
to additional surface states protected by a 1D winding
number. Owing to these mechanisms, the Andreev
flatland gives rise to a pronounced zero-bias peak in the
sDOS.

Scanning tunneling microscopy (STM) and spec-
troscopy (STS) are powerful techniques for probing the
sDOS. Recent advances in Josephson STM, which fea-
tures a superconducting tip, have enabled high-resolution
spectroscopy of low-energy excitations on superconduct-
ing surfaces [30–34]. Josephson STM has recently been
applied to UTe2, where the tunneling current is primarily
governed by Andreev reflection processes [35–37]. In
Andreev spectroscopy, electrons and holes from UTe2
tunnel into the s-wave superconductor tip and form
Cooper pairs, and vice versa. However, interpreting
the differential conductance (dI/dV ) spectra in Andreev
spectroscopy remains challenging, especially in the
context of unconventional superconductivity. In this
work, we analyze the tunneling current in a point-contact
geometry between UTe2 and an s-wave superconducting
tip, focusing on the role of Andreev reflections. In the
low-bias regime, the dI/dV characteristics are directly
determined by the convolution of the sDOS of the
superconducting sample. Finally, by comparing our
theoretical results with recent STM/STS experiments
using an Nb superconducting tip [36, 37], we discuss the
possible realization of the Andreev flatland on the surface
of UTe2.

Minimal Model.— We begin by describing a minimal
model Hamiltonian for UTe2. This compound crystallizes
in a body-centered orthorhombic lattice with the point
group D2h. The geometry of the Fermi surface plays
a crucial role in realizing topological superconductivity.
Recent de Haas-van Alphen experiments have observed
Fermi surfaces, which consist of two cylindrical sheets—
one electron-like and one hole-like—extending along the
kz-direction [38, 39]. To capture the essential features,
we consider a tight-binding model on a simple orthogonal
lattice with a Kramers-degenerate spin degree of freedom.

FIG. 2. (a) A naturally cleavable (011) plane. (b) Cylindrical
Fermi surface elongated along the kz-axis, plotted in the
rotated coordinate system (kx, k+, k−), where the kykz-plane
is rotated by π/4 around the kx-axis. (c) Plot of the kx = 0
plane in the first Brillouin zone (shaded area), with the Fermi
surface shown as orange curves. k♯i (i = 1 ∼ 4) denotes
the time-reversal-invariant momenta (TRIMs). Nontrivial
Berry phases can be defined along one-dimensional paths in
k+ ∈ [−2π, 2π], centered at Γ = (kx = 0, km = 0) and
M = (kx = 0, km = π). Each path connects a pair of TRIMs
lying along the k+ direction. (d) Fermi surface plots at km = 0
(solid curves) and km = ±π (dashed curves).

The normal-state Hamiltonian is given by HN(k) =
2t1 cos kx + 2t2 cos ky + 2t3 cos kz − µ. To reproduce the
cylindrical Fermi surface shown in Fig. 2(b), we set the
parameters as t1 = −1.0, t2 = −1.0, t3 = 0.25, and
µ = −2.5. Although this minimal model is adopted for
clarity, we have verified that our main results remain
robust against moderate variations in the parameters, as
well as in more realistic models that incorporate orbital
degrees of freedom, detailed Fermi surface topology, and
staggered Rashba spin-orbit coupling (SOC) arising from
local inversion symmetry breaking [40]. As demonstrated
in the following, the cylindrical geometry of the Fermi
surface plays a particularly crucial role.

The gap function for spin-triplet Cooper pairs is
described by the d-vector: ∆̂(k) = d(k) · σiσy. The
point group D2h allows four odd-parity irreducible
representations:

dAu(k) = (Cx sin kx, Cy sin ky, Cz sin kz)
T, (1)

dB1u(k) = (Cx sin ky, Cy sin kx, Cz sin kx sin ky sin kz)
T, (2)

dB2u(k) = (Cx sin kz, Cy sin kx sin ky sin kz, Cz sin kx)
T, (3)

dB3u(k) = (Cx sin kx sin ky sin kz, Cy sin kz, Cz sin ky)
T, (4)

where aT denotes the transpose of a vector a. The Au

state corresponds to a fully gapped superconductor. The
B1u state is also fully gapped, due to the absence of a
Fermi surface along the kz axis. In contrast, the B2u and
B3u states are Dirac superconductors with point nodes
along the kx and ky axes, respectively.

In this study, we focus on the (011) surface as
illustrated in Fig. 2(a). To facilitate the analysis, we
introduce a rotated coordinate system (x, r+, r−), where
the yz-plane is rotated by π/4 around the x-axis. The
corresponding rotated momenta are defined as k+ =
ky + kz and k− = −ky + kz. Since the (011) surface
is perpendicular to the r+ direction; the momenta kx
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FIG. 3. (a) Quasiparticle energy bands for the B3u state
with the parameters Cx = 0.0, Cy = 0.05, and Cz = 0.05.
∆UTe2 is set to 0.05. The inset shows the momentum path
in the surface BZ depicted in the main panel. A zero-energy
flat band appears along the Γ−X and R −M lines, while a
nearly zero-energy flat band emerges along the M − Γ line.
(b) Density of states for surface (red) and bulk (black). The
Andreev flatland exhibits a prominent zero-energy peak.

and k− are conserved. Figures 2(b-d) show the BZ in the
rotated coordinate frame.

Flatland and its Topological Origin.— In this section,
we mainly consider the B3u state with the parameters set
to Cx = 0, Cy = 0.05, and Cz = 0.05. We diagonalize
a slab system with the (011) surfaces. Figure 3(a) shows
the quasiparticle energy spectrum along the symmetric
path Γ(0, 0) − X(π, 0) − R(π, π) − M(0, π) − Γ, where
(kx, km) represents the momenta in the surface BZ.
Remarkably, we observe the emergence of a zero-energy
flat band along the Γ − X and R − M lines, as well
as an almost flat band near zero energy along the
M − Γ line. These surface Andreev bound states extend
across the 2D surface Brillouin zone, forming a nearly
flat-band structure, referred to as the Andreev flatland,
as illustrated in Fig. 1.

We compute the sDOS using the recursive Green’s
function method [41, 42]. The smearing factor δ, which
corresponds to the resolution of the energy, is set to δ =
0.2∆UTe2 , where ∆UTe2 = 0.05. Note that ∆UTe2 serves
as a prefactor in the d-vector, and does not represent
actual superconducting gap magnitude. As shown in
Fig. 3(b), a pronounced zero-energy peak in the sDOS
appears as a result of the Andreev flatland. In the
supplementary material, we also present the quasiparticle
energy bands and sDOS for the Au, B1u, and B2u states,
which exhibit surface flat bands along the M−Γ line, but
no sharp zero-energy peak is observed in these states [40].
We emphasize that the presence of flatness along a 1D
line only, which may arise from gap symmetry, does not
necessarily lead to a zero-energy peak in the sDOS.

Indeed, the 2D flat band shown in Fig. 3(a) has
a topological origin. To clarify this point, we first
discuss the nearly zero-energy flat band along the M −Γ
direction, which emerges as a direct consequence of
the cylindrical Fermi surface geometry. The non-chiral
B3u superconducting state belongs to class DIII in the
Altland-Zirnbauer classification [43]. Since the B3u state
is a nodal superconductor with point nodes along the

kx-axis, a 3D topological invariant is not well-defined.
Instead, its topological properties must be characterized
in terms of lower-dimensional topological invariants or
crystalline symmetries.

Among these, a central role is played by a Berry phase,
a Z2 topological invariant defined along the closed loops
in momentum space. Specifically, we consider loops
along k+ ∈ [−2π, 2π] at two high-symmetry momentum
points—the Γ and M points—as illustrated by the
dashed lines in Fig. 2(c) [44]. The Berry phase along
each loop is determined by the parity of the number
of Fermi surfaces that intersect the loop between two
time-reversal-invariant momenta, denoted k♯i. When
the number of intersecting Fermi surfaces is odd (even),
the Berry phase is nontrivial (trivial) [13, 14]. As a
consequence, topologically protected zero-energy states
appear at both the Γ and M points. Notably, this type of
topological protection is unique to the (011) surface. On
high-symmetry surfaces such as (100), (010), and (001),
an analogous Berry phase structure does not arise.

At the same time, the (011) surface preserves mirror
reflection symmetry with respect to the yz plane. On
the mirror-invariant plane kx = 0, the Hamiltonian can
be block-diagonalized according to the eigenvalues of
the mirror symmetry operator. As a result, a mirror
Chern number can be defined for each mirror subsector.
However, this mirror Chern number vanishes due to the
quasi-1D nature of the cylindrical Fermi surface on the
kx = 0 plane. Consequently, the zero-energy states at the
M and Γ points cannot be connected to the continuum of
bulk spectrum in the absence of a Thouless pump. This
implies that the nearly zero-energy flat band along the
M − Γ line is topologically protected by the triviality of
the mirror Chern number.

The origin of another set of zero-energy flat bands
along the Γ − X and R − M lines lies in a weak spin
conservation intrinsic to the B3u state. Although these
states are not topologically protected in the strict sense,
the presence of in-gap states (not necessarily at zero
energy) can still be robust, as we will discuss in the next
section. When the dx component vanishes (Cx = 0),
the gap function can be diagonalized by a spin rotation,
yielding ∆̂ = diag(dz + idy, − dz + idy). This form
reveals spin conservation, where the spin quantization
axis is along the x-direction. If we consider only up-spin
Cooper pairs, the gap function reduces to

∆↑↑ ∝ eiπ/4 sin
k+
2

cos
k−
2

− e−iπ/4 cos
k+
2

sin
k−
2
. (5)

Within the up-spin subspace, we can define a winding
number w(kx, km) associated with the chiral symmetry
along the 1D path k+ ∈ [−2π, 2π] as a function of kx and
km. This winding number can be evaluated using Fermi
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FIG. 4. (a) Quasiparticle energy bands for the B3u state with
parameters Cx = 0.05, Cy = 0.05, and Cz = 0.05. ∆UTe2

is set to 0.05. The dx component breaks spin conservation,
resulting in a gap opening in the zero-energy flat band.
(b) Surface density of states as a function of Cx.

surface formula [15]

w =
1

2

∑

EN (k+)=0

sgn[∆↑↑]sgn[∂k+
EN ]. (6)

As shown in Fig. 2(d), along the Γ − X line (km = 0),
the Fermi surface is symmetric concerning k+, and the
gap function ∆↑↑ ∝ sin(k+/2) is an odd function of k+.
Consequently, the winding number is w = 1 whenever
the 1D k+ path crosses the Fermi surface. Similarly, the
winding number is w = 1 along the R−M .

These two types of topologically protected Andreev
bound states—those stabilized by the triviality of
the mirror Chern number and those protected by
the winding number associated with accidental spin
degeneracy—jointly contribute to the formation of the
2D Andreev flatland.

Spin Flipping Effect Due to the dx Component.— As
discussed in the previous section, the zero-energy flat
bands along the Γ − X and R − M lines arise from
spin conservation resulting from the absence of the dx
component. The presence of a dx component violates
spin conservation, leading to spin flip. Here, we examine
the stability of the Andreev flatland against a finite dx
component. Figure 4(a) shows the quasiparticle energy
spectrum for the B3u state with pairing parameters set to
Cx = 0.05, Cy = 0.05, and Cz = 0.05. The zero-energy
flat bands that previously existed in the Γ−X and R−M
lines in Fig. 3(a) are now gapped out. As a result of spin
flipping, the sDOS exhibits a maximum at finite energy,
corresponding to van Hove singularities of surface states,
as shown in Fig. 4(b). Nevertheless, although the flat
bands are lifted from zero energy, a substantial number of
surface states remain within the superconducting gap. In
this sense, weak spin conservation along the x-direction
allows Andreev flatland to remain robust. The extent to
which these states stay close to zero energy depends on
the specific model. However, as long as the dx component
remains sufficiently small—comparable to the energy
resolution—a zero-energy peak in the sDOS continues to
be present.

Effect of Spin-Orbit Coupling.— Although our starting

FIG. 5. Normalized differential conductance (dI/dV ) of a
point contact between UTe2 and an s-wave superconductor.
The superconducting state in UTe2 corresponds to the (a) Au,
(b) B1u, (c) B2u, and (d) B3u representations, respectively.
The s-wave superconducting gap is set to ∆s = 2∆UTe2 .
The color bar represents the amplitude of tunneling matrix
element T . A prominent zero-bias peak, comparable in height
to the coherence peak at eV = ∆s, emerges due to the
presence of Andreev flatland in the B3u case.

model assumes Kramers spin degeneracy, the effects
of atomic SOC and staggered Rashba SOC—arising
from local inversion symmetry breaking at the uranium
sites—are effectively taken into account. Therefore, the
Andreev flatland remains robust even in the presence of
SOC. In the Supplemental Material [40], we explicitly
demonstrate that the Andreev flatland persists in a
two-orbital model that includes staggered Rashba SOC.

Andreev Current Spectroscopy in UTe2.— UTe2 is
widely recognized as a spin-triplet p-wave supercon-
ductor, as suggested by its distinctive properties:
exceptionally high upper critical fields [8–10], multiple
superconducting phases induced by pressure and mag-
netic fields [45–51], and a minimal reduction in the NMR
Knight shift [52, 53]. A central topic is the nature of its
pairing symmetry, which governs low-energy excitations
and topological properties. Various experimental
studies [52–59] and theoretical works [60–68] have been
conducted to elucidate the pairing symmetry. Despite
these extensive efforts, the issue remains unresolved.
Recently, STM/STS experiments were performed on the
naturally cleavable (011) surface of UTe2, using both a
normal-metal tip [35, 54, 69–72] and a superconducting
tip [35–37]. In particular, the use of superconducting tips
has enabled high-resolution measurements of low-energy
features. Remarkably, a sharp zero-bias peak was
observed, comparable in magnitude to the coherence
peaks of the superconducting tip [36, 37].

To investigate recent STM/STS experiments using an
s-wave superconducting tip, we compute the tunneling
current across a point contact between an s-wave



5

superconductor and each of the possible irreducible rep-
resentations proposed for UTe2. The total Hamiltonian is
given byH = HUTe2+Hs−wave+HT , where the tunneling

term is expressed as HT = T
∑

k,q c
†
kcq + h.c.. Here,

T represents the tunneling matrix, and ck (cq) denotes
the electron annihilation operator for UTe2 (the s-wave
superconducting tip). Since tunneling occurs through
a point contact, momentum does not conserve, and the
tunneling matrix is taken to be momentum-independent.
The tunneling current, defined as I(V ) = e⟨ṄUTe2⟩, is
evaluated by perturbation theory using Keldysh Green’s
function formalism [73]. The details are described in the
Supplementary Material [40].

The tunneling current consists of three contributions.
The first is the single-particle tunneling, which vanishes
at low bias (eV < ∆s) due to the absence of available
quasiparticle states in the s-wave superconducting
tip. The second contribution arises from Cooper pair
tunneling, which is either absent or highly suppressed
due to the spin-space orthogonality between spin-triplet
and spin-singlet superconductors [74, 75]. The third
and dominant contribution is Andreev tunneling between
the surface Andreev bound states of the topological
superconductor and the Cooper pairs of an s-wave
superconductor. In this process, electrons and holes
in the surface Andreev bound states of the topological
superconductor are converted into Cooper pairs in the
s-wave superconductor and vice versa.

We now present the normalized differential conduc-
tance, dI/dV , calculated using Eq. (S22) in Supplemental
Material [40], which incorporates tunneling processes to
all orders, as shown in Fig. 5. In these calculations,
the s-wave superconducting gap is set to ∆s =
2∆UTe2 . Remarkably, we observe an exceptionally sharp
zero-bias peak in the B3u state, with a magnitude
comparable to that of the coherence peaks of the s-wave
superconducting tip. This dI/dV spectrum is in excellent
agreement with recent experimental observations [36, 37].
To gain qualitative insight into the behavior near zero
bias, we derive the expression for the Andreev tunneling
current in the weak-coupling limit:

I(V ) =
4e

ℏ
T 4π3N2

s

∫ 2eV

0

dE ρ(E − 2eV )ρ(E), (7)

where Ns represents the normal-state density of state
at the Fermi level of the s-wave superconducting tip,
and ρ(E) denotes the sDOS in the superconducting
sample. Notably, the Andreev tunneling current
originates from a fourth-order perturbation process in
the tunnel Hamiltonian as reflected in T 4 dependence,
and it is independent of the s-wave superconducting gap
∆s. Consequently, the appearance of a zero-bias peak
serves as a direct signature of the Andreev flatland.
Importantly, such a pronounced zero-bias peak in the
(011) surface is unique to the B3u state. Thus, these
results support the realization of the B3u pairing state

in UTe2. However, it should be noted that no zero-bias
peak has been reported in STM/STS experiments using
normal-metal tips [36, 37], even though the presence
of the Andreev flatland is expected to produce a
similar signature regardless of the tip type. This
discrepancy underscores the need for a more careful and
comprehensive examination of the origin of the zero-bias
peak and underlying pairing symmetry in UTe2.

Conclusion.— Motivated by the observation of a
pronounced zero-bias peak in STM/STS experiments
using an Nb superconducting tip, we have investigated
Andreev bound states on the (011) surface of UTe2. In
the superconducting B3u state, an Andreev flatland—a
nearly flat band state within the superconducting
gap—emerges, giving rise to a prominent zero-energy
peak in sDOS. The experimental observation of a
zero-bias peak in UTe2 strongly suggests the presence
of the Andreev flatland and, consequently, supports the
realization of theB3u pairing state. However, the absence
of a zero-bias peak in experiments using a normal-metal
tip calls for further theoretical and experimental studies.

Although our discussion has focused on UTe2, the
underlying model is broadly applicable. The formation
of the Andreev flatland is primarily attributed to the
cylindrical geometry of the Fermi surface. In particular,
the geometry allows for multiple Berry phases to arise
on specific surfaces. At the same time, the trivial mirror
Chern number—also a consequence of the cylindrical
geometry—prevents the zero-energy states, protected by
the Berry phases, from merging into the continuum
of the bulk spectrum. Importantly, this mechanism
for in-gap state formation is not unique to the B3u

state. Even in the fully gapped Au state, although a
zero-bias peak does not appear in the sDOS, isolated
in-gap states are still present on the (011) surface.
Similar features can also arise in the B1u and B2u,
depending on the surface orientation. A natural direction
for future work is to generalize these results to other
Fermi surface geometries and topological symmetry
classes. Furthermore, strong correlation effects in flat
bands on topological superconducting surfaces present
a particularly intriguing avenue for further exploration.
The surface of a topological superconductor is not a
purely 2D system; rather, it constitutes an anomalous
surface—one that inherits the Bogoliubov quasiparticles.
Interaction-induced gapping without symmetry breaking
could potentially give rise to new classes of topologically
ordered phases, distinct from those realized in purely 2D
electron systems [76].
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bands, Nat. Phys. 16, 725 (2020).

[2] E. Y. Andrei and A. H. MacDonald, Graphene bilayers
with a twist, Nat. Mater. 19, 1265 (2020).
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[31] J. Šmakov, I. Martin, and A. V. Balatsky, Josephson
scanning tunneling microscopy, Phys. Rev. B 64, 212506
(2001).

[32] M. Ternes, W.-D. Schneider, J.-C. Cuevas, C. P. Lutz,
C. F. Hirjibehedin, and A. J. Heinrich, Subgap structure
in asymmetric superconducting tunnel junctions, Phys.
Rev. B 74, 132501 (2006).

[33] M. T. Randeria, B. E. Feldman, I. K. Drozdov, and
A. Yazdani, Scanning Josephson spectroscopy on the
atomic scale, Phys. Rev. B 93, 161115 (2016).

[34] W. Ko, E. F. Dumitrescu, and P. Maksymovych,
Statistical detection of Josephson, Andreev, and single



7

quasiparticle currents in scanning tunneling microscopy,
Phys. Rev. Res. 3, 033248 (2021).

[35] Q. Gu, J. P. Carroll, S. Wang, S. Ran, C. Broyles,
H. Siddiquee, N. P. Butch, S. R. Saha, J. Paglione, J. S.
Davis, et al., Detection of a pair density wave state in
UTe2, Nature 618, 921 (2023).

[36] Q. Gu, S. Wang, J. P. Carroll, K. Zhussupbekov,
C. Broyles, S. Ran, N. P. Butch, S. Saha, J. Paglione,
X. Liu, et al., Pair Wavefunction Symmetry in
UTe2 from Zero-Energy Surface State Visualization,
arXiv:2501.16636 (2025).

[37] S. Wang, K. Zhussupbekov, J. P. Carroll, B. Hu,
X. Liu, E. Pangburn, A. Crepieux, C. Pepin, C. Broyles,
S. Ran, et al., Imaging Odd-Parity Quasiparticle
Interference in the Superconductive Surface State of
UTe2, arXiv:2503.17761 (2025).

[38] D. Aoki, H. Sakai, P. Opletal, Y. Tokiwa, J. Ishizuka,
Y. Yanase, H. Harima, A. Nakamura, D. Li, Y. Homma,
Y. Shimizu, G. Knebel, J. Flouquet, and Y. Haga, First
Observation of the de Haas-van Alphen Effect and Fermi
Surfaces in the Unconventional Superconductor UTe2, J.
Phys. Soc. Jpn. 91, 083704 (2022).

[39] A. Eaton, T. Weinberger, N. Popiel, Z. Wu, A. Hickey,
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T. Haidamak, G. Bastien, V. Sechovský, A. J. Hickey,
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In this Supplemental Material, we present: (1) the topological invariants and surface Andreev bound states for all
possible irreducible representations, including Au, B1u, and B2u; (2) the differential conductance spectra (dI/dV )
for all possible irreducible representation; (3) a demonstration of the presence of the Andreev flatland using a more
realistic model of UTe2; and (4) a detailed description for tunneling Hamiltonian approach using Keldysh Green’s
function formalism.

S1. TOPOLOGICAL INVARIANTS AND SURFACE ANDREEV BOUND STATES

In this section, we present surface Andreev bound states and their topological origins for the Au, B1u, and B2u

states. Figure S1 shows the quasiparticle energy bands and density of states (DOS) for all possible irreducible
representations.

The Au state

On the (011) surface, the topological superconducting properties of the Au state are similar to those of the B3u

state. In particular, since the dx component vanishes in the kx = 0 plane for both states, the Au and B3u states differ
only in the momentum dependence of their dy and dz components. Therefore, although there is some overlap with
the discussion of the B3u state in the main text, we will carefully describe the topological superconducting properties
of the Au state in the following.

The fully gapped Au state is a candidate for a topological superconducting phase. This state preserves time-reversal
symmetry and particle-hole symmetry, placing it in class DIII of the Altland-Zirnbauer classification. A 3D winding
number can be defined as a strong topological invariant. However, it remains trivial as long as the Fermi surface
is a quasi-2D cylindrical shape. Thus, for the Au state—similar to the B3u state—weak or crystalline topological
invariants play a crucial role in the emergence of Andreev bound states.

Figure S1(a) shows the quasiparticle energy bands for the Au state. Zero-energy states appear at the high-symmetry
momentum points Γ and M , originating from a nontrivial Berry phase—similar to those in the B3u state. As
understood from the Fermi surface criterion, a nontrivial Berry phase can be defined for all odd-parity irreducible
representations. In addition to the Berry phase, a mirror Chern number can be defined since the kx = 0 plane
corresponds to the mirror plane of Myz. However, the mirror Chern number vanishes due to the quasi-1D nature of
the Fermi surface on the kx = 0 plane. This vanishing mirror Chern number prevents the zero-energy states at the
Γ and M points from merging into the continuum of the bulk spectrum. As a result, a nearly zero-energy Andreev
bound state appears within the gap along the M − Γ line.

Figure S1(e) shows the surface DOS for the Au state. Reflecting the presence of Andreev bound states confined
within the gap along the M − Γ direction, the DOS exhibits a dome-like structure inside the superconducting gap.
Unlike in the B3u state, the Andreev bound states in the Au state exhibit dispersion along the kx direction, as
evidenced by the surface Dirac cone along the Γ−X line, and hence, no sharp peak appears. The broad split peaks
indicate the presence of the van Hove singularities along the M − Γ direction.

The B1u and B2u states

The B1u state is a fully gapped superconducting state since the cylindrical Fermi surface is opened along the kz
axis. Figure S1(b) shows the quasiparticle energy bands for the B1u state. Unlike the Au state, it exhibits a perfectly
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FIG. S1. (a-d) Quasiparticle energy bands for the (a) Au, (b) B1u, (c) B2u, and (d) B3u states. The inset in (a) shows the
path in the surface Brillouin zone along which the bands are plotted. For the Au state, nearly zero-energy Andreev bound
states appear along the M − Γ line. A trivial mirror Chern number prevents these states from merging smoothly into the
continuum bands. For the B1u and B2u states, zero-energy Andreev flat bands emerge along the M −Γ line, protected by one-
dimensional (1D) winding number associated with Myz chiral symmetry. The B3u state hosts both nearly zero-energy Andreev
bound states protected by trivial mirror Chern number and zero-energy Andreev flat bands arising from spin conservation,
resulting in the formation of an Andreev flatland. (e-h) Density of states (DOS) for the (e) Au, (f) B1u, (g) B2u, and (h) B3u

states. The surface DOS in the Au, B1u, and B2u states exhibits broad energy dependence in the low-energy regime. In
contrast, the surface DOS for the B3u shows a pronounced zero-energy peak. (i-l) Normalized differential conductance (dI/dV )
spectra for a point contact between UTe2 and an s-wave superconductor, assuming that the superconducting state of UTe2 is
(i) Au , (j) B1u, (k) B2u, and (l) B3u, respectively. In the calculation, the s-wave superconducting gap is set to ∆s = 2∆UTe2 .
Color bar indicates the tunneling amplitude T .

flat band along the M −Γ line. In symmetry class DIII, the only nontrivial topological invariant is the Berry phase at
the high-symmetry M and Γ points. Therefore, this flat band must originate from additional topological invariants
associated with crystalline symmetries—in particular, the mirror symmetry Myz.

In the following, we describe the topological invariants associated with mirror symmetry [1]. The mirror operator
Myz acts on the normal-state Hamiltonian HN as

M−1
yz HN(kx, k+, k−)Myz = HN(−kx, k+, k−), (S1)

and on the gap function ∆ as

M−1
yz ∆(kx, k+, k−)Myz = s∆(−kx, k+, k−), (S2)

where s = +1 for the B1u and B2u states, and s = −1 for the Au and B3u states. Depending on the value of s, the
mirror operator acting on the Bogoliubov-de Gennes (BdG) Hamiltonian is given by

M̃yz =

(
Myz

sM∗
yz

)
. (S3)

On the mirror plane (kx = 0), this operator M̃yz commutes with the BdG Hamiltonian. We can then define a
crystalline chiral operator that anti-commutes with the BdG Hamiltonian:

ΓMyz
= eiϕM̃yzΘC, (S4)
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where eiϕ is a phase factor chosen such that Γ2
Myz

= 1, Θ is the time-reversal operator, and C is the particle-hole

exchange operator. The properties of the chiral operator defined in Eq. (S4) depend on the value of s. For s = −1,
corresponding to the Au and B3u states, the chiral operator anti-commutes with the time-reversal operator Θ, which
is the same as the standard chiral operator in class DIII, Γ = iΘC. In contrast, for s = +1, as in the B1u and B2u

states, the chiral operator commutes with the time-reversal operator—characteristic of class BDI. In class BDI, a 1D
winding number can be defined using the chiral operator as a topological invariant:

wMyz
(k−) = − 1

4πi

∫
dk+ tr [ΓMyz

HBdG∂k+
HBdG], (S5)

where HBdG is the BdG Hamiltonian that is composed of HN and ∆. Note that for the Au and B3u states, this 1D
winding number is not a valid topological invariant, as it always vanishes due to the anti-commutation between the
chiral and time-reversal operators.

The winding number in Eq. (S5) can be efficiently calculated using Fermi surface formula. For both the B1u and
B2u states, it simplifies to

wMyz (k−) =
∑

EN(k+)=0

sgn[dx]sgn[∂k+EN], (S6)

where EN(k) is the eigenvalue of the normal-state Hamiltonian HN(k). This means that for a fixed k− on the kx = 0
plane, the winding number can be obtained by summing the products of the signs of the dx component and the Fermi
velocity ∂k+EN at each Fermi crossing point along the 1D loop k+ ∈ [−2π, 2π]. The resulting winding number is
w = 2, reflecting the twofold degeneracy of the flat band.

The surface DOS for the B1u state is shown in Fig. S1(f). The Andreev bound states are perfectly flat along the
k− direction, while exhibiting a linear dispersion along the kx direction [Fig. S1(b)]. As a result, the surface DOS
remains constant near zero energy.

The B2u state is qualitatively similar to the B1u state, except for the presence of Dirac points along the M − Γ
direction [Fig. S1(c)]. Along this line, in addition to the Dirac points, Andreev bound states protected by the 1D
winding number also appear. The surface states exhibit a linear dispersion along the kx direction, resulting in a nearly
constant surface DOS with respect to energy, as shown in Fig. S1(g).

S2. ANDREEV CURRENT BETWEEN UTE2 AND s-WAVE SUPERCONDUCTING TIP

In this section, we numerically calculate the tunneling current between a UTe2 sample and an s-wave supercon-
ducting tip using Keldysh Green’s function formalism. The detailed formulation is provided in the following section.
We consider a point-contact junction between UTe2 and an s-wave superconductor. The surface Green’s function for
the (011) plane of UTe2 is obtained using the recursive Green’s function method. The model Hamiltonian for UTe2
is given in the main text and also in Sec. S3. For the s-wave superconductor, we use the analytical expression for the
retarded Green’s functions:

GR(ω) =
πNs√

∆2
s − (ω + iδ)2

(
ω ∆s

∆s ω

)
, (S7)

where Ns denotes the DOS in the normal state at the Fermi level, and ∆s is the gap function of the s-wave supercon-
ductor. We set the parameters to ∆s = 0.1 and Ns = 0.1. All calculations are performed at zero temperature. Note
that in the following calculations, the steady-state tunneling current is independent of the superconducting phase
difference, except for the DC Josephson current, which is not considered here.

Figures S1(i)-(l) show the differential conductance (dI/dV ) spectra for the Au, B1u, B2u, and B3u states, re-
spectively, assuming each of these as the superconducting states of UTe2. Here, we calculate the tunneling current
using Eq. (S44), taking into account multiple scattering processes between s-wave superconductors and UTe2 via the
self-energy given in Eq. (S42). For small tunneling amplitude T , the differential conductance in the low-bias regime
(eV < ∆s) reflects the surface DOS of the superconducting UTe2 sample . In this regime, the dominant contribution
to the tunneling current arises from the Andreev reflection process, in which electrons and holes at the surface of
UTe2 are converted into Cooper pairs in the s-wave superconductor, and vice versa. This process corresponds to a
fourth perturbative process, and the resulting contribution to the current is given by

I(4)(V ) =
4e

ℏ
|T |4N2

s π
3

∫ 2eV

0

dE ρ(E − 2eV )ρ(E). (S8)
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FIG. S2. (a) Crystal structure of UTe2. Only uranium sites are shown. (b) Cylindrical Fermi surface obtained from the
two-orbital model. (c) Quasiparticle energy bands for the B3u state in the two-orbital model. The staggered Rashba spin-
orbit coupling, originating from local inversion symmetry breaking at uranium sites, has little effect on the zero-energy states.
(d) Surface DOS exhibiting a pronounced zero-energy peak due to the presence of robust Andreev flatland.

where ρ(E) is the surface DOS of UTe2. The detailed derivation of this expression is provided in Sec. S4. This
expression indicates that, in the weak tunneling regime, the dI/dV spectrum directly reflects the energy dependence
of the surface DOS in the superconducting sample UTe2. The low-bias dI/dV spectrum, dominated by the Andreev
reflection process, scales as T 4, while the coherence peak around eV ≈ ∆s, originating from single particle tunneling,
scales as T 2. Therefore, as T increases, the low-bias conductance peaks arising from the Andreev process in Eq. (S8)
grow more rapidly than the coherence peak at eV = ∆s, leading to an anomalous enhancement of the subgap
conductance relative to the coherence peak in the dI/dV spectrum [see Figs. S1(i-l)]. Note that unlike in s-wave/s-
wave Josephson junctions, where a pronounced coherence peak appears at eV = ∆1 + ∆2, no such total coherence
peak is observed in the present case. This is because the surface DOS of the topological superconductor is non-singular
and qualitatively different from that of a conventional s-wave superconductor.

S3. TWO-ORBITAL MODEL

In this section, we demonstrate that the Andreev flatland persists even when employing a more realistic model
that incorporates key features of UTe2, beyond the simplified model employed in the main text. Figure S2(a) shows
the crystal structure of UTe2. UTe2 crystallizes in a body-centered orthorhombic structure with D2h point group
symmetry. Within each unit cell, uranium atoms are aligned along the crystal c-axis in a dimer-like configuration,
resulting in local inversion symmetry breaking at the uranium sites.

We adopt a two-orbital tight-binding model that includes the site degree of freedom associated with uranium
atoms [1, 2]. The normal-state Hamiltonian, which respects the body-centered orthorhombic symmetry, is given by

HN(k) = ϵ0(k)− µ+ fx(k)ρx + fy(k)ρy + g(k) · σρz, (S9)

where

ϵ0(k) = 2t1 cos kx + 2t2 cos ky, (S10)

fx(k) = t3 + t4 cos(kx/2) cos(ky/2) cos(kz/2), (S11)

fy(k) = t5 cos(kx/2) cos(ky/2) sin(kz/2), (S12)

gx = Rx sin ky, gy = Ry sin kx, gz = Rz sin(kx/2) sin(ky/2) sin(kz/2). (S13)

Here, σ and ρ are the Pauli matrices acting on spin and uranium-site spaces, respectively. The last term represents
Rashba-type spin-orbit coupling (SOC) arising from local inversion symmetry breaking at the uranium site. To
reproduce a cylindrical Fermi surface as shown in Fig. S2(b), we use the following parameters: µ = −1.8, t1 = −0.5,
t2 = 0.375, t3 = −0.7, t4 = 0.65, t5 = −0.65, Rx = 0.1, Ry = 0.1, Rz = 0.1.

The gap function also incorporates the site degree of freedom. We consider an inter-site spin-triplet Cooper pair,
described by

∆(k) =

(
0 d · σiσy

d · σiσy 0

)
, (S14)
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where the matrix structure refers to the uranium-site space. The d-vector for the B3u state is given by d =(
0 C2 sin ky C3 sin kz

)
, as also used in the main text. We set C2 = 0.05 and C3 = 0.05 in the calculations.

Figure. S2(c) shows the quasiparticle energy bands for the B3u state in the two-uranium-site model, obtained by
diagonalizing a slab system with open (011) surfaces. Along the M − Γ line, in-gap states appear as a result of
nontrivial Berry phases and a trivial mirror Chern number on the yz-mirror plane. Furthermore, even in the presence
of staggered Rashba SOC presence, zero-energy states originating from weak spin conservation appear along the Γ−X
and R−M lines. As a result, the surface exhibits a large zero-energy DOS, as shown in Fig. S2(d).

S4. TUNNELING HAMILTONIAN APPROACH

General expression for the tunneling current by Keldysh Green’s function

In this section, we provide a brief derivation of the tunneling current in Josephson junctions using the tunneling
Hamiltonian approach [3]. The total Hamiltonian of the system consists of three terms:

H = HR +HL +HT , (S15)

HT =
∑

k,q

Tkqd
†
kcq + T ∗

kqc
†
qdk, (S16)

where HL(R) denotes the Hamiltonian of the left (right) system, constructed from the electron annihilation operators

cq (dk) and creation operators c†q (d†k). The term HT describes the tunneling between the two systems, where Tkq is
the tunneling matrix element that reflects the geometric structure of the junction. When an STM tip makes contact
at a point, the tunnel matrix can be taken as momentum-independent, i.e., Tkq = T . Although spin degrees of
freedom are not explicitly included in the tunneling Hamiltonian, we assume spin-conserving tunneling processes in
the absence of SOC and magnetic impurities.

The voltage bias between the two systems can be incorporated as a shift in the chemical potential. Taking the
chemical potential of the right system as a reference, the Hamiltonian of the left system under a finite voltage bias V
is given by

HL(V ) = HL(V = 0) + eV NL, (S17)

where NL is the total number operator in the left system. In the Heisenberg picture, the operators of the left system
transform as

c̃q(t) = e−
i
ℏ eV tcq(t), (S18)

c̃†q(t) = e
i
ℏ eV tc†q(t), (S19)

where cq(t) and c†q(t) are the annihilation and creation operators in the Heisenberg picture without the voltage bias.
The tunneling current is defined as the time derivative of the electron number in the left system:

I(V, t) = e⟨ṄL(t)⟩, (S20)

where

ṄL =
i

ℏ
[H, NL] =

i

ℏ
[HT , NL]

=
i

ℏ
∑

k,q

(
Tkqd

†
kcq − T ∗

kqc
†
qdk

)
. (S21)

Here, we used the fact that NL commutes with both HL and HR. With straightforward manipulation, the tunneling
current can be expressed in terms of the lesser Green’s function across the junction as

I(V, t) = −2eRe
∑

k,q

tr T (k, q)G<
LR(q, t; k, t

′), (S22)

where the trace is taken over spin and sublattice degrees of freedom. We now introduce the time-ordered Green’s
function for the coupled junction system:

ĜLR =

(
G11

LR G<
LR

G>
LR G22

LR

)
, (S23)
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and

G11
LR(q, t; k, t

′) = − i

ℏ
⟨Tc c̃q(t)d

†
k(t

′)⟩, (S24)

G<
LR(q, t; k, t

′) =
i

ℏ
⟨d†k(t′)c̃q(t)⟩, (S25)

G>
LR(q, t; k, t

′) = − i

ℏ
⟨c̃q(t)d†k(t′)⟩, (S26)

G22
LR(q, t; k, t

′) = − i

ℏ
⟨T̄c c̃q(t)d

†
k(t

′)⟩, (S27)

where Tc (T̄c) denotes the contour (anti-contour) time-ordering operator in the Keldysh formalism.

Perturbation theory for the Green’s function of the junction

To determine the Green’s function of the junction, we treat the tunneling Hamiltonian as a perturbation. For this
purpose, it is convenient to introduce the rotated Keldysh basis for perturbation theory:

Ǧ ≡ Ľτ3ĜĽ† =

(
GR GK

0 GA

)
, Ľ =

1√
2
(τ0 − iτ2), (S28)

where τ is the Pauli matrix acting of Keldysh space. GR, GA, and GK denote retarded, advanced, and Keldysh
components of Green’s function, respectively:

GR(1, 2) = G11(1, 2)−G<(1, 2) = G21(1, 2)−G22(1, 2) = − i

ℏ
⟨{c(1), c†(2)}⟩θ(t1 − t2), (S29)

GA(1, 2) = G11(1, 2)−G>(1, 2) = G12(1, 2)−G22(1, 2) =
i

ℏ
⟨{c(1), c†(2)}⟩θ(t2 − t1), (S30)

GK(1, 2) = G<(1, 2) +G>(1, 2) = G11(1, 2) +G22(1, 2) = − i

ℏ
⟨[c(1), c†(2)]⟩, (S31)

where we used the shorthand notation (1) = (q, t) and (2) = (k, t′). In thermal equilibrium at inverse temperature β,
the Keldysh component takes the form

GK(q, ω) = (GR(q, ω)−GA(q, ω)) tanh
βω

2
. (S32)

Full Green’s functions are governed by the Dyson equation, in which the tunneling matrix acts as an effective
single-particle potential:

[
ǦLL ǦLR

ǦRL ǦRR

]
=

[
Ǧ

(0)
LL

Ǧ
(0)
RR

]
+

[
Ǧ

(0)
LL

Ǧ
(0)
RR

]
◦
[

Ť
Ť †

]
◦
[
ǦLL ǦLR

ǦRL ǦRR

]
. (S33)

Here, ǦLL, ǦRR, and ǦRL are defined analogously to ǦLR in Eqs. S24-S27. The quantities Ǧ
(0)
LL and Ǧ

(0)
RR correspond

to the Green’s functions of HL and HR, respectively. In the rotated Keldysh space, the tunneling matrix is given by

Ť = δ(t− t′)

(
Tkq

Tkq

)
. (S34)

The circle product “◦” denotes integration over the internal variables:

[Ǧ ◦ Ť ◦ Ǧ](1, 4) ≡
∑

k2,k3

∫
dt2dt3 Ǧ(1, 2)Ť (2, 3)Ǧ(3, 4). (S35)

By solving for ǦLR, we obtain

ǦLR = Ǧ
(0)
LL ◦ Ť † ◦ Ǧ(0)

RR + Ǧ
(0)
LL ◦ Ť † ◦ Ǧ(0)

RR ◦ Ť ◦ ǦLR

= Ǧ
(0)
LL ◦ Σ̌ ◦ Ǧ(0)

RR, (S36)

where we have introduced a self-energy Σ̌, satisfying a following Dyson equation

Σ̌ = Ť † + Ť † ◦ Ǧ(0)
RR ◦ Ť ◦ Ǧ(0)

LL ◦ Σ̌. (S37)

Solving the Dyson equation for the self-energy yields the full Green’s function across the junction.
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Fourier representations

To solve the Dyson equations, we introduce Fourier representations. In the right system, the Green’s function
depends only on the relative time t− t′, and its Fourier transform is given by

Ǧ
(0)
RR(t, t

′) =
∫

dω

2π
e−iω(t−t′)Ǧ

(0)
RR(ω). (S38)

In contrast, in the superconducting case, Green’s function in the left system explicitly depends on both t and t′ due
to the gauge potential induced by the voltage. It takes the following form

Ǧ
(0)
LL(t, t

′) =

(
e−

i
ℏ eV (t−t′)ǧL(t− t′) e−

i
ℏ eV (t+t′)f̌L(t− t′)

e
i
ℏ eV (t+t′)f̌†

L(t− t′) e
i
ℏ eV (t−t′)ǧ†L(t− t′)

)
, (S39)

where ǧ and ǧ† denote the normal Green’s functions for particles and holes, respectively, and f̌ and f̌† represent the
anomalous Green’s functions. Note that in the normal state, where anomalous components vanish, Green’s function
depends only on the relative time, and thus a standard Fourier transform applies. To handle the time dependence in
the superconducting case, we introduce a discrete frequency component Ωn = 2eV m/ℏ, and perform a mixed Fourier
transform:

Ǧ
(0)
LL(t, t

′) =
∫

dω

2π

∑

n

e−iω(t−t′)e−iΩntǦ
(0)
LL(ω,Ωn) (S40)

Ǧ
(0)
LL(ω,Ωn) =

(
δn,0 ǧL(ω − eV/ℏ) δn,1 f̌L(ω + eV/ℏ)
δn,−1 f̌†

L(ω − eV/ℏ) δn,0 ǧ†L(ω + eV/ℏ)

)
, (S41)

where δi,j is the Kronecker delta. Applying the same transformation to the self-energy, the Dyson equation becomes

Σ̌(ω,Ωn) = δn,0Ť
† + Ť † ◦ Ǧ(0)

RR(ω +Ωn) ◦ Ť ◦
∑

n′

Ǧ
(0)
LL(ω +Ω′

n,Ωn − Ω′
n) ◦ Σ̌(ω,Ω′

n), (S42)

where the circle product implies summation over the momentum variables. Substituting this into the expression for
the Green’s function at equal time, we obtain

ǦLR(t, t) =
∑

n

e−iΩnt

∫
dω

2π

∑

n′

Ǧ
(0)
LL(ω +Ω′

n,Ωn − Ω′
n) ◦ Σ̌(ω,Ω′

n) ◦ Ǧ(0)
RR(ω). (S43)

The steady tunneling current arises from the Ωn = 0 components.

When the junction is formed by a point contact, as in STM experiments, the tunneling matrix becomes momentum-
independent, simplifying the expression for the tunneling current:

I(V, t) = −2e|T |Re tr ⟨G<
LR(t, t)⟩k,q, (S44)

where momentum-summed Green’s function is defined as ⟨G<
LR(t, t

′)⟩k,q =
∑

k,q G
<
LR(k, t; q, t

′). The Dyson equation
governing the momentum-summed Green’s function then takes the form

⟨ǦLR(t, t′)⟩k,q =
∑

n

e−iΩnt

∫
dω

2π

∑

n′

⟨Ǧ(0)
LL(ω +Ω′

n,Ωn − Ω′
n)⟩k⟨Σ(ω,Ω′)⟩k,q⟨Ǧ(0)

RR(ω)⟩q, (S45)

where the self-energy satisfies

⟨Σ̌(ω,Ωn)⟩k,q = |T |δn,0 + |T |2⟨Ǧ(0)
RR(ω +Ωn)⟩q

∑

n′

⟨Ǧ(0)
LL(ω +Ω′

n,Ωn − Ω′
n)⟩k⟨Σ(ω,Ω′

n)⟩k,q. (S46)

Here, we define ⟨Ǧ(0)
LL(ω,Ωn)⟩k =

∑
k Ǧ

(0)
LL(k, ω,Ωn) and ⟨Ǧ(0)

RR(ω,Ωn)⟩q =
∑

q Ǧ
(0)
LL(q, ω).
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FIG. S3. Comparison between numerical calculations and analytical expressions. The tunneling amplitude is set to T = 0.8.
The black solid curves represent numerically calculated dI/dV spectra, incorporating tunneling processes to all orders in
perturbation theory. The dotted green curves correspond to the analytical result of single-particle tunneling [Eq. S48]. The
dotted blue curves correspond to the analytical result of Andreev tunneling current [Eq. S53]. The red curves correspond to
the sum of the contributions from Eq. S48 and Eq. S53. In the low-bias regime, the dI/dV characteristics are governed by the
Andreev tunneling current. In contrast, in the high-bias regime (eV > ∆s), the single-particle tunneling contribution becomes
dominant.

Andreev current for a point contact between a topological superconductor and an s-wave superconductor

We consider a point-contact junction in which a topological superconductor is placed on the right side and an
s-wave superconductor on the left side. For notation simplicity, we denote the momentum-summed Green’s function
as G(ω) throughout the following discussion. Expanding Eq. S44 to second order in the tunneling matrix element T ,
the tunneling current is given by

I(2)(V, t) = −2|T |2eRe tr

∫
dω

2π

{
[ǧL(ω − eV/ℏ)ǧR(ω)]< − e−2ieV t/ℏ[f̌L(ω + eV/ℏ)f̌†

R]
<
}
. (S47)

The first term represents the single particle tunneling contribution Isingle. By straightforward calculation, we obtain
a familiar form

Isingle = (4πT 2e/ℏ)
∫ eV

0

dE ρtip(E − eV )ρsample(ω), (S48)

where ρtip and ρsample correspond to the DOS for the left and right systems, respectively. Here, we have used spectrum
representation of the retarded/advanced Green’s function

gR/A(ω) =

∫
dE

ρ(E)

ℏω ± iδ − E
, (S49)

g†R/A(ω) =

∫
dE

ρ(E)

ℏω ± iδ + E
. (S50)

However, since an s-wave superconducting tip has no quasiparticle states within the superconducting gap, this contri-
bution vanishes. The second term in Eq. S47 corresponds to the Josephson current. In this case, since the junction is
formed between a spin-triplet and a spin-singlet superconductor, the orthogonality in spin space leads to the vanishing
of this term as well. Note, however, that if SOC coupling or magnetic impurities are present, a finite Josephson current
may be induced, although it is generally expected to be small.

The leading contribution to the steady tunneling current thus arises from fourth-order tunneling processes. The
dominant contribution is Andreev tunneling current, which originates from Andreev reflection and is given by

IAndreev = −4e|T |4 Re
∫

dω

2π
[f̌L(ω)ǧ

†
R(ω − eV/ℏ)f̌†

L(ω)ǧR(ω + eV/ℏ)]<. (S51)

In this process, electrons and holes in the topological superconductor are converted into Cooper pairs in the s-wave
superconductor and vice versa through tunneling. We employ the analytical expression for the anomalous Green’s
function of the s-wave superconductor:

f
R/A
L (ω) = f

†R/A
L (ω) = − NLπ∆s√

∆2 − (ℏω ± iδ)2
, (S52)
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where NL denotes DOS at the Fermi level, and ∆s is the superconducting gap amplitude. By straightforward
calculation, we obtain the final expression:

IAndreev(V ) = (4eπ3|T |4N2
L/ℏ)

∫ 2eV

0

dE ρsample(E − 2eV )ρsample(E). (S53)

It is noteworthy that the Andreev current is independent of the superconducting gap ∆s.
Figure S3 compares the numerical calculations with the analytical expressions. The black solid curves represent the

numerically computed dI/dV spectra, incorporating tunneling processes to all orders in perturbation theory. The red
curves correspond to the analytical results, which are the sum of contributions from single-particle tunneling current
[Eq. S48], shown by green dotted lines, and Andreev tunneling current [Eq. S53], shown by blue dotted lines. Note
that, due to the presence of a small but finite smearing factor, single-particle tunneling contributes even within the gap
of the s-wave superconductor. In the low-bias regime, the analytical expressions agree well with the numerical results.
Moreover, the peak structure at low bias is predominantly governed by Andreev tunneling current. When the DOS is
large and the tunneling probability is high, higher-order processes can act as self-energy corrections that suppress the
tunneling current. As a result, the coherence peaks of the s-wave superconductor, which appear at eV = 2∆UTe2 , are
more suppressed in the numerical results than in the analytical results, which only account for contributions up to
the fourth order. Similarly, the zero-bias peak for the B3u state [Fig. S3(d)] also exhibits suppression in the numerical
calculation.
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