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Following the recent observation of non-zero spin polarization and spin alignment of a few hadrons,
the rotational aspect of quark-gluon plasma formed in heavy ion collisions has attracted considerable
interest. The present work explores the effect of the Coriolis force, arising due to this rotation, on
the shear viscosity of the medium. Using the relaxation time approximation within the kinetic the-
ory framework, we analyze the parallel (η||/s), perpendicular (η⊥/s) and Hall (η×/s) components of
shear viscosity to entropy density ratio under rotation. The estimation of anisotropic shear viscosity
components is carried out using hadron resonance gas degrees of freedom below the critical (tran-
sition) temperature and massless partonic degrees of freedom above this temperature. Our results
show that rotation suppresses the shear viscosity of the medium, with the degree of suppression
depending on the ratio between the relaxation time and the rotational period. In the context of
realistic heavy-ion collision experiments, the temperature and angular velocity both decrease with
time, and one can establish a connection between them through the standard approximate cooling
law. For a temperature-dependent angular velocity Ω(T ), we obtain a traditional valley-like pat-
tern for all components η||/s, η⊥/s and η×/s with reduced magnitudes compared to the valley-like
isotropic η/s one encounters in the absence of rotation.

I. INTRODUCTION

The primary goal of the heavy ion collision (HIC) experiments performed in the Large Hadron Collider (LHC) and
Relativistic Heavy Ion Collider (RHIC) is to study the properties of highly dense and hot quantum chromodynamics
(QCD) matter [1, 2]. A plethora of theoretical and experimental studies have supported the formation of quark-gluon
plasma (QGP) in the initial stage of the HIC, followed by a hadron gas phase. Many experimental observables, such as
jet quenching [3], collective flow [4], nuclear suppression factor (RAA) of heavy mesons [5] etc., show signs of the initial
formation of QGP in HICs. It is worth mentioning that while the above-mentioned experimental observables have been
well studied for the nuclear matter produced in HIC devoid of external electromagnetic fields and/or vorticity, their
studies by including the latter effects have been less explored. The initial colliding nuclei of an off-central HIC can
have a large orbital angular momentum (OAM), a fraction of which gets transferred to the quark-gluon medium [6–8].
Moreover, colliding nuclei being electrically charged and moving with ultra-relativistic velocity can create a huge
transient magnetic field in the reaction zone. The dynamics of the QCD matter in the presence of magnetic fields
and angular momentum opens up intense theoretical research in the field of HIC. To incorporate the effect of initial
OAM in medium dynamics, two different treatments exist — in one approach, the OAM is taken to be stored in the
medium locally in terms of fluid vorticity [9], whereas in the other approach, a globally rotating medium is considered
by defining a transformation which links the inertial frame coordinates with corotating frame coordinates [10]. In
the global rotation approach, the magnitude of angular velocity is essentially taken as the spatial average of the local
vortices in the fluid [11]. There exists a list of seminal papers in which quantum field theory has been explored from a
globally rotating frame [12–17]. Various other studies have considered different effective field-theoretical approaches
on globally rotating QCD matter to investigate associated diverse rotational effects [18–31].

On the other hand, on the experimental side, there is enormous interest in looking for evidence of vorticity in
the medium created in HICs. This vorticity manifests itself through the spin-orbit coupling, which can generate
polarization or spin alignment along the direction of the vorticity in the local fluid cell. Averaged over the entire
system, this polarization points along the direction of the angular momentum of the collision [7, 8]. A few years
ago, the STAR collaboration made a precise measurement of the average polarization of Λ and Λ̄ hyperons in mid-
central collisions (20–50 % centrality) [6]. Since the polarization of Λ and Λ̄ is solely carried by the strange quark,
these measurements provided a direct probe of the rotational properties of the medium. The results revealed a
positive, nonzero value for the polarization vector, offering compelling evidence for the existence of strong vorticity.
Using the hydrodynamics relation, the measured

√
SNN -averaged polarization values across

√
SNN = 7.7 to 200 GeV

correspond to average rotational vorticity of approximately (9± 1)× 1021 per sec [6, 32]. Furthermore, as a function
of collision energy, the polarization value decreases. This trend is also consistent with the hyperon global polarization
measurement done by the ALICE collaboration for Pb-Pb collisions at

√
SNN = 2.76 and 5.02 TeV [33]. Additionally,

the spin alignment of vector mesons like ϕ and K∗0 in HICs is linked to system vorticity, which may arise due to the
large initial angular momentum of the system. Deviations in the spin density matrix element ρ00 from 1/3 indicate
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finite global spin alignment, and recent experimental results from ALICE and STAR suggest that spin alignment can
serve as a probe of vorticity of the medium [34, 35].

Apart from the spin polarization, which emerged as a necessary observable in recent times, the momentum and its
affiliated transport coefficients, along with the equation of state (EoS) of the matter produced in HIC, play a vital
role in the hydrodynamic evolution of the system. The transport coefficients of both partonic and hadronic matter in
the absence of magnetic fields have been explored in Refs. [36–55]. In the presence of magnetic fields, the rotational

symmetry of the medium breaks with the magnetic field vector B⃗, singling out a particular direction in space; as a
result, the transport coefficients become anisotropic [56–66]. Same is true in case of a rotating medium, where the

direction of angular velocity Ω⃗ breaks the isotropy of the space. Recently, the anisotropic electrical conductivities [67]
and shear viscosities [68] of a rotating gas in a non-relativistic framework and electrical conductivity of a rotating
system of hadrons [69] in a relativistic framework have been analyzed. Moreover, the heavy quarks produced during
the hard collision process may undergo an anisotropic spatial diffusion while traveling through the rotating medium,
as pointed out in Ref. [70]. In this paper, by extending the previous work of Ref. [68], we have calculated the shear
viscosity of the rotating nuclear matter in both the QGP and hadron gas phases. To fulfill this purpose, we use the
Boltzmann transport equation (BTE) in the rotating frame with the collision kernel replaced by the relaxation time
approximation (RTA). The rotating background has been incorporated through the rotating frame metric obtained by
connecting the inertial coordinates with the corotating coordinates. In this way, the apparent forces appear in BTE
in the form of connection coefficients, which in turn are expressed as the derivatives of the rotating frame metric. To
keep the analysis simple, we consider the terms that are linear in the angular velocity in the BTE, which amounts
to ignoring the centrifugal effects while keeping the effect of the Coriolis force. For the sake of simplicity, the QGP
is modeled with a massless gas of quarks and gluons with constant relaxation time, whereas the hadron gas phase is
modeled with the popular hadron resonance gas model (HRG) with a hard sphere scattering type interaction. The
HRG model is highly successful in reproducing the thermodynamics of QCD matter below the critical point; therefore,
it is also expected to give a realistic estimation of the transport coefficients at lower temperatures.

The article is arranged as follows: in Sec. II, we discuss the necessary formalism and obtain the expressions for
different components of shear viscosity of QCD medium in a rotating frame. We then briefly address the HRG model
and write down the final expressions for viscosities in the hadron gas phase in Sec. II A and the QGP phase in Sec. II B.
In Sec. III, we discuss our results, particularly the temperature variation of anisotropic shear viscosity components of
a rotating QCD matter both in the partonic and hadronic regimes. The analysis is carried out in two scenarios —
one where we consider a medium globally rotating at a constant angular velocity and the other where a more realistic
temperature-dependent angular velocity is considered. Finally, we summarize the article in Sec. IV.

II. FORMALISM

We start this section with a succinct recapitulation of the rotating kinetic theory model developed for the nuclear
matter produced in off-central HIC within the non-relativistic setting in Refs. [67, 68] which was further generalized
to the relativistic setting in Ref. [69]. By taking advantage of the fact that produced nuclear matter in off-central
HIC can have a large initial OAM, we assume that the velocity of the medium particles has two effective parts: (1) a
globally rotating part and (2) a random part on top of the global rotating part. This effective breaking of kinematic
degrees of freedom for the matter helps one to write down the BTE in the globally rotating frame and solve for the
distribution function f as a function of co-rotating space-time coordinates and momentum in the rotating frame.

The structure of BTE in general coordinates or in the presence of gravity depends on the metric tensor gµν and the
connection coefficients Γα

βγ . The co-rotating frame metric gµν can be readily obtained from the rotating coordinate

transformation about z−axis as [23–25, 71],

gµν =

1− Ω2x2 − Ω2y2 Ωy −Ωx 0
Ωy −1 0 0
−Ωx 0 −1 0
0 0 0 −1

 . (1)

The space-dependent metric gµν essentially captures non-trivial space-time geometry in the rotating frame. Its
derivative can be used to get the connection coefficients in the rotating frame as [72–74]:

Γα
µλ =

1

2
gαν

(
∂gνµ
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

)
. (2)

The only non-zero connection coefficients in our case are: Γ1
00 = −Ω2x,Γ2

00 = −Ω2y,Γ1
20 = Γ1

02 = −Ω,Γ2
10 = Γ2

01 = Ω.
Due to the nature of the metric gµν , which significantly differs from ηµν , the covariant and contravariant components of
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FIG. 1: Schematic representation of an off-central
heavy-ion collision with OAM along the z-axis.

FIG. 2: Illustration of rotational patterns of partons in
the reaction plane during off-central heavy-ion

collisions.

the same vector will also differ significantly. The four momenta for the hadrons are expressed as: pα = (γvm, γvmv⃗) =
(γvm, p⃗), where [74, 75],

γv ≡ dt

dτ
=

1√
g00(1 +

g0ivi

g00
)2 − v2

, (3)

with the following definitions used vi ≡ dxi

dt and v2 ≡ (
g0ig0j
g00

− gij)v
ivj . Similarly, one can easily show,

p0 ≡ g0µp
µ = E =

√
m2g00 + (g0ig0j − g00gij)pipj . (4)

The covariant BTE for the rotating hadronic medium reads as [76–78]:

pµr
∂fr
∂xµ

− Γα
µλp

µ
r p

λ
r

∂fr
∂pαr

+mrF
α
r

∂fr
∂pαr

= C[fr] , (5)

where Fα
r is the four force and C[fr] is the collision kernel which arises due to the random collision between hadrons.

Here, we are interested in calculating the transport coefficients for the rotating hadronic matter in the absence of
any external four forces. Therefore, we will have Fα

r = 0 in Eq. (5). The usual assumption of solving the Boltzmann
kinetic equation can then be employed to split the total distribution fr into local equilibrium distribution f0

r and a

perturbation δfr, i.e., fr = f0
r + δfr. The local equilibrium distributions are given by, f0

r = 1/[e(p
α
r uβgαβ−µr)/T − ξ] =

1/[e(p
α
r uα−µr)/T − ξ], where ξ = −1 for baryons and ξ = +1 for mesons. The four-vector uµ, and the scalars µr and

T occurring in the equilibrium distributions f0
r are identified with the fluid four-velocity, the chemical potential of

the rth hadronic species and temperature. The perturbative correction δfr to the local equilibrium distribution is
assumed to be small, and it contains the thermodynamic forces that drive dissipative flows. As an application of
the kinetic theory in the rotating frame, we will now proceed to derive the shear viscosity coefficients of the rotating
hadronic matter.

For a rotating system of hadrons, the microscopic and macroscopic expression for viscous flow or viscous stress
tensor τ ij (this should not be confused with the average collision time τc between hadrons) can be written as,

τ ij =
∑
r

τ ijr =
∑
r

gr

∫
d3p⃗r
(2π)3

pirp
j
r

Er
δfr , (6)

τ ij = −
∑
r

η(r)ijklUkl ≡ −ηijklUkl , (7)

where Ukl= 1
2 (

∂uk

∂xl
+ ∂ul

∂xk
) is the fluid velocity gradient and ηijkl is the viscosity tensor. The macroscopic expression of

viscous stress tensor τ ij provided in Eq. (7) is reminiscent of Newton’s law of viscosity. This macroscopic expression
can be compared with the microscopic kinetic theory expression provided in Eq. (6) for the determination of viscosity.
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For the kinetic evaluation of the viscous tensor, we resort to the BTE in RTA. For a system of rotating hadrons, we
can write the BTE in RTA as [76–79]:

pµr
∂fr
∂xµ

− Γα
µλp

µ
r p

λ
r

∂fr
∂pαr

= −(uαprα)
fr − f0

r

τc
, (8)

where τc is the average collision time between hadrons. In Eq. (8), the information of the rotating space-time
background has been encoded in the connection coefficients Γα

µλ. The second term of the LHS of Eq. (8) contains all
the possible pseudo forces that can affect the transport properties of the system. Substituting the local equilibrium
distribution f0

r , in Eq. (8), we get the following linearized BTE,

−f0(1 + ξf0)

[
pµpα

T
Dµuα + pµ(uαp

α)∂µ
1

T
− pµ∂µ

µ

T

]
− Γσ

µλp
µpλ

∂δf

∂pσ
= −(uαpα)

f − f0

τc
, (9)

where we suppressed the index r, which will be retained during the calculation of shear viscosity. The covariant
derivative Dµ of fluid velocity uα is defined as Dµuα ≡ ∂µuα − Γσ

µαuσ. In principle, Eq. (9) can be solved to
obtain all the possible transport coefficients of the rotating hadron matter. Nevertheless, as pointed out in Ref. [69],
the calculation involved becomes cumbersome because of the space-time dependence of the rotating metric gµν .
Therefore, in the present paper, we solve Eq. (9) with the same approximation which has been used in Ref. [69]. The
approximation involves ignoring the second or higher powers of Ωx, Ωy, and Ω

T , which is justified when one restricts
oneself in a region that is closer to the axis of cylinder (or, away from the boundary of the causal cylinder, which is

defined as the locus points satisfying Ω
√
x2 + y2 = 1) and angular velocity Ω is less than thermal energy scale (∼ T ).

In the static limit uµ = ( 1√
g00

, 0) we have Γσ
µαuσ = 0 and pµpα

T ∂µuα = −p0pi

T
∂ui

∂t − pipj

T ∂ju
i giving,

−f0(1 + ξf0)

[
− p0pi

T

∂ui

∂t
− pipj

T
∂ju

i + p0p
0 ∂

∂t

1

T
+ p0p

i∂i
1

T
− p0

∂

∂t

µ

T
− pi∂i

µ

T

]

+2Ωp0
(
p2

∂δf

∂p1
− p1

∂δf

∂p2

)
= −p0

δf

τc
. (10)

The time derivatives of µ/T , 1/T , and ui occurring in Eq. (10) can be eliminated with the help of conservation
equations [76], and they finally contribute to the scalar (bulk viscous flow) and vector sector (thermal current) of the
transport. Since the present paper is planned for the calculation of the shear viscosity, we can ignore the scalar and
vectorial part of the thermodynamic fluxes occurring in the LHS of Eq. (10) to write,

f0(1 + ξf0)
pipj

ET
∂iu

j + 2(p⃗× Ω⃗) · ∂δf
∂p⃗

= −δf

τc
, (11)

where we assumed a rotation about the z− axis, i.e., Ω⃗ = Ωk̂. Eq. (11) bears a formal resemblance to the one
encountered in the computation of shear viscosity in the presence of a magnetic field. Therefore, it can be solved

using a similar technique as employed in Ref. [80]. By using the definitions: τΩ ≡ 1
2Ω , Ω⃗ ≡ Ωω̂ =⇒ Ωi = Ωωi, and

U ij ≡ 1
2 (

∂ui

∂xj + ∂uj

∂xi ) we can rewrite Eq. (11) as:

f0(1 + ξf0)
pipj

ET
U ij +

1

τΩ
ϵijkpjωk ∂δf

∂pi
= −δf

τc
. (12)

For the evaluation of viscous stress tensor and viscosity in Eq. (6) one has to solve Eq. (12) for δf . Here, we outline the
steps to solve Eq. (12), delegating the detailed calculations to Appendix A. A quick glance at Eq. (12) suggests that
the solution of δf should be proportional to two powers of momentum i.e., δf ∝ pkpl which leads to the most general

guess δf =
6∑

n=0
CnC

kl
n pkpl, where Cn are functions of energy along with other possible thermodynamic variables. The

Ckl
n are the seven independent velocity gradients that one can construct with the help of the tensors: U ij , δij , and ϵijk.

Out of these seven independent tensors, the first five are traceless, and the other two have non-zero traces. The seven
Ckl

n can be considered as the thermodynamic forces that drive dissipative flows in the rotating medium. The first
five Ckl

n (n = 0 to 4) drive shear flows, and the respective proportionality factors are called shear viscosities, whereas
the next two Ckl

n (n = 5, 6) drive bulk flows and the respective proportionality factors are called bulk viscosities. The
seven velocity gradients Cij

n can be written as a combination of contraction of seven 4−rank tensors Cijkl
n with Ukl,
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i.e., Cij
n ≡ Cijkl

n Ukl. Retaining the particle index r which we suppressed while transitioning from Eq. (8) to Eq. (9),
the viscosity tensor for the rth hadronic species η(r)ijkl can be expressed in terms of the 4−rank tensors Cijkl

n as,

η(r)ijkl = ηr0C
ijkl
0 + ηr1C

ijkl
1 + ηr2C

ijkl
2 + ηr3C

ijkl
3 + ηr4C

ijkl
4

+ζr5C
ijkl
5 + ζr6C

ijkl
6 , (13)

where ηrn (for n = 0 to 4) and ζrn (for n = 5, 6) are identified with shear and bulk viscosity coefficients, respectively.
Using the macroscopic version of Newton’s law provided in Eq. (7), we have,

τ ij = −
∑
r

η(r)ijklUkl = −
4∑

n=0

ηnC
ij
n −

6∑
n=5

ζnC
ij
n , (14)

where we defined the total shear and bulk viscosity coefficients of the rotating medium as the sum of the contributions
from individual particles, i.e., ηn =

∑
r η

r
n and ζn =

∑
r ζ

r
n. Since the present article is structured for the calculation

of shear viscosity coefficients of the rotating QCD matter, we will keep only the terms that correspond to shear stress
tensor or shear flow in Eq. (6) and Eq. (14) and rewrite them as follows:

πij =
∑
r

gr

∫
d3p⃗r
(2π)3

pirp
j
r

Er
δfr , (15)

πij = −
4∑

n=0

ηnC
ij
n . (16)

For the kinetic evaluation of the shear flow πij we will substitute δfr =
4∑

n=0
Cr

nC
kl
n pkrp

l
r in Eq. (15) to obtain,

πij =
∑
r

gr

∫
d3p⃗

(2π)3E

4∑
n=0

CnC
kl
n pipjpkpl

=⇒ πij =
∑
r

gr

∫
d3p

(2π)3E

4∑
n=0

CnC
kl
n (δijδkl + δikδjl + δilδjk)

p4

15

=⇒ πij =

4∑
n=0

Cn
ij

∑
r

2gr
15

∫
d3p

(2π)3E
Cn p4, (17)

where for the notational simplicity we suppressed the particle index r in the unknown coefficients Cn and momentum

components pi. We also used the identities,
∫
pipjpkpld3p⃗ =

∫
p4

15 (δ
ijδkl + δikδjl + δilδjk)d3p, (d3p ≡ 4πp2dp) and

Cn
kl(δ

ijδkl + δikδjl + δilδjk) = 2Cn
ij . The unknown coefficients Cn appearing in Eq. (17) are explicitly calculated in

Appendix A. Using the expression of Cn obtained in Eq. (A7) and comparing it with Eq. (16) we obtain the following
expressions for shear viscosity components,

η1 =
∑
r

gr
15T

τc
1 + 4(τc/τΩ)2

∫
d3p

(2π)3
p4

E2
f0(1 + ξf0)

η2 =
∑
r

gr
15T

τc
1 + (τc/τΩ)2

∫
d3p

(2π)3
p4

E2
f0(1 + ξf0)

η3 =
∑
r

gr
15T

2τc(τc/τΩ)

1 + 4(τc/τΩ)2

∫
d3p

(2π)3
p4

E2
f0(1 + ξf0)

η4 =
∑
r

gr
15T

τc(τc/τΩ)

1 + (τc/τΩ)2

∫
d3p

(2π)3
p4

E2
f0(1 + ξf0) (18)

The shear viscosity component in the absence of rotation η0 ≡ η is given by [80],

η0 =
∑
r

gr
15T

τc

∫
d3p

(2π)3
p4

E2
f0(1 + ξf0) (19)

One can define the perpendicular η⊥, parallel η|| and Hall η× viscosity as [80], η1 ≡ η⊥, η2 ≡ η||, and η4 ≡ η×.
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A. Shear viscosity for HRG

The hadronic phase of matter created in HICs can be effectively described by HRG model [81–86]. This model
is widely accepted in the community for the characterization of the thermodynamics [87, 88], conserved charge
fluctuations [89–93], as well as transport coefficients [36, 37, 42, 94–101] of the created hadron gas in HICs. The HRG
model offers a grand canonical ensemble treatment of the hadron gas by including all the degrees of freedom associated
with the system, i.e., hadrons and their resonances. It has been shown by the S-matrix calculation that in the presence
of narrow resonances, the interacting gas of hadrons can be approximated by an ideal gas comprising of hadrons and
their resonances [102, 103]. Here, we will model the hadron gas by an ideal gas of non-interacting point-like hadrons
and resonances up to mass 2.6 GeV as listed in Ref. [104]. In the grand canonical ensemble approach of the ideal
HRG model, one expresses grand potential ϕG as [105],

−PHRG V = ΦG = −T
∑
B

V gB
2π2

∫
p2dp ln

[
1 + e−EB/T

]
+ T

∑
M

V gM
2π2

∫
p2dp ln

[
1− e−EM/T

]
, (20)

where we consider zero chemical potential for all hadrons with two separate summations for baryons (B) and mesons

(M). In Eq. (20), mB , EB =
√

p2 +m2
B , and gB = 2SB + 1 are equal to the mass, energy, and spin degeneracy of

the baryons with spin SB , respectively. Similarly, we have mM , EM =
√

p2 +m2
M , gM = 2SM +1 equal to the mass,

energy, and spin degeneracy of the mesons with spin SM , respectively. The entropy density can be obtained from
Eq. (20) as,

sHRG = − 1

V

∂ΦG

∂T
=

EHRG + PHRG

T
, (21)

where energy density EHRG and pressure PHRG of the HRG are given by,

EHRG =
∑
B

gB
2π2

∫
p2dp

eEB/T + 1
EB +

∑
M

gM
2π2

∫
p2dp

eEM/T − 1
EM , (22)

PHRG =
∑
B

gB
2π2

∫
p2dp

eEB/T + 1

(
p2

3EB

)
+

∑
M

gM
2π2

∫
p2dp

eEM/T − 1

(
p2

3EM

)
. (23)

Similarly, we can express the shear viscosity components given in Eqs. (19) and (18) by two separate the summation
for baryons (B) and mesons (M) as follows,

ηHRG
0 ≡ ηHRG =

∑
B

gB
15T

∫
d3p

(2π)3
τBc × p4

E2
B

f0
B(1− f0

B) +
∑
M

gM
15T

∫
d3p

(2π)3
τMc × p4

E2
M

f0
M (1 + f0

M ) (24)

ηHRG
1 = ηHRG

⊥ =
∑
B

gB
15T

∫
d3p

(2π)3
τBc

1 + 4(τBc /τΩ)2
× p4

E2
B

f0
B(1− f0

B)

+
∑
M

gM
15T

∫
d3p

(2π)3
τMc

1 + 4(τMc /τΩ)2
× p4

E2
M

f0
M (1 + f0

M ) (25)

ηHRG
2 = ηHRG

|| =
∑
B

gB
15T

∫
d3p

(2π)3
τBc

1 + (τBc /τΩ)2
× p4

E2
B

f0
B(1− f0

B)

+
∑
M

gM
15T

∫
d3p

(2π)3
τMc

1 + (τMc /τΩ)2
× p4

E2
M

f0
M (1 + f0

M ) (26)

ηHRG
4 = ηHRG

× =
∑
B

gB
15T

∫
d3p

(2π)3
τBc (τBc /τΩ)

1 + (τBc /τΩ)2
× p4

E2
f0
B(1− f0

B)

+
∑
M

gM
15T

∫
d3p

(2π)3
τMc (τMc /τΩ)

1 + (τMc /τΩ)2
× p4

E2
M

f0
M (1 + f0

M ) , (27)

where f0
B = 1/(eEB/T +1), f0

M = 1/(eEM/T −1), and τB,M
c are the relaxation times of hadrons (baryons and mesons).

The relaxation time for any hadron facing the total number density nHRG can be determined by resorting to the
hard-sphere scattering model,

τB,M
c =

1

nHRG vB,M
av πa2

, (28)
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where vB,M
av for any hadron is given by,

vB,M
av =

∫
d3p

(2π)3
p

EB,M
fB,M
0

/∫
d3p

(2π)3
fB,M
0 , (29)

and the total number density for the HRG is expressed as,

nHRG =
∑
B

gB

∫
d3p

(2π)3
f0
B +

∑
M

gM

∫
d3p

(2π)3
f0
M . (30)

B. Shear viscosity for massless QGP

We can get the shear viscosity components for a massless rotating QGP by replacing p by E and summing over the
quark (q) and gluon (g) degrees of freedom with appropriate degeneracies in Eqs. (18) and (19) as,

ηQGP
0 ≡ ηQGP =

gqτc
15T

∫
d3p

(2π)2
p4

E2
f0
q (1− f0

q ) +
ggτc
15T

∫
d3p

(2π)2
p4

E2
f0
g (1 + f0

g )

=
gqτc

30π2T

∫
dE E4f0

q (1− f0
q ) +

ggτc
30π2T

∫
dE E4f0

g (1 + f0
g )

=
τcT

4

30π2
24T

∂

∂µ
(gqf

FD
5 (A) + ggf

BE
5 (A)),

(
where, f

FD/BE
j (A) =

1

Γ(j)

∫ ∞

0

xj−1dx

A−1ex ± 1
, (A ≡ eµ/T )

)
=

4τcT
4

5π2

(
gqf

FD
4 (1) + ggf

BE
4 (1)

)
(by assuming µ = 0, A = 1)

=
4τcT

4

5π2

(
gq

(
1− 1

24−1

)
+ gg

)
ζ(4)

=
4τcT

4

5π2

[
7

8
gq + gg

]
ζ(4) =

19π2

45
τcT

4 (31)

where we used gq = 3(flavor)×3(color)×2(spin)×2(particle−antiparticle) = 36, gg = 2(polarization)×8(color) = 16

and the ζ(4) = π4

90 . Similarly, one can express the perpendicular, parallel, and Hall viscosities as,

ηQGP
⊥,||,× = ηQGP

1,2,4 =
19π2

45
τ⊥,||,×
c T 4 , (32)

where the effective relaxation times for perpendicular, parallel and hall viscosities are defined as τ⊥c = τc
1+4(τc/τΩ)2 ,

τ
||
c = τc

1+(τc/τΩ)2 , and τ×c = τc(τc/τΩ)
1+(τc/τΩ)2 . Entropy density sQGP for the rotating QGP can be written as:

sQGP =
EQGP + PQGP

T
, (33)

where EQGP and PQGP are the energy density and pressure of the QGP respectively. The pressure of the QGP can
be evaluated as,

PQGP = gq

∫
d3p

(2π)3
p2

3E
f0
q + gg

∫
d3p

(2π)3
p2

3E
f0
g

=
1

6π2

[
gq

∫
dEE3f0

q + gg

∫
dEE3f0

g

]
=

T 4

π2

[
gq

(
1− 1

23

)
+ gg

]
ζ(4) =

19π2

36
T 4 . (34)

Using the fact that EQGP = 3PQGP along with Eqs. (33) and (34) we have,

sQGP =
19π2

9
T 3. (35)

We assume the relaxation time in the QGP phase to be a temperature-independent constant, which is in good
agreement with the other model calculations, as we will see in the next section.
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FIG. 3: (Color online) The variation of shear viscosity to entropy density ratio (η/s) with temperature comparing
results from different previous model calculations (Gorenstein et al. [37], Kadam et al. [36], Itakura et al. [38],
Fraile et al. [39], Plumari et al. [40], Lang et al. [41], Marty et al. [53], Hostler et al. [42]) along with the KSS

bound obtained from AdS/CFT correspondence. RTA curves for massless QGP and HRG from our calculation to fit
these results with parametrized relaxation time τc (with a hard sphere scattering length a) in the HRG phase and a

constant τc in the QGP phase is given in the figure. The critical temperature is taken to be 0.17 GeV.

III. RESULTS AND DISCUSSION

In this section, our primary objective is to explore the influence of rotation, specifically the Coriolis force, on
shear viscosity. We compute the parallel, perpendicular, and Hall components of shear viscosity for the hadron gas
phase using Eqs. (24)-(27) given in Sec. II A and for the QGP phase using Eqs. (31)-(32) given in Sec. II B. For
our investigation of shear viscosity within rotating hadronic matter, we employ the HRG model, incorporating a
comprehensive spectrum of hadrons and their resonances with masses up to 2.6 GeV [104] while we consider the
rotating QGP phase to be a massless gas of quarks and gluons.

Fig. (3) illustrates the temperature dependence of shear viscosity-to-entropy density ratio (η/s) for both the hadronic
and QGP phases using the relaxation time approximated kinetic theory framework. Several previous microscopic
estimates [36–42, 53] of shear viscosity-to-entropy density ratio (η/s) can be found in the literature employing various
effective and quasiparticle theories of QCD matter. Results obtained in Gorenstein et al. (VDW-HRG) [37], Kadam
et al. (HRG-HS) [36], Itakura et al. (pion gas) [38], Fraile et al. (ChPT) [39], Plumari et al. (gluon plasma-RTA)
[40], Lang et al. (pion gas) [41], Marty et al. (DQPM) [53], Hostler et al. (VDW-HRG) [42] are shown in the figure.
The theoretical lower limit on the shear viscosity-to-entropy density ratio – the KSS bound (η/s ≥ 1/4π) – obtained
from AdS/CFT correspondence [106] is also indicated for reference.

By using the HRG model in the hadronic domain and the massless QGP case in the quark temperature domain,
we have attempted to cover the data of these earlier works. To do this, we have tuned our τc to obtain the upper and
lower limits. The relaxation time τc is fixed at a temperature-independent constant value in the QGP phase, whereas
in the hadronic phase, the relaxation time, which depends on both temperature and scattering length, is determined
using Eq. (28). The maximum and minimum values of τc in the QGP phase and scattering length a in the hadronic
phase are tuned such that they are analytically continuous at Tc to make it visually appealing, but the reader should
be careful about the scientific uncertainty in the shaded region near Tc.
For the purpose of this work, we assume the critical temperature to be Tc = 170 MeV. The HRG model is used

to obtain results in the hadronic regime below Tc, while a gas of massless quarks and gluons is considered in the
QGP regime above Tc. The shaded region around the quark-hadron phase transition temperature Tc ≈ 170 MeV
is used to remind the reader that the motivation of the present work is to provide a broad illustration of the shear
viscosity across both phases. Although we have smoothly matched the estimations in the two phases at T = 170
MeV, our analysis mainly focuses on the order of magnitude and general trends of shear viscosity components outside
this shaded region. This is because the region around the transition temperature can involve several uncertainties,
such as (1) the precise location of the transition temperature—especially when using two different models for the two
phases—and (2) how the transition temperature may be affected by rotation.
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FIG. 4: (Color online) The variation of components of shear viscosity to entropy ratio (η||/s, η⊥/s, η×/s) with
temperature for a constant angular velocity Ω = 0.0064 GeV (blue dash-dot curves) and a temperature-dependent

angular velocity Ω = Ω(T ) (red solid curve) are compared with the estimates in the absence of rotation (green
dotted curves). The critical temperature is taken to be 0.17 GeV.

To encompass a range of earlier η/s estimations obtained without considering rotation, from various effective
transport models, we span the scattering length from 0.25 fm to 1 fm in the hadronic phase, while the relaxation time
is varied from 0.48 to 7.75 fm in the QGP phase, as shown in Fig. (3). The red (blue) solid curves give the lower
(upper) limit from our relaxation time approximated kinetic theory estimates in the HRG domain, and the red (blue)
dot-dashed curves give the lower (upper) limit in the QGP phase. The behavior of η/s reveals a decreasing trend in
the hadronic phase, while in the QGP phase, they increase monotonically. After calibrating the relaxation time and
scattering length in Fig. (3), we will now move on to describe the effect of Coriolis force and anisotropic components
of shear viscosity (η||,⊥,×) in Fig. (4).
Fig. (4) depicts the temperature dependence of the anisotropic components of the shear viscosity-to-entropy density

ratio (η||,⊥,×/s) under rotational effects in both the hadronic and QGP phases. To depict the variation of viscosity
in the hadronic phase, we choose a scattering length of a = 0.30 fm, which falls in the band of scattering length
obtained in Fig. (3). In the QGP phase, thermal relaxation time τc = 5.35 fm is chosen. The impact of rotation is
analyzed for two cases: a constant angular velocity (Ω = 0.0064 GeV) and a temperature-dependent angular velocity
Ω = Ω(T ). The temperature dependency of Ω can be roughly constructed as follows. In typical HIC experiments,
some amount of OAM gets transferred to the medium, and the medium acquires some initial average angular velocity
Ω. Since the medium expands with time, its momentum of inertia (I) increases, and therefore, the average angular
velocity Ω should decrease to keep the angular momentum L ∼ IΩ conserved. As the medium expands in time, it
also cools; therefore, the Ω should decrease with T . The heuristic argument presented above will now be explored
systematically. For the temperature-dependent angular velocity profile, let us use the parametrization of averaged
vorticity as a function of time, centrality, and beam energy, given by Jiang et al. [107] using multiphase transport
(AMPT) model simulations,

⟨ωy⟩(t, b,
√
sNN ) = A(b,

√
sNN ) +B(b,

√
sNN )(0.58t)0.35e−0.58t, (36)
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with the two coefficients A and B given by

A =
[
e−0.016b

√
sNN + 1

]
× tanh(0.28 b)× [0.001775 tanh(3− 0.015

√
sNN ) + 0.0128] , (37)

B =
[
e−0.016b

√
sNN + 1

]
× [0.02388 b+ 0.01203]× [1.751− tanh(0.01

√
sNN )] . (38)

where
√
sNN is measured in GeV, b in fm, t in fm/c, and ωy in fm−1. In this context the angular velocity is given by

Ω ≡ 1
2 ⟨ωy⟩1. To approximately relate the temperature evolution of the fireball with its time evolution, we employ the

Bjorken’s scaling solution to describe the longitudinal expansion as

T (t) = T0

(
t

t0

)−1/3

. (39)

In this analysis, we consider a fireball evolution corresponding to a collision at beam energy
√
SNN = 200 GeV with

an impact parameter b = 5 fm. The intial conditions are taken as an initial temperature T0 = 0.4 GeV and initial
time t0 = 0.14 fm/c.

Now let us analyze the variation of anisotropic shear viscosity-to-entropy density ratio (η||,⊥,×/s) as a function of
temperature as displayed in Fig. (4). For comparison, each plot also includes the isotropic shear viscosity component,
η ≡ η0, shown by the green dotted curve. The constant angular velocity Ω = 0.0064 GeV= 0.0325 fm−1 (or,
τΩ = 15.39 fm) is used in this analysis. This represents the maximum possible angular velocity provided by Eq. (36)
for a collision at

√
SNN = 200 GeV with b = 5 fm. As seen in the QGP phase (T > 0.17 GeV), the parallel component

η||/s with fixed angular velocity Ω = 0.0064 GeV (blue dash-dot curve) lies slightly below the corresponding result
with temperature-dependent angular velocity Ω(T ) (red solid curve). Both anisotropic results are marginally lower
than the isotropic η/s (green dotted curve). In the HRG phase, the ordering of the viscosity magnitudes are same as
of the QGP phase, i.e., η||(Ω = 0.0064)/s (blue dash-dot curve) < η||(Ω(T ))/s (red solid curve) < η/s (green dotted
curve) with significant difference in their magnitudes. These results can be mathematically understood by comparing
the rotational time scale τΩ(T ) with the relaxation time scale τc(T ), which are present in the expressions of η||. The

effective relaxation times τ
||
c (Ω = 0.0064) < τ

||
c (Ω(T )) make the blue dash-dot curve lie below the red solid one. The

upper right panel of Fig. (4) describes the same physics for the perpendicular component of viscosity. A comparison
with η||/s suggest that the magnitude η⊥/s is lesser than η||/s. This trend can also be understood from their respective

expressions (25) and (26), which implies η||(T )/s > η⊥(T )/s as τ
||
c > τ⊥c . The figure in the lower panel depicts the

variation of Hall viscosity η×/s with respect to temperature. One can observe a finite Hall component of viscosity
both in the QGP and HRG phases as a result of rotation. In the temperature-dependent variation of η||,⊥,×/s, we

observed QGP-phase viscosity components for constant Ω = 0.0325 fm−1 (corresponding to blue dash-dot curve) and
for the temperature-dependent Ω(T ) (red solid curve) nearly coincide, whereas a notable difference is seen in the
hadronic phase. This behavior can be understood by falling back to the expressions (36) and (39). These equations
indicate a smaller band of τΩ ∼ 15.39− 20 fm for the QGP temperature range T = 0.4− 0.17 GeV but a larger band
of τΩ ∼ 20 − 84 fm for the HRG temperature domain T = 0.7 − 0.1 GeV. To summarize, for all three plots shown
in Fig. (4), the key factor determining the shape and magnitude of the anisotropic viscosities is the ratio between
the average thermal relaxation time τc and rotational time scale τΩ. To clarify the behavior observed in Fig. (4),
we re-express the anisotropic viscosity components given in Eqs. (25), (26), and (27) for the HRG phase in a more
transparent form. For this, we write the viscosity as a sum over contributions form baryons and mesons, and it is
expressed as the product of two independent factors as follows,

ηHRG
⊥,||,×(T ) =

∑
B,M

(
τ⊥,||,×
c

)B,M

(P.S)B,M
η ,

where the phase space part denoted as P.S is the same for different components of viscosity and only depends
on temperature; on the other hand, the relaxation part has a different structure for different components of the
viscosity. The effective relaxation times which modulates the thermal relaxation time τc(T ) are given by, (τ⊥c )B,M =

τB,M
c (T )

1+4(τB,M
c (T )/τΩ(T ))2

, (τ
||
c )B,M =

τB,M
c (T )

1+(τB,M
c (T )/τΩ(T ))2

, and (τ×c )B,M =
τB,M
c (T ) (τB,M

c (T )/τΩ(T ))

1+(τB,M
c (T )/τΩ(T ))2

. The phase space part is

(P.S)
B,M
η =

gB,M

15T

∫
d3p
(2π)3 τ

B,M
c × p4

E2
B,M

f0
B,M (1±f0

B,M ), where − is for baryons and + mesons. Similarly, for components

of the shear viscosities in the QGP phase, the relaxation part and phase space part are easily seen from Eq. (32).

1 In Refs. [107], y− axis is chosen perpendicular to the reaction plane whereas we have defined z− axis to be perpendicular to the reaction
plane (cf. Fig. 1).
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It is worth mentioning that our results at finite rotation are similar to those obtained at finite magnetic field [54, 80],
and we can explore their phenomenological connections. In the RTA-based kinetic theory framework, the Coriolis force
in the presence of rotation and the Lorentz force in the presence of magnetic fields induces anisotropy in transport
coefficients including shear viscosity. In the present work, based on the HRG model for hadronic temperature range
and massless QGP case for quark temperature range, we notice a significant reduction in η|| and η⊥. The percentage

reduction in the parallel and perpendicular components
(

η−η||,⊥
η × 100%

)
for the case temperature dependent Ω =

Ω(T ) shown in Fig. (4) is as follows: the reduction in η|| is about 6 − 10% in the quark temperature range and
20 − 70% in the hadron temperature range, while the reduction in η⊥ is about 20 − 30% in the quark temperature
range and 45 − 90% in the hadron temperature range. A similar reduction in η||,⊥/s is also noticed for the finite
magnetic field picture. From the phenomenological point of view, as we move from head-on to peripheral collisions,
we obtain a non-zero magnetic field and rotation. Our work suggests that the shear viscosity to entropy density ratio
will have smaller values in peripheral collisions as compared to the corresponding estimates in head-on collisions.
Lorentz force at finite magnetic field can lead to azimuthal anisotropy [108, 109], and similar effects are expected
due to Coriolis force at finite rotation. To investigate the phenomenology of the magneto-rotational effects, including
azimuthal anisotropy, a systematic hydrodynamic evolution at finite magnetic field and rotation with the inclusion of
all viscosity components is required. Comparing experimental data from peripheral and head-on collisions may reveal
signatures of finite magnetic field and rotation. To isolate the effect of rotation, the Hall component can serve as a
useful probe since it vanishes for µ = 0 at finite magnetic fields.

IV. SUMMARY

In the peripheral heavy ion collision experiments, some amount of initial angular momentum gets transferred to
the formed quark-gluon plasma. By assuming a rotating plasma to account for this initial angular momentum, we
set up a relativistic Boltzmann equation for the determination of its shear viscosities. The Coriolis force obtained
from the non-trivial connection coefficients in the rotating frame enters the Boltzmann equation and makes the shear
viscosities anisotropic. Using the Boltzmann equation in the rotating frame, we obtained five different components
of shear viscosities. The different components of the shear viscosity obtained can be directly compared with the
anisotropic shear viscosities one finds in the presence of magnetic fields where, in place of the angular velocity vector,
the magnetic field vector breaks the isotropic nature of transport coefficients. To get a realistic estimate of the shear
viscosities below the critical temperature, we employed the hadron resonance gas model, whereas, above the critical
temperature, we took massless non-interacting partons as our degrees of freedom for the calculation of the shear
viscosities. A compilation of previous microscopic estimates of shear viscosity to entropy density ratio gives a well-
known valley-like pattern against the temperature axis with a minimum at the transition temperature. By tuning
relaxation time in our model, we have obtained the upper and lower curves that can span these theoretical data.
The relaxation time for the HRG phase was assumed to be given by hard sphere scattering interactions with tunable
scattering length. In the QGP phase, we assumed a constant temperature-independent relaxation time. Once tuned
to match previous estimates of the isotropic viscosity-to-entropy density ratio, the finite rotation extension gives a
transformation from an isotropic to an anisotropic structure, characterized by three physical components: parallel,
perpendicular, and Hall. The behavior of these anisotropic components is governed by two parts: an effective relaxation
time that depends on both angular velocity and temperature and a phase space factor that is purely temperature-
dependent. The average vorticity or angular velocity of the nuclear matter mostly decreases as the system cools with
time. To see the actual variation of shear viscosity with temperature, we obtained the angular velocity as a function of
temperature with the help of an approximate cooling law. In the same plot, we also showed the results with a constant
angular velocity for comparison. We observe that the parallel and perpendicular components of the shear viscosity
to entropy density ratio reduce due to rotation. The valley-like signature of the temperature dependence of shear
viscosity is no longer valid if we consider a constant angular velocity throughout the evolution. However, with the
realistic temperature-dependent angular velocity, the valley-like structure of temperature dependence of shear viscosity
to entropy density ratio remains, though with a reduced magnitude. We would like to highlight that the present work
is the first-of-its-kind attempt at characterizing the temperature dependence of shear viscosity components at finite
rotation.

V. ACKNOWLEDGEMENT

This work was supported in part by the Ministry of Education, Government of India (AD, DRM, NP) and Board
of Research in Nuclear Sciences (BRNS) and Department of Atomic Energy (DAE), Govt. of India with Grant Nos.



12

57/14/01/2024-BRNS/313 (SG).

Appendix A: Calculation of shear stress tensor

In this appendix we explicitly solve Eq. (12) to get the unknown coefficients Cn needed for the calculation of shear
stress tensor provided in Eq. (17).

pipj

ET
U ijf0(1 + ξf0) +

1

τΩ
ϵijkpjωk ∂δf

∂pi
= −δf

τc

=⇒ pipj

ET
U ijf0(1 + ξf0) +

1

τΩ
ωijpj

∂δf

∂pi
= −δf

τc
, (A1)

where, τΩ ≡ 1/2Ω and ϵijkωk ≡ ωij . In terms of the unknown constants Cn we make the following guess for δf :

δf =

6∑
n=0

CnC
kl
n pkpl . (A2)

where the fluid field gradients Cij
n are given by [68],

Cij
0 = (3ωiωj − δij)(ωkωlUkl − 1

3
∇⃗ · u⃗) ,

Cij
1 = 2U ij + δijUklωkωl − 2U ikωjωk − 2U jkωkωi + (ωiωj − δij)∇⃗ · u⃗+ ωiωjωkωlUkl ,

Cij
2 = 2(U ikωjωk + U jkωiωk − 2Uklωiωjωkωl) ,

Cij
3 = U ikωjk + U jkωik − Uklωikωjωl − Uklωjkωiωl,

Cij
4 = 2(Uklωikωjωl + Uklωjkωiωl) ,

Cij
5 = δij(∇⃗ · u⃗) ,

Cij
6 = δijωkωlUkl + ωiωj(∇⃗ · u⃗) . (A3)

Now, we calculate the required derivative of δf and substitute them in the Eq. (A1) to solve for Cn,

∂δf

∂pi
=

∂

∂pi

6∑
n=0

CnC
kl
n pkpl

=

6∑
n=0

Ckl
n pkpl

∂Cn

∂pi
+

6∑
n=o

Ckl
n Cn

∂

∂pi
pkpl.

It can easily be seen that the Cn for which Eq. (A1) is satisfied are functions of f0, i.e., Cn = Cn(f
0).

∂δf

∂pi
= − 1

T
f0(1 + ξf0)

6∑
n=0

dCn

df0
Ckl

n

pkplpi

E
+

6∑
n=0

2CnC
ik
n pk (A4)

Using the result of Eq. (A4) in Eq. (A1) we have:

pipj

ET
U ijf0(1 + ξf0)− 1

τΩT
f0(1 + ξf0)

6∑
n=0

dCn

df0
ωij p

ipjpkpl

E
+

2

τΩ

6∑
n=0

CnC
ik
n ωijpjpk = − 1

τc

6∑
n=0

CnC
kl
n pkpl

=⇒ pipj

ET
U ijf0(1 + ξf0) +

2

τΩ

6∑
n=0

CnC
ik
n ωijpjpk = − 1

τc

6∑
n=0

CnC
kl
n pkpl, ( since, ωijpipj = 0)

=⇒ pipj

ET
U ijf0(1 + ξf0) =

6∑
n=0

Cn

(
− 2

τΩ
Cik

n ωijpjpk − 1

τc
Ckl

n pkpl
)
. (A5)

The Eq. (A5) has to be solved for the Cn to obtain δf for the evaluation of viscosities. In the present article
our aim is to obtain shear viscosities of the system therefore we will ignore C5 and C6 which correspond to bulk
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viscosities and retain the first five Cn that correspond to shear stresses in the fluid. By equating the coefficients of

pipjU ij , U ijpjpkωik, U ijpkωjωik(p⃗ · Ω⃗) and U ijpiωj(p⃗ · Ω⃗) in Eq. (A5) to zero, we have,

pipjU ij : −4C3

τΩ
− 2C1

τc
=

1

ET
f0(1 + ξf0) ,

U ijpjpkωik : −4C1

τΩ
+

2C3

τc
= 0 ,

U ijpkωjωik(p⃗ · Ω⃗) :
4C1

τΩ
− 4C2

τΩ
− 2C3

τc
+

4C4

τc
= 0 ,

U ijpiωj(p⃗ · Ω⃗) :
8C3

τΩ
− 4C4

τΩ
+

4C1

τc
− 4C2

τc
= 0 . (A6)

Solving the above set of linear equations we obtain,

C1 = − 1

2ET
f0(1 + ξf0)

τc
1 + 4(τc/τΩ)2

,

C2 = − 1

2ET
f0(1 + ξf0)

τc
1 + (τc/τΩ)2

,

C3 = − 1

ET
f0(1 + ξf0)

τc(τc/τΩ)

1 + 4(τc/τΩ)2
,

C4 = − 1

2ET
f0(1 + ξf0)

τc(τc/τΩ)

1 + 4(τc/τΩ)2
. (A7)
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[77] F. Debbasch and W. van Leeuwen, General relativistic boltzmann equation, i: Covariant treatment, Physica A: Statistical

Mechanics and its Applications 388, 1079 (2009).
[78] F. Debbasch and W. van Leeuwen, General relativistic boltzmann equation, ii: Manifestly covariant treatment, Physica

A: Statistical Mechanics and its Applications 388, 1818 (2009).
[79] P. Romatschke, Relativistic (Lattice) Boltzmann Equation with Non-Ideal Equation of State, Phys. Rev. D 85, 065012

(2012), arXiv:1108.5561 [gr-qc].
[80] J. Dey, S. Satapathy, P. Murmu, and S. Ghosh, Shear viscosity and electrical conductivity of the relativistic fluid in the

presence of a magnetic field: A massless case, Pramana 95, 125 (2021), arXiv:1907.11164 [hep-ph].
[81] F. Karsch and K. Redlich, Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations,

Physics Letters B 695, 136 (2011).
[82] P. Garg, D. Mishra, P. Netrakanti, B. Mohanty, A. Mohanty, B. Singh, and N. Xu, Conserved number fluctuations in a

hadron resonance gas model, Physics Letters B 726, 691 (2013).

https://doi.org/10.1088/1674-1137/43/4/044101
https://arxiv.org/abs/1808.05461
https://doi.org/10.1103/PhysRevC.103.054901
https://arxiv.org/abs/2011.03505
https://doi.org/10.1103/PhysRevC.88.045204
https://arxiv.org/abs/1305.7180
https://doi.org/10.1103/PhysRevD.103.096015
https://arxiv.org/abs/2011.04261
https://doi.org/10.1038/s41567-019-0611-8
https://doi.org/10.1103/PhysRevD.102.114015
https://arxiv.org/abs/1911.10005
https://doi.org/10.1103/PhysRevC.106.044914
https://arxiv.org/abs/2002.04434
https://arxiv.org/abs/2002.04434
https://doi.org/10.1103/PhysRevD.102.076007
https://arxiv.org/abs/2009.10493
https://doi.org/10.1016/j.nuclphysa.2023.122654
https://arxiv.org/abs/2103.15364
https://doi.org/10.1103/PhysRevD.104.056030
https://arxiv.org/abs/2104.03917
https://doi.org/10.1103/PhysRevD.99.094031
https://arxiv.org/abs/1903.03938
https://doi.org/10.1103/PhysRevD.101.034027
https://arxiv.org/abs/1907.05298
https://doi.org/10.1140/epja/s10050-021-00348-4
https://arxiv.org/abs/1908.01121
https://doi.org/10.1103/PhysRevD.94.114032
https://doi.org/10.1103/PhysRevD.94.114032
https://arxiv.org/abs/1610.06818
https://doi.org/10.1103/PhysRevD.95.076008
https://arxiv.org/abs/1610.06839
https://doi.org/10.1103/PhysRevD.106.036006
https://arxiv.org/abs/2112.08236
https://doi.org/10.1103/PhysRevC.109.034914
https://arxiv.org/abs/2305.10183
https://doi.org/10.1103/PhysRevC.109.034913
https://arxiv.org/abs/2303.16462
https://doi.org/10.1103/PhysRevC.110.024904
https://arxiv.org/abs/2403.16647
https://arxiv.org/abs/2411.09983
https://doi.org/10.1103/PhysRevC.101.024907
https://doi.org/10.1103/PhysRevC.101.024907
https://arxiv.org/abs/1907.10750
https://books.google.co.in/books?id=zAAuDwAAQBAJ
https://books.google.co.in/books?id=V1CGLi58W7wC
https://doi.org/10.1007/978-3-0348-8165-4_11
https://doi.org/10.1088/1742-5468/2013/04/P04016
https://arxiv.org/abs/1212.5573
https://doi.org/10.1007/978-3-0348-8165-4_12
https://doi.org/https://doi.org/10.1016/j.physa.2008.12.023
https://doi.org/https://doi.org/10.1016/j.physa.2008.12.023
https://doi.org/https://doi.org/10.1016/j.physa.2009.01.009
https://doi.org/https://doi.org/10.1016/j.physa.2009.01.009
https://doi.org/10.1103/PhysRevD.85.065012
https://doi.org/10.1103/PhysRevD.85.065012
https://arxiv.org/abs/1108.5561
https://doi.org/10.1007/s12043-021-02148-3
https://arxiv.org/abs/1907.11164
https://doi.org/https://doi.org/10.1016/j.physletb.2010.10.046
https://doi.org/https://doi.org/10.1016/j.physletb.2013.09.019


16

[83] V. Vovchenko, D. V. Anchishkin, M. I. Gorenstein, and R. V. Poberezhnyuk, Scaled variance, skewness, and kurtosis near
the critical point of nuclear matter, Phys. Rev. C 92, 054901 (2015).

[84] O. Savchuk, V. Vovchenko, R. V. Poberezhnyuk, M. I. Gorenstein, and H. Stoecker, Traces of the nuclear liquid-gas phase
transition in the analytic properties of hot qcd, Phys. Rev. C 101, 035205 (2020).

[85] D. K. Mishra, P. Garg, P. K. Netrakanti, and A. K. Mohanty, Effect of resonance decay on conserved number fluctuations
in a hadron resonance gas model, Phys. Rev. C 94, 014905 (2016).

[86] M. Albright, J. Kapusta, and C. Young, Matching excluded-volume hadron-resonance gas models and perturbative qcd
to lattice calculations, Phys. Rev. C 90, 024915 (2014).

[87] F. Karsch, K. Redlich, and A. Tawfik, Thermodynamics at nonzero baryon number density: A Comparison of lattice and
hadron resonance gas model calculations, Phys. Lett. B 571, 67 (2003), arXiv:hep-ph/0306208.
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