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Abstract

The main conceptual contribution of this paper is identifying a previously unnoticed con-
nection between two central problems in computational learning theory and property testing:
agnostically learning conjunctions and tolerantly testing juntas. Inspired by this connection, the
main technical contribution is a pair of improved algorithms for these two problems.

In more detail,

• We give a distribution-free algorithm for agnostically PAC learning conjunctions over

{±1}n that runs in time 2Õ(n1/3), for constant excess error ε. This improves on the fastest

previously published algorithm, which runs in time 2Õ(n1/2) [KKMS08].

• Building on the ideas in our agnostic conjunction learner and using significant additional
technical ingredients, we give an adaptive tolerant testing algorithm for k-juntas that

makes 2Õ(k1/3) queries, for constant “gap parameter” ε between the “near” and “far”
cases. This improves on the best previous results, due to [ITW21, NP24], which make

2Õ(
√

k) queries. Since there is a known 2Ω̃(
√

k) lower bound for non-adaptive tolerant
junta testers, our result shows that adaptive tolerant junta testing algorithms provably
outperform non-adaptive ones.
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1 Introduction

The American mystery deepens.

— Don DeLillo, White Noise

A broad theme that has emerged across modern data analysis problems in various subfields
of theoretical computer science is the importance of dealing with noise. In both computational
learning theory and property testing, the first generation of models that were considered in the
early days of the field were “noise-free”: the original PAC learning model of Valiant [Val84] did not
allow for the possibility of mislabeled examples, and the original property testing model for Boolean
functions that was introduced by Blum, Luby and Rubinfeld [BLR93] was about testing whether a
function exactly has a given property of interest. As these fields matured, though, the motivation
for extending these original models became increasingly clear: since imperfect data is ubiquitous in
real settings, it is natural to consider relaxed learning and testing models that allow for noise. In
learning theory, this led to widespread interest in the model of agnostic learning [Hau92, KSS94],
which may be viewed as a demanding version of PAC learning in the presence of noise that can
affect both examples and labels. In property testing, the model of tolerant testing [PRR06] was
introduced and intensively studied, in which the goal is to determine whether a function is ε1-close
to or ε2-far from having a property of interest. Today, a large fraction of contemporary research in
learning theory deals with agnostic learning, and likewise for research in Boolean function testing
and the tolerant testing model.

Beyond the clear practical motivations for tackling noisy problems, from a theoretical perspec-
tive many fundamental problems that are relatively straightforward in the noiseless setting become
significantly richer and more challenging when we make the more realistic assumption that the
functions that we are working with may be corrupted by noise. For example, in computational
learning theory, PAC learning an unknown conjunction when there is no noise is an easy exercise,
whereas agnostically learning conjunctions is much harder (as we discuss in detail below). As a
different example, in property testing the well-studied problem of testing whether an unknown
Boolean function is exactly, versus far from, a junta was first solved more than two decades ago
and is now well understood [FKR+04, CG04, Bla08, Bla09, Sağ18, CST+18], whereas, as we discuss
in detail below, the tolerant junta testing problem remains largely open, with significant gaps in
our current understanding.

Our work. In this paper we identify and explore a previously unnoticed connection between the two
problems mentioned above: efficient algorithms for agnostically learning conjunctions and efficient1

algorithms for tolerantly testing juntas. (See Section 3.1 and Section 3.4 for formal definitions
of these well-studied problems.) We remark that conjunctions are one of the most fundamental
classes to consider in the distribution-free agnostic learning setting; indeed, already in a FOCS
2003 tutorial Avrim Blum highlighted the importance of developing agnostic learning algorithms
for conjunctions [Blu03]. Additionally, it is well known that sufficiently improved algorithms for
agnostically learning conjunctions would imply faster algorithms for learning DNF formulas, one
of the touchstone problems in computational learning theory (we discuss this more after stating
Theorem 1). Similarly, junta testing has been a touchstone problem in the field of Boolean function
property testing for more than twenty years since the influential work of Fischer et al. [FKR+04,

1Since “efficient” in the learning context refers to running time, whereas “efficient” in the testing context refers to
query complexity, such a connection may seem curious indeed. However, we remark that since the known algorithms
for agnostically learning conjunctions can be cast in the Statistical Query model of Kearns [Kea98], we can view these
algorithmic results as having information-theoretic analogues, and thus aligning with the (information-theoretic) query
complexity results for tolerant junta testing.
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CG04, Bla08, Bla09, BGMdW13, Sağ18, STW15, CST+18, Bsh19], and the problem of tolerant
junta testing has been a particular focus of research effort in recent years [BCE+19, DMN19, LW19,
ITW21, PRW22, CP23, CDL+24, NP24].

The connection that we identify between agnostically learning conjunctions and tolerantly test-
ing juntas enables us to give new algorithms for both problems, improving on the best prior results.
Before describing our new results, we begin by highlighting some similarities between the prior
state of the art for these two problems and the ideas and tools used to establish those results.

In terms of upper bounds, prior to the current work the fastest published algorithm for distribution-
free agnostic learning of conjunctions over {±1}n was the “L1 polynomial regression algorithm” of

[KKMS08], which runs in time 2Õ(
√
n) for agnostically learning conjunctions to constant excess error

ε = Θ(1) (i.e. obtaining a hypothesis with error at most opt+ε). We remark that 2Õ(
√
n) is also the

best known (again, prior to the current work) query complexity for tolerantly testing k-juntas over
{±1}n when k = Θ(n) [ITW21, NP24]. Furthermore, in both [KKMS08] and [NP24] the fact that
the n-variable AND function has approximate degree O(

√
n) plays an important role in obtaining

the square-root savings. Turning to lower bounds, we also find that there is an alignment between
the current state of the art for these two problems. At the level of results, in [Fel12], Feldman gave
a nΩ(log(1/ε)) lower bound for agnostically learning conjunctions over {±1}n to excess error ε under
the uniform distribution in the Statistical Query (SQ) model, while Chen and Patel [CP23] gave a
kΩ(log(1/ε))-query lower bound for tolerantly testing juntas with an ε-width gap between the “near”
and “far” cases. In terms of techniques underlying these results, the proof in [Fel12] crucially relies
on the fact that a k-variable conjunction disagrees with the parity function over the same set of
variables on 1/2− 2−k fraction of all inputs, while the argument of [CP23] uses the related notion
of k-wise independence.

At this point, perhaps the reader is wondering whether the quantitative correspondences be-
tween results that are highlighted above, as well as the similarities in the technical ingredients,
may be merely a coincidence. To support our claim that there is a meaningful connection between
these two problems, we discuss some further points of correspondence below. This discussion is
presented in the form of a brief dialogue, taking place over some wine, in which a BELIEVER tries
to increase the confidence of a SKEPTIC in the claimed connection:

SKEPTIC Agnostic learning and tolerant testing seem very different, for the following reason: When
we are doing agnostic learning, there is an arbitrary distribution D over the example space
{±1}n. In contrast, in property testing (tolerant or otherwise), we measure the distance
between two functions f and g with respect to the uniform distribution over {0, 1}n, which is
very different from an arbitrary distribution. So these frameworks do not seem to align with
each other. “I honestly tell you, I cannot believe it.” [Mel57]

BELIEVER “I told you, you must have confidence” [Mel57] The alignment exists because of the specific
learning problem (conjunctions) and testing problem (juntas) being considered. The relevant
distribution, for the tolerant junta testing problem, is not the uniform distribution over {±1}n
but rather the spectral sample distribution Pf , over all subsets of [n], induced by the Fourier
coefficients of f : {±1}n → {±1} (see Definition 33); the distribution Pf , not the uniform
distribution, is the appropriate analogue of the arbitrary distribution D in the agnostic learn-
ing problem. To see this, observe that for the tolerant junta testing problem, the goal can
(roughly speaking) be reframed as finding the “right” subset of variables (subject to being
of size k) that “cover” the largest possible amount of the spectral sample distribution (see
the discussion of “junta correlation” in Section 3.2). Similarly, for the agnostic conjunction
problem, the goal can be reframed (again roughly speaking) as finding the “right” subset of

2



variables that “cover” the maximum possible amount of the distribution of the positive exam-
ples (subject to not covering too much of the distribution of negative examples). “Confidence
restored?. . . Sit down, sir, I beg, and take some of this wine.” [Mel57]

SKEPTIC “Ah, wine is good, and confidence is good; but can wine or confidence percolate down
through all the stony strata of hard considerations, and drop warmly and ruddily into the cold
cave of truth?” [Mel57] I still have my doubts. The junta problem involves testing whether
an n-variable function is a k-junta: there are inherently two parameters, n and k. But in
agnostic learning of conjunctions there is no analogue of the “k” parameter in junta testing;
the conjunction can be of arbitrary size relative to n. How can your claimed connection
overcome this? “But think of the obstacles!” [Mel57]

BELIEVER “I have confidence to remove obstacles, though mountains.” [Mel57] The papers of [DMN19]
and [ITW21] have developed powerful techniques, namely highly efficient simulations of “co-
ordinate oracles” (see Section 3.10), which can be used in the tolerant junta testing problem
to effectively reduce the number of coordinates from n down to k′ = Oε(k). So to answer
your question, we do not introduce a “k” parameter into the conjunction setting; rather, in
the tolerant junta setting, we can effectively get rid of the “n” parameter and replace it by
k′ = Oε(k). A subset of k ≤ Oε(k) relevant variables for the junta in the tolerant testing
scenario is not so different from an arbitrary subset of relevant variables for the conjunction
in the agnostic learning scenario. “But again I say, you must have confidence.” [Mel57]

Leaving the SKEPTIC and the BELIEVER to their dialogue and their wine, we remark that the
connection between these two problems will be fleshed out in significantly more detail later, when
we give an overview of our agnostic learning algorithm and our tolerant junta testing algorithm and
describe the common underlying ideas and similarities between the two algorithms; see Section 2.2.
We turn to a description of our technical results.

1.1 Our results: Better agnostic conjunction learning algorithms and tolerant

junta testing algorithms.

In this work we extend the connection between these two problems, by (i) giving a faster algorithm
for agnostically learning conjunctions, and (ii) using the ideas in that algorithm to obtain an
improved tolerant junta testing algorithm with an analogous query complexity. Regarding (i), we
prove the following:

Theorem 1. Algorithm 1 agnostically learns conjunctions over {±1}n to excess error ε in time

2n
1/3·polylog(n,1/ε).

We remark that Diakonikolas, Kane, and Ren have very recently achieved a similar result to
Theorem 1 [DKR25].

It is well known that any algorithm for distribution-free agnostically learning conjunctions to
excess error ε can be used, taking ε = 1/(10s), in tandem with a boosting algorithm (e.g. [Sch90] or
[Fre95]) to learn s-term DNF, or even the richer class of total-integer-weight-s linear threshold func-
tions over conjunctions. This is simply because thanks to the “discriminator lemma” [HMP+93],
given any weight-s-LTF-over-conjunctions target function, for any distribution some conjunction
must have error at most 1/2 − 1/s in predicting the target function; so using an agnostic learner,
we recover a weak hypothesis with error 1/2 − 1/(2s), which can be used for boosting. Plugging
in Theorem 1 as the agnostic conjunction learner, we get a DNF learning algorithm running in

3



time 2n
1/3·polylog(n,s), which essentially matches the state of the art algorithm for this well-studied

problem [KS04].
Inspired by Algorithm 1 and its analysis, we give the following warm-up result for our main

tolerant testing algorithm (in the theorem below, Jk is the class of all Boolean-valued k-juntas):

Theorem 2. Algorithm 2 ±ε-accurately estimates dist(f,Jk), for f : {±1}k′ → {±1}, where

k′ = poly(k, 1/ε), and makes 2k
1/3·polylog(k,1/ε) quantum queries to f .

Theorem 2 is stated in the language of “distance estimation,” i.e. estimating the distance
dist(f,Jk) := ming∈Jk

Prx∼{±1}k′ [f(x) 6= g(x)] between f and the closest k-junta. It is well known

(see e.g. [PRR06]) that the problem of ±ε-accurate distance estimation for a class of functions is,
up to small factors, equivalent to the problem of (ε1, ε2 = ε1+ ε)-tolerant testing for that class (see
Section 3.4). Thus an equivalent statement of Theorem 2 in the language of tolerant testing is the

following: for k′ = poly(k, 1/ε), there is a quantum query algorithm that makes 2k
1/3·polylog(k,1/ε)

quantum queries to f : {±1}k′ → {±1} and (ε1, ε2)-tolerantly tests f for the property of being a
k-junta, where ε = ε2 − ε1.

Building on the ideas and ingredients in Theorem 2, our main tolerant testing result is the
following:

Theorem 3. For any n, Algorithm 7 ±ε-accurately estimates dist(f,Jk), for f : {±1}n → {±1},
and makes 2k

1/3·polylog(k,1/ε) (classical) queries to f .

As with Theorem 2, an equivalent statement of Theorem 3 in the language of tolerant testing is
that there is a (classical) algorithm that makes 2k

1/3·polylog(k,1/ε) black-box queries to f : {±1}n →
{±1} and (ε1, ε2)-tolerantly tests f for the property of being a k-junta, where ε = ε2 − ε1.

Building on [CDL+24], in [NP24] Nadimpalli and Patel showed that for constant ε, any ±ε-
accurate algorithm for estimating dist(f,Jk) must make 2Ω̃(

√
k) many queries to f . In contrast, our

adaptive algorithm requires only 2Õ(k1/3) queries, and so we can conclude that adaptive algorithms
provably outperform non-adaptive ones for tolerant junta testing. To the best of our knowledge,
this gives the first super-polynomial separation between adaptive and non-adaptive algorithms for
a natural tolerant Boolean function property testing problem.

1.2 Discussion

We provide some discussion of our results below.

Remark 4 (On the quantum nature of Algorithm 2). The only reason that Algorithm 2 requires
a quantum black-box oracle to f is because it makes draws from the “spectral sample” of f (see
Definition 33) in lines 2 and 3(b); it is easily verified that given these draws, the rest of the algorithm
is entirely classical. It is well known (see e.g. Chapter 5 of [NC16]) that a quantum algorithm with
black-box quantum oracle access to a {±1}-valued function f can make a draw from the spectral
sample of f by performing a single quantum oracle call to f ; this is why we refer to Algorithm 2
as a quantum query algorithm. (In contrast, an argument similar to the classical lower bound for
Simon’s problem [Sim97] shows that no classical algorithm can even approximately make draws
from the spectral sample of an unknown and arbitrary Boolean function f.) Theorem 2 could
alternatively be formulated as a statement about purely classical algorithms which, in addition to
having black-box oracle access to f , are equipped with the ability to make draws from the spectral
sample.

4



Remark 5 (Why Theorem 2 given Theorem 3?). Theorem 3 is strictly stronger than Theorem 2
in two senses: first, it only requires classical oracle access to f rather than quantum query access,
and second, it holds for general n-variable functions f for any n whereas Theorem 2 assumes that
k′ = poly(k, 1/ε). Thus the reader may be wondering why we have mentioned Theorem 2 at all;
this is done for several reasons. First, the proof of Theorem 3 builds on a number of ideas and
ingredients that are introduced in the simpler context of Theorem 2; Theorem 2 should be viewed
as an intermediate result on the path to Theorem 3. Second, the connection between agnostic
conjunction learning and tolerant junta testing is clearest and most evident in the technically
simpler setting of Theorem 2, cf. the discussion and comparison of Algorithm 1 versus Algorithm 2
in Section 2.2. (Intuitively, this is because, as suggested earlier by the BELIEVER, making a draw
from the spectral sample distribution of f : {±1}k′ → {±1}— which is possible in the quantum but
not the classical setting — corresponds to drawing an n-bit string from the unknown and arbitrary
distribution over {±1}n in the agnostic learning scenario. In the classical tolerant junta testing
setting, we have to do additional work to compensate for not being able to make draws from the
spectral sample.)

Remark 6 (On the assumption that the number of variables in Theorem 2 is poly(k, 1/ε)). The
assumption that the number of variables for f is k′ = poly(k, 1/ε) rather than n is made for the sake
of simplicity. As the BELIEVER mentioned, dealing with the general n-variable scenario requires
the use of “coordinate oracles” to effectively reduce the number of variables down to poly(k, 1/ε)
(see Section 3.10), and integrating these coordinate oracles with quantum queries to efficiently
make draws from the spectral sample seems to introduce non-trivial complications. We bypass
these complications by simply assuming that k′ = poly(k, 1/ε). Again, we stress that our main
(classical) tolerant property testing result, Theorem 3, is not limited in any way by this assumption,
which holds only for the warm-up quantum result given in Theorem 2.

2 Technical Overview

2.1 Overview for agnostically learning conjunctions

Before sketching our approach, we remark that prior work has identified limitations of the [KKMS08]
approach to agnostic learning. In fact, more than a decade before [KKMS08], Paturi [Pat92] showed
that real polynomials require degree Ω(

√
n) to pointwise approximate the conjunction x1 ∧ · · · ∧xn

over {±1}n, which implies that a direct application of Theorem 10 to agnostically learn conjunctions
must use degree d = Ω(

√
n) and have running time nΩ(

√
n). A more substantial barrier was identified

by Klivans and Sherstov [KS07], who showed that for any fixed set of real-valued functions (not
just low-degree monomials), if all n-variable conjunctions can be pointwise approximated as a linear
combination of those features then the set must have 2Ω(

√
n) elements. This result is interpreted

in [KS07] as “show[ing] the fundamental limitations of this approximation-based paradigm”. More
recently, Gollakota et al. [GKK20] showed that any Correlational Statistical Query (CSQ) algorithm
for agnostically learning conjunctions must have complexity 2Ω(

√
n).

We circumvent the limitations defined by [KS07] by using an approximation that is not a
pointwise good estimator of the conjunction.2 Indeed as we’ll see shortly, we will define a “ball
distribution” on which we want a pointwise approximation of the target conjunction, but outside
of the support of this distribution, our approximation can (and provably must) make errors.

2We further remark that our algorithm evades the [GKK20] lower bound because it is not a CSQ algorithm. Recall
that a CSQ algorithm can only obtain estimates of Pr(x,y)∼D[h(x) 6= y]; the way that our algorithm uses the event
E~a, which is defined using a fixed sample of examples and does not involve the labels at all, does not fit into this
framework.

5



At a high level, our approach proceeds as follows.3 We (i) draw a small number m = n1/3 of
positively labeled examples a1, . . . ,am from the distribution D over {±1}n → {±1}, and use them
to adaptively design a new distribution D′, which we call a “ball distribution” and is supported on
a carefully chosen subset of {±1}n. The distribution D′ is crafted in such a way that there exists a
low-degree polynomial which is a small-squared-error approximator of c∗ under D′, where (ii) c∗ is
the conjunction which is optimal under D. Theorem 10 can then be used to find a high-accuracy
hypothesis h′ with respect to D′, and this h′ is then used to give a high-accuracy hypothesis h
under the original distribution D.
Remark 7. The above sketch is an oversimplification: in particular, the draw of a small number
of examples in the first step alluded to above (iii) only succeeds in obtaining a “useful” set of

examples with some non-negligible probability (which is roughly εn
1/3

, see Lemma 29). The actual
algorithm (iv) performs many independent repetitions of the approach sketched in the previous
paragraph to obtain multiple hypotheses, and does a final stage of hypothesis testing to select one
final hypothesis. In the rest of this overview we ignore this “outer loop,” the analysis of which is
standard and straightforward, and give a more detailed overview of the approach sketched in the
previous paragraph.

We describe our approach in a bit more detail. Let c∗ be the (unknown) “target conjunction”
which (v) satisfies errD(c∗) = optD. (vi) The distribution D′ alluded to above is D′ := D|E where
E is an event over X = {±1}n. The event E = E~a is based on the initial draw of examples
~a = (a1, . . . ,am) from D alluded to above; we remark that E is “easily recognizable” in the sense
that given an input x ∈ X it is easy to determine whether or not x satisfies E. The distribution
D′ = D|E is referred to as a “ball distribution” because (vii) it is supported on points which (in
a certain set of coordinates based on a1, . . . ,am) lie in a certain Hamming ball of radius n2/3.
Assuming that the initial draw of examples ~a is such that the event E = E~a is “useful” (see
Definition 28; ensuring that this happens is the purpose of the outer loop), we show that the
distribution D′ has the following crucial property:

• The target conjunction c∗ has approximate degree at most O(n1/3 · log(1/ε)) over all inputs
in the support of D′ (see Lemma 31).

(We emphasize that the approximate degree bound given above is crucial to our algorithm’s

achieving an overall 2n
1/3·polylog(n,1/ε) running time.) As alluded to earlier, we use Theorem 10 on

examples drawn from D′ to obtain a hypothesis h′ which has errD′(h) ≤ errD′(c∗)+ ε. We take the
hypothesis h to be

h(x) =

{
h′(x) if E(x) holds

−1 (i.e. false) if ¬E(x) holds
(1)

(note that h is easy to evaluate since E is “easily recognizable”). It is not too difficult to show that
optD(h) ≤ optD + 2ε, as desired; this is done in Lemma 32.

2.2 Overview of quantum tolerant junta testing

We turn to give an overview of our quantum tolerant k-junta testing algorithm, Algorithm 2,
highlighting the points of correspondence with Algorithm 1. As mentioned earlier, we consider
the quantum k-junta ±ε-distance-estimation problem over {±1}k′ where k′ = poly(k, 1/ε). For
simplicity, we mostly ignore the ε-dependence in the following discussion.

3The tags (i), (ii), etc. in what follows are for later reference in Section 2.2, when we are explaining points of
correspondence between our quantum tolerant junta testing algorithm and our agnostic conjunction learner.
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We begin by highlighting some correspondences between various mathematical objects in Algo-
rithm 1 and its analysis, and their counterparts in Algorithm 2 and its analysis. First, we remind
the reader that k′ (the number of variables in the testing setting) aligns with n, the dimension
of the agnostic learning problem. Next, we recall the analogy between the arbitrary distribution
D over labeled examples in {±1}n × {±1} in the agnostic learning setting (or more precisely its
marginal over {±1}n, the domain of the examples) and the “spectral sample” distribution Pf over
{±1}k′ that is induced by the Fourier spectrum of f : {±1}k′ → {±1}. The set of coordinates cor-
responding to the optimal “target conjunction” c∗ in the agnostic setting (recall (ii) in the previous
subsection) corresponds to the set of k relevant variables, which we call U⋆ ⊂ [k′], for the k-junta
that is closest to f . Recalling (v) in the previous subsection, the value of optD in the agnostic
setting, roughly speaking, corresponds to the junta correlation of f , which is closely tied to the
amount of Fourier weight that f puts on sets containing only coordinates in U∗ (see Equation (4)).

Corresponding to (iv) in the previous section, our quantum junta distance estimation algorithm
performs many independent repetitions of a main loop, because each iteration of the loop only has
a small but non-negligible success probability of εk

1/3
, see Claim 47 (this is analogous to the εn

1/3

success probability of each repetition described in (iv) in the previous subsection). In the discussion
below, similar to the previous subsection, we focus on the case of a successful iteration of the loop.

Within each repetition of the loop, the quantum tester makes k1/3 draws (the sets A1, . . . ,Am

in line 2(a) of Algorithm 2) from the spectral sample distribution Pf over {±1}k, analogous to the
draw of m = n1/3 examples a1, . . . ,am from the distribution D alluded to in (i) of the previous
subsection. (Recall that as mentioned in Remark 4, drawing from the spectral sample distribution
is the only quantum aspect of our tester.) A successful iteration of the loop corresponds to having
the set C := A1 ∪ · · · ∪Ak1/3 be such that the spectral sample distribution, restricted to subsets
of U⋆, only puts a small amount of Fourier weight on sets that contain many (more than k2/3)
elements outside of C. This notion of a successful iteration is closely analogous to (iii) the agnostic
learning algorithm obtaining a “useful” set of examples, as is evident from the similarity in both
the quantitative bounds and proofs of Lemma 29 and Claim 47. The spectral sample distribution
P restricted to subsets S of [k′] that have |S \C| ≤ k2/3 is analogous to (vii), the “ball distribution”
D′ = D|E~a of the agnostic conjunction learner.

Remark 8. We quickly remark that in the context of tolerant junta testing, the above approach was
essentially considered in [ITW21], albeit with different parameters. In particular, they perform the

same procedure using
√
k draws from the spectral sample to get a 2Õ(

√
k) time quantum tolerant k-

junta testing algorithm in this setting. (They also show that there is a classical tester with the same
query complexity, which makes draws from a distribution that is related to the spectral sample,
cf. the discussion of the “normalized influence distribution” in the next subsection.) However, as
we’ll see shortly we will need to bring in several new tools in order to improve the query complexity

to 2Õ(k1/3).

Remark 9. We comment that while we first developed our agnostic learning algorithm and then
ported over the underlying ideas to the tolerant junta testing problem, it seems equally natural,
given the results and techniques of [ITW21], to go in the opposite direction and to give a 2Õ(

√
n)-time

agnostic conjunction learning algorithm without [KKMS08] inspired by their approach. Alterna-
tively, such a “[KKMS08]-free” agnostic learning algorithm could be constructed by changing the

parameters of our ball distribution and using a brute-force approach over the 2Õ(
√
n)-size support

of that distribution. Our 2Õ(n1/3)-time agnostic learning algorithm can be viewed as the result of
speeding up this brute-force search using [KKMS08].

We return to a discussion of our quantum tolerant tester. While we have established many points
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of analogy between the agnostic conjunction learning setting and the tolerant junta testing setting
in the discussion so far, from a technical perspective the two proofs now diverge. In particular, we
would like to modify f so as to zero out all of its Fourier coefficients S with |S \ C| > k2/3 (in
analogy (cf. (vi) and (vii)) with restricting our attention to D′ in the agnostic learning setting).
While the standard approach to do this would be to suitably apply noise to the function, this will
not decrease the weight enough. Indeed, we will require a very sharp attenuation of the Fourier
weight for our algorithmic tools, described later, to work; in particular, there must be at most

2−Õ(k1/3) Fourier weight on the coefficients S with |S \ C| ≥ k2/3. To achieve this, we design a

novel SharpNoiseC operator, which we introduce and analyze in Section 5.3, to define a function
fC (see line 2(b) of Algorithm 2). This operator should be thought of as “zeroing out” all of
the Fourier coefficients of f that have more than k2/3 elements outside of C and leaving all other
coefficients roughly untouched. (In reality SharpNoise only approximately achieves this up to
some error which we show is manageable and which we gloss over in the rest of this high-level
discussion.) Thus the Fourier coefficients of fC are closely analogous to the “ball distribution”
D′ = D|E~a that was mentioned in item (vi) of the previous subsection, and the Hamming ball of
radius n2/3 described in (vii) of the previous subsection is analogous to the condition that Fourier

coefficients that survive into fC have no more than k2/3 elements outside of T .
Given our attenuated function fC , we now wish to estimate its junta correlation. This again

marks a point of (now algorithmic) divergence from the agnostic learning problem (although con-
ceptually the high-level mathematical structures remain in lockstep). As was already mentioned,
for agnostic conjunction learning the main algorithmic workhorse (see line 2(c) of Algorithm 1) is
the L1 regression algorithm of [KKMS08]. In contrast, for tolerant junta testing the chief algorith-
mic ingredient that we employ is the “local estimator” notion that was introduced in the recent
work of Nadimpalli and Patel [NP24]. Our quantum algorithm relies on a novel analysis of the
[NP24] local estimator for the mean of a function that has small Fourier weight at high levels (see
Lemma 35). We use this local mean estimator to efficiently estimate the correlation between f and
the best junta over a subset U of variables, for various different sets U (see Lemma 43); crucially,
using local estimators allows us to make relatively few (only ≈ exp(k1/3)) queries even though the
number of sets for which we do this estimation may be as large as ≈ exp(k) (see the discussion
immediately preceding Lemma 39).

Finally, we remark there is some delicate and careful technical work required to combine the
technology of local estimators with the SharpNoise operator; see Section 5.2 through Section 5.5.

2.3 Overview of classical tolerant junta testing

Finally, we discuss our classical tolerant tester. For simplicity, we will assume that we are working
in a similar setting to the quantum algorithm. Namely, we will think of ε as a small constant,
say 0.01, and mostly ignore the ε parameter in our discussions. Moreover we will assume that the
function f is over k′ = 2k variables rather than n to avoid discussion of coordinate oracles. We
also again denote the best set of k junta coordinates by U⋆.

At a very high level, we would like to follow the same path as our quantum testing algorithm.
Fortunately, many of the tools we developed there, such as SharpNoise and our local estimators,
are already immediately implementable by a classical algorithm. That said, the central piece that
will not carry over is our ability to generate a set C ⊆ U⋆ such that the spectral sample restricted to
subsets of U⋆ only puts a small amount of Fourier weight on sets that contain more than k2/3 many
elements outside of C. This brings us to our central technical challenge in this section: Assuming
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that ∑

S⊆U⋆:|S|≥k2/3

f̂2(S) is large (say, at least Ω(1)),

we are tasked with finding a set of coordinates C ⊆ U⋆ such that
∑

S⊆U⋆:|S\C|≥k2/3

f̂2(S) is small (say, at most some o(1)).

We start by noting that there is no hope of mimicking the quantum algorithm directly. Indeed,
as alluded to earlier, any classical algorithm must make 2Ω(k) queries to f to make a draw from a
distribution with small total variation distance from the the spectral sample. Instead, we design
an entirely new approach, which we describe below.

At a very high level, we give a procedure, called Refine-Coordinates (Algorithm 4), that

takes as input a set of coordinates C ⊆ [k′] and outputs a collection of 2k
1/3polylog(k) sets C ′ ⊆ C

such that for at least one set C⋆ that we output,

(a) C⋆ has half as many irrelevant variables as C, i.e. |C⋆ ∩ U⋆| ≤ 1
2 |C ∩ U⋆|; and moreover,

(b) Only a very small amount of the Fourier mass of f is on terms S ⊆ U⋆ with |S \ C ′| ≥ k2/3,
i.e. ∑

S⊆U⋆:|S\C⋆|≥k2/3

f̂2(S) ≤ 1

k
. (2)

Refine-Coordinates is useful for us for the following reason: Given such a procedure, we
can can run it on C := [k′] to construct a family of sets C ′. For each set C ′ in this family, we can
then run Refine-Coordinates(f,C ′) to get a new family. After doing this log(k′) times, we will

eventually end up with a family of 2k
1/3polylog(k) sets, and one of the sets (call it C⋆⋆) will satisfy

∑

S⊆U⋆:|S\C⋆⋆|≥k2/3

f̂2(S) ≤ o(1)

and C⋆⋆ ⊆ U⋆ as desired. Roughly speaking, we can then conclude by applying the SharpNoise

operator and our local estimators as in the quantum tester.
With this performance goal for Refine-Coordinates in mind, we turn to a discussion of how

to achieve it. We do this by using normalized influences, akin to [ITW21]. These are defined
in detail in Section 3.8. For us, the crucial property, as we will see later, is that the normalized
influence of a set U of size κ, denoted NInfU [f ], is defined in such a way that drawing a set T

of size κ at random so that Pr[T = U ] is proportional to NInfU [f ], corresponds to the following
process:

(⋆) First draw a set S from the the spectral sample of f , conditioned on |S| ≥ κ, and
then choose T as a uniform random subset of S of size κ.

To actually get access to these normalized influences, we give a new algorithm, Algorithm 3,
that approximates NInfU [f ] to arbitrary accuracy. Using this algorithm, we can sample from a
distribution with total variation distance at most η to the true distribution of level-κ normalized
influences in time poly(exp(Õ(κ), η−1).4 Notably, this improves on a prior result of [ITW21], which

4We believe that this is near optimal. In particular, we believe that drawing from the level-κ normalized influence
distribution requires 2Ω(κ) black-box queries to f , as draws from this distribution seem useful for solving Simon’s
problem for a random function on 2κ variables.
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could only compute NInfU [f ] up to a constant multiplicative factor. Given the above algorithmic
result, we will assume throughout the remainder of our discussion that we can in fact draw samples
from the level-k1/3polylog(k) normalized influence distribution.

With this tool in hand, let us discuss how we can give a procedure Refine-Coordinates with
the desired properties. As a starting point for the algorithm, we guess a random set I ⊆ C of
k1/3polylog(k) coordinates. The point of doing this is to collect a set of k1/3polylog(k) coordinates
which are hopefully irrelevant, i.e. lie outside of U⋆, such that the function resulting from averaging
out these coordinates, which we denote f I

ave, satisfies

∑

S⊆[k′]:|S\U⋆|≥k2/3/polylog(k)

f̂ I
ave

2
(S) ≤ 1

k10
. (3)

In particular, note that the above Fourier attenuation is precisely what we would expect to get if
I were drawn uniformly at random from C ∩ U⋆. Because I ⊆ C ∩ U⋆ with probability roughly
2−k1/3polylog(k), we expect to sample a “good” I after randomly sampling 2k

1/3polylog(k) sets I from
C uniformly at random.

Assuming that we sample an I that satisfies Equation (3), we now turn to describe how to use
this to construct a set C ′. (Note that we will construct one set C ′ per set I, resulting in a total of

2k
1/3polylog(k) sets C ′.) Given a candidate I, we build C ′ iteratively, starting from C ′ = ∅, roughly

as follows: (1) If f I
ave has at most 1

poly(k) Fourier mass on terms S with |S \C ′| ≥ k2/3, output C ′.

Otherwise, (2) draw a random set T from the normalized influences of f I
ave conditioned on the set

S from (⋆) satisfying |S \C ′| ≥ k2/3. (These two steps can roughly be performed by measuring the
variance and sampling from the normalized influences of a suitable application of SharpNoise to
f I
ave.) Afterwards, update C ′ ← C ′ ∪ (T ∩ C) and repeat.

We note that condition (1) of the algorithm sketched above will roughly ensure that Equation (2)
holds, giving (b). Moreover, it turns out that through a careful martingale-style analysis of the
above process, we can show that we will not add too many irrelevant variables to C ′, as required
by (a). To give a flavor of why one should expect this, we’ll give some intution for why C ′ ought
to contain more elements from C ∩U⋆ than from C ∩U⋆. (This is a significantly weaker statement
than what we will truly wish to show, but it illustrates the intution well.) Observe that because I

satisfies Equation (3), we expect S, the spectral sample draw from which T is drawn in the (⋆) view
of the normalized-influence distribution, to contain at most k2/3/polylog(k) irrelevant coordinates.
On the other hand, by construction we have that the set S corresponding to the spectral sample
has at least k2/3 new elements outside of C ′. So we can conclude |(S \C ′)∩U⋆| is much larger than
|(S \ C ′) ∩ U⋆|. Since T is a uniform random subset of S, we then expect that in each iteration,
T \C ′ also contains more variables from U⋆ than from U⋆. By a concentration argument, it should
then follow that in every round we add more relevant variables than irrelevant ones. (We briefly
remark that this final concentration step can be shown to break when we need to actually prove
the stronger statement that |C ′ ∩ U⋆| ≤ 1

2 |C ∩ U⋆|, requiring us to give a more careful analysis.)
This concludes our sketch of the ideas behind our Refine-Coordinates procedure, and thus

our classical tolerant junta tester.
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3 Preliminaries

3.1 Preliminaries for agnostically learning conjunctions

Recall that in the problem of agnostic learning of conjunctions, there is an unknown and arbitrary
distribution D over pairs {±1}n × {±1}. For a function g : {±1}n → {±1} we define

errD(g) := Pr
(x,y)∼D

[g(x) 6= y] and optD := min
c∈C

errD(c),

where C denotes the class of all conjunctions (where +1 corresponds to True and −1 corresponds
to False). An agnostic learning algorithm is an algorithm which, with probability at least 2/3,
constructs a hypothesis h : {±1}n → {±1} that has errD(h) ≤ optD + ε.

Notation. Throughout the conjunction learning part (Section 4) we write X to denote the domain
{±1}n for convenience and C to denote the class of all conjunctions over {±1}n. We write

−−−→
(a, b) to

denote a tuple of labeled examples ((a1, b1), . . . , (am, bm)) ∈ (X × {±1})m, and write ~a to denote
the corresponding tuple (a1, . . . , am) ∈ Xm.

A generic algorithm for agnostic learning. We make essential use of the following result from
[KKMS08]. It says that if every c ∈ C can be approximated by a low-degree polynomial with small
squared error, then the L1 polynomial regression algorithm is an efficient agnostic learner for C:
Theorem 10 (Theorem 5 of [KKMS08]). Fix a distribution D over X × {±1}. Suppose that for
each c ∈ C, there exists a degree-at-most-d polynomial p such that

E
(x,y)∼D

[
(p(x)− c(x))2

]
≤ ε2.

Then the “degree-d L1 polynomial regression” algorithm runs in time poly(nd, 1/ε, log(1/δ)) using
examples drawn i.i.d. from D, and with probability at least 1− δ outputs a hypothesis h that has
errD(h) ≤ optD + ε.

3.2 Fourier basics

Given two functions f, g : {±1}n → R, we write

〈f, g〉 = 1

2n

∑

x∈{±1}n
f(x)g(x) = E

x∼{±1}n
[f(x)g(x)] and ‖f‖2 =

√
〈f, f〉.

Given S ⊆ [n], let χS(x) : {±1}n → {±1} be the function χS(x) =
∏

i∈S xi, and let f̂(S) := 〈f, χS〉
be the Fourier coefficients of f . Then we have

f =
∑

S⊆[n]

f̂(S)χS and ‖f‖22 =
∑

S⊆[n]

f̂(S)2 (by Parseval’s identity).

For f : {±1}n → R and an integer L ≥ 0, we write W≥L[f ] to denote
∑

|S|≥L f̂(S)2, the Fourier
weight of f at levels L and above.

3.3 Preliminaries for tolerantly testing juntas

We write Jk to denote the class of all Boolean-valued k-juntas, i.e. all functions f : {±1}n →
{±1} such that there exists a function g : {±1}k → {±1} and indices i1 < · · · < ik such that
f(x1, . . . , xn) = g(xi1 , . . . , xik) for all x ∈ {±1}n.
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3.4 Junta Correlation

We will primarily be working with junta correlation in this note, as our functions will not be boolean
valued in general. Recall that the k-junta correlation of f is defined as

corr(f,Jk) := max
T∈([n]

k )
corr(f,JT ),

where for any T ⊆ [n], we have

corr(f,JT ) := max
g∈JT

E[f(x)g(x)].

We recall from [ITW21] (Section 2.2, specifically Claim 2.7) that

corr(f,JT ) = E[sign(fT
ave(x))f(x)], where fT

ave(x) = E
y∼{±1}n

[
f(y)

∣∣yT = xT
]
=
∑

S:S⊆T

f̂(S)χS(x).

(4)
We further recall from [ITW21] that for any subset T ⊆ [n], we have

corr(f,JT ) = E
x∼{±1}n

[∣∣∣fT
ave(x)

∣∣∣
]
= E

x∼{±1}n



∣∣∣∣∣∣
∑

A⊆T

f̂(A)χA(x)

∣∣∣∣∣∣


 . (5)

Recall that for ±1-valued functions f, g we have that

E[f(x)g(x)] = 1− 2Pr[f(x) 6= g(x)].

So it follows that estimating junta correlation to accuracy ε will also give us an estimate for
dist(f,Jk) if f is boolean valued, where

dist(f,Jk) := min
g∈Jk

Pr[f(x) 6= g(x)]

is the distance from f to the nearest k-junta.
We also record the fact that changing a function by a small amount (in terms of expected squared

error, i.e. changing it in the Fourier basis) does not significantly change its junta correlation:

Lemma 11. Suppose that f, h : {±1}n → R are such that ‖f − h‖2 ≤ ε. Then

∣∣∣∣max
g∈Jk

E[f(x)g(x)] −max
g∈Jk

E[h(x)g(x)]

∣∣∣∣ ≤ ε.

Proof. For any g ∈ Jk we have that

∣∣∣∣E
[(
f(x)− h(x)

)
g(x)

]∣∣∣∣ ≤ ‖f − h‖2 · ‖g‖2 ≤ ε

by Cauchy-Schwartz.

Tolerant testing For 0 < ε1 < ε2, an (ε1, ε2)-tolerant k-junta tester is an algorithm which makes
black-box queries to an unknown and arbitrary f : {±1}n → {±1} and distinguishes between the
two cases that dist(f,Jk) ≤ ε1 versus dist(f,Jk) ≥ ε2. As mentioned earlier, the problem of
estimating dist(f,Jk) up to additive error ±ε equivalent to the problem of (ε1, ε2 = ε1+ε)-tolerant
testing the class of k-juntas.
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3.5 Bernoulli noise

Given a set V ⊆ [k′], we recall that the Bernoulli noise operator at noise rate ρ over coordinates
in V , denoted TV

ρ , acts on f : {±1}k′ → R via

TV
ρ f(x) = E

y∼NV
ρ (x)

[
f(y)

]
. (6)

Here NV
ρ (x) is the distribution over y ∼ {±1}k′ such that each coordinate yi of y is independently

distributed as follows:

• If i /∈ V then yi = xi;

• If i ∈ V then yi is set to xi with probability ρ and is set to be uniform random over {±1}
with the remaining 1− ρ probability.

Equivalently, we have TV
ρ χS(x) = ρ|S∩V |χS(x). When V is the entire set [k′] of all variables, we

omit V from the notation and simply write Tρ and Nρ.

3.6 Randomized algorithms and estimating function values, Fourier coefficients,

sums of squares of Fourier coefficients, etc.

We will frequently work with functions that have real-valued outputs. Towards that end, we will
use the following definition of a randomized algorithm computing a bounded function:

Definition 12 (M -Bounded Randomized Algorithm for an [−M,M ]-Bounded Function). Let g :

{±1}n → [−M,M ]. We say that algorithm A is a M -bounded randomized algorithm for g if on any
fixed input x, algorithm A outputs a random value y ∈ [−M,M ] with E[y] = g(x).

We can easily obtain a high-accuracy, high-confidence estimate of the evaluation of a [−M,M ]-
bounded function or of its Fourier coefficient:

Claim 13 (High-Accuracy, High-Confidence Estimation of an [−M,M ]-Bounded Function). Let
g : {±1}n → [−M,M ] and let A be an M -bounded randomized algorithm for g. Then there is
an algorithm Aε,δ which, on input x ∈ {±1}n, makes O((M/ε)2 · log(1/δ)) calls to A on input x,
estimates g(x) up to additive error ±ε with probability at least 1− δ, and always outputs a value
in [−M,M ].

Proof. The algorithm simply calls A repeatedly on x and takes the empirical average of those calls.
The analysis follows from a standard Hoeffding bound.

We will also need the following result which says that we can use a M -bounded randomized
algorithm for g to estimate Ex[g

2(x)]:

Lemma 14 (Estimating the L2 Norm). Let ε, δ ∈ [0, 1/4] and suppose that there exists a M -
bounded randomized algorithm A for computing g : {±1}n → [−M,M ]. It then follows that there
is an algorithm that estimates the value of E[g(x)2] to additive error ±ε with probability at least

1− δ and makes O
(
M8

ε4
log2(1/δ)

)
queries to A. Moreover, the value of the estimate always lies in

[0,M2].
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Proof. Let N := 1000M4

ε2
log(1/δ) and fix some x ∈ {±1}n. Let z1(x),z2(x), . . . ,zN (x) denote the

output of N independent runs of A(x). Let di(x) = zi(x)− g(x) and observe EA[di(x)] = 0. Now
consider the random variables

Z(x) =
1

N

N∑

i=1

zi(x)

and

D(x) =
1

N

N∑

i=1

di(x).

Since the di’s are independent, have mean 0, and lie in [−2M, 2M ], we have that

E
A

[(
D(x)

)2]
=

1

N2

N∑

i=1

E
[(
di(x)

)2] ≤ 4M2

N
≤ ε

2
.

On the other hand, we have

E
A

[(
Z(x)

)2]
= E

A

[(
g(x) +D(x)

)2]
= g(x)2 +E

A

[(
D(x)

)2]
,

which implies

g(x)2 ≤ E
A

[(
Z(x)

)2] ≤ g(x)2 +
ε

2
.

Given the above, our estimator works as follows: it samples N independent uniform values
x1, . . . ,xN ∼ {±1}n and outputs

1

N

N∑

i=1

(
Z(xi)

)2

as the estimate for E[g2(x)]. Note that estimate always lies in [0,M2]. By the previous computation,
we have that ∣∣∣∣∣∣∣

E
xi,A


 1

N

N∑

i=1

(
Z(xi)

)2

−E

x

[(
g(x)

)2]
∣∣∣∣∣∣∣
≤ ε

2
.

Since Z(x)2 always lies in [0,M2], by a Hoeffding bound we then have that

Pr



∣∣∣∣∣∣
1

N

N∑

i=1

(
Zi(x

i)
)2
−E

x

[(
g(x)

)2]
∣∣∣∣∣∣
≥ ε


 ≤ exp

(
−Nε2

2 ·M4

)
≤ δ

as desired. We can easily see that computing 1
N

∑N
i=1

(
Z(xi)

)2
requires at most N2 queries to A,

yielding the claimed query bound.

We will also frequently need to apply noise operators, so it will be convenient to have the
following lemma.

Lemma 15. Suppose that A is an M -bounded randomized algorithm for g : {±1}n → [−M,M ].
Then for any ρ ∈ [0, 1] and V ⊆ [n], there exists a M -bounded randomized algorithm A′ for TV

ρ g
making a single query to A.
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Proof. Given x ∈ {±1}n, the algorithm A′ simply samples a string y ∼ NV
ρ (x) and then outputs

A(y). This is clearly M -bounded and satisfies

E
A′
[A′(x)] = E

y,A
[A(y)] = E

y
[g(y)] = TV

ρ g(x).

It will also be convenient to have a lemma about randomized algorithms for functions obtained
by averaging out over a subset of coordinates:

Lemma 16. Suppose that A is a M -bounded randomized algorithm for g : {±1}n → [−M,M ].
Then for any V ⊆ [n], there exists a M -bounded randomized algorithm, making a single call to A,
for the function h(x) = Ey∼{±1}n

[
g(y)

∣∣∣∣y|V = x

]
.

Proof. Consider the algorithm A′ that given x samples a random z ∈ {±1}V and computes A(x|V ⊔
z). We can then observe

E
A′
[A′(x)] = E

z,A
[A(x|V ⊔ z)] = E

z
[g(x|V ⊔ z)] = E

y∼{±1}n

[
g(y)

∣∣∣∣y|V = x

]

as desired. Clearly, A′ is M bounded and makes a single query to A.

3.7 Flat Polynomials

Underlying our results are constructions of “flat” polynomials, originally developed by Linial and
Nisan [LN90] and Kahn, Linial, and Samorodnitsky [KLS96] to prove approximate inclusion-
exclusion bounds. We first start with the following construction due to Kahn et al. [KLS96]:

Lemma 17 (Theorem 2.1 of [KLS96]). Fix integers r,N with 2
√
N ≤ r ≤ N . Then there exists a

polynomial p : R→ R of degree at most r with the following properties:

(i) p(0) = 0 and (ii) max
i∈[N ]

|p(i) − 1| ≤ 2 exp


−Ω

(
r2

N logN

)
.

We will also need the construction of Linial and Nisan [LN90] to obtain improved bounds when
ε2 ≫ ε1.

Lemma 18 (Theorem 1 of [LN90]). Fix integers r,N with r ≤ 2
√
N . Then there exists a polyno-

mial p : R→ R of degree at most r with the following properties:

(i) p(0) = 0 and (ii) max
i∈[N ]

|p(i)− 1| ≤


1 + Θ

(
r2

N

)


−1

.

It will be important for us that these polynomials do not blow up too much for values greater
than N, and also that they do not have very large coefficients. Towards this, we will use the
following results:

Lemma 19 (Lemma 11 of [NP24]). Let r,N be integers and suppose that p : R→ R is a polynomial
of degree r such that |p(i)| ≤ 2 for all i = 1, . . . , N with p(0) = 0. For any ℓ ≥ N , p(ℓ) ≤ 4ℓr.

Lemma 20 (Lemma 12 of [NP24]). Let r ≤ N be integers and suppose that p : R → R is a
polynomial of degree r such that |p(i)| ≤ 2 for all i = 1, . . . , N with p(0) = 0. Moreover, set αr,N

i

such that

p(x) =
r∑

i=1

αr,N
i

(
x

i

)
where

(
x

i

)
:=

x(x− 1)...(x − i+ 1)

i!
.

Then we have |αr,N
i | ≤ 2rr.
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3.8 Normalized Influences

Definition 21. For a given subset U ⊆ [n], we define its normalized influence as follows:

NInfU [f ] :=
∑

S:U⊆S

f̂(S)2
(|S|
|U |
) .

Note that the sum
∑

|U |=mNInfU [f ] of all normalized influences of size m is precisely W≥m[f ].
We remark that normalized influences correspond to drawing a set S from the spectral sample and
sampling |U | elements. (In more detail, given a particular value of m, if we were to draw a random

set U of size m by choosing each |U | = m with probability NInfU [f ]∑
|U|=m NInfU [f ] , we could alternately

describe this distribution of U as follows: Repeatedly sample a set S from the spectral sample until
a set of size ≥ m is obtained, and then sample a uniform random subset of m of its elements and
take that subset to be U .)

3.9 Local estimators

We recall the notion of a local estimator from [NP24].

Definition 22 (Statistic). A statistic is a function S that maps a function f : {±1}n → R to a
real number in R.

We recall that the Hamming ball B(x, r) of radius r around a point x ∈ {±1}n is the set of all
y ∈ {±1}n such that dist(x, y) ≤ r, where dist(x, y) is the Hamming distance between x and y.

Definition 23 (r-local estimator). Given f : {±1}n → R, x ∈ {±1}n, and a positive integer r ≤ n,
an r-local estimator E takes as input the values of f restricted to the Hamming ball B(x, r) (we
denote this by f |B(x,r)) and outputs a real number.

For τ ≥ 0, an r-local estimator E is said to τ -approximate a statistic S if
∣∣∣∣∣ E
x∼{±1}n

[
E(f |B(x,r))

]
− S(f)

∣∣∣∣∣ ≤ τ.

Finally, we say that the estimator E is κ-bounded if its range is [−κ, κ].

3.10 Coordinate oracles and approximate versus exact computation

A central tool in the tolerant testing of k-juntas is the notion of approximate coordinate oracles
developed by [DMN19]. Essentially, these let us reduce the number of coordinate from n down to
poly(k, 1/ε).

In particular, we will need the following Corollary 4.7 from [ITW21], which builds on [DMN19].

Theorem 24 (Corollary 4.7 of [ITW21]). With poly(k, ε−1, log(δ−1)) queries to f , we can gain
access to a set of approximate oracles O = {O1, ...Ok′} for a set S of k′ coordinates from [n].
Moreover, these coordinates satisfy the following properties:

1. For every coordinate, i ∈ S, there exists a g ∈ O such that g is 0.1 close to Dicti(x) = xi with
probability at least 1− δ. (Hence we refer to O as a set of approximate coordinate oracles.)

2. minS⊆[n]:|S|≤k dist(f,JS)−minS⊆S:|S|≤k dist(f,JS) ≤ ε.

3. k′ = |S| ≤ poly(k, ε−1, log(1/δ)).
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4. For an algorithm A that uses at most q queries to D, we can assume that we have perfect
oracle access to the dictator correspond to each coordinate oracle up to an additive loss of δ
in the confidence and a multiplicative overhead of poly(log(q/δ)) in query complexity. (We
refer to this set O′ of oracles for the exact dictator functions corresponding to the elements
of O as a set of coordinate oracles.)

Given point (4), we will assume throughout the paper that we indeed have exact access to the
coordinate oracles i.e. each coordinate oracle Oi exactly corresponds to the dictator function of its
corresponding coordinate. Now it’s important to note that while each Oi corresponds to a single
coordinate, we do not know which of the n coordinates this is. (Notably, that would information-
theoretically require Ω(log(n)) queries, which is too large when k is small.) As such we only have
implicit access to these coordinates (cf. [Ser10]). Nonetheless, [ITW21] are also able to show that

we can query these coordinates to get a randomized algorithm for fS
ave:

Theorem 25 (Theorem 4.10 of [ITW21] ). Let f : {±1}n → {±1} and O′ = {O′
1, . . . ,O′

k′} be
a set of k′ coordinate oracles corresponding to a set S ⊂ [n], |S| = k′. Let g be a function from
{±1}k′ → {±1} defined by

g(y) := Ex

[
f(x)

∣∣∣∣O′
1(x) = y1,O′

2(x) = y2, . . . ,O′
k′(x) = yk′

]
= fS

ave.

Then there exists a 1-bounded randomized algorithm for g that makes poly(k′) queries to f in
expectation.

4 Agnostically learning conjunctions

In this section we present our agnostic learning algorithm for conjunctions and prove Theorem 1.

4.1 Setup for the learning algorithm

Before explaining the algorithm we establish some helpful notation and terminology. (We view +1
as corresponding to True and −1 as corresponding to False, and recall that X = {±1}n.)

Definition 26. Given a tuple of points ~a = (a1, . . . , am) ∈ Xm, we write Non-Const(~a) ⊆ [n] to
denote the set of coordinates that are not constant across the strings in ~a. Formally,

Non-Const(~a) :=
{
i ∈ [n] : a1i 6= aji for some j ∈ [m]

}

and Const(~a) = [n] \Non-Const(~a). So all strings in ~a agree on coordinates in Const(~a).
Given any x ∈ {±1}n and ~a = (a1, . . . , am), we use dist(x,~a) to denote the Hamming distance

between x and a1 over coordinates in Const(~a), i.e., the number of i ∈ Const(~a) with xi 6= a1i .

Definition 27. Given a tuple of points ~a = (a1, . . . , am) ∈ Xm, the event E~a ⊆ X is defined to be
the set of all x ∈ X such that dist(x,~a) ≤ n2/3. Formally,

E~a :=
{
x ∈ X : number of i ∈ Const(~a) with xi 6= a1i ≤ n2/3

}
.

Given a distribution D over X × {±1}, we write D|E~a to denote the distribution of (x,y) ∼ D
conditioned on x belonging to E~a, and we refer to D|E~a as a “ball distribution” since its marginal
over the coordinates in Const(~a) is supported on strings contained in a Hamming ball.
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4.2 The algorithm

Our algorithm for agnostically learning conjunctions is presented in Algorithm 1. Let D be the input
distribution over X × {±1}, and let c∗ be its (unknown) closest conjunction with errD(c∗) = optD.
Our algorithm will draw an m-tuple of independent labeled examples

−−−→
(a, b) =

(
(a1, b1), . . . , (am, bm)

)

from D. Intuitively, we would like to work with the ball distribution D|E~a obtained from a tuple
~a = (a1, . . . ,am) such that c∗(ai) = 1 for each i, but we do not have access to the value of c∗(ai);
rather, we only have access to the label bit bi. For the moment, though, let us hope or pretend that
if b1 = · · · = bm = 1 then additionally indeed c∗(ai) = 1 for all i (this is roughly what it means to
obtain a “useful” set of examples as alluded to in Section 2.1).5

Now if indeed ~a satisfies that c∗(ai) = 1 for each i, the relevant variables of the conjunction
c∗ must all belong to Const(~a), the set of “previously unanimous” coordinates that always took
the same value across all m examples a1, . . . ,am. Intuitively, the event E~a is the event that a
string x ∈ X disagrees with a1 on “not too many” of these “previously unanimous” coordinates in
Const(~a) (this is the event E that was alluded to in Section 2.1).

We briefly describe each step of Algorithm 1. In each iteration i of the main loop of Step 2,

the algorithm draws
−−−→
(a, b) from Dm (Step 2(a)) and checks that all examples (a1, b1), . . . , (am, bm)

have bi = 1 (Step 2(b)), and continues only when this happens. As discussed above, the algo-
rithm “hopes” that c∗(ai) = 1 for all i, and further checks that Pr(x,y)∼D[E~a(x)] is not too small
(Step 2(c)). If this check passes, it runs the L1 regression algorithm on examples from D|E~a (this
is the D′ alluded to in Section 2.1) to obtain a hypothesis hi. At the end of the main loop, it draws
more examples from D and output the best hypothesis hi with the minimum disagreement.

4.3 Analysis of the algorithm

Let us write Dc∗ to denote the distribution of (x,y) ∼ D conditioned on having c∗(x) = y = 1.
(Note that this is well defined if there are such pairs in the support of D. We will always assume
this is the case in this subsection. The case when the support of D contains no such pairs is trivial
and will be handled by the default h0 in the algorithm. See Section 4.4.)

To analyze a single iteration of the loop, we will use the following definition with m = n1/3:

Definition 28. We say a tuple of pairs
−−−→
(a, b) = ((a1, b1), . . . , (am, bm)) ∈ (X × {±1})m is useful if

c∗(at) = bt = 1 for all t ∈ [m] and ~a = (a1, . . . , am) satisfies the following condition:

Pr
(x,y)∼Dc∗

[
E~a(x)

]
≥ 1− ε. (8)

The following lemma shows that the probability of
−−−→
(a, b) ∼ Dm

c∗ being useful is not too small:

Lemma 29. Let
−−−→
(a, b) ∼ (Dc∗)

m with m = n1/3. The probability that
−−−→
(a, b) is useful is at least

εm.

5We remark that this approach of “hoping” that all examples satisfy c∗ is similar in spirit to an idea used in the
DNF learning context in [DDS14]. In that setting the algorithm “hopes” that all members of some set of positive
examples satisfy the same term of the DNF, and takes a bitwise-AND of examples to try to identify that term. Both
[DDS14] and the current paper use multiple repeated trials, since in both settings the desired “hope” may only hold
with fairly small probability.

18



Input: Samples drawn from an arbitrary and unknown distribution D over X × {±1}.
Output: A hypothesis h : X → {±1}.
Agnostically-Learn-Conjunction:

1. Set m := n1/3, L := (1/ε)O(m), and h0 : X → {±1} to be h0 ≡ −1.

2. Repeat for i = 1, . . . , L:

(a) Sample
−−−→
(a, b) = ((a1, b1), . . . (am, bm)) ∼ Dm.

(b) If any bi = −1, set hi ≡ −1 and skip to the next iteration of the loop.

(c) Run the L1 regression algorithm (Theorem 10) (with its failure probability
parameter δ set to 0.01, its error parameter set to ε, and its degree parameter set
to d = O(n1/3 log(1/ε))), using examples drawn from D|E~a, to obtain a hypothesis
h′i. Access to D|E~a is simulated by drawing from D and checking if the sample
satisfies E~a. Let N be the number of samples needed by the L1 regression
algorithm. Draw O(1/ε) ·N samples from D and feed the first N of them that
belong to E~a to the L1 regression algorithm; set hi ≡ −1 and skip to the next
iteration if there are less than N samples in E~a.

(d) Finally, set hi to be the following hypothesis: For each x ∈ X:

hi(x) =

{
h′i(x) if E~a(x) holds

−1 (i.e. False) if E~a(x) does not hold
(7)

3. Draw a set of poly(n/ε) samples from D and choose the hypothesis from h0, h1, . . . , hL
that has the minimum disagreement with the samples drawn.

Algorithm 1: An algorithm to agnostically learn conjunctions.

Proof. We view the samples a1, . . . ,am as being drawn one by one. We always use ~a to denote the
current tuple of a1, . . . ,at collected after t rounds, and we let E~a be the event using the current ~a:

E~a :=
{
x ∈ X : number of i ∈ Const(~a) with xi 6= a1

i ≤ n2/3
}
.

Note that since our draws are from Dc∗ we get c∗(at) = bt = 1 for all t “for free,” and we need only
worry about the condition given in Equation (8).

After drawing a1, we have that Const(~a) = [n], and x ∈ X satisfies E~a if and only if the
number of i ∈ [n] with xi 6= a1

i (i.e. the Hamming distance dist(x,a1)) is at most n2/3. If the
probability of E~a(x) over (x,y) ∼ Dc∗ at this point is already at least 1− ε then we are done (this
is because as we draw more samples, Const(~a) can only shrink and the probability of E~a(x) can
only increase). So assume that after the first round, the probability of E~a(x) over (x,y) ∼ Dc∗

is at most 1 − ε; this this means that with probability at least ε over (a2, b2) ∼ Dc∗ , the size of
Const(~a) goes down by n2/3. We pay this factor of ε in probability, and ask for such a second
sample (a2, b2) and add it to ~a; after this, the size of Const(~a) has shrunk by at least n2/3.

We repeat the above argument. This can repeat no more than n1/3 times since Const(a) can
shrink by at least n2/3 for no more than n1/3 rounds. This means that within the m = n1/3 rounds,
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there must be a round after which the probability of E~a(x) over (x,y) ∼ Dc∗ becomes at least
1 − ε. The lemma follows given that the total probability we paid for this to happen is at most
εm.

Before giving the next lemma we recall some basics about Chebyshev polynomials. We write
Tk to denote the kth Chebychev polynomial of the first kind. We will use the following well-known
facts about Chebyshev polynomials:

Fact 30. (I) Tk(1 + ε) ≥ (1/2)ek
√
ε for any 0 ≤ ε ≤ 0.4. (II) |Tk(x)| ≤ 1 for all x ∈ [−1, 1].

Item (I) follows immediately from the definition

Tk(x) =
1

2

[(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k]

and that 1 +
√
2ε ≥ e

√
ε for 0 ≤ ε ≤ 0.4. Item (II) follows from the fact that Tk(cos θ) = cos(kθ).

Lemma 31. Suppose that
−−−→
(a, b) ∈ (X × {±1})m is useful. Then there exists a polynomial p of

degree d = O(n1/3 log(1/ε)) such that |p(x)− c∗(x)| ≤ ε for every x in E~a and consequently,

E
(x,y)∼D|E~a

[(
p(x)− c∗(x)

)2] ≤ ε2.

Proof. For simplicity, we assume that c∗ is a monotone conjunction of the form x1 ∧ · · · ∧ xs; the
general case follows similarly. We essentially use the usual Chebychev construction of approximate
polynomials for AND, but we take advantage of the fact that by the nature of E~a, we are promised
that at least s − n2/3 literals in the conjunction are always satisfied. To see this is the case, note
that c∗(ai) = 1 for all i so [s] ⊆ Const(~a) and a11 = · · · = a1s = 1. Given that x ∈ E~a can only
disagree with a1 at n2/3 coordinates in Const(~a), it can only falsify n2/3 of x1, . . . , xs.

Inspired by this observation, let

∆ := min
(
n2/3, s

)
, d :=

⌈
3
√
∆ log(1/ε)

⌉
and q(t) =

Td

(
t
∆

)

Td

(
∆+1
∆

) ,

where Td is the dth Chebychev polynomial of the first kind. It’s clear that q(∆+1) = 1. Moreover,
by Fact 30, we have that for any t ∈ [−∆,∆],

|q(t)| ≤ 2e−d
√

1/∆ ≤ 2e−3 log(1/ε)
√
∆·
√

1/∆ ≤ ε, (9)

when ε is sufficiently small. Thus it suffices to set

p(x) = q





∑

i∈[s]
xi


− (s−∆) + 1


 .

Using Equation (9), we have that |p(x) − c∗(x)| ≤ ε for any string x at distance at most ∆ from
satisfying c∗. Since E~a contains such points only, the lemma is proved.
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4.4 Proof of Theorem 1

Efficiency. It is easy to verify that the overall running time of Algorithm 1 is dominated by the
L calls to the L1 regression algorithm in Step 2(d). Using Theorem 10, the overall runtime is

L · poly
(
nd, 1/ε

)
=

(
1

ε

)Õ(n1/3)

,

where d = O(n1/3 log(1/ε)), which is as claimed in Theorem 1.

Correctness. Our goal is to prove the following lemma:

Lemma 32. With probability at least 0.9, at least one of the functions h0, h1, . . . , hL at the end
of the main loop satisfies errD(hi) ≤ optD + 2ε.

On the other hand, with probability at least 0.9, Step 3 can approximate errD(hi) for every i up
to error ε. So by a union bound, with probability at least 0.8, the hypothesis h returned satisfies
errD(h) ≤ optD + 4ε. We prove Lemma 32 in the rest of this section.

We start by dealing with a trivial case:

Pr
(x,y)∼D

[
c∗(x) = y = 1

]
< ε. (10)

(Note that this includes the case mentioned earlier about Dc∗ being not well defined.) We show
that in this case h0 ≡ −1 has a small errD(h0). To see that this is the case, we have

1− optD = Pr
(x,y)∼D

[
c∗(x) = y = 1

]
+ Pr

(x,y)∼D

[
c∗(x) = y = −1

]
< ε+ Pr

(x,y)∼D

[
c∗(x) = y = −1

]

and thus,
1− errD(h0) ≥ Pr

(x,y)∼D

[
c∗(x) = y = −1

]
> 1− optD − ε

so errD(h0) ≤ optD + ε. In the rest of the proof we assume that Equation (10) does not hold.
We will show that the following are sufficient conditions for hi from the ith loop to satisfy

errD(hi) ≤ optD + 2ε.

1.
−−−→
(a, b) drawn in this loop is useful.

2. The L1 regression algorithm receives all of the samples it needs.

3. The L1 regression algorithm returns a function h′i that satisfies

errD|E~a
(h′i) ≤ optD|E~a

+ ε. (11)

Before that we show that these conditions hold for some i with probability at least 0.9.

Using Lemma 29 and the assumption that Equation (10) does not hold, we have that
−−−→
(a, b) ∼ Dm

is useful with probability at least εm · εm = εO(m), where we pay the first εm to draw m samples
from Dc∗ (using Equation (10)) and the second εm is from Lemma 29 for the tuple to be useful.

Given our choice of L = (1/ε)O(m), we have that with probability at least 1− on(1),
−−−→
(a, b) satisfies

the first item for at least one loop i. Let’s fix such a useful pair
−−−→
(a, b).

Next, given that
−−−→
(a, b) is useful, we have

Pr
(x,y)∼Dc∗

[
E~a(x)

]
≥ 1− ε.
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Combining this with the assumption that Equation (10) does not hold, we have

Pr
(x,y)∼D

[
E~a(x)

]
≥ ε(1− ε) ≥ ε/2,

from which the second item occurs during that loop with probability at least 0.99. Assuming both
the first and second items, it follows from Lemma 31 and Theorem 10 that the third item holds
with probability at least 0.99. As a result, the probability of having at least one loop satisfying all
three items is at least 0.9. It suffices to show that when all three items hold, hi (obtained from h′i)
satisfies errD(hi) ≤ optD + 2ε.

First, from Equation (11) we have (using c∗ ∈ C)

Pr
(x,y)∼D|E~a

[
h′i(x) 6= y

]
≤ Pr

(x,y)∼D|E~a

[
c∗(x) 6= y

]
+ ε. (12)

To relate the error of h′i under D|E~a to the error of hi under D, we note that

errD(hi) = Pr
(x,y)∼D

[
hi(x) 6= y

]
= Pr

(x,y)∼D

[
¬E~a(x) ∧ (hi(x) 6= y)

]
+ Pr

(x,y)∼D

[
E~a(x) ∧ (hi(x) 6= y)

]
.

For the first term, recalling Equation (7) we have that if ¬E~a holds then hi = −1, so

Pr
(x,y)∼D

[
¬E~a(x) ∧ (hi(x) 6= y)

]

= Pr
(x,y)∼D

[
¬E~a(x) ∧ (hi(x) = −1,y = 1)

]

≤ Pr
(x,y)∼D

[
¬E~a(x) ∧ (y = 1)

]

= Pr
(x,y)∼D

[
¬E~a(x) ∧ (y = 1, c∗(x) = −1)

]
+ Pr

(x,y)∼D

[
¬E~a(x) ∧ (y = c∗(x) = 1)

]

≤
=A︷ ︸︸ ︷

Pr
(x,y)∼D

[
¬E~a(x) ∧ (c∗(x) 6= y)

]
+

=B︷ ︸︸ ︷
Pr

(x,y)∼D

[
¬E~a(x) ∧ (y = c∗(x) = 1)

]
.

For the second term, we have

Pr
(x,y)∼D

[
E~a(x) ∧ (hi(x) 6= y)

]
= Pr

(x,y)∼D|E~a

[
hi(x) 6= y

]
· Pr
(x,y)∼D

[
E~a(x)

]

≤

=C︷ ︸︸ ︷(
Pr

(x,y)∼D|E~a

[
c∗(x) 6= y

]
+ ε

)
· Pr
(x,y)∼D

[
E~a(x)

]
,

where the inequality is by Equation (12). It remains to argue that A+B + C ≤ optD + 2ε. Since

C ≤ Pr
(x,y)∼D

[
E~a ∧ (c∗(x) 6= y)

]
+ ε,

by inspection we have that A+ C ≤ optD + ε. Finally, we have

B ≤ Pr
(x,y)∼D

[
¬E~a(x) | c∗(x) = y = 1

]
≤ ε

using the assumption that
−−−→
(a, b) is useful. This finishes the proof of Lemma 32.
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5 Warm-Up: A 2Õ(k1/3))-Query Quantum Tolerant Junta Tester

In this section we prove Theorem 2. While this result will be subsumed by Theorem 3, which gives
a classical tester that has a matching query complexity, many of the tools which we develop in a
simpler setting here will be needed later for our classical tester. Throughout the section, we take
k′ to be a generic parameter and show that the algorithm for testing functions f : {±1}k′ → {±1}
makes exp(k1/3 · polylog(k′/ε)) queries. Theorem 2 follows by plugging in k′ = poly(k, ε−1).

5.1 Drawing from the spectral sample

We recall the definition of the spectral sample of a Boolean function:

Definition 33 (Spectral sample, Definition 1.18 of [O’D14]). Given a function f : {±1}k′ → {±1},
the spectral sample of f , denoted Pf , is the probability distribution on subsets of [k′] (equivalently,
on elements of {±1}k′) in which the set S has probability f̂(S)2. (Recall from Section 3.2 that∑

S f̂(S)2 = 1, so this is indeed a valid probability distribution.)

As discussed in Remark 4, the only quantum aspect of Algorithm 2 occurs in lines 2 and 3(b)
where the algorithm makes draws from the spectral sample Pf of f . Thus the rest of our discussion
in this section will not involve any quantum considerations.

5.2 Smooth functions and local mean estimation

We will informally refer to a function f : {±1}k′ → R as an L-smooth function for some positive
integer L ∈ [k′] if W≥L[f ] is tiny. As we will see, L-smooth functions are useful because, when
W≥L[f ] is sufficiently small, using the techniques of [NP24], the magnitude of their means can be
estimated using evaluations of f that come from a random ball of radius roughly

√
L, i.e. they have

local estimators. To establish this, we start with a simple lemma from [NP24].

Lemma 34. Let X be a random variable with Var[X] = σ2. Then

0 ≤ E
[
|X|
]
−
∣∣E[X]

∣∣ ≤ σ.

Proof. The first inequality is trivial since E[|X|] ≥ |E[X]| for every random variable X.
For the second one, we have

E
[
|X|
]
−
∣∣E[X]

∣∣ = E
[
|X| −

∣∣E[X]
∣∣] ≤ E

[∣∣X −E [X]
∣∣] ≤

√
E
[(
X −E [X]

)2]
= σ,

which completes the proof.

Now we prove the existence of local estimators for L-smooth functions. The error of these local
estimators depends on the variance of the L-smooth function as well as its Fourier weight on levels
at least L.

Lemma 35 (Local Estimators for Smooth Functions). Let τ and L be two parameters such that
τ ∈ (0, 1/2] and L ≤ k′ is a positive integer. There exists an r-local estimator E with

r = Θ
(√

L log(L) log(1/τ)
)

that approximates |E[f ]| for all functions f : {±1}k′ → R with error at most

τ
√

Var[f ] + 5(k′)r
√

W≥L[f ]).
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Proof. We closely follow the proof of Lemma 17 of [NP24]. Let r := Θ(
√

L log(L) log(1/τ)) and
let pLr (x) be the polynomial from Lemma 17 (with L playing the role of N). We set the hidden
constant in r large enough so that

max
i∈[L]

∣∣∣pLr (i)− 1
∣∣∣ ≤ 2 exp


−Ω

(
r2

L logL

)
 ≤ τ. (13)

As in Lemma 20, let αr,L
i be the coefficients with |αr,L

i | ≤ 2rr such that

pLr (x) =
∑

i∈[r]
αr,L
i

(
x

i

)
.

We take

g
(
f
∣∣
B(x,r)

)
:= f(x)−

∑

i∈[r]
αr,L
i

∑

S⊆[k′]:|S|=i

∂f

∂xS
(x)χS(x). (14)

Note that this can be computed by only querying f on B(x, r), as

∂f

∂xS
(x)χS(x) =

1

2|S|
·


∑

T⊆S

(−1)|T |f(x⊕T )


 . (15)

Writing f(x⊕T ) =
∑

U⊆[k′] f̂(U)χU (x
⊕T ), it is easy to check that

g
(
f
∣∣
B(x,r)

)
= f(x)−

∑

i∈[r]
αr,L
i

∑

S⊆[k′]:|S|=i

∑

U⊇S

f̂(U)χU (x)

= f(x)−
∑

U 6=∅
pLr (|U |)f̂ (U)χU (x)

= E[f ] +
∑

U 6=∅

(
1− pLr (|U |)

)
f̂(U)χU (x), (16)

where we used the fact that f̂(∅) = E[f ]. It is immediate from the above that

E
x∼{±1}k′

[
g
(
f
∣∣
B(x,r)

)]
= E[f ], (17)

where we used E[χS(x)] = 0 for S 6= ∅. Furthermore, we have

Var
x∼{±1}k′

[
g
(
f
∣∣
B(x,r)

)]
= E

x∼{±1}k′

[(
g
(
f
∣∣
B(x,r)

)
−E[f ]

)2
]
=
∑

i∈[k′]

(
1− pLr (i)

)2
W=i[f ], (18)

where Equation (18) follows from Equation (16) via Parseval’s formula.
Splitting the sum into two parts, the RHS of Equation (18) becomes

∑

i≤L

(
1− pLr (i)

)2
W=i[f ] +

∑

i>L

(
1− pLr (i)

)2
W=i[f ] ≤ τ2 ·Var[f ] + 25(k′)2r ·W≥L[f ]

where we used Item (ii) of Lemma 17 and Equation (13) to bound the first term, and we bounded
the second term using Lemma 19. Taking the estimator E to be

E
(
f
∣∣
B(x,r)

)
:=

∣∣∣∣g
(
f
∣∣
B(x,r)

)∣∣∣∣ , (19)

the lemma follows from Equation (17) and Lemma 34.
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5.3 The Sharp Noise Operator

We now turn to designing a “sharp noise” operator on a set of variables V , which we denote by
SharpNoiseVℓ,κ,∆ with three parameters ℓ, κ and ∆. Intuitively, we would like this operator, when
applied to a function f : {±1}k′ → R, to zero out all Fourier coefficients f̂(S) for which |S∩V | > ℓ,
and to leave unchanged all other Fourier coefficients. We do not achieve this exactly; instead, all
Fourier coefficients for which |S∩V | ≥ κℓ are made “very small” (as captured by the ∆ parameter),
and all Fourier coefficients for which |S ∩ V | ≤ ℓ are “approximately preserved.” More precisely,
the SharpNoise operator has the following properties:

Lemma 36. Given any V ⊆ [k′] and three positive integers ℓ, κ,∆ such that ℓ ∈ [k′] and κ ≥ 5 (so
that e−κ/2κ ≤ 0.5), there exists an operator SharpNoiseVℓ,κ,∆ on f : {±1}k′ → R such that

SharpNoiseVℓ,κ,∆ f =
∑

S⊆[k′]

λ(S)f̂(S)χS(x),

where each λ(S) ∈ [0, 1] and satisfies

λ(S) =

{
≥ 1−∆2−κ if |S ∩ V | ≤ ℓ

≤ 2−∆ if |S ∩ V | ≥ κℓ
.

Moreover, this operator can be written as

SharpNoiseVℓ,κ,∆ =

κ∆∑

i=0

αiT
V
ρi , where ρ := 1− 1

2ℓ
and

κ∆∑

i=0

|αi| ≤ 22κ∆. (20)

For functions f : {±1}k′ → [−1, 1], we always have

Var
[
SharpNoiseVℓ,κ,∆ f

]
≤ 1.

Proof. We design SharpNoiseVℓ,κ,∆ in stages using a few intermediate operators.
First we consider the operator U , which is defined as

Uf := f − TV
ρ f =

∑

S⊆[k′]

(
1− ρ|S∩V |

)
f̂(S)χS(x),

with ρ = 1− 1/(2ℓ). Note that by our choice of ρ, we have that

(
1− ρ|S∩V |

)
is





≤ 1/2 if |S ∩ V | ≤ ℓ

≥ 1− e−κ/2 if |S ∩ V | ≥ κℓ

∈ [0, 1] otherwise

.

Next we consider the operator U ′, which is defined as

U ′f := f − Uκf =
∑

S⊆[k′]

(
1−

(
1− ρ|S∩V |

)κ)
f̂(S)χS(x),

which has brought us closer to our goal as

(
1−

(
1− ρ|S∩V |

)κ)
is





≥ 1− 2−κ if |S ∩ V | ≤ ℓ

≤ 1/2 if |S ∩ V | ≥ κℓ

∈ [0, 1] otherwise

,
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where we used e−κ/2κ ≤ 1/2. Finally we define SharpNoise by applying U ′ repeatedly ∆ times:

SharpNoiseVℓ,κ,∆ f := (U ′)∆f =
∑

S⊆[k′]

(
1−

(
1− ρ|S∩V |

)κ)∆

f̂(S)χS(x).

This has the desired properties, since

(
1−

(
1− ρ|S∩V |

)κ)∆

is





≥ 1−∆2−κ if |S ∩ V | ≤ ℓ

≤ 2−∆ if |S ∩ V | ≥ κℓ

∈ [0, 1] otherwise

.

To obtain Equation (20) about writing SharpNoiseVℓ,κ,∆ as a linear combination of Bernoulli
noise operators over V with different noise rates, observe that

(
1−

(
1− ρ|S∩V |

)κ)∆

can be written as p(ρ|S∩V |) where

p(x) =
(
1− (1− x)κ

)∆
=

κ∆∑

i=0

αix
i

is a univariate polynomial of degree at most κ∆ with
∑

i |αi| ≤ 22κ∆. This gives Equation (20).

5.4 Parameters in the main algorithm

Before presenting the main algorithm, let’s list parameters that will be used for SharpNoise:

ℓ = k2/3, ρ = 1− 1

2ℓ
, κ = 10 log

(
k′

ε

)
and ∆ = 10r log

(
k′

ε

)

and parameters that will be used for the local estimator:

L = κℓ, τ =
ε

10
and and r = Θ

(√
L logL log(1/τ)

)
.

In the rest of the section, E denotes the r-local estimator given in Lemma 35 with parameters τ
and L. Another parameter needed is

N := k′O(r) · 2O(κ∆) · k
′2

ε2
≤ exp

(
k1/3 · polylog

(
k′

ε

))
. (21)

We note that while we take ℓ to be k2/3 throughout our quantum testing algorithm, we will
think of it as a parameter throughout Section 5.5, as we will need to set ℓ = k2/3polylog(k′/ε) in
our classical tester.
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5.5 Local estimation of junta correlations

For our quantum junta tester we only need the results of this section for functions f : {±1} → {±1},
but in the next section we will need these results for functions f : {±1} → [−1, 1]; hence we handle
this more general setting in this subsection.

Given a k-subset U ⊆ [k′] and C ⊆ U , a subroutine is needed in the main algorithm to estimate

corr
(
fC ,JU

)
, where fC := SharpNoiseCℓ,κ,∆ f.

Recalling Equations (4) and (5), we can express the correlation as

corr
(
fC ,JU

)
= E

y∼{±1}U

[∣∣∣∣∣ E
z∼{±1}U

[
fC
U→y(z)

]∣∣∣∣∣

]
. (22)

We first show that the following is a good estimation of the correlation:

Est := E
x∼{±1}k′

[
E
(
fC
U→xU

∣∣
B(xU ,r)

)]
. (23)

Lemma 37. Let f : {±1}k′ → [−1, 1]. For any k-subset U ⊆ [k′] and C ⊆ U , we have

∣∣∣∣Est− corr
(
fC ,JU

)∣∣∣∣ ≤ 2τ.

Proof. To align with Equation (22), for clarity we can rewrite Est as

E
y∼{±1}U

[
E

z∼{±1}U

[
E
(
fC
U→y

∣∣
B(z,r)

)]]
.

By Lemma 35, we have that for every y ∈ {±1}U ,

E
z

[
E
(
fC
U→y

∣∣
B(z,r)

)]
=

∣∣∣∣Ez
[
fC
U→y(z)

]∣∣∣∣±
(
τ

√
Var

[
fC
U→y

]
+ 5(k′)r

√
W≥L

[
fC
U→y

])
,

so taking expectation over y and recalling Equation (22), we have that

Est = corr(fC ,JU )± E
y∼{±1}U



(
τ

√
Var

[
fC
U→y

]
+ 5(k′)r

√
W≥L

[
fC
U→y

])

 .

We proceed to bound the two contributions to the error term above. For the first, we have

E
y∼{±1}U

[√
Var

[
fC
U→y

]]
≤
√

E
y

[
Var

[
fC
U→y

]]
≤
√

Var
[
fC
]
≤ 1

where the first inequality is Cauchy-Schwarz, the second is the law of total variance, and the third
is because f ’s outputs lie in [−1, 1]. For the second, we have

E
y

[√
W≥L

[
fC
U→y

]]
≤
√

E
y

[
W≥L

[
fC
U→y

]]
=

√√√√
∑

R:|R\U |≥L

f̂C(R)2
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where the first inequality again is Cauchy-Schwarz and the second is by an application of Proposi-
tion 3.22 of [O’D14].

Since C ⊆ U , every R such that |R \ U | ≥ L also satisfies |R \ C| ≥ L. As a result, we have

∑

R:|R\U |≥L

f̂C(R)2 ≤
∑

R:|R\C|≥L

f̂C(R)2 ≤ 2−2∆ ·
∑

R

f̂(R)2 ≤ 2−2∆

where the second inequality is by Lemma 36 and the third is because f : {±1}k′ → [−1, 1].
Combining everything, we have

∣∣∣∣Est− corr
(
fC ,JU

)∣∣∣∣ ≤ τ + 5(k′)r · 2−∆ ≤ 2τ ,

by the choice of ∆.

Given the above lemma, it suffices to estimate Est. For this we introduce a notion of a “sample
bundle” for a given point x:

Definition 38. Given x ∈ {±1}k′ , a sample bundle B for x is a multiset of
( k′
≤r

)
· (κ∆+ 1) many

points B(y, i) ∈ {±1}k′ , where y ranges over B(x, r) and i ranges over [0 : κ∆].

We write Dx,C to denote the following distribution of sample bundles B for x:

For each y ∈ B(x, r) and i ∈ [0 : κ∆], draw independently a sample B(y, i) ∼ NC
ρi
(y).

Now we give a subroutine which, given C ⊆ U and sample bundles for N points, computes
a high-confidence, high-accuracy estimate of corr(fC ,JU ) when all the points and their sample
bundles are drawn correctly. In addition, the subroutine queries f on points only in the sample
bundles. Looking ahead, it is crucial that the way these samples are drawn is independent of U
and thus they can be reused to estimate corr(fC ,JU ) for all k-subsets U of [k′] that contain C.

Lemma 39. Let A be a 1-bounded randomized algorithm for h : {±1}k′ → [−1, 1]. There exists
an algorithm which, given any k-subset U , C ⊆ U , x(1), . . . , x(N) ∈ {±1}k′ and a sample bundle
B(i) for x(i) for each i ∈ [N ], only calls A on points in B(1), . . . ,B(N) and returns a number Est′.
When x(1), . . . ,x(N) ∼ {±1}k′ and B(i) ∼ D

x(i),C independently, we have
∣∣∣∣Est′ − corr

(
hC ,JU

)∣∣∣∣ ≤ ε/2

with probability at least 1 − 2−(k′/ε)2 . Moreover, the number of calls to A that are made by the

algorithm is at most N · poly((k′)r, κ∆, 1/ε) ≤ exp

(
k1/3 · polylog

(
k′

ε

))
.

Proof. Given Lemma 37 (and the choice of τ = ε/10), it suffices to give a (ε/3)-estimation of Est.
By Equation (23) and Equation (19), we have that

Est = E
x∼{±1}k′

[
E
(
hCU→xU

∣∣
B(xU ,r)

)]
= E

x∼{±1}k′

[∣∣∣∣∣g
(
hCU→xU

∣∣
B(xU ,r)

)∣∣∣∣∣

]
.

Recalling Equations (6), (14), (15) and (20), we get that

Est = E
x∼{±1}k′




∣∣∣∣∣∣∣

∑

y∈B(xU ,r)

κ∆∑

i=0

αy,i · E[h(zy,i,x)]

∣∣∣∣∣∣∣


 ,
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where each αy,i is a fixed coefficient that satisfies |αy,i| ≤ (k′)O(r) · 22κ∆ and each zy,i,x is an
independent draw from NC

ρi
(xU ◦ y). Given that y ∈ B(xU , r), we have xU ◦ y ∈ B(x, r). Thus, we

define the output of our algorithm (the estimator Est′ for Est) to be

Est′ =
1

N

N∑

j=1

Est′j(x
(j)), where Est′j(x

(j)) =

∣∣∣∣∣∣∣∣

∑

y∈B(x
(j)

U
,r)

κ∆∑

i=0

αy,i · Aε′,δ′

(
B(j)(x(j)U ◦ y, i)

)
∣∣∣∣∣∣∣∣
, (24)

where Aε′,δ′ is the ε′-accuracy, δ′-confidence algorithm for estimating h that is obtained from the
randomized algorithm A for h as described in Claim 13. (Note that this algorithm indeed only
calls A on points in the sample bundles B(1), . . . ,B(N) as claimed.) Here ε′, δ′ are parameters that
we will set later (see Equation (27)).

It remains to argue that when x(1), . . . ,x(N) ∼ {±1}k′ and B(i) ∼ D
x(i),C independently, we

have ∣∣Est′ − Est
∣∣ ≤ ε/3 except with failure probability at most 2−(k′/ε)2 . (25)

Towards this end, we have the following claim:

Claim 40. For each j ∈ [N ], with probability 1 we have that

|Est′j(x
(j))| ≤ Emax := poly((k′)r, 2κ∆)

and ∣∣∣E[Est′j(x
(j))]− Est

∣∣∣ ≤ ε

6
.

Proof. The bound on the magnitude of Est′j(x
(j)) follows directly from the definition of Est′j given

in Equation (24), the coefficient bounds |αy,i| ≤ (k′)O(r) · 22κ∆, and the absolute bound on the
output of Aε′,δ′ given by Claim 13.

We turn to bounding
∣∣∣E[Est′j(x

(j))]− Est
∣∣∣ . Let us define

V (x(j)) :=

∣∣∣∣∣∣∣∣

∑

y∈B(x
(j)

U
,r)

κ∆∑

i=0

αy,i · E
z
y,i,x(j)

∼NC
ρi
(x

(j)
U ◦y)

[h(zy,i,x(j))]

∣∣∣∣∣∣∣∣
, so Est = E

x∼{±1}k′
[V (x)].

We have ∣∣∣E[Est′j(x
(j))]− Est

∣∣∣ =
∣∣∣E[Est′j(x

(j))]−E[V (x(j))]
∣∣∣

so our goal is to prove that ∣∣∣E[Est′j(x
(j))]−E[V (x(j))]

∣∣∣ ≤ ε

6
.

We have∣∣∣E[Est′j(x
(j))]−E[V (x(j))]

∣∣∣

=

∣∣∣∣∣∣∣∣∣
E




∣∣∣∣∣∣∣∣

∑

y∈B(x
(j)

U
,r)

κ∆∑

i=0

αy,i · Aε′,δ′

(
B(j)(x(j)

U ◦ y, i)
)
∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

∑

y∈B(x
(j)

U
,r)

κ∆∑

i=0

αy,i · E
z
y,i,x(j)

∼NC
ρi
(x

(j)
U ◦y)

[h(zy,i,x(j))]

∣∣∣∣∣∣∣∣




∣∣∣∣∣∣∣∣∣

≤ E




∑

y∈B(x
(j)

U
,r)

κ∆∑

i=0

|αy,i| ·

∣∣∣∣∣∣∣
Aε′,δ′

(
B(j)(x(j)

U ◦ y, i)
)
− E

z
y,i,x(j)

∼NC
ρi
(x

(j)
U ◦y)

[h(zy,i,x(j))]

∣∣∣∣∣∣∣


 .
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Recalling the distribution of our sample bundles, we have that for each y ∈ B(x
(j)

U
, r), i ∈ [0 : κ∆]

the distribution of B(j)(x(j)
U ◦ y, i) is identical to the distribution of zy,i,x(j) ∼ NC

ρi
(x

(j)
U ◦ y) (in fact,

this is true on an outcome-by-outcome basis for x(j)). Hence we may rewrite the above as

E




∑

y∈B(x
(j)

U
,r)

κ∆∑

i=0

|αy,i| ·
∣∣∣∣Aε′,δ′

(
B(j)(x(j)

U ◦ y, i)
)
− E

B(j)
[h(B(j)(x(j)

U ◦ y, i))]
∣∣∣∣




≤ E
x(j)




∑

y∈B(x
(j)

U
,r)

κ∆∑

i=0

|αy,i| · E
B(j)

[∣∣∣∣Aε′,δ′

(
B(j)(x(j)

U ◦ y, i)
)
− h(B(j)(x(j)

U ◦ y, i))
∣∣∣∣
]

 .

Now, since on every input Aε′,δ′ is a ±ε′-accurate estimate of h except with failure probability δ′,
and Aε′,δ′ and h both always output values in [−1, 1], by Claim 13, the above is at most

(
k′

≤ r

)
· 22κ∆ ·

(
2δ′ + ε′

)
. (26)

Choosing

ε′ = ε · poly
(

1

(k′)r
,

1

2κ∆

)
, δ′ = ε · poly

(
1

(k′)r
,

1

2κ∆

)
, (27)

we get that Equation (26) is at most ε/6 as desired.

With Claim 40 in hand we can prove Equation (25). By a Hoeffding bound, using the fact
(Claim 40) that each |Est′j(x

(j))| ≤ Emax, we have that

Pr



∣∣∣∣∣∣
1

N

N∑

j=1

Est′j(x
(j))−E[Est′j(x

(j))]

∣∣∣∣∣∣
≥ ε

6


 = Pr

[∣∣∣Est′ −E[Est′j(x
(j))]

∣∣∣ ≥ ε

6

]

≤ 2 exp

(
−2N( ε6 )

2

(Emax)2

)

≤ 2−(k′/ε)2 ,

where the last inequality holds by our choice of N (recall Equation (21)). On the other hand, note

that when
∣∣∣Est′ −E[Est′j(x

(j))]
∣∣∣ ≤ ε

6 , recalling that Claim 40 gives us
∣∣∣E[Est′j(x

(j))]− Est
∣∣∣ ≤ ε

6 ,

by the triangle inequality we have that

∣∣Est′ − Est
∣∣ ≤ ε/3,

which completes the proof of Equation (25).
It remains only to bound the number of calls to A. Recalling Equation (24) and Claim 13, this

is easily seen to be at most N · poly((k′)r, κ∆, 1/ε), and the lemma is proved.

Remark 41. In the next section, when we use Lemma 39 on a function h with real-valued outputs,
in order to bound the query complexity we will need to account for the number of oracle calls that
the randomized algorithm A for hmakes to the underlying function f : {±1}n → {±1} (the function
that is actually being tested and for which we have black-box oracle access) in the course of its
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Input: A Boolean function f : {±1}k′ → {±1} and ε ∈ [0, 1/2]

Output: An estimate γ of corr(f,Jk)
Quantum-Tolerant-Junta-Tester:

1. Set γ = 0 and draw S1, . . . ,S(k′/ε)4 independently from the spectral sample of f .

2. Repeat (1/ε)O(k1/3) times:

(a) Sample A1, . . . ,Ak1/3 ⊆ [k′] independently from the spectral sample of f .

(b) Let C be the union of Ai’s and define

fC := SharpNoiseCℓ,κ,∆ f.

(c) Sample x(1), . . . ,x(N) ∼ {±1}k′ uniformly and independently at random.

(d) For each x(i), draw a sample bundle B(i) ∼ D
x(i),C .

(e) For each set U ⊆ [k′] of size k such that C ⊆ U and

∣∣i : Si ⊆ U and |Si \C| ≥ ℓ
∣∣

(k′/ε)4
≤ ε2

10
, (28)

run the algorithm of Lemma 39 using x(1), . . . ,x(N),B(1), . . . ,B(N) to get an
(ε/2)-estimation EstC,U of corr(fC ,JU ); update γ = max(γ,EstC,U).

3. Return γ.

Algorithm 2: A Quantum Tolerant Junta Testing Algorithm

execution on a given input. In the context of this section, though, we will only need Lemma 39 for
h = f , the original {±1}-valued function that is being tested. In this case there is no need for the
randomized algorithm A and the number of calls to f that are required is simply the number of
points in the sample bundles B(1), . . . ,B(N), i.e. at most N ·

(
k′

≤r

)
.

5.6 Putting It Together: A Quantum Tester and the Proof of Theorem 2

Our quantum tolerant junta tester is given in Algorithm 2.

5.6.1 Efficiency

Lemma 42 (Query complexity). Algorithm 2 makes exp(k1/3polylog(k′/ε)) (quantum) queries.

Proof. We first account for the queries to f that are “actually quantum.” As discussed in Section 5.1
and Remark 4, these correspond to the draws from the spectral sample Pf of f in lines 1 and 2(a);
since each draw from Pf requires one quantum query, by inspection of Algorithm 2, it makes at
most (1/ε)O(k1/3) oracle calls that are “actually quantum”.

We proceed to bound the number of classical queries to f made by Algorithm 2. The only step of
Algorithm 2 that make classical oracle calls to f is 2(e), where points in the bundles B(1), . . . ,B(N)

are queried. As remarked before Lemma 39, for each outcome of C we reuse the points for all the
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sets U ⊆ [k′] of size k that contain C that are considered in line 2(e). So the total number of
classical queries to f that are made, recalling Remark 41, is

(
1

ε

)O(k1/3)

·N ·
(

k′

≤ r

)
·O(κ∆) = exp

(
k1/3 · polylog(k′/ε)

)
.

5.6.2 Correctness

We will refer to Equation (28) in the algorithm as a test on the pair of C and U . We say C and
U pass the test if Equation (28) holds.

The two main results of this section are Lemma 43 and Lemma 46. We start with Lemma 43,
which states that with probability at least 0.99, every pair of C and U that passes the test during
the execution of Algorithm 2 satisfies that corr(f,JU ) and corr(fC ,JU ) are close.

Lemma 43. With probability at least 99/100, we have the following: For every pair C and U in
step 2(e) that passes the Equation (28) test, it is the case that

∣∣EstC,U − corr (f,JU )
∣∣ ≤ ε/2. (29)

Proof. We start with a sufficient condition for the test to fail with high probability:

Claim 44. Let U be a k-subset of [k′] and C ⊆ U be such that

∑

R⊆U :|R\C|≥ℓ

f̂(R)2 ≥ ε2

5
.

Then the test fails with probability at least 1− e−Ω(k′4/ε2).

Proof. This just follows from a standard multiplicative Chernoff bound and the fact that there are
(k′/ε)4 many Si’s.

Using the above claim, by a union bound we may assume that every pair of C and U that
passes the test satisfies

∑

R⊆U :|R\C|≥ℓ

f̂(R)2 ≤ ε2

5
(30)

(at the cost of a o(1) failure probability). Fix any such pair C and U . Recall from Equation (5)
that

corr (f,JU) = E
x∼{±1}k′



∣∣∣∣∣∣
∑

R⊆U

f̂(R)χR(x)

∣∣∣∣∣∣


 and corr

(
fC ,JU

)
= E

x∼{±1}k′



∣∣∣∣∣∣
∑

R⊆U

f̂C(R)χR(x)

∣∣∣∣∣∣


 .

(31)
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So we have

∣∣∣∣corr (f,JU )− corr
(
fC ,JU

)∣∣∣∣ ≤ E
x∼{±1}k′



∣∣∣∣∣∣
∑

R⊆U

(
f̂(R)− f̂C(R)

)
χR(x)

∣∣∣∣∣∣




≤

√√√√√√ E
x∼{±1}k′





∑

R⊆U

(
f̂(R)− f̂C(R)

)
χR(x)




2



=

√√√√∑

R⊆U

(
f̂(R)− f̂C(R)

)2

. (32)

We divide the sum inside the square root into two parts:

1. R ⊆ U with |R \ C| = |R ∩C| ≤ ℓ: For this part we have from Lemma 36 that

∑

R.⊆U :|R\C|≤ℓ

(
f̂(R)− f̂C(R)

)2

≤
∑

R⊆U :|R\C|≤ℓ

f̂(R)2 · (∆2−κ)2 ≤ (∆2−κ)2 ≤ ε2

20

by our choices of κ and ∆.

2. R ⊆ U with |R \ C| > ℓ: For this part we have from Lemma 36 and Equation (30) that

∑

R⊆U :|R\C|>ℓ

(
f̂(R)− f̂C(R)

)2

≤
∑

R⊆U :|R\C|>ℓ

f̂(R)2 ≤ ε2

5
.

As a result, we have |corr(f,JU )− corr(fC ,JU )| ≤ ε/2.
By another union bound, using Lemma 39 we may assume that (except with failure probability

o(1)) for every C and U that pass the test, we have

∣∣∣∣EstC,U − corr
(
fC,JU

)∣∣∣∣ ≤ ε/2.

As a result, we have |EstC,U − corr(f,JU)| ≤ ε by combining the two inequalities.

Lemma 43 implies that with very high probability the algorithm never overestimates corr(f,Jk):

Corollary 45. With probability at least 99/100, the algorithm returns γ ≤ corr(f,Jk) + ε.

Proof. For every pair that passes the test, we have EstC,U ≤ corr(f,JU)+ ε ≤ corr(f,Jk)+ ε.

Next we show that with high probability, the algorithm returns γ satisfying γ ≥ corr(f,Jk)− ε.
The correctness of the algorithm follows by combining Corollary 45 and Lemma 46.

Lemma 46. With probability at least 98/100, the algorithm returns γ ≥ corr(f,Jk)− ε.

Proof. Let U∗ be a k-subset that achieves the optimal correlation: corr(f,JU∗) = corr(f,Jk).
We will assume in the rest of the proof of the lemma that

∑

R⊆U∗

f̂(R)2 ≥ ε2. (33)

33



If this is not the case, then it is easy to see that corr(f,Jk) = corr(f,JU∗) ≤ ε, since by Equation (5)
and Cauchy-Schwarz we have

corr(f,JU∗) = E
x∼{±1}k′



∣∣∣∣∣∣
∑

R⊆U∗

f̂(R)χR(x)

∣∣∣∣∣∣


 ≤

√ ∑

R⊆U∗

f̂(R)2 ≤ ε.

In this case the conclusion trivially holds given that the algorithm always returns a nonnegative
number.

It suffices to show that with probability at least 99/100, one of the C’s sampled satisfies C ⊆ U∗

and passes the test together with U∗. If this is the case, then by a union bound with Lemma 43,
with probability at least 98/100, this pair of C and U∗ not only passes the test but also leads to

EstC,U ≥ corr(f,JU∗)− ε ≥ corr(f,Jk)− ε.

For this purpose we consider the distribution of the spectral sample Pf conditioned on the set that
is drawn being a subset of U∗; we denote this conditioned distribution by P∗

f . (Note that P∗
f is well

defined given Equation (33).)
We prove the following claim:

Claim 47. Let A1, . . . ,Ak1/3 be independent samples from P∗
f , and C be their union. Then

PrR∼P∗
f

[
|R \C| ≥ k2/3

]
≤ ε2

20
. (34)

with probability at least εO(k1/3).

We prove Claim 47 at the end. Combining it with Equation (33), we have that C satisfies the
condition given in Equation (34) when A1, . . . ,Ak1/3 ∼ Pf with probability at least

(ε2)k
1/3 · εO(k1/3) = εO(k1/3).

For such a C, the pair C, U∗ would pass the Equation (28) test with high probability. Since the
number of repetitions of the outer loop of line 2 (the number of C we draw) is (1/ε)O(k1/3), the
lemma follows.

Proof of Claim 47. The proof is similar to the proof of Lemma 29.
We draw the sets A1, . . . ,Ak1/3 ∼ P∗

f one by one and always write C to denote the union of
A1, . . . ,Ai sampled so far after i rounds. Initially (before drawing A1) we set C = ∅.

Initially we examine the probability of R ∼ P∗
f with |R \C| = |R| ≥ k2/3. If this probability

is already less than ε2/20, then we are done (this is because as we draw more Ai’s, their union C

can only grow and this probability can only decrease). Assuming this probability is at least ε2/20,
then we pay a probability of ε2/20 to draw such a sample A1 with |A1| ≥ k2/3, and C grows in
size by at least k2/3 after the first round.

For the second round, we again consider the probability of R ∼ P∗
f satisfying |R \C| ≥ k2/3.

Again if this probability is at most ε2/20, then we are done. Otherwise we pay a probability of
ε2/20 to draw a sample A2 such that |A2 \C| ≥ k2/3 and again, C grows in size by at least k2/3.

We repeat the above argument. This can repeat no more than k1/3 times since U∗ is of size k
and thus C ⊆ U∗ can only grow by k2/3 for at most k1/3 rounds. So within k1/3 rounds, there must
be a round after which the probability of R ∼ P∗

f with |R \C| = |R| ≥ k2/3 is at most ε2/20. The

total probability we pay is (ε2/20)k
1/3

.
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6 A 2Õ(k1/3)) Query Classical Tolerant Junta Tester

In this section we prove our main tolerant junta testing result, Theorem 3. Given Section 5, the
main challenge is that in the classical setting, we no longer have access to draws from the spectral
sample. The main challenge, as alluded in Section 2.3, is that we need to handle the case where
there is more than ε2 mass above level k2/3. To do this, we will use the notion of normalized
influences and an extension of the machinery developed in [ITW21]. Recall that a draw from the
level-ℓ normalized influences corresponds to first drawing a set S from the spectral sample of f
conditioned on |S| ≥ ℓ, and then sampling a uniform random set T ⊆ S of size ℓ.

As sketched in Section 2.3, we will use these normalized influences to design and analyze our
key technical tool. This tool is a filtering procedure which, roughly speaking, takes as input a set

C ⊆ [k′] of coordinates and outputs a collection C of 2Õ(k1/3) subsets of C such that one of the sets
C ′ ∈ C has half as many “irrelevant” variables as C, but still contains all of the “relevant” variables
that are likely to appear above level k2/3. Using this, we can start with C = [k′] and use our
filtering procedure to get an initial collection of subsets C. We then run the filtering procedure on
each element of C (for each element of C, this results in a collection of subsets), and take the union
of those collections to create a new collection C′. We repeat this (running the filtering procedure on

each element of C′, etc.) O(log(k′)) times; after doing this, we end up with a list of 2Õ(k1/3) elements
(subsets of [k′]) where with high probability one of them contains only relevant variables. We can
then apply SharpNoise to all variables outside of this subset, just as we did in the quantum tester,
and use our local estimators to determine the junta correlation.

Before embarking on the proof, we first note that we will assume throughout that ε ≥ 2−k0.001 .
Note that this is essentially without loss of generality, since for smaller values of ε the polylog(1/ε)
factor in the exponent of Theorem 3 is bigger than k (assuming a sufficiently large exponent). It
then follows that the tolerant tester of [DMN19], which makes 2k · poly(k, 1/ε) queries, has the
claimed query complexity. We will also assume throughout that k is at least some sufficiently large
absolute constant (since otherwise we can use the [DMN19] tester).

6.1 Approximating Normalized Influences

The filtering procedure that we describe and analyze in Section 6.2 crucially uses the normalized
influences of a suitable function h, which is based on the function f that is being tolerantly tested.
In [ITW21], Iyer et al. gave an algorithm that gives a modestly accurate estimate of the normalized
influences; roughly speaking, their algorithm computes an approximation that is accurate to within
a constant multiplicative error. This error in the [ITW21] estimate would cause some complications
in our analysis. To bypass these complications, in this subsection we give a procedure that computes
an unbiased estimator for the value of NInfU [f ], for a given input set U ⊆ [k′], to within any
desired accuracy ε. We remark that while the [ITW21] approach to estimating NInfU [f ] is based
on random restrictions, in contrast, our procedure takes a quite different approach and is based
on random sampling. We carefully design a particular random variable, show that it has expected
value exactly NInfU [f ] (see Lemma 50), and give an algorithm (Algorithm 3) which samples from
that random variable and thus achieves an arbitrarily accurate approximation of NInfU [f ].
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Input: A function f : {±1}k′ → [−B,B], a positive real number B, a set U ⊆ [k′], an
accuracy parameter ε, and a failure probability parameter δ

Output: An estimate for NInfU [f ]

Estimate-Ninf:

1. S ← ∅

2. gS ← f

3. For u ∈ U :

(a) gS∪{u}(x) = gS(x)− 1
2

(
gS(x) + g(x⊕u

S )
)

(b) S ← S ∪ {u}

4. g(x) = gU (x) · χU(x)

5. M ← 1000(U !)4B4 · log(1/δ)
ε2

6. For t ∈ [1,M ]:

(a) Sample r1, r2, . . . , r|U | ∈ [0, 1] uniformly at random

(b) Sort the ri’s in decreasing order to get y1 > y2 > · · · > y|U |

(c) Set γt to be an estimate of Ex

[(
T√

y|U|
g(x)

)2]
evaluated via Lemma 14 with

accuracy ε
4(|U |!)2 and failure probability ε

100B2(|U |!)2 .

7. Output (|U |!)2 · 1
M

∑M
t=1 γt

Algorithm 3: An algorithm to approximate NInfU [f ].

The main lemma of this section is the following:

Lemma 48. Let B be a positive real number, f : {±1}k′ → [−B,B], ε ∈ [0, 1] and δ ∈ [0, 1/4).
Then with probability at least 1− δ, we have that

∣∣Estimate-Ninf(f,B,U, ε, δ) −NInfU [f ]
∣∣ ≤ ε.

Moreover, Estimate-Ninf(f,B,U, ε, δ) makes at most poly(|U |!, B, 1/ε, log(1/δ)) calls to the ran-
domized algorithm A, where A is a B-bounded randomized algorithm computing f .

We start by noting a few simple properties of g.

Lemma 49. For any U ⊆ [k′], the function g, as defined on line (4), satisfies

g(x) =
∑

S:S⊇U

f̂(S)χS\U (x).

Moreover, we have that

g(x) = χU(x) ·
∑

S:S⊆U

αSf(x
⊕S)

for some coefficients (αS)S⊆U which satisfy
∑

S⊆U |αS | = 1.
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Proof. We will prove both claims by induction on |U |. To start, note that when U = ∅ we get that
g = f , giving us the statement. We now assume that |U | ≥ 1 and the statement is true for all
sets of size |U | − 1. Fix some u ∈ U , and note that by the inductive hypothesis, gU\{u} · χU\{u} is
bounded in absolute value by B and satisfies

gU\{u}(x) · χU\{u}(x) =
∑

S:S⊇U\{u}
f̂(S)χS\(U\{u})(x)

Multiplying both sides by χU\{u} then gives

gU\{u}(x) =
∑

S:S⊇U\{u}
f̂(S)χS(x).

We next note that

gU\{u}(x) + gU\{u}(x
⊕u) =

∑

S:S⊇U\{u}
f̂(S)χS(x) +

∑

S:S⊇U\{u}
f̂(S)χS(x

⊕u)

= 2
∑

S:S⊇U\{u},u/∈S
f̂(S)χS(x).

This implies that

gU (x) = gU\{u}(x)−
1

2

(
gU\{u}(x) + gU\{u}(x

⊕u)
)
=
∑

S:S⊇U

f̂(S)χS(x)

which implies

g(x) = gU (x) · χU(x) =
∑

S:S⊇U

f̂(S)χS\U (x)

as desired.
For the “Moreover” claim, we note that for any x we have

g(x)χU (x) = gU (x) =
1
2gU\{u}(x)− 1

2gU\{u}(x
⊕u).

By the inductive hypothesis there exist coefficients βS for gU\{u} such that
∑

S⊆U\{u} |βS | = 1. So
we get that

g(x)χU (x) =
1

2

∑

S:S⊆U\{u}
βSf(x

⊕S)− 1

2

∑

S:S⊆U\{u}
βSf(x

⊕S∪{u})

Since the above coefficients have absolute values that sum to 1, we have completed the proof of the
inductive step and the lemma.

Now we come to the key observation underlying our estimator:

Lemma 50.

E
y|U|

[
E
x

[(
T√

y|U|
g(x)

)2]
]
=

1

(|U |!)2NInfU [f ].
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Proof. We start by noting that the vector of sorted values (y1, . . . ,y|U |) is distributed uniformly

over the region A := {(a1, . . . , a|U |) ∈ [0, 1]|U | : 1 ≥ a1 ≥ a2 ≥ · · · ≥ a|U | ≥ 0} (see e.g. Lemma 3 of
[BS80]). Thus, we have

E
y|U|

[
E
x

[(
T√

y|U|
g(x)

)2]
]

=
1

|U |!

∫ 1

0

∫ a1

0

∫ a2

0
· · ·
∫ a|U|−1

0
E
x

[(
T√

a|U|
g(x)

)2]
da|U | · · · da1

=
1

|U |!

∫ 1

0
· · ·
∫ a|U|−1

0
E
x





 ∑

S:S⊇U

√
a|U |

|S|−|U |f̂(S)χS\U (x)




2

 da|U | · · · da1

=
1

|U |!

∫ 1

0
· · ·
∫ a|U|−1

0

∑

S:S⊇U

(
a
|S|−|U |
|U | f̂(S)2

)
da|U | · · · da1

=
∑

S:S⊇U

1

|U |! f̂
2(S)

∫ 1

0
· · ·
∫ a|U|−1

0
a
|S|−|U |
|U | da|U | · · · da1

=
∑

S:S⊇U

1

|U |! f̂
2(S) · 1

(|S| − |U |+ 1)(|S| − |U |+ 2) · · · |S|

=
∑

S:S⊇U

1

(|U |!)2
(|S|
|U |

)−1

f̂2(S)

=
1

(|U |!)2NInfU [f ]

as desired.

It now simply remains to argue that we indeed approximate this expectation with high accuracy,
while making not too many calls to A. To do this, we first show that there are B-bounded
randomized algorithms for g and T√

y|U|
g:

Lemma 51. There are B-bounded randomized algorithms for g and for T√
y|U|

g. Moreover both

algorithms call A at most 2|U | times, where A is the B-bounded randomized algorithm for f .

Proof. Note that by Lemma 49, we have that there are coefficients αS with
∑

S |αS | = 1 such that

g(x) = χU (x) ·
∑

S:S⊆U

αSf(x
⊕S).

Given an x ∈ {±1}k′ , our randomized algorithm A′ for g simply outputs

χU(x) ·
∑

S:S⊆U

αSA(x⊕S).

It is easy to see that this computes g in expectation, and that it makes at most 2|U | queries to A,
as desired. Moreover, since

∑
S⊆U |αS | = 1, we see that A′ is also B-bounded.

Finally, since there is an algorithm A′ for g, by Lemma 15 we have that there is a B-bounded
randomized algorithm for T√

y|U|
g that makes the same number of queries to A.
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Lemma 52. In any iteration t ∈ [1,M ] of the loop on line 6 of the algorithm, we have that
0 ≤ γt ≤ B2 and ∣∣∣∣∣E[γt]−E

[(
T√

y|U|
g(x)

)2]
∣∣∣∣∣ ≤

ε

2(|U |!)2 .

Proof. Note that by Lemma 14 and the fact that T√
y|U|

g has a B-bounded randomized algorithm

from Lemma 51, we get that 0 ≤ γt ≤ B2.
For the claim on the expectation, fix any outcome of y|U | and let W denote the algorithm from

Lemma 14 used on line 6(c) to compute γt, the estimate of Ex

[(
T√

y|U|
g(x)

)2]
. Recalling the failure

probability from line 6(c) and the fact that the estimate, like the true value of Ex

[(
T√

y|U|
g(x)

)2]
,

lies in [0, B2], by Lemma 14 we get that our estimate γt satisfies

E
W

[∣∣∣∣∣γt −E
x

[(
T√

y|U|
g(x)

)2]
∣∣∣∣∣

]
≤ ε

4(|U |!)2 +

(
ε

100B2(|U |!)2
)
B2 ≤ ε

2(|U |!)2 .

We then note that using Jensen’s inequality, we have

∣∣∣∣∣ E
yU ,W

[γt]− E
x,y|U|

[(
T√

y|U|
g(x)

)2]
∣∣∣∣∣ ≤ EyU


E
W

[∣∣∣∣∣γt −E
x

[(
T√

y|U|
g(x)

)2]
∣∣∣∣∣

]
 ≤ ε

2(|U |!)2

as desired.

We can now prove Lemma 48:

Proof of Lemma 48. We begin by proving that the algorithm is correct. Indeed, note that by a
Hoeffding bound, using the fact (Lemma 52) that each γt lies in [0, B2], we have that

Pr



∣∣∣∣∣∣
1

M

M∑

t=1

γt −E[γt]

∣∣∣∣∣∣
≥ ε

2(|U |!)2


 ≤ 2 exp

(
−(Mε)2

2MB4(|U |!)4

)
≤ δ.

On the other hand, note that when
∣∣∣ 1
M

∑M
t=1 γt −E[γt]

∣∣∣ ≤ ε
2(|U |!)2 , then

∣∣∣∣∣∣
(|U |!)2 · 1

M

M∑

t=1

γt − (|U |!)2 ·E[γt]

∣∣∣∣∣∣
≤ ε

2
.

Applying Lemma 50 and Lemma 52 then yields
∣∣∣∣∣∣
(|U |!)2 · 1

M

M∑

t=1

γt −NInfU [f ]

∣∣∣∣∣∣
≤ ε,

which completes the proof of correctness.
For the bound on the number of queries, note that in each iteration of the line 6 loop, the

call to Lemma 14 on line 6(c) requires poly(1/ε, |U |!, B) calls to the randomized algorithm, A′, for
T√

y|U|
g. By Lemma 51 each call to A′ makes 2|U | queries to A. So all in all we make at most

M · 2|U | · poly(1/ε, |U |!, B) = poly(1/ε, |U |!, B, log(1/δ))

calls to A throughout the algorithm.
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6.2 Filtering Coordinates

As mentioned above, the key tool for handling functions with mass on “high” levels is a filtering
procedure which we call Refine-Coordinates. Intuitively, this procedure takes a set of coordi-
nates C ⊆ [k′] as input and outputs a collection of subsets C ′ ⊆ C. (Actually, for each subset C ′

that it outputs, it also outputs an associated set I; we will explain the role of these I sets later.)
We will seek to show that for some C ′ returned by the algorithm, we have that |C ′∩R| ≤ |C∩R|/2,
where R ⊆ [k′] is a set of size k. (It may be helpful to think of R as corresponding to the set U⋆

of k coordinates achieving the maximum junta correlation, but in our main lemma, Lemma 53, R
can be any k-set.)

Input: A function f : {±1}k′ → R, a set of coordinates C ⊆ [k′], and a parameter
ε ∈ (0, 1)

Output: A set F of pairs (C ′, I) with C ′, I ⊆ C

Refine-Coordinates:

1. Set F ← ∅ and let

β = max
{
|C|, k

}
, m =

10β

k2/3
log4

(
k′

ε

)
and γ = k1/3 log3

(
k′

ε

)
.

2. Repeat exp
(
O(k1/3 log5(k′/ε))

)
many times:

(a) Draw i1, . . . , im ∼ C uniformly and independently, and set I = {i1, . . . , im}.
(b) Set C ′ ← ∅ and let

f I

ave(x) := E
y∼{±1}k′

[
f(y)

∣∣y
I
= x

I

]
.

(c) While true do

i. Let ℓ, κ and ∆ be the following parameters:

ℓ = k2/3 log3
(
k′

ε

)
, κ = 10 log

(
k′

ε

)
and ∆ = 10.

ii. Let h be the following function:

h := f I

ave − SharpNoise
C\C′

ℓ,κ,∆ f I

ave.

iii. Compute an estimate σ̂2 of Ex[h
2(x)] and exit the loop if σ̂2 ≤ ε2/k2.

iv. Sample a set T ⊆ [k′] among all sets U ⊆ [k], |U | = γ with probability
proportional to NInfU [h].

v. Exit the loop if T ∩ C ⊆ C ′.

vi. Otherwise, set C ′ ← C ′ ∪ (T ∩ C) and repeat.

(d) Add (C ′, I) to F .

3. Return F .

Algorithm 4: An algorithm to refine coordinates.

40



The main lemma that we will want to prove is the following:

Lemma 53. Let f : {±1}k′ → [−1, 1] be such that

W≥100k log(k′/ε)[f ] ≤
(

ε

k′

)5

and let R ⊂ [k′] be a set of size k. Given access to f via a 1-bounded randomized algorithm A
that computes it, and a set C ⊆ [k′] of coordinates such that C ∩R 6= ∅, with probability at least

1− 3/(k′)2, Refine-Coordinates outputs a collection F of at most 2k
1/3·polylog(k′/ε) pairs (C ′, I)

with C ′, I ⊆ C such that at least one pair satisfies

I ⊆ R, |C ′ ∩R| ≤ |C ∩R|
2

, and
∑

S⊆[k′]:
|S∩C\C′|≥κℓ

f̂ I
ave

2
(S) ≤ 4ε2

k2
. (35)

The procedure Refine-Coordinates is given in Algorithm 4. The reader may notice that
details on how to compute an estimate σ̂2 of Ex[h

2(x)] (line 2(c)(iii)) and how to sample a set T of
size γ proportional to NInf of h (line 2(c)(iv)) are missing in Algorithm 4, and these are actually
the only steps in Refine-Coordinates that are computation heavy. This is because the proof of
Lemma 53 is quite complex and for clarity, we will start with a proof under an idealized setting in
Section 6.2.1. Afterwards, we will explain details behind 2(c)(iii) and 2(c)(iv) and lift the proof in
the idealized setting to the real setting in Section 6.2.2.

6.2.1 The Idealized Setting

In the idealized setting, we prove Lemma 53 under the following assumption:

Assumption 54. We make the following two assumptions regarding 2(c)(iii) and 2(c)(iv):

1. Whenever line 2(c)(iii) is reached, if Ex[h
2(x)] ≤ ε2/(2k2) then the algorithm always exits

the loop; if Ex[h
2(x)] ≥ 2ε2/k2, then the algorithm always continues in the loop.

2. Whenever line 2(c)(iv) is reached, a set T is drawn with probability proportional to
NInfU [h] among all sets U ⊆ [k′] of size γ. An equivalent description of the distribution of
T is first drawing a set S of size at least γ from the spectral sample of h and then drawing a
uniform subset T of S of size γ. (Of course this is only well defined if h has mass at or
above level γ, but as will become clear in the proof, this will always be the case given the
first assumption.)

(In fact, under Assumption 54 we will prove Lemma 53 with a slightly stronger success proba-
bility of 1−1/(k′)2; later we will use this stronger success probability to prove the actual Lemma 53
with its 1− 3/(k′)2 success probability.)

We now gather several lemmas on the behavior of T that will be useful for us. We begin by
noting that the purpose of guessing I is to get a “random looking” set of “irrelevant” coordinates in
C, where we think of coordinates in R as relevant and coordinates outside R as irrelevant. Towards
this, we show that we indeed expect to sample a set I that is comprised of irrelevant variables with
non-negligible probability.

Lemma 55. Let R ⊆ [k′] be a set of size at most k, and C ⊆ [k′] be such that C ∩R 6= ∅. Then

Pr
I

[
I ∩R = ∅

]
≥ exp

(
−O

(
k1/3 log5(k′/ε)

))
.
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Proof. Note that

Pr
I

[I ∩R = ∅] = Pr
I

[
I ⊆ C ∩R

]
=

(
1− |R ∩ C|

|C|

)m

.

If |C| ≥ 2k, then we have β = |C| and m = (10|C|/k2/3) log4(k′/ε) and thus,

Pr
I

[
I ⊆ C ∩R

]
≥
(
1− k

|C|

)m

≥ exp

(
−2km

|C|

)
= exp

(
−O

(
k1/3 log4(k′/ε)

))
,

where the inequality follows from 1− x ≥ e−2x for 0 ≤ x ≤ 1/2.
On the other hand, if |C| ≤ 2k, then we have β ≤ 2k and m = O(k1/3 log4(k′/ε)) and thus,

Pr
I

[
I ⊆ C ∩R

]
≥
(
1− |C| − 1

|C|

)m

≥ exp
(
−m log

(
|C|
))
≥ exp

(
−O

(
k1/3 log5(k′/ε)

))
,

where the first inequality uses the fact that C ∩R 6= ∅.

Next we show that if I were drawn from C ∩R rather than from C, then we would expect the
Fourier mass of f I

ave on terms with many irrelevant variables (i.e. variables in C ∩R) to be heavily
dampened. Let

δ =
k2/3

β log3(k′)

(this will be the last parameter needed in this subsection).

Lemma 56. Let f : {±1}k′ → [−1, 1], R ⊆ [k′] be a subset of size k, and C ⊆ [k′] be such that
C∩R 6= ∅. Let I be a set of m coordinates drawn independently from C∩R. Then with probability
at least 0.8, we have

∑

S⊆[k′]:

|S∩C∩R|≥δ|C∩R|

f̂ I
ave

2
(S) ≤

(
ε

k′

)5

. (36)

Proof. Fix a set S ⊆ [k′] such that |S ∩ C ∩R| ≥ δ|C ∩R|. We have that

PrI
[
S ∩ I = ∅

]
=

(
1− |S ∩ C ∩R|

|C ∩R|

)m

≤ 1

10
·
(

ε

k′

)5

,

by our choices of δ and m. Recalling from Equation (4) that f I
ave(x) =

∑
S:S⊆I

f̂(S)χS(x), we get
that

E
I




∑

S⊆[k′]:

|S∩C∩R|≥δ|C∩R|

f̂ I
ave

2
(S)



≤ 1

10
·
(

ε

k′

)5 ∑

S⊆[k′]:

|S∩C∩R|≥δ|C∩R|

f̂2(S) ≤ 1

10
·
(

ε

k′

)5

,

where the second inequality is by using Ex[f
2(x)] ≤ 1. By Markov’s inequality, Equation (36)

occurs with probability at least 0.9.

Given the number of times line 2 is repeated, we have from Lemma 55 and Lemma 56:

Corollary 57. With probability at least 1 − 1/(2(k′)2), at least 10 log(k′) rounds of I that are
sampled in line 2(a) satisfy Equation (36).

42



We fix such a set I (satisfying Equation (36)) in the rest of the proof, and show that for the
iteration with this I, the pair (C ′, I) that is returned satisfies the desired properties in Equation (35)
with probability at least 1/2. Let Dh be the spectral sample of h conditioning on sets being of size
at least γ (see Lemma 59 below which implies that Dh is well defined). Recall that an equivalent
view of step 2(c)(iv) of the algorithm, for the purpose of analysis, is that a set S is drawn from
Dh and then a uniform γ-subset T is drawn from S. Our subsequent analysis will heavily use this
view.

To understand T , we prove a few lemmas to show that most likely S is good, as defined below:

Definition 58 (Good Sets). We say a set S ⊆ [k′] is good if it satisfies the following conditions:

(i) |S ∩R ∩ C \C ′| ≥ ℓ/2;

(ii) |S ∩ C ∩R| ≤ δ|C ∩R|; and

(iii) |S| ≤ 100k log(k′/ε).

In words, its size must be at most roughly k; its intersection with C \ R must be a small fraction
of C \R; and the part of its intersection with C ∩R that lies outside C ′ must not be too small.

Lemma 59. If Ex[h
2(x)] ≥ ε2/(2k2) and Ex[f

2(x)] ≤ 1, then we have

W≥γ [h] ≥ ε2

4k2
.

Proof. By the properties of SharpNoise (Lemma 36), we have that

W<γ [h] ≤W≤ℓ[h] ≤ (∆2−κ)2 ·Ex[f
2(x)] ≤ ε2/(4k2)

by our choices of ∆ and κ. The lemma follows from ε2/(2k2) ≤ Ex[h
2(x)] = W<γ [h]+W≥γ [h].

We are now ready to show that most likely S ∼ Dh is good:

Lemma 60. Suppose that f and h satisfy

Ex[f
2(x)] ≤ 1,

W≥100k log(k′/ε)[f ] ≤ (ε/k′)5 (as in the hypothesis of Lemma 53), (37)

W≥γ [h] ≥ ε2/(4k2) (as given by Lemma 59), (38)

and Equation (36). Then we have

Pr
S∼Dh

[
S good

]
≥ 1− 1

(k′)2
.

Proof. By Lemma 36, we have that for any S ⊆ [k′]

ĥ2(S) =

(
f̂ I
ave(S)− SharpNoise

C\C′

ℓ,κ,∆f I
avê(S)

)2

≤ f̂ I
ave

2
(S),

so it follows from Equation (36) that

∑

S⊆[k′]:

|S∩C∩R|≥δ|C∩R|

ĥ2(S) ≤
(

ε

k′

)5

.
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It then follows Equation (38) that

Pr
S∼Dh

[
|S ∩ C ∩R| ≥ δ|C ∩R|

]
≤ (ε/k′)5

W≥γ [h]
≤ 1

3(k′)2
,

so part (ii) of S being good holds with high probability. We now consider part (i); towards this
end, we will argue that it is unlikely that |S ∩ C \C ′| ≤ ℓ. Indeed, note that by Lemma 36

∑

S:|S∩C\C′|≤ℓ

ĥ2(S) ≤ (∆2−κ)2
∑

S:|S∩C\C′|≤ℓ

f̂ I
ave

2
(S) ≤ (∆2−κ)2 ·Ex[f

2(x)] ≤
(

ε

k′

)5

,

by our choices of ∆ and κ. Similar to the earlier argument, this implies that

PrS∼Dh

[
|S ∩C \C ′| ≤ ℓ

]
≤ 1

3(k′)2
,

and when |S ∩ C \C ′| ≥ ℓ and |S ∩ C ∩R| ≤ δ|C ∩R|, we have

|S ∩ C ∩R \C ′| ≥ ℓ− δ|C ∩R| ≥ ℓ− k2/3

|C| log3(k′) · |C ∩R| ≥ ℓ

2
,

giving part (ii). Finally, for part (iii), again by Lemma 36 we have

∑

S⊆[k′]:
|S|≥100k log(k′/ε)

ĥ2(S) ≤W≥100k log(k′/ε)[f ] ≤
(

ε

k′

)5

(by Equation (37)). As in the two preceding arguments, this means that

Pr
S∼Dh

[
|S| ≥ 100k log(k′/ε)

]
≤ (ε/k′)5

W≥γ [h]
≤ 1

3(k′)2
.

The lemma then follows by a union bound over (i), (ii) and (iii).

The following lemma makes it easier to consider the random process of growing C ′:

Lemma 61. Under the assumptions of Lemma 60, with probability at least 0.9, every S ∼ Dh is
a good set and when the loop of step 2(c) exits, it does so in step (iii) rather than step (v).

Proof. There are at most k′ + 1 many rounds as line 2(c)(vi) always adds an element to C ′ and
there are at most k′ elements. So, by a union bound over Lemma 60, every S sampled is good.
Assuming S is good, |S ∩C \C ′| ≥ ℓ/2 and thus, the probability of having T ∩ (C \C ′) = ∅ is at
most (

1− ℓ/2

|S|

)γ

≤
(
1− ℓ/2

100k log(k′/ε)

)γ

≤ 1

(k′)2

and the lemma follows from a union bound.

Assuming the lemma above holds, the algorithm must exit the loop because Ex[h
2(x)] ≤ 2ε2/k2

for the function h during that round. With this and Lemma 36, we have

2ε2

k2
≥ Ex[h

2(x)] ≥ (1− 2−∆)2
∑

S:|S∩C\C′|≥κℓ

f̂ I
ave

2
(S) ≥ 1

2

∑

S:|S∩C\C′|≥κℓ

f̂ I
ave

2
(S). (39)
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Assuming the condition of Lemma 61, we finally work on how C ′ evolves round by round and
show that with probability at least 1/2, the final C ′ satisfies

|C ′ ∩R| ≤ |C ∩R|
/
2.

To this end we consider the following random process that captures how C ′, starting with C ′ = ∅,
evolves. The process takes at least one round and at most k′ rounds to end. At the beginning of
the i-th round, we receive three random numbers (which may depend on what happens in previous
rounds) ti,αi and βi such that

1 ≤ ti ≤ αi + βi, αi ≥ ℓ/2 and βi ≤ δ|C ∩R| ≪ ℓ.

(They corresponds to |T ∩ C \ C ′|, |S ∩ R ∩ C \C ′| and |S ∩ R ∩ C \C ′|, respectively. The last
two inequalities follow from the assumption that S is good; the first inequality follows from T ⊆ S

and the assumption that T ∩ C \C ′ 6= ∅.)
Given ti,αi and βi, we then draw Xi, which is a random variable that corresponds to the

number of blue balls we get if we draw ti balls from a pool of αi red balls and βi blue balls without
replacement. So E[Xi] = ti · βi/(αi + βi). (This corresponds to the fact that, conditioning on the
value of |T ∩C \C ′|, |T ∩R ∩C \C ′| is distributed exactly the same as Xi.) If the process ended
before round i, then we just set ti = Xi = 0.

Our goal, then, is to show that with probability at least 1/2, we have

∑

i∈[k′]
Xi ≤

|C ∩R|
2|C| ·

∑

i∈[k′]
ti. (40)

(Note that
∑

i Xi corresponds to |C ′ ∩ R| at the end, and
∑

i ti corresponds to |C ′| at the end.
Using C ′ ⊆ C and |C ′| ≤ |C|, it follows from Equation (40) that

|C ′ ∩R| ≤ |C ∩R|
/
2.

So it suffices to prove that Equation (40) occurs with probability at least 1/2.)
To this end, we let τi = E[Xi] for each i so τi = 0 if the process ended before the i-th round

and τi = ti · βi/(αi + βi) otherwise. The following claim is straightforward:

Claim 62. With probability at least 0.9, we have Xi ≤ O(log(k′)) ·max(1, τi) for every i ∈ [k′].

Proof. Fix an i ∈ [k′]. If ti ≥ (αi + βi)/2, then the bound is trivial because τi ≥ βi/2.
Otherwise, Xi is dominated by the sum of ti indicator random variables, each taking 1 with

probability at most 2βi/(αi + βi) ≪ 1 given that βi ≪ αi. If τi ≥ 1/4, the claim follows from a
Chernoff bound. Otherwise, the probability of Xi taking some value a ≥ 10 log(k′) is at most

(ti)
a ·
(

2βi

αi + βi

)a

≤ (1/2)a

and summing over a shows that the probability of Xi ≥ O(log k′) is at most 1/(k′)2. The claim
then follows by a union bound over the k′ rounds.

Assume the condition of the above claim holds. Let Zi = 1 if τi ≤ 1/2 and Xi ≥ 1, and Zi = 0
otherwise. Then we have

Xi ≤ O(log(k′)) · (Zi + τi)

On the other hand, Zi is a sequence of indicator random variables, each taking 1 with probability
at most τi ≤ 1/2 by Markov (or 0 when τi > 1/2). (Of course it is still the case that τi is a random
number that depends on previous rounds.) We prove the following claim:
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Claim 63. With probability at least 0.9, we have

∑

i∈[k′]
Zi ≤ O

(
log2 k′

)
·
∑

i∈[k′]
τi. (41)

Proof. Consider the random process where in each of the k′ rounds, an adversary picks a number
τi ≤ 1/2 and then Zi is set to be 1 with probability τi and 0 with probability 1− τi, and we would
like to prove that Equation (41) holds with probability at least 0.9. We can further assume without
loss of generality that every nonzero τi is 2−j for some j ≥ 1; to see this we just round τi up to
the closest 2−j but only charge 2−j−1 on the RHS of Equation (41). Also note from the definition
of τi = tiβi/(αi + βi) that every nonzero τi is at least 1/k

′.
Let i∗ be the random variable that denotes the smallest i∗ such that

∑
i≤i∗

τi ≥ 0.01, and set
i∗ = k′ + 1 if no such i∗ exists. Let E be the event such that

∑
i<i∗

Zi = 0. Then we have

Pr[E] = (1− τ1) · · · (1− τi∗−1) ≥ exp


−2

∑

i<i∗

τi


 ≥ e−0.02 ≥ 0.98,

where we used 1− x ≥ e−2x for 0 ≤ x ≤ 1/2. It then suffices to show that the probability of

∑

i≥i∗

Zi ≤ O
(
log2 k′

)
·max


1,

∑

i≥i∗

τi




is at least 0.98. Note this is the same claim we would like to prove, except that we now get to add
a max with 1 on the RHS (and raising the probability from 0.9 to 0.98). For convenience, we will
still use the same notation and show that

∑

i∈[k′]
Zi ≤ O

(
log2 k′

)
·max


1,

∑

i∈[k′]
τi


 . (42)

with probability at least 0.98 in the rest of the proof.
To this end, we consider the following equivalent setting:

1. For each j ≤ log(k′), start by drawing a sequence of k′ random bits Zj,1, . . . ,Zj,k′ ∈ {0, 1},
each set to 1 with probability 2−j independently. The adversary does not get to see them.

2. In each of the k′ rounds, the adversary gets to pick a j, set τ to 2−j and Z to the next
unused bit in the sequence Zj,1, . . . ,Zj,k′ .

The following event would imply Equation (42): For every j and every ℓ ≤ k′, we have

∑

i′∈[ℓ]
Zj,i′ ≤ O(log k′) ·max

(
1,

ℓ

2j

)
.

It now follows from a standard Chernoff bound and union bound that the above event occurs with
probability at least 0.98.

As a result of Equation (41), we have that

∑

i∈[k′]
Xi ≤ O

(
log3 k′

)
·
∑

i∈[k′]
τi = O

(
log3 k′

) ∑

i∈[k′]

βi

αi + βi
· ti.
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But for every i, we have by the choice of δ that

βi

αi + βi
≤ δ|C ∩R|

ℓ/2
.

Using (2δ/ℓ) ·O(log3(k′)) ≤ 1/(2|C|) by our choices of δ and ℓ, it follows that Equation (40) holds
with probability at least 0.8.

We briefly summarize how the results established above in this subsubsection give a proof of
Lemma 53 in the idealized setting.

Proof of Lemma 53 under Assumption 54. It is clear that the collection F of (C ′, I) pairs has size
at most 2Õ(k1/3) and that each C ′, I ⊆ C. By Corollary 57, except with failure probability at most
1/(2(k′)2) there are at least 10 log k′ rounds in which the I sampled in line 2(a) lies entirely in R.
For each such I we can apply Lemma 61 and Equation (39) to get that with probability at least
0.9, both

• the second inequality of Equation (35) holds, and

• Equation (40) holds with probability at least 0.8 (in which case we get |C ′ ∩R| ≤ |C ∩R|
/
2,

the first inequality of Equation (35)).

So assuming that there were at least 10 log k′ rounds in which I ⊆ R, the probability that none of
those rounds yields a C ′ satisfying Equation (35) is at most (1− 0.9 · 0.8)10 log k′ < 1/(2(k′)2). The
lemma follows by a union bound.

6.2.2 Handling the Approximations

We now turn to address the fact that we only have access to f via a randomized algorithm A. To
start, we begin by observing that we have a randomized algorithm that computes h in Line 2(c)(ii).

Lemma 64. In each iteration of the loop on line 2(c) inRefine-Coordinates, there is a (22κ∆+1)-
bounded randomized algorithm A′′ for computing h that makes O(κ∆) queries to the randomized
algorithm A for f .

Proof. Recall that we have that by Lemma 36

SharpNoise
C\C′

ℓ,κ,∆f I

ave =

κ∆∑

i=0

αiT
C\C
ρi

f I

ave

for ρ := 1− 1
2ℓ and αi satisfying

κ∆∑

i=0

|αi| ≤ 22κ∆.

We now design our (22κ∆ + 1)-bounded randomized algorithm A′′ for h as follows: Given x,
output

A′(x)−
κ∆∑

i=0

αiNC\C′

ρi
(x)
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where A′ is the 1-bounded randomized algorithm for f I
ave from Lemma 16 and NC\C′

ρi
is the 1-

bounded randomized algorithm for computing T
C\C′

ρi
f I
ave given by Lemma 15. To see that the

mean is correct, note that for any x ∈ {±1}k′ we have

E[A′′(x)] = E


A′(x)−

κ∆∑

i=1

αiNC\C′

ρi
(x)


 = f I

ave(x)−
κ∆∑

i=1

αiT
C\C′

ρi
f I

ave(x) = h(x)

as desired. We further note that boundedness follows from our bound on the sum of the absolute
values of αi. For the query bound, note that each query to A′ and NC\C′

ρi
requires one query to A,

so we make at most 1 + κ∆ queries.

With Lemma 64 in hand, we can now describe our full implementation of Refine-Coordinates.
In particular, to implement 2(c)(iii) we use the algorithm from Lemma 14 with the bounded ran-

domized algorithm A′′ given by Lemma 64 to compute an estimate that has accuracy ± ε2

10k2
with

failure probability at most 2−(k′)2 . In line 2(c)(iv), for every set U ⊆ [k′] of size γ, we compute an
estimate of NInfU [h], which we denote λU , by calling

Estimate-Ninf

(
h, 22κ∆ + 1, U,

(
ε

k′

)10 (
2k

1/3polylog(k′/ε)
)−1
·
(
k′

γ

)−2

, 2−(k′)2 ·
(
k′

γ

)−1
)

(43)

where the reader should think of the 2k
1/3polylog(k′/ε) term above as corresponding to the number

of times we repeat the loop on line 2 in Refine-Coordinates. We then sample T̃ = U with
probability proportional to λU . (Throughout this section, we will write T̃ to denote sets drawn
from the λU ’s and T denote the original sets drawn according to the true normalized influences.)

We begin our analysis with a very useful lemma which shows that in any iteration of the loop
on Line 2(c) of Refine-Coordinates, the distributions of T̃ and T are extremely close to each
other:

Lemma 65. In any iteration of the loop on Line 2(d) of Refine-Coordinates, the total variation

distance between T̃ and T is at most
(
ε
k′

)5 (
2k

1/3polylog(k′/ε)
)−1

.

Proof. Note that it suffices to prove that for any U ∈
(
[k′]
γ

)
we have that

Pr[T̃ = U ] ≥ Pr[T = U ]−
(

ε

k′

)5

·
(
k′

γ

)−1 (
2k

1/3polylog(k′/ε)
)−1

and

Pr[T̃ = U ] ≤ Pr[T = U ] +

(
ε

k′

)5

·
(
k′

γ

)−1 (
2k

1/3polylog(k′/ε)
)−1

.

To show this, we condition on the compound event that (i) for all U ∈
([k′]

γ

)
we have

|λU −NInfU [h]| ≤
(

ε

k′

)10(k′
γ

)−2 (
2k

1/3polylog(k′/ε)
)−1

,

and (ii) Ex[h
2(x)] ≥ ε2

2(k′)2
. Note that these both happen with probability at least 1 − 2 · 2−(k′)2

by Lemma 48 and Lemma 14 by our choice of parameters in the invocation of each call to
Estimate-Ninf.
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By (i), recalling that ∑

U∈([k′]γ )

NInfU [h] = W≥γ [h]

(see the comment immediately after Definition 21), we get that

∣∣∣∣∣∣
∑

U

λU −W≥γ [h]

∣∣∣∣∣∣
≤
(

ε

k′

)10(k′
γ

)−1 (
2k

1/3polylog(k′/ε)
)−1

Since we are conditioning on (ii), we can apply Lemma 59 to get that

W≥γ [h] ≥ ε2

4(k′)2
.

We thus have
∣∣∣∣∣∣
∑

U

λU −W≥γ [h]

∣∣∣∣∣∣
≤
(

ε

k′

)10(k′
γ

)−1 (
2k

1/3polylog(k′/ε)
)−1
≤
(

ε

k′

)7(k′
γ

)−1 (
2k

1/3polylog(k′/ε)
)−1
·W≥γ [h].

It then follows that conditioned on (i) and (ii), we have

Pr[T̃ = U ] ≤
NInfU [h] + (ε/k′)10

(k′
γ

)−2
(
2k

1/3polylog(k′/ε)
)−1

W≥γ [h]

(
1−

(
ε
k′

)7 (k′
γ

)−1
(
2k

1/3polylog(k′/ε)
)−1

)

≤ Pr[T = U ] + 9

(
ε

k′

)7(k′
γ

)−1 (
2k

1/3polylog(k′/ε)
)−1

,

where the second inequality uses NInfU [h]
W≥γ [h]

= Pr[T = U ] and the lower bound on W≥γ [h] from

above.
For the lower bound, reasoning as in the upper bound using (i) and (ii) we get that

Pr[T̃ = U ] ≥
NInfU [f ]− (ε/k′)10

(k′
γ

)−2
(
2k

1/3polylog(k′/ε)
)−1

W≥γ [h]

(
1 +

(
ε
k′

)7 (k′
γ

)−1
(
2k

1/3polylog(k′/ε)
)−1

)

≥ Pr[T = U ]− 9

(
ε

k′

)7(k′
γ

)−1 (
2k

1/3polylog(k′/ε)
)−1

.

Since our assumptions fail with probability at most 2−(k′)2 we then get that

Pr[T̃ = U ] ≥ Pr[T = U ]− 9

(
ε

k′

)7(k′
γ

)−1 (
2k

1/3polylog(k′/ε)
)−1
− 2 · 2−(k′)2

and

Pr[T̃ = U ] ≤ Pr[T = U ] + 9

(
ε

k′

)7(k′
γ

)−1 (
2k

1/3polylog(k′/ε)
)−1

+ 2 · 2−(k′)2

which completes the proof.
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With this strong bound on variation distance in hand, we can now prove Lemma 53 for our
non-idealized Refine-Coordinates procedure.

Proof of Lemma 53. In each fixed iteration of the loop on Line 2(d) of Refine-Coordinates, we

have that dTV (T̃ ,T ) ≤
(
ε
k′

)5 ·
(
2k

1/3polylog(k′/ε)
)−1

by Lemma 65. By the coupling interpretation

of total variation distance, this means that there exists a coupling between T and T̃ such that
Pr[T 6= T̃ ] = dTV (T , T̃ ).

We now imagine drawing sets from T̃ according to this coupling in line 2(c)(iv). Correspond-
ingly, let F̃ and F be the sets built using draws of T̃ and T , respectively. Note that the estimate of
Ex[h

2(x)] in line 2(c)(iii) has accuracy ± ε2

10k2
at every iteration with probability at least 1−2−(k′)2 .

As the loop on line 2(c) can never repeat more than k′+1 times (as we must add a new element to
C ′ each time we reach step 2(c)(vi)), by a union bound with high probability the algorithm always

exits the loop in line 2(c)(iii) when Ex[h
2(x)] ≤ ε2

2(k′)2
and never exits when Ex[h

2(x)] ≥ 2ε2

(k′)2
. This

means that item (1.) of Assumption 54 is satisfied with probability at least 1− 2−k′ . On the other
hand, by Lemma 65, the coupling, and a union bound over all iterations of line 2(c)(iv), we have
that T̃ = T in every iteration of line 2(c)(iv) with probability at least

1− (k′) ·
(
2k

1/3polylog(k′/ε)
)
·
(

ε

k′

)5

·
(
2k

1/3polylog(k′/ε)
)−1
≥ 1−

(
ε

k′

)4

;

when this happens we have that that item (2.) of Assumption 54 is satisfied as well. Our earlier
analysis proved Lemma 53 under Assumption 54, so with overall probability at least

1− 2−k′ −
(

ε

k′

)4

≥ 1− 2

(k′)2
,

we have that the output F̃ of the non-idealized procedure is identical to the output F of the
idealized procedure. By the idealized version of Lemma 53 we get the non-idealized version of
Lemma 53 where now the success probability is at least 1− 3

(k′)2 .

Finally, we turn to proving that Refine-Coordinates does not make too many calls to the
randomized algorithm A.

Lemma 66. Let f : {±1}k′ → [−1, 1] be a function that we have access to via a 1-bounded random-
ized algorithm A, ε ∈ [0, 1], and C ⊆ [k′] be a set of coordinates. ThenRefine-Coordinates(f,C)

makes at most poly(2k
1/3polylog(k′/ε)) calls to A.

Proof. Calls to A are made in lines 2(c)(iii) and 2(c)(iv). In particular, since as noted earlier we
can only repeat the loop of line 2(c) at most k′ + 1 times, using the fact that we only run the

loop on line 2 of Refine-Coordinates 2k
1/3polylog(k′/ε) times, it follows that we make at most

(k′ + 1) · 2k1/3polylog(k′/ε) many calls to each of lines 2(c)(iii) and 2(c)(iv).
By Lemma 14, we have that each call of line 2(c)(iii) makes poly(k′, 2κ∆, ε) queries to the

randomized algorithm A′′ for h (recall that as discussed earlier we invoke Lemma 14 in this context

with accuracy parameter ε2

10k2 and failure probability 2−(k′)2). In turn, each call to A′′ makes
O(κ∆) queries to A by Lemma 64. Thus, in total throughout all executions of line 2(c)(iii) of
Refine-Coordinates we make at most

k′ · 2k1/3polylog(k′/ε) · poly(k′, 2κ∆, ε) ·O(κ∆) ≤ poly(2k
1/3polylog(k′/ε))
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queries to A.
On the other hand, each execution of line 2(c)(iv) makes

(k′
γ

)
calls to Estimate-Ninf as in

Equation (43). By Lemma 48 each of those calls makes

poly(γ!, 2κ∆, 2k
1/3polylog(k′/ε))

calls to A′′, and hence O(κ∆) times as many calls to A by Lemma 64. Thus, over the entire
execution of Refine-Coordinates, we make at most

k′ · 2k1/3polylog(k′/ε) · poly(γ!, 2κ∆, 2k1/3polylog(k′/ε)) ·O(κ∆) ≤ 2k
1/3polylog(k′/ε)

many calls to A via 2(c)(iv).

6.3 Finding a Pure Set of Coordinates

In this section, we explain how we can iteratively apply Refine-Coordinates so as to output a
set C ′ ⊆ C, where C ′ contains no irrelevant variables but still captures almost all of the Fourier
mass in R above degree Ω̃(k2/3).

Input: A function g : {±1}k′ → [−1, 1] along with a 1-bounded randomized algorithm for
g, a set of pairs Fi−1, an integer i, and a parameter ε ∈ [0, 1] that will correspond to the
desired junta correlation accuracy

Output: A set F ′′ of pairs (C ′, I ′) with Fi−1 ⊆ F ′′

Find-High-Level-Coordinates-Recursive:

1. Set Fi ← ∅

2. For each (C, I) in Fi−1:

(a) For each (C ′, I′) in Refine-Coordinates(gIave, C, ε):

i. Add (C ′, I ∪ I′) to Fi

3. If i < log(k′), return
Fi−1 ∪ Find-High-Level-Coordinates-Recursive(g,Fi, i+ 1, ε)

4. Return Fi−1 ∪ Fi

Algorithm 5: A recursive algorithm to find variables in high level Fourier coefficients.

Input: A function f : {±1}k′ → [−1, 1] along with a 1-bounded randomized algorithm for
f , and a parameter ε ∈ [0, 1] that will correspond to the desired junta correlation accuracy

Output: A set F of pairs (C, I) with C, I ⊆ [k′]

Find-High-Level-Coordinates:

1. g ← T1− 1
2k
f

2. Return Find-High-Level-Coordinates-Recursive(g,F−1 ={([k′], ∅)}, 0, ε)

Algorithm 6: A wrapper method around Find-High-Level-Coordinates-Recursive.
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The main guarantee we will need about the Find-High-Level-Coordinates procedure given
in Algorithm 6, is the following:

Lemma 67. Let f : {±1}k′ → [−1, 1] be a function computed by a 1-bounded randomized algo-
rithm A and let R ⊆ [k′] be a set of size k. With probability at least 1− 1

k′ ,
Find-High-Level-Coordinates(f, ε) outputs a set F such that for some (C, I) ∈ F we have

(i) I ⊆ R;

(ii) C ⊆ R;

(iii)
∑

S⊆[k′]:

|S\C|≥k2/3polylog(k′/ε),
|S|≤k

f̂ I
ave

2
(S) ≤ ε2

100 .

Proof. We start with the simple observation that since f is a [−1, 1] valued function, the attenuta-
tion of its high-degree weight by the noise operator yields

W≥100k log(k′/ε)
[
T1− 1

2k
f
]
≤
(
1− 1

2k

)100k log(k′/ε)

E[f2] ≤
(

ε

k′

)20

.

Hence by Equation (4), for any set I ⊆ [k′] we have

W≥100k log(k′/ε)[gIave] ≤
(

ε

k′

)20

,

which means that we can apply Lemma 53 to any function gIave. Indeed, we will repeatedly apply
Lemma 53 to establish the following claim:

Claim 68. For i ≤ log(k′), let F ′
i denote the set Fi that has been produced by the procedure

Find-High-Level-Coordinates-Recursive(g,C, i, ε) after line (2) has been completed, and let
F−1 = {([k′], ∅)}. Then with probability at least 1− (i + 1) · 10

(k′)2
, there exists an ℓ ≤ log(k′) and

pairs (Cj , Ij) ∈ F ′
j , for all −1 ≤ j ≤ min{i, ℓ}, such that [k′] := C−2 =: C−1 ⊇ C0 ⊇ C1 ⊇ C2 ⊇

· · · ⊇ Cmin{i,ℓ} and Imin{i,ℓ} ⊇ Ii−1 ⊇ · · · ⊇ I−1 := ∅, which satisfy the following for all −1 ≤ j ≤ ℓ:

(a) Ij ⊆ R

(b) |Cj ∩R| ≤





|R|
2j+1 j < ℓ

0 j = ℓ

(c)
∑

S:|S∩Cj−1\Cj |≥k2/3polylog(k′/ε)

ĝ
Ij
ave

2

(S) ≤ 4ε2

k2 .

Before proving the claim, we first show how it implies Lemma 67. Indeed, we’ll apply the claim
with i = log(k′) and show that (Cℓ, Iℓ) will satisfy conditions (i), (ii), and (iii) of the lemma. Let
[k′] := C−2 =: C−1 ⊇ C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cmin{i,ℓ} and Imin{i,ℓ} ⊇ Ii−1 ⊇ · · · ⊇ I−1 := ∅ be the
sequence of sets produced by Claim 68 for i = log(k′). To start, note that properties (a) and (b)
immediately gives us that (Cℓ, Iℓ) satisfies (i) and (ii).
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It remains to show that property (iii) holds. To start, note that for every set S ⊆ [k′] of size at
most k, we have that for any set I ⊆ [k′]

ĝIave
2
(S) ≥

(
1− 1

2k

)2|S|
f̂ I
ave

2
(S) ≥ 1

4
f̂ I
ave

2
(S).

Thus, we can conclude that that property (c) implies that for all −1 ≤ j ≤ ℓ we have that

∑

S:|S∩Cj−1\Cj |≥k2/3polylog(k′/ε)
|S|≤k

f̂
Ij
ave

2

(S) ≤ 4
∑

S:|S∩Cj−1\Cj |≥k2/3polylog(k′/ε)
|S|≤k

ĝ
Ij
ave

2

(S) ≤ 16ε2

k2
, (44)

We now note that if |S \ C ′
ℓ| ≥ k2/3(ℓ+ 2)polylog(k′/ε), then there must exists a j ≤ ℓ such

that |S ∩Cj−1 \Cj | ≥ k2/3polylog(k′/ε), since

ℓ⋃

j=0

S ∩C ′
j−1 \C ′

j = S \C ′
ℓ.

Using this and Iℓ ⊇ Ii−1 ⊇ · · · for the first inequality below, we get that

∑

S⊆[k′]:

|S\C|≥k2/3(ℓ+2)polylog(k′/ε),
|S|≤k

f̂ Iℓ
ave

2

(S) ≤
ℓ∑

j=0

∑

S⊆[k′]:

|S∩Cj−1\Cj |≥k2/3polylog(k/ε)
|S|≤k

f̂
Ij
ave

2

(S)

≤
log(k′)∑

j=0

∑

S⊆[k′]:

|S∩Cj−1\Cj |≥k2/3polylog(k′/ε)
|S|≤k

f̂
Ij
ave

2

(S)

≤ log(k′) · 16ε
2

k2
(by Equation (44))

≤ ε2

100
.

Since ℓ ≤ log(k′) this gives us property (iii) as desired.
We now turn to prove Claim 68.

Proof of Claim 68. We prove the statement by induction on i. For the base case, note that when
i = −1, taking ℓ = 0 and (C−1, I−1) = ([k′], ∅) satisfies the required conditions. We now assume
the statement holds for i and wish to show that it is true for Fi+1. By the inductive hypothesis,
let ℓ ≤ log(k′) and C−1 ⊇ C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cmin{i,ℓ} be as promised by the lemma with
corresponding sets Imin{i,ℓ} ⊇ · · · ⊇ I−1.

We claim that if, in the inductive hypothesis, we can take ℓ ≤ i, then we are done. To see this,
observe that in the execution of the loop on line (2) in the (i + 1)st recursive call corresponding
to (Ci, Ii), we will add a pair (C, I) to Fi+1 which by the guarantee of Refine-Coordinates

(Lemma 53) satisfies C ⊆ Ci and I ⊆ Ci. Indeed, in this iteration we always have that the set
C ′ computed by Refine-Coordinates on line 2(a) is a subset of Ci by the output guarantee of
Refine-Coordinates. Moreover, since the pair we are adding is of the form (C ′, Ii ∪ I′), we have
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that I = Ii ∪ I′ ⊇ Ii. So taking Ci+1 = C and Ii+1 = I, we have the new sequence of inclusions
[k′] := C−2 =: C−1 ⊇ C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cmin{i+1,ℓ} and Imin{i+1,ℓ} ⊇ Ii−1 ⊇ · · · ⊇ I−1 := ∅ as
required, and we inherit that (a), (b) and (c) hold for all −1 ≤ j ≤ ℓ from the inductive hypothesis.

So we assume that in the inductive hypothesis we cannot take ℓ ≤ i, i.e. we must have ℓ > i.
This implies that |Ci ∩ R| ≥ 1 (because if Ci ∩ R = ∅, we could have taken ℓ = i). Now again
consider the execution of the loop on line (2) of the (i+1)st recursive call corresponding to (Ci, Ii).
By Lemma 53, it follows that Refine-Coordinates(gIiavg,Ci) outputs a pair (C ′, I′) such that

I′ ⊆ R, C ′ ⊆ Ci,

|C ′ ∩R| ≤ |Ci ∩R|
2

,

and ∑

S:|S∩Ci\C′|≥k2/3polylog(k′/ε)

̂
gIi∪I

′

avg

2

(S) ≤ 4ε2

(k′)2
.

It thus would suffice for us to take Ci+1 = C ′ and Ii+1 = Ii ∪ I′ if we can choose ℓ = i + 2. If we
cannot choose ℓ = i+ 2, then we must have that i+ 1 = log(k′). In this case, it follows that

|Ci+1 ∩R| ≤ |Ci ∩R|
2

≤ |R|
2i+1

≤ |R|
2k′

< 1.

So |Ci+1∩R| = 0 and we can take ℓ = i+1. We have the desired inclusions of the Cj ’s and the Ij ’s;
the arguments above establish that (a), (b) and (c) all hold for j = ℓ = i + 1; and we inherit (a),
(b), (c) holding for smaller values of j from the inductive case. So we have achieved the inductive
claim for Fi+1.

Finally, note that by a union bound, both the inductive step and our call toRefine-Coordinates

corresponding to the pair (Ci, Ii) succeed with probability 1− (i+1) 10
(k′)2

, completing the inductive

step and the proof of Claim 68.

This concludes the proof of Lemma 67.

We will also need some simple bounds on the size of the family of pairs that we output and the
number of oracle calls made to the randomized algorithm computing f .

Lemma 69. Let f : {±1}k′ → [−1, 1] and ε ∈ [0, 1], then Find-High-Level-Coordinates(f, ε)

outputs a family F of size at most 2k
1/3polylog(k′/ε).

Proof. Let F ′
i denote the set F ′ computed in the loop on line 2 of the ith recursive call of Find-

High-Level-Coordinates-Recursive. Since each call to Refine-Coordinates in line 2(a) of

Find-High-Level-Coordinates-Recursive adds 2k
1/3polylog(k′/ε) pairs to F by Lemma 53, it

follows that
|F ′

i+1| ≤ 2k
1/3polylog(k′/ε) · |F ′

i |.
Since we have

|F0| ≤ 2k
1/3polylog(k′/ε),

it follows that Find-High-Level-Coordinates(f, ε) outputs at most

|{[k′], ∅}| +
log(k′)∑

i=0

|Fi| ≤ 1 +

log(k′)∑

i=0

(
2k

1/3polylog(k′/ε)
)i+1

≤ 2k
1/3polylog(k′/ε)

pairs as desired.
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Lemma 70. Find-High-Level-Coordinates(f, ε) makes at most 2k
1/3polylog(k′/ε) queries to A,

the 1-bounded randomized algorithm for f .

Proof. Recall that for any I ⊆ [k′] by Lemma 16 and Lemma 15 it follows that there is a randomized
1-bounded algorithm for gIave that only needs to query A once.

Let F ′
i denote the set F ′ computed in the loop on line 2 of the ith recursive call of Find-High-

Level-Coordinates-Recursive. Note that in the (i + 1)st iteration, all queries to f will come
from calling Refine-Coordinates in line 2(a) of Find-High-Level-Coordinates-Recursive.
It follows from Lemma 66 that the (i+ 1)st recursive call makes

|Fi| · 2k
1/3polylog(k′/ε)

calls to A, where |F−1| = 1. Since Fi is a subset of the output of

Find-High-Level-Coordinates(f, ε) it then follows that |Fi| ≤ 2k
1/3polylog(k′/ε). Combining

this with the fact that there are at most log(k′) + 1 rounds then yields that we make at most

2k
1/3polylog(k′/ε) calls to A as desired.

6.4 Putting It All Together

6.4.1 Parameters for the Main Algorithm

As before, we will need several parameters for our main algorithm. Throughout the section, we will
write these parameters in terms of k′, which will correspond to the number of coordinate oracles
given by Theorem 24.

We now set ℓ to correspond to the set size limit in the summation limits of (iii) from Lemma 67.
In particular, this gives us that ℓ = k2/3polylog(k′/ε).

We will also need a variety of parameters for our local estimators. In particular, we will set
these to all be identical to their counterparts in Section 5.5. That is, we choose κ,∆ as

κ = 10 log

(
k′

ε

)
and ∆ = 10r log

(
k′

ε

)
.

respectively where

L = κℓ, τ =
ε

10
, and r = Θ(

√
L logL log(1/τ))

and set

N := k′O(r) · 2O(κ∆) · k
′2

ε2
≤ exp

(
k1/3 · polylog

(
k′

ε

))
.

Because these parameters are set identically (as functions of k′, ε, and ℓ) as in Section 5.5, we
have that Lemma 39 still holds for any function g : {±1}k′ → {±1} with a 1-bounded randomized
algorithm computing it with our new choice of ℓ.

6.4.2 The Testing Algorithm

With the above setup in place, we can finally state our classical testing algorithm.
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Input: A boolean function f : {±1}n → {±1}, an integer k, and a parameter ε ∈ [0, 1]

Output: A estimate for corr(f,Jk)
Tolerant-Junta-Tester:

1. Set γ = 0

2. Compute coordinate oracles {O1,O2, . . . ,Ok′} by invoking Theorem 24 on f with
accuracy ε and failure probability 1

k . Let k
′ = poly(k, ε−1) denote the number of

oracles.

3. Let g : {±1}k′ → [−1, 1] be the function given by

g(y) = Ex

[
f(x)

∣∣∣∣O1(x) = y1,O2(x) = y2, . . . ,Ok′(x) = yk′

]
, which has a a 1-bounded

randomized algorithm, which we call Ag, by Theorem 25.

4. F ← Find-High-Level-Coordinates(g, ε2)

5. For (C, I) ∈ F :

(a) γ′ = 0, A = ∅

(b) Define
(
gIave

)C
← SharpNoiseCℓ,κ,∆(g

I
ave).

(c) Sample x(1),x(2), . . . x(N) ∼ {±1}k′ uniformly and independently at random.

(d) For each x(i) draw a sample bundle B(i) ∼ D
x(i),C .

(e) For each set U ⊆ [k′] of size k such that U ∩ I = ∅ and U ⊇ C, run the algorithm
of Lemma 39 using x(1), . . . ,x(N),B(1), . . . ,B(N) to get an (ε/2)-estimation EstC,U

of corr

((
gIave

)C
,JU

)
; if EstC,U > γ′, update γ′ = EstC,U and A← U .

(f) Let EstA be an estimate of corr(g,JA) to accuracy ±ε/20 with failure probability
2−Ω((k′)2) and update γ ← max(γ,EstA).

6. Return γ

Algorithm 7: The overall classical tolerant junta tester

We give some high level intuition. Let U⋆ denote the set of k coordinates that maximize
the junta correlation. At a high level the algorithm begins by building coordinate oracles so as
to reduce the problem to a question about g, which is a real-valued function over {±1}k′ where
k′ = poly(k, 1/ε), rather than f , which is a Boolean-valued function on n coordinates. Next, we
call Find-High-Level-Coordinates(g, ε2) with the goal of finding a pair (C⋆, I⋆) such that C⋆

contains all coordinates in U⋆ that appear at level ℓ and above and I⋆ ⊆ U⋆. For this particular
pair (C⋆, I⋆), we will show that for every set U that we produce an estimate for in line 5(e), we have
that with high probability EstC⋆,U will be within ε of corr(g,JU ). As a result we will correctly
update γ on line 5(f) with an accurate estimate of the true junta correlation of g, which by the
properties of the coordinate oracles will roughly equal the junta correlation of f . On the other
hand, we will not have such guarantees about our estimates of the junta correlation arising from
pairs (C, I) ∈ F not equal to (C⋆, I⋆). It is precisely for this reason that we will require line 5(f)
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to check the correlation between g and the best junta over the set of variables A identified in line
5(e), so as to ensure that we do not spuriously update γ with a false estimate that is higher than
the true junta correlation.

6.4.3 Efficiency

In this section, we will prove the following lemma:

Lemma 71. For f : {±1}n → {±1} and k a positive integer, Tolerant-Junta-Tester(f, k, ε)

make at most 2k
1/3polylog(k/ε) queries to f in expectation.

Before proving Lemma 71, we first show that we can efficiently implement line 5(f).

Lemma 72. The junta correlation corr(g,JA) on line 5f can be ±ε/20-approximated, with failure
probability 2−Ω((k′)2), using poly(k/ε) calls to the randomized algorithm Ag for g.

Proof. First, recall from Equation (5) that

corr(g,JA) = E
x

[∣∣∣gAave(x)
∣∣∣
]
, (45)

and that by Equation (4) the function gAave is 1-bounded. Hence by Lemma 16, there is a 1-bounded

randomized algorithm A′
g for gAave that makes a single call to Ag.

Our approach to approximating corr(g,JA) is as follows: we (1) first sample y1, . . . ,y(k′)2/ε2 ∼
{±1}k′ ; then (2) compute, for each i, a value zi(yi) that is a ±ε/100-accurate estimate (with failure

probability 2−(k′)2) of |gAave(yi)| using Claim 13; and (3) finally output

Z :=
ε2

(k′)2

(k′)2/ε2∑

i=1

zi

as our approximation. Let A′′
g denote the (randomized) algorithm used to estimate zi(y

i) in step (2)
above.

Let us argue correctness for this approximation. Since for every possible outcome yi of yi the
random variable zi(yi) is bounded in [−1, 1], by Claim 13 we have that

∣∣∣∣∣EA′′
g

[zi(yi)]−
∣∣∣gAave(yi)

∣∣∣
∣∣∣∣∣ ≤

ε

100
+ 2 · 2−(k′)2 ≤ ε

50
,

from which it follows that
∣∣∣∣∣∣∣∣∣
E

yi,A′′
g

[zi(yi)]−

=corr(g,JA) by (45)︷ ︸︸ ︷
E
yi

[∣∣∣gAave(yi)
∣∣∣
]
∣∣∣∣∣∣∣∣∣
≤ E

yi

[∣∣∣∣∣EA′′
g

[zi(yi)]−
∣∣∣gAave(yi)

∣∣∣
∣∣∣∣∣

]
≤ ε

50
. (46)

We apply a Hoeffding bound to Z (a sum of independent 1-bounded random zi(y
i)’s) to infer

that with failure probability at most 2−Ω((k′)2), we have

∣∣∣∣∣Z − E
yi,A′′

g

[zi(y
i)]

∣∣∣∣∣ ≤
ε

50
. (47)
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By the triangle inequality, Equation (46) and Equation (47) give that |Z − corr(g,JA)| ≤ ε/20
except with failure probability 2−Ω((k′)2), as desired.

It remains to bound the number of queries this procedure makes. This is straightforward: each
invocation of Claim 13 requires poly(k′, 1/ε) calls to Ag and we make (k′)2/ε2 such invocations.
Thus we make poly(k′, 1/ε) = poly(k/ε) calls in total, as claimed.

With Lemma 72 in hand, we now prove Lemma 71.

Proof of Lemma 71. We begin by noting that by Theorem 24, Tolerant-Junta-Tester makes
at most poly(k, ε−1) queries in line 2.

We now bound the number of queries made to g in the rest of the algorithm. By Lemma 70, we
have that the call to Find-High-Level-Coordinates(g, ε2) in line 4, makes at most 2k

1/3polylog(k′/ε)

queries to g.
Now fix a particular iteration of the loop on line 5, i.e. a particular (C, I) pair. Note that

using the local estimators to compute the junta correlation for all of the sets U in line 5e can be
implemented using 2k

1/3polylog(k′/ε) queries to gIave by Lemma 39. (Similar to before, this crucially
uses the fact that we can reuse the sample bundles for all k-subsets U of [k′] such that U∩I = ∅ and
U ⊇ C.) In turn this corresponds to 2k

1/3polylog(k′/ε) queries to g by applying Lemma 16. Finally,
estimating corr(g,JA) on line 5f makes at most poly(k/ε) queries by Lemma 72. Since we repeat

the loop on line 5 at most 2k
1/3polylog(k′/ε) times by Lemma 69, we conclude that we make at most

2k
1/3polylog(k′/ε) queries to g throughout this loop.
Lemma 71 now follows because each query to g makes at most poly(k′) queries to f in ex-

pectation, by Theorem 25. In particular, applying linearity of expectation gives that we make at
most

2k
1/3polylog(k′/ε) = 2k

1/3polylog(k/ε)

queries to f in expectation, as desired, where the equality used the fact that k′ = poly(k, ε−1).

6.4.4 Correctness

We now turn to prove that γ will indeed approximate corr(f,Jk) up to O(ε) error. We will prove
this in two parts. For the first part, we show that γ cannot significantly overestimate the junta
correlation:

Lemma 73. With probability 1− o(1),

γ ≤ corr(f,Jk) + ε.

Proof. We condition on the event that the coordinate oracles that we compute in line 2 outputs a
set of oracles satisfying Theorem 24. We further condition on the event that all of our estimates
on line 5f have error at most ε/20. By Lemma 72 and a union bound over all elements of F , these
events both happen with probability at least

1− 1

k
− |F|2−Ω((k′)2) = 1− o(1),

where we also used the fact that |F| ≤ 2k
1/3polylog(k′/ε), which follows from Lemma 69.

Now let S ⊆ [n] denote the set of coordinates corresponding to our coordinate oracles. We now

note that since g = fS
ave, we get that in line 5f we always have

corr(g,JA) = corr(fS
ave,JA) = corr(f,JA) ≤ corr(f,Jk)
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where the second equality used the fact that A ⊆ S. It thus follows that we always have

EstA ≤ corr(f,Jk) +
ε

20

whenever we run line 5f, and consequently γ ≤ corr(f,Jk) + ε
20 as desired.

It remains to bound γ in the other direction:

Lemma 74. With probability 1− o(1), we have that

γ ≥ corr(f,Jk)− 4ε.

Proof. We will assume throughout the proof that we successfully created the coordinate oracles on
line 2 of Tolerant-Junta-Tester (note that this happens with 1− o(1) probability), and we let
S ⊆ [n] denote the corresponding set of coordinates.

We now choose R = U⋆ ⊆ [k′] to be a set of size k that achieves corr(g,JR) = corr(g,Jk).
Applying Lemma 67, we get that with 1 − o(1) probability there exists a pair (C⋆, I⋆) ∈ F such
that I⋆ ⊆ R, C⋆ ⊆ R, and

∑

S⊆[k′]:
|S\C⋆|≥ℓ,

|S|≤k

ĝI⋆ave
2

(S) ≤ ε2

100
. (48)

Our aim is to show that in the iteration of the loop on line 5 corresponding to (C⋆, I⋆), we will
update γ to be large. Towards this end, we assume that the conclusion of Lemma 39 holds for
every set U that we compute in this iteration of line 5, that is

∣∣∣∣∣∣
EstC⋆,U − corr

((
gI⋆ave

)C⋆

,JU
)∣∣∣∣∣∣
≤ ε

2
. (49)

Note that this also holds with 1− o(1) probability, as we output a bad estimate for each individual
U with probability at most 2−(k′/ε)2 by Lemma 39, and there are at most 2k

′
sets U .

We will require the following claim:

Claim 75. For any k-subset U ⊆ [k′] satisfying U ⊇ C⋆ and U ∩ I⋆ = ∅, we have that

∣∣∣∣∣∣
corr

((
gI⋆ave

)C⋆

,JU
)
− corr (g,JU )

∣∣∣∣∣∣
≤ ε

2
.

Before proving the claim, we first use it to finish the proof of Lemma 74. Together with
Equation (49), we get that for all k-subsets U of [k′] satisfying U ⊇ C⋆ and U ∩ I⋆ = ∅, we have

∣∣EstC⋆,U − corr (g,JU )
∣∣ ≤ ε; (50)

specializing to U = R, we get that

∣∣EstC⋆,R − corr (g,JR)
∣∣ ≤ ε.

So it follows that after the completion of line 5e, we have

γ′ ≥ EstC⋆,R ≥ corr(g,JR)− ε = corr(g,Jk)− ε.
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If A is the set used on line 5f, it follows from Equation (50) and the above inequality that

corr(g,JA) + ε ≥ EstC⋆,A = γ′ ≥ corr(g,Jk)− ε.

So we conclude that
corr(g,JA) ≥ corr(g,Jk)− 2ε.

Thus assuming that the error in the estimate on line 5f is indeed at most ε/20 (which happens with
overwhelming probability), we have that

γ ≥ EstA ≥ corr(g,Jk)− 3ε.

Finally, since we successfully created the coordinate oracles, we have that

corr(g,Jk) = max
S⊆S:|S|≤k

corr(fS
ave,JS) = max

S⊆S:|S|≤k
corr(f,JS) ≥ max

S⊆[n]:|S|≤k
corr(f,JS)− ε

where the final step used property (2) from Theorem 24. Thus, we get that

γ ≥ corr(f,Jk)− 4ε

with probability 1− o(1), as desired.
So it only remains to prove the claim:

Proof of Claim 75. The proof is almost identical to the proof of Lemma 43. Fix any U as specified
in Claim 75. We run the argument of Lemma 43’s proof starting at Equation (31), now with

corr(g,JU ) in place of corr(f,JU ) and with corr

((
gI⋆ave

)C⋆

,JU
)

in place of corr
(
fC ,JU

)
. That

argument gives us that

∣∣∣∣∣∣
corr

((
gI⋆ave

)C⋆

,JU
)
− corr (g,JU )

∣∣∣∣∣∣
≤

√√√√√
∑

S⊆U




̂(
gI⋆ave

)C⋆

(S)− ĝ(S)




2

, (51)

which is exactly analogous to Equation (32) in the earlier argument. As in the earlier argument,
we now divide the sum inside the square root into two parts:

1. S ⊆ U with |S \C⋆| = |S ∩C⋆| ≤ ℓ: For this part, exactly as in the earlier argument, we
have from Lemma 36 that

∑

S⊆U :|S\C⋆|≤ℓ




̂(
gI⋆ave

)C⋆

(S)− ĝ(S)




2

≤
∑

S⊆U :|U\C⋆|≤ℓ

ĝ(S)2 · (∆2−κ)2 ≤ (∆2−κ)2 ≤ ε2

20

by our choices of κ and ∆.

2. S ⊆ U with |S \C⋆| > ℓ: For this part we have from Lemma 36 and Equation (48) that

∑

S⊆U :|S\C⋆|>ℓ




̂(
gI⋆ave

)C⋆

(S)− ĝ(S)




2

≤
∑

S⊆U :|S\C⋆|>ℓ

ĝ2(S) =
∑

S⊆U :|S\C⋆|>ℓ

ĝI⋆ave
2

(S) ≤ ε2

100

where the equality step crucially used that U ∩ I⋆ = ∅ and the final inequality used that we
only sum over sets with |S| ≤ |U | ≤ k (in this inequality Equation (30) plays a role
analogous to Equation (29) in the earlier argument).
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Combining the bounds on these two parts, we get that

∣∣∣∣∣∣
corr

((
gI⋆ave

)C⋆

,Jk
)
− corr (g,Jk)

∣∣∣∣∣∣
≤ ε

2

as desired, and Claim 75 is proved.

This concludes the proof of Lemma 74.

6.4.5 Proof of Theorem 3

We can finally reap the benefits of our labor and prove Theorem 3.

Proof of Theorem 3. We run Tolerant-Junta-Tester(f, k, ε/2) to compute a value γ. If the
number of queries it makes exceeds k × ( the bound on the expected number of calls to f given in
Lemma 71), then we abort the execution of the algorithm and set γ = 0. We then output 1

2(1− γ)
as our estimate of dist(f,Jk).

By Lemma 71, we always make at most 2k
1/3polylog(k/ε) queries. By Markov’s inequality, the

probability that we abort is at most 1/k. Assuming we do not abort, by Lemma 73 and Lemma 74,
we have that ∣∣γ − corr(f,Jk)

∣∣ ≤ 2ε (52)

with probability 1− o(1). So assuming that we do not abort and that Equation (52) holds (which
happens with overall probability 1 − o(1)), we correctly estimate the junta distance dist(f,Jk) of
f to within additive error ±ε, where we used the fact that

dist(f,Jk) =
1

2
(1− corr(f,Jk)).

This completes the proof of the theorem.

Acknowledgements

X.C. is supported by NSF grants IIS-1838154, CCF-2106429, and CCF-2107187. S.P. is supported
by NSF grants CCF-2106429, CCF-2107187, CCF-2218677, ONR grant ONR-13533312, and a
NSF Graduate Student Fellowship. R.A.S. is supported in part by NSF awards CCF-2106429 and
CCF-2211238.

References

[BCE+19] Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant
junta testing and the connection to submodular optimization and function
isomorphism. ACM Trans. Comput. Theory, 11(4):24:1–24:33, 2019.
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