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ON THE CONVERGENCE OF A PERTURBED ONE DIMENSIONAL

MANN’S PROCESS

RAMZI MAY

Abstract. We consider the perturbed Mann’s iterative process

(0.1) xn+1 = (1− θn)xn + θnf(xn) + rn,

where f : [0, 1] → [0, 1] is a continuous function, {θn} ∈ [0, 1] is a given sequence, and {rn} is the

error term. We establish that if the sequence {θn} converges relatively slowly to 0 and the error

term rn becomes enough small at infinity, any sequences {xn} generated by (0.1) converges to

a fixed point of the function f . We also study the asymptotic behavior of the trajectories x(t)

as t → ∞ of a continuous version of the discrete process (0.1). We investigate the similarities

between the asymptotic behaviours of the sequences generated by (0.1) and the trajectories of

the corresponding continuous process.

1. Introduction and presentation of the main results

Let f : [0, 1] → [0, 1] be a continuous function. The classical Brouwer’s fixed point theorem

[1]) or a simple application of the intermediate value theorem ensures that the function f has

at least one fixed point. In order to determine a numerical approximation of fixed points of f ,

W. Robert Mann [9] introduced the following iterative process

(1.1) xn+1 =
n

n+ 1
xn +

1

n+ 1
f(xn)

and proved the following result.

Theorem 1.1. Let f : [0, 1] → [0, 1] be a continuous function. If f has a unique fixed point

p ∈ [0, 1], then, for any initial data x0 ∈ [0, 1], the sequence {xn} generated by the process (1.1)

converges towards p.

Later, R.L. Franks and R.P. Marzec in a short and a very nice paper [4] proved that the

condition on the uniqueness of the fixed points of the function f in the previous theorem is not

necessary. Precisely, they proved the following theorem.

Theorem 1.2. If f : [0, 1] → [0, 1] is a continuous function then, for any initial data x0 ∈ [0, 1],

the sequence {xn} generated by the process (1.1) converges towards a fixed point of f
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Our first objective in this paper is to investigate the effect of possible small computational

errors on the asymptotic behaviour of the iterative process (1.1). We will establish the following

result.

Theorem 1.3. Let f : [0, 1] → [0, 1] be a continuous function and {θn} ∈ [0, 1] a given real

sequence. Let {xn} ∈ [0, 1] be a sequence satisfying the perturbed iterative process

(1.2) xn+1 = (1− θn)xn + θnf(xn) + rn,

where {rn} is a real sequence. If

(1) θn → 0 as n → ∞,

(2)
∑

∞

n=0 θn diverges,

(3) rn
θn

→ 0 as n → ∞,

(4)
∑

∞

n=0 rn converges,

then the sequence {xn} converges towards a fixed point of f .

Inspired by the works [8], [6], [7], [10] and [11], we also study the asymptotic behavior of the

trajectories x(t) of a continuous version of the discrete dynamical system (1.2).

Theorem 1.4. Let f : [0, 1] → [0, 1] and θ : [0,∞) → [0,∞) be two continuous functions and let

x : [0,∞) → [0, 1] be a continuous differentiable function that satisfies the perturbed differential

equation:

(1.3) x′(t) + θ(t)x(t) = θ(t)f(x(t)) + r(t), t ≥ 0,

where r : [0,∞) → R is a continuous function. If

(1) limt→∞

r(t)
θ(t) = 0,

(2)
∫

∞

0 θ(t)dt diverges,

(3)
∫

∞

0 r(t)dt converges,

then x(t) converges towards a fixed point of f as t → ∞.

The sequel of paper is organized as follows. In the next section, we provide a detail proof of

Theorem 1.3. The third section is devoted to the proof of Theorem 1.4. In the fourth section, we

study through a numerical experiment the effect of the sequence {θn} and the error term {rn}

on the rate of convergence of the sequences {xn} generated by the process (1.2). The last section

is devoted to a complete and detail proof of Mann’s convergence original result (Theorem 1.1).

2. On the convergence of the perturbed discrete dynamical system (1.2)

In this section, we provide a detail proof of Theorem 1.3. The proof is greatly inspired by

the original paper [4]. It essentially relies on the classical notion of the omega limit set of a real

sequence. We recall here briefly this notion and some of its main properties.
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Definition 2.1. Let {xn} be a real sequence. The omega limit set of the sequence {xn} is the

set ω({xn}) of real numbers z such that z = limn→∞ xnk
for some subsequence {xnk

} of the

sequence {xn}.

Lemma 2.1. Let {xn} be a real sequence. Then

(1) ω({xn}) = ∩n∈N{xm : m ≥ n}
R

where {xm : m ≥ n}
R

denotes the closure of the set {xm :

m ≥ n} in R.

(2) If {xn} is bounded then ω({xn}) is a nonempty compact subset of R.

(3) If {xn} is bounded then {xn} converges in R if and only if the set ω({xn}) is reduced to

a single element.

(4) If limn→∞ xn+1 − xn = 0 then ω({xn}) is a connected subset of R.

The proof of this lemma is classical and easy, it is then left for the readers. Now, we are in

position to prove the main result Theorem 1.3.

Proof. Since the sequence {xn} is in [0, 1] and satisfies

xn+1 − xn = θn[f(xn)− xn] + rn → 0 as n → ∞,

then in view of the previous lemma, there exist two real number 0 ≤ a ≤ b ≤ 1 such that

ω({xn}) = [a, b]. Let us suppose that a < b. We claim that in this case f(w) = w for any

w ∈ (a, b). Let w ∈ (a, b). Suppose for the sake of contradiction that f(w) > w. Then thanks to

the continuity of f there exist two positive real numbers δ and ε such that [w− δ, w+ δ] ⊂ (a, b)

and f(x) ≥ x+ ε for any x ∈ [w − δ, w + δ]. There exists n0 ∈ N such that for any n ≥ n0

|xn+1 − xn| < δ,(2.1)

rn ≥ −εθn.(2.2)

Moreover, there exist two positive integers n2 > n1 > n0 such that xn1
∈ (w + δ, b) and

xn2
∈ (a,w − δ). Let m be the greatest integer between n1 and n2 such that xm ≥ w − δ.

Therefore, in view of (2.1), we have xm+1 < w − δ ≤ xm < w. Now by going back to the

dynamical system (1.2) and using the fact that f(xm) ≥ xm + ε, we get

xm+1 ≥ xm + θmε+ rm

≥ xm ( in view of (2.2)).

This contradicts the fact that xm+1 < xm. Similarly, we can show that the assumption f(w) < w

leads to a contradiction. We therefore conclude f(w) = w for any w ∈ (a, b) if a < b. We continue

working under the assumption a < b. Let c = b+a
2 and set α = b−a

8 . There exists a positive integer

m0 such that

|xm0
− c| < α,(2.3)

∣

∣

∣

∣

∣

m
∑

n=m0

rn

∣

∣

∣

∣

∣

< α,∀m ≥ m0.(2.4)
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Let m1 > m0 be the smallest positive integer such that xm1
/∈ [c−2α, c+2α] (such integer exists

since [c− 2α, c+ 2α] ⊂ (a, b)). Therefore, for any integer n ∈ [m0,m1 − 1], we have f(xn) = xn

and

xn+1 = xn + rn.

Summing up the previous equalities, we obtain

xm1
= xm0

+

m1−1
∑

n=m0

rn.

Combining this identity with the estimations (2.3) and (2.4), we get

|xm1
− c| ≤ 2α

which contradicts the definition of xm1
. We then conclude that a = b which in view of Lemma

2.1 means that the sequence {xn} is converging in R; let x∞ be its limit. Clearly x∞ ∈ [0, 1].

Let us prove by contradiction that f(x∞) = x∞. Let us suppose that f(x∞) > x∞. Thanks to

the continuity of the function f, there exists a positive real number β > 0 and a positive integer

p0 such that, for any n ≥ p0,

f(xn) ≥ xn + 2β,

rn ≥ −βnθn.

Hence, for any integer n ≥ p0,

xn+1 − xn = θn(f(xn)− xn) + rn

≥ 2βθn + rn

≥ βθn.

Summing up these inequalities leads to the inequalities

β

∞
∑

n=p0

θn ≤ x∞ − xp0

≤ 1

that contradict the assumption on the sequence {θn}. Similarly, we can show that f(x∞) can

not be less than x∞. We therefore conclude that f(x∞) = x∞ which completes the proof. �

3. On the convergence of the perturbed continuous dynamical system (1.3)

This section is devoted to the proof of Theorem 1.4. Before starting the proof of this theorem,

let us recall the definition and some simple proprieties of the omega limit set of a continuous

real valued function defined on the interval [0,∞). (For more details on the notion of the omega

limit in a more general context, we refer the readers to the books [6], [7], and [8] .
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Definition 3.1. let u : [0,∞) → R be a continuous function. The omega limit set associated to

the function u (denoted by ω(u(t))) is the set of real numbers z such that limn→∞ u(tn) = z for

some positive sequence {tn} such that tn → ∞ as n → ∞.

The following lemma gathers some well known properties of the omega limit set associated to

a continuous and bounded real valued function u defined on the interval [0,∞).

Lemma 3.1. let u : [0,∞) → R be a continuous and bounded function function. Then

(1) ω(u(t)) = ∩k∈Nu([k,∞))
R

, where u([k,∞))
R

denotes the closure of the set u([k,∞)) in

R.

(2) ω(u(t)) is a nonempty compact interval of R.

(3) u(t) converges to some real number u∞ as t → ∞ if ad only if ω(u(t)) = {u∞}.

The proof of Theorem 1.4 uses also this simple and technical lemma inspired from the papers

and [2] and [5].

Lemma 3.2. let u : [0,∞) → R be a continuous and bounded function. If ω(u(t)) = [a, b] with

a < b then for any real numbers c and d such that a < c < d < b and any T0 > 0 there exist four

reals numbers s1, s2, τ1 and τ2 such that:

(1) τi > si > T0, i = 1, 2.

(2) u(t) ∈ [c, d] for any t ∈ [si, τi], i = 1, 2.

(3) u(s1) = c and u(τ1) = d.

(4) u(s2) = d and u(τ2) = c.

Proof. Let T0 > 0 and c and d two real number such that a < c < d < b. From the definition

of ω(u(t)), there exist two real numbers s0 and τ0 such that τ0 > s0 > T0, u(s0) < c and

u(τ0) > d. Let s1 = sup{t ∈ [s0, τ0] : u(t) < c}. sing the continuity of u we can easily verify that

s0 < s1 < τ0, u(s1) = c and u(t) ≥ c for any t ∈ [s1, τ0]. Let τ1 = inf{t ∈ [s1, τ0] : u(t) > d}.

Again the continuity of u ensures that τ0 > τ1 > s1, u(τ1) = d and u(t) ≤ d for every t ∈ [s1, τ1].

This completes the construction of s1 and τ1. The construction of s2 and τ2 can be done similarly.

In fact, there exist two real numbers s′0 and τ ′0 such that τ0 > s0 > T0, u(τ
′

0) < c and u(s′0) > d.

Now let s2 = sup{t ∈ [s′0, τ
′

0] : u(t) > d} and τ2 = inf{t ∈ [s2, τ
′

0] : u(t) < c}. Again by using the

continuity of u we can verify that s2 and τ2 satisfy all the required proprieties. �

Now we are in position to prove Theorem 1.4.

Proof. From Lemma 3.1, there exist two real numbers 0 ≤ a ≤ b ≤ 1 such that ω(x(t)) = [a, b].

First, for the sake of a contradiction, we suppose that a < b. Now let w be an arbitrary

element of the open interval (a, b). Let us suppose that f(w) > w. Then there exist ε, δ > 0

such that [w − δ, w + δ] ⊂ (a, b) and f(z) > z + ε for any z ∈ [w − δ, w + δ]. Let T0 > 0

such that r(t) ≥ −εθ(t),∀t ≥ T0. According to Lemma 3.2, there exist τ2 > s2 > T0 such that
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x(s2) = w + δ, x(τ2) = w − δ, and x(t) ∈ [w − δ, w + δ] for any t ∈ [s2, τ2]. Therefore, for every

t ∈ [s2, τ2],

x′(t) = θ(t)(f(x(t))− x(t)) + r(t)

≥ εθ(t) + r(t)

≥ 0.

Hence by integrating on the interval [s2, τ2], we get the contradiction −2δ ≥ 0. Similarly, by

sing the times s1 and τ1 instead of s2 and τ2, we can verify that the assumption f(w) < w leads

also to a contradiction. We then conclude that if a < b then f(w) = w for any w ∈ [a, b]. We

continuous working under the assumption a < b. Let c = a+b
2 and α = b−a

4 . Let T1 > 0 be

greater enough such that

(3.1)

∣

∣

∣

∣

∫ τ

s

r(t)dt

∣

∣

∣

∣

≤ α, ∀τ > s > T1.

According Lemma 3.2, there exist τ1 > s1 > T1 such that x(s1) = c − α, x(τ1) = c + α, and

x(t) ∈ [c− α, c + α] for any t ∈ [s1, τ1]. Therefore, for any t ∈ [s1, τ1],

x′(t) = θ(t)(f(x(t))− x(t)) + r(t)

= r(t).

Hence, by integrating the last equality between s1 and τ1 we get

2α =

∫ τ1

s1

r(t)dt,

which contradicts (3.1). We therefore conclude that a = b which means thanks to Lemma 3.1,

that x(t) converges as t → ∞ to some the real number x∞ = a = b. Let s prove It is clear that

x∞ ∈ [0, 1], let us show that it is a fixed point of f. For the sake of absurdity, let us for instance

assume that f(x∞) < x∞. The continuity of x(t) an f and the assumption on r(t) assures the

existence of ε > 0 and T2 such that for any t ≥ T2

x(t)− f(x(t)) ≥ 2ε,

r(t) ≤ εθ(t).

Therefore, for every t ≥ T2,

x′(t) = θ(t)(f(x(t))− x(t)) + r(t)

≤ −εθ(t).

Integrating the last inequality between T2 and T > T2 and then letting T → ∞, we get the

inequality

ε

∫

∞

T2

θ(t)dt ≤ x(T2)− x∞
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that contradict the assumption on θ. Similarly, we can show that f(x∞) can not be greater than

x∞. We therefore conclude that f(x∞) = x∞. �

4. A numerical study of the rate of convergence of the processes (1.2) and

(1.3)

In this section, we investigate numerically the effect of the speed of the vanishing of the

sequence {θn} and the amplitude of the error term {rn} on the rate of convergence of the

sequence {xn} generated by the perturbed process (1.2) to a fixed point of f . We consider the

case where The sequence {θn} is defined by θn = 1
(n+1)α where 0 < α ≤ 1, and the objective

function f : [0, 1] → [0, 1] is given by:

f(x) =



















2(14 − x), 0 ≤ x ≤ 1
4 ,

4(x− 1
4),

1
4 ≤ x ≤ 1

2 ,

4(34 − x), 1
2 ≤ x ≤ 3

4 ,

2(x− 3
4),

3
4 ≤ x ≤ 1,

A simple calculation shows that f has exactly three fixed points: x1f = 1
6 , x2f = 1

3 , and x3f = 3
5 .

We can now introduce our example of the process (1.2). Let x0 be an arbitrary element of [0, 1].

The sequence {xn} is generated by the iterative stochastic process

(4.1) xn+1 = Π((1− θn)xn + θnf(xn) +A
Mn

1 + n2
),

where A > 0 is a constant and {Mn} is a sequence of i.i.d random variables such that each Mn

follows the uniform low U([−1, 1]). The function Π : R → [0, 1] is the metric projection on the

interval [0, 1] which is defined explicitly by:

Π(x) =











0, x ≤ 0,

x, 0 ≤ x ≤ 1,

1, x ≥ 1.

Clearly, the sequence {xn} belongs to the interval [0, 1] and satisfies the process (1.2) with an

error term rn = Π(yn +A Mn

1+n2 )− yn where yn = (1− θn)xn + θnf(xn). Since yn ∈ [0, 1],

|rn| ≤
A

1 + n2
.

Therefore, according to Theorem 1.3, the sequence {xn} converges to a fixed point x∞. For

the two chosen values of the amplitude of the error term A = 0.1 and 0.001 and some chosen

values of α ∈ [0, 1] and ǫ > 0, we perform Kmax = 100 times the process (4.1) with arbitrary

initial data x0 in [0, 1] under the stoping criteria |f(xn)− xn| < ǫ. Let N(A,α, ǫ) be the average

of number of iterations needed to achieve the stopping criteria. The following two tables give

N(0.1, α, ǫ) and N(0.001, α, ǫ) for some values of α and ǫ.

We notice that the process (1.2) converges faster if α is close to 1 (i.e., the sequence {αn}

converges relatively quickly to zero) and A is small (i.e., the perturbation term {rn} is relatively



8 RAMZI MAY

α/ǫ ǫ = 0.1 ǫ = 0.01 ǫ = 0.001 ǫ = 0.0001

α = 0.1 4.27 77.07 117.41 133.64

α = 0.2 5.83 24.40 36.46 41.72

α = 0.4 5.05 12.83 17.03 22.50

α = 0.6 4.04 7.65 11.84 20.54

α = 0.8 3.53 6.47 11.20 21.63

α = 0.9 3.65 5.83 10.73 25.07

α = 1 3.40 6.14 11.44 28.89

Table 1. N(A = 0.1, α, ǫ)

α/ǫ ǫ = 0.1 ǫ = 0.01 ǫ = 0.001 ǫ = 0.0001

α = 0.1 4.88 76.14 119.15 134.84

α = 0.2 5.14 22.94 35.09 38.39

α = 0.4 4.97 11.52 16.49 17.81

α = 0.6 3.95 7.39 9.49 10.85

α = 0.8 3.46 5.87 6.68 8.63

α = 0.9 3.57 5.72 6.70 9.20

α = 1 3.28 4.89 6.60 8.78

Table 2. N(A = 0.001, α, ǫ)

weak). In this case the speed of the convergence of the process (1.2) is slightly better than the

rate of the convergence of the classical bisection method (applied for the function f(x)− x) for

which N(ǫ), the number of needed iterations to achieve the precision ǫ, is equal to the entire

part of − log(ǫ)
log(2) where 0 < ǫ < 1, [3].

5. Annex

In this section, we give a complete and detail proof of original Mann’s convergence result

(Theorem 1.1).

Proof. The function g(x) = f(x)−x defined on the interval [0, 1] is continuous, satisfies g(0) ≤ 0

and g(1) ≥ 0, and has p as a unique root, then from the intermediate value theorem, g(x) > 0 on

the interval [0, p) and g(x) < 0 on (p, 1]. Now let ε > 0 be an arbitrary but a fixed real number.

There exists δ > 0 such that

(5.1) (x ∈ [0, 1] ∧ |x− p| ≥ ε) ⇒ |g(x)| ≥ δ.
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On the other hand since,

|xn+1 − xn| =
1

n+ 1
|g(xn)|

≤
1

n+ 1
,

there exists a positive integer n0 such that

(5.2) |xn+1 − xn| < ε,∀n ≥ n0.

Now let us suppose that for any integer n ≥ n0, xn /∈ [p − ε, p + ε]. This implies that either

xn > p+ ε for any n ≥ n0 or xn < p− ε for any n ≥ n0, because otherwise there exists m ≥ n0

such that xm > p+ ε and xm+1 < p − ε which is impossible in view of (5.2). Let us assume for

instance that xn > p+ ε for any n ≥ n0. Then, from (5.1) and the fact that g(x) < 0 on (p, 1],

we deduce that

xn+1 − xn =
1

n+ 1
g(xn) ≤ −

δ

n+ 1
, ∀n ≥ n0.

Therefore, for any n > n0, we have the inequality

xn − xn0
≤ −δ

n−1
∑

k=n0

1

k + 1

which implies limn→∞ xn = −∞ contradicting the fact that {xn} is bounded. We therefore

conclude that there exists n1 ≥ n0 such that xn1
∈ [p− ε, p+ ε]. We will now prove that for any

n ≥ n0, if xn ∈ [p − ε, p + ε] then xn ∈ [p − ε, p + ε]. Let n ≥ n0 such that xn ∈ [p − ε, p + ε].

We consider the two possible cases:

The first case xn ∈ [0, p + ε]. We have g(xn) ≤ 0, then xn+1 = xn + θng(xn) ≤ xn. Combining

this inequality with the fact that |xn+1 − xn| < ε, we deduce that xn+1 ∈ [p− ε, p + ε].

The second case xn ∈ [p− ε, 0]. We have g(xn) ≥ 0, then xn+1 ≥ xn. Hence, by using again the

fact |xn+1 − xn| < ε, we also deduce that xn+1 ∈ [p − ε, p+ ε].

Therefore, by induction we conclude that, for any n ≥ n1, xn ∈ [p− ε, p+ ε]. This means that

xn → p as n → ∞ and therefore completes the proof of the theorem. �
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