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Abstract

Governments are starting to impose requirements on AI models based on how much compute
was used to train them. For example, the EU AI Act imposes requirements on providers of
general-purpose AI with systemic risk, which includes systems trained using greater than 1025

floating point operations (FLOP). In the United States’ AI Diffusion Framework, a training
compute threshold of 1026 FLOP is used to identify “controlled models” which face a number of
requirements. We explore how many models such training compute thresholds will capture over
time. We estimate that by the end of 2028, there will be between 103-306 foundation models
exceeding the 1025 FLOP threshold put forward in the EU AI Act (90% CI), and 45-148 models
exceeding the 1026 FLOP threshold that defines controlled models in the AI Diffusion Framework
(90% CI). We also find that the number of models exceeding these absolute compute thresholds
each year will increase superlinearly – that is, each successive year will see more new models
captured within the threshold than the year before. Thresholds that are defined with respect to
the largest training run to date (for example, such that all models within one order of magnitude
of the largest training run to date are captured by the threshold) see a more stable trend, with a
median forecast of 14-16 models being captured by this definition annually from 2025-2028.

1 Introduction

Recent years in machine learning have seen the rise of foundation models – AI systems that exhibit
powerful and general-purpose capabilities. Governments across the world are starting to impose
requirements on the development and deployment of the most capable such systems, such as the GPT
o-series [OpenAI 2024a]. In December 2023 the European Union adopted the EU AI Act [European
Union 2023], the world’s first comprehensive legislation designed to govern the development and use
of AI systems. Among other things, the Act imposes requirements on providers of general-purpose
AI with systemic risk (GPAISR), as of August 2025, which includes systems trained using greater
than 1025 floating point operations (FLOP)1. The European Union is not the only jurisdiction
to propose requirements based on training compute thresholds; in one of its final acts the Biden
administration issued the Artificial Intelligence Diffusion Framework [Federal Register 2025], which
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1In this paper we often use the notation 10X to refer to absolute compute thresholds. However the notation 1eX
also appears at times which is interchangeable with the first notation. For example, 1e24 FLOP = 1024 FLOP, 5.3e25
FLOP = 5.3× 1025 FLOP, etc.
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as one of its key directives proposed a host of requirements on models above 1026 FLOP (named
“controlled models” in the Framework) with the aim of maintaining leadership in AI technology
among the US and its allies [Heim 2025].

However, it is well established that the training compute used for frontier models has been
growing extraordinarily quickly, with mean model size growing by about 4-5x per year over the past
decade [Sevilla, Jaime and Roldán, Edu 2024]. This has important implications for compute-based
governance approaches such as those included in the EU AI Act and the Diffusion Framework. In
April 2025, estimates suggest that there are 2 publicly available models trained using more than 1026

FLOP and approximately 30 publicly available models trained using more than 1025 FLOP [EpochAI
2025]. However, if current trends continue, these numbers may quickly grow. Governments will need
to take this growth into account as they shape their AI governance efforts. By underestimating
the number of models covered by their thresholds, they may fail to build sufficient capacity to
implement their regulations or may impose regulatory burdens on an excessive number of actors.

With this in mind, we attempt to estimate the number of released models that will exceed various
compute thresholds over the coming years. Extrapolating from current trends we conclude that by
the end of 2028 there could be between 103-306 models exceeding the 1025 FLOP threshold (90%
confidence interval) with a median estimate of 165, and 45-148 models exceeding the 1026 FLOP
threshold (90% confidence interval), with a median estimate of 81. We also study “frontier-connected
thresholds” – thresholds that are defined relative to the largest training run at any one point in
time rather than based on the absolute amount of training compute used – and estimate that in
the coming years there will be between 6-35 models released within 1 order of magnitude (OOM)
of the largest training run that has taken place (90% CI) with a stable median of 14-16 models
captured by this definition. However our analysis has limitations resulting from selection effects
in the database that we extrapolate trends from, as well as uncertainty in key parameters that
influence the projections.

Importantly, our estimates do not straightforwardly translate into the number of models in scope
of the EU AI Act or AI Diffusion Framework. Our numbers may provide an overestimate in that
neither the EU nor the US would apply regulations to models trained and only made available in
other jurisdictions (e.g., China). Additionally, the AI Act only applies to general purpose AI - it
is unclear whether image and video generation models (such as OpenAI’s SORA [OpenAI 2024b]
or Google DeepMind’s Imagen [Google DeepMind 2024]) would count as GPAI. The Act may also
not apply to models that were placed on the market before the relevant obligations come into force
in August 2025. Further, both rules could affect the market for AI development, making it less
attractive for companies to release in-scope models. If these effects occur, our analysis may end
up overcounting the models captured by these thresholds. At the same time, our estimates may
underestimate the number of models subject to the compute-based threshold requirements. This is
because the regulation could apply not only to original GPAISR developers but also to companies
that modify the models [Williams, Schuett, and Anderljung 2025], for example by adding software
scaffolding around the model before making an application available to users. Since our analysis
does not account for such adaptations, the actual number of affected models could be higher than
our estimates suggest. Finally it should be noted that the EU AI Office has the ability to update
the threshold in both directions - as does the US Bureau of Industry and Security in the U.S. as
it relates to the AI Diffusion Framework - which would have to be taken into consideration when
interpreting the predictions in future years.
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Figure 1: Historical data (2017-2023; blue) and a sample of our model’s predictions (2024-2028; red)
for the number of AI models exceeding 1025 and 1026 FLOP.

2 Methodology

Our aim is to forecast the number of models that will be released above different training compute
thresholds over the next four years. To do this, we model scenarios for the distribution of AI model
releases over training compute. Once these distributions are established, we can simply count the
models that exceed each specific compute threshold.

2.1 Data

We use Epoch AI’s Notable Models dataset [Epoch AI 2025c] as the main dataset for our analysis.
To our knowledge, this is the most comprehensive publicly available dataset of machine learning
models available with over 450 entries of models and their estimated training compute. However,
it is important to note that ML models must satisfy one of the following criteria (the notability
criteria [Epoch AI 2025d] to be included in the database:

• highly cited (over 1000 citations);

• large training cost (over $1,000,000, measured in 2023 USD);

• significant use (over one million monthly active users);

• state of the art performance (typically on a recognized ML benchmark);

• indisputable historical significance.

This makes the notable models dataset a strict subset of all machine learning models, and the
selection effect applied by the notability criteria should be accounted for when interpreting the
results in this paper. In short, this selection effect biases our median estimates towards being a lower
bound estimate, especially for models that are multiple orders of magnitude of training compute
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below frontier models2. For these models that are significantly smaller than the frontier models, it is
also difficult to quantitatively estimate the extent to which the estimates derived from the notable
models database will be lower than the actual value. However, anchoring on the full 90% prediction
intervals presented in Section 3 provides some insurance against the effects of this selection effect
(i.e: in some cases the 95th percentile projection is likely to be closer to the actual number of models
exceeding the compute threshold). The effects of the Notable Model database selection effects, and
how this can be accounted for within our model are discussed in further detail in Section 5.1.

Whilst the Notable Models database contains ∼450 entries with associated training compute
values from 2010-2024, we fit our model based on the data from 2017-2023 (with 296 datapoints) to
capture recent trends in the field. We do not use 2024 data to fit the model as the data is more
likely to be incomplete - this is because the models tracked in the database lag behind models
released by a handful of months. Visualizations of the model distribution in the dataset provide
evidence in support of this, and are shown in appendix A.

2.2 Allocating total compute spending across different model scales

We forecast the distribution of models over training compute by projecting the total amount of
compute that will be spent training AI models in the coming years, and then modeling how this
compute stock is distributed over models of different size. We choose this approach as we expect
the total training compute spending to be a strong and relatively simple-to-forecast constraint on
model distributions (over training compute). The allocation of compute to models of different sizes
also exhibits a linear trend that is simple to extrapolate (discussed below).

Note that there are alternate ways to estimate the future distribution of models over training
compute; for example, one could fit a parametric distribution (e.g: a normal distribution) to historical
data, extrapolate this into future years and then sample from this distribution. However we do not
use this method for the following reasons: Firstly, it is unclear which parametric distributions, if
any, are a good fit to historical distributions of training compute (see appendix A). Secondly, our
approach has a more explicit focus on determining model distributions from total training compute
spending - which, as mentioned above, we expect to be a strong and simple-to-forecast constraint
over the next few years.

Using our approach, we project future model distributions over training compute by:

1. Projecting the total compute that will be used for AI workloads (both training and inference)
with a median annual growth rate of roughly 4.1x.

2. Allocating this compute with a split of 40% of compute towards training models that are
publicly released and 60% of compute towards other uses (including inference and compute
used for research experiments) in 2025 and 2026, and a 30-70 allocation in 2027 and 2028.

3. Allocating the training compute across models of different scales - i.e: models within 1 OOM
of the frontier model, models within 1 and 2 OOMs of the frontier model, models within 2 and
3 OOMs of the frontier model etc. - by fitting to data from 2017-2023 and assuming these
allocation trends hold over the coming years.

We will now discuss each of these in turn in greater detail.
We first begin by projecting the total amount of compute that will be used for AI workloads in

the coming years. We use two sources for this.

2This is because models multiple orders of magnitude away from the frontier are less likely to be captured by the
notable model criteria relative to models close to the frontier.
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Firstly, we can look at historical growth rates of training compute from the Notable Models
database. Doing so for the years that we fit the model (2017-2023), we find a rapid growth rate of
6.3x annually for the total training compute used to train AI models. Assuming that the historical
allocation between model training and inference has stayed roughly constant, we can generalise this
to a 6.3x growth in compute used for AI workloads.

On the other hand, [Dean 2024] models the growth in compute for AI workloads as increasing at
a rate of 3.4x per year. This is the compound growth rate resulting from a 2.25x increase per year
of the compute stock that can be used for AI workloads, and a 1.5x increase per year of the share of
this stock that actually is allocated to AI training, inference and other uses3. The 2.25x growth
rate in global AI-relevant compute stocks results from a 1.35x growth rate in the physical stock of
AI chips and 1.65x in chip efficiency. The 1.5x growth in share results from aggressive buildouts
of data centers by leading AI developers, financed by revenues on the order of tens of billions of
dollars resulting from highly performant AI models and agents.

Given the discrepancy between these two estimates we integrate both into our median growth
rate forecast. We put more weight on the 3.4x per year increase in compute for AI workloads given
the detailed analysis that leads to this figure, however we do not fully discount the rapid growth rate
that has been historically observed. Specifically we give the 3.4x figure three times as much weight
as the historically observed figure, but this weighting is subjective and predictions for alternative
weightings are shown in Appendix G. Applying this weighting between the two growth rates leads to
a median growth rate of the AI workload stock (i.e: the stock of compute used for AI training and
inference) of 4.1x per year. To account for uncertainty in the actual annual growth rate of compute
for AI workloads, we add noise to the median growth rate, drawn from a normal distribution with
mean of 0 and standard deviation of 0.5.

Next, we model (a) how the AI compute stock is allocated between training models, and other
uses (such as model inference and research experiments) and (b) how the total training compute is
allocated across models of different sizes. Our baseline scenario for part (a) follows the allocations
in a recently released analysis ([Dean 2024]), and is discussed in Section 2.4. To answer (b), we look
at how training compute has been allocated to models of different sizes in recent years, and assume
that these allocation trends hold in the coming years. This approach means that we do not have to
explicitly commit to fixed parametric distributions.

Figure 2 below shows how training compute spending in the years 2020-2023 has been allocated
to models of different sizes (data for 2017-2019 are shown in Appendix B). The x-axis represents
the size of individual models. The y-axis shows the cumulative distribution function of training
compute over model size - i.e: the fraction of training compute spent training models of size m or
less. Differences in model sizes and their compute share can span orders of magnitude so both axes
are log-scaled.

To get a concrete sense of what the plot shows, here are some conclusions that can be made by
reading off the graph:

• In 2021, models of size 1022 FLOP or less contributed to approximately 1% of total training
compute spending.

• In 2021, models of size 1021 FLOP or less contributed approximately 0.1% of total training
compute spending

• In 2022, models of size 1021 FLOP or less contributed approximately 0.01% of total training
compute spending

3One can think of these two quantities as AI compute capacity and AI compute usage.
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Figure 2: Compute allocation across model sizes for years 2020-2023, x-axis unnormalized.

• In 2023, models of size 1023 FLOP or less contributed just less than 10% total training compute
spending.

Figure 2 also marks the largest model trained each year with the red vertical line. By definition,
the largest model and all those smaller than it account for 100% of training compute spending in a
given year; this is shown in Figure 2 by the fact that this line intersects with the line representing
total training compute spending.

The relationship between model size m and the cumulative distribution function is consistently
linear across 2020-2023 (and 2017-2019 - see Appendix B), suggesting a stable trend that can
be extrapolated. The size of individual models grows each year, so to extrapolate this trend we
normalize the x-axis by the largest model trained in each year (shown in Figure 3). Table 1 shows
the compute allocations for different model sizes for 2023 that are derived from these plots.
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Figure 3: Compute allocation among model sizes for years 2020-2023, x-axis normalized by largest
model trained that year. Linear fit shown.

Compute allocation in 2023

Model size
relative to
Gemini
Ultra

All models
within 5–4

OOM

All models
within 4–3

OOM

All models
within 3–2

OOM

All models
within 2–1

OOM

All models
within 1
OOM

Model size
(absolute)

5×1020–
5×1021

5×1021–
5×1022

5×1022–
5×1023

5×1023–
5×1024

5×1024–
5×1025

Fractional
allocation (2
s.f.)

0.00011% 0.0010% 0.010% 8.6% 90%

Compute
allocation
(FLOP)

1.51×1022 1.43×1023 1.36×1024 1.16×1025 1.22×1026

Table 1: 2023 allocations – Largest model: Gemini Ultra @ 5×1025 FLOP, total compute =
1.35×1026 FLOP. OOM refers to an order of magnitude of training compute. Allocations may not
sum exactly to 1 due to rounding errors.

Before moving on, it is worth briefly considering the constraints and physical interpretations of
the parameters of the linear fits - namely, the gradient (k) and the intercept (b). First, note that
the linear fits must pass through (1,1) on the normalized plots (Figure 2B) - this is because, by
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definition, the largest model and all those smaller than it (i.e: all models released in a given year)
account for 100% of compute used. This means that the intercept of the linear fits - b - must be 0
(see Appendix C for details). Regarding k, Appendix C shows that models that are 10x the size
of a smaller counterpart are allocated roughly 10k times as much compute. Historical values for k
are seemingly equally distributed across the range [0.9, 1.1] (shown in Appendix D), therefore our
model samples k uniformly from the range [0.9,1.1]. The edge case of k=0.9 corresponds to models
that are 10x as large being allocated 100.9 = ∼8.0 times as much compute, whereas for the k=1.1
case this factor is 101.1 = 12.6 times as much compute. Table 17 shows allocations of compute
across model size for a range of different k.

2.3 Modelling the largest training run

Recall from Table 1 that our method assigns training compute to models based on their size relative
to the largest training run. Therefore, assumptions must be made about the size of the largest
training run in a given year, which is done by making assumptions about the share of total training
compute that the largest training run uses. In our model, this parameter is called the largest model
share (or LMS). To illustrate what the the LMS represents, setting an LMS of 0.3 (or 30%) means
that the largest model trained in a given year is uses 30% of the total training compute spent used
across all models that year.

Given this setup, what are reasonable assumptions to make about the largest model share (LMS)
parameter? One source of evidence is the historical values of the LMS derived from the Notable
Models database; these are shown in Appendix F.1. One can see a range of values - for example, in
2018 ResNet-101 used approximately 78% of the training compute that was spent across all models
tracked in the Notable Models database that year. More recently, in 2020 GPT-3 175B (davinci)
accounted for 46% of compute spent across all models trained and released that year. On the lower
end, data from 2022 shows Minerva 540B accounting for 15% of training compute spent that year
on released models. Discounting the 2018 LMS as an outlier, the historical values appear relatively
evenly distributed over the range [0.1,0.5] - therefore sampling the LMS parameter uniformly from
this range (LMS ∼ Unif(0.10, 0.50)) is a reasonable first modelling attempt. However, lower values
of the LMS exert a strong influence on the model’s predictions for reasons discussed in Appendix
F.2, so the lower bound of the sampling interval is extended to 0.05 to yield a refined model of LMS
∼ Unif(0.05, 0.50).

The LMS parameter is sampled uniformly from the bounds [0.05, 0.50] when the model is
retrodicted for the years 2020-2023 in Section 4, however one more refinement is made when
projecting the model forward for the years 2025-2028. A qualitative interpretation of the LMS
parameter is the degree of concentration in the market of developers producing AI models at the
largest scales. To illustrate, consider an LMS of 0.5, meaning that the largest training run used
50% of the training compute spent across all models that year. An implication of this is that at
most, two developers can train a model at this scale. On the other hand an LMS of 0.05 (i.e: the
largest training run uses 5% of training compute that was spent across all models released that
year) means that, in theory, 20 different actors could participate in model development at this
scale4. We expect an increasing number of developers to perform training runs at the largest scales
in the coming years. This trend can be seen today with a number of relative newcomers, such as
x.AI, Inflection, and Mistral, joining established actors such as OpenAI and Google DeepMind in
training models at the very frontier of AI development[Epoch AI 2025b]. To quantitatively model
this trend of a greater number of actors participating in frontier AI development, we sample the

4The assumption here is that no actor releases multiple models at this scale, but the general argument still holds
without this.
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LMS parameter log-normally for the years 2025-20285 from the bounds discussed above, in contrast
to the uniform sampling used when retrodicting the model for 2020-2023 (these two LMS sampling
distributions can be seen in Appendix E, alongside results using uniform sampling of the LMS for
the years 2025-2028). For 2024, the largest model released in 2024 is documented in the Notable
Models database as GPT-4o [Hurst et al. 2024] at 3.8× 1025 FLOP, hence we set the LMS for 2024
to match this.

Finally, to generate model distributions to extend the historical data we randomly sample models
from each bin until the total training compute allocated to that bin is met or exceeded.

2.4 Allocating compute between training, inference, and other workloads

Given estimates of the total compute stock, the next key stage involves allocating this stock between
training, inference and other workloads. First a note on the different usages for compute. AI
developers can use compute for model training (both pre- and post-training), as well as serving
models to customers (external deployment/inference), using models in-house for research automation
and monitoring (internal deployment/inference), compute for research experiments, generating
synthetic data, and more. This analysis is primarily concerned with the compute used for training
released models, hence compute usage is categories into ’training’ and ’inference and other’.

[Dean 2024] estimates that in 2024 approximately 40% of compute was used for training (including
both pre- and post-training), with the remaining share going to model inference and other uses.
This is used as the starting point for the model. [Dean 2024] then estimate the share of compute
allocated to training in the following years, estimating that in 2025 and 2026 40% of compute will
be used for model training, 30% at the start of 2027 and 20% by the end of 2027. These allocations
are mapped to the years of predictions for this forecast (2025-2028) in the first column of Table
26. The 20-80 allocation of compute between training and other uses at the end of 2027 represents
an aggressive scenario with respect to AI automation, and is therefore adjusted to a slightly more
balanced 30-70 split for the baseline forecast in this paper, as can be observed in the second column
of Table 2.

It is also worth noting that there is considerable uncertainty in the estimated present day
compute allocations between training, inference and other workloads, with public estimates varying
widely7. In Appendix H we present results for alternate allocation scenarios.

Year Approximate training
compute allocations [Dean

2024]

Training compute
allocation (ours)

2025 40% 40%

2026 40% 40%

2027 30% 30%

2028 20% 30%

Table 2: Compute allocations for model training (not including research experiments) for 2025-2028

5Formally, log (LMS) ∼ N (µ, σ) where µ = E(log(0.05), log(0.50)), σ = (log(0.50)− log(0.05))/4
6Concretely, we take the start of 2027 allocation (30%) as the allocation for all of 2027, and the end of 2027

allocation (20%) as the 2028 allocation.
7For example, the Epoch GATE model [Epoch AI 2025a] estimates an allocation of 90% of compute to model

training in 2024, moving to 70% in 2028.
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2.5 Frontier-connected thresholds

An alternative to setting training compute thresholds based on absolute compute limits (e.g: 1025

FLOP, 1026 FLOP) is to set thresholds based upon a model’s proximity to the largest model trained
to date8. To get a sense for how such a threshold would operate, at a given point in time a model
regulator could require that any model trained over the next 3 months that is either (a) within
1 OOM of the largest model that existed at the start of this period or (b) exceeding the size of
this largest model is subjected to additional reporting or transparency requirements. We project
trends for these ‘frontier-connected’ thresholds for models that are within 0.5, 1 and 1.5 orders of
magnitude of the largest model to date.

3 Results

In this section we present the results of our model for both absolute compute thresholds (e.g: 1025

FLOP, etc.) and for frontier-connected thresholds that incorporate models within 0.5, 1.0 and 1.5
orders of magnitude from the largest model released. We present the results of our model in the
format (5, 50, 95), where 5, 50, 95 refer to the 5th, 50th and 95th percentile projections of the
model when running it 1000 times. The 90% confidence prediction intervals are presented to convey
uncertainty about parameters of the model, such as the largest model share (LMS), compute growth
rates and allocation gradient. Interpretations of these results should anchor on the full prediction
interval, rather than a single point estimate (e.g: the median projection).

Section 4 aims to validate the model projections by retrodicting our model and comparing the
results to the historically observed data. Here we find that the 90% prediction intervals capture
all historically observed data points. Taken together, this provides considerable evidence that the
90% prediction intervals presented below are likely to capture the number of models released in the
coming years above each respective threshold.9

3.1 Absolute compute thresholds

First, we can compare our model’s projections to existing data on the number of AI models exceeding
1025 FLOP. The model predicts that there were 23 AI models exceeding 1025 FLOP at the end
of 2024, which aligns well with the 24 found in [Epoch AI 2025b] (recall that we set the largest
model in 2024 to the size of GPT-4o inline with the Notable Models database). Then, assuming
these prediction intervals will hold over the coming years, what are the implications for training
compute thresholds? By the end of 2028 (EOY 2028) our median and 95th percentile projections
for the number of models exceeding the 1025 FLOP threshold in the EU AI Act are 165 and 306
respectively. Our median and 95th percentile projection for the number of models exceeding the
1026 threshold in the Diffusion Framework are 81 and 148.

It is also worth noting the growth rate of the number of models exceeding the AI Act’s threshold
each year. Considering the 95th percentile projections, we see that from 2024-2025 the number of
models captured by the 1025 threshold increases by 37, and then 55, 82 and 105 in subsequent years.
This highlights a superlinear growth trend; not only does the number of models captured by the
Act’s compute threshold increase, but it increases at a growing rate. This superlinear growth trend
holds across all projections (5th, 50th and 95th percentile forecasts) and across all absolute compute
thresholds. However, the multiplicative factor from one year to the next is decreasing, meaning the

8See Appendix A of [Anderljung et al. 2023] for discussion.
9Supporting code for this analysis will be made available at https://github.com/IyngkarranKumar/compute_

thresholds_public.
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Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [18, 23, 27] [32, 45, 64] [51, 77, 119] [76, 117, 201] [103, 165, 306]

> 1026 [0, 0, 0] [3, 7, 11] [12, 24, 38] [27, 47, 81] [45, 81, 148]

> 1027 [0, 0, 0] [0, 0, 0] [0, 2, 5] [1, 10, 20] [9, 27, 56]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 3, 8]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 3: Results for absolute thresholds. The table presents 90% prediction intervals [5th, 50th,
95th percentile] for the number of models exceeding each compute threshold. Results are cumulative,
showing estimates for the number of models released by the end of each year.

growth is sub-exponential. For example, the multiplicative factor between median estimates for the
1025 FLOP threshold is 1.96, 1.71, 1.52 and 1.41. Once again, this holds across all thresholds and
percentile estimates.

3.2 Frontier-connected thresholds

We now consider the results of our projections for the frontier-connected thresholds defined in 2.5.
These results are shown in Table 4 The key takeaway is that across all projections (5th, 50th and
95th percentile) and all thresholds (within 0.5, 1.0 and 1.5 OOMs of the largest model), the number
of models captured by the threshold from 2025-2028 stays roughly constant. The figures differ for
2024 as the largest training run is fixed at GPT-4o’s size of 3.8 × 1025 FLOP. For example, our
median projection for the number of models that are within 1 OOM of the largest model at a given
date is stable at 14-16 models across each year from 2025-2028, and the other thresholds of 0.5 OOMs
and 1.5 OOMs see a similar trend, with stable medians in the range of 6-8 and 20-24 respectively.
This constancy in the number of models captured by the threshold may be a desirable property for
regulatory bodies responsible for enforcement; however the extent to which the frontier-connected
thresholds are preferable over absolute training compute thresholds will also depend on whether the
risks posed by a model are in part due to the absolute amount of compute used to train the system
or the amount used relative to the frontier.
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Distance
from frontier
model

2024 2025 2026 2027 2028

Within 0.5
OOM

[11, 16, 21] [3, 6, 14] [2, 7, 16] [3, 8, 15] [3, 8, 17]

Within 1
OOM

[23, 31, 39] [7, 14, 25] [6, 15, 29] [7, 16, 31] [7, 15, 35]

Within 1.5
OOM

[36, 46, 60] [12, 20, 39] [11, 22, 46] [11, 24, 50] [11, 23, 55]

Table 4: Frontier-connected thresholds. Results show 90% prediction intervals [5th, 50th, 95th
percentile] for models within specified distances of the frontier model. Results for each year represent
new models released in that year only.

4 Verification

In this section we present results obtained by retrodicting our model for absolute compute thresholds
1023, 1024 and 1025 FLOP, for which there exists data from the years 2020-2023. We also compare
our models predictions with the number of AI models satisfying the frontier-connected thresholds.
The model’s 90% prediction intervals capture all of these historically observed data points, which
provides considerable evidence that the predicted intervals in Section 3 will capture the actual
number of models exceeding the thresholds.

4.1 Absolute compute thresholds

Threshold
(FLOP)

2020 2021 2022 2023

> 1023 2 (0,1,4) 9 (8,13,27) 29 (19,29,60) 54 (36,54,128)

> 1024 0 (0,0,0) 3 (0,2,3) 8 (3,8,10) 19 (13,22,44)

> 1025 0 (0,0,0) 0 (0,0,0) 0 (0,0,0) 4 (0,4,5)

Table 5: Absolute compute thresholds retrodiction. Each cell is formatted as O (5, 50, 95) where
O, 5, 50, 95 are the historically observed values, 5th percentile, 50th percentile (median) and 95th
percentile prediction.

For the absolute compute thresholds 1023, 1024 and 1025 FLOP, our 90% confidence interval captures
the historically observed values for the years 2020-2023. Note however, that for a number of cells the
historically observed value is closer to the model’s 5th or 95th projection than it is to the median
projection, highlighting the importance of interpreting the full prediction interval.
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Distance
from frontier
model

2020 2021 2022 2023

Within 0.5
OOM

3 (1,6,12) 4 (1,4,19) 5 (1,5,12) 5 (2,4,18)

Within 1.0
OOM

7 (5,12,24) 19 (5,9,34) 16 (4,9,28) 11 (5,9,35)

Within 1.5
OOM

11 (8,18,39) 27 (8,15,51) 22 (7,15,44) 17 (9,14,50)

Table 6: Frontier-connected thresholds retrodiction. Each cell is formatted as O(5, 50, 95) where
O, 5, 50, 95 are the historically observed values, 5th percentile, 50th percentile (median) and 95th
percentile prediction.

4.2 Frontier-connected threshold

For the 0.5, 1.0 and 1.5 OOM frontier-connected thresholds, our 90% confidence interval captures
all of the historically observed values. Again, in some cases (e.g: 2021), the observed value is closer
to the 5th or 95th percentile projection than it is to the median projection.

5 Limitations

In this section the limitations of our analysis are discussed. This includes the selection effect on the
machine learning models tracked by the Notable Models database, as well as limitations resulting
from uncertainty in key parameters that influence the model’s predictions (such as the largest model
share parameter) and compute growth rates.

5.1 Notable models selection effect

The Notable Models database is a strict subset of all machine learning models. Therefore using this
dataset to model future trends will, in general, lead to point estimates of the number of models
that exceed the absolute compute thresholds being a lower bound on the true number. However,
the nearer a model is to the frontier, the closer this lower bound estimate will be to the actual
number of models that exceed the threshold. To illustrate, consider the cases of setting a 1022

FLOP compute threshold and 1025 FLOP threshold in the year 2023. In 2023, the largest model
released was Gemini Ultra at 5x1025 FLOP. Most models with training compute on the order of
1025 are likely to have satisfied at least one of the notability criteria10 given their proximity to the
frontier AI model of the day. However, models of size ∼1022 FLOP in 2023 are far less likely to

10As a reminder, the notability criteria are:

• highly cited (over 1000 citations);

• large training cost (over $1,000,000, measured in 2023 USD);

• significant use (over one million monthly active users);

• state of the art performance (typically on a recognized ML benchmark);

• indisputable historical significance.
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have met the notability criteria and thus more likely to be excluded from the dataset, making point
estimates of the trends of 1022 FLOP models less reliable.

One way in which this effect can be accounted for within our model is by setting the allocation
gradient (k) to less than one. Qualitatively this means that smaller models get more compute
relative to the median scenario in our baseline case (where the median value of k is 1.0). For
example, in the case where k = 1.0, models that are within 1 OOM of the largest model trained in
a given year are allocated 90% of the compute share, with models within 1 OOM and 2 OOM of
the largest model getting a factor of 10 less (i.e., 9%). On the other hand, when k = 0.5, models
within 1 OOM of the frontier get only 68% of compute, and those in the category below it get 100.5

≈ 3.2x less compute (other allocations are shown in Table 17). The results of our baseline model
shown in Section 3 choose k based on historical values found from the Notable Models database,
as it is unclear how exactly to modify this parameter to account for the notable models selection
effect. However in Appendix I, results are presented in which k is sampled uniformly from the
ranges [0.7,0.9] and [0.5, 0.7] to illustrate the outcome on compute thresholds counts when using
this technique as a potential correction for the notable models selection effect.

Even within our baseline predictions (where k is sampled uniformly from [0.9,1.1]), it should
be emphasized that our 90% prediction intervals are designed to capture uncertainty in the model
parameters (such as largest model share, allocation gradient, and compute stock growth rate), not
the uncertainty that arises from the Notable Models selection effect. However anchoring on the
full prediction intervals will insure decisions against this selection effect to some extent. In other
words, while our median projections are biased towards underestimating the actual number of
models captured by the compute thresholds, this is less likely to be the case for our 95th percentile
projections.

5.2 Uncertainty in key model parameters

Key parameters that influence the model’s predictions are the largest model share parameter (LMS),
the compute stock growth rate, the allocation gradient, and the allocation of the compute stock
between training and inference. Our choices for most of these parameters are informed by their
historical values, for which we have limited data (2017-2023). This introduces uncertainty into our
model, which we account for by presenting 90% confidence intervals. However the limited historical
data often only provides six (6) data points to calibrate these intervals with.

For example, the LMS in previous years has varied significantly over the range 0.1 (2024) to 0.46
(2020). In making projections for the years 2025-2028 we therefore sample the LMS (lognormally)
from a wider range of [0.05,0.5]. Given that low values of the LMS can lead to substantially different
projections compared to larger values (Appendix F.2 discusses this in further detail), future work
could look to further calibrate this parameter as more data becomes available. The case for the
compute stock growth rate is similar - the two sources of evidence that are used in this study
(historical compute growth rates and [Dean 2024]’s forecast of future compute stock growth) show
a noticeable discrepancy which we resolve by subjectively weighting the estimated growth rates.
Valuable future work could look to conduct further analysis into the growth of compute that is
available for AI training and inference.
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6 Implications for Compute-Threshold-Based Governance Frame-
works

Training compute is increasingly being used as a proxy for determining which AI models should be
subject to requirements imposed by AI governance frameworks. As [Heim and Koessler 2024] argue,
compute thresholds serve as an effective initial filter to identify potentially risky general-purpose AI
models that warrant regulatory oversight and further scrutiny. This approach is valuable because
training compute correlates with model capabilities and potential risks while being easily quantifiable
compared to other inputs to AI development [Sastry et al. 2024].

However, our analysis demonstrates a critical challenge: any static compute threshold will
capture an increasing number of models over time. By the end of 2028, our median projections
indicate that 165 models will exceed the 1025 FLOP threshold established in the EU AI Act, and 81
models will surpass the 1026 FLOP threshold set in the US AI Diffusion Framework. Especially
relevant is the superlinear growth pattern we observe. Not only does the number of models captured
by these thresholds increase yearly, but the rate of increase accelerates.

This pace of increase could strain governmental capacity to enforce and monitor requirements
while potentially imposing excessive regulatory burdens on a growing number of AI developers. In
response, governments have at least two potential options. First, they can make regulatory burdens
more proportionate for less risky models while increasing their regulatory capacity to handle the
growing number of models in scope. Second, they can reduce the scope of requirements by excluding
certain models from the regime. Both the EU AI Office in the EU and the Bureau of Industry and
Security in the US have the authority to make such adjustments to the scope of their respective
regulatory frameworks.

7 Conclusion

In this paper we estimate the number of AI models that will exceed training compute thresholds
such as those proposed in the EU AI Act [European Union 2023] and the AI Diffusion Framework
[Federal Register 2025]. Our method centres around estimating the total stock of compute that will
be available for AI workloads (training and inference), and then allocating the training compute
stock to models of different size following trends seen from 2017-2023. We find that 103-306 models
will exist by the end of 2028 that exceed a 1025 FLOP compute threshold with a 90% confidence
interval, and 45-148 models will exist above the 1026 FLOP threshold. For all compute thresholds
defined with respect to an absolute value, the number of models exceeding the threshold increases
at an accelerating (superlinear) rate.

We also analyse trends for compute thresholds that are connected to the largest frontier model
at the time of their release and find for thresholds that capture models within 0.5, 1.0 and 1.5 orders
of magnitude of the largest model, the median number of models captured remains roughly stable
each year (at approximately 7, 15 and 21-22 respectively) - however we have wide 90% confidence
intervals around these. We validate our predictions by retrodicting threshold counts for the years
2020-2023, with our 90% confidence intervals capturing all historically observed values.

However our analysis is limited by the selection effects applied by the Notable Models database
which bias our median projections towards being a lower bound on the actual number of models that
will exceed the absolute compute thresholds. Additionally uncertainty around model parameters
such as the largest model share (LMS), allocation gradient and compute growth rate mean that the
full 90% prediction interval should be accounted for when basing policy decisions on these results.
These findings emphasize the need for policymakers and regulatory bodies to consider the rapid
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growth in frontier AI model counts when designing and implementing compute-based governance
frameworks, ensuring they have sufficient capacity to monitor and regulate an expanding number of
models while maintaining flexibility to adjust thresholds as the AI landscape evolves.
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Appendices

A Historical distribution of notable models and fit data choice

Figure 4: Historical distribution of models over training compute - scatter plot.

Figure 5: Historical distribution of models over training compute - KDEs

The dataset we use for this analysis contains records of models and their estimated training
compute dating back to the 1950s. We filter out all models that were released before 2017 as
this corresponds to the era before the release of the Transformer architecture at the core of most
frontier models today. Additionally, we do not use 2024 data to fit our model. Observing the model
distribution in Figure 4, 2024 data appears incomplete relative to the previous years, especially
towards the lower end of the distribution (i.e: there is a notable absence of models on the lower end
of compute usage). The deviation of 2024 data from previous years can also be seen in the kernel
density estimates of Figure 5.
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B Compute allocations for 2017-2019

Figure 6: Linear fits to cumulative allocation plots for years 2017-2019.
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C Constraints and interpretation of the linear fits

This Appendix discusses the constraints on the linear fit to the compute allocation trends, and the
interpretation of the allocation gradient parameter.

Observing historical data we see that the relationship between normalized model size (normalized
by the largest model trained that year) - m̃ and the fraction of compute spent on models of size m̃ or
less (the cumulative distribution function, denoted by A(m̃)) is linear in log-space. Mathematically:

log(A(m̃)) = k · log(m̃) + b (1)

Let that largest model trained in a given year be mmax, then m̃max = 1. Models of size mmax

or smaller (i.e., all models) take up all compute spending that year, therefore A(m̃max = 1) = 1.
Enforcing this constraint on equation 1 means that b = 0 - and so equation (1) reduces to A(m̃) = m̃k.

The parameter k determines how compute is allocated across models of different scales. To
see this, let us first denote a(m1,m2) as the amount of compute that is allocated to models in
the range [m1,m2). Consider also three sizes of models - m∗, 10m∗, and 100m∗. The compute
allocated to models in the range [m∗, 10m∗] is a(m∗, 10m∗) = A(10m∗)−A(m∗) = (10k−1)mk using
equation (1). The compute allocated to models in the range [10m∗, 100m∗) is a(10m∗, 100m∗) =
A(100m∗) − A(10m∗) = 10k(10k − 1)mk after some simplification. Therefore, the relationship
between a(m∗, 10m∗) and a(10m∗, 100m∗) is simply:

a(10m∗, 100m∗) = 10k · a(m∗, 10m∗) (2)

In other words, scaling up model size by a factor of 10 leads to a factor of 10k increase in
compute allocated to models of this size. k = 1 means that these larger models get 10 times as
much compute as their smaller counterparts. k > 1 means that they get a factor greater than 10,
and k < 1 leads to a factor less than 10.
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D Historical values of allocation gradient & allocations for varying
gradient

Figure 7: Allocation gradient parameter for 2017-2023.

Historical values of the gradient of the compute allocation fits (k). Informed by this, our model
draws k uniformly from the range [0.9,1.1].

k [10−7-10−6] [10−6-10−5] [10−5-10−4] [10−4-10−3] [10−3-10−2] [10−2-10−1] [10−1-100]

0.5 0.068 0.22 0.68 2.2 6.8 22 68

0.75 0.0026 0.015 0.082 0.46 2.6 15 82

0.9 0.00035 0.0028 0.022 0.17 1.4 11 87

1.0 9×10−5 0.0009 0.009 0.09 0.9 9 90

1.1 2.3×10−5 0.00029 0.0037 0.046 0.58 7.3 92

1.25 3×10−6 5.3×10−5 0.00094 0.017 0.3 5.3 94

1.5 9.7×10−8 3.1×10−6 9.7×10−5 0.0031 0.097 3.1 97

Table 7: Compute allocations (%) for various values of k. Each column shows allocation percentages
for model size ranges, with models defined with respect to the largest training run. To illustrate:
for the k=1.1 case, 92% of compute is allocated to models within an OOM of the largest model,
7.3% is allocated to models within 1 and 2 OOMs of the largest model, 0.58% to models within 2
and 3 OOMs of the largest model, etc.

21



E Results under uniform sampling of LMS parameter

Section 2.3 discusses the choice to model the largest model share (LMS) parameter for the years
2025-2028 with a lognormal distribution (recall that the 2024 LMS is set such that the largest
model is the size of GPT-4o), rather than a uniform distribution. In this appendix, Figure 8 shows
the difference between these choices for the LMS sampling distributions, and Table 8 shows the
threshold count results when the LMS parameter is sampled from the uniform distribution instead.
In Table 8, notably less aggressive medians are observed which results from the median of the LMS
distribution being larger than for the lognormal case (for reasons on why larger LMS values lead to
less aggressive medians see Appendix F.2).

Figure 8: Left: Lognormal LMS distribution with bounds [0.05,0.5] (any value drawn from outside
these bounds is resampled) and Right: Uniform LMS distribution. Medians, 5th and 95th percentile
LMS indicated.

Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [19, 23, 28] [31, 42, 67] [47, 67, 116] [65, 97, 185] [88, 137, 287]

> 1026 [0, 0, 0] [4, 7, 10] [12, 21, 36] [23, 40, 76] [39, 68, 142]

> 1027 [0, 0, 0] [0, 0, 0] [0, 3, 5] [3, 11, 19] [12, 26, 51]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 1] [0, 4, 9]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 8: Results for absolute compute thresholds when the LMS parameter is sampled uniformly
from the range [0.05,0.5].
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F LMS parameter and influence of LMS on projections

F.1 Historical LMS

Figure 9: Historical data for the largest model and total training compute.

Figure 10: Historical data for the largest model share (LMS) parameter

Historical values of the LMS parameter and the total compute and the largest model each year that
the LMS is derived from. The AlphaGo family of models have been removed from the dataset on
the basis of being outliers, as done in similar analyses [Sevilla et al. 2022]. We fit the model on data
from 2017-2023 and also discount the LMS for 2018 as it appears to be an outlier.

23



Our predictions sample the LMS uniformly from the range [0.05,0.5]. The upper bound is chosen
to accommodate GPT-3 davinci accounting for ∼46% of training compute in 2020. The lower bound
is chosen with the 2022 value of 0.15 in mind, however we incorporate a wide range underneath this
value due to the strong influence of low LMS values on the model’s predictions (see Appendix F.2
below).

F.2 Influence of LMS on projections

When experimenting with the model, we find that the number of models that exceed the compute
thresholds grows very large as the LMS parameter tends to 0. This appendix explores in further
detail why this is the case with a toy example.

Consider the following setup. We have 1030 FLOP of compute allocated to training models in a
given year. The assignment of compute amongst model sizes is shown in the table below. (Note
that we assume that increasing the model size by a factor of 10 leads to 10x as much allocated
compute - corresponding to k=1 for the allocation gradient.)

Model size Within
3-4 OOM

Within
2-3 OOM

Within
1-2 OOM

Within 1
OOM

Fractional
allocation

0.009% 0.9% 9% 90%

Allocation (FLOP) 9× 1026 9× 1027 9× 1028 9× 1029

Table 9: Compute allocation across model size categories, where model size is given relative to the
largest training run that year.

Now let us consider two cases: one in which the LMS = 0.05, and another in which the LMS
= 0.50. In scenario 1, the largest model trained that year is 0.05× 1030 = 5× 1028 FLOP, and in
scenario 2, the largest model is 0.5× 1030 = 5× 1029 FLOP. Now consider the number of models
that can be drawn from each category. To approximate this we find the average model size of each
category11 - mavg - and find how many times mavg can be sampled from the compute allocations
given in row three of the table above. This is show in the tables below.

In the case where the LMS=0.05, approximately 56 models of size mavg can be sampled for each
category, compared to the 5 sampled from each category for the case of LMS=0.5. More generally,
the number of average-sized models that can be sampled from each category grows inversely with
the size of the average model - and the average sized model of a category grows proportionally with
the LMS parameter.

11This is done by taking the geometric mean of the model category bounds. We take the geometric mean instead of
the arithmetic mean as the bounds are given in log space.
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Model
characteristics

Within 3-4
OOM

Within 2-3
OOM

Within 1-2
OOM

Within 1
OOM

Total

Size range (FLOP) 5×1024-
5×1025

5×1025-
5×1026

5×1026-
5×1027

5×1027-
5×1028

—

Average size12

(FLOP)
1.6×1024 1.6×1025 1.6×1026 1.6×1027 —

Allocation (FLOP) 9×1026 9×1027 9×1028 9×1029 —

Number of samples 56 56 56 56 224

Table 10: Scenario 1 - LMS=0.05: Model size categories and compute allocation across different
orders of magnitude (OOM) relative to the largest model.

Model
characteristics

Within 3-4
OOM

Within 2-3
OOM

Within 1-2
OOM

Within 1
OOM

Total

Size range (FLOP) 5×1025-
5×1026

5×1026-
5×1027

5×1027-
5×1028

5×1028-
5×1029

—

Average size13

(FLOP)
1.6×1025 1.6×1026 1.6×1027 1.6×1028 —

Allocation (FLOP) 9×1026 9×1027 9×1028 9×1029 —

Number of samples 5 5 5 5 20

Table 11: Scenario 2 - LMS=0.5: Model size categories and compute allocation across different
orders of magnitude (OOM) relative to the largest model.
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Figure 11: Left: The average-sized model for each category of model size for LMS = 0.05, 0.1, and
0.5. Right: The number of average-sized models that can be drawn from a given compute allocation
for LMS = 0.05, 0.1 and 0.5.

The information in Tables 10, 11 is shown graphically in Figure 10, alongside another configuration
where the LMS=0.1. We see that the LMS determines the size of each model category - when the
LMS=0.5 the average size of a model in the largest category is 1.6× 1029 FLOP whereas when the
LMS = 0.1 and 0.05, the average size of a model in the largest category is 9.5× 1028 and 1.6× 1028

respectively. The number of samples that can be drawn given the compute allocations derived above
is shown in the right hand side plot - for each category, roughly 50 samples can be drawn when
the LMS=0.05, 30 when the LMS=0.1 and 5 when the LMS = 0.5 (the number of samples drawn
from each category is constant across model sizes in the plot above because we choose an allocation
gradient of k=1.)
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G Results for varying growth rate weightings

Two sources of evidence inform the growth rates in the baseline scenario - the historical growth
rate of training compute stocks and the compute forecast of [Dean 2024]. The baseline predictions
gives three times as much weight to the latter (ascribing weights of 0.25 and 0.75 to each respective
growth rate), but this is a subjective choice. This appendix shows predictions for other choices of
growth rate weightings - namely weightings of (0.1,0.9), (0.33, 0.66) and (0.5, 0.5). As expected,
more greater medians estimates are observed when assigning more weight to the larger historical
growth rate.

Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [15, 20, 24] [27, 41, 57] [45, 71, 109] [63, 106, 179] [88, 150, 268]

> 1026 [0, 0, 0] [0, 5, 8] [8, 18, 31] [18, 36, 68] [34, 64, 123]

> 1027 [0, 0, 0] [0, 0, 0] [0, 0, 3] [0, 4, 13] [2, 15, 37]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 4]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 12: Results for absolute thresholds with growth weighting of (0.9,0.1) between historical
growth rate (6.3x) and forecasted growth rate (3.4x).

Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [19, 24, 29] [33, 48, 69] [54, 84, 128] [78, 129, 207] [106, 178, 305]

> 1026 [0, 0, 0] [5, 8, 11] [16, 26, 38] [30, 53, 87] [50, 87, 152]

> 1027 [0, 0, 0] [0, 0, 0] [0, 2, 5] [3, 11, 25] [13, 30, 57]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 1] [0, 4, 9]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 13: Results for absolute thresholds with growth weighting of (0.33,0.66) between historical
growth rate (6.3x) and forecasted growth rate (3.4x).
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Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [22, 26, 31] [37, 52, 78] [59, 90, 146] [83, 136, 239] [115, 195, 363]

> 1026 [0, 0, 0] [6, 9, 14] [19, 31, 48] [34, 59, 107] [58, 101, 189]

> 1027 [0, 0, 0] [0, 0, 0] [0, 4, 7] [7, 17, 30] [21, 41, 77]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 2] [0, 8, 17]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 14: Results for absolute thresholds with growth weighting of (0.5,0.5) between historical
growth rate (6.3x) and forecasted growth rate (3.4x).
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H Results for alternate training compute allocations

Section 2.4 highlighted that the publicly available information on the allocation of compute between
training, inference and other workloads was conflicting. Our baseline model uses a slightly adjusted
version of the allocation in [Dean 2024]. However another source for the compute allocations is the
Epoch GATE model [Epoch AI 2025a] - see the training-inference split graph. Note that the GATE
model forecasts the allocation of effective compute - which is the physical compute stock multiplied
by algorithmic progress. However in the near future (e.g: 2025-2028), these two quantities do not
substantially differ. The allocations for this model are shown below.

Year Approximate training compute
allocations (GATE)

2024 90%

2025 90%

2026 70%

2027 70%

2028 70%

Table 15: GATE model compute allocations for training, 2025-2028

It’s clear that these forecasts differ substantially to those in AI 2027. One partial explanation
could be that the GATE forecasts incorporate compute used for experiments into the training share,
however it is out of scope of this article to explore and resolve these discrepancies. Instead, Table
16 shows the predictions of the model for the absolute compute thresholds when training compute
allocations are set as above.

Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [36, 46, 54] [52, 74, 99] [71, 114, 172] [97, 160, 265] [132, 221, 380]

> 1026 [0, 0, 0] [8, 13, 18] [19, 34, 52] [36, 63, 106] [59, 105, 183]

> 1027 [0, 0, 0] [0, 0, 2] [0, 4, 11] [7, 17, 34] [20, 40, 77]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 4] [0, 7, 20]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 16: Results for absolute compute thresholds with GATE model allocations between training
and inference compute.
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I Results for varying allocation gradients

k 10−7–10−6 10−6–10−5 10−5–10−4 10−4–10−3 10−3–10−2 10−2–10−1 10−1–100

0.5 0.068 0.22 0.68 2.2 6.8 22 68

0.6 0.019 0.075 0.3 1.2 4.7 19 75

0.7 0.0051 0.025 0.13 0.64 3.2 16 80

0.8 0.0013 0.0084 0.053 0.34 2.1 13 84

0.9 0.00035 0.0028 0.022 0.17 1.4 11 87

1.0 0.00009 0.0009 0.009 0.09 0.9 9 90

Table 17: Compute allocations (%) for various values of k < 1. Each column shows allocation
percentages for model size ranges relative to the largest model trained. For example, the second
column from the right shows the compute allocations for models within 1 and 2 OOMs of the largest
model trained.

Our baseline scenario samples the allocation gradient uniformly from the range [0.9, 1.1]. The
median prediction in this scenario will therefore follow a compute allocation across model sizes as
shown in the k=1 scenario in the table above. This modeling choice is made from observations of
the allocation plots for the Notable models released in the years 2017-2023 (Appendix D).

However Section 5.2 discusses the limitations of the Notable Models database upon which these
trends are based. One potential way to account for the Notable Models selection effect is to allocate
more compute to smaller models relative to their larger counterparts. This can be seen in the table
above where the k=0.5 case allocates ∼68% of compute that year to the largest model category,
whereas the k=1.0 case allocates 90% of compute. More generally, increasing model size by 10x
leads to a 10k times increase in compute allocated, as shown in Appendix C.

This appendix presents model predictions for allocation gradients that allocate relatively more
compute to smaller model sizes. Specifically, Table 18 presents the results of the model when the
allocation gradient (k) is sampled from the range [0.7,0.9] (corresponding to a median scenario
in which k = 0.8), and Table 19 presents the results of the model when the allocation gradient is
sampled from the range [0.5,0.7] (corresponding to a median scenario in which k = 0.6). Notably
more aggressive medians can be observed in the later years of the projection compared to the
baseline - this is because these scenarios allocate relatively more compute to smaller models than the
baseline, and in the 2027 and 2028, 1025 and 1026 FLOP models are multiple orders of magnitude
away from the frontier models.
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Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [36, 46, 54] [52, 74, 99] [71, 114, 172] [97, 160, 265] [132, 221, 380]

> 1026 [0, 0, 0] [8, 13, 18] [19, 34, 52] [36, 63, 106] [59, 105, 183]

> 1027 [0, 0, 0] [0, 0, 2] [0, 4, 11] [7, 17, 34] [20, 40, 77]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 4] [0, 7, 20]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 18: Results for absolute compute thresholds when the allocation gradient is sampled uniformly
from the range [0.7,0.9].

Threshold
(FLOP)

2024 2025 2026 2027 2028

> 1025 [15, 19, 23] [36, 49, 67] [70, 106, 155] [116, 199, 314] [205, 359, 637]

> 1026 [0, 0, 0] [2, 5, 9] [12, 21, 34] [29, 55, 88] [63, 113, 196]

> 1027 [0, 0, 0] [0, 0, 0] [0, 1, 4] [3, 7, 16] [12, 26, 52]

> 1028 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 1, 6]

> 1029 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Table 19: Results for absolute compute thresholds when the allocation gradient is sampled uniformly
from the range [0.5,0.7].
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