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Abstract. We prove existence and uniqueness for the transport equation for currents

(Geometric Transport Equation) when the driving vector field is time-dependent, Lip-

schitz in space and merely integrable in time. This extends previous work where well-
posedness was shown in the case of a time-independent, Lipschitz vector field. The proof

relies on the decomposability bundle and requires to extend some of its properties to

the class of functions that in one direction are only absolutely continuous, rather than
Lipschitz.
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1. Introduction

Let b : [0, 1]×Rd → Rd be a Borel vector field. For every t ∈ [0, 1] we write bt(x) := b(t, x).
In [4] the authors considered the Geometric Transport Equation

d

dt
Tt + LbtTt = 0 (GTE)

and studied several of its properties. This equation, which we understand in the distribu-
tional sense (see (2.2)), describes the motion of k-currents Tt driven by the given vector
field b, for any k ∈ {0, . . . , d}. We refer the reader to [4] for some motivating examples and
for the connection of (GTE) with the transport and continuity equations and several other
PDEs from mathematical physics.

A natural question is to understand under which regularity assumptions on b and/or on
the currents Tt the initial value problem associated with (GTE) is well posed, i.e., when for
every T̄ there exists a unique solution starting from T̄ at time 0. In [3] it was proven that
well-posedness holds in the class of normal k-currents Nk(Rd) as soon as the vector field b is
Lipschitz and autonomous, but extending this to time-dependent vector fields was left open.

In order to understand which regularity is natural to require on b, we recall that (GTE)
corresponds, in the case of 0-currents, to the continuity equation

d

dt
µt + div(btµt) = 0

for a family of (possibly signed) measures µt. For this equation several well-posedness results
are already established (see, for instance, [2, Chapter 8]), and a natural class in this case is
given by L1

t Lipx, namely those vector fields that satisfy
ˆ 1

0

(
∥bt∥C0(Rd) + Lip(bt;Rd)

)
dt < +∞, (L)

where Lip(bt;Rd) denotes the Lipschitz constant of bt. In the present work we extend the
well-posedness result of [3] to the class of all vector fields satisfying (L). We summarize this
in the following statement (see Theorem 4.1 and Theorem 5.1).
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Theorem. Let b : [0, 1]×Rd → Rd be a vector field satisfying (L). Moreover, let T̄ ∈ Nk(Rd).
Then there exists a unique family of currents Tt ∈ L∞([0, 1]; Nk(Rd)) that solves{

d
dtTt + LbtTt = 0

T0 = T̄ .

More precisely, denoting by (Φ0
t )t the flow of b starting from time 0, the solution is given by

the pushforward Tt = (Φ0
t )∗T̄ for every t ∈ [0, 1].

As in [3], the strategy to prove this result heavily relies on the decomposability bundle
V (µ, ) associated with a measure µ in Rd, see [1]. A central role in the proof is played by
the space-time flow Ψ(t, x) = (t,Φ0(t, x)) associated with b (see Subsection 2.4). Using the
decomposability bundle we are able to deduce some pointwise formulae for the currents Tt
involving the derivatives of Ψ. However, the difficulty of directly using the same approach
as in [3] lies in the fact that the flow associated with a vector field satisfying (L) is still
Lipschitz in space but only absolutely continuous in time (we denote this space of functions
by ACt Lipx, see Definition 3.1), while the original formulation of the decomposability bundle
only allows for Lipschitz functions. For this reason, in the first part of the paper we will
focus on extending some differentiability results to the space ACt Lipx. We mention here
one of the results as an example, see Theorem 3.2.

Theorem. Let f ∈ ACt Lipx(R×Rd), and let µ be a measure in R×Rd that can be written as
µ = L 1(dt)⊗ µt for some family of measures µt. Then f is differentiable along V (µ, (t, x))
for µ-a.e. (t, x).

To the best of our knowledge, this is the first extension of [1] to the non-Lipschitz setting.
This result, together with others in Section 3, allows, for instance, to give a meaning to the
pushforward of normal currents with respect to the space-time flow map Ψ, and this is the
first stepping stone through which we develop our proof of the well-posedness of (GTE).

Finally, we comment on the requirement that the currents be normal. One may ask for
instance what happens if the currents are only required to have (integrable in time) finite
mass. In this case the first difficulty is that a priori we are not even able to give a meaning
to the distributional formulation of (GTE). Nevertheless, we show by means of a simple
example (see Section 6) that if one could come up with any notion of solution satisfying
two very natural requirements (namely stability and consistency with the smooth case, see
Definition 6.1), then there would exist two different finite mass solutions starting from the
same initial datum. The vector field in this example is actually autonomous and Lipschitz,
thus suggesting that the class of normal currents is the right setting to obtain well-posedness
for the problem.

We close the Introduction by giving a summary of how the sections are organized. In Sec-
tion 2 we recall some preliminaries and prove some lemmas concerning the decomposability
bundle, the maximal function and flows of vector fields. In Section 3 we introduce the class
ACt Lipx and we extend some results concerning the decomposability bundle to this class.
In Section 4 we show existence of a solution under the assumption (L). In Section 5 we
show uniqueness of the solution under the assumption (L). Finally in Section 6 we give an
example of non-uniqueness in the class of currents with finite mass.

2. Preliminaries and notation

Let d ∈ N be the ambient dimension. We will often use the projection maps t : R×Rd → R,
p : R×Rd → Rd from the (Euclidean) space-time R×Rd onto the time and space variables,
respectively, which are given as

t(t, x) = t, p(t, x) = x. (2.1)
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We also define, for every given t ∈ R, the immersion map ιt : Rd → R× Rd by

ιt(x) := (t, x), (t, x) ∈ R× Rd.

For the notation and the definitions of multilinear algebra and of currents we refer the reader
to [6] and also [4, 3].

Here we only recall the distributional formulation of the equation (GTE). If b is a Borel
vector field and Tt is a family of normal currents in Rd such thatˆ 1

0

|b(t, x)|d(∥Tt∥+ ∥∂Tt∥)(x) dt <∞

then we say that (Tt)t is a weak solution to (GTE) ifˆ 1

0

⟨Tt, ω⟩ψ′(t)− ⟨LbtTt, ω⟩ψ(t) dt = 0 (2.2)

for every ω ∈ Dk(Rd) and every ψ ∈ C∞
c ((0, 1)) where

LbtTt := −bt ∧ ∂Tt − ∂(bt ∧ Tt).

2.1. A lemma on differentiation. We will need the following elementary result:

Lemma 2.1. Let f : Rn → Rm be differentiable in direction v at x ∈ Rn, and let g : Rm →
Rp be differentiable in direction df |x[v] at f(x). Assume that one of the following conditions
holds:

(1) either f or g is a linear map;
(2) f and g are Lipschitz.

Then g ◦ f is differentiable in direction v, and satisfies the chain rule

d(g ◦ f)|x[v] = dg|f(x)[df |x[v]].

Proof. We only prove (2), as the proof of (1) is even simpler. For every h ∈ R we can write

g(f(x+ hdf |x[v]))− g(f(x)) = g(f(x) + hdf |x[v] + o(h))− g(f(x))

= g(f(x) + hdf |x[v]) + o(h)− g(f(x))

= hdg|f(x)[df |x[v]] + o(h).

This proves the desired claim. □

2.2. Decomposability bundle. We recall the concept of decomposability bundle, intro-
duced in [1], and some of its properties. Given a locally finite Borel measure µ in Rn, the
decomposability bundle is a map x 7→ V (µ, x) that to µ-a.e. point x associates a linear
subspace V (µ, x) that is maximal (in a suitable way) with respect to the following property:

Theorem 2.2 ([1, Theorem 1.1]). Let µ be a locally finite measure in Rn and let f : Rn →
Rm be a Lipschitz function. Then f is differentiable along V (µ, x) at µ-a.e. x.

In the following we will denote by dV the restriction of the differential to V (µ, x). More-
over, if T is a normal current, we denote by dT the quantity dV where V = V (∥T∥, x).
Below we rephrase the statement that can be found in [1, Proposition 5.17], with slightly
different assumptions. We require the map f to be proper, instead of assuming that the
current has compact support, but the two statements are virtually the same. Moreover we

write ⟨ω(f(x)),
∧k

dT f [τ(x)]⟩ in place of ⟨(f#T )ω(x), τ(x)⟩.

Proposition 2.3 (Pushforward [1, Proposition 5.17]). Let T = τµ be a normal k-current
in Rn, and let f : Rn → Rn be a proper Lipschitz map. Then the pushforward f∗T admits
the representation

⟨f∗T, ω⟩ =
ˆ
⟨ω(f(x)),

∧k
dT f [τ(x)]⟩d∥T∥(x) for every ω ∈ Dk(Rn). (2.3)

We also recall the following lemma, whose proof can be found in [3, Lemma 2.1]:
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Lemma 2.4.

(i) Let τ ∈
∧

1 Rn, σ ∈
∧

k(Rn) and α ∈
∧1

(Rn), β ∈
∧k

(Rn). Suppose that
〈
v, α

〉
= 0

for every v ∈ span(σ). Then〈
τ ∧ σ, α ∧ β

〉
=
〈
τ, α

〉〈
σ, β

〉
.

(ii) Let τ ∈
∧

1 Rn, σ ∈
∧

k(Rn) and α ∈
∧k+1

(Rn). Suppose that τ ⊥ span(α). Then,〈
τ ∧ σ, α

〉
= 0.

2.3. Maximal function. Given a function f ∈ L1(Rn) we define the uncentered maximal
function of f as

Mf(x) := sup

{ 
B

|f(y)|dy : B is a ball with x ∈ B

}
.

We recall the following weak (1, 1) estimate: there exists a dimensional constant C > 0 such
that

|{x :Mf(x) > λ}| ≤ C

λ
∥f∥L1(Rn), (2.4)

see, e.g., [5, Theorem 3.17] and also [5, Exercise 23, Chapter 3]. We recall that if f ∈ AC(R)
then f is differentiable L 1-a.e.; if g is an L1 function such that |f ′(x)| ≤ g(x) for L 1-a.e.
x then the restriction of f to the set {x :Mg(x) ≤ λ} is λ-Lipschitz.

2.4. Flows. In this paragraph we recall some results on the Cauchy-Lipschitz theory for
vector fields satisfying (L). By [2, Lemma 8.1.4], given such a field b : [0, 1]×Rd → Rd, there
exists a unique flow map for b, namely there exists a unique function Φ: [0, 1]× [0, 1]×Rd →
Rd such that for every s ∈ [0, 1] and for every x ∈ Rd the curve t 7→ Φ(t, s, x) =: Φs

t (x) is
the unique solution to the ODE driven by b starting at time s from the point x, i.e.{

d
dtΦ

s
t (x) = bt(Φ

s
t (x))

Φs
s(x) = x

.

The ordinary differential equation is intended in the integral sense, namely for every s, t ∈
[0, 1] and x ∈ Rd

Φs
t (x) = x+

ˆ t

s

br(Φ
s
r(x)) dr.

As an easy consequence of the uniqueness of the trajectories we have the validity of the
following semigroup-like property:

∀s, s′ ∈ [0, 1], ∀x ∈ Rd : Φs
t (Φ

s′

s (x)) = Φs′

t (x). (2.5)

We define for later use the map Ψ: [0, 1]× Rd → Rd by setting

Ψ(t, x) := (t,Φ0
t (x)). (2.6)

Observe that

Ψ−1(s, y) = (s, (Φ0
s)

−1(y)).

The following lemma contains some regularity properties of the flow map.

Lemma 2.5 (The flow is ACt Lipx). Let b : [0, 1] × Rd → Rd satisfy (L). Then for every
s ∈ [0, 1] the flow map (t, x) 7→ Φs

t (x) is uniquely defined and belongs to ACt Lipx([0, 1]×Rd),
and more precisely for every t1 < t2 and x, y ∈ Rd it holds

|Φs
t1(x)− Φs

t2(y)| ≤ exp

(ˆ t1

s

Lip(br) dr

)
|x− y|+

ˆ t2

t1

∥br∥C0(Rd) dr.
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Proof. Fix s ∈ R and x ∈ Rd. Then by the definition of integral curve we have

Φs
t (x) = x+

ˆ t

s

br(Φ
s
r(x)) dr.

This implies that if t1 < t2 it holds

|Φs
t1(x)− Φs

t2(x)| ≤
ˆ t2

t1

|br(Φs
r(x))|dr ≤

ˆ t2

t1

∥br∥C0(Rd) dr. (2.7)

Fix now t ∈ [0, 1] and x, y ∈ Rd. By using the definition of integral curve we have

|Φs
t (x)− Φs

t (y)| =
∣∣∣∣x+

ˆ t

s

br(Φ
s
r(x)) dr − y −

ˆ t

s

br(Φ
s
r(y)) dr

∣∣∣∣
≤ |x− y|+

ˆ t

s

|br(Φs
r(x))− br(Φ

s
r(y))|dr

≤ |x− y|+
ˆ t

s

Lip(br)|Φs
r(x)− Φs

r(y)|dr.

By applying the integral form of Gronwall inequality we conclude that

|Φs
t (x)− Φs

t (y)| ≤ exp

(ˆ t

s

Lip(br) dr

)
|x− y|. (2.8)

The conclusion follows by (2.7) and (2.8) choosing t = t1. □

We now show that under the assumption (L) we can find a “universal” set of times at
which the vector field b has the Lebesgue property at every point in space.

Lemma 2.6. Let b : [0, 1]× Rd → Rd satisfy (L) and let

G := {(t, x) ∈ [0, 1]× Rd : t is a Lebesgue point of s 7→ bs(x)}.

Then there exists a L 1-negligible set N ⊂ [0, 1] such that

N c × Rd ⊂ G,

and moreover every t ∈ N c is a Lebesgue point of the map t 7→ Lip(bt).

Proof. Given a set A ⊂ Rd+1 we denote as usual its sections by

At := {x ∈ Rd : (t, x) ∈ A}, Ax := {t ∈ R : (t, x) ∈ A}.

By Lebesgue’s differentiation Theorem, it holds L 1((Gx)c) = 0 for every x ∈ Rd. In
particular, by Fubini-Tonelli,

0 =

ˆ
Rd

L 1((Gx)c) dx = L d+1(Gc) =

ˆ
R

L d((Gt)
c) dt.

We deduce that there exists a set N1, with L 1(N1) = 0, such that if t /∈ N1, it holds
L d((Gt)

c) = 0: in particular Gt is dense in Rd for every t /∈ N1. Now, in view of the
assumptions on the vector field, there is a L 1-negligible subset N2 ⊂ R such that if t /∈ N2

then t is a Lebesgue point of s 7→ Lip(bs) - in particular, Lip(bt) < ∞. We now define
N := N1 ∩N2.

We claim that the set Gt is closed for every t /∈ N . Combining this with the density, we
conclude, because we necessarily have that Gt = Rd for every t /∈ N .

In order to show that Gt is closed we can argue as follows: pick x /∈ Gt so that we can
find δ > 0 and a sequence εj → 0 such that

1

εj

ˆ t+εj

t

|bs(x)− bt(x)|ds > δ
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for every j ∈ N. Let η > 0 to be chosen later. For x′ ∈ Bη(x) we have

1

εj

ˆ t+εj

t

|bs(x′)− bt(x
′)|ds ≥ 1

εj

ˆ t+εj

t

|bt(x)− bs(x)| − |bs(x′)− bs(x)| − |bt(x′)− bt(x)|ds

≥ δ − |x− x′|
(
Lip(bt) +

1

εj

ˆ t+εj

t

Lip(bs) ds

)
≥ δ − η

(
Lip(bt) +

1

εj

ˆ t+εj

t

Lip(bs) ds

)
.

Since t /∈ N , we have that the second summand is finite (and uniformly bounded in j). Thus
we can pick η > 0 small enough so that

δ − η

(
Lip(bt) +

1

εj

ˆ t+εj

t

Lip(bs) ds

)
>
δ

2

which means that every x′ ∈ Bη(x) cannot lie in Gt, i.e. (Gt)
c is open. This concludes the

proof. □

The following lemma establishes some differentiability properties of the flow.

Lemma 2.7. Let b : [0, 1]× Rd → Rd satisfy (L). Then, it holds:

(1) DΨ(t, x)[(1, 0)] = (1, bt(Φ
0
t (x))) for every t ∈ (0, 1) and x ∈ Rd;

(2) DΨ−1(Ψ(t, x))[(1, bt(Φ
0
t (x)))] = (1, 0) for L 1-a.e t ∈ [0, 1] and for every x ∈ Rd.

Proof. Point (1) is immediate and follows from the very definition of flow. We omit the
proof.

For Point (2), we argue as follows. By definition we have

DΨ−1(Ψ(t, x))[(1, bt(Φ
0
t (x)))] = lim

h→0

Ψ−1(Ψ(t, x) + h(1, bt(Φ
0
t (x))))−Ψ−1(Ψ(t, x))

h

= lim
h→0

Ψ−1
((
t+ h,Φ0

t (x) + hbt(Φ
0
t (x))

)
− (t, x)

)
h

= lim
h→0

(
t+ h, (Φ0

t+h)
−1
(
Φ0

t (x) + hbt(Φ
0
t (x))

))
− (t, x)

h

=

(
1, lim

h→0

(Φ0
t+h)

−1
(
Φ0

t (x) + hbt(Φ
0
t (x))

)
− x

h

)
.

For the ease of notation, set y := Φ0
t (x). Then we need to show

lim
h→0

(Φ0
t+h)

−1
(
y + hbt(y)

)
− x

h
= 0,

or equivalently, using that x = (Φ0
t+h)

−1(Φ0
t+h(x)),

lim
h→0

(Φ0
t+h)

−1
(
y + hbt(y)

)
− (Φ0

t+h)
−1(Φ0

t+h(x))

h
= 0. (2.9)

Observe that, by the semigroup-like identity (2.5) we deduce that for every s, s′ ∈ [0, 1] it
holds

(Φs′

s )
−1 = Φs

s′ .

In particular, for h > 0 sufficiently small, we have

(Φ0
t+h)

−1 = Φt+h
0

which, combined with Lemma 2.5(ii), conveys that also the map (Φ0
t+h)

−1( ) is L-Lipschitz,

with L := exp
(´ 1

0
Lip(br) dr

)
> 0. Therefore we have

|(Φ0
t+h)

−1
(
y + hbt(y)

)
− (Φ0

t+h)
−1(Φ0

t+h(x))| ≤ L|y + hbt(y)− Φ0
t+h(x)|.
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Thus, in order to show (2.9), we just need to show that

lim
h→0

|y + hbt(y)− Φ0
t+h(x)|

h
= 0.

Again by the semigroup law (2.5), we can write Φ0
t+h(x) = Φt

t+h(Φ
0
t (x)) = Φt

t+h(y). There-
fore we have

|y + hbt(y)− Φ0
t+h(x)|

h
=

|hbt(y) + y − Φt
t+h(y)|

h

≤
 t+h

t

|bt(y)− bs(Φ
t
s(y))|ds

≤
 t+h

t

|bt(y)− bs(y)|ds+
 t+h

t

|bs(y)− bs(Φ
t
s(y))|ds

≤
 t+h

t

|bt(y)− bs(y)|ds+
 t+h

t

Lip(bs)|y − Φt
s(y)|ds.

We now invoke Lemma 2.6: we find a negligible set N ⊂ R such that for every t ∈ N c the
first summand in the right hand side goes to zero. For the second summand, we write t+h

t

Lip(bs)|y − Φt
s(y)|ds =

 t+h

t

Lip(bs)|Φt
t(y)− Φt

s(y)|ds

≤
 t+h

t

Lip(bs)

ˆ s

t

|br(Φt
r(y))|dr ds

≤
 t+h

t

Lip(bs) ds

ˆ t+h

t

∥br∥C0(Rd) dr.

The first factor is finite since t ∈ N (again by Lemma 2.6) while the second converges to 0
as h → 0, since the function r 7→ ∥br∥C0(Rd) is integrable by assumption. This shows that
(2.9) holds true, and concludes the proof. □

3. The decomposability bundle for ACt Lipx functions

In this section we are going to extend some results concerning the decomposability bundle,
which was introduced in [1]. The goal is to pass from Lipschitz functions to functions that are
Lipschitz in space, but only AC in time. In the following we will consider only measures that
admit a decomposition µ = L 1 ⊗ µt (in some cases also with |µt|(Rd) uniformly bounded),
since these are the ones we are going to apply the theorem to. It seems that extending the
following results to an arbitrary measure µ involves some subtleties that could be explored
in a separate project.

Definition 3.1. We say that a function f : R × Rd → R belongs to the space ACt Lipx if
there exist a constant C > 0 and a function g ∈ L1(R) such that

|f(t, x)− f(s, y)| ≤ C|x− y|+
ˆ t

s

g(τ) dτ for every s, t ∈ R and x, y ∈ Rd.

The smallest constant C for which the inequality holds is denoted by Lipx(f). Any
function g satisfying the inequality above will be referred to as an upper gradient for f .
Usually such a term is used in a slightly different way, but we use it to denote only the time
component g.

3.1. Differentiability along the bundle. We start by proving that a function in ACt Lipx
retains the same differentiability properties of Lipschitz functions, with respect to measures
of the form µ = L 1 ⊗ µt.

Theorem 3.2. Let µ = L 1 ⊗ µt be a measure in R × Rd, and let f ∈ ACt Lipx(R × Rd).
Then f is differentiable along V (µ, (t, x)) for µ-a.e. (t, x).
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I1 I2

Figure 1. Visual representation of the function L(f,E). On the open in-
tervals I1 and I2 we replace the function f (dashed graph) with
the linear interpolation between endpoints.

Remark 3.3. It is not entirely clear to us how to extend the previous result to an arbitrary
measure µ. One might even wonder whether the differentiability along the bundle V (µ, )
could be proved for functions that are AC in all variables, namely such that

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤
n∑

i=1

ˆ
[xi,yi]

g(t) dt

for some g ∈ L1(R). We leave this question for a future project.

In order to show Theorem 3.2, we will need some preliminary lemmas. Given a closed set
E ⊂ R, we can write Ec =

⋃
ℓ∈N Iℓ, where Iℓ are at most countably many pairwise disjoint

open intervals. If f : R → R is a continuous function, let us denote by L(f,E) : R → R
the function that coincides with f on E and that interpolates linearly between the endpoint
values on each Iℓ, namely

L(f,E)(t) :=

{
f(t) if t ∈ E

λf(rℓ) + (1− λ)f(sℓ) if t = λrℓ + (1− λ)sℓ ∈ Iℓ = (rℓ, sℓ)
(3.1)

Lemma 3.4 (Approximation of AC functions). Let g ∈ L1(R). Then there exists a sequence
of closed sets Ej ⊂ R, j ∈ N+, and a dimensional constant C such that the following holds:
if f ∈ AC(R) admits g as upper gradient then:

(1) f |Ej is j-Lipschitz;

(2) L 1(Ec
j ) ≤ C∥g∥L1/j;

(3) Moreover, setting fj := L(f,Ej), we additionally have:
(a) fj → f uniformly;
(b) f ′j(x) → f ′(x) for L 1-a.e. x;

(c) f ′j → f ′ in L1.

Proof. Recall from Section 2.3 the definition and properties of the maximal function Mg.
For j ∈ N let Fj := {x ∈ R : Mg(x) ≤ j}. Then, for some dimensional constant C, f |Fj

is j-Lipschitz and L 1(F c
j ) < C∥g∥L1/j. By inner regularity of the Lebesgue measure, for

each j we can select a closed subset Ej ⊆ Fj satisfying the same properties, so that (1) and
(2) are satisfied. The convergence stated in (a) follows from the definition of fj and the
absolute continuity. Writing Ec

j =
⋃

ℓ Iℓ we have that f ′j(x) = f ′(x) for L 1-a.e. x ∈ Ej by
locality of the derivative. By Point (2) we deduce (b). We are left to prove (c). For every
Iℓ = (rℓ, sℓ) we haveˆ

Iℓ

|f ′j(x)|dx =

∣∣∣∣ˆ
Iℓ

f ′j(x) dx

∣∣∣∣ = |f(sℓ)− f(rℓ)| =
∣∣∣∣ˆ

Iℓ

f ′(x) dx

∣∣∣∣ ≤ ˆ
Iℓ

|f ′(x)|dx
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It follows that ˆ
Ec

j

|f ′j(x)|dx ≤
ˆ
Ec

j

|f ′(x)|dx

which goes to zero since f ′ ∈ L1(R) and, by Point (2), L 1(Ec
j ) → 0. This implies (c) and

concludes the proof. □

Now we turn to a more general version of the previous lemma, that holds in any dimension.

Lemma 3.5 (Approximation of ACt Lipx functions). Let f ∈ ACt Lipx(R × Rd). Then
there exists a sequence of closed sets Ej ⊂ R and Lipschitz functions fj such that:

(1) f |Ej×Rd is Lipschitz and Lipx(fj) ≤ Lipx(f);

(2) fj = f on Ej × Rd;
(3) fj → f uniformly;
(4) f − fj is differentiable, with differential zero, at all points (t, x) such that t is a

density point of Ej (in particular, for L 1-a.e. t ∈ Ej).

Proof. For every x ∈ Rd, we write fx(t) := f(t, x). Applying Lemma 3.4, and observing that
g is an upper gradient for fx for every x, we can find closed sets Ej with L 1(Ec

j ) ≤ C∥g∥L1/j
and with fx|Ej j-Lipschitz. We then linearly extend this function separately on each line:
recalling (3.1) we set

fj(t, x) = L(fx, Ej)(t).

We shall show that the sequence fj satisfies the required conditions (1)-(4).
(1) For fixed j, fj(·, x) is uniformly Lipschitz in x ∈ Rd by construction. Moreover fj(t, ·)

is Lipschitz for every t ∈ Ej , because in this case fj(t, ·) = f(t, ·) and f is Lipschitz in the
space variable by assumption. Suppose instead that t ∈ Ec

j and let ℓ ∈ N be such that

t ∈ Iℓ = (rℓ, sℓ). Then for every x, x′ ∈ Rd

|f(t, x)− f(t, x′)| ≤ max{|f(rℓ, x)− f(rℓ, x
′)|, |f(sℓ, x)− f(sℓ, x

′)|} ≤ Lipx(f)|x− x′|.

It follows that fj is Lipschitz, and that Lipx(fj) ≤ Lipx(f).
(2) This holds by construction.
(3) If t ∈ Ej then fj(t, x) = f(t, x) for every x. If instead t ∈ Iℓ = (rℓ, sℓ) ⊆ Ec

j , then

|fj(t, x)− f(t, x)| ≤ 2

ˆ
Iℓ

g(s) ds

which goes to zero as j → ∞, because |Iℓ| ≤ |Ec
j | → 0.

(4) By construction of Ej , for all t ∈ Ej we have Mg(t) ≤ j. From this and the definition
of ACt Lipx it follows that

|f(t, x)− f(t′, x)| ≤
ˆ
[t,t′]

g(s) ds ≤ j|t− t′|. (3.2)

Since fj is j-Lipschitz, it follows that the following estimate holds for f − fj :

|(f − fj)(t, x)− (f − fj)(t
′, x)| ≤ |f(t, x)− f(t′, x)|+ |fj(t, x)− fj(t

′, x)|
≤ 2j|t− t′|.

(3.3)

Moreover, the function f − fj is zero on Ej ×Rd by construction. From (3.3) it then follows
that

|(f − fj)(t, x)| ≤ 2j dist(t, Ej).

If t is a density point of Ej this yields that f − fj has differential zero at (t, x). □

Proof of Theorem 3.2. We consider the functions fj built in Lemma 3.5. We write f =
(f − fj) + fj and observe that:

• fj is Lipschitz and thus differentiable in direction V (µ, (t, x)) at µ-a.e. (t, x) by
Theorem 2.2;
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• (f − fj)(t, x) has differential zero for L 1-a.e. t ∈ Ej ; in particular f(t, x) is also
differentiable in direction V (µ, (t, x)) for L 1-a.e. t ∈ Ej .

Since L 1(Ec
j ) → 0, we deduce that f(t, x) is differentiable in direction V (µ, (t, x)) for L 1-

a.e. t ∈ R. In particular, the conclusion holds at L 1⊗µt-almost all points. As the measure
µ is of the form L 1 ⊗ µt, it follows that f is differentiable in direction V (µ, x) at µ-a.e.
(t, x), concluding the proof. □

3.2. Approximation with Lipschitz functions and pushforward formula. Our next
goal is to derive a pushforward formula for ACt Lipx functions. This task is based on an
approximation result with Lipschitz functions, for which we know that the pushforward
formula (2.3) holds. The reader might feel that the following proof is very similar to that of
Lemma 3.5. Although this is partially true, we first needed to establish the differentiability
of f along the bundle stated in Theorem 3.2, so that the various terms below involving DV f
are well defined.

Compare also the following lemma with [1, Corollary 8.3]. Observe that the approximat-
ing sequence fj is universal, namely it works for every measure µ of the form considered
below.

Lemma 3.6 (Approximation with Lipschitz functions). Let f ∈ ACt Lipx(R × Rd). Then
there exists a sequence fj of Lipschitz functions such that the following holds.

Let T = τµ be a normal current satisfying:

(i) µ = L 1 ⊗ µt with

m := sup
t

|µt|(Rd) <∞

(ii) τ = (1, b̃t) ∧ τt for some unit horizontal τt and for some vector field b̃.

Then, denoting by V := V (µ, x) the decomposability bundle of µ, we have:

(1) fj → f uniformly;
(2) dV fj → dV f for µ-a.e. x;
(3) dV fj → dV f in L1(µ);

(4)
∧k

dV fj [τ ] →
∧k

dV f [τ ] in L
1(µ).

Observe that by Theorem 3.2 the quantity dV f (and thus
∧k

dV f) is well-defined at

µ-almost every point. Observe also that the vector field b̃ automatically satisfies

ˆ 1

0

ˆ
Rd

|b̃t|dµt dt <∞, (3.4)

because by assumption T = τµ has finite mass. In the proof of the uniqueness result
(Theorem 5.1) we will use this lemma with b̃ = b, but we decided to keep a separate

notation for this lemma and for the following proposition, since the only assumption on b̃ is
its integrability given by (3.4) (while we always assume that b satisfies the more restrictive
condition (L)).

Proof. We consider the sequence fj built in Lemma 3.5. Then Point (1) follows immediately.
Point (2) also follows from the construction, since dV fj = dV f for µ-a.e. point in Ej × Rd

by Lemma 3.5(4). Let us show (3) and (4).
(3) Let us write Ec

j =
⋃

ℓ Iℓ, and let us fix a point (t, x), with t ∈ Iℓ = (rℓ, sℓ), where fj
is differentiable along V (µ, x). We claim that

|dV fj(t, x)| ≤
|f(sℓ, x)− f(rℓ, x)|

|sℓ − rℓ|
+ Lipx(f).
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Indeed, given any unit vector (et, ex) ∈ R × Rd, we have the following estimate for the
directional derivative of f in direction (et, ex):

1

h

(
fj((t, x) + h(et, ex))− fj(t, x)

)
=

1

h

(
fj((t, x) + h(et, ex))− fj((t, x) + h(et, 0)

)
+

1

h

(
fj((t, x) + h(et, 0))− fj(t, x)

)
≤ 1

h
Lipx(fj)|hex|+ |et|

|f(sℓ)− f(rℓ)|
|sℓ − rℓ|

≤ Lipx(f)|ex|+ |et|
|f(sℓ)− f(rℓ)|

|sℓ − rℓ|
.

(3.5)

It immediately follows that

|dV fj(t, x)| ≤ Lipx(f) +
|f(sℓ)− f(rℓ)|

|sℓ − rℓ|
,

and thus also thatˆ
Ec

j×Rd

|dV fj |dµ =

ˆ
Ec

j

ˆ
Rd

|dV fj |dµt dt

≤ m
∑
ℓ

ˆ
Iℓ

(
|f(sℓ)− f(rℓ)|

|sℓ − rℓ|
+ Lipx(f)

)
dt

≤ m
∑
ℓ

|f(sℓ)− f(rℓ)|+m|Ec
j |Lipx(f)

≤ m

ˆ
Ec

j

g(r) dr +m|Ec
j |Lipx(f).

The quantity in the last line goes to zero because |Ec
j | → 0. This proves (3).

(4) From the second to last line in (3.5), and recalling that by Lemma 3.5(1) Lipx(fj) ≤
Lipx(f), one obtains that for t ∈ Iℓ ⊆ Ec

j

dfj [(1, b̃t)] ≤ Lipx(f)|b̃t|+
|f(sℓ)− f(rℓ)|

|sℓ − rℓ|
It follows that

|
∧k

dV fj [τ ]| ≤ Lipx(f)
k−1

(
Lipx(f)|b̃t|+

|f(sℓ)− f(rℓ)|
|sℓ − rℓ|

)
.

For the second term, one can argue as in Point (3). Instead the first term reduces toˆ
Ec

j×Rd

Lipx(f)
k|b̃t|dµ = Lipx(f)

k

ˆ
Ec

j

ˆ
Rd

|b̃t|dµt dt

which again goes to zero as j → ∞. To see this, we just observe that the map

t 7→
ˆ
Rd

|b̃t|dµt

is integrable on [0, 1] sinceˆ 1

0

ˆ
Rd

|b̃t|dµt dt ≤
ˆ 1

0

ˆ
Rd

|(1, b̃t)|dµt dt =

ˆ
[0,1]×Rd

|(1, b̃)|dµ = M(T ) <∞. □

Proposition 3.7 (Pushforward formula for ACt Lipx maps). Let f ∈ ACt Lipx(R×Rd) be
a proper map. Let T = τµ be a normal current satisfying:

(i) µ = L 1 ⊗ µt with

m := sup
t

|µt|(Rd) <∞; (3.6)

(ii) τ = (1, b̃t) ∧ τt for some unit horizontal τt and for some vector field b̃.
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Let fj be a sequence of Lipschitz functions satisfying the conditions (1)-(4) in Lemma 3.6.
Then:

(1) The limit
f∗T := lim

j→∞
(fj)∗T

exists in the strong topology, and defines a finite mass current. Moreover, for any
other sequence fj satisfying (1)-(4) of Lemma 3.6 the limit is the same.

(2) f∗T satisfies the pushforward formula

⟨f∗T, ω⟩ =
ˆ
⟨ω(f(z)),

∧k
dT f [τ(z)]⟩dµ(z) for every ω ∈ Dk(Rd).

(3) If ∂T = τ ′µ′, with µ′ = L 1 ⊗ µ′
t and τ

′ = (1, b̃′t) ∧ τ ′t satisfies (i) and (ii) then f∗T
is normal and ∂(f∗T ) = f∗(∂T ).

Proof. Given that fj are Lipschitz we can apply the pushforward formula (2.3) to obtain

⟨(fj)∗T, ω⟩ =
ˆ
⟨ω(fj(z)),

∧k
dT fj [τ(z)]⟩dµ(z) for every ω ∈ Dk(Rd). (3.7)

By Condition (4) in Lemma 3.6 we know that
∧k

dT fj [τ ] →
∧k

dT f [τ ] in L
1(µ). Moreover

fj → f uniformly, and thus also ω ◦ fj → ω ◦ f uniformly. From this it follows that we can
pass to the limit in (3.7) and obtain

lim
j→∞

⟨(fj)∗T, ω⟩ =
ˆ
⟨ω(f(z)),

∧k
dT f [τ(z)]⟩dµ(z) for every ω ∈ Dk(Rd).

This proves that the limit is well-defined, at least in the weak-* topology, does not de-
pend on the chosen sequence fj , and moreover the pushforward formula holds. Since∧k

dT f [τ ] ∈ L1(µ), it follows that f∗T has finite mass. Moreover, this also yields that
the convergence happens in the strong topology. This proves (1) and (2). To prove (3) we
apply the pushforward formula to ∂T and use that, for Lipschitz maps, the pushforward
commutes with the boundary to obtain

⟨∂(f∗T ), ω⟩ = ⟨f∗T, dω⟩
= lim

j→∞
⟨(fj)∗T, dω⟩

= lim
j→∞

⟨(fj)∗∂T, ω⟩

= ⟨f∗∂T, ω⟩.

Thanks to (i) applied to ∂T we know that this defines a current with finite mass, and thus
f∗T is normal. □

4. Existence

In this section we establish the following existence result:

Theorem 4.1 (Existence). Let b : [0, 1] × Rd → Rd be a vector field satisfying (L) and let
(Φ0

t )t be its flow. Moreover, let T̄ ∈ Nk(Rd). Then, the family of currents Tt = (Φ0
t )∗T̄ is a

solution to {
d
dtTt + LbtTt = 0

T0 = T̄ .

Proof. We subdivide the proof in some steps.
Step 1. Write T̄ = τ̄ µ̄ and ∂T̄ = σ̄ν̄. Define

C = J0, 1K × T̄ = [e0 ∧ (it)∗τ̄ ]L
1 ⊗ µ̄ = [e0 ∧ (it)∗τ̄ ]L

1 × µ̄

and observe that ∂C ((0, 1)× Rd) = −J0, 1K × ∂T̄ . Define

Z := Ψ∗C,
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where Ψ is the map defined in (2.6). We now apply the formula for the pushforward in
Proposition 3.7 to the current C. Notice that the assumptions (i) and (ii) on the uni-

form mass of the measures are automatically satisfied, as µ̄ is independent of t and b̃ = 0.
Therefore we get that the current Z can be written as Z = zλ, where

λ = Ψ#(L
1 ⊗ µ) = L 1 ⊗ (Φ0

t )#µ =: L 1 ⊗ µt

and

z(s, y) = Ψ∗([e0 ∧ (is)∗τ̄ ])(s, y)

= DΨ(Ψ−1(s, y))[(e0 ∧ (is)∗τ̄)(Ψ
−1(s, y))]

= DΨ(Ψ−1(s, y))[e0] ∧DΨ(Ψ−1(s, y))[((is)∗τ̄)(Ψ
−1(s, y))]

= (1, bs(y)) ∧DΨ(Ψ−1(s, y))[((is)∗τ̄)(Ψ
−1(s, y))]

= (1, bs(y)) ∧ [Ψ∗((is)∗τ̄)](s, y)

= (1, bs(y)) ∧ [(Ψ∗ ◦ (is)∗)τ̄ ](s, y)
= (1, bs(y)) ∧ [(Ψ ◦ is)∗τ̄ ](s, y)
= (1, bs(y)) ∧ [(is)∗(Φ

0
s)∗τ̄ ](s, y).

Here we used the fact that DΨ(Ψ−1(s, y))[e0] = (1, bs(y)) by Lemma 2.7, Point (1), and
from the second to last to the last line we used Lemma 2.1, together with the identity
Ψ ◦ is = is ◦ Φ0

s, to exchange the order of the pushforwards.
Step 2. Now we test ∂Z against forms of the kind η = t∗α ∧ p∗β. We have dη =

t∗dα ∧ p∗β + t∗α ∧ p∗dβ. So by Lemma 2.4(i) we obtain

⟨Z, t∗dα ∧ p∗β⟩ =
ˆ 1

0

ˆ
Rd

⟨(1, bs) ∧ [(is)∗(Φ
0
s)∗τ̄ ], t

∗dα ∧ p∗β⟩dµs ds

=

ˆ 1

0

ˆ
Rd

⟨(1, bs), t∗dα⟩ ⟨(is)∗(Φ0
s)∗τ̄ ,p

∗β⟩dµs ds

=

ˆ 1

0

ˆ
Rd

α′(s) ⟨τs, β⟩dµs ds

=

ˆ 1

0

α′(s)⟨Ts, β⟩ds

where we have defined τs := (Φ0
s)∗τ̄ , so that by definition Ts = τsµs.

For the second summand, invoking Lemma 2.4(ii) we have

⟨Z, t∗α ∧ p∗dβ⟩ =
ˆ 1

0

ˆ
Rd

⟨(1, bs) ∧ [(is)∗(Φ
0
s)∗τ̄ ], t

∗α ∧ p∗dβ⟩dµs ds

=

ˆ 1

0

ˆ
Rd

α(s)⟨bs ∧ [(Φ0
s)∗τ̄ ], dβ⟩dµs ds

=

ˆ 1

0

α(s)⟨∂(bs ∧ Ts), β⟩ds.

Step 3. By Proposition 3.7(3), we have

∂Z ((0, 1)× Rd) = Ψ∗(∂C) ((0, 1)× Rd) = Ψ∗(∂C ((0, 1)× Rd)) = Ψ∗(−J0, 1K × ∂T̄ ).

Now the orienting field is

ξ(s, y) = Ψ∗(−e0 ∧ σ)(s, y) = −(1, bs(y)) ∧Ψ∗((is)∗σ)(s, y)

where we have used again Lemma 2.7 Point (1) to deduce

Ψ∗(e0)(s, y) = DΨ(Ψ−1(s, y))[1, 0] = (1, bs(y)).
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Notice also that the mass measure of ∂Z is

∥∂Z∥ = Ψ#(∥∂C∥) = Ψ#(L
1 ⊗ ν) = L 1 ⊗ νs

where we have set νs := (Φ0
s)#ν. Testing against forms of the type η = t∗α ∧ p∗β, with

α ∈ C∞
c ((0, 1)) and β ∈ Dk(Rd), we therefore have

⟨∂Z, η⟩ =
ˆ 1

0

ˆ
Rd

⟨ξ, η⟩dνsds

= −
ˆ 1

0

ˆ
Rd

⟨(1, bs) ∧Ψ∗((is)∗σ), η⟩dνsds

= −
ˆ 1

0

ˆ
Rd

⟨(1, bs) ∧Ψ∗((is)∗σ), t
∗α ∧ p∗β⟩dνsds

= −
ˆ 1

0

α(s)

ˆ
Rd

⟨(1, bs) ∧ (is)∗(Φ
0
s)∗σ,p

∗β⟩dνsds

= −
ˆ 1

0

α(s)

ˆ
Rd

⟨bs ∧ (Φ0
s)∗σ, β⟩dνsds

= −
ˆ 1

0

α(s)⟨bs ∧ ∂Ts, β⟩ds

where in the second to last line we have used Lemma 2.4(ii) and the fact that

∂Ts = (Φ0
s)∗(∂T ) = [(Φ0

s)∗σ] (Φ
0
s)#(ν)

for every s.
Step 4. Combining Step 2 and 3 we obtain that

−
ˆ 1

0

α(s)
〈
b ∧ ∂Ts, β

〉
ds =

〈
∂Z, η

〉
=
〈
Z, dη

〉
=

ˆ 1

0

α′(s)
〈
Ts, β

〉
+ α(s)

〈
b ∧ Ts, dβ

〉
ds

for every α ∈ D0((0, 1)) = C∞
c ((0, 1)) and every β ∈ Dk(Rd). Rearranging terms gives

exactly the weak formulation of (GTE). □

Remark 4.2. Theorem 4.1 could also be proved with an approximation argument that
does not rely on the decomposability bundle. Consider two functions ϕ ∈ C∞

c ((−1, 1)) and
ψ ∈ C∞

c (B1) and construct the associated mollifiers

ϕε(t) :=
1

ε
ϕ(t/ε), ψε(x) :=

1

εd
ψ(x/ε).

Let bε := b ∗ (ϕεψε) (after extending b to the identically zero vector field for t < 0 or t > 1)
and let Φε

t be the corresponding flow (starting from time t = 0). Then

|Φt(x)− Φε
t (x)| ≤

ˆ t

0

|bs(Φs(x))− bεs(Φ
ε
s(x))|ds

≤
ˆ t

0

|bs(Φs(x))− bs(Φ
ε
s(x))|ds+

ˆ t

0

|bs(Φε
s(x))− bεs(Φ

ε
s(x))|ds

≤
ˆ t

0

Lipx(bs)|Φs(x)− Φε
s(x)|ds+

ˆ t

0

∥bs − bεs∥∞ ds

and therefore by Gronwall we obtain

∥Φt − Φε
t∥∞ ≤

ˆ t

0

∥bs − bεs∥∞ ds · exp
(ˆ t

0

Lipx(bs) ds

)
.
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Additionally, it can be shown that the Lipschitz constant in space of the maps Φε
t (·) is

equibounded. Indeed, a simple convolution argument yieldsˆ 1

0

Lip(bεt ) dt ≤
ˆ 1

0

Lip(bt) ∗ αε(t) dt ≤ L,

whence Lip(Φε
t ) ≤ exp(Lt). In order to show existence of solutions to (GTE) it is therefore

sufficient to consider the family of pushforwards T ε
t := (Φε

t )∗T , which solves the equation
for bε by [4, Theorem 3.6]. Their mass is equibounded (in view of the equi-Lipschitz bound
on Φε

t (·)), and any limit point satisfies (GTE) by linearity of the equation. Moreover, using
that Φε

t converges uniformly to Φ0
t with equi-Lipschitz constant, it can also be shown that

the limit current Tt coincides with (Φ0
t )∗T mimicking the argument in [6, Lemma 7.4.3].

5. Uniqueness

Theorem 5.1 (Uniqueness). Let b : [0, 1]×Rd → Rd be a vector field satisfying (L) and let
(Φ0

t )t be its flow. Moreover, let T̄ ∈ Nk(Rd). Then, there is at most one solution to{
d
dtTt + LbtTt = 0

T0 = T̄

in the class L∞([0, 1]; Nk(Rd)). Moreover, the solution is given by Tt = (Φ0
t )∗T̄ .

Proof. We first show the conclusion under the assumption that ∂Tt = 0 for every t ∈ [0, 1].
Step 1. Let (Tt)t∈(0,1) ⊂ Nk(Rd) with ∂Tt = 0 (t ∈ [0, 1)) be a weakly∗-continuous

solution to (GTE) (see [4, Lemma 3.5(i)] for why we may assume weak*-continuity). We

decompose Tt = T⃗t∥Tt∥, with T⃗t unit k-vectors. Let T⃗ : (0, 1) × Rd →
∧

k(R × Rd) be the
k-vector field defined L 1

t ⊗ ∥Tt∥-almost everywhere by

T⃗ (t, x) := (ιt)∗T⃗t(x),

where we recall that ιt(x) := (t, x). Define now the space time currents U = uµ with

µ = L 1 ⊗ ∥Tt∥ and u(t, x) = (1, b(t, x)) ∧ T⃗ (t, x) and

W := (Ψ−1)∗U.

The map Ψ−1 is still ACt Lipx and the map t 7→ ∥Tt∥(Rd) is essentially bounded by assump-
tion, so we can define the pushforward through Proposition 3.7. In particular, we can write
W = wν, where

ν = Ψ−1
# (L 1 ⊗ ∥Tt∥) = L 1 ⊗ [(Φ0

t )
−1
# ∥Tt∥] =: L 1 ⊗ νt

and

w(t, x) = DΨ−1(Ψ(t, x))[(1, b(t,Φ0
t (x)))] ∧DΨ−1(Ψ(t, x))[T⃗ (t,Φ0

t (x))]

= (1, 0) ∧DΨ−1(Ψ(t, x))[T⃗ (t,Φ0
t (x)]

=: (1, 0) ∧ τ(t, x).

where we have used Lemma 2.7 Point (2).
Step 2. We can estimate the mass of U by

M(U) ≤
ˆ 1

0

∥bt∥C0(Rd)M(Tt) dt ≤ L esssup
t∈(0,1)

M(Tt) <∞.

Moreover, applying [3, Lemma 4.1] (replacing b(x) with bt(x) everywhere) we have

∂U (0, 1)× Rd = 0

and therefore by Proposition 3.7(Point 3), ∂W (0, 1)×Rd = 0. This means that for every
α ∈ D0((0, 1)) = C∞

c ((0, 1)) and every β ∈ Dk(Rd), it holds

0 = ⟨∂W, t∗α ∧ p∗β⟩ = ⟨W, t∗dα ∧ p∗β⟩
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where in the last equality we have used Lemma 2.4 (ii) (notice that span (p∗dβ) ⊥ (1, 0)
and w(t, x) = (1, 0) ∧ τ(t, x)). By Lemma 2.4 (i) we have

⟨w(t, x), (t∗dα ∧ p∗β)(t, x)⟩ = ⟨(1, 0), t∗dα(t, x)⟩⟨τ(t, x),p∗β(t, x)⟩
= α′(t)⟨τ(t, x),p∗β(t, x)⟩

= α′(t)⟨DΨ−1(Ψ(t, x))[T⃗ (t,Φ0
t (x)],p

∗β(t, x)⟩

= α′(t)⟨[(Ψ−1)∗T⃗ ](t, x),p
∗β(t, x)⟩.

Now we observe that for every fixed t ∈ (0, 1) it holds

p ◦Ψ−1 {t} × Rd = [(Φ0
t )

−1 ◦ p] {t} × Rd

and therefore

(p ◦Ψ−1)∗v = ((Φ0
t )

−1 ◦ p)∗v
for any k-vector v ∈

∧
k({0} ×Rd). In particular, choosing v = T⃗ (Ψ(t, x)) = T (t,Φ0

t (x)) we
get by Lemma 2.1 Point (i)

(p ◦Ψ−1)∗T⃗ (Ψ(t, x)) = ((Φ0
t )

−1 ◦ p)∗T⃗ (Ψ(t, x)) = [(Φ0
t )

−1]∗[Tt(Φ
0
t (x))].

Therefore

0 = ⟨W, t∗dα ∧ p∗β⟩ =
ˆ 1

0

ˆ
Rd

⟨w, t∗dα ∧ p∗β⟩dνt dt

=

ˆ 1

0

ˆ
Rd

α′(t)⟨(Φ0
t )

−1
∗ [Tt(Φ

0
t (x))], β(x)⟩d[(Φ0

t )
−1
# ∥Tt∥](x) dt

=

ˆ 1

0

α′(t)⟨(Φ0
t )

−1
∗ Tt, β⟩dt.

Step 3. By Step 1 and Step 2 we have shown thatˆ 1

0

α′(t)
〈
(Φ0

t )
−1
∗ Tt, β

〉
dt = 0 for every α ∈ D0((0, 1)) and β ∈ Dk(Rd).

This implies that, for any fixed β ∈ Dk(Rd), the map t 7→
〈
(Φ0

t )
−1
∗ Tt, β

〉
is constant, and

in particular equal to its value at 0 (in this context recall that we have chosen the weakly∗-
continuous representative of t 7→ Tt). We conclude that (Φ0

t )
−1
∗ Tt = T for every t ∈ [0, 1].

Since for fixed t ∈ [0, 1] the map Φ0
t is Lipschitz with inverse (Φ0

t )
−1 we can write Tt = (Φ0

t )∗T
which is the desired conclusion in the case ∂Tt = 0.

Step 4. Assume now that (Tt)t∈(0,1) is a solution of (GTE) with Tt normal but not
necessarily boundaryless. Testing with exact forms ω = dη, we see that the boundaries
(∂Tt)t∈(0,1) solve the geometric transport equation with the same driving vector field b and

initial datum ∂T . Since the ∂Tt are boundaryless, by Step 3 we obtain that

∂Tt = (Φ0
t )∗(∂T ) = ∂((Φ0

t )∗T ).

Consider now St := Tt − (Φ0
t )∗T . The St are normal currents with equibounded mass w.r.t

t and ∂St = 0. By the linearity of (GTE), they still solve the same equation. Since S0 = 0,
again by Step 3 we conclude that St = 0 for every t ∈ (0, 1), hence Tt = (Φ0

t )∗T for every
t ∈ (0, 1). □

6. On non-uniqueness for finite mass currents

One may wonder what happens if we consider (GTE) in the class of currents with finite
mass, but whose boundary might have unbounded mass. In this case the weak formulation
of the PDE makes sense if b is smooth, but if b is only Lipschitz it is not clear how to even
state the weak formulation. The issue lies in the term b ∧ ∂Tt whose definition is unclear
– somewhat similarly to what happens when trying to define the product of a distribution
with a Lipschitz function.
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In this section we shall see that even if one comes up with a notion of solution for
finite mass currents, any sensible notion that satisfies very natural assumptions leads to
non-uniqueness.

Let us consider the family C = L1([0, 1];Mk(Rd)) consisting of all possible curves of
currents t 7→ Tt that satisfy ˆ 1

0

M(Tt) dt < +∞.

If b = b(t, x) is smooth, then the weak formulation (2.2) is actually equivalent to the following
one, which requires only the masses (and not the normal masses) to be integrable in time,
namely (Tt)t ∈ C is a weak solution to (GTE) ifˆ 1

0

⟨Tt, ω⟩ψ′(t) + ⟨Tt,Lbtω⟩ψ(t) dt = 0 (6.1)

for every ω ∈ Dk(Rd) and every ψ ∈ C∞
c ((0, 1)). Here Lbtω stands for the classical Lie

derivative of the differential form ω as defined in Differential Geometry. For a proof of this
equivalence see [4, Lemma 3.3].

Definition 6.1. Fix a Borel vector field b. We say that a family Sb ⊂ C is a natural family
of solutions to (GTE) with vector field b if the following conditions hold:

(H1) Consistency : If b is smooth in some open set Ω and (Tt)t∈[0,1] ∈ C is a weak solution
in the sense of (6.1) supported in Ω, then (Tt)t∈[0,1] ∈ Sb.

(H2) Stability : if (T j
t )t∈[0,1], j ∈ N, is a sequence in Sb with equibounded L1-norm, namely

sup
j

ˆ 1

0

M(T j
t ) dt <∞

and if Tt = limj→∞ T j
t for every t, then also (Tt)t∈[0,1] belongs to Sb.

Observe that both conditions are very natural: the stability is natural because the PDE
is linear, while the well-posedness for smooth vector fields is ensured by the following result:

Proposition 6.2. Let b = b(t, x) be a smooth globally bounded vector field. Then the problem{
d
dtTt + LbtTt = 0

T0 = T̄

admits a solution which is unique in the class L1([0, 1];Mk(Rd)).

Sketch of the proof. One can repeat the argument in the proof of [4, Theorem 3.6] with
minor changes, referring also to [2, Section 8.1] for the modifications needed to deal with
the two-parameter flow. □

On the other hand, we show via an example that if b is merely Lipschitz uniqueness might
fail:

Proposition 6.3 (Non-uniqueness for finite mass currents). There exists an autonomous
Lipschitz vector field b : R2 → R2 for which the following holds: if Sb is any natural family
of solutions then there exist two distinct solutions (T i

t )t∈[0,1] ∈ Sb, i = 1, 2, starting from the
same initial datum.

Proof. We define the vector field

b(x, y) :=

{
(y, 0) if y ≥ 0

0 otherwise
.

We claim that if Sb is any natural family of solutions then the following curves of finite mass
1-currents both belong to Sb:

T 1
t := e2δ0 T 2

t := (e2 + te1)δ0.
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(0, ε)

Figure 2. We depicted the family Tt = (e2+te1)δ(tε,ε), which solves (GTE)
(in the classical sense) with initial datum e2δ(0,ε). Assuming the
Stability property, the limit as ε → 0 of this family gives rise to
the solution T 2

t = (e2 + te1)δ0 with initial datum e2δ0. On the
other hand, building an approximating family from below, the
constant family T 1

t = e2δ0 also solves the equation starting from
the same initial datum. This shows non-uniqueness in the class
of natural solutions Sb with finite mass as defined in Definition
6.1.

Indeed the following families are solutions because of the consistency assumption (H1):

T 1,ε
t := e2δ(0,−ε), T 2,ε

t := (e2 + te1)δ(tε,ε).

The first is trivially a solution starting from e2δ(0,−ε), since b = 0 on the support of T 1,ε
t .

The second is also a solution starting from e2δ(0,ε): to see this one can consider the 1-
current associated with the segment {0} × [ε, ε + η] for some η > 0, with orientation e2,
and renormalized to have mass 1. Then this is a normal current and the (unique) solution
starting from it at time t = 0 is given by the pushforward with respect to Φt. Passing to
the limit as η → 0 one gets the claim. Moreover it is not hard to see that T 1,ε

t and T 2,ε
t

converge to T 1
t and T 2

t respectively, thus the latter belong to Sb by the stability assumption
(H2). To finish the proof we just observe that at time t = 0 both solutions coincide with
e2δ0. □
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