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Abstract. Traffic safety remains a critical global challenge, with traditional 

Advanced Driver-Assistance Systems (ADAS) often struggling in dynamic real-

world scenarios due to fragmented sensor processing and susceptibility to 

adversarial conditions. This paper reviews the transformative potential of 

Multimodal Large Language Models (MLLMs) in addressing these limitations 

by integrating cross-modal data—such as visual, spatial, and environmental 

inputs—to enable holistic scene understanding. Through a comprehensive 

analysis of MLLM-based approaches, we highlight their capabilities in 

enhancing perception, decision-making, and adversarial robustness, while also 

examining the role of key datasets (e.g., KITTI, DRAMA, ML4RoadSafety) in 

advancing research. Furthermore, we outline future directions, including real-

time edge deployment, causality-driven reasoning, and human-AI collaboration. 

By positioning MLLMs as a cornerstone for next-generation traffic safety 

systems, this review underscores their potential to revolutionize the field, 

offering scalable, context-aware solutions that proactively mitigate risks and 

improve overall road safety. 
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1 Introduction 

Traffic safety remains a critical global challenge, with road accidents causing 

substantial loss of life and economic damage annually [1]. Traditional hazard detection 

systems in Advanced Driver-Assistance Systems (ADAS) rely on isolated sensor 

technologies - such as LiDAR, cameras, and radar - paired with rule-based algorithms 

or conventional deep learning models. While effective in controlled environments, 

these systems struggle with dynamic real-world scenarios, particularly under 

adversarial environmental conditions like shadows, rain, fog, or sensor noise [2], [3]. 

For example, physical adversarial attacks, such as strategically placed perturbations on 

road signs or environmental distortions, can mislead object detection models, causing 
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catastrophic failures in Automated Vehicles (AV) decision-making [4], [5] as 

illustrated in Figure 1. These vulnerabilities stem from the lack of holistic contextual 

reasoning in traditional systems, which process modalities (e.g., visual, spatial) in 

isolation, leading to fragmented interpretations [6]. 

The emergence of MLLMs offers transformative potential by integrating diverse 

data streams (visual, textual, auditory, and environmental) into a unified reasoning 

framework. Unlike conventional models, MLLMs excel at correlating contextual 

cues—such as weather conditions, real-time traffic updates, and driver intent—to infer 

complex scenarios, including near-miss incidents or occluded pedestrian detection [7]. 

Recent studies demonstrate that MLLMs enhance robustness against physical 

adversarial attacks by cross-validating sensor inputs. For instance, a distorted traffic 

sign detected by a camera can be contextualized using LiDAR distance data and 

weather sensors, mitigating misclassification risks [8]. Figure 2 contrasts traditional 

fragmented hazard detection with modern multimodal systems, emphasizing how 

integrated technologies like live tracking, context-aware radar, and environmental 

sensors enable cohesive scene understanding. 

 

 
Fig 1. Illustration of an adversarial attack on a stop sign recognition system [4]. 

 

The integration of MLLMs into traffic safety systems offers several advantages: 

1. Enhanced Contextual Understanding: MLLMs can process and correlate information 

from multiple modalities, such as video feeds, textual descriptions, and audio cues, to 

provide a holistic understanding of traffic scenarios [9]. 

2. Real-Time Adaptability: By leveraging pre-trained models and fine-tuning 

techniques, MLLMs can be deployed on edge devices, enabling real-time hazard 

detection without the need for extensive computational resources [10]. 
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3. Improved Generalization: MLLMs excel in zero-shot and few-shot learning, 

allowing them to generalize across diverse traffic conditions and scenarios, even with 

limited labeled data [11]. 

 
 

Fig 2. A conceptual illustration of traditional sensor-based hazard detection vs. multimodal AI-

powered hazard detection systems. 
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2 Comparative Evaluation of MLLMs and Traditional ADAS 

This section provides a comparative analysis of MLLMs and traditional ADAS 

models across three critical dimensions: accuracy, computational efficiency, and 

robustness. Empirical evidence from recent studies and benchmarks is incorporated to 

validate the transformative potential of MLLMs in traffic safety as summarized in Table 

1. 

Traditional ADAS models often exhibit reduced accuracy in complex, dynamic 

environments due to their reliance on isolated sensor data and rigid rule-based 

algorithms. For instance, camera-based systems struggle with occluded pedestrians or 

adversarial road signs, achieving a Mean Intersection over Union (mIoU) of 72.3% on 

the KITTI dataset under rainy conditions [12]. In contrast, MLLMs leverage 

multimodal fusion to improve contextual reasoning, boosting mIoU to 88.6% in similar 

scenarios [13]. Furthermore, MLLMs achieve superior performance in zero-shot 

anomaly detection, with a 76.31% accuracy rate in identifying near-miss incidents, 

outperforming traditional models by 35% [14]. 

While MLLMs are inherently larger with hundreds of billions of parameters in the 

most advanced models such as GPT4 [15], advancements in model compression and 

edge deployment have enabled real-time operation. Quantized MLLM variants, such as 

MobileVLM [16], achieve inference speeds of 25 FPS on NVIDIA Jetson Orin devices, 

comparable to lightweight ADAS models like MobileNet (30 FPS) [17] but with 

enhanced multimodal capabilities. Energy consumption remains a challenge; however, 

dynamic computation strategies that activate only relevant submodules reduce power 

usage by 40% in edge deployments [18]. 

MLLMs demonstrate superior adversarial robustness through cross-modal 

validation. For example, adversarial patches that degrade camera-only object detection 

accuracy to 41% are mitigated when LiDAR and thermal sensors are integrated, 
maintaining 79% accuracy [19]. Physical adversarial attacks, such as perturbed road 

signs, are neutralized by MLLMs’ ability to cross-reference GPS navigation data and 

historical traffic patterns, reducing misclassification rates from 89% (camera-only) to 

12% [20]. 

Table 1. Comparison of Existing Dataset for Safety Traffic. 

Metric 
Traditional 

ADAS 
MLLM-Based System 

Improveme

nt 

Dataset/Benchmar

k 
Source 

mIoU (Rainy 

Conditions) 

72.3% (Camera-

only) 

88.6% (Multimodal 

fusion) 
+16.3% KITTI [12], [13] 

Zero-shot 

Anomaly 

Detection 

41.31% (Rule-

based) 

76.31% (MLLM 

contextual reasoning) 
+35% 

Near-miss 

incidents 
[14] 

Inference Speed 

(FPS) 

30 FPS 

(MobileNet) 
25 FPS (MobileVLM) 

Comparabl

e 
- [16], [17] 

Energy 

Efficiency 

Low power 

(Fixed 

pipelines) 

40% reduction 

(Dynamic 

computation) 

Significant Edge deployments [18] 

Adversarial 

Attacks (Camera-

only) 

41% accuracy 

(Perturbed 

signs) 

79% accuracy (LiDAR 

+ Thermal fusion) 
+38% Physical attacks [19] 
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Misclassification 

Rate 
1K 89% (Camera-only) 

12% (GPS 

+ 

Historical 

data cross-

validation) 

-77% [20] 

 

3 Development of MLLM-Based Approaches in Traffic Safety 

This review systematically classifies existing MLLM-based approaches into 

perception enhancement, decision-making and planning, human-machine interaction, 

and safety-critical analysis as illustrated in Figure 3. Each category addresses specific 

challenges in traffic safety, leveraging the unique capabilities of MLLMs to integrate 

multimodal data, improve robustness, and enhance user trust [21], [22]. 
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Fig 3. Classification of MLLM-Based Approaches in Traffic Safety. 

 

Perception serves as the foundation of traffic safety systems, enabling accurate 

hazard detection, pedestrian tracking, and road condition assessment. Traditional 

systems often process sensor data in isolation, leading to fragmented interpretations and 

increased vulnerability to adversarial attacks [23]. MLLMs address these limitations 

through spatial-temporal fine-grained understanding, where models such as LLaVA-

ST employ Language-Aligned Positional Embedding and Spatial-Temporal Packer to 

align linguistic and visual data across time and space. This approach achieves state-of-

the-art performance in tasks like pedestrian trajectory prediction and accident hotspot 

mapping [24]. For instance, LLaVA-ST reduces localization errors by 27% on the ST-

Align dataset (4.3M samples) compared to conventional models [25]. Another key 

advancement is sensor fusion and contextualization, where MLLMs integrate data from 

LiDAR, cameras, and environmental sensors to resolve ambiguities. SeeUnsafe, for 

example, uses severity-based aggregation to analyze traffic videos interactively, 

allowing users to query specific scenarios (e.g., "Identify near-miss incidents in foggy 

conditions") with structured responses [26]. This approach reduces latency by 40% 

compared to rule-based workflows, as validated on the DRAMA dataset [27]. 

Decision-making in AVs requires robust behavioral planning and risk assessment, 

particularly in complex urban environments. A recent study proposed a framework that 

leverages the logical and visual reasoning power of MLLMs, directing their output 

through object-level question–answer (QA) prompts to ensure accurate, reliable, and 

actionable insights for investigating safety-critical event detection and analysis [5]. The 

results demonstrate the framework’s potential in different in-context learning (ICT) 

settings such as zero-shot and few-shot learning methods. Furthermore, we investigate 

other settings such as self-ensemble learning and a varying number of frames. In 

behavioral planning, models like Driving with LLMs use pretrained LLMs to map 

numeric sensor data to driving decisions, improving adaptability to novel scenarios 

[28]. Similarly, TrafficGPT optimizes traffic signal timings using natural language 

commands (e.g., "Prioritize pedestrian crossings during rush hour"), demonstrating 

35% faster response times in simulations [29]. For risk prediction and mitigation, 

AccidentGPT integrates multimodal data (accident reports, sensor streams) to predict 

high-risk zones and recommend preventive measures. By correlating historical patterns 

from the ML4RoadSafety dataset (9M records) with real-time sensor inputs, 

AccidentGPT achieves 89% precision in identifying collision-prone areas [30]. 

Natural language interfaces bridge the gap between human intuition and machine 

precision, enhancing user trust and system usability. Voice-based control such as 

“Drive As You Speak” enables voice-based interactions with AVs, allowing drivers to 

issue commands like "Slow down near the school zone" or "Find the nearest parking 

spot" [31]. This framework aligns MLLM outputs with behavioral planning, reducing 

cognitive load and improving situational awareness. Additionally, interactive accident 

analysis tools like SeeUnsafe enable conversational analysis of traffic videos, 

generating structured responses to user queries (e.g., "Identify near-miss incidents in 

foggy conditions") using the severity-based aggregation strategy [6]. This approach 

enhances transparency and reduces post-processing time by 40%. 

Safety-critical applications demand robustness against adversarial attacks and edge 

cases, which traditional systems often fail to address. MLLMs enhance adversarial 



7 

robustness by cross-validating sensor inputs. For example, a distorted traffic sign 

detected by a camera can be contextualized using LiDAR distance data and weather 

sensors, reducing misclassification risks by 32% [32]. To mitigate hallucination errors, 

domain-specific fine-tuning like Gemini-Pro-Vision 1.5 [33]and Llava [34] reduces 

hallucination errors, improving zero-shot accuracy on the SHRP2 NDS dataset [35]. 

Emerging architectures optimize MLLM deployment through cloud-edge 

collaboration, where edge devices process real-time LiDAR-camera fusion data while 

cloud modules analyze historical patterns. AccidentGPT employs this hybrid approach, 

reducing latency by 25% compared to centralized systems [8][36]. Further innovations 

include mixed reality integration, as seen in SurrealDriver, which combines simulated 

adversarial scenarios (e.g., snow-glare-induced sensor failures) with real-world traffic 

data for safe validation of MLLM-driven decisions [37]. 

4 Datasets and Their Role in Advancing Research 

Several datasets have been developed to support the training and evaluation of machine 

learning and deep learning models for traffic safety. These datasets vary in scope, size, 

and the types of data they provide, ranging from video footage to sensor data and 

accident records. 

Existing datasets such as KITTI [12], Cityscapes [38], and the Waymo Open Dataset 

[39][39] have significantly contributed to research in traffic safety and automated 

driving by providing large-scale, high-resolution images and sensor data under diverse 

driving conditions. The DRAMA dataset [27] further enriches this landscape by 

offering real-world footage focused on driver attention and anomalies, emphasizing the 

importance of robust perception in complex road environments. 

ML4RoadSafety Dataset [40] includes 9 million accident records from 8 states 

across the US. It is designed for graph neural networks (GNNs) and provides tools for 

accident prediction and analysis. Traffic-Net Dataset [41] contains 4,400 images 

categorized into four classes: Accident, Dense Traffic, Fire, and Sparse Traffic. It is 

designed for training machine learning models to detect traffic conditions and provide 

real-time monitoring and alerts. TrafficMOT [42] is a challenging dataset for multi-

object tracking in complex traffic scenarios. It includes diverse traffic situations and is 

designed to evaluate the performance of tracking algorithms in real-world conditions. 

The dataset has been used to benchmark state-of-the-art models, including zero-shot 

foundation models. Another data is Teledyne FLIR Free ADAS Thermal Dataset V2, 

which is a comprehensive collection of annotated thermal and visible spectrum frames 

intended for the development of object detection neural networks [43]. This dataset 

aims to promote research on visible and thermal spectrum sensor fusion algorithms 

(“RGBT”) to enhance the safety of autonomous vehicles. It comprises about 26,442 

fully annotated frames covering 15 different object classes. The data were captured 

using a thermal and visible camera pair mounted on a vehicle, with the thermal camera 

operating in T-linear mode. 

Traffic Accident Detection Video Dataset (TAD) hosted on IEEE Dataport [44], 

includes 5,700 video files categorized into eight classes of traffic scenarios. It is 

designed for training AI models to detect traffic accidents in real-time and includes a 

mix of traffic and dashcam footage. SHRP 2 Naturalistic Driving Study (NDS) Dataset 
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[45] used in the ScVLM framework [46], includes over 1 million hours of continuous 

driving data, with annotations for safety-critical events (SCEs) such as crashes, tire 

strikes, and near-crashes. It is one of the largest publicly available datasets for traffic 

safety research. The differences among all above datasets summarized in Table 2. 

 

Table 2. Comparison of Existing Dataset for Safety Traffic. 

Dataset Size Data Types QA-Based? Safety-risk-based? Reasoning 

ML4RoadSafety 
9 million 

accident records 

Accident records, 

graph data 
No Yes No 

Traffic-Net 4,400 images 

Images (4 classes: 

Accident, Dense 

Traffic, Fire, Sparse 

Traffic) 

No Yes No 

TrafficMOT N/A 
Video, multi-object 

tracking data 
No No No 

TAD 5,700 video files 
Videos (8 classes of 

traffic scenarios) 
No Yes No 

SHRP 2 
1 million+ hours 

of driving data 

Video, sensor data, 

annotations 
No Yes No 

NuScenes 1K 

RGB images, LiDAR, 

RADAR    plus 

metadata 

No Partial No 

CityScape 5K RGB images No No No 

Waymo 
~1k segments 

(20s each) 

RGB images, LiDAR, 

multiple cameras,  

GPS, IMU 

No Partial No 

DRAMA ~17K 
RGB images  (text 

annotations) 
Yes Yes No 

5 Future Directions 

The integration of MLLMs into traffic safety systems marks a paradigm shift, yet 

several challenges and opportunities remain. Building on the advancements discussed 

in this review, we outline key directions for future research and development as 

summarized in Table 3. 

While frameworks like AccidentGPT [30] demonstrate the feasibility of cloud-edge 

collaboration, optimizing MLLMs for resource-constrained edge devices remains 

critical. Future work should focus on lightweight architectures, dynamic model 

pruning, and quantization techniques to reduce computational overhead without 

sacrificing accuracy [47]. Innovations in neuromorphic computing or sparsity-aware 

training could enable energy-efficient, real-time processing of multimodal data streams. 

Additionally, federated learning frameworks could allow edge devices to 

collaboratively adapt to localized traffic patterns while preserving privacy. 

Current MLLMs excel at correlating multimodal data but often lack causal reasoning 

capabilities. Integrating causal inference modules—informed by structural causal 

models (SCMs) or counterfactual analysis—could enhance decision-making in safety-
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critical scenarios. For example, causality-aware MLLMs could distinguish between 

spurious correlations (e.g., shadows coinciding with accidents) and true risk factors 

(e.g., sudden braking patterns). Hybrid architectures combining MLLMs with causal 

graphs, as proposed in recent GNN-based approaches, may improve generalization to 

rare or adversarial events [48]. 

Future systems must prioritize seamless interaction between humans and MLLMs. 

This includes developing intuitive natural language interfaces for real-time driver 

feedback (e.g., explaining why a hazard was flagged) and trust calibration mechanisms 

to avoid over-reliance on AI. Techniques like chain-of-thought prompting could make 

MLLM reasoning transparent, while mixed-reality frameworks like SurrealDriver  [37] 

could enable drivers to visualize AI-predicted risks. Furthermore, personalized 

adaptation—tailoring alerts to driver behavior and preferences—could enhance 

acceptance and effectiveness. 

Despite progress in cross-modal validation, adversarial attacks will grow more 

sophisticated as MLLMs proliferate. Research should explore multimodal adversarial 

training, where models learn to detect inconsistencies across LiDAR, camera, and 

environmental sensor inputs. Techniques like diffusion-based anomaly detection or 

self-supervised consistency checks could preemptively identify manipulated inputs. 

Large-scale benchmarks simulating multi-sensor attacks (e.g., synchronized LiDAR-

camera spoofing) are needed to stress-test MLLM robustness. 

Existing datasets like KITTI [12] and DRAMA [27] lack diversity in rare events 

(e.g., extreme weather collisions) and cultural contexts. Generative AI tools could 

synthesize realistic traffic scenarios with controllable parameters (e.g., pedestrian 

density, attack types) to augment training data. Additionally, unified benchmarks 

evaluating both perceptual accuracy (e.g., object detection in fog) and reasoning 
capabilities (e.g., predicting driver intent) are essential. Initiatives akin to 

ML4RoadSafety should expand to include multi-sensor adversarial conditions and 

causal annotations. Another study used synthetic data and presented a methodology to 

integrate and evaluate LLMs as a controller into real-time traffic control systems, which 

comprises four key stages, including data creation and initialization, prompt generation, 

conflict identification, and fine-tuning with model analysis [49], [50]. Results 

demonstrated that LLMs (specifically, a fine-tuned GPT-4o-mini model) have a 

significantly high ability to identify conflicts and support decision making in traffic 

intersection scenarios. 

As MLLMs become integral to safety systems, ethical challenges—such as bias in 

accident prediction or privacy risks in voice-based interfaces—must be addressed. 

Collaborative efforts between policymakers and researchers are needed to establish 

standards for transparency (e.g., audit trails for MLLM decisions) and accountability. 

Differential privacy techniques could safeguard sensitive data in datasets like SHRP2 

NDS [45], while fairness-aware training protocols could mitigate biases against 

underrepresented traffic scenarios.  

Bias in MLLMs can arise from various sources, including systemic, statistical, and 

human factors [51]. For instance, datasets used to train these models may reflect 

existing societal biases, leading to discriminatory outcomes in traffic systems. To 

mitigate such biases, fairness-aware training protocols can be employed [52]. These 

protocols aim to ensure that MLLMs do not disproportionately affect underrepresented 

traffic scenarios. Moreover, techniques like Iterative Gradient-Based Projection (IGBP) 
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have been proposed to remove non-linear encoded concepts from neural 

representations, effectively reducing biases related to sensitive attributes [53]. 

Ensuring the safety of MLLMs in real-world applications involves implementing 

layered protection models. These models incorporate security measures at multiple 

levels - external, secondary, and internal - to safeguard against potential threats [54], 

[55]. Additionally, system prompts and Retrieval-Augmented Generation (RAG) 

architectures can guide MLLMs to produce safer and more reliable outputs. Continuous 

monitoring of MLLM outputs is also essential to detect unintended behaviors, such as 

hallucinations or unsafe actions [56]. By addressing bias mitigation, AI safety, and legal 

regulations, stakeholders can foster the ethical and responsible integration of MLLMs 

into traffic systems, enhancing both performance and public trust. 

The integration of MLLMs into automotive systems necessitates a multifaceted 

approach involving collaboration among automotive manufacturers, AI researchers, 

and policymakers. For manufacturers, adopting a risk-based framework is essential. 

The European Automobile Manufacturers’ Association (ACEA) advocates for a 

classification system that distinguishes between high-risk AI applications, such as those 

in automated driving (SAE Level 3 and above), and low-risk applications like 

infotainment systems [57]. This stratification ensures that stringent regulations are 

applied where necessary, without stifling innovation in less critical areas. AI 

researchers play a pivotal role in developing models that are not only accurate but also 

interpretable and reliable. The deployment of MLLMs requires models that can process 

and integrate data from various sensors, including cameras, LiDAR, and radar, to make 

informed decisions in real-time. This necessitates advancements in multimodal data 

fusion techniques and the development of algorithms capable of handling the 

complexity of real-world driving scenarios. Policymakers must establish clear 
guidelines and standards to govern the deployment of MLLMs in vehicles. This 

includes defining safety benchmarks, ensuring data privacy, and fostering an 

environment that encourages innovation while safeguarding public interest. The 

creation of such a regulatory framework should be informed by ongoing dialogue with 

industry stakeholders and continuous monitoring of technological advancements. 

MLLMs must adapt to evolving environments, from smart city infrastructure updates 

to emerging vehicle types (e.g., e-scooters). Continual learning frameworks, leveraging 

techniques like elastic weight consolidation or replay buffers, could enable models to 

assimilate new knowledge without catastrophic forgetting. Cross-domain adaptation—

transferring insights from regions with abundant data (e.g., urban centers) to data-scarce 

areas (e.g., rural roads)—will further enhance global applicability [58]. 

Table 3. Key Challenges and Opportunities in MLLM-Augmented Traffic Safety Systems. 

Trend Challenge Opportunity 

Real-Time Edge 

Deployment 

High computational demands of 

MLLMs on resource-constrained edge 

devices. 

Develop lightweight architectures, dynamic 

pruning, and neuromorphic computing. 
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6 Conclusion 

Traffic safety continues to be a critical global challenge, necessitating innovative 

approaches to overcome the limitations of traditional ADAS and automated vehicle 

technologies. This comprehensive review has explored the transformative potential of 

MLLMs in enhancing traffic safety through their ability to integrate and reason across 

diverse data modalities, including visual, spatial, and environmental inputs. By 

enabling holistic scene understanding, MLLMs address the fragmented processing and 

adversarial vulnerabilities that hinder conventional systems, paving the way for more 

robust and adaptive solutions.   

The review has systematically examined the role of MLLMs in key areas such as 

perception enhancement, decision-making, human-machine interaction, and safety-

critical analysis. These advancements underscore the versatility of MLLMs in tackling 

complex traffic scenarios, from pedestrian trajectory prediction to real-time risk 

mitigation. Additionally, the critical analysis of datasets like KITTI, DRAMA, and 

ML4RoadSafety highlights their importance in advancing MLLM-based research and 

development, providing the necessary foundation for training and evaluation.   

Looking forward, the future of traffic safety lies in addressing emerging challenges 

and opportunities. Key areas of focus include optimizing MLLMs for real-time edge 

deployment, integrating causality-driven reasoning to improve decision-making, and 

enhancing adversarial robustness to safeguard against evolving threats. Opportunities 

such as synthetic data generation, personalized adaptation, and cross-domain learning 

further expand the potential of MLLMs to adapt to diverse and dynamic environments. 

Interdisciplinary collaboration across AI, robotics, ethics, and urban planning will be 

essential to harness the full potential of these technologies and create safer, more 

equitable transportation systems.   

Causality-Driven 

Reasoning 

MLLMs lack causal reasoning, leading 

to spurious correlations in decision-

making. 

Integrate causal inference modules (e.g., 

SCMs, counterfactual analysis). 

Human-Centric AI 

Collaboration 

Drivers may over-rely on or distrust AI 

systems due to lack of transparency. 

Use chain-of-thought prompting and mixed-

reality interfaces for trust calibration. 

Adversarial Robustness 
Increasingly sophisticated adversarial 

attacks targeting multimodal systems. 

Implement multimodal adversarial training 

and diffusion-based anomaly detection. 

Synthetic Data Generation 
Limited diversity in existing datasets 

for rare or adversarial scenarios. 

Use generative AI to create synthetic datasets 

with controllable parameters. 

Regulatory and Ethical 

Frameworks 

Ethical concerns like bias, privacy, and 

accountability in MLLM decisions. 

Establish standards for transparency, fairness-

aware training, and differential privacy. 

Cross-Domain and 

Lifelong Learning 

Difficulty adapting to new 

environments or vehicle types without 

forgetting. 

Develop continual learning frameworks (e.g., 

elastic weight consolidation). 



12 

In conclusion, Multimodal Large Language Models represent a paradigm shift in 

traffic safety, offering a powerful framework for holistic, context-aware, and scalable 

solutions. By addressing the outlined challenges and embracing future trends, 

researchers and practitioners can unlock transformative advancements that not only 

respond to hazards but also proactively mitigate risks, ultimately saving lives and 

shaping the future of mobility. This review positions MLLMs as a cornerstone for next-

generation traffic safety systems, bridging the gap between human-like reasoning and 

machine efficiency. 
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