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The number of observable degrees of freedom is typically limited in experiments. Here, we consider
discrete Markov networks in which an observer has access to a few visible transitions and the waiting
times between these transitions. Focusing on the underlying structure of a discrete network, we
present methods to infer local and global properties of the network from observed data. First, we
derive bounds on the microscopic entropy production along the hidden paths between two visible
transitions, which complement extant bounds on mean entropy production and affinities of hidden
cycles. Second, we demonstrate how the operationally accessible data encodes information about
the topology of shortest hidden paths, which can be used to identify potential clusters of states or
exclude their existence. Finally, we outline a systematic way to combine the inferred data, resulting
in an algorithm that finds the candidates for a minimal graph of the underlying network, i.e., a
graph that is part of the original one and compatible with the observations. Our results highlight
the interplay between thermodynamic methods, waiting-time distributions and topological aspects
like network structure, which can be expected to provide novel insights in other set-ups of coarse
graining as well.

I. INTRODUCTION

On the microscopic scale, the laws of thermodynam-
ics acquire a form that is different to the expressions
commonly used for macroscopic descriptions. As ther-
mal noise significantly affects the trajectory of a given
physical system embedded in a thermal environment,
we have to resort to a stochastic rather than determin-
istic description of the dynamics. The framework of
stochastic thermodynamics adopts this conceptual shift
for thermodynamic quantities such as entropy produc-
tion, work, and heat, which are now understood as
trajectory-dependent random variables [1–5]. As a re-
sult, the thermodynamic properties of a physical system
are now closely related to its stochastic dynamics, so that
– given the right tools – we are not only able to incorpo-
rate the thermodynamic laws into a physical model but
also to investigate the reverse problem, namely the in-
ference of dynamical aspects of a given physical system
from its thermodynamic characteristics.

Such questions are studied in the emerging field of ther-
modynamic inference [6], which focuses on physical sys-
tems that can be observed only partially. In such a situa-
tion, the principles of stochastic thermodynamics cannot
be applied directly, and the development of appropriate
tools for inference constitutes one of the main tasks of
this applied branch of stochastic thermodynamics. Much
of the recent research in this field can be roughly sorted
into one of two categories. A substantial number of stud-
ies focus on a specific nonequilibrium phenomenon and
quantify the amount of dissipation implied by such an
observation. Typically formulated as a lower bound on
a quantifier for nonequilibrium like entropy production,
such results include, e.g., the preeminent thermodynamic
uncertainty relation [7–9], speed limits and transport re-
sults [10–14], response inequalities [15–17], bounds on the
coherence of oscillations [18, 19] and bounds in terms of

correlation or waiting times [20–22].

This first category of results is complemented by a sec-
ond one that places more emphasis on how the coarse-
grained dynamics, i.e., the dynamics at the observable
level, relates to the thermodynamics on the microscopic
level. A rough classification of studies in this direction
can be made by distinguishing the assumed observables
and the mathematical structure of the coarse-grained
process. Older works mainly focus on state lumping or
decimation techniques, which result in phenomenological
equations for the dynamics [6, 23, 24]. Over time, at-
tention gradually shifted from the states to the currents
along observed edges connecting them [25–27], a devel-
opment that culminated in a thermodynamically consis-
tent framework for coarse graining based on the tran-
sitions themselves [28, 29]. One reason for this shift is
that more powerful technical tools can be employed to
connect dynamics and thermodynamics. Whereas in the
case of state lumping typically only lower bounds on the
mean entropy production rate expressed as a Kullback-
Leibler divergence are possible [30–32], the more recent
transition-based description allows for stronger results
on the trajectory level, which include fluctuation rela-
tions [28, 33] and a meaningful identification of a coarse-
grained entropy production [34, 35] even in the presence
of time-dependent driving. Conceptually, these meth-
ods are able to include waiting times in their frame-
work, a trait that is shared by related coarse-graining
schemes that rely on milestoning [36, 37], Markovian
events [34, 35, 38] and trimming [39].

Apart from studying specific nonequilibrium phenom-
ena or coarse-grained models, we might speculate about
a third direction of inference that attempts to uncover
not only thermodynamic but also dynamical or topolog-
ical features of the underlying microscopic model. In
this work, we assume that the underlying dynamics takes
place in a discrete, finite configuration space and is de-
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â++(t)− â++(0)
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Figure 1. Waiting-time distributions in a multicyclic Markov network. a) Graph of a network, with transition rates given in
Appendix D1. Blue edges ± are visible while other edges and states are hidden. b) Waiting-time distribution Ψ+→+(t) for
two consecutive + transitions. The distribution is proportional to tN1,++ in the short-time limit, which yields the number
N1,++ = 2 of hidden transitions along the shortest cycle containing ±. c) Waiting-time distribution Ψ+→−(t) of the observed
sequence + → −. The value Ψ+→−(0) yields the rate of the transition −. d) The difference â++(t)− â++(0), which enters u++

in Equation (13). Its short-time limit is proportional to tu++ with u++ = N2,++ − N1,++ = 3. The horizontal dashed lines
mark local extrema of â++(t)− â++(0). The global extrema yield bounds on cycle affinities as we will discuss in Section III.

scribed by a master equation, which is a common as-
sumption within stochastic thermodynamics. We study
the scenario that an external observer can register tran-
sitions between some pairs of states, whereas the states
themselves and the remaining transitions remain inac-
cessible. In this setting, which is further detailed in Sec-
tion II, we propose a number of novel approaches that
reveal local and global properties of the underlying mi-
croscopic model, thereby extending the transition-based
methods introduced in Refs. [28, 29].

A common theme in the methods introduced in this
work is the focus on microscopic paths, i.e., the possi-
ble trajectories in the hidden part of the system that
take place between two observed transitions. One of our
main results is a constructive statement regarding the
existence of microscopic paths between particular transi-
tions whose entropy production is larger or smaller than
a particular, operationally determinable threshold. We
provide the precise formulation of this statement and a
numerical demonstration in Section III. The remainder
of our results is built around a systematic connection
between distributions of the waiting time between suc-
cessive transitions and the minimal number of hidden
transitions that take place in between, which is detailed
in Section IV. Although this technique itself is not new
(see, e.g., Refs. [28, 40] for states and transitions, re-
spectively), we present two novel refinements that focus
on structural properties of the network on which the dy-
namics takes place. First, such structural information
may provide insights into whether a network contains
distinct clusters, a hypothesis that will be formulated
more rigorously in Section V. Second, we may speculate
about whether a systematic way of combining the infer-
able topological information is sufficient to reconstruct
the entire microscopic model or a minimal variant of it.

Our proposal towards this challenging goal is presented as
an algorithm in Section VI. We discuss our methods and
their limitations in Section VII before concluding with
an outlook on potential future work in Section VIII.

II. SETUP

We consider a connected network of N states i ∈
{1, 2, . . . N}. The state i(t) of the system at time t
follows a stochastic dynamics with instantaneous tran-
sitions between states that share an edge in the underly-
ing graph. Transitions from state i to j occur according
to a time-independent rate kij , which fulfills the local
detailed balance condition kij/kji = exp(Fi − Fj + fij)
with free energy Fi of state i and non-conservative con-
tribution fij = −fji in units of thermal energy. Hence,
in the graph edges come in pairs, which we will call links.
Moreover, the rates kij generate the dynamics of the oc-
cupation probability pi(t) of state i at time t, which obeys
the master equation

∂tpi(t) =
∑
j

[pj(t)kji − pi(t)kij ] . (1)

In the long-time limit t → ∞, pi(t) reaches a stationary
state psi with constant net current jsij = psikij − psjkji
through the link from i to j. We assume that the network
has reached this steady state throughout the paper.
We assume an observer for whom the underlying

Markovian dynamics of the network is only partially ac-
cessible. In particular, the observer can register passages
along m pairs of edges and can distinguish forward from
backward transitions. In the steady state, the rate of ob-
served transitions I = (ij) is given by P (I) ≡ psikij . The
remaining transitions and the states of the network are
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hidden from the observer, as illustrated in Figure 1 a) for
the case m = 1. With access to a few transitions only,
the observer aims at learning about the topology and the
kinetics of the partially hidden network from measured
data.

This data characterizes the registered effective dynam-
ics through waiting-time distributions of the form [28, 29]

ΨI→J(t) ≡ P (J, t|I, t0 = 0) = kklpk(t|j, 0), (2)

where I = (ij), J = (kl) and t is the time since register-
ing transition I. The function ΨI→J(t) characterizes the
probability distribution of registering transition J after
waiting time t given that I was observed at t0 = 0. Its
normalization is

∑
J

∫∞
0

ΨI→J(t) dt = 1. Since the un-
derlying state of the network immediately before a transi-
tion is unique, the Markov property of the underlying dy-
namics ensures that the statistics entering ΨI→J(t) does
not depend on the past prior to I.
Next, using the reverse transitions Ĩ = (ji), J̃ = (lk)

of I and J , we define

âIJ(t) ≡ ln
P (I)

P (J)
+ ln

ΨI→J(t)

ΨJ̃→Ĩ(t)
. (3)

This quantity is time-independent when there is only one
self-avoiding path between the two visible transitions,
such as in a unicyclic network with one visible link. This
time-independence of âIJ(t) is a manifestation of a more
general symmetry in waiting-time distributions between
forward and backward paths that holds true as long as
there are no corresponding underlying paths that include
a part of a cycle with nonzero affinity [28, 34, 41, 42]. The
same quantity also qualifies for an interpretation as an
expression for entropy production that fluctuates on the
coarse-grained level [34, 35].

III. BOUND ON ENTROPY PRODUCTION OF
MICROSCOPIC PATHS

Our first result combines thermodynamic and topo-
logical reasoning to conclude the existence of particular
microscopic paths (without self-crossings) whose entropy
production exceeds or falls below a certain threshold. It
is worth noting that the bound involves the entropy pro-
duction of an individual microscopic path rather than
the average dissipation of a class of paths or trajectories
that become indistinguishable after coarse graining. We
limit this section to the presentation, discussion and il-
lustration of the result and refer to Appendix A for the
proof.

A. Result and discussion

It is sensible to speculate whether we can attribute
thermodynamic meaning to the ratio of waiting-time dis-
tributions defined in Eq. (3). Here, we present an inter-

pretation of the quantity âIJ(t) as a bound on the ex-
tremal microscopic entropy production along direct paths
γ connecting the transition I to J . As discussed in more
detail below, this perspective complements extant rela-
tions establishing âIJ(t) as a lower bound on the average
dissipation of all paths from I to J [34] and as an esti-
mator for cycle affinities in the case I = J [28].
The novel bound introduced in this work and proved

in Appendix A links the extremal values of âIJ(t) as a
function of t to the microscopic entropy production ∆s[γ̂]
of particular paths γ̂ in the form

min
γ|I→J

∆s[γ̂] ≤ inf
t
âIJ(t) ≤ sup

t
âIJ(t) ≤ max

γ|I→J
∆s[γ̂].

(4)
The maximum and minimum are taken over all possible
microscopic paths γ that start with the transition I, end
with the transition J and do not contain any other ob-
served transitions. The entropy production ∆s is, how-
ever, evaluated for the trimmed path γ̂, which is obtained
from γ by removing all closed loops from the path. The
term ∆s[γ̂] includes the contribution to entropy produc-
tion due to the initial jump I but excludes the last jump
J . As an example, for the network depicted in Fig. 2
and the transitions I = 7 → 4 and J = 9 → 10, a pos-
sible microscopic path γ and its corresponding trimmed
counterpart γ̂ read

γ =
I→ 4 → 3 → 2 → 4 → 3 → 8 → 6 → 8 → 9

J→ and

γ̂ =
I→ 4 → 3 → 8 → 9

J→ , (5)

respectively. This procedure ensures that there are only
finitely many distinct paths γ̂ and, in particular, that the
maximal and minimal values of ∆s[γ̂] are finite.

Thus, each trimmed path γ̂ corresponds to a topologi-
cally distinct pathway from I to J , so that the inequali-
ties (4) combine topological and thermodynamic aspects
in a similar way as bounds on cycle affinities do, to which
they reduce when specifying I = J . These aspects are
made even more explicit when reformulating the result
(4) as a statement about the existence of particular mi-
croscopic paths in the hidden network. First, a micro-
scopic path γ+ from I to J that does not contain any
loops or other observed transitions must exist and satis-
fies the condition

∆s[γ+] ≥ sup
t

âIJ(t). (6)

In other words, not only are there microscopic paths
whose entropy production exceeds the value supt âIJ(t),
but such paths can even be found without completing
any hidden cycles. A similar existence statement can be
made for a path γ− from I to J , which satisfies

∆s[γ−] ≤ inf
t
âIJ(t) (7)

and again contains neither loops nor any other visible
transitions apart from I and J .
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Figure 2. Entropy production along paths in a multicyclic 10-state Markov network. a) Graph with highlighted paths between
visible transitions of the network with transition rates given in Appendix D2. Only transitions I±, J± along the blue edges
are visible, whereas states and the remaining transitions are hidden. Three different possible paths between states 4 and 9,
i.e., between the transitions I+ to J+ are highlighted: The shortest connection along (4389) = 4 → 3 → 8 → 9 is marked
in blue, whereas the paths (42389) and (45689) are highlighted in teal and olive green, respectively. b) Time-dependence of
âI+J+(t) as the waiting time t between the initial transition I+ and the final transition J+ is varied (purple curve) compared
to the entropy production ∆s of three different possible microscopic paths from I+ to J+ (horizontal lines). Except for paths
containing closed loops, these three paths are the only possible ones from I+ to J+. Therefore, the result (4) implies that
âI+J+(t) stays bounded between the highest and lowest horizontal line for all t. In the figure, the value of the lower bound
is attained in the limit t → 0, because limt→0 âI+J+(t) precisely recovers the entropy production of the path with the lowest
number of intermediate states if this path is unique. c) Illustration of the quality of the bound (4). We depict the quality
factor Q = supt |âI+J+(t)−∆s(4389)|/maxi∈{1,2,3} |∆sγi −∆s(4389)| for the estimator maxt |âI+J+(t)−∆s(4389)|, which satisfies
0 ≤ Q ≤ 1 by virtue of Equation (4), as indicated by the horizontal line. The value Q is calculated for 1731699 randomly
selected configurations of transition rates, more details are given in Appendix D2 (purple dots). The average performance of
the quality factor ranges from Q ≃ 0.3 to Q ≃ 0.6 and is measured as a binned mean grouping similar values of ∆s(42389) (blue
lines).

Before providing an illustration for these results, we
briefly discuss their relation to similar-looking bounds
published earlier. First, Ref. [34] interprets the same
quantity âIJ(t) as a coarse-grained entropy production
∆SI→J(t), which satisfies an inequality of the form

∆SI→J(t) ≤ ⟨∆s[γ]|I t→ J⟩ for each value of t, where
the average is taken over all microscopic paths γ that are
consistent with the coarse-grained data, i.e., all paths γ
in the hidden network that start with a transition I fol-
lowed by a transition J after time t. Second, the sequence
of inequalities (4) is stronger than a conceptually related
bound on affinities of hidden cycles also published in Ref.
[34], which can be recovered from

sup
t

âIJ(t)− inf
t
âIJ(t) ≤ max

γ∈Γ
∆s[γ̂]−min

γ∈Γ
∆s[γ̂], (8)

a direct consequence of (4). The corresponding result in
Ref. [34] follows by noting that the existence of paths
that realize the maximal and minimal value of ∆s in the
previous equation implies the existence of a circular path
with entropy production equal to the right-hand side of
Eq. (8). If this value is nonzero, we can conclude the
existence of a hidden cycle with nonvanishing entropy
production.

Third, for I = J the involved trimmed paths γ̂ start
and end with the same transition and therefore corre-
spond to a cycle. In this case, the bounds (4) reduce

to results introduced in Ref. [28] as affinity estimators
for cycles containing the transition I (but no other ob-
served transition). We note that if one is interested in
cycle affinities in particular, it is in principle possible to
disregard particular observed transitions or include only
particular sequences of transitions in the waiting-time
distributions to obtain different bounds on cycle affini-
ties. For example, if there are two observed transitions
I and J (and their corresponding reverse), we can disre-
gard J to obtain affinity bounds on the set of cycles that
contain I irrespective of whether J is included or not. It
is also possible to extract waiting-time distributions of,
say, the form ΨI→I(t| contains J). In this case, we could
repeat the steps above to find bounds on cycles that con-
tain both transitions I and J . The result presented here,
however, enables us to treat the paths from I to J and
from J to I individually, so that applying the bounds
(6) or (7) will yield more resolved and therefore superior
estimates.

B. Numerical illustration

We illustrate our findings for a network with the topol-
ogy sketched in Figure 2 a), which has visible transitions
I±, J± and transition rates as given in Appendix D2. We
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select the transitions I = I+ = 7 → 4 and J = J+ = 9 →
10 and depict âI+J+

(t) as a function of the waiting time t
between the two transitions in Figure 2 b). According to
the results (6) and (7), there must be one path each from
state 4 to state 9, whose microscopic entropy production
is bounded by supt âIJ(t) from below and inft âIJ(t) from
above, respectively.

We assess the quality of these bounds by defining an
appropriate quality factor Q, which satisfies 0 ≤ Q ≤ 1
and approaches the upper bound if the corresponding
estimate is tight. Additionally, it is sensible to define the
quality factor in such a way that Q is invariant under
constant shifts of all involved quantities. This is possible
because whenever there is a unique shortest path γ0 from
I to J , we have

lim
t→0

âIJ(t) = ∆sγ0
. (9)

Intuitively, this identity states that as t → 0 the proba-
bility that the hidden intermediate path between I and J
is γ0 approaches one. This reasoning can be made more
rigorous by expanding âIJ(t) in powers of t employing
similar techniques as in Section IV or Ref. [28]. Thus,
we can define

Q =
supt |âI+J+(t)−∆s(4389)|

maxi∈{1,2,3} |∆sγi
−∆s(4389)|

(10)

in the set-up of Figure 2, where Equation (9) ensures
that the numerator is operationally accessible. We note
that Q ≤ 1 follows from either Equation (6) or Equa-
tion (7), depending on whether supt âIJ(t) or inft âIJ(t)
has a greater distance to ∆s(4389). In many cases in-
cluding the example depicted in Figure 2 b), the other of
the two values coincides with limt→0 âIJ(t), so that the
corresponding bound is trivially satisfied.

The results of a numerical study to investigate the per-
formance of Q are depicted in Figure 2 c). The transition
rates are randomly drawn from the distributions speci-
fied in Appendix D2. As can be seen from the blue curve
in Figure 2 c), the average value of Q varies between
Q ≃ 0.3 and Q ≃ 0.6, with on average tighter estimates
when ∆s(4389) is large.

IV. SHORTEST PATHS BETWEEN VISIBLE
TRANSITIONS

The waiting-time distributions ΨI→J(t) defined in
Equation (2) for transitions I = (ij), J = (kl) are
nonzero for all times t > 0 if states j and k are con-
nected in the hidden graph. For such transitions I and
J , we define the two topological quantities N1,IJ and
N2,IJ . These quantities represent the number of hidden
transitions along the shortest and second-shortest paths
between I and J , which we require to be self-avoiding.
Such self-avoiding paths naturally contain neither loops
nor any repeated transition. This property is inherent to

the shortest path. It is a necessary condition that, in par-
ticular, excludes a transition followed by its reverse from
the second-shortest path, so that it corresponds to a dis-
tinct path in the underlying graph. Otherwise, the value
N2,IJ could not exceed N1,IJ + 2, providing no further
insight.
The sum of path weights of all trajectories that start

in state i at time t = 0 and end in the neighboring state
j at time t satisfies p(j, t|i, t = 0) = kijt + O(t). For
a path with N1 transitions between j and l, the corre-
sponding probability is proportional to tN1 in the short-
time limit. Longer paths contribute to terms of higher
order in t, while sojourn times enter the path weights in
exponential factors. Consequently, with a shortest path
of N1 transitions between i and l, we obtain p(l, t|j, t =
0) ∼ tN1 (1 +O(t)). Since ΨI→J(t)/kkl = p(l, t|j, t = 0),
only the shortest path between I and J contributes to
ΨI→J(t) in the short-time limit t → 0, which leads to
the number of hidden transitions

N1,IJ = lim
t→0

(
t
d

dt
lnΨI→J(t)

)
(11)

along the shortest path from I to J [28].
Next, we focus on the short-time behavior of the quan-

tity âIJ(t) defined in (3),

uIJ ≡ lim
t→0

(
t
d

dt
ln |âIJ(t)− âIJ(0)|

)
, (12)

where the first term of definition (3) drops out. This
quantity uIJ is formally ill-defined for âIJ(t) = const.,
in which case we set uIJ ≡ 0.
For the remainder of this section, we assume that paths

from I to J do not contain a part of a cycle with van-
ishing affinity. Within this class, the number of hidden
transitions N2,IJ along the second-shortest path between
I and J is given by

N2,IJ = uIJ +N1,IJ (13)

in the following cases [28].
First, this holds true for uIJ ≥ 2, which applies, e.g.,

to the network shown in Figure 1.
Second, for uIJ = 1 and N1,IJ ≥ 1, Equation (13)

yields the correct length N2,IJ or the shortest path be-
tween I and J is degenerate. In the latter case, the degen-
erate paths form a cycle with nonzero affinity, such that
for N1,IJ ≥ 2 sojourn times in states along the distinct
shortest paths lead to a term in âIJ(t) that is propor-
tional to tN1,IJ+1. Since then the same power arises from
a second-shortest path with N2,IJ = uIJ + N1,IJ , this
analysis cannot distinguish these two different topologies,
as is the case, e.g., for I+ → J+, I− → J− and I+ → J−
in Figure 2.

Finally, uIJ = 0, which arises from a time-independent
âIJ(t), implies that there is no second-shortest self-
avoiding path between I and J . For example, this is
the case in Figure 3 for I = L+ and J = R−. Note, how-
ever, that this conclusion cannot be drawn if we drop the
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Figure 3. Multicyclic graph of a partially accessible Markov
network. Blue, labeled transitions R±, L± are observable,
whereas states and remaining transitions are hidden.

assumption that paths must not contain parts of cycles
with vanishing affinity.

Two additional features will become relevant below.
First, Ni,IJ = Ni,J̃ Ĩ for i = 1, 2 and uIJ = uJ̃ Ĩ be-
cause the same path is used in both forward and back-
ward direction. Second, treating all edges from a set
K as hidden can alter the shortest hidden paths be-
tween two visible transitions. For example, ignoring
R± transitions in observations of the network depicted
in Figure 3 changes N2,L±L± from 5 (for the second-

shortest path
L+→ 4 → 5 → 2 → 6 → 1 → 3

L+→) to

4 (
L+→ 4 → 5 → 2 → 1 → 3

L+→). Hence, we de-
fine N1,IJ\K , uIJ\K and N2,IJ\K analogously to Equa-
tions (11) to (13) for observations in which the set K
containing the smallest number of visible transitions that
decreases the respective number N1,IJ , uIJ and N2,IJ to
a specific, different value is considered hidden.

V. FOOTPRINTS OF CLUSTERS: THE PAIR
RULE

In this section, we assume a network of states that
can be characterized as a tree of clusters, see, e.g., Fig-
ure 4 a). A cluster consists of states connected by paths.
Two clusters are connected by a bridge, which means
they are unconnected after removing the bridge. A gen-
uine bridge, consisting of a pair of edges B±, appears in
Figure 4 a). Within this paper, a bridge could also be
larger and consist of a self-avoiding path of n links. A
degenerate bridge is a single state. The tree-like topology
on the level of clusters means that the network obtained
by treating all clusters as states does not contain any
cycles.

A visible bridge link like B± in Figure 4 a) allows us
to identify clusters in a partially visible Markov network.
Such links ± are not a part of any cycle within the graph
meaning that both waiting-time distributions Ψ+→+(t)
and Ψ−→−(t) vanish identically. While this condition
uniquely characterizes such situations, identifying clus-
ters without having access to visible bridge links is more
involved as we will discuss now.

In preparation for this more general case of inference,
we first derive a graph-theoretical fact. For any pair of

visible transitions J± and L±, consider in each of the four
lines

N2,J+Ls
−N1,J+Ls

, (14a)

N2,J−Ls
−N1,J−Ls

, (14b)

N2,JsL+
−N1,JsL+

(14c)

and

N2,JsL− −N1,JsL− (14d)

these differences for s = + and s = −, each of which we
will call a pair of differences in the following. If in none
of these four pairs the two differences are equal, we can
be sure that the two links belong to the same cluster.
Likewise, if the two links belong to different clusters, at
least in one pair the two differences have to be equal.
Before we prove this pair rule, as we dub it, we illustrate
this criterion with the graph shown in Figure 4.
In this network, we assume B+ and B− to be hidden

in the following. First, consider the edges I± and J±.
The shortest and second-shortest path connecting I− and
J− is highlighted in Figure 4 a) in teal and olive green,
respectively. We thus get the crucial difference

N2,I−J− −N1,I−J− = 5− 4 = 1. (15)

Similarly, we get

N2,I−J+
−N1,I−J+

= 6− 3 = 3, (16)

noting that the two differences in this pair are distinct.
Fixing I+ as the first transition, we get

N2,I+J− −N1,I+J− = 6− 3 = 3. (17)

For the sequence I+ → J+, the second-shortest path does
not exist. In this case, we assign the value zero to the
difference

N2,I+J+ −N1,I+J+ ≡ 0. (18)

Again, we see that the differences in Equations (17)
and (18) are distinct. Likewise, if we keep the second
visible tranisiton fixed and change the first one, i.e.,
N2,IsJ+

− N1,IsJ+
and N2,IsJ− − N1,IsJ− for s = ±, we

find that in none of the resulting two pairs with fixed
second transition do the differences match. Since I and
J are in the same cluster, the differences in none of the
four pairs match, which is in agreement with the pair rule
stated above.

Alternatively, if we select the edge pairs I± and L±,
which are in different clusters, we get for the first pair

N2,I−L− −N1,I−L− = 6− 5 = 1,

N2,I−L+
−N1,I−L+

= 6− 5 = 1. (19)

These two differences are the same, since both shortest
paths contain the sequence 3 → 2 → 1 → 9 in Cluster 1,
and both second-shortest paths differ from the shortest
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Figure 4. Subnetwork with three clusters of states connected by bridges. All states and edges except the blue, labeled ones
are hidden. Dashed, gray lines indicate additional paths to arbitrary subgraphs that are within cluster 1 and outside the
drawn clusters, respectively. a) Irrespective of whether we can observe edge pair B±, which is the bridge between clusters 1

and 2, the shortest path connecting I− and J− is
I−→ 3 → 2 → 5 → 8 → 7

J−→ shown in teal. The second-shortest path is
I−→ 3 → 2 → 1 → 9 → 8 → 7

J−→ shown in olive green. Their length differs by N2,I−J− −N1,I−J− = 5− 4 = 1 hidden transition.
b) The shortest and the second-shortest path between I− and L+ consist of teal as well as of olive green edges, respectively.
Both contain the bridge between clusters 1 and 2, and the shortest partial path within cluster 2, while their partial paths
(between states 2 and 9) in cluster 1 are distinct.

path only within Cluster 1 by containing the sequence
3 → 2 → 5 → 8 → 9 instead. We refer to such parts of
shortest paths that lie within one cluster as the shortest
partial path and adopt an analogous definition for the
second-shortest partial path. The remaining parts of the
shortest paths, i.e., the bridge and the partial paths in
Cluster 2, corresponding to each difference are identical
and thus do not contribute to it, as shown in Figure 4 b).
We will now show that such an equality between differ-
ences in one of the pairs (14a) to (14d) has to occur when-
ever the chosen pair of visible transitions is in different
clusters.

In a general network containing clusters, the second-
shortest path between visible edges Jj , Ll with j, l ∈
{+,−} located in different clusters differs from their
shortest path within one of the clusters by the self-
avoiding path between bridge and visible transition.
Specifically, it contains the second-shortest partial path,
which differs from the corresponding shortest partial path
by the fewest hidden edges. The number of these hidden
edges equals the difference N2,JjLl

−N1,JjLl
. Since there

are four shortest paths between J± and L± in total, and
one of the differences in partial paths is the smallest,
this minimal difference equals two of the four differences
N2,JjLl

−N1,JjLl
, thus forming a pair. Additionally, the

transition that remains fixed within the pair indicates the
cluster in which the smallest difference in partial paths
between the two visible transitions lies. Using similar
reasoning, if there are two second-smallest differences in
partial paths or both second-shortest partial paths lie in
the same cluster, two pairs exist. An example is the com-
bination I±, L± with hidden B± in Figure 4 b), where the

second-shortest partial paths are in Cluster 1. Other re-
lations between the values of the differences in partial
paths lead to a triplet or to two equal pairs.
Consequently, the pair rule yields a sufficient criterion

to rule out that two links are in different clusters. Con-
versely, a necessary condition for two links to be in dif-
ferent clusters is the existence of equal differences in at
least one such pair of the pair rule. This pair rule thus
provides insight into the global structure of a graph.

VI. RECONSTRUCTING A MINIMAL GRAPH

The ability to infer topological information about a
Markov network based on waiting times between visible
transitions provokes the question of how to reconstruct
a minimal graph that is compatible with the observa-
tions. But what is a minimal graph of such a network
that we might want to construct? We define the largest
subgraphs an observer can reconstruct with the tools of
Sections IV and V (up to relabeling states) as a realiza-
tion of the minimal graph. If this realization is unique it
is the minimal graph.
There are three motifs that can be added to a mini-

mal graph without getting into conflict with observations
based on the topological information our methods yield.
First, one can always connect otherwise unconnected sub-
graphs that contain no visible edges to the graph via a
hidden bridge as defined in Section V. Second, one can
always split a hidden edge into multiple hidden channels
between two neighboring states. Third, one can always
add paths leading to cycles with vanishing affinity, unless
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Figure 5. A graph and realizations of its minimal graph.
Except for the labeled visible edges (blue), all states and
edges are hidden. a) Multicyclic graph with N1,++ = 2 and
N2,++ = 4. b) The three realizations of a minimal graph for
the graph in a). The realizations consist of a three-state uni-
cycle with labeled visible edges in blue, double-headed arrows
as hidden edge pairs and a dashed extension with vertices as
states that potentially exist in the true graph.

they introduce a new shortest path that decreases some
of the N1,.... In the following we will focus on the realiza-
tions of the minimal graph without such additional ele-
ments. Yet, there may be restrictions or indications that
additional extensions are required, the graphical repre-
sentation of which are then part of the minimal graph. In
summary, the topology of the inferred graph will match
the observed data, while in general the full underlying
graph may remain unknown.

Building on operationally accessible knowledge about
shortest paths between edge pairs, in particular the quan-
tities N1,... and u... as discussed in Section IV, we present
strategies and tools to reconstruct a minimal graph or re-
alizations thereof for general, partially accessible Markov
networks. First, we discuss the case of one visible pair
of edges in Section VIA. Second, we illustrate two ex-
amples with multiple visible edge pairs, one with and
one without distinct clusters, in Sections VIB and VIC,
respectively. Finally, we present a general algorithm in
Section VID.

In all cases, we assume the observer has already de-
termined the smallest numbers of hidden transitions be-
tween any two visible ones as discussed in Section IV.
Moreover, we again note that hidden paths with the same
entropy production as the shortest path between two vis-
ible transitions are not part of a minimal graph, as they
lead to a cycle with vanishing affinity. Therefore, we
can use Equations (12) and (13) to determine the hidden
length of the second-shortest paths between two visible
transitions I, J in the minimal graph, relying on the re-
sults except for the case of uIJ = 1 with N1,IJ ≥ 2.

A. One visible pair of edges

For observations of a single pair of edges, like + and −
in Figure 5 a), we first note that N1,++ > 1, because oth-

Table I. Inferred quantities associated with the number of
hidden transitions along shortest paths between visible edges
in the network in Figure 3. Each number N1,..., u... +N1,... is
preceded by one of its two combinations of visible edges like
L+R−, as, e.g., N1,L+R− = N1,R+L− because both associated
paths use edges of the same hidden links.

N1,... N1,... u... +N1,... u... +N1,...

L+L+ 3 L+L+ \R± 3 L+L+ 5 L+L+ \R± 4

R+R+ 2 R+R+ \ L± 2 R+R+ 3 R+R+ \ L± 3

L+R+ 4 L+R+ 5

L+R− 2 L+R− 2

L−R+ 1 L−R+ 3

L−R− 1 L−R− 3

erwise a cycle containing only the two states connected
by a visible and a hidden link exists. In such a case with
visible and hidden channels between states our results
can be applied in a similar way, but we will not investi-
gate this case explicitly here.
Proceeding with the case that N1,++ > 1, drawing the

shortest cycle of the pair ± completes the graph that can
be reconstructed with certainty. Since there is no unique
way to append the second-shortest cycle of ±, each ver-
sion of the graph that includes a realization of it is a
possible extended minimal graph. Assume, for example,
a network as shown in Figure 5 a) where N1,++ = 2 and
N2,++ = 4. Figure 5 b) displays the three possible real-
izations of the true graph.
This introductory example demonstrates that a min-

imal graph need not exist. Instead, we obtain different
possible realizations of which one graph is contained in
or, in this case, coincides with the underlying graph.

B. Illustrative example I: A cycle-based approach
for multiple observed edges

In this example, we reconstruct the minimal graph of
the Markov network shown in Figure 3 by iteratively
adding paths and cycles to an initial cycle. We assume
the perspective of an observer who has listed the inferred
numbers of hidden transitions along the two shortest
paths between visible transitions in Table I. Based on
this information, the reconstruction proceeds as follows
in three steps, illustrated in Figure 6.

Step 1: The shortest cycle inferable from Table I
arises from the sequence R+ → R+ with N1,R+R+

= 2.
It includes R± and two hidden transitions. The state
between these hidden transitions connects this cycle to
the visible edge pair L± as a direct consequence of
N1,L−R± = 1. Thus, we draw this cycle and both vis-
ible edge pairs in Figure 6 a), where we also indicate all
possible ways to add the shortest cycle that contains L±.

Step 2: We need to connect states 2 and 4 via two
hidden edge pairs due to N1,L+R− = 2. This path,
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Figure 6. Construction of a minimal graph. The procedure relies on the inferred number of hidden transitions along shortest
paths between visible edges as given in Table I. Visible edge pairs are labeled, while hidden links are shown as double-headed
arrows. a) The three ways to extend the shortest cycle containing R± and its connection to L± with the shortest cycle that
includes the latter edge pair. Each extension and its number n of required hidden transitions to achieve N1,L+L+ = 3 are
highlighted in blue. b) Concrete realizations of extensions in a). The only allowed path is displayed in blue and violet while
red realizations fail to respect uL+R− = 0 or N1,L+R+ = 4. c) The three ways to extend the unique, compatible graph from b)
with the second-shortest cycle containing L± and N2,L+L+ = uL+L+ +N1,L+L+ = 5 hidden links that have no similarity with
rejected realizations in b). Only the blue path of n = 2 hidden transitions is compatible with the values listed in Table I. d)
Final minimal graph with visible edges in blue. This graph follows after rejecting red extensions in c) and is the same as the
original graph shown in Figure 3.

2 → 5 → 4, creates a fitting shortest cycle containing
L±. The two alternative ways to draw a shortest cycle of
L± fail to preserve uL+R− = 0 as shown in Figure 6 b).
Moreover, introducing a path of two hidden transitions
between states 1 and 4 violates N1,L+R+

= 4. After re-
jecting these incompatible realizations, we proceed with
the graph displayed in Figure 6 c).

Step 3: The constructed graph in Figure 6 c) now
agrees with all values for N1,... listed in Table I but at this
point lacks appropriate second-shortest paths, in partic-
ular the second-shortest cycle containing L±. This cycle
has to comprise uL+L+

+ N1,L+L+
= N2,L+L+

= 5 hid-
den transitions, for which there are a priori various re-
alizations. Figure 6 c) indicates the realizations that we
cannot rule out with the previous considerations. Since
extensions along the path between states 2 and 4 vio-
late uL+R− = 0, a path of two hidden transitions be-
tween states 1 and 2 is the only realization that is con-
sistent with all data given in Table I. We thus find that
N2,L+R+ = N1,L+R+ = 4 holds, since the correspond-
ing shortest and second-shortest path contain the same
number of hidden transitions. This is different to what
Table I suggests, i.e., different to uL+R+ + N1,L+R+ =
1 + N1,L+R+ = N2,L+R+ . Analogously, we find that
N2,R+R+ = N2,R+R+\L± = N1,R+R+ = 2 holds. Finally,
Figure 6 d) displays the reconstructed minimal graph,
which matches the original graph from Figure 3.

Thus, in this case, the network with six states and eight
edge pairs in total can be reconstructed fully based on
the observation of waiting times between combinations
of the four transitions that are part of the two visible
links.

For more complicated networks that contain clusters
and bridges, the steps within this approach often result in
multiple putative graphs. Each of these graphs requires
further extension within the method. In such cases, the
method branches. When it comes to connecting potential

Table II. Inferred numbers of hidden transitions along shortest
paths between two visible transitions in a graph as shown in
Figure 7 a). The combination of visible edges precedes its
values N1,....

N1,... N1,...

L+L+ 3 L+R+ 2

L+L+ \R± 3 L+R− 2

R+R+ 2 L−R+ 5

R+R+ \ L± 2 L−R− 5

clusters, we extend and modify this method by focusing
on paths rather than cycles. This adjustment makes the
branching behavior more tractable, as will be illustrated
in the following example.

C. Illustrative example II: A path-based approach
for multiple observed edges

In our second example, we focus on paths between dis-
tinct visible edge pairs, which in this case are key to
connect visible edge pairs from different clusters. This
example also elucidates the type of branching behavior
that results in different compatible graphs. We consider
the graph shown in Figure 7 a), which contains two clus-
ters. The information on shortest paths that an observer
can infer is given in Table II. For this network, the ob-
server finds that u... = 0 for all sequences of transitions.
Thus, the minimal graph will contain no second-shortest
paths.

Step 1: The sequence L+ → R+ has one of the two
equally shortest paths with N1,L+R+

= 2 = N1,L+R−

hidden links between the two links L±, R±, as given in
the second column of Table II. We therefore start drawing
the graph with this sequence, as depicted in Figure 7 b).
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Figure 7. Construction of minimal graphs for a graph with two clusters. To stress the unknown character, the states of the
underlying graph are labeled with a prime, whereas in the reconstruction the states are labeled with consecutive numbers. a)
Graph with visible transitions R±, L± that leads to the inferred data listed in Table II. Using this data, we construct minimal
graphs in b) to d), which demonstrates the branching behavior of this approach leading to multiple realizations for a graph.
b) A shortest hidden path between L± and R± with N1,L+R+ = 2. The blue labeled arrows indicate the two possible ways to
draw the shortest cycle that contains R± and N1,R+R+ = 2, with n = 1, 2 additional, hidden transitions. c) Realization of a
minimal graph with n = 1 from b) in which the shortest cycle containing L± with N1,L+L+ = 3 must not include states 4,5 and
3, since a direct link between states 1 and 4, 5 as well as between 6 and 3 would contradict N1,L−R+ = 5. d) Realization of a
minimal graph with n = 2 in b) with shortest cycle containing R± leading to N1,R+R+ = 2 and shortest hidden path between
L+ and R− leading to N1,L+R− = 2 in red. The red paths form a second-shortest cycle including R+ and a second-shortest
path for the four sequences L± → R± that are in conflict with the corresponding u... = 0. Alternatively, the affinity-based
criterion discussed in Appendix C 2 helps to rule out this realization since all â...(t) are time-independent such that the graph
in c) remains as the unique minimal graph that is the same as the graph in a) after relabeling states.

Step 2: The shortest cycle including R± and
N1,R+R+

= 2 hidden links can be added in the two
ways indicated in Figure 7 b). We start with the re-
alization featuring n = 1 hidden link between states 3
and 5. Adding the shortest cycle that contains L± and
N1,L+L+

= 3 hidden links, as displayed in Figure 7 c),
completes an allowed minimal graph. In particular, this
graph includes neither shorter self-avoiding paths than
given by the values in Table II nor second-shortest paths.
Other ways to draw this cycle contradict N1,L−R+

= 5.
Therefore, the only resulting graph matches the original
one in Figure 7 a) up to state relabeling.

A putative further realization uses the n = 2 option
from Figure 7 b). This realization again requires con-
necting states 1 and 2 as shown in Figure 7 c) to the
unique shortest cycle containing L±, and ensuring that
second-shortest cycles that contradict Table II are not
introduced. The value N1,L+R− = 2 requires a sep-
arate path of two hidden transitions between L+ and
R− like in Figure 7 d), but this introduces an unwanted
second-shortest cycle containing R±. Drawing this path
would also conflict with u... = 0 for the four sequences
L± → R± because they have no second-shortest paths.
Thus, this realization is incompatible with the observa-
tions and must be discarded.

The approach described above is not the only way to

obtain the graph that yields the desired values of N1,...

as given in Table II and u... = 0. We could alternatively
use a criterion discussed in detail in Appendix C 2, which
allows us to restrict the set of compatible graphs by using
methods similar to those described in Section III. The
reasoning is based on inferring cycle affinities and entropy
production along microscopic paths and discarding the
realizations where these quantities lead to inconsistent
results.

In conclusion, we are able to find a unique minimal
graph that, in this case, coincides with the original graph
after relabeling states. This example also demonstrates
that even if we obtain different possible realizations of the
minimal graph in an intermediate step, it is possible that
such realizations have to be discarded at a later stage
when they turn out to be inconsistent.

D. General method to reconstruct realizations of a
minimal graph

In this section, we compile our previous heuristic
insights into an algorithm, which is illustrated as a
flowchart in Figure 8.

We can conceptualize the algorithm as comprising two
distinct components. The first part encompasses the first
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Start

Identify and
group visible links
I±, J±, . . . if they
cannot lie in dis-
tinct clusters

Input: N1,..., u...,
N2,... if applic.,
Pair rule (Sec. V)

Result A: NCl = max.
number of clusters; C ≡
{{I±, L±, . . . } , {J±, . . . } , . . . } =
set of sets of visible links ly-
ing in the same of the NCl
putative clusters (PCs)

For each pair of PCs
c1, c2 ∈ C, A ∈ c1
and B ∈ c2, find
minimal N1,AB

Connect the PCs
by drawing their
min. connections

Input: N1,AB ,
A,B from
distinct PCs

Result B: Tree-like
structure(s) of PCs

Add shortest paths
within each PC

Input: N1,AB ,
A,B from
same PC

Add the remain-
ing shortest paths

Input: N1,AB ,
A,B from
distinct PCs

Result C: Graph(s)
with shortest paths be-
tween visible transitions

Add second-
shortest paths
within each PC

Input: uAB ,
N2,AB (if applic.),
A,B from same PC

Add the re-
maining second-
shortest paths

Input: uAB , N2,AB

(if applic.), A,B
from distinct PCs

Stop
Result D: Graph(s) with
up to second-shortest paths
between visible transitions

Figure 8. An algorithm to reconstruct realizations of a minimal graph. The procedure takes the inferred values of N1,..., u...

and, if applicable, of N2,... along with the pair rule from Section V as its input. It is possible that the algorithm branches,
therefore it may generate multiple putative realizations of the minimal graph in the general case. The outlined procedure
has to be followed for every realization individually in this case. For convenience, we list four intermediate results A to D,
resulting in a four-block structure. The first block A yields the maximum number NCl of putative clusters (PCs) and a set C
containing sets of visible links that are in the same PC. Starting in the line below result A, we connect the PCs in block B
via the paths with the minimal N1,... between each pair of PCs. The result are realizations of graphs with tree-like topology
on the level of PCs. In the last two blocks, we repeatedly call the subroutine defined in flowchart 9, which is indicated by the
box with double vertical lines. Explicitly given inputs define the task described in the label of the subroutine, which extends
putative realizations of a minimal graph with given input. Block C generates shortest paths between all visible transitions in all
putative realizations, while ensuring that they respect all relevant N1,... and u.... Note that checking for additional realizations
between visible transitions is crucial if two PCs are merged. Block D includes the analogous procedure for the second-shortest
connections.
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three steps in the algorithm until Result B and aims at
identifying putative clusters (PCs) based on the pair rule
of Section V. These clusters are connected before we pro-
ceed with the connections within a PC. This approach
proved useful for networks that feature bridges or bottle-
necks like the one previously discussed in Section VIC.
It is worth noting that, since the pair rule only provides
a necessary criterion to identify multiple clusters, the
structure of PCs may change as additional information
is added to the subgraph later in the algorithm. For ex-
ample, if it turns out that two PCs are connected by not
only one bridge, these two PCs have to be combined into
a single PC, which also entails checking whether there
are additional cross-connections between the previously
separate clusters.

The second part of the algorithm utilizes this pre-
liminary structure to systematically include information
about first the shortest and then the second-shortest con-
nections. This procedure repeatedly calls the subroutine
depicted in Figure 9. In this subroutine we encounter the
peculiar branching behavior that was already present in
the previous examples. It is important to note that the
algorithm must be continued for each individual puta-
tive realization, because it is possible that such branches
can be ruled out at some later point in the algorithm, as
we encountered in the example of Section VIC. As one
would expect already from the introductory example in
Section VIA, the algorithm yields not a single minimal
graph but different possible ones in the general case.

A more formal presentation of the algorithm is found
as pseudocode in Appendix B, which also discusses par-
ticularly subtle aspects in more detail.

VII. DISCUSSION: CONCEPTUAL
APPROACHES AND THEIR LIMITATIONS

This work focuses on what might be deemed a thermo-
dynamic approach to inference of an underlying graph.
The theme common to the methods described here is,
apart from assuming that transitions are the elementary
observable, the conceptual focus on âIJ(t). This mea-
sure of broken detailed balance that can be given a pre-
cise thermodynamic interpretation as a coarse-grained
entropy production [34]. In this sense, we provide a
quantitative extension of previous studies that relate ob-
served broken time-reversal symmetry, a qualitative, bi-
nary property, to topological aspects of the underlying
hidden layer [41–43].

An important consequence is that the methods pre-
sented here are insensitive to a number of operations
that do not change nonequilibrium characteristics, which
includes the addition of equilibrium cycles, tree-like ap-
pendages or even entire clusters if such clusters do not
contain a single visible transition and connect to the re-
maining network only via a bridge. Additionally, a hid-
den edge could always be split into multiple channels be-
tween two states. Due to such shortcomings, one might

Start

Add a path consis-
tent with input to
the existing graph

Input

Ambiguity?
Yes: Proceed with
all putative real-
izations separately

Contradictions with
other N1,..., u...?

Discard graph.
End.

Yes:
Proceed
with next

More input?

Stop
Result: Graph(s)
extended with
given input

No

No

No

Yes

Figure 9. The subroutine used in Figure 8. The explicitly
given input of the subroutine defines its task and its label in
flowchart 8, but allN1,..., u... are implicitly used as input when
checking for contradictions. Based on the explicitly given in-
put, the subroutine adds paths to each putative realization.
If multiple realizations are possible, we proceed with each
putative realization and corresponding graph separately. Re-
alizations that do not respect all N1,... and u... are discarded.
The subroutine ultimately returns all resulting putative real-
izations, now extended by the given input.

argue that the thermodynamic approach is inferior to,
say, Markov state modeling [44], because the reconstruc-
tion of an underlying model is at best possible in a “mini-
mal” sense, i.e., up to in this approach invisible additions.

However, if we are particularly interested in the
nonequilibrium aspects of a given model, insensitivity to
changes in the nondriven parts of the network may be a
desirable rather than a detrimental feature. To illustrate
this point, let us consider the heat shock protein Hsp90 as
a concrete example. This protein displays nonequilibrium
behavior in the presence of ATP and suitable cochaper-
ones and is therefore interesting from a thermodynamic
point of view [45], but the presence of strong memory
effects in the observed dynamics render a direct descrip-
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tion in terms of a hidden Markov model difficult and
potentially even misleading [46]. In such a scenario, our
thermodynamic tools offer insights into the parts of the
underlying model that couple to the external driving. In
combination with other constructive methods like hidden
Markov modeling, our tools can also be understood as a
set of operationally verifiable criteria to check whether a
proposed model allows for a consistent description from
a thermodynamic point of view.

In the following, we comment on the limitations of our
methods in more detail. These remarks serve as possible
starting points for improvements and refinements of our
methods that may be the subject of future work.

A. Thermodynamic inference of microscopic paths

In Section III we present a set of inequalities through
which we can infer the existence of microscopic paths
with dissipation greater or smaller than an operationally
accessible threshold. Focusing on properties of the model
on the underlying Markovian level, these relations com-
plement a number of results regarding thermodynamic
properties of the transition-based model on the coarse-
grained level [28, 29, 33–35, 47].

The main difficulty in applying these results lies in
identifying an appropriate underlying Markovian layer
to which these results can be applied. From a theo-
retical point of view, it is necessary that the dynamics
and energetics of the underlying Markov model are re-
lated as described by the laws of stochastic thermody-
namics [3]. In practice, such insights require knowledge
about the physical coupling and energy transduction be-
tween the degrees of freedom that comprise the system
and its environment. A promising example where such
methods might be useful are molecular motors, where
microscopic models that describe their energetics ade-
quately are well-known [48–50]. In such a case, we might
speculate whether additional insights into the energet-
ics (e.g. that cycle affinities are integer multiples of the
free energy available through consumption of one ATP
molecule) allow even stronger predictions about the mi-
croscopic model (e.g. the existence of a microscopic path
along which one or several ATP molecules are consumed).

B. Number of hidden states along shortest paths

Our subsequent, more structural results are based on
the observation that the short-time limit of waiting-time
distributions contains information about the number of
hidden intermediate states as described quantitatively in
Section IV. From a practical standpoint, a significant ob-
stacle may be to first acquire sufficient statistics to sam-
ple a waiting-time distribution and subsequently extract
its short-time limit. Additionally, extracting the num-
ber of hidden states in the second-shortest cycle from
the quantity âIJ(t) defined in Equation (12) is not al-

ways possible. As a nonequilibrium quantity with ther-
modynamic meaning, âIJ(t) vanishes in equilibrium and
is also otherwise unsensitive to some operations that do
not change nonequilibrium properties of the network.
More specifically, the apparent number of states along the
second-shortest path does not change if one adds addi-
tional equilibrium cycles to the network, i.e., if the short-
est and second-shortest hidden path produce the same
amount of entropy, then the number of hidden states in
the second-shortest path cannot be inferred.

C. Detection of clusters

The detection of clusters through what we have called
the pair rule in Section V demonstrates that “local” in-
ference methods based on shortest paths between tran-
sitions can in some cases provide insight into “global”
properties of the network as well. Violation of the pair
rule gives a sufficient criterion to rule out when two pairs
of observed transitions lie in different clusters. However,
we point out two important limitations of this approach.
First, the pair rule is only a necessary criterion that the
two links are located in different clusters. Second, in
our reasoning we assume that if we treat the clusters as
lumped states, the resulting network containing only the
clusters does not contain any cycles. The design of more
refined methods to detect clusters remains as a challeng-
ing open problem for thermodynamic inference, which
given the previously discussed general limitations of ther-
modynamic inference might require a different conceptual
approach.

D. Reconstruction of a minimal graph

The construction of nontrivial minimal graphs relies
heavily on access to multiple observed transitions and
the short-time limit of their corresponding waiting-time
distributions, which are essential for inferring the number
of hidden transitions along the shortest connecting paths.
Assuming we have information on the number of states
in both the shortest and second-shortest paths between
pairs of transitions, the methods in Section VI aim at
utilizing as many of the inferred quantities as possible in a
systematic and consistent way. However, some difficulties
inherent to this approach must be addressed.
The perhaps most severe problem is that in the general

case the algorithm branches repeatedly as more topolog-
ical information is included. Thus, one is left with not
a single minimal graph but multiple possibilities which
might be discarded at some later point in the algorithm.
It is generally to be expected that this branching behav-
ior is more severe for more strongly connected graphs,
i.e., graphs in which a vertex is connected to more hid-
den edges. In the general case, there is also no guarantee
that the minimal graph is unique so that in the worst
case one is left with a large number of potential minimal
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graphs corresponding to the different surviving branches
of the algorithm.

VIII. CONCLUDING REMARKS AND
OUTLOOK

This work describes different ways to utilize the ob-
servation of transition statistics in a partially accessible
Markov network, but by no means exhausts all possibili-
ties, because the statistics contains additional accessible
but unused information. For example, the shape of the
curve âIJ(t) generally is simpler if the number of topo-
logically distinct pathways from I to J is small, to the
point that âIJ(t) is constant in time if there is only one
pathway from I to J . One might therefore speculate
whether more complicated shapes of âIJ(t) reveal addi-
tional topological data through their number of extrema,
which could originate either from decaying coherent os-
cillations or topologically distinct hidden paths between
the visible transitions I, J . In the latter case, the con-
jecture aligns with an observation in Ref. [28] for the
case I = J , providing an example in which each of the
aforementioned extrema appears to bound the affinity of
a different cycle containing the transition I.

From the perspective of graph reconstruction as dis-
cussed in Section VI, it is also worth investigating other
methods to infer the number of transitions along hid-
den pathways. This may take the form of a system-
atic analysis of the short-time limit, which then encodes
information about successively longer paths in terms of
successively higher order in time. However, such an ap-
proach faces not only conceptual limitations but also the
practical challenge of extracting such information from
experimental data. Nevertheless, additional structural
information about path lengths is beneficial in multiple
ways. First, we gain the ability to infer a larger portion
of the underlying graph. Second, additional information
provides additional restrictions on minimal graphs that
can reduce the number of allowed realizations of graphs

and therefore reduce the complexity of our proposed al-
gorithm.

We may also speculate about other model classes be-
yond the case of observing transitions in the steady state.
Due to the conceptual focus of our work, we assume sys-
tems with constant driving for simplicity, but the thermo-
dynamic formalism based on waiting-time distributions
can be transferred to the time-dependent case [51, 52]
and even to a more general class of observables beyond
transitions [35]. We therefore expect that our results
regarding hidden paths and graphs can be in principle
generalized to such settings as well. Non-Markovian ob-
servables, such as lumped states or events whose reverse
is not accessible, e.g., transitions for which only one di-
rection is observed, comprise two classes of observables
that have gained recent interest [53, 54]. Another way
to generalize the presented work is to allow for nonex-
ponential dwell times within a state, which is a way to
incorporate memory in the system. In this scenario, a
starting point for future studies is Ref. [55], which makes
use of waiting-time distributions to extract the number
of hidden transitions along the shortest path between two
succeeding visible states.

As a final remark, we emphasize that our techniques
for graph reconstruction provide only one possible ap-
proach. Thus, our proof of concept provides a basis for
further studies to design and investigate improved or even
optimal algorithms to construct a minimal graph. The
precise characterization of a minimal graph (or set of po-
tential minimal graphs) that at the same time provides a
thermodynamically consistent description is a challeng-
ing task that will be left for future works.
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Appendix A: Proof of the bounds (4)

In this section, we prove the bound (4) in Section III of the main text. The proof follows a strategy similar to
related results in Refs. [28, 34]. To ensure a self-contained presentation, we summarize the steps in the proof that
are identical to the reasoning in Ref. [34], but refer to there for more details.

We assume an underlying Markov network in a stationary state, in which several transitions are observed as
described in the main text. Let γ be a microscopic trajectory that starts and ends with observed transitions I, J ,
respectively, contains no other visible transitions and has a total duration t. The summation over the path weight of
all possible trajectories of this form yields the waiting-time distribution [28]

ΨI→J(t) =
∑

γ from I to J,
length t

P[γ|I] (A1)

A sum over the corresponding time-reverse paths γ̃ yields the according waiting-time distribution ΨJ̃→Ĩ(t). The
crucial idea of the proof is to introduce a different involution R : γ 7→ Rγ which bijectively maps paths from I to J

of length t to paths from J̃ to Ĩ with the same duration t, so that

ΨJ̃→Ĩ(t) =
∑

γ from J̃ to Ĩ,
length t

P[γ|J̃ ] =
∑

γ from I to J,
length t

P[Rγ|J̃ ]. (A2)

In this case, we specify R as the ordinary time reversal whenever γ is a trimmed path, i.e., whenever γ does not
contain any cycles. If the unobserved part of γ between I and J visits any state more than once, i.e., if γ contains
cycles, these cycles are not reversed, but are traveled in the same direction for both γ and Rγ. For example, the
trajectories

γ =
I→ 4 → 3 → 2 → 4 → 3 → 8 → 6 → 8 → 9

J→ and

γ̂ =
I→ 4 → 3 → 8 → 9

J→ (A3)

get mapped to

Rγ̂ =
J̃→ 9 → 8 → 3 → 4

Ĩ→ and

Rγ =
J̃→ 9 → 8 → 6 → 8 → 3 → 2 → 4 → 3 → 4

Ĩ→, (A4)

which clarifies that R can be understood as “taking out all cycles, reversing the path, then restoring all cycles in
original direction”. The operation R does not affect residence times in a state, and therefore does not change the
duration of a trajectory.

We now introduce the quantity

A[γ] ≡ ln
P (I)

P (J)
+ ln

P[γ|I]
P[Rγ|J̃ ]

. (A5)

This quantity bears some resemblance to entropy production, e.g., it satisfies a fluctuation relation ⟨exp(−A)⟩ = 1
and is identical to the microscopic entropy production ∆s[γ] if γ does not contain any cycles between I and J because
in this case R coincides with time reversal. We combine Equation (A5) and Equation (A2) to write

P (I)ΨI→J(t) = P (I)
∑

γ|I t→J

P[γ|I] = P (J)
∑

γ|I t→J

P[Rγ|J̃ ]eA[γ], (A6)

where the notation I
t→ J indicates that summation is over paths γ from I to J of length t. Combining the definition

of âIJ(t) in (3) with Equations (A2) and (A6), we obtain

eâIJ (t) =
P (I)ΨI→J(t)

P (J)ΨJ̃→Ĩ(t)
=

∑
γ|I t→J

P[Rγ|J̃ ]eA[γ]∑
γ|I t→J

P[Rγ|J̃ ]
=

〈
eA[γ]

〉
aux

, (A7)
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and in the last equality identify the expression as a mean with respect to an auxiliary probability measure. Thus,
inf

γ|I t→J
eA[γ] ≤ ⟨expA[γ]⟩aux ≤ sup

γ|I t→J
eA[γ], which is equivalent to

inf
γ|I t→J

A[γ] ≤ âIJ(t) ≤ sup
γ|I t→J

A[γ]. (A8)

To recast this relation into the form presented in the main text, we now relate the upper and lower bound on âIJ(t)
to the microscopic entropy production more explicitly. We first note that for the observed transitions I = k → l and
J = o → p all paths γ are of the form k → l → · · · → o → p.

In a first step, we assume that γ is a trimmed path, which implies Rγ = γ̃. In this case, the formal calculation

A[γ] = ln
P (I)

P (J)
+ ln

P[γ|I]
P[Rγ|J̃ ]

= ln
pskkkl
psokop

+ ln
P[γ|l]

P[Rγ|o]
(A9)

= ln
P[γ, excluding o → p]

P[γ̃, excluding p → o]
= ∆s[γ] (A10)

establishes that A coincides with the physical entropy production excluding the final transition. For a general γ that
may include hidden cycles, we replace the second line in the previous calculation with

A[γ] = ln
P[γ̂, excluding o → p]

P[˜̂γ, excluding p → o]
= ∆s[γ̂], (A11)

which makes use of the fact that R acts like time reversal on the trimmed path, but does not reverse the direction
of cycles, so that their contribution to the path weight in the denominator cancels with a corresponding term in the
numerator.

As a consequence of the identification A[γ] = ∆s[γ̂], we also see that the upper and lower bound in (A8) are
independent of t, because residence times within states contribute to the time-symmetric part of a path weight and
therefore do not affect entropy production. Therefore, the same bounds hold true for all t in the inequalities (A8),
allowing the reformulation

min
γ|I→J

∆s[γ̂] ≤ inf
t
âIJ(t) ≤ sup

t
âIJ(t) ≤ max

γ|I→J
∆s[γ̂], (A12)

which appears as inequality (4) in the main text. We note that “inf” and “sup” from (A8) have been replaced by
“min” and “max”, respectively, because there are only finitely many distinct values of ∆s[γ̂] corresponding to the
different possible trimmed paths from I to J .
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Appendix B: General method to reconstruct realizations of a minimal graph

Based on the refined approach to reconstruct a minimal graph illustrated in Section VIC, we present an algorithm
for arbitrary Markov networks, which differs slightly from the simplified flowchart 8 in Section VID. For a general
network with a set of N1,... and u... + N1,..., the following pseudocode describes an algorithm designed to yield the
minimal graph if it is unique or all of its putative realizations otherwise.

Algorithm drawMinimalGraph(N1,..., u...)

A1: Determine for all pairs in {I±, J±,K±, . . . } whether or not they lie in the same putative
cluster (PC)

A2: NCl =
∧

max. number of clusters; C = {{I±, L±, . . . }, {J±, . . . }, . . . } =
∧

set of sets of visible links
lying in the same of the NCl PCs

B1: n := NCl, x := 0, y := 2

B2: Do

B3: Select [one of] the pair[s] of x drawn and y not yet drawn links A±, B± with smallest
N1,AaBb

(a, b ∈ {+,−}) [that lie for NCl > 1 in distinct PCs]

B4: Draw the undrawn link(s) (A±, )B± and [one of] the shortest path[s] connecting A± and
B±. If there are several distinct realizations thereof, generate a separate graph for
each of them.

B5: n := n− 1, x := 1, y := 1

B6: while n > 1

C1: Do

C2: Select an unlabeled set from C, the PC of which is connected to the largest number of
other PCs, and label it cn

C3: f1 (cn, ”shortest”, ”the same”)

C4: n := n+ 1

C5: while n ≤ NCl

C6: Delete labels cn
C7: f2 (NCl, C, ”shortest”)
C8: If C7 returns realizations with updated NCl and C:
C9: Discard all realizations with updated NCl and C, and restart from line B1 for each of

the updated combinations NCl, C
C10: end if

D1: n := 1

D2: Do

D3: From C, select an unlabeled set, the PC of which is connected to the largest number of
other PCs, and label it cn

D4: f1 (cn, ”second-shortest”, ”the same”)

D5: n := n+ 1

D6: while n ≤ NCl

D7: Delete labels cn
D8: f2 (NCl, C, ”second-shortest”)
D9: If D8 returns realizations with updated NCl and C:
D10: Discard all realizations with updated NCl and C, and restart from line B1 for each of

the updated combinations NCl, C
D11: end if

The algorithm drawMinimalGraph(N1,..., u...) consists of four logical blocks A through D, in which lines (instructions)
are numbered and indentations highlight instructions within loops and conditionals. Additionally, we highlight that
the algorithm may generate multiple putative realizations in separate graphs. The remaining steps of the algorithm
then need to be applied to these graphs separately.

The first block (A) makes use of the pair rule, which we have discussed in Section V, to identify the maximum
number NCl of putative clusters (PCs) and the set C containing sets of visible links lying in the same of the NCl PCs.
Block B uses these intermediate results to connect one visible link from each PC to one of each neighboring PC. When
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selecting links to draw, there might be sequences of visible links with equal N1,.... In these cases and all similar cases
in later blocks, we arbitrarily choose one of the corresponding paths. For block B, this leads to a tree-like graph,
which consists of one visible link of each PC with a shortest path to a visible link of each neighboring PC.

The loop in block C generates realizations with shortest paths between all visible links by consecutively invoking
functions f1 and f2. These functions both depend on N1,... and u..., which we omit in our notation for the sake of
brevity. Function f1 (cn, ”shortest”, ”the same”) generates, with its default arguments ”shortest” and ”the same”, in
all putative realizations all shortest paths within the PC that corresponds to the set cn ∈ C as follows.

Algorithm f1 (cn, ”shortest”, ”the same”)

A1: m := 1

A2: Do

A3: Select (a yet unmarked) L± ∈ cn with [one of] the shortest path[s], from Ll to Ii with
l, i ∈ {+,−}, for an already drawn I± in the same PC (where L± = I± due to N1,I+I− = 0 is
allowed in the case of ”the same”). Mark L±

A4: Draw L± if it is not yet drawn and the shortest hidden paths between L± and any already
drawn visible link in the same PC. If there are several distinct realizations thereof,
generate a separate graph for each of them. [For the case of ”second-shortest”, mind the
initial ambiguity of uLlIi = 1 discussed in Section IV]

A5: Check each realization for respecting all N1,... and u... of drawn links and discard those
that do not.

A6: m := m+ 1

A7: while m ≤ |cn|
A8: Unmark visible links

E1: Result: Putative realizations with shortest paths between all links in cn

For the default arguments, line A4 needs to be executed in a way that may change which links and states form a
bridge but keeps neighboring PCs connected by a bridge. Moreover, we stress that putative realizations resulting
from this line must respect the relevant N1,LlIi\K introduced in Section IV for the smallest set K of visible transitions
that are considered to be hidden.

Function f2 (NCl, C, ”shortest”) generates, for its default argument ”shortest”, shortest paths between PCs beginning
in the tree of PCs with the outer ones as follows.

Algorithm f2 (NCl, C, ”shortest”)
A1: m := 1

A2: Do

A3: Select one of the unlabeled PCs with the smallest amount of neighboring PCs in the tree
of PCs. Label it m and its set in C as cm.

A4: f1 (cm, ”shortest”, ”a distinct”)

E1: If NCl decreases for a putative realization:

E2: Update NCl and C only for all of these putative realizations separately

E3: Exit this function for these putative realizations

E4: end if

A6: m := m+ 1

A7: while m ≤ NCl

E5: Result: Putative realizations with shortest paths

For each iteration, line A4 may lead to modified bridges or merged PCs. Thereby, either NCl and C remain unchanged
for a realization or they change due to merging two or more PCs by drawing a path between two PCs that contains
not all of the bridges formerly connecting them. In these latter cases, the function f2 exits via line E3, whereupon
the algorithm drawMinimalGraph(N1,..., u...) proceeds with deleting the corresponding graph and restarting with the
updated quantities in line B1 because finding all putative new realizations is crucial.

Block D is the analogous procedure focusing on second-shortest paths. Thereafter, additional information or
methods might allow discarding realizations and extending others with indications of yet undrawn subgraphs. Such
methods may be based on specific characteristics of the graph between visible transitions, examples of which we present
in Appendix C. In the end, the remaining realizations contain shortest and second-shortest self-avoiding paths. In
particular, they are all realizations of the minimal graph that are compatible with the information used about the
given nonequilibrium process. If only one realization results, it is the minimal graph.
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Note that this algorithm is designed to provide a supporting structure to find all putative realizations and is not
verified to be optimal. As an example, deleting existing realizations for which NCl and C have changed is not strictly
necessary in lines C9 and D10. Without this, we would then jump to line C1 setting n = 1. In this block (C), we would
however need to generate putative alternatives for existing paths between visible links, which is less straightforward
to describe unambiguously but may speed up the algorithm. Similarly, another route could be adding and completing
cycles before drawing paths between distinct visible links. Yet, selecting an approach is like choosing between high
road and low road—only at the end we know which route is faster.
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Appendix C: Additional methods for graph reconstructions

1. Cyclic rate product and steady state condition

Rates of visible transitions I as well as of hidden transitions along a path i
I→ j → k

J→ l with N1,IJ = 1 follow
from the short-time limit t → 0 as

kij = lim
t→0

ΨĨ→I(t) and (C1)

kjk = lim
t→0

ΨI→J(t)/ (tkkl) , (C2)

respectively, since the product of transition rates of the shortest path between I and J dominates ΨI→J(t) in this
limit [51]. As shorthand, we define the set Vi to contain all transitions for which the rates are inferable. These rates
allow us to infer additional information about hidden edges near visible ones in specific situations we will discuss now.

First, consider inferred rates kjj+1 of a cycle that corresponds to N1,II = n. An inequality in

ln

 n∏
j=1

kjj+1

 ?
= lim

t→0
ln

(
ΨI→I(t)

n!

tn

)
(C3)

reveals the existence of at least one more cycle with N1,II = n.
Hence, this test may provide insight when uIJ = 1 so that, as discussed in Section IV, a degenerate shortest

path is possible. If we are able to determine the transition rates via Eqs. (C1) and (C2), both sides of Eq.(C3)
can be determined and compared. If the results do not match, we know for certain that the shortest path is indeed
degenerate. We illustrate this point with a network from the main text, namely the one shown in Figure 3. We assume
that only the number of hidden transitions along shortest paths have been inferred. For the cycle 1 → 2 → 3 → 1,
Equations (C1) and (C2) yield all rates kjj+1. Furthermore, comparison (C3) becomes an inequality due to the cycle
1 → 2 → 6 → 1 containing R± and N1,R+R+

= 2 hidden transitions, and is therefore able to detect this additional
cycle.

Second, for a transition I = (ij), its mean observed rate ⟨ṅI⟩s and the rate kij determine the steady-state probability
psi by psi = ⟨ṅI⟩s /kij [51]. An inequality in

∂tp
s
i = 0

?
=

∑
ij∈Vi

(psikij − psjkji) =
∑
ij∈Vi

jsij , (C4)

where we sum over the set Vi of known, inferable net currents involving state i on the right-hand side, suggests the
existence of additional hidden edges that begin/end at state i.

An alternative uses the escape rate

Γi = − lim
t→0

d

dt
ln

ΨĨ→I(t)

kij
(C5)

of state i, which dominates the exponential decay of ΨĨ→I(t) in the short-time limit. Since this rate equals the sum
over all rates of transitions leaving state i, an inequality in

Γi
?
=

∑
ij∈Vi

kij (C6)

again implies at least one additional existing hidden edge at state i. In the example discussed in Section VIB, where
we reconstruct the graph shown in Figure 3, finding an inequality in comparison (C4) or (C6) for state 3 would mean
that the true graph includes at least one more edge starting at state 3. Such a finding indicates that the minimal
graph is not the full one and provides a starting point fur further inference, which can be marked in the minimal
graph(s).

2. Entropy production along paths and affinities

For a Markov network in a NESS with only one self-avoiding path between two visible links I±, J±, as is the case
in, e.g., Figure 7 a), entropy production along each observed trajectory is constant. Consequently and in analogy to



23

the cycle affinity discussed in Ref. [28], the quantity

aI+J+
(t) = ln

ΨI+→J+
(t)

ΨJ−→I−(t)
(C7)

is constant and reduces to the logarithmic ratio of rates along the path of I+ → J+ and the path of J− → I−, which,
e.g., yields aL+R+

(t) = aL+R+
= ln(k45k56k67/k65k54k41) for the graph shown in Figure 7 a). Moreover, we have

aL+R+
(t) + aR+L−(t) = aL+R+

+ aR+L− = ln
k45k56k67
k65k54k41

+ ln
k75k54k41
k45k57k76

= ln
k56k67k75
k65k57k76

= aR+R+
= aR+R+

(t) (C8)

in this example. We note that the quantity (C8) differs from â...(t) as introduced in the main text in definition (3)
only by an additional term ln(P (R−)/P (R+)).
Given a candidate for a minimal graph like the one in Figure 7 c), such consistency checks provide additional

evidence supporting that the minimal graph is correct. In the general situation, explicitly verifying equalities like
Equation (C8) provide a necessary criterion only, because in topologies with degenerate shortest paths relations
like (C8) and (C3) are not valid. Under the additional conditions that there are no degenerate shortest paths and
no additional self-avoiding paths with the same entropy production, however, consistency checks like (C8) provide
another necessary and sufficient criterion to conclude uniqueness of a hidden path between two transitions, in addition
to constancy of the quantities a...(t) = const. themselves.

For the graph in Figure 3 for example, the constant âL+R−(t) leads to uL+R− = 0, which means that we do not
find an additional path between L+ and R− with entropy production differing from the one along the shortest path
(cf. Section IV). In this example the minimal graph is consistent with both constancy of the â...(t) in time and the
consistency check (C8). As a consequence, the minimal graph has no additional self-avoiding paths between states 2
and 4, which is in agreement with the true graph. In this sense, this consistency check provides a restriction on both
the minimal graph and possible extensions.
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Appendix D: Model parameters and simulation

1. Multicyclic 10-state network for the illustration of topological inference in Figure 1

The multicyclic 10-state network in Figure 1 contains 10 hidden states, 12 hidden links and 1 visible pair of
transitions. The transition rates given in Table III lead to the waiting-time distributions that are shown in Figure 1 b)
and c) and used for the logarithmic ratio â++(t) as defined in Equation (3) and illustrated in Figure 1 d). The
waiting-time distributions can be derived from the solution of initial value problems based on the absorbing network,
in which observed transitions are redirected into auxiliary states [28, 56].

Table III. Transition rates of the multicyclic 10-state network in Figure 1.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10

k12 = 1.0 k21 = 1.0 k32 = 1.0 k42 = 2.5 k54 = 3.0 k65 = 1.0 k74 = 1.0 k83 = 1.0 k98 = 1.0 k101 = 2.0

k110 = 2.0 k23 = 1.0 k34 = 1.0 k43 = 3.0 k56 = 1.0 k67 = 4.0 k76 = 1.0 k86 = 8.0 k910 = 4.0 k109 = 1.0

k24 = 1.0 k38 = 0.2 k45 = 3.0 k68 = 1.0 k89 = 3.0

k47 = 1.0

2. Multicyclic 10-state network for the illustration of entropy production along paths in Figure 2

The graph of the multicyclic 10-state network in Figure 2 differs from the graph of the network in Figure 1 by its
visible links I± and J±. The transition rates given in Table IV determine the NESS of the network whose entropy
production along trajectories from I+ to J+ excluding the last transition is shown in Figure 2 b). The microscopic
entropy production along the three paths from I+ to J+ directly results from the transition rates of their forward and
backward direction. The coarse-grained entropy production can be derived from the rates, the stationary state and
the waiting-time distributions, which are determined as described in the previous Appendix D1.

For the 1731699 networks for which the scatter plot in Figure 2 c) displays the ratio of differences between micro-
scopic and between coarse-grained entropy productions along trajectories from I+ to J+, we have randomly drawn all
transition rates listed in Table IV from the uniform distribution Θ(0.5, 10) that is defined between 0.5 and 10. The
binned mean of the shown data has been determined in bins of width 0.1 for ∆s→4→3→ ∈ [−4, 4), in bins of width 1.0
for −6 ≤ ∆s→4→3→ < 4 and 4 ≤ ∆s→4→3→ < 6, and in one bin for other values of ∆s→4→3→ on either side of zero.

Table IV. Transition rates of the multicyclic 10-state network used to illustrate coarse-grained and microscopic entropy pro-
duction along paths in Figure 2 b).

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10

k12 = 0.45 k21 = 0.45 k32 = 16.59 k42 = 1.41 k54 = 1.69 k65 = 47.53 k74 = 0.45 k83 = 0.56 k98 = 0.45 k101 = 2.25

k110 = 2.25 k23 = 16.59 k34 = 0.84 k43 = 1.27 k56 = 237.66 k67 = 1.80 k76 = 0.45 k86 = 4.50 k910 = 1.80 k109 = 0.45

k24 = 0.56 k38 = 0.11 k45 = 1.69 k68 = 0.56 k89 = 1.35

k47 = 0.45
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