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Figure 1. Overall pipeline of the ReflectionFlow framework with qualitative and quantitative results of scaling compute at inference time.

Abstract

Recent text-to-image diffusion models achieve impressive
visual quality through extensive scaling of training data
and model parameters, yet they often struggle with com-
plex scenes and fine-grained details. Inspired by the self-
reflection capabilities emergent in large language models,
we propose ReflectionFlow, an inference-time framework
enabling diffusion models to iteratively reflect upon and re-
fine their outputs. ReflectionFlow introduces three comple-
mentary inference-time scaling axes: (1) noise-level scal-
ing to optimize latent initialization; (2) prompt-level scal-
ing for precise semantic guidance; and most notably, (3)
reflection-level scaling, which explicitly provides actionable
reflections to iteratively assess and correct previous gener-
ations. To facilitate reflection-level scaling, we construct
GenRef, a large-scale dataset comprising 1 million triplets,
each containing a reflection, a flawed image, and an en-
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hanced image. Leveraging this dataset, we efficiently per-
form reflection tuning on state-of-the-art diffusion trans-
former, FLUX.1-dev, by jointly modeling multimodal inputs
within a unified framework. Experimental results show that
ReflectionFlow significantly outperforms naive noise-level
scaling methods, offering a scalable and compute-efficient
solution toward higher-quality image synthesis on challeng-
ing tasks. All code, checkpoints, and datasets are avail-
able at https://diffusion-cot.github.io/
reflection2perfection.

1. Introduction

Recent advances in text-to-image (T2I) diffusion mod-
els [1, 12, 16, 26, 53, 59, 67] have led to remarkable
progress in image synthesis. With the scaling of training
resources, their capability to create high-resolution and pho-
torealistic images steadily improves. Despite their success,
their performance across various domains remains inconsis-
tent, especially when tasked with generating complex hu-
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man poses, multiple-object compositions, or scenes with
complicated lighting and shadows. To alleviate these lim-
itations, it is necessary to exponentially scale the training
compute, model parameters, and data size, according to es-
tablished scaling laws at training time [22].

This motivates us to rethink the prevailing paradigm: in-
stead of continuously scaling pretrained models, how to
effectively exploit the full capabilities of existing diffusion
models during inference? We hypothesize that while T2I
models may struggle to generate desirable images within
a fixed compute budget, their performance can be signif-
icantly improved through an iterative refinement process.
This idea of leveraging additional computational resources
to enhance performance during inference has been validated
in large language models (LLMs) [48]. Modern LLMs have
demonstrated the ability to improve their outputs by reflect-
ing on intermediate outputs and subsequently refining their
responses [25, 35, 46], leading to superior performance on
complex tasks such as math problem solving and code gen-
eration. However, current inference-time optimizations for
diffusion models [34, 47, 60] focus on parallelized noise-
space search strategies, leaving sequential self-refinement
paradigm that could enable diffusion models to reflect upon
and correct their own mistakes largely unexplored.

In this paper, we introduce ReflectionFlow, a novel
inference-time self-refinement framework for diffusion
models leveraging iterative reflection. Our approach ex-
plores three dimensions for scaling inference-time compu-
tation: (1) noise-level scaling, which searches for better
noise initialization; (2) prompt-level scaling, which opti-
mizes input prompt for precise semantic guidance; and (3)
reflection-level scaling, which constructs explicit reflections
to iteratively assess and correct previously generated out-
puts. Integrating these dimensions enables diffusion mod-
els to flexibly exploit additional computational resources at
inference-time, continuously improving the image quality
through an iterative process as illustrated in Fig. 1.

A fundamental challenge underlying our approach is:
how to empower T2I diffusion models with self-refinement
capabilities? Currently, no existing diffusion model is able
to accurately interpret reflection prompts and leverage pre-
viously generated images for iterative refinement. Reflect-
ing on the intrinsic similarity between self-refinement and
image editing tasks, we observe that both involve generat-
ing a new output, jointly conditioned on textual and visual
contexts. Inspired by the training paradigm of efficiently
adapting diffusion priors to image editing [7, 55], we hy-
pothesize that adopting similar methods could enable diffu-
sion models to achieve self-refinement. However, another
critical challenge arises: the absence of dedicated datasets
specifically designed for reflection-guided refinement.

Motivated by this insight, we propose GenRef, the first
large-scale image reflection dataset comprising 1 million re-

flection triplets in multiple domains. To ensure the valid-
ity of these triplets (e.g., flawed images accurately capture
potential errors, the reflections offer effective and action-
able editing suggestions, and the good images exhibit suffi-
ciently higher quality), we design a scalable, fully automatic
data construction pipeline with four distinct data sources,
leveraging verifiable objectives, ensemble reward models,
and diverse rollout strategies. We further create a chain-
of-thought (CoT) reflection subset, named GenRef-CoT,
providing 227K high-quality progressive annotations from
GPT-4o [21] and Gemini 2.0 [52]. We then employ an effi-
cient reflection tuning tailored for T2I diffusion transform-
ers, such as FLUX.1-dev [26]. In our approach, the original
prompt, reflection prompt, flawed image, and high-quality
image are concatenated into a single unified sequence to
perform joint multimodal attention, thereby eliminating the
need for additional modules [63, 65]. Note that beyond lay-
ing the foundation for reflection tuning, our carefully cu-
rated dataset can also serve broader applications, such as
general preference tuning [54] and reward modeling [32].

Through experiments, ReflectionFlow demonstrates the
potential for enhancing image generation quality without
requiring additional large-scale training. Compared to
naive noise-level scaling, ReflectionFlow achieves signif-
icantly better performance under identical inference bud-
gets, with performance consistently improved using better
verifiers. Additionally, we explore the flexible trade-off be-
tween search width and reflection depth, as well as overall
inference budgets. Further evaluation shows that our ap-
proach achieves particularly substantial gains on challeng-
ing prompts. Qualitative analyses illustrate how our model
iteratively reflects on and corrects its outputs, progressively
converging to superior solutions.

In summary, (1) we propose ReflectionFlow, a reflection-
based inference-time scaling framework for diffusion mod-
els, integrating three scaling axes, i.e., noise-, prompt-,
and reflection-level; (2) we propose a scalable pipeline for
collecting high-quality image reflection data and introduce
GenRef, the first large-scale dataset containing 1 million
triplets, along with an additional 227K CoT reflection anno-
tations; (3) we employ an efficient reflection tuning method
for diffusion transformers with a tailored training strategy;
(4) extensive experiments demonstrate that ReflectionFlow
substantially boosts performance via scaling inference-time
compute, unlocking reasoning capability.

2. Related Work
Text-to-Image Diffusion Models. Text-to-image diffusion
models have rapidly advanced in terms of model architec-
ture and training strategies. In terms of architecture evolu-
tion, the community has transitioned from the prevalent U-
Net diffusion models [44] towards diffusion transformers
(DiT) [37]. Regarding training strategies, earlier complex

2



hand-designed diffusion schedules [19, 50] have given way
to simpler flow-based formulations [30, 33], significantly
enhancing training efficiency through techniques such as
multi-resolution progressive training [9]. Recently, scaling
up both the training datasets and model parameters has led
to the emergence of various large-scale, flow-based diffu-
sion transformer models [12, 14, 26, 41, 59, 67].
Diffusion Inference-Time Enhancement. Building upon
the powerful pretrained diffusion models, recent research
has increasingly focused on unleashing their potential at in-
ference time. One line of research has observed that the ini-
tial noise significantly impacts generation quality [40, 66],
prompting methods to identify superior initialization strate-
gies [2, 34, 40, 66]. Another research direction aims
to improve the iterative sampling procedure of diffusion
models [3, 47, 64], notably through denoising and inver-
sion [49]. Additionally, recent studies [28, 59] demonstrate
that augmenting input prompts can substantially improve
visual fidelity and text-image alignment. While existing
methods focus on parallel single-pass generation, our work
proposes a sequential generation then refinement procedure,
integrating both parallel and sequential inference-time scal-
ing into a unified framework.
Scaling Inference-Time Compute. Recent studies on
LLMs have provided valuable insights into inference-time
scaling laws. A primary line of investigation [13, 62]
has explored search algorithms, such as best-of-N and
beam search, with verifiers to select higher-quality out-
puts. Another prominent direction focuses on enabling
LLMs to refine their own outputs. For instance, tech-
niques [23, 35, 46] such as zero-shot prompting have been
employed to elicit self-reflection from models, enabling
them to iteratively enhance their outputs. Furthermore, su-
pervised fine-tuning (SFT) and reinforcement learning (RL)
approaches [11, 17, 25, 42, 56] have also been introduced to
explicitly train models for reflective self-improvement. One
recent work [16] investigated RL, test-time scaling, and re-
flection on autoregressive image generation models, provid-
ing preliminary insights into this field. Meta also presented
a comprehensive framework [48] that systematically unifies
these directions, which thoroughly investigates the trade-
offs between the pretraining scale and the computation of
inference time, significantly inspiring our approach.

3. Method

3.1. Problem Formulation

We first formalize the iterative refinement framework for the
text-to-image (T2I) generation task. Given a textual prompt
y and a T2I generator Gθ, we initially generate an image
x0 ∼ Gθ(· | z, y) from random noise z ∈ N (0, I). Sub-
sequently, during each refinement iteration i, we introduce
a corrector model Cϕ to produce an improved image xi ∼

Cϕ(· | z, y, xi−1, ri−1), conditioned on the previous itera-
tion’s image xi−1, the original textual prompt y, and a tex-
tual reflection ri−1 prompt describing previous shortcom-
ings and improvement directions. Specifically, we utilize
external evaluation modules such as reward models [18, 61]
and multimodal large language models (MLLMs) [4, 21]
to assess the quality of generated image at iteration i − 1
and produce an instructive reflection ri−1 ∼ R(· | xi−1, y).
Through this iterative refinement process, the original T2I
generation task is reformulated into a sequential generation-
and-refinement paradigm, expressed mathematically as:

Gθ(xN | z, y) = Gθ(x0 | z, y)
N∏
i=1

Cϕ(xi | z, y, xi−1, ri−1).

(1)
A central challenge in this iterative refinement approach

lies in effectively training the corrector model Cϕ to rec-
ognize and rectify its own errors based on textual reflec-
tions. Inspired by recent advances [7, 55] in image editing,
we observe that the objective of our corrector Cϕ defined
in Equation 1 closely resembles the general image editing
problem, i.e., transforming an input image into a desired
target based on textual instructions. Thus, we conceptualize
the self-correction task, guided by textual reflections, as a
generalized editing problem. By constructing a dedicated
reflection dataset (Section 3.2) and performing efficient re-
flection tuning (Section 3.3), we enable a foundational T2I
diffusion model to effectively learn to refine and iteratively
improve its own generations (Section 3.4).

3.2. Reflection Dataset
The key to enabling a T2I diffusion model to learn self-
refinement lies in constructing an appropriate dataset. How-
ever, there is currently a lack of suitable open-source
datasets specifically curated for image refinement tasks
guided by textual feedback. To bridge this gap, we intro-
duce GenRef, the first large-scale T2I refinement dataset
comprising 1 million triplets of the form (flawed image,
high-quality image, reflection) collected across multiple do-
mains using our scalable pipeline, as illustrated in Fig. 2.
Additionally, we gather 227K chain-of-thought (CoT) im-
age reflections annotated by closed-source APIs [21, 52],
which provide detailed pairwise analyses, preference anno-
tations, and reflections. These annotations form the foun-
dation for training a dedicated MLLM verifier capable of
reward modeling and reflection generation, thereby being
beneficial beyond the task of T2I self-refinement. We pro-
vide samples of our datasets in Appendix A.
Principles. Inspired by recent advances in self-refinement
dataset construction from the LLMs literature [38], we first
establish several guiding principles that our dataset must
satisfy: (1) the “flawed images” should comprehensively
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GenRef Dataset

Object
Database

Position
Database

...

A teddy bear is
holding a yellow
kite on his left.

Composition

...

...

...

Difficulty: 0.8

Difficulty: 1.0

Difficulty: 0.0
Too easy!

Too hard!

Image Pairs

Generator

MLLM

Replace the single
wrench with a wrench
set. Reposition the plant
pot to the left.

Reflection
Ensemble
Evaluator

Object-cetric
Prompt List

Rule-based Data Reward-based Data

A teddy bear is
holding a yellow
kite on his left.

A teddy bear is
holding a yellow
kite on his left.

A serene young women
with blue eyes wearing an
ornate teal and gold
helmet with intricate
filigree and a black gem.

Prompt List Generator Ensemble
Reward Model

Rank: 4 Rank: 1Rank: 3 Rank: 2

Reposition the girl to
face right. Add details to
her helmet,  making the
image more realistic.

Long-Short Prompt Data
Detailed Prompt List Generator

A teddy bear is
holding a yellow
kite on his left.

A teddy bear is
holding a yellow
kite on his left.

Five diverse
individuals with
distinct styles and
colors on an white
background.

Short Prompt List

Summarized by a fine-tuned MLLM

Add a wheelchair
to the first person.
Change the second
women's cloth to
swimsuit...

Reflection

Editing Data Statistics

Swap the mountain
path with a tranquil
ocean with a rocky
shoreline.

Source Image

Target Image

Editing Instruction (Reflection)

Northern Lights
illuminates the starry sky,
casting a magical glow over
snow-capped mountains and
a tranquil, rocky shoreline.

Re-captioned Prompt

Obj1: Wrench Set x 0
Obj2: Plant Pot x 1
Position:  obj1 left of obj2

Obj1: Wrench Set x 1
Obj2: Plant Pot x 1
Position:  obj1 left of obj2

A teddy bear is
holding a yellow
kite on his left.

A green plant
pot left of a
wrench set

MLLM

MLLM
Illustration of five diverse
individuals standing in a line against
a white background. On the far

left, a man with a beard in a purple
wheelchair, ... Next, a woman in a

green one-piece swimsuit and
sandals, .... On the far right, a
person in a white coat over a green

dress, with curly hair and a bow,
looking down.

High quality!

Figure 2. Construction pipelines and statistics of our GenRef dataset. We collect our reflection triplets (flawed images, enhanced images,
textual reflections) from four distinct data sources, including: rule-based data, reward-based data, long-short prompt data, and editing data.

cover common errors encountered by the generator Gθ dur-
ing inference, (2) the “high-quality images” should clearly
exhibit substantial quality improvements relative to their
corresponding “flawed images” evaluated in diverse as-
pects, and (3) the textual reflections should accurately de-
scribe the observed shortcomings and provide actionable
guidance for refinement. Guided by these principles, we
develop an automated and scalable pipeline for construct-
ing the dataset, spanning four distinct domains below.
Rule-based Data. Recent studies, such as Deepseek-
R1 [11], have demonstrated that high-quality, rigorously
verified datasets constructed via rule-based verifiers sig-
nificantly enhance model capabilities. Inspired by these
methodologies, we first employ GPT-4o [21] to brainstorm
a diverse list of common object categories along with their
associated attributes, such as colors and spatial positions.
We subsequently composite these objects and attributes us-
ing rule-based methods to construct unique textual prompts.
We rigorously filter these prompts to guarantee there is no
overlap with test samples from existing benchmarks [15].

Next, we utilize FLUX.1-dev [26] to generate 10 can-
didate images per prompt. Each candidate is verified by
Grounded SAM [43] to detect and localize individual ob-
jects, subsequently evaluating attributes such as color and

quantity with respect to the provided prompt. Based on
these evaluations, each image is assigned either a binary
correctness label or a continuous correctness score rang-
ing between 0 and 1, along with explicit identification of
the reasons for any detected errors. Afterward, we estimate
the difficulty of each prompt defined by the fraction of cor-
rect samples. We then bin the difficulty into three quantiles,
where prompts yielding predominantly correct or incorrect
images, indicating insufficient or excessive difficulty, are
discarded. For the remaining challenging prompts, we con-
structed image refinement pairs by randomly pairing the
highest-scoring images with the lowest-scoring images.
Reward-based Data. While the rule-based triplets pri-
marily emphasize object-centric text-image alignment, aes-
thetic quality, visual fidelity, and alignment with general
user prompts are equally essential for a universal image re-
finement model. To address this, we collect a diverse set
of general-purpose prompts, including both image captions
and real user-generated prompts. For each prompt, we gen-
erate 10 candidate images and assess each generated image
based on an ensemble scoring strategy utilizing multiple re-
ward models, e.g., HPSv2 score [57], CLIP score [18], and
PickScore [24], to comprehensively evaluate their overall
quality and alignment with the provided prompts. We con-
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Original Qwen Reflection:
Replace the woman on the right's short,
platinum blonde hair with short, platinum
blonde hair.

Fine-tuned Qwen Reflection:
Change the tank tops to zip-up tops. Change
the hair color of the left woman to dark
brown and right woman to platinum blonde.

GPT-4o Reflection:
Change the blonde hair of the two women on
the left to long dark hair. Change the black
top of the woman on the left to a zip up top.

Input Prompt
Three women standing side by side in a
forest setting with autumn foliage. The
woman on the left has long dark hair and
wears a black zip-up top. The middle
woman has long dark hair and wears a
dark green zip-up top. The woman on the
right has short, platinum blonde hair and
wears a white zip-up top...

Figure 3. Comparisons of textual reflection generated by original
Qwen2.5-VL-7B, our fine-tuned image reflector, and GPT-4o.

struct refinement pairs by randomly pairing images from the
top-k and bottom-k subsets for each prompt.
Long-Short Prompt Data. Recent studies [5, 8, 45] in-
dicate that, for the same intended content, generated im-
age quality consistently improves as textual prompts be-
come more detailed and descriptive. Motivated by this ob-
servation, we fine-tune an MLLM specifically to condense
detailed prompts annotated by GPT-4o into shorter, more
concise versions. Images generated from these two prompt
variants naturally form corresponding image pairs, with the
detailed prompt-generated images serving as higher-quality
instances. To ensure the quality and effectiveness of these
pairs, we also generate multiple samples in parallel and em-
ploy the ensemble-reward scoring approach for filtering.
Editing Data. Finally, we augment our dataset with exist-
ing image editing datasets to further enhance its diversity
and richness. Image editing data inherently provides paired
images accompanied by textual editing instructions. By
treating the caption of the edited image as the input prompt,
and the source and edited images as flawed and high-quality
counterparts respectively, we seamlessly integrate editing
data into our refinement dataset paradigm. Although the
editing domain differs from our primary image refinement
tasks, the precise and explicit nature of editing instructions
can effectively enhance the model’s ability to follow tex-
tual guidance and understand precise correspondences be-
tween source and target images. Concretely, we select high-
quality editing samples from the OmniEdit dataset [55] and
generate detailed synthetic captions for each edited image
using our in-house captioning model.
Reflection Annotation. After constructing diverse image
pairs, it is essential to annotate them with textual reflec-
tions that explicitly describe how to transform a flawed im-
age into its corresponding higher-quality counterpart. We
experiment with various MLLMs and observed that even
the current state-of-the-art open-source model, Qwen2.5-
VL [4], tends to generate inaccurate reflections when
prompted in a zero-shot manner, exhibiting severe hallu-

cinations as illustrated in Fig. 3. Therefore, we leverage
closed-source model APIs [21, 52] and design a CoT im-
age reflection annotation pipeline, enabling the models to
step-by-step analyze image pairs. Specifically, we concate-
nate two images into an image grid and provide it as input
together with the prompt. The model first identifies key dif-
ferences between the two images, then makes a judgment
regarding image preference, and finally produces a concise
reflection instructing how to correct the identified flaws in
the lower-quality image. The detailed CoT prompts are pro-
vided in Fig. 20 in the Appendix.

Through this CoT-based annotation approach, we ob-
serve a significant improvement in the accuracy and relia-
bility of generated reflections. Moreover, intermediate re-
sults from the reasoning process, such as the explicit im-
age preferences, can also serve as valuable annotations for
reward model training, as discussed in the next paragraph.
We annotate approximately 270K CoT reflections using this
annotation pipeline, and after careful filtering and quality
control, we obtain a final dataset of 227K high-quality CoT
reflections, named GenRef-CoT. Subsequently, we fine-
tune the Qwen2.5-VL-7B model on this curated reflection
dataset, enabling it to annotate the full dataset comprehen-
sively1. Fig. 3 illustrates a qualitative comparison among
reflections generated by the original Qwen2.5-VL-7B, our
fine-tuned reflector, and GPT-4o, clearly demonstrating that
our fine-tuned model produces substantially improved and
more accurate reflections compared to the original model.
We also visualize the word cloud of reflections in Fig. 2,
which shows the pattern of executable instructions.
Verifier Post-processing. To further ensure the quality
of our dataset, particularly regarding the quality gap be-
tween paired images, we train an image reward model
(verifier) to quantitatively evaluate image quality. Specif-
ically, we leverage the intermediate image preference an-
notations from GenRef-CoT and selected pairs whose pref-
erences align consistently with the image pair annotations
in GenRef, serving as confident, high-quality preference
data. Inspired by recent advancements in reward model-
ing for video generation [32], we adopt the Bradley–Terry
(BT) pairwise comparison approach [6] to train our image
reward model. The BT framework utilizes a pairwise log-
likelihood loss to explicitly model the reward gap between
preferred and non-preferred image pairs, defined as:

LBT = −E(y,xw,xl)∼D [log σ (rη(xw, y)− rη(xl, y))] ,
(2)

where y denotes the input prompt, (xw, xl) represents the
preferred and non-preferred image pair respectively, rη is
the learnable reward model, and σ(·) refers to the logistic
sigmoid function. Leveraging this verifier, we conduct a rig-
orous post-processing step on our dataset, applying multi-

1Appendix A shows a few samples from this dataset.
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ple criteria to filter out lower-quality data samples. Further-
more, the trained verifier can also be utilized for inference-
time scaling, which we elaborate in detail in Section 4.2.

3.3. Reflection Tuning
After having constructed a suitable dataset, we turn our at-
tention to efficiently training a corrector model Cϕ that im-
proves the quality of generated images. Analogous to image
editing tasks, we treat self-refinement as a conditional gen-
eration problem and employ an efficient fine-tuning strategy
tailored for pretrained diffusion transformers (DiTs), with-
out introducing any additional modules.
Efficient Fine-tuning for DiT. The MMDiT architec-
ture [12] has become a de-facto for the recent T2I gener-
ation models. In these models, image tokens and textual
embeddings are concatenated into a unified sequence, al-
lowing joint multimodal attention within each transformer
block. Inspired by recent advances in conditional genera-
tion [29, 51, 58], we similarly concatenate textual inputs y,
the flawed image xl, and the refined image xw into a single
fused sequence, enabling multimodal attention:

MMAttention(z) = softmax
(
QK⊤
√
d

)
V, (3)

where the Q, K, and V are linearly projected from the con-
catenated token sequence z = [y;xl;xw], with y being a
concatenation of the original input prompt and the reflec-
tion prompt. This unified attention mechanism naturally fa-
cilitates bidirectional information exchange across multiple
modalities without requiring specialized modules such as
ControlNet [65] or IP-Adapter [63].

Under this framework, the flawed image xl serves as
conditioning information and thus does not require applying
the noise schedule and can be further downsampled to lower
resolutions (from 1024 to 512) to boost computational effi-
ciency during both training and inference. Consequently,
we can directly apply standard diffusion (or flow-matching)
loss [30, 33] on the refined target image xw:

L = Et,ϵ,xt

[
∥Cϕ(xt, t, y, xl)− (xw − ϵ)∥22

]
dt, (4)

where the noise ϵ ∼ N (0, I) is sampled from a standard
Gaussian distribution and xt is sampled from p(xt|ϵ, xw).
Training Strategy. We observe that directly training on
our proposed dataset could cause distributional drift from
the pretrained base model, subsequently degrading the qual-
ity of generated images. To mitigate this issue, we design
a specialized training strategy to enhance model robust-
ness and maintain alignment with the pretrained distribu-
tion. First, we randomly drop the original prompt, reflection
prompt, and flawed input image with certain probabilities
during training. The reflection prompt and flawed image

Input Prompt

Refined Prompt

Rejected Sample
by Verifier

Selected Sample
by Verifier

Scaling Noise Scaling Reflection

Scaling Prompt

Use an external LLM to refine input prompt at each iteration

Corrector refines last-round sample in a sequential manner

Generator produces multiple
samples independently, in paralllel

Figure 4. Illustrations of three different inference-time scaling di-
mensions for text-to-image diffusion models.

are dropped simultaneously with a relatively high probabil-
ity. In this way, the training objective effectively reverts to
standard T2I generation, ensuring the model does not devi-
ate excessively from its pretrained distribution.

Additionally, we adopt a “task warm-up” approach to dy-
namically adjust the sampling probabilities of multiple data
domains throughout the training process. Initially, editing
data is sampled with higher probability, facilitating rapid
acquisition of accurate instruction-following capabilities.
As training progresses, we gradually increase the sampling
probabilities of the other three data domains. This gradual
adjustment effectively improves the model’s overall perfor-
mance and compensates for potential visual quality degra-
dation inherent in editing data by leveraging high-quality
synthetic datasets.

3.4. Test-Time Scaling via Iterative Refinement
Leveraging the trained corrector model, we aim to maxi-
mize the generative capability of the diffusion model at in-
ference time. In this section, we propose revisiting test-time
scaling for T2I diffusion models along three distinct yet
complementary dimensions: noise-level scaling, reflection-
level scaling, and prompt-level scaling, as illustrated in
Fig. 4. These three dimensions seamlessly integrate within
our proposed ReflectionFlow framework.
Noise-Level Scaling. We first introduce noise-level scal-
ing, inspired by recent works focused on noise-space op-
timization [2, 40, 66]. These approaches aim to identify
superior initial noise or intermediate noisy images through
various search strategies. Within our framework, we define
the number of different initial noise samples explored per
generation round as the search width N . By increasing N ,
one can fully explore the diversity embedded in the diffu-
sion model’s learned distribution. However, since the gen-
eration processes for these N initial noise are independent
and heavily reliant on feedback from a task-dependent ver-
ifier, simply scaling up N can result in diminishing returns
in terms of computational efficiency.
Reflection-Level Scaling. Reflection-level scaling builds
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Methods Samples Overall Single Two Counting Colors Position Attribution

Text-to-Image Models

SDXL [39] 1 0.55 0.98 0.74 0.39 0.85 0.15 0.23
DALLE 3 [5] 1 0.67 0.96 0.87 0.47 0.83 0.43 0.45

SANA-1.5 4.8B [60] 1 0.72 0.99 0.85 0.77 0.87 0.34 0.54
Lumina-Image 2.0 [53] 1 0.73 0.99 0.87 0.67 0.88 0.34 0.62

SD3 [12] 1 0.74 0.99 0.94 0.72 0.89 0.33 0.60
Playground v3 [31] 1 0.76 0.99 0.95 0.72 0.82 0.50 0.54
Janus-Pro-7B [10] 1 0.80 0.99 0.89 0.59 0.90 0.79 0.66

Inference Time Scaling

SANA-1.0-1.6B [59] 1 0.66 0.99 0.77 0.62 0.88 0.21 0.47
+ Noise Scaling† [34] 20 0.80 1.00 0.93 0.79 0.91 0.55 0.62

+ Reflect-DiT [27] 20 0.81 0.98 0.96 0.80 0.88 0.66 0.60

FLUX.1-dev [26] 1 0.67 0.99 0.81 0.75 0.80 0.21 0.48
+ Noise Scaling† [34] 32 0.85 1.00 0.96 0.91 0.91 0.52 0.78

+ Noise & Prompt Scaling 32 0.87 0.99 0.94 0.85 0.91 0.80 0.71
+ ReflectionFlow 32 0.91 1.00 0.98 0.90 0.96 0.93 0.72

Table 1. Quantitative comparisons of our ReflectionFlow framework against standard text-to-image models and different inference-time
scaling approaches evaluated on the GenEval benchmark. The notation † denotes results obtained using only noise-level scaling, which is
equivalent to the random search strategy introduced in Ma et al. [34].

upon our trained corrector model by iteratively refining pre-
viously generated images to progressively improve their
quality. We define the number of iterative refinement rounds
as the reflection depth M . Specifically, each refinement it-
eration follows the process defined in Section 3.1, where
the images generated in the previous iteration are refined it-
eratively with reflection. If the corrector model is effective,
scaling the reflection depth M can significantly enhance the
model’s overall performance.

Prompt-Level Scaling. Finally, considering that T2I diffu-
sion models rely not only on noisy image inputs but also on
user-provided textual prompts, we design the prompt evolv-
ing process in our test-time scaling framework. We find
that prompt expansion can substantially improve generation
quality, especially for concise prompts. At each iterative
round, we leverage an MLLM to refine the textual prompt
based on the original user prompt, the previously generated
images, and their evaluation scores. This prompt refinement
procedure, performed without explicit gradient information,
can produce precise and effective prompts for subsequent
image generation iterations.

ReflectionFlow. Integrating all the aforementioned com-
ponents, we propose ReflectionFlow framework, referring
to Appendix C for detailed algorithm. Specifically, we first
employ a generator, implemented via offloading of LoRA
weights, to produce an initial set of N candidate images.
Subsequently, at iteration i, we utilize an MLLM verifier to
comprehensively evaluate and rank the N images generated
in the previous iteration across multiple dimensions. Based

on these evaluation scores and previously generated images,
the MLLM generates textual reflections aimed at correcting
identified errors and then refines the user prompts. These
reflections and improved prompts jointly serve as inputs to
our trained corrector model with LoRA, producing a refined
set of N images for the next iteration. Finally, we use the
verifier to select the best image for each refinement chain
and then select the best image across all chains.

Our ReflectionFlow allows flexible adjustment of both
the search width N (number of parallel chains) and re-
flection depth M (number of iterative refinement rounds).
This flexibility empowers users to effectively balance per-
formance and computational efficiency according to the re-
quirements and constraints of various downstream tasks.

4. Experiments
4.1. Setup
Training Details. We select FLUX.1-dev2 [26], a 12B-
parameter flow-based diffusion transformer for text-to-
image generation, as our base generator. To train the cor-
rector model, we utilize our GenRef dataset, resizing and
cropping all target images to 1024 × 1024 and all condi-
tional images to 512× 512. To enable efficient fine-tuning,
we employ LoRA [20] with a rank of 256. The model is
trained using a batch size of 64 and optimized using the
Prodigy optimizer [36], with safeguard warmup and bias

2https : / / huggingface . co / black - forest - labs /
FLUX.1-dev
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Figure 5. Left: The choice of verifier significantly impacts the effectiveness of inference-time scaling methods. Middle: By efficiently
scaling the inference-time budget, ReflectionFlow achieves substantial performance improvements, requiring 10 times fewer samples
compared to naive noise-level scaling. Right: ReflectionFlow demonstrates notably greater performance gains on challenging samples.

correction enabled, following practices outlined in Omini-
Control [51]. The entire fine-tuning procedure is conducted
over 6,000 optimization steps on 8 NVIDIA A100 GPUs.

For our reflection generator, we utilize Qwen2.5-VL-
7B [4] as the backbone model and apply full fine-tuning
with a learning rate of 1 × 10−6 for a total of 45,000
steps. Considering that the image reward modeling task
is comparatively easier, we select Qwen2.5-VL-3B [4] as
the backbone of our verifier. Following the configura-
tion of VideoAlign [32], we optimize the verifier using the
Bradley-Terry (BT) loss, fine-tuning LoRA [20] parameters
of the language model and fully updating parameters of the
vision encoder. Training is conducted for 10,080 steps with
a learning rate of 2× 10−6.
Evaluation. We evaluate ReflectionFlow framework on
GenEval benchmark [15], following the official evaluation
protocol. The GenEval dataset comprises 553 prompts, with
four images generated per prompt. All images are generated
at a resolution of 1024 × 1024, guidance scale of 3.5, and
30 sampling steps. We use the SANA verifier3 introduced in
SANA-1.5 [60] to assess generated images in our main ex-
periments, and use our fine-tuned Qwen2.5-VL-7B to pro-
duce reflection. We also test additional verifiers, including
our verifier and GPT-4o, which is included in our verifier
comparison experiments. The detailed GPT-4o prompt is
provided in the Appendix.

4.2. Main Results
We first validate the effectiveness of our proposed Reflec-
tionFlow framework on the GenEval benchmark. Specifi-
cally, we progressively introduce three complementary scal-
ing dimensions defined in our method: noise-level scaling,
prompt-level scaling, and reflection-level scaling. We com-
pare ReflectionFlow with the baseline FLUX.1-dev and sev-

3https://huggingface.co/Efficient-Large-Model/
NVILA-Lite-2B-Verifier

eral state-of-the-art text-to-image models. Our main exper-
iments are done under the setting of 32 samples.
ReflectionFlow Boosts Generation Quality. Tab. 1 sum-
marizes the quantitative results. Starting from the baseline
FLUX.1-dev model (score of 0.67), we observe that intro-
ducing noise-level scaling significantly improves the score
to 0.85. Further incorporating prompt-level scaling pro-
vides a slightly improvement, reaching a score of 0.87. Fi-
nally, when we integrate three levels of scaling together,
ReflectionFlow can achieve a substantial leap in perfor-
mance, reaching an overall score of 0.91. These results
demonstrate that naive noise-level scaling alone is ineffi-
cient without explicit guidance, while dynamically refining
prompts along generation facilitates a clearer understand-
ing of complex semantic attributes, such as spatial arrange-
ments. The substantial performance gain achieved by incor-
porating reflection-level scaling further confirms that tex-
tual reflections from verifiers provide valuable feedback,
enabling the corrector model to iteratively and reliably re-
fine its outputs.

Moreover, we compare our method with a concurrent
reflection-based work, Reflect-DiT [27]. From Fig. 5, either
SANA verifier or our verifier’s 16 samples results are better
than Reflect-DiT’s performance of 0.81, which is achieved
with 20 samples per prompt. This comparison highlights the
efficiency and effectiveness of our ReflectionFlow frame-
work, which can be attributed to the better dataset, reflec-
tion model training, as well as the overall inference-time
scaling framework.

4.3. Ablation Studies
Exploring Different Verifiers. To explore the potential of
ReflectionFlow under various verifiers, we performed ex-
periments using three distinct verifier settings: GPT-4o ver-
ifier, our fine-tuned verifier, and SANA verifier, which is
specifically designed for the GenEval benchmark. Addi-
tionally, we utilized the oracle results from the GenEval
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Prompt: The large, cubic ambulance stood near the small, round pillow
Initial bad image Reflection: Make the ambulance larger. Change the pillow to the round

Prompt: The metallic bronze medal glistened near the vibrant red parachute
Reflection: The medal hangs from an unfolded parachute and reflect sunlightInitial bad image

Prompt: The organ with its smooth finish was adjacent to a matte coffee machine
Initial bad image Reflection: Add a coffee machine. Do not blend them together

Prompt: The round leather football rolled near the large metallic snowplowInitial bad image
Reflection: Make the football round. Add a metallic snowplow

Figure 6. Visualization of complex reasoning. Starting from initially incorrect generations (the first image), ReflectionFlow iteratively
reflects on and corrects errors, progressively producing images that accurately align with the provided prompts and reflection instructions .

evaluation pipeline to estimate the upper bound of current
performance. The results are shown in Fig. 5.

When using GPT-4o as the verifier, the performance
curve quickly approaches its limit with only 32 samples per
prompt. In contrast, when using our verifier trained with
BT loss, we observe a steady increase in performance as
the number of samples per prompt increases. Notably, this
configuration does not yet reach the limit of inference-time
scaling, indicating further potential for improvement. Fur-
thermore, by adopting the SANA verifier, which was de-
signed for the GenEval dataset, we achieve even higher per-
formance. Specifically, with 32 samples per prompt, our
ReflectionFlow achieves a GenEval score of 0.91. For com-
parison, using the oracle results from the GenEval bench-
mark as an upper bound, we find that the model can achieve
a score of up to 0.98, demonstrating the significant head-
room for performance improvements with better verifiers.

These results show the strong inherent abilities of our
ReflectionFlow, as its performance consistently improves
with increasingly better verifiers with little sign of satura-
tion. While the choice of verifier plays a critical role in
unlocking this potential, the steady performance gains ob-
served across different verifier settings highlight the robust-
ness and scalability of our model.
Scaling Inference-time Budgets. We then investigate how
the allocated inference-time budget influences the perfor-
mance of our ReflectionFlow framework. Specifically, we
fix the search width to 2 and progressively increase the re-
flection depth as we scale up the total budget. This allows
us to explicitly examine the capability of ReflectionFlow to
iteratively reflect and correct its previous mistakes.

Results shown in Fig. 5 demonstrate that ReflectionFlow
rapidly improves performance as the budget increases from
1 to 4, after which the improvement slows down, ultimately
reaching a final GenEval score of 0.91 with 32 samples for
each prompt. The baseline approaches, including “Noise

Width Depth Overall Position Attribution

16 1 0.74 0.56 0.42
8 2 0.76 0.58 0.51
4 4 0.77 0.56 0.51
2 8 0.78 0.57 0.55
1 16 0.78 0.69 0.51

Table 2. Ablation studies on width and depth sizes in inference.

Scaling” and “Noise & Prompt Scaling” consistently un-
derperform relative to ReflectionFlow across all budgets,
indicating the limited effectiveness of simpler methods.
We capped our evaluation at 32 samples for each prompt;
however, the upward trajectory of ReflectionFlow’s perfor-
mance suggests that it has not yet reached its full potential,
leaving room for further improvement with larger budgets.
Exploring Iterative Refinement Strategies. We systemat-
ically investigate different exploration strategies within the
ReflectionFlow framework. Specifically, we conduct ab-
lation experiments by varying two key hyperparameters:
search width N , which denotes the number of candidate
images generated at each iteration, and reflection depth
M , representing the number of iterative refinement rounds.
Given a fixed computational budget of N ×M = 16, we
explore three different refinement strategies: (1) Sequential,
generating one candidate per refinement step; (2) Parallel,
generating multiple candidates simultaneously per iteration;
and (3) Combine, balancing both depth and breadth by mod-
erately expanding candidate branches per iteration. We use
GPT-4o as the verifier.

Tab. 2 clearly shows that the sequential strategy
(N1M16) achieves the highest overall performance of 0.78,
outperforming the parallel strategy (N16M1), which yields
a lower score of 0.74. Comparing various combined strate-
gies, such as N2M8, N4M4, and N8M2, we consistently
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observe that strategies with greater refinement depth tend to
yield better performance than those with wider branching.
These observations suggest that ReflectionFlow framework
exhibits effective reflection and self-correction capabilities,
yet the refinement process is relatively unstable, requiring
multiple sequential iterations to progressively identify and
correct errors. Increasing the refinement depth allows the
model to continuously reason and rectify previous mistakes,
ultimately converging to improved results.

4.4. Analysis and Discussion

Reflection Capability for Difficult Tasks. Previous stud-
ies in LLMs demonstrate that inference-time scaling, partic-
ularly via longer reasoning and reflection chains, improves
performance on more challenging tasks [35, 46]. Inspired
by these observations, we explore whether ReflectionFlow
framework exhibits similar behavior in diffusion models.
Leveraging the difficulty estimated in Sec. 3.2, we divide
the prompts from GenEval benchmark into three difficulty
levels according to their initial correctness: hard prompts
with correctness between 0 and 0.3, medium prompts with
correctness between 0.4 and 0.7, and easy prompts with cor-
rectness between 0.8 and 1.0. Fig. 5 summarizes the perfor-
mance of ReflectionFlow across these three difficulty levels.

ReflectionFlow achieves the largest improvement on
hard prompts, substantially increasing correctness from
0.10 to 0.81. Medium prompts exhibit moderate improve-
ment, increasing correctness from 0.55 to 0.85, whereas
easy prompts show minimal change, slightly increasing
from 0.95 to 0.97. These results clearly indicate that Re-
flectionFlow shares a similar property with reflection-based
scaling strategies in LLMs, where deeper iterative reflection
is particularly beneficial for challenging tasks. This demon-
strates the potential for future work to dynamically allocate
inference-time compute based on prompt difficulty, lever-
aging the flexibility of ReflectionFlow.

Qualitative Examples. To intuitively illustrate the effec-
tiveness of ReflectionFlow, we present qualitative exam-
ples of generated images and corresponding reflection pro-
cesses. As shown in Fig. 6, initial generations by our base-
line often fail to capture detailed nuances or complex re-
lations described in prompts. Through our iterative reflec-
tion, the model progressively identifies and corrects these
issues, resulting in improved final outputs. Moreover, our
method naturally produces interpretable reflection chains,
which are similar to chain-of-thought reasoning in LLMs,
demonstrating how the model explicitly reasons about and
resolves visual inconsistencies, stylistic mismatches, and
compositional inaccuracies step by step. Please refer to the
Appendix for more qualitative results.

5. Conclusion

In this work, we present an inference-time framework, Re-
flectionFlow, that equips text-to-image diffusion models
with iterative self-refinement capabilities. Central to our
approach is the construction of GenRef, a large-scale im-
age reflection dataset consisting of one million triplets of
flawed images, high-quality images, and textual reflections.
By formulating self-refinement as a generalized image edit-
ing problem and employing efficient fine-tuning strategies
for pretrained diffusion transformers, ReflectionFlow effec-
tively enhances performance without deviating from pre-
trained distributions. Furthermore, our framework inte-
grates inference-time scaling across noise, reflection, and
prompt dimensions, providing flexibility to balance com-
putational efficiency and generation quality. We believe
our work offers a promising direction for advancing self-
refining generative models, contributing to more reliable
and adaptive visual generation systems.
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Appendix

A. Dataset Preview
In the Figures 7, 8, and 9, we provide samples from our GenRef dataset. We divide these figures with respect to the subsets we
used during data curation, except for the “edit” samples that were sourced from the OmniEdit dataset [55]. For each image,
we provide the prompt and reflection pairs. The red and green borders indicate the starting and final images, respectively.
For best viewing experience, we recommend zooming in.

(a) (b) (c)

Figure 7. Samples from the pool of reward-based data. (a) Prompt: A surreal digital illustration of a floating island with a large, lush
tree and cascading waterfalls, set against a twilight sky with a crescent moon, surrounded by misty mountains and vibrant, ethereal colors.
Reflection: Remove the sun in the background. Add more mist around the mountains. (b) Prompt: A surreal digital artwork depicting a
clear glass resting on rocks, containing a miniature landscape with a river, pine trees, and a sunset, surrounded by pink flowers, creating
a dreamlike, photorealistic scene with vibrant colors and intricate details. Reflection: Add more rocks around the glass. Add more pink
flowers around the glass. (c) Prompt: A young woman with long red hair ice skates gracefully on a frozen lake, surrounded by snow-
covered mountains and evergreen trees, creating a serene and ethereal winter scene. Reflection: Change the woman’s outfit to a white
sweater and skirt. Make the woman skate more gracefully.

(a) (b) (c)

Figure 8. Samples from the pool of rule-based data. (a) Prompt: a photo of two carpet cleaners. Reflection: Replace the vacuum cleaners
with professional-grade carpet cleaning machines and adjust the posture of the individuals to face forward while holding the machines.
(b) Prompt: a photo of a white blanket and a red measuring spoon. Reflection: Change the texture of the blanket to a smooth, woven
pattern instead of a fluffy one. (c) Prompt: a photo of four colored pencils. Reflection: Remove two pencils from the group to leave only
four pencils visible.

Figure 10 shows samples from the dataset created for fine-tuning our Qwen model, as described in Section 3.2. The green
and red borders denote the correct and incorrect images (as deemed by closed-source APIs), respectively.
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(a) (b) (c)

Figure 9. Samples from the pool of long-short prompt data. (a) Prompt: Portrait of a middle-aged man with a beard, seated indoors,
looking slightly to the right. He wears a dark blue shirt and is positioned in the lower left of the frame. His right hand holds a newspaper,
partially visible in the foreground. The background features rustic wooden walls with a warm, weathered texture, and a wooden mirror
frame is partially visible on the right. The lighting is soft and diffused, casting gentle shadows on his face, creating a contemplative mood.
The color palette is muted with earthy tones, emphasizing a cozy, intimate atmosphere. The composition is balanced, with a shallow depth
of field that keeps the focus on the man’s expression. Photorealistic, cinematic, warm, introspective, visually balanced. Reflection: Change
the suit jacket into a dark blue shirt. Remove the gray sweater vest. (b) Prompt: Studio portrait of a young woman with fair skin and
long, wavy red hair, centered against a dark grey background. She gazes directly at the camera with a neutral expression, her lips painted
a vibrant red. Her right hand is raised to her chin, with fingers gently touching her cheek. She wears a crisp white blouse with a statement
necklace featuring large, dark blue gemstones. The lighting is soft and even, highlighting her freckles and the texture of her hair. High
contrast, sharp focus, professional studio photography, neutral color palette, elegant and poised, classic portrait composition. Reflection:
Paint the lips a vibrant red. Replace the necklace with one that features large, dark blue gemstones. (c) Prompt: A striking portrait of an
elderly woman dressed as a superhero in an urban setting. She stands confidently in the foreground, wearing a red helmet with a visor,
green eye mask, and a red and blue superhero costume with a cape. Her right hand is raised, adorned with a silver glove, while her left
hand rests on her hip, also gloved. A can of food is strapped to her left arm. The background features a city street with a yellow traffic
light and a bus with an American flag on its side, parked on the right. A brick building with the sign “BRINKLEY’S” is visible behind her.
The scene is set in a bustling city environment with blurred buildings and a taxi in the distance. Photorealistic, high contrast, dramatic
lighting, vibrant color palette, sharp focus on the subject, urban superhero theme, dynamic composition, slightly desaturated background,
cinematic feel. Reflection: Change the woman’s outfit to a red and blue superhero costume with a cape. Add a red helmet with a visor,
green eye mask, and a silver glove to the woman’s hand.
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(a) (b) (c)

Figure 10. Samples from the pool of CoT (chain-of-thought) data. (a) Prompt: Dimly lit photograph of an empty booth in a cozy, vintage-
style diner. Red leather benches form an L-shape around a pair of adjoining hexagonal marble tables in the left center against the back
wall. The tables, with dark veining and brown wooden edges, sit atop black metal bases. The wall shows a textured, weathered green
paint over a brick surface, subtly shadowed. In the foreground, a waist-high partition with vertical ribbed glass edges frames the scene on
the right. Flooring includes worn terrazzo tiles with visible dust. Warm, ambient lighting creates an inviting yet mysterious atmosphere.
Photorealistic, shallow depth of field, warm tones, nostalgic, intimate mood, reminiscent of mid-20th-century design. Analysis: The
left image better matches the prompt. It features a dimly lit, cozy atmosphere with red leather benches forming an L-shape around two
adjoining hexagonal marble tables. The wall has a textured green paint over a brick surface, and the terrazzo flooring appears worn and
dusty. The right image deviates from the prompt as the benches form a U-shape instead of an L-shape, the wall includes wooden paneling
not mentioned in the prompt, and the lighting is less dim and warm, reducing the nostalgic and intimate mood. Instruction: Change the
U-shaped bench arrangement to an L-shape. Remove the wooden paneling on the walls and replace it with textured green paint over a
brick surface. (b) Prompt: A minimalist, flat-design illustration of stylized Arabic calligraphy forming a coffee pot with steam, set against
a warm brown background, featuring a cream color palette and subtle shadows for depth. Analysis: The left image accurately portrays
stylized Arabic calligraphy forming a coffee pot and steam, while the right image only contains Arabic calligraphy around a regular coffee
pot. The prompt specifically calls for the Arabic calligraphy to form the pot and steam. Instruction: Transform the Arabic calligraphy
into the form of a coffee pot with steam. Remove the existing regular coffee pot. (c) Prompt: A man in a red and yellow plaid shirt sits on a
floral sofa in a warmly lit, cozy living room with natural light, a bookshelf, and a floral lamp, creating a relaxed and intimate atmosphere.
Analysis: The right image is better because it depicts a man in a red and yellow plaid shirt seated on a floral sofa within a warmly lit, cozy
living room, effectively conveying a relaxed and intimate setting as described in the prompt. The left image features a man in a plaid shirt,
but the colors are not quite right, and the setting is not as warm or cozy, and the lighting is not right. Instruction: Change the shirt color
to red and yellow plaid. Add natural light to give the setting a warm and cozy feel.
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B. Qualitative Results
In Figure 11, we list some qualitative results of our ReflectionFlow framework. This includes the detailed process of our
three scaling steps, giving a more nuanced understanding of our framework.

a photo of a backpack right of a sandwich

Evaluation Score: 7. Explanation: Generally clear depiction
but there is a position mismatch with respect to

the prompt.

Reflection

Reposition the backpack to the right side of the sandwich.
Adjust the sandwich to be on the left side of the

backpack, ensuring a clear separation between the two
objects and correct spatial orientation.

A clear photo of a backpack placed distinctly to the right
of a sandwich, with adequate spacing between the two
objects to avoid blending or overlap. Ensure both the

backpack and the sandwich are fully visible as separate and
distinct items. Use a flat and neutral background of a
uniform color, such as light grey or beige, to enhance

clarity and focus on the objects.

Prompt
Refine

a photo of a couch left of a toaster

Evaluation Score: 2. Explanation: While the image depicts a
couch, it does not fulfill the prompt's

requirements involving a toaster.

Reflection

Add a clearly visible toaster to the right of the existing
couch, maintaining proper scale and alignment for a

realistic and natural perspective. Ensure the toaster is in
full view without any occlusions by other objects 

a photo of a couch positioned to the left of a toaster, with
the toaster clearly placed on a stable surface like a table

or counter, ensuring both objects are fully visible in a
realistic indoor setting. Maintain a balanced composition to
clearly show the relationship between the couch and the

toaster from a consistent perspective.

Prompt
Refine

Figure 11. Qualitative results involving complex reasoning.

17



C. Algorithm Process
The proposed ReflectionFlow framework is as follows:

Algorithm 1 The proposed ReflectionFlow framework

Require: prompt y, generator Gθ, corrector Cϕ, verifier V , scaling width N , scaling depth M
Ensure: High-quality image that best realizes user intent

1: X0 ← ∅ ▷ Initial image set
2: for j = 1 to N do
3: Sample zj ∼ N (0, I)
4: xj

0 ← Gθ(y, z
j) ▷ Generate initial image

5: X0 ← X0 ∪ {xj
0}

6: end for
7: for i = 1 to M do
8: si ← V (Xi−1, y) ▷ Score previous images
9: Xi ← ∅

10: for j = 1 to N do
11: rji , y

j
i ← V (xj

i−1, y, si) ▷ Generate reflection
12: xj

i ← Cϕ(y
j
i , r

j
i , x

j
i−1) ▷ Refine with corrector

13: Xi ← Xi ∪ {xj
i}

14: end for
15: end for
16: return argmaxx∈

⋃M
i=0

⋃N
j=1 xj

i
V (x, y)
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D. Prompts
We provide all the prompts we used throughout this work. These prompts were inspired by Figure 16 from [34].

D.1. Verifier Prompts
D.1.1. Single Object

You are a multimodal large-language model tasked with evaluating images generated
by a text-to-image model. Your goal is to assess each generated image based on
specific aspects and provide a detailed critique, along with a scoring system.
The final output should be formatted as a JSON object containing individual scores
for each aspect and an overall score. The keys in the JSON object should be:
object completeness, detectability, occlusion handling, and overall score. Below
is a comprehensive guide to follow in your evaluation process:
1. Key Evaluation Aspects and Scoring Criteria:
For each aspect, provide a score from 0 to 10, where 0 represents poor performance
and 10 represents excellent performance. For each score, include a short
explanation or justification (1-2 sentences) explaining why that score was given.
The aspects to evaluate are as follows:
a) Object Completeness:
Assess the structural integrity of the object (no defects/deformations), detail
clarity and legibility. Score: 0 (severely fragmented) to 10 (perfectly intact).
b) Detectability:
Evaluate the distinction and visual saliency of objects and backgrounds using
contrast analysis. Score: 0 (camouflaged) to 10 (immediately noticeable).
c) Occlusion Handling:
Assess whether there is unreasonable occlusion (natural occlusion needs to
keep the subject visible). Score: 0 (key parts are blocked) to 10 (no
blockage/natural and reasonable blockage).
2. Overall Score:
After scoring each aspect individually, provide an overall score, representing
the model’s general performance on this image. This should be a weighted average
based on the importance of each aspect to the prompt or an average of all aspects.

Figure 12. Verifier prompt for images with single object.
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D.1.2. Two Objects

You are a multimodal large-language model tasked with evaluating images generated
by a text-to-image model. Your goal is to assess each generated image based on
specific aspects and provide a detailed critique, along with a scoring system.
The final output should be formatted as a JSON object containing individual
scores for each aspect and an overall score. The keys in the JSON object should
be: separation clarity, individual completeness, relationship accuracy, and
overall score. Below is a comprehensive guide to follow in your evaluation
process: Your evaluation should focus on these aspects:
1. Key Evaluation Aspects and Scoring Criteria: For each aspect, provide a score
from 0 to 10, where 0 represents poor performance and 10 represents excellent
performance. For each score, include a short explanation or justification (1-2
sentences) explaining why that score was given. The aspects to evaluate are as
follows:
a) Seperation Clarity: Assess the spatial separation and boundary clarity of
two objects. Score: 0 (fully overlapped) to 10 (completely separate and clearly
defined boundaries)
b) Indivisual Completeness: Evaluate each object’s individual integrity and
detail retention. Score: 0 (both objects are incomplete) to 10 (both objects
are complete).
c) Relationship Accuracy: Assess the rationality of size proportions. Score: 0
(wrong proportions) to 10 (perfectly in line with physical laws).
2. Overall Score: After scoring each aspect individually, provide an overall
score, representing the model’s general performance on this image. This should
be a weighted average based on the importance of each aspect to the prompt or an
average of all aspects.

Figure 13. Verifier prompt for images with two objects.
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D.1.3. Counting

You are a multimodal large-language model tasked with evaluating images generated
by a text-to-image model. Your goal is to assess each generated image based on
specific aspects and provide a detailed critique, along with a scoring system.
The final output should be formatted as a JSON object containing individual scores
for each aspect and an overall score. The keys in the JSON object should be:
count accuracy, object uniformity, spatial legibility, and overall score. Below
is a comprehensive guide to follow in your evaluation process: Your evaluation
should focus on these aspects:
1. Key Evaluation Aspects and Scoring Criteria: For each aspect, provide a score
from 0 to 10, where 0 represents poor performance and 10 represents excellent
performance. For each score, include a short explanation or justification (1-2
sentences) explaining why that score was given. The aspects to evaluate are as
follows:
a) Count Accuracy: Assess the number of generated objects matches the exact
prompt. Score: 0 (number wrong) to 10 (number correct).
b) Object Uniformity: Evaluate the consistency of shape/size/color among same
kind of objects. Score: 0 (same kind but total different shape/size/color) to 10
(same kind and same shape/size/color).
c) Spatial Legibility: Evaluate the plausibility and visibility of object
distribution (no excessive overlap). Score: 0 (heavily overlapped) to 10
(perfect displayed and all easily seen).
2. Overall Score: After scoring each aspect individually, provide an overall
score, representing the model’s general performance on this image. This should
be a weighted average based on the importance of each aspect to the prompt or an
average of all aspects.

Figure 14. Verifier prompt for images for counting.
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D.1.4. Colors

You are a multimodal large-language model tasked with evaluating images generated
by a text-to-image model. Your goal is to assess each generated image based on
specific aspects and provide a detailed critique, along with a scoring system.
The final output should be formatted as a JSON object containing individual
scores for each aspect and an overall score. The keys in the JSON object should
be: color fidelity, textttcontrast effectiveness, multi object consistency, and
overall score. Below is a comprehensive guide to follow in your evaluation
process: Your evaluation should focus on these aspects:
1. Key Evaluation Aspects and Scoring Criteria: For each aspect, provide a score
from 0 to 10, where 0 represents poor performance and 10 represents excellent
performance. For each score, include a short explanation or justification (1-2
sentences) explaining why that score was given. The aspects to evaluate are as
follows:
a) Color Fidelity: Assess the exact match between the object color and the input
prompt. Score: 0 (color wrong) to 10 (color correct).
b) Contrast Effectiveness: Evaluate the difference between foreground and
background colors. Score: 0 (similar colors, difficult to distinguish) to 10
(high contrast).
c) Multi-Object Consistency: Assess color consistency across multiple same kind
of objects. Score: 0 (same kind of objects with total different colors) to 10
(same kind with same color).
2. Overall Score: After scoring each aspect individually, provide an overall
score, representing the model’s general performance on this image. This should
be a weighted average based on the importance of each aspect to the prompt or an
average of all aspects.

Figure 15. Verifier prompt for images for colors.
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D.1.5. Position

You are a multimodal large-language model tasked with evaluating images generated
by a text-to-image model. Your goal is to assess each generated image based on
specific aspects and provide a detailed critique, along with a scoring system.
The final output should be formatted as a JSON object containing individual scores
for each aspect and an overall score. The keys in the JSON object should be:
position accuracy, occlusion management, perspective consistency, and overall score.
Below is a comprehensive guide to follow in your evaluation process: Your
evaluation should focus on these aspects:
1. Key Evaluation Aspects and Scoring Criteria: For each aspect, provide a score
from 0 to 10, where 0 represents poor performance and 10 represents excellent
performance. For each score, include a short explanation or justification (1-2
sentences) explaining why that score was given. The aspects to evaluate are as
follows:
a) Positional Accuracy: Assess the matching accuracy between spatial position and
prompt description. Score: 0 (totally wrong) to 10 (postion correct)
b) Occlusion Management: Evaluate position discernibility in the presence of
occlusion. Score: 0 (fully occlusion) to 10 (clearly dsiplay the relationship).
c) Perspective Consistency: Assess the rationality of perspective relationship
and spatial depth. Score: 0 (perspective contradiction) to 10 (completely
reasonable).
2. Overall Score: After scoring each aspect individually, provide an overall
score, representing the model’s general performance on this image. This should
be a weighted average based on the importance of each aspect to the prompt or an
average of all aspects.

Figure 16. Verifier prompt for images for positions.
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D.1.6. Color Attribution

You are a multimodal large-language model tasked with evaluating images generated
by a text-to-image model. Your goal is to assess each generated image based on
specific aspects and provide a detailed critique, along with a scoring system.
The final output should be formatted as a JSON object containing individual scores
for each aspect and an overall score. The keys in the JSON object should be:
attribute binding, contrast effectiveness, material consistency, and overall score.
Below is a comprehensive guide to follow in your evaluation process: Your
evaluation should focus on these aspects:
1. Key Evaluation Aspects and Scoring Criteria: For each aspect, provide a score
from 0 to 10, where 0 represents poor performance and 10 represents excellent
performance. For each score, include a short explanation or justification (1-2
sentences) explaining why that score was given. The aspects to evaluate are as
follows:
a) Attrribute Binding: Correct binding of colors to designated objects (no color
mismatches). Score: 0 (color mismatch) to 10 (correct binding).
b) Contrast Effectiveness: Evaluate the difference between foreground and
background colors. Score: 0 (similar colors, difficult to distinguish) to 10
(high contrast).
c) Material Consistency: Assess the coordination of color and material
performance. Score: 0 (material conflicts) to 10 (perfect harmony).
2. Overall Score: After scoring each aspect individually, provide an overall
score, representing the model’s general performance on this image. This should
be a weighted average based on the importance of each aspect to the prompt or an
average of all aspects.

Figure 17. Verifier prompt for images for color attribution.

D.2. Reflection Prompt

You are an expert assistant for generating image improvement instructions.
Analyze the original prompt, the updated prompt to generate the image, the
evaluation of the generated image, and the generated image, give instructions to
create specific technical directions following these guidelines:
1. Structure and Focus Areas: Focus strictly on this aspect: Prompt Following.
2. Detailed Requirements for Each Aspect: A. Prompt Following Instructions:
Examine the original prompt sentence by sentence. List exact discrepancies
between the bad image and prompt specifications. Use direct action verbs: Add,
Remove, Replace, Reposition, Adjust, to modify the image. Specify precise
locations and modification commands. Never use vague terms like ensure or
confirm.
3. Format Specifications: Use exact section headers without markdown:1. Prompt
Following:\n-\n Each instruction must start with a hyphen and complete command.
Include spatial references and implementation details. Omit sections with no
required improvements. Never include explanations or examples.
4. Content Principles: Every instruction must be directly executable by an
artist. Prioritize critical errors first. Describe only missing or incorrect
elements. Use imperative verb forms exclusively. Maintain technical specificity
without assumptions.

Figure 18. Prompt for generating reflection instructions.
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D.3. Refine Prompt

You are a multimodal large-language model tasked with refining user’s input
prompt to create images using a text-to-image model. Given a original prompt, a
current prompt, a batch of images generated by the prompt, a reflection prompt
about the generated images and their corresponding assessments evaluated by a
multi-domain scoring system, your goal is to refine the current prompt to improve
the overall quality of the generated images. You should analyze the strengths
and drawbacks of current prompt based on the given images and their evaluations.
Consider aspects like subject, scene, style, lighting, tone, mood, camera style,
composition, and others to refine the current prompt. Do not alter the original
description from the original prompt. The refined prompt should not contradict
with the reflection prompt. Directly output the refined prompt without any other
text.

Some further instructions you should keep in mind:
1) The current prompt is an iterative refinement of the original prompt.
2) In case the original prompt and current prompt are the same, ignore the current
prompt.
3) In some cases, some of the above-mentioned inputs may not be available. For
example, the images, the assessments, etc. In such situations, you should still
do your best, analyze the inputs carefully, and arrive at a refined prompt that
would potentially lead to improvements in the final generated images.
4) When the evaluations are provided, please consider all aspects of the
evaluations very carefully.

Figure 19. Prompt for refinement.
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D.4. Chain-of-Though Image Reflection Prompt

You are a multimodal analysis assistant. Given a prompt and two generated images
(left and right), your task is to analyze and compare both images with respect to
their alignment to the given prompt, decide which image better matches the prompt,
then generate concise editing instructions to modify the inferior image to become
the superior image. Follow the step-by-step instructions below:

1. Analyze both images carefully and identify key differences regarding:
missing elements, incorrect object attributes (color, size, position, number,
etc.), incorrect spatial or logical relationships between objects, presence of
unnecessary elements, etc.
2. Based on the analysis, determine which image better aligns with the prompt.
Output "left" if the left image is better; output "right" if the right image is
better.
3. Generate exactly one most important editing instruction that will modify the
inferior image to closely match the better image. Follow these guidelines:

(1) Use concise, accurate, actionable imperative sentences.
(2) **DO NOT explicitly mention specific images in your response, like "the

left image", "the right image", or similar words!**
(3) Avoid vague or redundant instructions, such as "ensure" or "verify".
(4) Example instructions:

- "Add a dirt road in the foreground extending into the background."
- "Remove a cluster of white, fluffy cotton grass plants in the foreground

on the rocky shore."
- "Swap the vampire with a woman with long, wavy blonde hair."
- "Make the image look like it’s from an ancient Egyptian mural."
- "Turn the color of golden shield to gray."

Format your final response strictly in JSON format:
‘‘‘json
{

"Analysis": "<detailed analysis of key differences between the two images in
relation to the prompt>",

"Result": "<left/right>",
"Instructions": "<instruction>"

}
‘‘‘

Figure 20. Prompt for generating chain-of-thought image reflection annotations.
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