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We investigate 1D and 2D cluster states under local decoherence to assess the robustness of their
mixed-state subsystem symmetry-protected topological (SSPT) order. By exactly computing fidelity
correlators via dimensional reduction of effective statistical mechanics models, we pinpoint the crit-
ical error rate for strong-to-weak spontaneous breaking of strong subsystem symmetry. Without
resorting to the replica trick, we demonstrate that mixed-state SSPT order remains remarkably
robust up to the maximal decoherence rate when noise respects strong subsystem symmetry. Fur-
thermore, we propose that the mixed-state SSPT order can be detected by a constant correction
to the area-law scaling of entanglement negativity, termed spurious topological entanglement neg-
ativity. This also highlights that topological entanglement negativity, a widely used diagnostic for
mixed-state topological order, is generally not invariant under finite-depth quantum channels.

Introduction—Symmetry and topology have been two
conceptual pillars for understanding quantum phases of
matter [1, 2], broadly categorizing ground states of lo-
cal gapped Hamiltonians into intrinsic topological or-
der, symmetry-protected topological (SPT) order, and
symmetry-broken order. Recently, driven by experimen-
tal progress in quantum platforms, the study of quan-
tum phases has been extended to mixed states under lo-
cal decoherence [3–45], which naturally emerge on cur-
rent noisy quantum platforms. This paradigm shift has
opened new avenues for understanding the interplay be-
tween symmetry and topology in open quantum systems.

For mixed states, a salient difference from the pure-
state case is the two distinct notions of symmetry [46]:
Given a symmetry transformation U , a mixed state ρ ex-
hibits strong symmetry when Uρ = eiθρ, i.e., ρ carries
a well-defined symmetry charge. In contrast, ρ exhibits
weak symmetry when UρU† = ρ, meaning that ρ is an
ensemble of states with varying symmetry charges. In
the thermodynamic limit, the strong symmetry can spon-
taneously break into weak symmetry—a phenomenon
unique to mixed states, known as strong-to-weak sponta-
neous symmetry breaking (SWSSB) [34–45]. Mixed-state
phase transitions induced by local decoherence can be un-
derstood in terms of SWSSB of the symmetry associated
with the quantum state [34–36] and can be detected by
information-theoretic quantities such as the fidelity corre-
lator [35]. These developments raise questions about the
robustness of interesting quantum states against SWSSB
and how symmetry affects the entanglement structure of
decohered mixed states.

In this work, we consider 1D and 2D cluster states
subjected to local decoherence. Cluster states are cru-
cial resource states for various quantum information pro-
cessing tasks, such as measurement-based quantum com-
putation (MBQC) [47–54] and the preparation of long-
range entangled states [55–60]. Their utility stems from
their nontrivial subsystem symmetry-protected topolog-
ical (SSPT) order [61, 62], which is protected by symme-
tries acting on rigid, line-like subsystems. We analyze the
fidelity correlator of cluster states to assess the robust-

ness of their mixed-state SSPT order against SWSSB.
Through mapping to statistical mechanics (stat-mech)
models, we demonstrate the remarkable robustness of
mixed-state SSPT order up to the maximal error rate
p = 1/2 under a general local noise that respects strong
subsystem symmetry. This robustness can be understood
from the dimensional reduction applied to effective stat-
mech models, which inherit subsystem symmetries from
the decohered mixed states. Notably, our arguments do
not rely on the replica trick and are thus free from the
subtleties associated with the doubled Hilbert space for-
malism [35].
Furthermore, we investigate how strong subsystem

symmetry affects the mixed-state entanglement of de-
cohered density matrices, focusing on the entanglement
(logarithmic) negativity ER [63, 64]. Similar to the entan-
glement entropy for ground states of local gapped Hamil-
tonians, the entanglement negativity of locally decohered
states is expected to scale as [65, 66]

ER = α′|∂R| − Etopo + · · · , (1)

where |∂R| is the perimeter of a region R, and the con-
stant correction Etopo, termed the topological entangle-
ment negativity (TEN), has been used to diagnose mixed-
state topological order [5, 66–70]. For 1D and 2D clus-
ter states, we demonstrate the existence of a spurious
topological contribution to the area-law scaling, which
we dub spurious TEN Esp, despite the short-range en-
tanglement of decohered density matrices. We further
show that spurious TEN generally arises when the deco-
hered density matrix retains strong subsystem symmetry.
This result implies that, in most general cases, TEN is
not invariant under a finite-depth local quantum channel.
The discovered spurious TEN is an information-theoretic
quantity from the bulk that captures the mixed anomaly
between strong subsystem symmetries and is reminiscent
of the spurious topological entanglement entropy (TEE)
observed in pure states [62, 71–76].
Fidelity Correlator: Noisy 1D Cluster State—We be-

gin with 1D cluster state [77] on a periodic chain of 2N
qubits, with Pauli operators Xj and Zj at site j. The 1D
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cluster state |ψ0⟩ is the ground state of the Hamiltonian

H1D = −
∑2N

j=1Kj , where Kj = Zj−1XjZj+1. Let A (B)
denote the sublattice of odd (even) sites. The state |ψ0⟩
has a Z2 × Z2 SPT order protected by subsystem sym-
metries GA =

∏N
j=1X2j−1 and GB =

∏N
j=1X2j [78, 79].

(We refer to these onsite symmetries as “subsystem sym-
metries” because line-like symmetries of the same form
protect the SSPT order of the 2D cluster state on a square
lattice; see Fig. 2.) Let ρ0 = |ψ0⟩⟨ψ0| represent the pure
cluster state. Subjecting each qubit to a quantum chan-
nel NP

j [ρ] = (1 − p)ρ + pPjρPj (P = X,Z), with p the
error rate, the resulting decohered mixed state is given
by ρP =

∏2N
j=1 NP

j [ρ0].
Notice that ρX exhibits a strong symmetry, satisfy-

ing GiρX = ρX , whereas ρZ only possesses a weak sym-
metry, i.e., GiρZG

†
i = ρZ for p > 0. A mixed state ρ

with strong symmetry can undergo SWSSB if its strong
symmetry is spontaneously broken to weak symmetry in
the thermodynamic limit [34–36, 80]. While conventional
spontaneous symmetry breaking is defined by the long-
range order in the correlation function Tr[ρOxO

†
y] of local

charged operators Ox,y, SWSSB is identified by the long-
range order in the fidelity correlator [35]

FO(x, y) = F (ρ,OxO
†
yρO

†
xOy), (2)

where F (ρ, σ) = Tr
[√

ρ1/2σρ1/2
]
is the fidelity between

the two states ρ and σ. Namely, a mixed state ρ with
strong symmetry has SWSSB when FO(x, y) approaches
a finite constant as |x− y| → ∞, while the conventional
correlation function vanishes. The robustness of the
strong symmetries GA,B—and thereby the mixed-state
SPT order—against SWSSB can be assessed through the
fidelity correlator.

To compute the fidelity correlator for ρX , note that
|ψ0⟩ is a stabilizer state satisfying Kj |ψ0⟩ = |ψ0⟩, with
its density matrix given by ρ0 ∝

∑
{a}
∏2N

j=1K
aj

j , where

aj ∈ {0, 1} indicates the presence or absence of the sta-

bilizer Kj . Under conjugation by Xi,
∏2N

j=1K
aj

j flips
(maintains) its sign when σi−1σi+1 = −1 (+1), where
σj = 1 − 2aj ∈ {±1}. From this, the spectrum of the
decohered density matrix can be expressed as

ρX({K}) ∝
∑
{a}

2N∏
j=1

K
aj

j (1− 2p)
∑2N

i=1

1−σiσi+2
2 . (3)

Defining β = − 1
2 log(1− 2p) and using K

aj

j = σ
(1−Kj)/2
j ,

Eq. (3) becomes ρX({K}) ∝ ⟨σS⟩β , where σS ≡
∏

i∈S σi
is the product of variables σi in S = {j : Kj = −1}, and
⟨·⟩β = Z−1

β

∑
{σ}(·)eβ

∑2N
i=1 σiσi+2 denotes the expectation

value in two independent Ising chains at inverse temper-
ature β (with Zβ being the corresponding partition func-
tion). In the context of quantum error correction, the
subset S corresponds to the error syndrome, which must
contain an even number of elements per sublattice due to

FIG. 1. Fidelity correlator F 1D
Z (x, y) with |x − y| = N for

a 1D cluster state of length 2N under X-noise [see Eq. (4)].
Each curve corresponds to N = 2n, with n ranging from 1
(purple) to 10 (red). The inset shows the locations of the
charged operators Zx,y for the case N = 4.

the subsystem symmetry of |ψ0⟩. For Ox,y = Zx,y with
x, y ∈ A, it can be similarly shown that the spectrum of
OxO

†
yρXO

†
xOy is proportional to ⟨σS△{x,y}⟩β , where △

denotes the symmetric difference [81].
Substituting these two expressions into Eq. (2) gives

F 1D
Z (x, y) =

∑
S

[
⟨σS⟩β⟨σS△{x,y}⟩β

]1/2∑
S⟨σS⟩β

, (4)

where S runs over all subsystem symmetric subsets of the
chain [82]. Therefore, F 1D

Z (x, y) maps to an “overlap” be-
tween two distributions proportional to multi-spin corre-
lators of the 1D Ising model, where the subsets differ only
by {x, y}. In the Supplementary Material (SM) [83], we
analytically compute Eq. (4) for finite N and confirm the
exponential decay of F 1D

Z (x, y) to zero for p < 1/2 [84].
In contrast, F 1D

Z (x, y) = 1 at p = 1/2, indicating that the
1D cluster state under X-noise undergoes SWSSB only
at p = 1/2. See Fig. 1 for F 1D

Z (x, y) with |x− y| = N at
various system sizes 2N .
This robustness of the mixed-state 1D SPT order un-

der X-noise extends to any local incoherent Pauli noises
NP

j [ρ] = (1 − p)ρ + pPjρPj that respect strong subsys-
tem symmetry. (Here, Pj may act on a finite number of
qubits near site j.) In SM [83], we show that, with an
appropriate choice of charged operators Ox,y, the fidelity
correlator of the 1D cluster state decohered under any
such noise maps to a stat-mech expression analogous to
Eq. (4), which decays exponentially for p < 1/2. There-
fore, the mixed-state SPT order of the 1D cluster state
remains robust under general local decoherence that re-
spects strong subsystem symmetry, up to the maximal
error rate p = 1/2. We note that our stability analy-
sis from the viewpoint of SWSSB is consistent with the
tensor network analysis of Ref. [30].

Fidelity Correlator: Noisy 2D Cluster State—Next, we
consider a cluster state on a 2D square lattice defined on
an infinite cylindrical geometry [see Fig. 2(a)], which is
a ground state of the Hamiltonian H2D = −

∑
j Kj with

Kj = Xj

∏
i∈∂j Zi, where i ∈ ∂j denotes the four vertices

adjacent to vertex j. The 2D cluster state hosts a Zsub
2

SSPT order [61, 62, 76], with extensively many symmetry
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generators
∏

j∈diagXj along each diagonal lines [yellow
lines in Fig. 2(a)]. Let’s consider the decohered mixed
state ρX under the X-noise, which respects strong Zsub

2

subsystem symmetry.
We can detect SWSSB of the Zsub

2 subsystem symme-
try using the following fidelity correlator [36]:

F 2D
Z (w, h) = F

ρ, ∏
i∈□wh

Ziρ
∏

i∈□wh

Zi

 , (5)

where □wh is four corners of a square with width w and
height h [gray circles in Fig. 2(a)]. We can rewrite Eq. (5)
for ρX in terms of a stat-mech model, similar to the 1D
case. Since

∏
j K

aj

j (aj ∈ {0, 1}) flips (maintains) its sign
under conjugation by Xj when

∏
i∈∂j σi = −1 (+1), we

have

ρX ∝
∑
{a}

∏
j

K
aj

j e
β
(∑

□A

∏
i∈□A

σi+
∑

□B

∏
i∈□B

σi

)
, (6)

where β = − 1
2 log(1 − 2p), σj = 1 − 2aj ∈ {±1}, and

□A/B are elementary plaquettes in the A/B sublattice
[green shapes in Fig. 2(a)]. Thus, F 2D

Z follows an expres-
sion similar to Eq. (4), with {x, y} replaced by □wh and
expectation values taken for two independent copies of
the 2D plaquette Ising models (PIMs) [85]. Note that the
PIM inherits line-like subsystem symmetries from ρX .
Now, consider a single copy of the PIM on a cylinder

of height L. Defining new Ising variables as τx,1 = σx,1
and τx,y = σx,y−1σx,y for 2 ≤ y ≤ L along each column
[see Fig. 2(b)], the four-body interaction

∏
i∈□ σi maps

to two-body interaction τx,yτx+1,y, reducing the PIM to
a stack of 1D Ising models with periodic boundary condi-
tions in the large L limit [86, 87]. From this dimensional
reduction from 2D to 1D, we have [83],

F 2D
Z (w, h) −→

L→∞
[F 1D

Z (h)]2 (7)

for p < 0.5, where F 1D
Z (h) is the fidelity correlator Eq. (4)

for the X-decohered 1D cluster state with |x − y| = h.
Since F 1D

Z (h) decays exponentially with h, F 2D
Z (h,w) also

decays exponentially with h in the thermodynamic limit.
In other words, the mixed-state SSPT order of the 2D
cluster state remains robust against SWSSB up to the
maximal error rate p = 1/2 under X-noise.

This robustness of the mixed-state SSPT order in the
2D cluster state extends to any local incoherent Pauli
noise that preserves strong subsystem symmetry. We
show in SM [83] that the associated stat-mech models for
the fidelity correlator exhibit line-like subsystem symme-
tries that originate from the strong subsystem symmetry
of the decohered cluster state. These symmetries enable
a redefinition of spin variables that reduces the model to
a stack of 1D Ising models. Consequently, as Eq. (7),
the fidelity correlator factorizes into a product of those
for decohered 1D cluster states. Therefore, it generally

c

(a)

c

(b)

(c)

FIG. 2. (a) Cluster state on a 2D square lattice with an in-
finite cylindrical geometry (periodic along the horizontal di-
rection). Circles (squares) denote the A (B) sublattice. The
orange shape represents the stabilizer Kj = Xj

∏
i∈∂j Zi, yel-

low lines show the supports of subsystem symmetry genera-
tors, and gray circles mark four charged Z-operators for the
fidelity correlator F 2D

Z [see Eq. (5)]. Green shapes indicate
the interaction

∏
i∈□A/B

σi in the emergent plaquette Ising

model. (b) Mapping of the 2D plaquette Ising model to stacks
of 1D Ising models, with the blue dashed curves showing the
redefinition of Ising variables (σ → τ). (c) Bipartition for
entanglement negativity, where the purple shape depicts the
1D cluster state after locally disentangling other qubits.

exhibits exponential decay for p < 1/2, establishing the
stability of the mixed-state SSPT order up to the maxi-
mal error rate p = 1/2. One can apply the same analysis
to a 2D cluster state on a triangular lattice to yield the
same conclusion.

Spurious Topological Entanglement Negativity—We
now investigate the entanglement negativity of deco-
hered 1D cluster states. The entanglement negativ-
ity [63, 64] is a mixed-state entanglement measure de-
fined as ER = log ∥ρTR∥1, where TR denotes a partial
transpose on region R and ∥ · ∥1 is a trace norm. Let’s
start with the 1D cluster state ρX under X noise. To
compute the spectrum of the partially transposed density

matrix (ρX)TA ∝
∑

{a}

[∏2N
j=1K

aj

j

]TA

eβ
∑2N

i=1 σiσi+2 , we

make the following observation: when two adjacent Kj

stabilizers are present simultaneously, the partial trans-
pose on the sublattice A gives a factor of −1, correspond-
ing to a Pauli-Y operator on A [66–68]. This leads to[∏2N

j=1K
aj

j

]TA

=
∏2N

j=1K
aj

j (−1)
∑2N

i=1 aiai+1 and hence

(ρX)TA ∝
∑
{a}

2N∏
j=1

K
aj

j (−1)
∑2N

i=1 aiai+1eβ
∑2N

i=1 σiσi+2 . (8)

Using the relations K
aj

j = σ
(1−Kj)/2
j and (−1)aiai+1 =

exp
[
iπ
4 (1− σi − σi+1 + σiσi+1)

]
, the trace norm of the

partial-transposed density matrix can be recast as

∥(ρX)TA∥1 =
1

CX

∑
S

∣∣∣∣∣∣
〈∏

i∈S

σi

〉
β,X

∣∣∣∣∣∣ , (9)
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(a) (b)

FIG. 3. Spurious topological entanglement negativity (TEN),
Esp(N) = EA(2N) − 2EA(N), measured in units of log 2, for
various system sizes N under (a) X-noise and (b) Z-noise.
Error bars are calculated from 106 to 8× 108 samples.

where S runs over all subsets of the chain and
CX is a constant that depends on β and N [83].
Here, ⟨·⟩β,X denotes the expectation value in the non-
Hermitian 1D stat-mech model defined by Hβ,X =∑2N

i=1

(
iπ
4 σiσi+1 + βσiσi+2 − iπ

2 σi
)
. Similarly, the trace

norm of ρZ can also be expressed in terms of a non-
Hermitian stat-mech model [83].

The entanglement negativity EA = log ∥(ρX)TA∥1 for
large decohered cluster states can be numerically com-
puted from Eq. (9) using the Monte Carlo method. We
define the spurious TEN as Esp(N) = EA(2N)− 2EA(N),
where the arguments in parentheses denote the chain
length. Figure 3 displays the numerically computed Esp
for ρX and ρZ . At p = 0 (p = 1/2), Esp equals log 2 (0)
in both cases, consistent with calculations based on the
stabilizer formalism [83]. For 0 < p < 1/2, strongly sym-
metric ρX exhibits Esp saturating to log 2 as N → ∞.
In contrast, for weakly symmetric ρZ , Esp vanishes as
N → ∞. This suggests that spurious TEN can arise
in locally decohered short-range entangled states with
strong subsystem symmetry but generally does not ap-
pear without such symmetry.

We prove the following theorem to analytically estab-
lish the numerically observed connection between strong
subsystem symmetry and spurious TEN in 1D:

Theorem. Consider a 1D nontrivial mixed-state SPT
state ρ protected by on-site G1 × G2 symmetry, where
Gi are finite Abelian groups acting on separate bipartite
subsystems, and let q be the order of the 2-cocycle class
associated with the SPT order. Then, ρ has a Rényi spu-

rious TEN E(2α)
sp ≥ log q for all α ∈ Z≥2 with respect to

the bipartition, provided that the matrix product density
operator (MPDO) representation of ρ is strongly injective
and satisfies condition (C1’).

We review the preliminaries and provide the proof of
Theorem in SM [83]. Here, the Rényi-(2α) negativity is

defined as E(2α)
A = (2 − 2α)−1 log

(
Tr[(ρTA)2α]/Tr[ρ2α]

)
,

which reduces to EA as α → 1/2 [88]. The deco-
hered 1D cluster state is a special case of Theorem with
G1,2 = Z2 and q = 2. The strong injectivity [30, 31]

and condition (C1’) are technical conditions that hold
for generic MPDOs representing short-range correlated
density matrices. Theorem applies to any 1D nontriv-
ial SPT state decohered under a finite-depth brickwork
circuit of symmetry-preserving local Pauli noises with

p < 1/2 [83]. (We have E(2α)
sp = log q except for a

measure-zero set of mixed states.) Theorem establishes
spurious TEN as a universal entanglement quantity that
detects mixed anomaly between strong subsystem sym-
metries in 1D mixed-state G1 ×G2 SPT orders.
In SM [83], we also show that X-decohered 2D cluster

states exhibit Esp = log 2 with respect to the bipartition
in Fig. 2(c) for p < 1/2, capturing the strong subsystem
symmetry surviving against SWSSB. This is evident for
the p = 0 case, where qubits outside the purple region
in Fig. 2(c) can be locally disentangled via controlled-Z
gates, leaving behind a 1D cluster state along the en-
tangling boundary [74]. We believe that spurious TEN
generally arises for 2D systems with mixed-state SSPT
order. Spurious TEN could serve as a signature of a
“mixed-state cluster phase,” a mixed-state phase two-
way connected to the pure cluster state via finite-depth
quantum channels, akin to how spurious TEE has been
used in the pure-state case [75].
We give two remarks. First, our results demonstrate

the existence of spurious TEN in certain locally deco-
hered short-range entangled states. While TEN is com-
monly used to diagnose mixed-state topological order,
these findings highlight that TEN is not invariant under
a finite-depth local quantum channel, suggesting caution
when using it as a diagnostic tool in general cases. Sec-
ond, Eqs. (8) and (9) also describe the entanglement neg-
ativity of the 2D toric code under both X and Z bound-
ary decoherence [68]. Our results suggest, as a byprod-
uct, that the long-range entanglement of the 2D toric
code remains robust up to the maximal boundary deco-
herence [83].
Discussion—In this work, we explore the robustness

of 1D and 2D cluster states under local noise preserving
strong subsystem symmetry and establish spurious TEN
as an information-theoretic quantity that captures the
mixed anomaly between strong subsystem symmetries.
We discuss how the robustness extends to hold for general
cases by employing mappings to stat-mech models and
their dimensional reductions.
While previous studies have discussed the robustness

of 1D SPT orders under strongly symmetric open sys-
tems [3, 89], our results contribute further insights by
(i) drawing a connection to the modern perspective of
SWSSB and (ii) pinpointing the maximal error rate
p = 1/2 as a mixed-state transition point for both 1D
and 2D cluster states under general strongly symmetric
local noises. Crucially, our stability arguments do not
rely on the replica trick and are free from potential sub-
tleties associated with the Rényi fidelity correlators [35].
Also, we focus on bulk quantities—the fidelity correlator
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and the spurious TEN—rather than edge modes [89].

Our result opens several avenues for future research.
First, it has been shown that [90, 91] for 2D pure states,
logD provides a universal lower bound for the TEE from
the Levin-Wen partition [92], where D is the quantum
dimension of the underlying anyon theory. This raises
the question of whether a similar lower bound exists for
the TEN of mixed states. This could be used to define
a bona fide diagnostics for mixed-state topological order
that remains invariant under finite-depth quantum chan-
nels. We note that a convex-roof approach has recently
been pursued toward this goal [33].

Moreover, it would be intriguing to explore connec-
tions between mixed-state cluster states and the concept
of “computational phases of matter” throughout which
universal computational power persists in the sense of
MBQC. Previous works have linked the computational
powers of SPT phases to their group cohomology classi-
fication [52, 53]. Extending this approach to the richer
classification of mixed-state SPT orders [30, 31] would be
an interesting direction. The robustness of mixed-state
cluster states found here may hint at the possibility of a
“mixed-state cluster phase” supporting universal MBQC.
Moreover, classifying mixed-state SSPT orders using ten-
sor network techniques would be worthwhile.
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SI. 1D NOISY CLUSTER STATES

In this Section, we consider the decohered 1D cluster state ρ0 = |ψ0⟩⟨ψ0| on a periodic chain of 2N qubits. In
Sec. SIA, the fidelity correlator of the 1D decohered cluster states and the stability of their mixed-state SPT order
are discussed. In Sec. SIB, the entanglement negativity of decohered cluster states and its stat-mech expression is
explained. In Sec. SIC, a proof of Theorem in the main text is provided.

A. Fidelity Correlator

In Sec. SIA 1, we exactly compute the fidelity correlator of the X-decohered 1D cluster state and demonstrate its
exponential decay for p < 1/2. In Sec. SIA 2, we compute the fidelity correlator under general local Pauli noise and
show the stability of the mixed-state SPT order of the decohered cluster state.

1. Fidelity Correlator for X-Noise

The stat-mech expression for the fidelity correlator of the strongly symmetric ρX is given by Eq. (4) in the main
text, which we repeat here:

FZ(x, y) =

∑
S

[
⟨σS⟩β⟨σS△{x,y}⟩β

]1/2∑
S⟨σS⟩β

, (S1)

where the summation runs over all even-sized subsets S of the odd sublattice A (see the footnote [81]), σS ≡
∏

∈S σi,

△ represents the symmetric difference, ⟨·⟩β = Z−1
β

∑
{σ}(·)eβ

∑N
i=1 σiσi+1 denotes the expectation value in the 1D Ising
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model at inverse temperature β = − 1
2 log(1− 2p), and Zβ = 2N [(sinhβ)N + (coshβ)N ] is the corresponding partition

function. Here, we exactly compute the fidelity correlator in Eq. (S1) for finite N and examine its asymptotic behavior
in the thermodynamic limit.

First, the denominator of Eq. (S1) can be easily computed as follows:

∑
S

⟨σS⟩β =

〈
N∏
j=1

(1 + σj)

〉
β

= 2N

〈
N∏
j=1

δσj ,1

〉
β

=
eβN

(sinhβ)N + (coshβ)N
. (S2)

For the numerator, let’s simplify an expression for the multi-spin correlator ⟨σS⟩β . Using the transfer matrix of the

1D Ising model given by T =

(
eβ e−β

e−β eβ

)
= eβI + e−βX, it can be rewritten as

⟨σS⟩β =
1

Zβ
Tr

 N∏
j=1

(eβI + e−βX)Zsj

 , (S3)

where s = {s2j−1}Nj=1 ∈ {0, 1}N represents the support of subsets S of the odd sublattice A and satisfies the con-

straint
∑N

j=1 s2j−1 ∈ 2Z. Any such s can be one-to-two mapped to a new bit-string e = {e2j}Nj=1 ∈ {0, 1}N ,
with each e2j representing a site in the even sublattice B between sites 2j − 1 and 2j + 1 in the sublattice A. (In
the context of quantum error correction, s represents the error syndrome and e the location of Pauli-X Kraus
operators on the sublattice B.) Since Z(eβI + e−βX)lZ = (eβI − e−βX)l, this observation leads to ⟨σS⟩β =

Z−1
β Tr

[
(eβI + e−βX)N−|e|(eβI − e−βX)|e|

]
, where |e| =

∑N
j=1 e2j . Now, from the relations eβ + e−βX = V ΛV †

and eβ − e−βX = V †ΛV with

Λ =

(
2 sinhβ 0

0 2 coshβ

)
, V =

1√
2

(
1 1
−1 1

)
, (S4)

we obtain

⟨σS⟩β =
1

Zβ
Tr
[
ΛN−|e|(V †)2Λ|e|V 2

]
=

(tanhβ)N−|e| + (tanhβ)|e|

1 + (tanhβ)N
. (S5)

For ⟨σS△{x,y}⟩β , the corresponding bit-string is given by e ⊕ r(x,y), where ⊕ is a vector addition modulo 2 and

r(x,y) = {r(x,y)2j }Nj=1 ∈ {0, 1}N is defined as r
(x,y)
2j = 1 for 2j ∈ (x, y) and 0 otherwise. Consequently,

FZ(x, y) =

∑
e

√
(tanhβ)N−|e| + (tanhβ)|e|

√
(tanhβ)N−|e⊕r(x,y)| + (tanhβ)|e⊕r(x,y)|

2eβN (sechβ)N
, (S6)

where the factor 2 in the denominator is from the one-to-two nature of the mapping from s to e. Letting n1 (m1) be
the number of indices 2j ∈ (x, y) (2j ̸∈ (x, y)) with e2j = 1, we have |e| = n1+m1 and |e⊕r(x,y)| = 1

2 |x−y|−n1+m1.
Therefore, we obtain the following exact expression for finite N :

FZ(|x− y|) = (coshβ)N

2eβN

N/2∑
n1=0

(
|x− y|/2

n1

) N/2∑
m1=0

(
N − |x− y|/2

m1

)
f(|x− y|, n1,m1),

f(|x− y|, n1,m1) =
√

(tanhβ)N−n1−m1 + (tanhβ)n1+m1

√
(tanhβ)N− 1

2 |x−y|+n1−m1 + (tanhβ)
1
2 |x−y|−n1+m1 .

(S7)

Now, let N be even for simplicity, and take x = 1 and y = N + 1, which correspond to the largest separation
between charged operators Zx,y. For large N , we can approximate a binomial coefficient by a Gaussian distribution as

2−N/2
(
N/2
n1

)
≃ (πN/4)−1/2 exp

[
− (n1−N/4)2

N/4

]
, and similarly for

(
N/2
m1

)
. Since f(|x− y|, n1,m1) is upper bounded by 2

and the Gaussian distributions are sharply peaked around N/4 in the thermodynamic limit, the asymptotic behavior
of FZ(x, y) can be obtained by replacing the summations in Eq. (S7) by f(N,N/4, N/4) = 2(tanhβ)N/2:

FZ(|x− y| = N) −→
N→∞

(coshβ)N · 2N · 2(tanhβ)N/2

2eβN
= e−N/ξ, (S8)

where ξ = −1/ log[2
√
p(1− p)]. Therefore, the fidelity correlator of ρX decays exponentially for p < 1/2, where the

decaying length scale ξ is finite. On the other hand, at p = 1/2, it is easy to see that FZ(|x− y|) = 1 for any N .
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2. Fidelity Correlator for General Pauli Noises

For a general local incoherent Pauli noise NP
j [ρ] = (1− p)ρ+ pPjρPj (Pj can act on a finite number of qubits near

site j) that respects strong subsystem symmetry, we can similarly argue the stability of the mixed-state SPT order

of the decohered 1D cluster state ρP =
∏2N

j=1 NP
j [ρ0] up to the maximal error rate p = 1/2.

First, the stat-mech model arising in the spectrum of the decohered density matrix is local and subsystem symmetric.
This follows from [Pj , GA/B ] = 0, where locality ensures Pj is a product of finitely many X-operators and an even
number of Z-operators in both A and B sublattices. As discussed in the main text, conjugation by Xi introduces
a two-spin interaction between neighboring Ising spins σi±1, while conjugation by Zi multiplies σi to the existing
interaction. Thus, the resulting stat-mech model for the fidelity correlator contains local interactions σUj

=
∏

i∈Uj
σi

that respect the subsystem symmetries, i.e., Ui has an even number of sites per sublattice. The spectrum of the
decohered density matrix can then be expressed as

ρP ({K}) ∝
∑
{a}

2N∏
j=1

K
aj

j eβ
∑2N

i=1 σUi , (S9)

where β = − 1
2 log(1− 2p).

Next, consider the spectrum of OxO
†
yρPO

†
xOy for charged local Pauli operators Ox,y. Since Kj |ψ0⟩ = |ψ0⟩, conju-

gating ρP by Ox and O†
y is equivalent to conjugating it by

∏
i∈Rx∪Ry

Zi, where Rx,y are some regions near sites x and

y, respectively. Combining this with Eq. (S9), we obtain

FO(x, y) =

∑
S

[
⟨⟨σS⟩⟩β⟨⟨σS△(Rx∪Ry)⟩⟩β

]1/2∑
S⟨⟨σS⟩⟩β

, (S10)

where ⟨⟨·⟩⟩β represents the expectation value for the stat-mech model H = −
∑2N

i=1 σUi at inverse temperature β. Here,

S runs over all subsets that are modulo-2 union of local patches Ui i.e., S =
⊕2N

j=1 U
ei
i with ei ∈ {0, 1}. (These subsets

S correspond to error syndromes resulting from the stochastic action of Kraus operators Pi on ρ0.) To ensure that

Eq. (S10) does not vanish trivially for all p, the operators Ox,y must satisfy Rx ∪Ry =
⊕2N

i=1 U
ri
i for some ri ∈ {0, 1}.

(The number of i with ri = 1 increases as |x− y| → ∞.) Henceforth, we assume such choices of Ox,y.
Since Ui has an even number of sites per sublattice, there are an even number of Ui containing a certain site

j in sublattice A, and similarly for sublattice B. Thus,
∏N

i=1 σU2i−1
=
∏N

i=1 σU2i
= 1. Now, let’s introduce a

new spin variables τi as σUi
= τi−1τi+1 (τi ∈ {±1}), which is valid since

∏N
i=1 σU2i−1

=
∏N

i=1 τ2i−2τ2i = 1 and∏N
i=1 σU2i

=
∏N

i=1 τ2i−1τ2i+1 = 1. Using this, we have

⟨⟨σS⟩⟩β =

∑
{σ} σSe

β
∑2N

i=1 σUi∑
{σ} e

β
∑2N

i=1 σUi

=

∑
{τ}
∏2N

j=1(τjτj+2)
ejeβ

∑2N
i=1 τiτi+2∑

{τ} e
β
∑2N

i=1 τiτi+2
= ⟨τSA

⟩β⟨τSB
⟩β , (S11)

where SA (SB) is the subset of sublattice A (B) that corresponds to the bit-string {e2j}Nj=1 ({e2j−1}Nj=1), and ⟨·⟩β is
the expectation value in the 1D Ising model of length N . Similarly,

⟨⟨σS△(Rx∪Ry)⟩⟩β =

∑
{τ}
∏2N

j=1(τjτj+2)
ej⊕rjeβ

∑2N
i=1 τiτi+2∑

{τ} e
β
∑2N

i=1 τiτi+2
= ⟨τSA△RA

⟩β⟨τSB△RB
⟩β , (S12)

where RA (RB) is the subset of sublattice A (B) that corresponds to the bit-string {r2j}Nj=1 ({r2j−1}Nj=1). Notice that
SA and RA (SB and RB) are even-sized subsets of the sublattice A (B) of length N . Therefore, Eq. (S10) becomes

FO(x, y) =

∑
SA

[⟨τSA
⟩β⟨τSA△RA

⟩β ]1/2∑
SA

⟨τSA
⟩β

·
∑

SB
[⟨τSB

⟩β⟨τSB△RB
⟩β ]1/2∑

SB
⟨τSB

⟩β
, (S13)

which is the product of expressions analogous to Eq. (S1). Such expressions can be computed following the procedure
described in Sec. SIA 1. The only difference in the computation is that r(x,y) needs to be replaced by r = {r2j}Nj=1

(or r = {r2j−1}Nj=1), which yields Eq. (S7) with |x − y| replaced by |r| =
∑N

j=1 r2j (or |r| =
∑N

j=1 r2j−1). Since |r|
scales as |x− y|, it can similarly be shown as in Eq. (S8) that FO(x, y) decays exponentially for p < 1/2. This result
demonstrates that SWSSB cannot occur for p < 1/2 in the thermodynamic limit.
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B. Entanglement Negativity

In Sec. SIB 1, the entanglement negativities of X- and Z-decohered 1D cluster states are computed for p = 0 and
1/2 using the stabilizer formalism. In Sec. SIB 2, the stat-mech expression of the entanglement negativity for general
p is discussed.

1. Stabilizer Formalism for p = 0 and 1/2

Let R be a subset of qubits and R be its complement. For a stabilizer state ρ with generators {g1, g2, . . . , gm}, the
entanglement negativity ER = log ∥ρTR∥1 is given by [93, 94]

ER =
1

2
rank(KR) · log 2, (S14)

where KR is an m×m symmetric matrix defined as

(KR)ij =

{
0 if {ΠR(gi),ΠR(gj)} = 0,

1 otherwise,
(S15)

and ΠR denotes the restriction of stabilizers on the region R, i.e., ΠR : gR ⊗ gR 7→ gR. Here, rank(KR) is computed
using arithmetic modulo 2. For the 1D cluster state, we compute the entanglement negativity with respect to the
extensive bipartition A|B, where A (B) is the sublattice of odd (even) sites. (This bipartition is referred to as Bravyi’s
example in Ref. [74].)

For p = 0 (no decoherence), the density matrix ρ0 is a stabilizer state with stabilizersKj = Zj−1XjZj+1. Restricting
to sublattice A, the stabilizers become Xj for odd j and Zj−1Zj+1 for even j. The associated matrix KA becomes a
2N × 2N circulant adjacency matrix

KA =



0 1 0 · · · 0 1
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 1 0


, (S16)

whose rank is 2N − 2. Thus, EA = N log 2 − log 2, and the spurious topological entanglement negativity (TEN) is
Esp = log 2.

For p = 1/2 (maximal decoherence), note thatNP
j [ρ] = 1

2ρ+
1
2PjρPj =

∑
sj=±1M

sj
j ρM

sj
j , whereM

sj
j = (1+sjPj)/2

is a projector onto the eigenspace of Pj with eigenvalue sj , This is equivalent to measuring Pj without recording the
outcome. We can always find generators {g1, · · · , gm} of an n-qubit stabilizer state ρ such that {gm, P} = 0 and
[gi, P ] = 0 for all i ̸= m (by multiplying the other generators that anticommute with P by gm). Then, using
M

sj
j [(I + gm)/2]M

sj
j =M

sj
j /2, we have

NP
j [ρ] =

∑
sj=±1

M
sj
j

(
m∏
i=1

1 + gi
2

)
M

sj
j =

1

2n−m+1

m−1∏
i=1

1 + gi
2

, (S17)

i.e., the channel NP
j with p = 1/2 removes at most one generator after some redefinition of generators (or none if all

generators commute with Pj). Consequently, the decohered stabilizer state
∏n

j=1 NP
j [ρ] with p = 1/2, allowing us to

use Eq. (S14) to compute its entanglement negativity.

For the 1D cluster state with p = 1/2, one can easily see that the surviving generators after applying
∏2N

j=1 NX
j are

the subsystem symmetry generators GA =
∏N

j=1X2j−1 and GB =
∏N

j=1X2j . The restriction to A yields GA and IA,

so KA is a zero matrix and hence EA = 0 for ρX . Similarly, no generators survive under
∏2N

j=1 NZ
j , giving EA = 0 for

ρZ . Namely, there is no entanglement at all for ρX and ρZ with p = 1/2, which is expected since they are mixtures
of classical states obtained by projectively measuring all qubits.
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2. Entanglement Negativity for General p

For general p, the entanglement negativity of decohered 1D cluster states can be expressed in terms of a stat-mech
model. For the sake of clarity, we repeat the derivation for the entanglement negativity of ρX given in the main text
and then proceed to ρZ .
The entanglement negativity of ρX is determined by the trace norm ∥(ρX)TA∥1, which is the sum of the absolute

values of the eigenvalues of (ρX)TA . The spectrum of (ρX)TA is given by (ρX)TA ∝
∑

{a}

[∏2N
j=1K

aj

j

]TA

eβ
∑2N

i=1 σiσi+2 .

Note that the Pauli-Y operator flips its sign under transpose. When two adjacent stabilizers Ki and Ki+1 are present
at the same time (i.e., aiai+1 = 1), their product generates two Pauli-Y operators, one in A sublattice and the
other in B sublattice. Thus, partial transpose on sublattice A introduces a factor of −1 in this case [66–68]. This

observation leads to
[∏2N

j=1K
aj

j

]TA

=
∏2N

j=1K
aj

j (−1)
∑2N

i=1 aiai+1 , i.e., non-Hermitian nearest-neighbor interactions

(−1)aiai+1 = exp
[
iπ
4 (1− σi − σi+1 + σiσi+1)

]
among the Ising spins σi = 1 − 2aj ∈ {±1} are generated along the

entangling boundary due to partial transpose. Using the relation K
aj

j = σ
(1−Kj)/2
j , we obtain Eq. (9) of the main

text:

∥(ρX)TA∥1 =
1

CX

∑
S

∣∣∣∣∣∣
〈∏

i∈S

σi

〉
β,X

∣∣∣∣∣∣ , (S18)

where S runs over all subsets of the length-2N chain and ⟨·⟩β,X represents the expectation value in the non-Hermitian

1D stat-mech model Hβ,X =
∑2N

i=1

(
iπ
4 σiσi+1 + βσiσi+2 − iπ

2 σi
)
. Here, CX is a normalization constant:

CX =
∑
S

〈∏
i∈S

σi

〉
β,X

=

〈
2N∏
j=1

(1 + σj)

〉
β,X

= 22N

〈
2N∏
j=1

δσj ,1

〉
β,X

. (S19)

Note that
〈∏2N

j=1 δσj ,1

〉
β,X

= (Tβ,X)2N11 /Zβ,X , where

Tβ,X =


eβ−iπ/4 e−β−iπ/2 0 0

0 0 eβ+iπ/4 e−β+iπ/2

e−β−iπ/2 eβ−3iπ/4 0 0
0 0 e−β+iπ/2 eβ+3iπ/4

 (S20)

is the transfer matrix of the model Hβ,X written in the ordered basis {|+1,+1⟩, |+1,−1⟩, |−1,+1⟩, |−1,−1⟩} and

Zβ,X = Tr[T 2N
β,X ] =

2
[
(
√
2e4β − 1 + 1)2N + (

√
2e4β − 1− 1)2N

]
(2i)Ne2βN

(S21)

is the partition function of Hβ,X . Thus, the constant CX simplifies to

CX =
23N−1e4βN

(
√
2e4β − 1 + 1)2N + (

√
2e4β − 1− 1)2N

. (S22)

Similarly, we can express ∥ρZ∥1 in terms of a non-Hermitian stat-mech model. Under conjugation by Zi,
∏2N

j=1K
aj

j

flips (maintains) its sign when σi = −1 (+1). Thus, there are only Zeeman terms in the spectrum of ρZ :

ρZ ∝
∑
{a}

2N∏
j=1

K
aj

j (1− 2p)
∑2N

i=1
1−σi

2 ∝
∑
{a}

2N∏
j=1

K
aj

j eβ
∑N

i=1 σi , (S23)

with β = − 1
2 log(1− 2p). Now, using the relation

[∏2N
j=1K

aj

j

]TA

=
∏2N

j=1K
aj

j (−1)
∑2N

i=1 aiai+1 again, we obtain

∥(ρZ)TA∥1 =
1

CZ

∑
S

∣∣∣∣∣∣
〈∏

i∈S

σi

〉
β,Z

∣∣∣∣∣∣ , (S24)
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where S runs over all subsets of the length-2N chain, ⟨·⟩β,Z is the expectation value in the non-Hermitian 1D stat-mech

model Hβ,Z =
∑2N

i=1

[
iπ
4 σiσi+1 +

(
β − iπ

2

)
σi
]
, whose transfer matrix is

Tβ,Z =

(
eβ 1
1 −e−β

)
(S25)

(up to an unimportant phase factor) and the partition function is

Zβ,Z = Tr[T 2N
β,Z ] =

(e2β − 1 +
√
e4β + 6e2β + 1)2N + (e2β − 1−

√
e4β + 6e2β + 1)2N

22Ne2βN
. (S26)

The normalization constant CZ is given by

CZ =
∑
S

〈∏
i∈S

σi

〉
β,Z

=
22N (Tβ,Z)

2N
11

Zβ,Z
=

24Ne4βN

(e2β − 1 +
√
e4β + 6e2β + 1)2N + (e2β − 1−

√
e4β + 6e2β + 1)2N

. (S27)

C. Proof of Theorem

In Sec. SIC 1, we introduce terminologies and review key preliminary concepts before presenting the proof of
Theorem in Sec. SIC 2.

1. Preliminaries

(1) Rényi Entanglement Negativity

For a given density matrix ρ, the (logarithmic) entanglement negativity of a subsystem R is defined as

ER = log ∥ρTR∥1, (S28)

where TR denotes the partial transpose on R and ∥ · ∥1 is the trace norm. Entanglement negativity is an easily
computable entanglement measure for mixed states and upper-bounds distillable entanglement. However, computing
∥ρTR∥1 for quantum many-body states is challenging, as it requires the full spectrum of ρTR . A more tractable and
commonly used alternative is the Rényi-(2α) entanglement negativity, defined as

E(2α)
R =

1

2− 2α
log

(
Tr[(ρTR)2α]

Tr[ρ2α]

)
. (S29)

Although E(2α)
R is not strictly an entanglement monotone, it qualitatively captures the behavior of ER in quantum

many-body states and reduces to ER in the limit α→ 1/2. For integer α, E(2α)
R involves the (2α)th moments of ρ and

ρTR , which depend on 2α copies of these matrices. This allows for analytic computations using techniques such as
the replica trick [88].

(2) MPS, Injectivity and 1D SPT Order

A 1D short-range entangled quantum state can be efficiently represented by a matrix product state (MPS) with a
bond dimension D independent of the system size [95]. Consider a translationally invariant MPS

|ψ⟩ =
d∑

i1,...,iN=1

Tr[M i1 · · ·M iN ]|i1, . . . , iN ⟩, (S30)

where d is the physical dimension andM i are D×D matrices. The MPS is injective if the MPS tensorM : CD2 → Cd

defines an injective map from the virtual space CD2

to the physical space Cd [96]. The injectivity of the MPS, which

holds for generic MPSs, ensures short-range correlation and guarantees that the transfer matrix T =
∑d

i=1M
i⊗(M i)∗

has a unique largest real eigenvalue.
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For an injective MPS with an on-site G symmetry represented by Ug =
∏N

j=1 ug (g ∈ G), there exist D × D
invertible matrices Vg satisfying [97]

d∑
j1=1

(ug)ijM
j = eiθgV −1

g M iV ,
g (S31)

where θg is a phase. Graphically, symmetry fractionalization in Eq. (S31) can be depicted as

.

(S32)

Here, the map V : g 7→ Vg forms a projective representation of G, i.e., Vg1Vg2 = ω(g1, g2)Vg1g2 for all g1,2 ∈ G,
where the phase factor ω : G × G → U(1) satisfying ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ω(g2, g3) for all g1,2,3 ∈ G
is called a 2-cocycle (or a factor system). Redefining V ′

g = αgVg with αg ∈ U(1), the 2-cocycle transforms as
ω′(g1, g2) = (αg1g2/αg1αg2) · ω(g1, g2). This relation between the 2-cocycles ω(g1, g2) and ω′(g1, g2) defines the
equivalence class [ω] of projective representations, which form the second cohomology group H2(G,U(1)) [98]. The
identity element of H2(G,U(1)) represents linear representations, whereas the remaining elements correspond to
nontrivial projective representations.

When |ψ⟩ exhibits a nontrivial SPT order, the projective representation V in Eq. (S31) belongs to a nontrivial
2-cocycle class. In particular, for a finite Abelian group G, we have Vg1Vg2 = ϕ(g1, g2)Vg2Vg1 , where the slant product
ϕ(g1, g2) = ω(g1, g2)/ω(g2, g1) characterizes the equivalence class of V . In this case, the values of ϕ(g1, g2) are always
roots of unity, i.e., ϕ(g1, g2) = e2πip/q where p and q > 1 are coprime integers. The integer q, called the order of the
2-cocycle class, is determined by the structure of H2(G,U(1)).
For example, the 1D cluster state represented by the MPS tensors

C1 =

(
1 1
0 0

)
, C2 =

(
0 0
1 −1

)
(S33)

has a Z2 × Z2 symmetry generated by GA =
∏

j:oddXj and GB =
∏

j:evenXj . Grouping two neighboring sites, one
can directly verify Eq. (S31):

, .

(S34)

Since XZ = −ZX, the 1D cluster state hosts a nontrivial Z2 × Z2 SPT order with q = 2.

(3) MPDO, Strong Injectivity, Non-Degenerate Channels and 1D Mixed-State SPT Order

This part mainly summarizes key concepts from Ref. [30]. A 1D mixed state can be represented by a matrix product
density operator (MPDO) [99]. A translationally invariant MDPO takes the form

ρ =

d∑
i1,...,iN=1
j1,...,jN=1

Tr[M i1j1 · · ·M i1j1 ]|i1, . . . , iN ⟩⟨j1, . . . , jN |, (S35)

where M ij are D × D matrices. To represent a physical density matrix, the MPDO must satisfy (i) Hermiticity:
ρ = ρ†, (ii) positive semidefiniteness: ρ ≥ 0, and (iii) the unit-trace condition: Tr[ρ] = 1. The MPDO in is strongly
injective if it satisfies the following two properties [30, 31]:

(C1) The map M : CD2 → Cd2

is an injective map from the virtual space CD2

to the physical space Cd2

.

(C2) The transfer matrix T ≡
∑d

i=1M
ii has a unique largest real eigenvalue.

Conditions (C1) and (C2) ensure short-range correlations in the doubled state |ρ⟩⟩ and the density matrix ρ, re-
spectively. Strong injectivity of MPDO has been a crucial technical condition for classifying 1D mixed-state SPT
orders [30, 31].
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We introduce an additional technical condition that generalizes (C1). Define the MPDO tensor Mα by contracting
α ∈ N copies of the given MPDO tensor M along the physical space direction as follows:

.

(S36)

The generalized condition goes as follows:

(C1’) For all α ∈ N, Mα : CD2α → Cd2

is an injective map from the virtual space CD2α

to the physical space Cd2

.

Condition (C1’) holds for generic MPDOs. [∵ If (C1’) fails for some α,
∑

i,j M
ij
α X(M ij

α )† = 0 holds for some X ̸= 0.
This gives polynomial constraints in the entries of M , which is satisfied by a measure-zero set of MPDO tensors.]
Physically, condition (C1’) ensures short-range correlations in the doubled state |ρα⟩⟩.
An MPDO admits a local purification |Ψ⟩SE if it arises from tracing out the environment E from a pure state

|Ψ⟩SE , i.e., ρS = TrE [|Ψ⟩⟨Ψ|SE ]. This includes cases where a pure state undergoes decoherence via a local quantum
channel. If the local purification has an MPS representation

|Ψ⟩SE =

d∑
i1,...,iN=1

∑
k1,...,kN

Tr[M̃ i1k1 · · · M̃ iNkN ]|i1, . . . , iN ⟩S |k1, . . . , kN ⟩E , (S37)

the corresponding MPDO tensor satisfies M ij =
∑

k M̃
ik ⊗ (M̃ jk)∗. If condition (C1) holds for an MPDO ρS with

a local purification |Ψ⟩SE , then condition (C2) automatically follows. This follows from the fact that the MPDO

transfer matrix T =
∑d

i=1

∑
k M̃

ik ⊗ (M̃ ik)∗ equals the transfer matrix of the purification |Ψ⟩SE , which has a unique
largest real eigenvalue since condition (C1) is equivalent to the injectivity of |Ψ⟩SE .
Next, a quantum channel N [·] is called non-degenerate if it is an injective map acting on the operator Hilbert space

Cd2

. Such channels describe Lindbladian evolutions over finite time. Given a Kraus representation N [·] =
∑

lKl[·]K†
l ,

non-degeneracy of N requires the matrix
∑

lKl ⊗K∗
l to have a full rank. It is shown in Ref. [30] that ρ is strongly

injective if and only if N [ρ] is strongly injective, where N is a finite-depth brickwork circuit composed of local non-
degenerate channels. This implies that an injective pure state (which is trivially strongly injective) retains strong
injectivity after decoherence by non-degenerate channels.

For example, consider an incoherent Pauli noise NP [·] = (1 − p)[·] + pP [·]P , where P is a Pauli-string operator
and p ∈ [0, 1/2]. Since P 2 = I, the associated matrix (1 − p)I ⊗ I + pP ⊗ P ∗ has eigenvalues 1 and 1 − 2p. This
shows that NP is non-degenerate for all p ∈ [0, 1/2), in which case neither eigenvalue is zero. Namely, NP are not
non-degenerate only at the maximal error rate p = 1/2. This aligns with its representation as a Lindbladian evloution
etL with L[·] = 1

2 (P [·]P − [·]) and t = − log(1− 2p), where the evolution time t diverges at p = 1/2.
Finally, we discuss the classification of 1D mixed-state SPT order. the SPT order of a strongly injective MPDO ρ

is defined by the SPT order of the corresponding doubled state |ρ⟩⟩, whose MPS representation is injective [30, 31].
Consequently, the classification scheme for MPS discussed in Sec. SIC 1(b) can be directly applied to MPDOs.
A strong symmetry G of an MPDO ρ translates into a Gu × Gl symmetry of the doubled state, where Gu (Gl)
represents a symmetry G acting on the ket (bra) Hilbert space. Under the symmetry (Gu × Gl) × K with K
being a possible weak symmetry, the classification of 1D mixed-state SPT phases is given by the cohomology group
H2(G,U(1)) ⊕ H1(G,H1(K,U(1)) [29–31]. Again, the nontrivial mixed-state SPT order means the corresponding
projective representations are nontrivial.

For an MPDO ρ with only strong symmetry G, the classification matches the pure-state case, given by H2(G,U(1)).
The symmetry fractionalization follows a form similar to Eq. (S31):

, .

(S38)

Here, the Hermiticity constraint is used to relate phase factors. The Hermiticity can also be employed to impose
ϕ(gu, hu) = ϕ∗(gd, hd) for all gu/d, hu/d ∈ Gu/d [30]. Additionally, it is known that no mixed anomaly exists between
the ket and bra symmetries Gu,d, implying [Vgu , Vgd ] = 0 for all gu/d ∈ Gu/d [30, 100].
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2. Proof of Theorem

Here, we prove Theorem of the main text. Let’s restate it for convenience:

Theorem. Consider a 1D nontrivial mixed-state SPT state ρ protected by on-site G1 ×G2 symmetry, where Gi are
finite Abelian groups acting on separate bipartite subsystems, and let q be the order of the 2-cocycle class associated

with the SPT order. Then, ρ has a Rényi spurious TEN E(2α)
sp ≥ log q for all α ∈ Z≥2 with respect to the bipartition,

provided that the MPDO representation of ρ is strongly injective and satisfies condition (C1’).

Proof of Theorem. Consider a strongly injective MPDO, which can be graphically represented as follows:

.
(S39)

With this MPDO, the moments appearing in the Rényi-(2α) negativity E(2α)
A for α ∈ Z≥2 [see Eq. (S29)] can be

expressed as Tr[ρ2α] = Tr[T 2N
2α ] and Tr[(ρTA)2α] = Tr[T̃ N

2α ], where the transfer matrices T2α and T̃2α are defined as

(S40)

and act on a virtual space of dimension D2α. (The system’s linear size is given by 2N .) We begin by proving a lemma
on the spectrum of the transfer matrices:

Lemma. For a strongly injective MPDO, all eigenvalues of the transfer matrices T2α and T̃2α with the largest modulus
are real for all α ∈ N. Assuming condition (C1’), T2α has a unique largest real eigenvalue for all α ∈ N.
Proof. The Hermiticity condition (ρ† = ρ) and condition (C1) imply that (M ji)∗ = W−1M ijW for some invertible
matrix W (a possible phase factor can be absorbed into M ij). Then, the MPDO M2α [see Eq. (S36)] admits a local
purification with an MPS tensor given byMα, up to a similarity transformation acting on the half of the virtual space
[see Fig. S1(a) for the case α = 2]. Thus, the MPDO transfer matrix of M2α, which is nothing but T2α =

∑d
i=1M

ii
2α,

is related via a similarity transformation to the transfer matrix of the MPS Mα, which is completely positive. Since
the largest-modulus eigenvalues of completely positive maps are always real, T2α shares this spectral property. One
can similarly relate T̃2α with a completely positive map via a similarity transformation as shown in Fig. S1(b) and
yield the same conclusion.

Under an additional condition (C1’), the map Mα : CD2α → Cd2

is an injective map for all α ∈ N. This means the
MPS transfer matrix of Mα has a unique largest real eigenvalue for all α ∈ N. Since T2α shares the same spectrum
with the MPS transfer matrix of Mα, the proof is complete. □

We now apply an argument similar to that in Ref. [74] to the transfer matrix T̃2α to prove Theorem. As discussed
in Sec. SIC 1(3), an MPDO with a nontrivial mixed-state SPT order protected by G1 ×G2 symmetry transforms as
follows:

, ,

, ,

(S41)
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(a) (b)

FIG. S1. (a) A transfer matrix T2α is related to the MPS transfer matrix of Mα via a similarity transformation. (b) Similarly,

T̃2α is also related to some completely positive map via a similarity transformation. The case with α = 2 is shown for simplicity.
The cross marks (×) indicate contractions along the vertical directions.

where VguVhu = ΩVhuVgu and VgdVhd = Ω−1VhdVgd , with Ω = e2πip/q for coprime integers p and q > 1. Additionally,
the projective representations V of Gu commute with those of Gd.
From Eq. (S41), the identities in Fig. S2(a) follow directly. Using these identities, one can see that T̃2α is invariant

under a series of similarity transformations, as shown in Fig. S2(b) for the case α = 2. These transformations are

induced by the matrices Vg
j = V

(j)
gu ⊗ V

(j+1)

gd and Vh
j = V

(j)

hd ⊗ V
(j+1)
hu , where superscripts indicate legs of the virtual

space from top to bottom, with 2α+ 1 ≡ 1. These matrices satisfy the following algebra:

Vg
j V

h
j+1 = Ω−1Vh

j+1V
g
j , Vg

j+1V
h
j = ΩVh

j V
g
j+1, 1 ≤ j ≤ 2α, (S42)

while all other matrices commute. This is a direct sum of two independent algebras of the same structure:{
Vg
2j−1Vh

2j = Ω−1Vh
2jV

g
2j−1,

Vg
2j+1Vh

2j = ΩVh
2jV

g
2j+1,

and

{
Vg
2jVh

2j+1 = Ω−1Vh
2j+1V

g
2j ,

Vg
2jVh

2j−1 = ΩVh
2j−1V

g
2j ,

1 ≤ j ≤ α, (S43)

Focusing on the right algebra of Eq. (S43) (the left follows similarly), note that the same algebra can be generated by

Zj = Vh
2j and Xj =

∏j
k=1 V

g
2k−1 for 1 ≤ j ≤ α− 1 because

∏α
j=1 V

g
2j−1 and

∏α
j=1 Vh

2j are in the center of the algebra.
Since these new generators satisfy ZjXj = ΩXjZj (1 ≤ j ≤ α− 1) with all other generators commuting, the minimal
representation of the right algebra has dimension qα−1. Therefore, the dimension of the minimal representation of
the full algebra in Eq. (S42) is q2(α−1).

Finally, let λ1 (λ̃1) be the eigenvalues of T2α (T̃2α) with the largest modulus and di (d̃i) their degeneracies. Since

λ1, λ̃1 are real and d1 = 1 by Lemma, the Rényi-(2α) negativity can be written as

E(2α)
A =

1

2− 2α
log

(
Tr[T̃ N

2α ]

Tr[T 2N
2α ]

)
−→
N→∞

log(λ21/λ̃1)

2(α− 1)
N − log(d̃1)

2(α− 1)︸ ︷︷ ︸
= E(2α)

sp

, (S44)

where the first term describes area-law scaling, and the second is the Rényi-(2α) spurious TEN E(2α)
sp . Since the

algebra Eq. (S42) at least requires a dimension of q2(α), it follows that d̃1 ≥ q2(α−1), implying E(2α)
sp ≥ log q. □

[End of the Proof of Theorem]

We give several remarks regarding Theorem.

• Identities similar to Fig. S2(a) show that T2α has symmetries V
(j)

gd ⊗ V
(j+1)
gu and V

(j)

hd ⊗ V
(j+1)
hu for 1 ≤ j ≤ 2α,

all of which commute. The nontrivial algebra in Eq. (S42) arises in T̃2α due to the partial transpose.

• We have E(2α)
sp = log q, except for a measure-zero set of mixed states with accidental additional symmetries.

• As discussed in Sec. SIC 1(c), incoherent Pauli channels NP are non-degenerate for p ∈ [0, 1/2). Since an
injective pure state with nontrivial G1 × G2 SPT order remains strongly injective under a brickwork circuit
consisting of local non-degenerate channels, the resulting decohered mixed state exhibits spurious TEN for
p ∈ [0, 1/2).
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(a)

(b)

FIG. S2. (a) Identities that follow from the MPDO symmetry transformation rule in Eq. (S38). (b) The transfer matrix T̃2α

remains invariant under the similarity transformations induced by Vg
j (Vh

j ) that follow from the right (left) identity of (a) Here,
the case α = 2 is illustrated.

SII. 2D NOISY CLUSTER STATES ON A SQUARE LATTICE

In this Section, we consider the decohered 2D cluster state ρ0 = |ψ0⟩⟨ψ0| on a square lattice. In Sec. SIIA,
the fidelity correlator and the stability of mixed-state SSPT order in 2D decohered cluster states are discussed. In
Sec. SII B, the entanglement negativity of 2D decohered cluster states is explained.

A. Fidelity Correlator

In Sec. SIIA 1, we exactly compute the fidelity correlator of the X-decohered 2D cluster state and demonstrate its
exponential decay for p < 1/2. In Sec. (SIIA 2), we prove that such exponential decay for p < 1/2 appears for general
local Pauli noise that preserves subsystem symmetry.

1. Fidelity Correlator for X-Noise

The fidelity correlator F 2D
Z (w, h) = F

(
ρX ,

∏
i∈□wh

ZiρX
∏

i∈□wh
Zi

)
detects SWSSB of subsystem symmetry, where

□wh represents the four corners of a square of width w and height h located on, say, B sublattice. As explained in the
main text, a stat-mech model associated with F 2D

Z (w, h) is the 2D plaquette Ising model (PIM) H = −
∑

□B

∏
i∈□B

,
where □B denotes elementary plaquettes in the B sublattice. [The other PIM defined on the A sublattice does not
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contribute to F 2D
Z (w, h), similar to the 1D case.]

On a cylinder of height L, subsystem symmetries do not exist along the vertical direction due to the following ZXZ
stabilizers (orange shade) at the boundary.

.

(S45)

These stabilizers introduce additional boundary Ising interactions H∂ (green σσ). Therefore, F 2D
Z (w, h) has a stat-

mech expression given by

F 2D
Z (w, h) =

∑
S

[
⟨σS⟩β⟨σS△□wh

⟩β
]1/2∑

S⟨σS⟩β
, (S46)

where β = − 1
2 log(1−2p) and ⟨·⟩β = Z−1

β

∑
{σ}(·)e

β
(∑

□B

∏
i∈□B

σi−H∂

)
. Here, the summation runs over all subsystem-

symmetric subsets S in the B sublattice, i.e., each row and column contains an even number of elements from S.
Such S can be obtained by taking a modulo-2 union of elementary plaquettes □B .
Defining new Ising variables as τx,1 = σx,1 and τx,y = σx,y−1σx,y for 2 ≤ y ≤ L along each column [see Fig. 2(b) of

the main text], the plaquette interactions
∏

i∈□ σi map to the Ising interactions τx,yτx+1,y [86], whereas the boundary

Ising interactions map to interactions non-local along columns, as σx,L =
∏L

y=1 τx,y. However, for p < 1/2 (i.e.,
β < ∞), these non-local interactions become negligible as we take L → ∞, which is the limit of interest where the
vertical subsystem symmetries are restored. Consequently, the stat-mech model reduces to a stack of independent 1d
Ising models (with periodic boundary conditions) in the large L limit. Under this dimensional reduction, subsets S

map to ∪L−1
y=1Sy, where Sy is an even-sized subset of the yth 1D Ising chain. This leads to ⟨σS⟩β =

∏L−1
y=1 ⟨τSy

⟩β,Ising,
where ⟨·⟩β,Ising denotes the expectation value in the 1D Ising model at inverse temperature β. As a result, we have

F 2D
Z (w, h) −→

L→∞

∏
y=y1,y2

∑
Sy

[
⟨τsy ⟩β,Ising⟨τSy△{x1,x2}⟩β,Ising

]1/2∑
Sy
⟨τSy ⟩β,Ising

= [F 1D
Z (h)]2. (S47)

Here, x1,2 (y1,2) with |x1 − x2| = w (|y1 − y2| = h) is the x-coordinates (y-coordinates) of the four corners of □wh,
and F 1D

Z (h) is the fidelity correlator for the X-decohered 1D cluster state [Eq. (4) of the main text] with |x− y| = h.
Therefore, for < 0.5, F 2D

Z (w, h) decays exponentially with h in the infinite-cylinder limit. In contrast, at p = 1/2, it
is easy to show F 2D

Z (w, h) = 1.

2. Fidelity Correlator for General Pauli Noises

Following steps in Sec. SIA 2, we can analogously show the exponential decay of the fidelity correlator for the 2D
cluster state under general local Pauli noises NP

j [ρ] = (1− p)ρ+ pPjρPj that preserves strong subsystem symmetry.

This establishes the stability of the mixed-state SSPT order in the decohered 2D cluster state ρP =
∏2N

j=1 NP
j [ρ0] up

to p = 1/2.
Since [Pj ,

∏
j∈diagXj ] = 0, Pj is a product of finite number of X-operators and

∏
j∈□A/B

Zj operators, resulting

in a stat-mech model with local interactions σUj
=
∏

i∈Uj
σi, where Ui is a modulo-2 union of elementary plaquettes

□A/B . Also, conjugating ρP by charged local Pauli operators Oi (where i are four sites forming a rectangle □wh of
width w and height h) is equivalent to conjugating it by

∏
i∈Ri

Zi, where Ri is some region near site i. Therefore,

the fidelity correlator F 2D
O (w, h) = F

(
ρP ,

∏
i∈□wh

OiρP
∏

i∈□wh
Oi

)
is given by

F 2D
O (w, h) =

∑
S

[
⟨⟨σS⟩⟩β⟨⟨σS△(∪i∈□wh

Ri)⟩⟩β
]1/2

∑
S⟨⟨σS⟩⟩β

, (S48)

where β = − 1
2 log(1 − 2p) and ⟨⟨·⟩⟩β is the expectation value in the stat-mech model H = −

∑
i σUi

at inverse
temperature β, and S =

⊕
i U

ei
i (ei ∈ {0, 1}) runs over all modulo-2 unions of Ui. (As explained in Sec. SIIA 1, For
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p < 1/2, we can safely neglect boundary interactions in the large-height limit.) To ensure that Eq. (S48) does not
vanish trivially for all p, the operators Ox,y must satisfy Rx ∪ Ry =

⊕
i U

ri
i for some ri ∈ {0, 1}, which we assume

below.
Now, introducing new spin variables τi as σUi=(x,y)

= τx,yτx+2,yτx,y+2τx+2,y+2 (τi ∈ {±1}) (which can be shown
valid using a similar argument in Sec. SIIA 1), we obtain ⟨⟨σS⟩⟩β = ⟨τSA

⟩β⟨τSB
⟩β , where SA (SB) are subsets of j

in the sublattice A (B) with ej = 1, and ⟨·⟩β denotes the expectation value in two copies of the 2D PIM. Similarly,
⟨⟨σS△(∪i∈□wh

Ri)⟩⟩β = ⟨τSA△RA
⟩β⟨τSB△RB

⟩β , where RA (RB) are subsets of j in the sublattice A (B) with rj = 1.

Therefore, Eq. (S48) factorizes as

F 2D
O (w, h) =

∑
SA

[⟨τSA
⟩β⟨τSA△RA

⟩β ]1/2∑
SA

⟨τSA
⟩β

·
∑

SB
[⟨τSB

⟩β⟨τSB△RB
⟩β ]1/2∑

SB
⟨τSB

⟩β
, (S49)

which is the product of expressions analogous to Eq. (S46). Now, following the argument in Sec. SIIA 1, Eq. (S49)
maps to a product of the fidelity correlators of 1D decohered cluster states [see Eq. (S13)]. This dimensional reduction
shows that F 2D

O (w, h) decays exponentially with w for p < 1/2, confirming the stability of mixed-state SSPT order
up to the maximal error rate p = 1/2.

B. Entanglement Negativity

In Sec. SII B 1, we employ stabilizer formalism to compute the entanglement negativity of the X-decohered 2D
cluster state on a square lattice for p = 0 and 1/2. In Sec. SII B 2, we show that the entanglement negativity of the
X-decohered 2D cluster state actually reduces to that of the 1D case, confirming Esp = log 2 for p < 1/2.

1. Stabilizer Formalism for p = 0 and 1/2

For p = 0, the density matrix ρ0 is a stabilizer state with stabilizers Kj = Xj

∏
i∈∂j Zi. Restricting to the region

R above the red dashed line in Fig. 2(c) of the main text, the stabilizers along the boundary become

c

.

(S50)

(All stabilizers in the bulk do not contribute to the entanglement negativity as they commute with all restricted
stabilizers.) Consequently, the associated matrix KR is again given by Eq. (S16), leading to the same entanglement
negativity as the 1D cluster state: ER = N log 2 − log 2, with Esp = log 2. This result aligns with the disentangling
argument given in the main text.

For p = 1/2, one can easily see that the surviving generators after applying
∏2N

j=1 NX
j are the subsystem symmetry

generators
∏N

j∈diagXj along all diagonal lines. From this, we have ER = 0.

2. Entanglement Negativity for General p

We establish the presence of spurious TEN in the X-decohered 2D cluster state for p < 1/2 as follows. The spectrum

of (ρX)TR is given by (ρX)TR ∝
∑

{a}

[∏
j K

aj

j

]TR

e
β
(∑

□A

∏
i∈□A

σi+
∑

□B

∏
i∈□B

σi

)
, where β = − 1

2 log(1− 2p). Since

only stabilizers along the entangling surface ∂R are affected by the partial transpose on the upper-half subsystem R,

we have
[∏

j K
aj

j

]TR

=
∏

j K
aj

j (−1)
∑

i∈∂R aiai+1 . Introducing new spin variables as

τx,y =


σx,y−1σx,y for y > y0,

σy0
for y = y0,

σx,yσx,y+1 for y < y0

, (S51)
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where y0 is the y-coordinate of an “anchor” point i ∈ ∂R, all PIM interactions
∑

□A/B

∏
i∈□A/B

σi transform into

horizontal Ising interactions τx,yτx+1,y. This allows the partial-transposed density matrix to factorize as

(ρX)TR ∝
L→∞

∑
{τ}y=y0

∏
x

K
ax,y0
j (−1)

∑
i∈∂R aiai+1eβ

∑
x τx,y0τx+1,y0 ·

∑
{τ}y ̸=y0

∏
x,y ̸=y0

Kax,y
x,y eβ

∑
y ̸=y0

∑
x τx,yτx+1,y , (S52)

where we have neglected non-local τ interactions for p < 1/2, which become negligible as L → ∞ (see Sec. SIIA 1).
The first factor is nothing but the spectrum of the partial-transposed density matrix of the X-decohered 1D cluster
state. The second factor is a product of multi-spin correlators in the 1D Ising model and is simply a constant factor
that does not contribute to the entanglement negativity. Thus, for p < 1/2, the entanglement negativity of the
X-decohered 2D cluster state reduces to that of the 1D case. Consequently, Theorem and the numerical result shown
in Fig. 3(b) of the main text apply to the 2D case as well, yielding Esp → log 2 for p < 1/2 in the thermodynamic
limit.

SIII. BOUNDARY DECOHERENCE IN 2D TORIC CODE

In Ref. [68], the effect of boundary decoherence on mixed-state long-range entanglement in the toric code is exam-
ined. The setup is as follows: consider a 2D toric code on a square lattice with Hamiltonian H = −

∑
v Av −

∑
pHp,

where Av =
∏

i∈∂v Zi is the product of Z-operators on the four edges adjacent to vertex v (red shade), and
Bp =

∏
i∈∂pXi is the product of X-operators on the four edges enclosing plaquette p (blue shade). The system

is bipartitioned along the yellow dashed line below, with decoherence applied only to the qubits along the bipartition
boundary (yellow circles) via a local quantum channel.

.

(S53)

Under both X-noise and Z-noise with respective rates px and pz at the boundary, it is shown in Ref. [68] that the
entanglement negativity is determined by the boundary portion of the partial-transposed density matrix:

ρTR

∂ ∝
∑
{a}

∑
{b}

N∏
j=1

A
aj

j

N∏
j=1

B
bj
j (−1)

∑N
i=1 ai(bi−1+bi+1)eβx

∑N
i=1 σiσi+1eβz

∑N
i=1 τiτi+1 , (S54)

where βx,z = − 1
2 log(1 − 2px,z) and 2N is the length of the bipartition boundary. Here, aj , bj ∈ {0, 1} indicates

the presence or absence of the stabilizers Aj and Bj along the boundary, with the corresponding Ising spin variables
defined as σj = 1− 2aj and τj = 1− 2bj . Ref. [68] has left an open question of the critical error threshold at which
mixed-state long-range entanglement between R and its complement R breaks down.

As a by-product of our study, we resolve this question. Note that the spectrum of Eq. (S54) is equal to that of the
partial-transposed density matrix for an X-decohered 1D cluster state, where qubits in sublattice A (B) decohere at
rate px (pz). Consequently, in this setup, the TEN of the decohered 2D toric code coincides with the spurious TEN of
the X-decohered 1D cluster state. When px = pz ≡ p, Eq. (S54) reduces to Eq. (8) in the main text. Thus, Fig. 3(b)
provides numerical evidence that mixed-state long-range entanglement between R and R in the 2D toric code remains
robust up p = 1/2. For general cases with px ̸= pz, Theorem implies that the same conclusion holds.
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