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Abstract

Memory is the process of encoding, storing, and retrieving information, allowing
humans to retain experiences, knowledge, skills, and facts over time, and serving
as the foundation for growth and effective interaction with the world. It plays
a crucial role in shaping our identity, making decisions, learning from past ex-
periences, building relationships, and adapting to changes. In the era of large
language models (LLMs), memory refers to the ability of an AI system to retain,
recall, and use information from past interactions to improve future responses and
interactions. Although previous research and reviews have provided detailed de-
scriptions of memory mechanisms, there is still a lack of a systematic review that
summarizes and analyzes the relationship between the memory of LLM-driven AI
systems and human memory, as well as how we can be inspired by human mem-
ory to construct more powerful memory systems. To achieve this, in this paper, we
propose a comprehensive survey on the memory of LLM-driven AI systems. In
particular, we first conduct a detailed analysis of the categories of human memory
and relate them to the memory of AI systems. Second, we systematically orga-
nize existing memory-related work and propose a categorization method based on
three dimensions (object, form, and time) and eight quadrants. Finally, we illus-
trate some open problems regarding the memory of current AI systems and outline
possible future directions for memory in the era of large language models.

1 Introduction

Recently, large language models (LLMs) have become the core component of AI systems due to
their powerful language understanding and generation capabilities, and are widely used in various
applications such as intelligent customer service, automated writing, machine translation, informa-
tion retrieval, and sentiment analysis [1–4]. Unlike traditional AI systems, which rely on predefined
rules and manually labeled features, LLM-driven AI systems offer greater flexibility, handling a
diverse range of tasks with enhanced adaptability and contextual awareness. Moreover, the intro-
duction of memory enables LLMs to retain historical interactions with users and store contextual
information, thereby providing more personalized, continuous, and context-aware responses in fu-
ture interactions [2, 5, 6]. AI systems powered by LLMs with memory capabilities will not only
elevate the user experience but also support more complex and dynamic use cases, steering AI tech-
nology toward greater intelligence and human-centric design [7, 8].

In neuroscience, human memory refers to the brain’s ability to store, retain, and recall informa-
tion [9, 10]. Human memory serves as the foundation for understanding the world, learning new
knowledge, adapting to the environment, and making decisions, allowing us to preserve past experi-
ences, skills, and knowledge, and helping us form our personal identity and behavior patterns [11].
Human memory can be broadly classified into short-term memory and long-term memory based
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on the duration of new memory formation [12]. Short-term memory refers to the information we
temporarily store and process, typically lasting from a few seconds to a few minutes, and includes
sensory memory and working memory [11]. Long-term memory refers to the information we can
store for extended periods, ranging from minutes to years, and includes declarative explicit memory
(such as episodic and semantic memory) and non-declarative implicit memory (such as conditioned
reflexes and procedural memory) [11]. Human memory is a complex and dynamic process that
relies on different memory systems to process information for various purposes, influencing how
we understand and respond to the world. The different types of human memory and their working
mechanisms can greatly inspire us to develop more scientific and reasonable memory-enhanced AI
systems [13–16].

In the era of large language models (LLMs), the most typical memory-enhanced AI system is
the LLM-powered autonomous agent system [10]. Large language model (LLM) powered agents
are AI systems that can perform complex tasks using natural language, incorporating capabilities
like planning, tool use, memory, and multi-step reasoning to enhance interactions and problem-
solving [1, 2, 10]. This memory-enhanced AI system is capable of autonomously decomposing
complex tasks, remembering interaction history, and invoking and executing tools, thereby effi-
ciently completing a series of intricate tasks. In particular, memory, as a key component of the
LLM-powered agent, can be defined as the process of acquiring, storing, retaining, and subsequently
retrieving information [10]. It enables the large language model to overcome the limitation of LLM’s
context window, allowing the agent to recall interaction history and make more accurate and intel-
ligent decisions. For instance, MemoryBank [17] proposed a long-term memory mechanism to
allow LLMs for retrieving relevant memories, continuously evolving through continuous updates,
and understanding and adapting to a user’s personality by integrating information from previous
interactions. In addition, many commercial and open-source AI systems have also integrated mem-
ory systems to enhance the personalization capabilities of the system, such as OpenAI ChatGPT
Memory [18], Apple Personal Context [19], mem0 [20], MemoryScope [21], etc.

Although previous studies and reviews have provided detailed explanations of memory mechanisms,
most of the existing work focuses on analyzing and explaining memory from the temporal (time)
dimension, specifically in terms of short-term and long-term memory [8, 7, 17]. We believe that
categorizing memory solely based on the time dimension is insufficient, as there are many other
aspects (such as object and form) to memory classification in AI systems. For example, from the
object dimension, since AI systems often interact with humans, they need to perceive, store, re-
call, and use memories related to individual users, thus generating personal memories. Meanwhile,
when AI systems perform complex tasks, they generate intermediate results (such as reasoning and
planning processes, internet search results, etc.), which form system memory. In addition, from the
form dimension, since AI systems are powered by large language models (LLMs), they can store
memories through the parametric memory encoded within the model parameters, as well as through
non-parametric memory in the form of external memory documents that are stored and managed
outside the model. Therefore, insights that consider memory from the perspectives of object (per-
sonal and system), form (parametric and non-parametric), and time (short-term and long-term) are
still lacking in the current era of large language models. There is still no comprehensive review
that systematically analyzes the relationship between memory in LLM-driven AI systems and hu-
man memory, and how insights from human memory can be leveraged to build more efficient and
powerful memory systems.

To fill this gap, this paper presents a comprehensive review of the memory mechanisms in LLM-
driven AI systems. First, we provide a detailed analysis of the categories of human memory and
relate them to the memory systems in AI. In particular, we explore how human memory types
— short-term memory (including sensory memory and working memory) and long-term memory
(including explicit memory and implicit memory) — correspond to personal and system memory,
parametric and non-parametric memory, and short-term and long-term memory in LLM-driven AI
systems. Next, we systematically organize the existing work related to memory and propose a clas-
sification method based on three dimensions (object, form, and time) with eight quadrants. In the
object dimension, memory can be divided into personal memory and system memory; in the form
dimension, it can be classified into parametric memory and non-parametric memory; in the time di-
mension, memory can be categorized into short-term memory and long-term memory. Finally, based
on the classification results from the three dimensions and eight quadrants mentioned above, we an-

2



alyze some open issues in the memory of current AI systems and outline potential future directions
for memory development in the era of large language models.

The main contributions of this paper are summarized as follows: (1) We systematically and compre-
hensively define LLM-driven AI systems’ memory and establish corresponding relationships with
human memory. (2) We propose a classification method for memory based on three dimensions (ob-
ject, form, and time) and eight quadrants, which facilitates a more systematic exploration of memory
in the era of large language models. (3) From the perspective of enhancing personalized capabili-
ties, we analyze and summarize research related to personal memory. (4) From the perspective of
AI system’s ability to perform complex tasks, we analyze and summarize research related to system
memory. (5) We identify the existing issues and challenges in current memory research and point
out potential future directions for development.

The remainder of the paper is organized as follows: In Section 2, we present a detailed description
of human memory and AI systems’ memory, comparing their differences and relationships, and in-
troduce the classification method for memory based on three dimensions (object, form, and time)
and eight quadrants. In Section 3, we summarize research related to personal memory, aimed at en-
hancing the personalized response capabilities of AI systems. In Section 4, we summarize research
related to system memory, aimed at improving AI systems’ ability to perform complex tasks. In
Section 5, we analyze some open issues related to memory and point out potential future directions
for development. Finally, in Section 6, we conclude the survey.

2 Overview

The human brain has evolved complex yet efficient memory mechanisms over a long period, en-
abling it to encode, store, and recall information effectively [9]. Accordingly, in the development
of AI systems, we can draw insights from human memory to design effective & efficient mem-
ory mechanisms or systems. In this section, we will first describe in detail the complex memory
mechanisms and related memory systems of the human brain from the perspective of memory neu-
roscience. Then, we will discuss the memory mechanisms and types specific to LLM-driven AI
systems. Finally, based on the memory features of LLM-driven AI systems, we will systematically
review and categorize existing work from different dimensions.

2.1 Human Memory

Human memory typically relies on different memory systems to process information for various
purposes, such as working memory for temporarily storing and processing information to support
ongoing cognitive activities, and episodic memory for recording personal experiences and events for
a long time [11].

2.1.1 Short-Term and Long-Term Memory

Based on the time range, human memory can be roughly divided into short-term memory and
long-term memory according to the well-known Multi-Store Model (or Atkinson-Shiffrin Memory
Model) [22].

Short-Term Memory Short-term memory is a temporary storage system that holds small amounts
of information for brief periods, typically ranging from seconds to minutes. It includes sensory mem-
ory, which briefly captures raw sensory information from the environment (like sights or sounds),
and working memory, which actively processes and manipulates information to complete tasks such
as problem-solving or learning. Together, these components allow humans to temporarily hold and
work with information before either discarding it or transferring it to long-term memory.

• Sensory memory: Sensory memory is the brief storage of sensory information we acquire
from the external world, including iconic memory (visual), echoic memory (auditory), hap-
tic memory (touch), and other sensory data. It typically lasts only a few milliseconds to a
few seconds. Some sensory memories are transferred to working memory, while others are
eventually stored in long-term memory (such as episodic memory).

• Working memory: Working memory is the system we use to temporarily store and process
information. It not only helps us maintain current thoughts but also plays a role in decision-
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making and problem-solving. For example, when solving a math problem, it allows us to
keep track of both the problem and the steps involved in finding the solution.

Long-Term Memory Long-term memory is a storage system that holds information for extended
periods, ranging from minutes to a lifetime. It includes explicit memory, which involves conscious
recall of facts and events, and implicit memory, which involves unconscious skills and habits, like
riding a bike. These two types work together to help humans retain knowledge, experiences, and
learned abilities over time.

• Explicit memory: Explicit memory, also known as declarative memory, refers to memo-
ries that we can easily verbalize or declare. It can be further divided into episodic memory
and semantic memory. Episodic memory refers to memories related to personal experi-
ences and events, such as what you had for lunch. This type of memory is typically broken
down into stages like encoding, storage, and retrieval. Semantic memory, on the other
hand, refers to memories related to facts and knowledge, such as knowing that the Earth is
round or that the Earth orbits the Sun.

• Implicit memory: Implicit memory, also known as non-declarative memory, refers to
memories that are difficult to describe in words. It is associated with habits, skills, and pro-
cedures, and does not require conscious recall. Procedural memory (or "muscle memory")
is a typical form of implicit memory. It refers to memories gained through actions, such as
riding a bicycle or playing the piano. The planning and coordination of movements are key
components of procedural memory.

Multiple memory systems typically operate simultaneously, storing information in various ways
across different brain regions. These memory systems are not completely independent; they interact
with each other and, in many cases, depend on one another. For example, when you hear a new
song, the sensory memory in your ears and the brain regions responsible for processing sound will
become active, storing the sound of the song for a few seconds. This sound is then transferred to
your working memory system. As you use your working memory and consciously think about the
song, your episodic memory will automatically activate, recalling where you heard the song and
what you were doing at the time. As you hear the song in different places and at different times,
a new semantic memory gradually forms, linking the melody of the song with its title. So, when
you hear the song again, you’ll remember the song’s title, rather than a specific instance from your
multiple listening experiences. When you practice playing the song on the guitar, your procedural
memory will remember the finger movements involved in playing the song.

2.1.2 Memory Mechanisms

Memory is the ability to encode, store and recall information. The three main processes involved in
human memory are therefore encoding (the process of acquiring and processing information into a
form that can be stored), storage (the retention of encoded information over time in short-term or
long-term memory), and retrieval (recall, the process of accessing and bringing stored information
back into conscious awareness when needed).

• Encoding Memory encoding is the process of changing sensory information into a form
that our brain can cope with and store effectively. In particular, there are different types of
encoding in terms of how information is processed, such as visual encoding, which involves
processing information based on its visual features like color, shape, or texture; acoustic
encoding, which focuses on the auditory characteristics of information, such as pitch, tone,
or rhythm; and semantic encoding, which is based on the meaning of the information,
making it easier to structure and remember. In addition, there are many approaches to make
our brain better at encoding memory, such as mnemonics, which involve using acronyms or
peg-word systems to aid recall, chunking, where information is broken down into smaller,
meaningful units to enhance retention, imagination, which strengthens encoding by linking
images to words, and association, where new information is connected to prior knowledge
to improve understanding and long-term memory storage.

• Storage The storage of memory involves the coordinated activity of multiple brain regions,
with key areas including: the prefrontal cortex, which is associated with working memory
and decision-making, helping us maintain and process information in the short term; the
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hippocampus, which helps organize and consolidate information to form new explicit mem-
ories (such as episodic memory); the cerebral cortex, which is involved in the storage and
retrieval of semantic memory, allowing us to retain facts, concepts, and general knowl-
edge over time; and the cerebellum, which is primarily responsible for procedural memory
formed through repetition.

• Retrieval Memory retrieval is the ability to access information and get it out of the mem-
ory storage. When we recall something, the brain reactivates neural pathways (also called
synapses) linked to that memory. The prefrontal cortex helps in bringing memories back to
awareness. Similarly, there are different types of memory retrieval, including recognition,
where we identify previously encountered information or stimuli, such as recognizing a
familiar face or a fact we have learned before; recall, which is the ability to retrieve infor-
mation from memory without external cues, like remembering a phone number or address
from memory; and relearning, a process in which we reacquire previously learned but for-
gotten information, often at a faster pace than initial learning due to the residual memory
traces that still exist.

In addition to the fundamental memory processing stages of encoding, storage, and retrieval, human
memory also includes consolidation (the process of stabilizing and strengthening memories to facili-
tate long-term storage), reconsolidation (the modification or updating of previously stored memories
when they are reactivated, allowing them to adapt to new information or contexts), reflection (the
active review and evaluation of one’s memories to enhance self-awareness, improve learning strate-
gies, and optimize decision-making), and forgetting (the process by which information becomes
inaccessible).

• Consolidation Memory consolidation refers to the process of converting short-term mem-
ory into long-term memory, allowing information to be stably stored in the brain and re-
ducing the likelihood of forgetting. It primarily involves the hippocampus and strengthens
neural connections through synaptic plasticity (strengthening of connections between neu-
rons) and systems consolidation (the gradual transfer and reorganization of memories from
the hippocampus to the neocortex for long-term storage).

• Reconsolidation Memory reconsolidation refers to the process in which a previously stored
memory is reactivated, entering an unstable state and requiring reconsolidation to maintain
its storage. This process allows for the modification or updating of existing memories to
adapt to new information or contexts, potentially leading to memory enhancement, weak-
ening, or distortion. Once a memory is reactivated, it involves the hippocampus and amyg-
dala and may be influenced by emotions, cognitive biases, or new information, resulting in
memory adjustment or reshaping.

• Reflection Memory reflection refers to the process in which an individual actively re-
views, evaluates, and examines their own memory content and processes to enhance
self-awareness, adjust learning strategies, or optimize decision-making. It helps improve
metacognitive ability, correct memory biases, facilitate deep learning, and regulate emo-
tions. This process primarily relies on the brain’s metacognitive ability (Metacognition)
and involves the prefrontal cortex, which monitors and regulates memory functions.

• Forgetting Forgetting is a natural process that occurs when the brain fails to retrieve or re-
tain information, which can result from encoding failure (when information is not properly
encoded due to lack of attention or meaningful connection), memory decay (when mem-
ories fade over time without reinforcement as neural connections weaken), interference
(when similar or new memories compete with or overwrite existing ones), retrieval failure
(when information is inaccessible due to missing contextual cues despite being stored), or
motivated forgetting (when individuals consciously suppress or unconsciously repress trau-
matic or distressing memories). However, forgetting is a natural and necessary process that
enables our brains to filter out irrelevant and outdated information, allowing us to prioritize
what is most important for our current needs.

2.2 Memory of LLM-driven AI Systems

Similar to humans, LLM-driven AI systems also rely on memory systems to encode, store and
recall information for future use. A typical example is the LLM-driven agent system, which lever-
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ages memory to enhance the agent system’s abilities in reasoning, planning, personalization, and
more [10].

2.2.1 Fundamental Dimensions of AI Memory

The memory of an LLM-driven AI system is closely related to the features of the LLM, that define
how information is processed, stored, and retrieved based on its architecture and capabilities. We
primarily categorize and organize memory based on three dimensions: object (personal and sys-
tem memory), form (non-parametric and parametric memory), and time (short-term and long-term
memory). These three dimensions comprehensively capture what type of information is retained
(object), how information is stored (form), and how long it is preserved (time), aligning with both
the functional structure of LLMs and practical requirements for efficient recall and adaptability.

Object Dimension The object dimension is closely tied to the interaction between LLM-driven AI
systems and humans, as it defines how information is categorized based on its source and purpose.
On one hand, the system receives human input and feedback (i.e., personal memory); on the other
hand, it generates a series of intermediate output results during task execution (i.e., system memory).
Personal memory helps the system improve its understanding of user behavior and enhances its
personalization capabilities, while system memory can strengthen the system’s reasoning ability,
such as in approaches like CoT (Chain-of-Thought) [23] and ReAct [24].

Form Dimension The form dimension focuses on how memory is represented and stored in LLM-
driven AI systems, shaping how information is encoded and retrieved. Some memory is embedded
within the model’s parameters through training, forming parametric memory, while other memory
exists externally in structured databases or retrieval mechanisms, constituting non-parametric mem-
ory. Non-parametric memory serves as a supplementary knowledge source that can be dynamically
accessed by the large language model, enhancing its ability to retrieve relevant information in real-
time, as seen in retrieval-augmented generation (RAG) [25].

Time Dimension The time dimension defines how long memory is retained and how it influences
the LLM’s interactions over different timescales. Short-term memory refers to contextual informa-
tion temporarily maintained within the current conversation, enabling coherence and continuity in
multi-turn dialogues. In contrast, long-term memory consists of information from past interactions
that is stored in an external database and retrieved when needed, allowing the model to retain user-
specific knowledge and improve personalization over time. This distinction ensures that the system
can balance real-time responsiveness with accumulated learning for enhanced adaptability.

In addition to the three primary dimensions discussed above, memory can also be classified based on
other criteria, such as modality, which distinguishes between unimodal memory (single data type)
and multimodal memory (integrating multiple data types, such as text, images, and audio), or dy-
namics, which differentiates between static memory (fixed and unchanging) and streaming memory
(dynamically updated in real-time). However, these alternative classifications are not considered
the primary criteria here, as our focus is on the core structural aspects that most directly influence
memory organization and retrieval in LLM-driven AI systems.

2.2.2 Parallels Between Human and AI Memory

The memory of LLM-driven AI system exhibits similarities to human memory in terms of struc-
ture and function. Human memory is generally categorized into short-term memory and long-term
memory, a distinction that also applies to AI memory systems. Below, we draw a direct compari-
son between these categories, mapping human cognitive memory processes to their counterparts in
intelligent AI systems. Figure 1 illustrates the parallels between human and AI memory.

• Sensory Memory: When an LLM-driven AI system perceives external information, it
converts inputs such as text, images, speech, and video into machine-processable signals.
This initial stage of information processing is analogous to human sensory memory, where
raw data is briefly held before further cognitive processing. If these signals undergo addi-
tional processing, they transition into working memory, facilitating reasoning and decision-
making. However, if no further processing or storage occurs, the information is quickly
discarded, mirroring the transient nature of human sensory memory.
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Figure 1: Illustrating the parallels between human and AI memory.

• Working Memory: The working memory of an AI system serves as a temporary stor-
age and processing mechanism, enabling real-time reasoning and decision-making. It en-
compasses personal memory, such as contextual information retained during multi-turn
dialogues, and system memory, including the chain of thoughts generated during task exe-
cution. As a form of short-term memory, working memory can undergo further processing
and consolidation, eventually transitioning into long-term memory (e.g., episodic memory)
that can be retrieved for future use. Additionally, during inference, large language mod-
els generate intermediate computational results, such as KV-Caches, which act as a form
of parametric short-term memory that enhances efficiency by accelerating the inference
process.

• Explicit Memory: The explicit memory of an AI system can be categorized into two dis-
tinct components. The first is non-parametric long-term memory, which involves the stor-
age and retrieval of user-specific information, allowing the system to retain and utilize
personalized data—analogous to episodic memory in humans. The second is paramet-
ric long-term memory, where factual knowledge and learned information are embedded
within the model’s parameters, forming an internalized knowledge base—corresponding to
semantic memory in human cognition. Together, these components enable the system to
recall past interactions and apply acquired knowledge effectively.

• Implicit Memory: The implicit memory of an AI system encompasses the learned pro-
cesses and patterns involved in task execution, enabling the development of specialized
skills for specific tasks—analogous to procedural memory in humans. This form of mem-
ory can parallel the human process of learning from both successes and failures in a
non-parameterized manner, involving the reflection and refinement of accumulated traces,
which allows the retention and replication of effective strategies from past experiences.
Additionally, it can be encoded within the model’s parameters, enabling the system to in-
ternalize task-related knowledge and perform operations efficiently without the need for
explicit recall.

Beyond these parallels, insights from human memory can further guide the design of more effective
and efficient AI memory systems, enhancing their ability to process, store, and retrieve information
in a more structured and adaptive manner.

2.2.3 3D-8Q Memory Taxonomy

Building upon the three fundamental memory dimensions—object (personal & system), form (non-
parametric & parametric), and time (short-term & long-term)—as well as the established parallels
between human and AI memory, we propose a three-dimensional, eight-quadrant (3D-8Q) memory
taxonomy for AI memory. This memory taxonomy systematically categorizes AI memory based
on its function, storage mechanism, and retention duration, providing a structured approach to un-
derstanding and optimizing AI memory systems. Table 1 presents the eight quadrants and their
respective roles and functions.
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Object Form Time Quadrant Role Function

Personal

Non-Parametric

Short-Term I Working Memory
Supports real-time context supplementa-
tion, enhancing the AI’s ability to maintain
coherent interactions within a session.

Long-Term II Episodic Memory

Enables memory retention beyond session
limits, allowing the system to recall and re-
trieve past user interactions for personal-
ization.

Parametric

Short-Term III Working Memory
Temporarily enhances contextual under-
standing in ongoing interactions, improv-
ing response relevance and coherence.

Long-Term IV Semantic Memory
Facilitates the continuous integration of
newly acquired knowledge into the model,
improving adaptability and personalization

System

Non-Parametric

Short-Term V Working Memory
Assists in complex reasoning and decision-
making by storing intermediate outputs
such as chain-of-thought prompts.

Long-Term VI Procedural Memory

Captures historical experiences and self-
reflection insights, enabling the AI to refine
its reasoning and problem-solving skills
over time.

Parametric

Short-Term VII Working Memory

Enhances computational efficiency
through temporary parametric storage
mechanisms such as KV-Caches, optimiz-
ing inference speed and reducing resource
consumption.

Long-Term VIII Semantic Memory
Procedural Memory

Forms a foundational knowledge base en-
coded in the model’s parameters, serving
as a long-term repository of factual & con-
ceptual knowledge and task-related knowl-
edge.

Table 1: Three-dimensional, eight-quadrant (3D-8Q) memory taxonomy for LLM-driven AI sys-
tems.

Next, we will provide insights and descriptions of existing works from the perspectives of personal
memory (in Section 3) and system memory (in Section 4). In particualr, personal memory focuses
more on the individual data perceived and observed by the model from the environment, while
system memory emphasizes the system’s internal or endogenous memory, such as the intermediate
memory generated during task execution.

3 Personal Memory

Personal memory refers to the process of storing and utilizing human input and response data during
interactions with an LLM-driven AI system. The development and application of personal memory
play a crucial role in enhancing AI systems’ personalization capabilities and improving user experi-
ence. In this section, we explore the concept of personal memory and relevant research, examining
both non-parametric and parametric approaches to its construction and implementation. Table 2
shows the categories, features, and related research work of personal memory.

3.1 Contextual Personal Memory

In personal memory, the non-parametric contextual memory that can be loaded is generally divided
into two categories: the short-term memory of the current session’s multi-turn dialogue and the
long-term memory of historical dialogues across sessions. The former can effectively supplement
contextual information, while the latter can effectively fill in missing information and overcome the
limitations of context length.

3.1.1 Loading Multi-Turn Dialogue (Quadrant-I)

In multi-turn dialogue scenarios, the conversation history of the current session can significantly
enhance the LLM-driven AI system’s understanding of the user’s real-time intent, leading to more
relevant and contextually appropriate responses. Many modern dialogue systems are capable of
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Quadrant Dimension Feature Models

I
Personal

Non-Parametric
Short-Term

Multi-Turn
Dialogue

ChatGPT [26], DeepSeek-Chat [27], Claude [28],
QWEN-CHAT [29], Llama 2-Chat [30], Gemini [31],

PANGU-BOT [32], ChatGLM [33], OpenAssistant [34]

II
Personal

Non-Parametric
Long-Term

Personal
Assistant

ChatGPT Memory [18], Apple Intelligence [19], Microsoft
Recall [35], Me.bot [36]

Open-Source
Framework

MemoryScope [21], mem0 [20], Memary [37], LangGraph
Memory [38], Charlie Mnemonic [39], Memobase [40],

Letta [41], Cognee [42]

Construction

MPC [43], RET-LLM [44], MemoryBank [17],
MemGPT [45], KGT [46], Evolving Conditional

Memory [47], SECOM [48], Memory3 [49],
MemInsight [50]

Management

MemoChat [51], MemoryBank [17], RMM [52],
LD-Agent [53], A-MEM [54], Generative Agents [55],

EMG-RAG [56], KGT [46], LLM-Rsum [57],
COMEDY [58]

Retrieval
RET-LLM [44], ChatDB [59], Human-like Memory [60],

HippoRAG [13], HippoRAG 2 [61], EgoRAG [62],
MemInsight [50]

Usage

MemoCRS [63], RecMind [64], RecAgent [65],
InteRecAgent [66], SCM [67], ChatDev [68],

MetaAgents [69], S3 [70], TradingGPT [71], Memolet [72],
Synaptic Resonance [14], MemReasoner [73]

Benchmark
MADial-Bench [74], LOCOMO [75], MemDaily [76],
ChMapData [77], MSC [78], MMRC [79], Ego4D [80],

EgoLife [62], BABILong [81, 82]

III
Personal

Parametric
Short-Term

Caching for
Acceleration Prompt Cache [83], Contextual Retrieval [84]

IV
Personal

Parametric
Long-Term

Knowledge
Editing

Character-LLM [85], AI-Native Memory [36],
MemoRAG [86], Echo [87]

Table 2: Personal Memory

handling multi-turn conversations and fully consider the current dialogue context in their responses.
Notable examples include ChatGPT [26], DeepSeek-Chat [27], and Claude [28], which excel at
maintaining coherence and relevance over extended interactions.

For instance, ChatGPT [26] is a prime example of a multi-turn dialogue system where the conversa-
tion history of the current session serves as short-term memory, helping to supplement the contextual
information of the dialogue. In ChatGPT, the dialogue memory is encoded in a role-content format,
with distinct roles such as “User” and “Assistant”. This encoding allows the system to maintain
clarity regarding the speaker and the flow of the conversation.

Through effective dialogue management at different levels, including “Assistant”, “Threads”, “Mes-
sages”, and “Runs”, the system can precisely track the state of each turn and each step of the con-
versation, ensuring continuity and consistency in interactions. Additionally, when the conversation
length becomes too extensive, the dialogue system manages the conversation’s input by truncating
the number of turns, thereby preventing the input from exceeding the model’s length limitations.
This ensures that the system can continue processing the dialogue without losing track of essential
context, maintaining the effectiveness of multi-turn interactions.

3.1.2 Memory Retrieval-Augmented Generation (Quadrant-II)

In cross-session dialogue scenarios, retrieving relevant user long-term memories from historical con-
versations can effectively supplement missing information in the current session, such as personal
preferences and character relationships. The advantage of memory retrieval-augmented generation
is that large language models (LLMs) do not need to load all multi-session conversations. Given the
limited length of LLMs’ context windows—even when extended to millions of tokens—retrieving
relevant information from historical sessions is also more efficient and cost-effective in terms of
computation. In addition to multi-session conversations, long-term personal memory also encom-
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passes users’ behavioral history, preferences, and interaction records with AI agents over an ex-
tended period of time.

By leveraging retrieval-augmented generation from long-term memory, LLM-driven AI systems can
better tailor their responses and behaviors, thereby improving user satisfaction and engagement. For
instance, a personal assistant that remembers a user’s preferred news sources can prioritize those
outlets in daily briefings, while a recommendation system that understands past viewing habits can
suggest content more aligned with the user’s tastes. Currently, many commercial and open-source
platforms are striving to construct and utilize long-term memory for personalized AI systems—for
example, ChatGPT Memory [18] and Me.bot [36] for personal assistants, and MemoryScope [21]
and mem0 [20] as open-source frameworks. Long-term personal memory typically follows four core
processing stages: construction, management, retrieval, and usage. The second section of Table 2
(organized by rows) provides an overview of existing work on personal non-parametric long-term
memory, classified based on their primary contributions.

Construction The construction of user memory requires extraction and refinement from raw mem-
ory data, such as multi-turn conversations. This process is analogous to human memory consolida-
tion—the process of stabilizing and strengthening memories to facilitate their long-term storage.
Well-organized long-term memory enhances both the efficiency of storage and the effectiveness of
retrieval in user memory. For example, MemoryBank [17] leverages a memory module to store
conversation histories and summaries of key events, enabling the construction of a long-term user
profile. Similarly, RET-LLM [44] uses its memory module to retain essential factual knowledge
about the external world, allowing the agent to monitor and update real-time environmental context
relevant to the user. In addition, to accommodate different types of memory, a variety of storage
formats have been developed, including key-value, graph, and vector representations. Specifically,
key-value formats [44, 50, 63] enable efficient access to structured information such as user facts
and preferences. Graph-based formats [46, 13, 61, 20] are designed to capture and represent rela-
tionships among entities, such as individuals and events. Meanwhile, vector formats [17, 48, 20],
which are typically derived from textual, visual, or audio memory representations, are utilized to
encode the semantic meaning and contextual information of conversations.

Management The management of user memory involves further processing and refinement of
previously constructed memories, such as deduplication, merging, and conflict resolution. This pro-
cess is analogous to human memory reconsolidation and reflection, where existing memories are
reactivated, updated, and integrated to maintain coherence and relevance over time. For instance,
Reflective Memory Management (RMM) [52] is a user long-term memory management framework
that combines Prospective Reflection for dynamic summarization with Retrospective Reflection for
retrieval optimization via reinforcement learning. This dual-process approach addresses limitations
such as rigid memory granularity and fixed retrieval mechanisms, enhancing the accuracy and flex-
ibility of long-term memory management. LD-Agent [53] enhances long-term dialogue personal-
ization and consistency by constructing personalized persona information for both users and agents
through a dynamic persona modeling module, while integrating retrieved memories to optimize
response generation. A-MEM [54] introduces a self-organizing memory system inspired by the
Zettelkasten method [88], which constructs interconnected knowledge networks through dynamic
indexing, linking, and memory evolution, enabling LLM agents to more flexibly organize, update,
and retrieve long-term memories, thereby enhancing task adaptability and contextual awareness. In
addition, MemoryBank [17] incorporates a memory updating mechanism inspired by the Ebbing-
haus Forgetting Curve [89], allowing the AI to forget or reinforce memories based on the time
elapsed and their relative importance, thereby enabling a more human-like memory system and en-
hancing the user experience.

Retrieval Retrieving personal memory involves identifying memory entries relevant to the user’s
current request, and the retrieval method is closely tied to how the memory is stored. For key-
value memory, ChatDB [59] performs retrieval using SQL queries over structured databases. RET-
LLM [44], on the other hand, employs a fuzzy search to retrieve triplet-structured memories, where
information is stored as relationships between two entities connected by a predefined relation. For
graph-based memory, HippoRAG [13] constructs knowledge graphs over entities, phrases, and sum-
marization to recall more relative and comprehensive memories, while HippoRAG 2 [61] further
combines original passages with phrase-based knowledge graphs to incorporate both conceptual
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and contextual information. For vector memory, MemoryBank [17] adopts a dual-tower dense re-
trieval model, similar to Dense Passage Retrieval [90], to accurately identify relevant memories.
The resulting vector representations are then indexed using FAISS [91] for efficient similarity-based
retrieval.

Usage The use of personal memory can effectively empower downstream applications with per-
sonalization, enhancing the user’s individualized experience. For instance, the recalled relevant
memory is used as contextual information to enhance the personalized recommendation and re-
sponse capability of the conversational recommender agents [63–66], improving the personalized
user experience. In addition to memory-augmented personalized dialogue and recommendation,
personal memory can also be leveraged to enhance a wide range of applications, including software
development [68], social-network simulation [69, 70], and financial trading [71].

To facilitate in-depth research on personal memory, a variety of memory-related benchmarks
have emerged in recent years, including long-term conversational memory (MADial-Bench [74],
LOCOMO [75], MSC [78]), everyday life memory (MemDaily [76]), memory-aware proac-
tive dialogue (ChMapData [77]), multimodal dialogue memory (MMRC [79]), egocentric video
understanding (Ego4D [80], EgoLife [62]), and long-context reasoning-in-a-haystack (BABI-
Long [81, 82]).

3.2 Parametric Personal Memory

In addition to external non-parametric memory, a user’s personal memory can also be stored para-
metrically. Specifically, personal data can be used to fine-tune an LLM, embedding the memory
directly into its parameters (i.e., parametric long-term memory) to create a personalized LLM .
Alternatively, historical dialogues can be cached as prompts during inference (i.e., parametric short-
term memory), enabling quick reuse in future interactions.

3.2.1 Memory Caching For Acceleration (Quadrant-III)

Personal parametric short-term memory typically refers to intermediate attention states produced
by the LLM when processing personal data, which is usually utilized as memory caches to accel-
erate inference. Specifically, prompt caching [83] is usually used as an efficient data management
technique that allows for the pre-storage of large amounts of personal data or information that may
be frequently requested, such as a user’s conversational history. For instance, during multi-turn
dialogues, the dialogue system can quickly provide the personal context information directly from
the parametric memory cache, avoiding the need to recalculate or retrieve it from the original data
source, saving both time and resources. Major platforms such as DeepSeek, Anthropic, OpenAI,
and Google employ prompt caching to reduce API call costs and improve response speed in dia-
logue scenarios. Moreover, personal parametric short-term memory can enhance the performance
of retrieval-augmented generation (RAG) through Contextual Retrieval [84], where prompt caching
helps reduce the overhead of generating contextualized chunks. At present, research specifically
targeting caching techniques for personal memory data remains limited. Instead, most existing work
considers caching as a fundamental capability of system memory, particularly in the context of key-
value (KV) management and KV reuse. A more detailed discussion of these aspects is provided in
Section 4.

3.2.2 Personalized Knowledge Editing (Quadrant-IV)

Personal parametric long-term memory utilizes personalized Knowledge Editing technology [92],
such as Parameter-Efficient Fine-Tuning (PEFT) [93], to encode personal data into the LLM’s pa-
rameters in a parametric manner, thereby facilitating the long-term, parameterized storage of mem-
ory. For instance, Character-LLM [85] enables the role-playing of specific characters, such as
Beethoven, Queen Cleopatra, Julius Caesar, etc., by training large language models to remember
the roles and experiences of these characters. AI-Native Memory [36] proposes using deep neural
network models, specifically large language models (LLMs), as Lifelong Personal Models (LPMs)
to parameterize, compress, and continuously evolve personal memory through user interactions, en-
abling a more comprehensive understanding of the user. MemoRAG [86] utilizes LLM parametric
memory to store user conversation history and preferences, forming a personalized global memory
that enhances personalization and enables tailored recommendations. Echo [87] is a large language
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model enhanced with temporal episodic memory, designed to improve performance in applications
requiring multi-turn, complex memory-based dialogues. The parameterization of personal long-
term memory presents several challenges, notably the need to fine-tune models on individual user
data, which demands substantial computational resources. This requirement significantly hinders
the scalability and practical deployment of parametric approaches to long-term personal memory.

3.3 Discussion

In this section, we describe personal memory and related work from the perspectives of non-
parametric and parametric approaches. Specifically, personal non-parametric short-term memory
necessitates efficient mechanisms for memory encoding and management. Existing literature pre-
dominantly emphasizes the design and implementation of systems that facilitate the construction,
management, retrieval, and effective utilization of a user’s personal non-parametric long-term mem-
ory. In contrast, personal parametric short-term memory can employ techniques such as prompt
caching to reduce computational costs and enhance efficiency. Parametric long-term memory of-
fers advantages in memory compression, thereby supporting a more comprehensive and global rep-
resentation of the user’s accumulated experiences. Recent trends in the field indicate a growing
interest in integrating both short-term and long-term memory paradigms, wherein parametric and
non-parametric memory components complement and reinforce one another. The subsequent sec-
tion will present a detailed discussion of system memory and its associated research developments.

4 System Memory

System memory constitutes a critical component of LLM-driven AI systems. It encompasses a
sequence of intermediate representations or results generated throughout the task execution process.
By leveraging system memory, LLM-driven AI systems can enhance their capabilities in reasoning,
planning, and other higher-order cognitive functions. Moreover, the effective use of system memory
contributes to the system’s capacity for self-evolution and continual improvement. In this section,
we examine system memory and its associated research from both non-parametric and parametric
perspectives.

Quadrant Dimension Feature Models

V
System

Non-Parametric
Short-Term

Reasoning &
Planning

Enhancement

ReAct [24], RAP [94], Reflexion [95],
Talker-Reasoner [96], TPTU [97]

VI
System

Non-Parametric
Long-Term

Reflection &
Refinement

Buffer of Thoughts [98], AWM [99],
Think-in-Memory [100], GITM [101], Voyager [102],

Retroformer [103], Expel [104], Synapse [105],
MetaGPT [106], Learned Memory Bank [107], M+ [108]

VII
System

Parametric
Short-Term

KV Management

LookupFFN [109], ChunkKV [110], vLLM [111],
FastServe [112], StreamingLLM [113], Orca [114],

DistServe [115], LLM.int8() [116], FastGen [117], Train
Large, Then Compress [118], Scissorhands [119],

H2O [120], Mooncake [121], MemServe [122], SLM
Serving [123], IMPRESS [124], AdaServe [125],

MPIC [126], IntelLLM [127]

KV Reuse

KV Cache [128], Prompt Cache [83], Contextual
Retrieval [84], CacheGen [129], ChunkAttention [130],

RAGCache [131], SGLang [132], Ada-KV [133],
HCache [134], Cake [135], EPIC [136],

RelayAttention [137], Marconi [138], IKS [139],
FastCache [140], Cache-Craft [141], KVLink [142],

RAGServe [143], BumbleBee [144]

VIII
System

Parametric
Long-Term

Parametric
Memory

Structures

Memorizing Transformer [145], Focused
Transformer [146], MAC [147], MemoryLLM [148],

WISE [149], LongMem [150], LM2 [151], Titans [152]

Table 3: System Memory
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4.1 Contextual System Memory

From a temporal perspective, non-parametric short-term system memory refers to a series of rea-
soning and action results generated by large language models during task execution. This form of
memory supports enhanced reasoning and planning within the context of the current task, thereby
contributing to improved task accuracy, efficiency, and overall completion rates. In contrast, non-
parametric long-term system memory represents a more abstracted and generalized form of short-
term memory. It encompasses the consolidation of prior successful experiences and mechanisms of
self-reflection based on historical interactions, which collectively facilitate the continual evolution
and adaptive enhancement of LLM-driven AI systems.

4.1.1 Reasoning & Planning Enhancement (Quadrant-V)

Analogous to human cognition, the reasoning and planning processes of large language models
(LLMs) give rise to a sequence of short-term intermediate outputs. These outputs may reflect task-
related attempts, which can be either successful or erroneous. Regardless of their correctness, such
intermediate results serve as informative and constructive references that can guide subsequent task
execution. This form of system non-parametric short-term memory plays a pivotal role in LLM-
driven AI systems. Empirical evidence demonstrates that leveraging this memory structure sig-
nificantly enhances the reasoning and planning capabilities of LLMs. For instance, ReAct [24]
integrates reasoning and action by generating intermediate reasoning steps alongside corresponding
actions, enabling the model to alternate between thought and execution. This approach facilitates
intelligent planning and adaptive decision-making in complex problem-solving scenarios. Simi-
larly, Reflexion [95] introduces mechanisms for dynamic memory and self-reflection, allowing the
LLM to self-evaluate and iteratively refine its behavior based on prior errors or limitations. This
self-improvement loop promotes enhanced performance in future tasks, resembling a continuous
learning and optimization process.

4.1.2 Reflection & Refinement (Quadrant-VI)

The development of system non-parametric long-term memory parallels the human process of learn-
ing from both successes and failures. It involves the reflection upon and refinement of accumu-
lated short-term memory traces. This memory mechanism enables the system not only to retain
and replicate effective strategies from past experiences but also to extract valuable lessons from
failures, thereby minimizing the likelihood of repeated errors. Through continuous updating and
optimization, the system incrementally enhances its decision-making capabilities and improves its
responsiveness to novel challenges. Moreover, the progressive accumulation of long-term memory
empowers the system to address increasingly complex tasks with greater adaptability and resilience.
For instance, Buffer of Thoughts (BoT) [98] refines the chain of thoughts from historical tasks to
form thought templates, which are then stored in a memory repository, guiding future reasoning
and decision-making processes. Agent Workflow Memory (AWM) [99] introduces reusable paths,
called workflows, and guides subsequent task generation by selecting different workflows. Think-
in-Memory (TiM) [100] continuously generates new thoughts based on conversation history, which
is more conducive to reasoning and computation compared to raw observational data. Ghost in
the Minecraft (GITM) [101] uses reference plans recorded in memory, allowing the agent plan-
ner to more efficiently handle encountered tasks, thereby improving task execution success rates.
Voyager [102] refines skills based on environmental feedback and stores acquired skills in mem-
ory, forming a skill library for future reuse in similar situations (e.g., fighting zombies vs. fighting
spiders). Retroformer [103] leverages recent interaction trajectories as short-term memory and re-
flective feedback from past failures as long-term memory to guide decision-making and reasoning.
ExpeL [104] enhances task resolution by drawing on contextualized successful examples and ab-
stracting insights from both successes and failures through comparative and pattern-based analysis
of past experiences.

4.2 Parametric System Memory

The parametric system memory refers to the temporary storage of knowledge information in para-
metric forms, such as KV Cache [128], during the inference process (short-term memory), or the
long-term editing and storage of knowledge information in the model parameters (long-term mem-
ory). The former, parametric short-term system memory, corresponds to human working memory,
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enabling cost reduction and efficiency improvement in large language model inference. The lat-
ter, parametric long-term system memory, corresponds to human semantic memory, facilitating the
efficient integration of new knowledge.

4.2.1 KV Management & Reuse (Quadrant-VII)

Parametric short-term system memory primarily focuses on the management and reuse of attention
keys (Key) and values (Value) in LLMs, aiming to address issues such as high inference costs and
latency during the reasoning process. KV management optimizes memory efficiency and inference
performance through techniques such as KV cache organization [111], compression [110], and quan-
tization [116]. In particular, vLLM [111] is a high-efficiency LLM serving system built on PagedAt-
tention, a virtual memory-inspired attention mechanism that enables near-zero KV cache waste and
flexible sharing across requests, substantially improving batching efficiency and inference through-
put. ChunkKV [110] is a method for compressing the key-value cache in long-context inference
with LLMs by grouping tokens into semantic chunks, retaining the most informative ones, and en-
abling layer-wise index reuse, thereby reducing memory and computational costs while outperform-
ing existing approaches on several benchmarks. LLM.int8() [116] is a mixed-precision quantization
method that combines vector-wise Int8 quantization with selective 16-bit handling of emergent out-
lier features, enabling memory-efficient inference of large language models (up to 175B parameters)
without performance degradation.

Meanwhile, KV reuse focuses on reusing inference-related parameters through token-level KV
Cache [128] and sentence-level Prompt Cache [83], which helps reduce computational costs and im-
prove the efficiency of large language model (LLM) usage. Specifically, KV Cache [128] stores the
attention keys (Key) and values (Value) generated by the neural network during sequence generation,
allowing them to be reused in subsequent inference steps. This reuse accelerates attention compu-
tation in long-text generation and reduces redundant computation. In contrast, Prompt Cache [83]
operates at the sentence level by caching previous input prompts along with their corresponding
output results. When similar prompts are encountered, the LLM can retrieve and return cached re-
sponses directly, saving computation and accelerating response generation. By avoiding frequent
recomputation of identical or similar contexts, KV reuse enables more efficient inference and sig-
nificantly reduces computational overhead. Additionally, it enhances the flexibility and responsive-
ness of LLM-based systems in handling continuous or interactive tasks. Building on these ideas,
RAGCache [131] introduces a multilevel dynamic caching system tailored for Retrieval-Augmented
Generation (RAG), which caches intermediate knowledge states, optimizes memory replacement
policies based on LLM inference and retrieval patterns, and overlaps retrieval with inference to
significantly reduce latency and improve throughput.

Parametric short-term system memory overlaps somewhat with the previously mentioned parametric
short-term personal memory in terms of technical approach. The difference lies in their focus: para-
metric short-term personal memory is more concerned with improving the processing of individual
input data, while parametric short-term system memory focuses on optimizing the storage and reuse
of system-level context during task execution. The former primarily addresses how to quickly pro-
cess and adapt to an individual’s input information, whereas the latter aims to reduce inference costs
in multi-turn reasoning and enhance the consistency and efficiency of global tasks.

4.2.2 Parametric Memory Structures (Quadrant-VIII)

From the perspective of large language models (LLM) as long-term parametric memory, LLMs are
not merely tools that provide immediate responses based on input and output; they can also store
and integrate information over long time spans, forming an ever-evolving knowledge system. LLMs
based on the Transformer [153] architecture are capable of memorizing knowledge information,
primarily due to the self-attention mechanism in the Transformer-based model and the large-scale
parameterized training approach. By training on vast corpora, LLMs learn extensive world knowl-
edge, language patterns, and solutions to various tasks. Additionally, LLMs can modify, update, or
refine the internal knowledge through parameterized knowledge editing, allowing for more precise
task handling or responses that better align with user needs. MemoryLLM [148] has the ability to
self-update and inject memory with new knowledge, effectively integrating new information and
demonstrating excellent model editing performance and long-term information retention capabili-
ties. WISE [149] is a lifelong editing framework for large language models that employs a dual-
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parametric memory design, with the main memory preserving pretrained knowledge and the side
memory storing edited information. It leverages a routing mechanism to dynamically access the
appropriate memory during inference and uses knowledge sharding to distribute and integrate ed-
its efficiently, ensuring reliability, generalization, and locality throughout continual updates. The
core function of parameterized knowledge editing [92] is to enable large language models (LLMs)
with dynamic and flexible knowledge updating capabilities, allowing them to respond to constantly
changing task requirements, domain knowledge, and new information from the real world. This al-
lows LLMs to remain efficient and accurate across various application scenarios and be customized
and optimized according to user or environmental needs.

4.3 Discussion

In this section, we describe system memory and related work from the perspectives of non-
parametric and parametric approaches. Non-parametric short-term system memory can enhance the
reasoning and planning abilities for current tasks, while non-parametric long-term system memory
enables the reuse of successful experiences and the self-reflection based on historical experience,
facilitating the evolution of LLM-driven AI system capabilities. On the other hand, parametric
short-term system memory can reduce costs and improve efficiency in large language model infer-
ence, and long-term parametric system memory can store and integrate information over long time
spans, forming a continuously evolving knowledge system. In the next section, we will summarize
the issues and challenges in memory research in the era of large language models and point out
potential future directions for development.

5 Open Problems and Future Directions

Although substantial progress has been made in current memory research across the three dimen-
sions—object, form, and time—as well as within the eight corresponding quadrants, numerous open
issues and challenges remain. Building upon recent advancements and recognizing existing limita-
tions, we outline the following promising directions for future research:

From Unimodal Memory to Multimodal Memory In the era of large language models, LLM-
driven AI systems are gradually expanding from being able to process only a single type of data
(such as text) to handle multiple types of data simultaneously (such as text, images, audio, video,
and even sensor data). This transition enhances perceptual capabilities and enables robust perfor-
mance in complex real-world tasks. For example, in the medical field, by combining text (medical
records), images (medical imaging), and speech (doctor-patient conversations), AI systems can more
accurately understand and diagnose medical conditions. Multimodal memory systems can integrate
information from different sensory channels into a unified understanding, thereby approaching hu-
man cognitive processes more closely. Moreover, the expansion of multimodal memory also opens
up possibilities for more personalized and interactive AI applications [154]. For instance, personal
AI assistants can not only communicate with users through text but also interpret users’ emotions
by recognizing facial expressions, voice intonations, or body language, thus providing more person-
alized and empathetic responses.

From Static Memory to Stream Memory Static memory can be viewed as a batch-processing
approach to memory storage. It accumulates information or experiences in discrete batches, typi-
cally processing, storing, and retrieving them at specific intervals or predetermined points in time.
As an offline memory model, static memory emphasizes the systematic organization and consolida-
tion of large volumes of information, making it well-suited for long-term knowledge retention and
structured learning. In contrast, stream memory operates in a continuous, real-time manner. Anal-
ogous to data stream processing, it handles information as it arrives, prioritizing immediacy and
adaptability. As an online or real-time memory model, stream memory focuses on the dynamic up-
dating of information and rapid responsiveness to evolving contexts. These two memory paradigms
are not mutually exclusive and often function complementarily: while static memory supports the
accumulation of stable, long-term knowledge, stream memory enables agile adaptation to ongoing
tasks and real-time information demands.
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From Specific Memory to Comprehensive Memory The human memory system comprises mul-
tiple interconnected subsystems—such as sensory memory, working memory, explicit memory, and
implicit memory—each fulfilling distinct functions and contributing to the overall cognitive process.
In the context of large language models (LLMs), current memory architectures often concentrate on
narrow or task-specific components, such as short-term memory for immediate inference or domain-
specific knowledge storage. While such targeted memory mechanisms can enhance performance in
specific scenarios, their limited scope constrains the system’s overall flexibility, generalization, and
adaptability. Looking forward, the development of comprehensive and collaborative memory sys-
tems is essential. These systems should integrate diverse memory types and support efficient inter-
action, self-organization, and continual updating, enabling LLMs to manage increasingly complex
and dynamic tasks. By more closely emulating the multi-layered, multi-dimensional, and adaptive
characteristics of human memory, such architectures have the potential to significantly advance the
general intelligence and autonomy of LLM-based AI systems.

From Exclusive Memory to Shared Memory At present, the memory of each LLM-driven AI
system operates independently, typically confined to a specific domain and tailored to processing
isolated tasks or environments. However, as AI technologies continue to evolve, memory systems
are expected to become increasingly interconnected, transcending domain boundaries and enabling
enhanced collaboration among models. For instance, a large language model specialized in the
medical domain could share its memory or knowledge base with another model focused on finance,
facilitating cross-domain knowledge transfer and cooperative task solving. Such a shared memory
paradigm would not only improve the efficiency and adaptability of individual systems but also
empower multiple LLMs to dynamically access and leverage one another’s domain-specific exper-
tise. This shift toward collaborative memory architectures could give rise to a more intelligent,
resource-efficient network of AI systems capable of addressing complex, multi-domain challenges.
Ultimately, shared memory is poised to broaden the scope of AI applications and accelerate its
integration into increasingly diverse and demanding real-world scenarios.

From Individual Privacy to Collective Privacy With the increasing prevalence of data sharing
in the AI era, the focus of privacy protection is gradually shifting from the traditional notion of
individual privacy to the broader and emerging concept of collective privacy. Conventional pri-
vacy frameworks primarily aim to safeguard personal data, preventing unauthorized access, leak-
age, or misuse of individually identifiable information. However, in the context of large language
models, individual data is often aggregated into group-level datasets for large-scale analysis and
prediction. Collective privacy concerns the protection of the rights and interests of groups or com-
munities whose data is used collectively, raising questions about how to prevent misuse, profiling,
or excessive surveillance at the group level. As memory systems in AI become more advanced and
interconnected, ensuring collective privacy will emerge as a critical challenge. Addressing this issue
will require innovative techniques that can effectively balance the trade-off between data utility and
privacy preservation [155].

From Rule-Based Evolution to Automated Evolution Traditional AI systems evolve by reflect-
ing on past experiences—such as reusing successful strategies—based on accumulated knowledge
and historical data. However, this evolutionary process often depends on manually crafted rules and
heuristic adjustments to enable such self-reflection. While rule-based evolution can be effective,
it inherently limits the system’s flexibility, scalability, and efficiency, with the quality and gener-
alizability of the rules directly constraining the system’s adaptive capabilities. Looking ahead, AI
systems are expected to achieve automated evolution, dynamically adjusting and optimizing them-
selves by leveraging both personal and system-level memories in response to changing data and
environmental contexts. Such systems will be capable of autonomously identifying performance
bottlenecks and initiating self-improvement without relying on explicit, human-defined rules. This
transition toward self-directed adaptation will significantly enhance system responsiveness, reduce
the need for human intervention, and enable a more intelligent, dynamic, and continuously self-
evolving paradigm.
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6 Conclusion

Memory plays a pivotal role in the advancement of AI systems in the era of large language models
(LLMs). It not only shapes the degree of personalization in AI behavior but also influences key
capabilities such as adaptability, reasoning, planning, and self-evolution. This article systematically
examines the relationship between human memory and memory mechanisms in LLM-driven AI sys-
tems, exploring how principles of human cognition can inspire the design of more efficient and flex-
ible memory architectures. We begin by analyzing various categories of human memory—including
perceptual memory, working memory, and long-term memory—and compare them with existing
memory models in AI. Building upon this, we propose an eight-quadrant classification framework
grounded in three dimensions: object, form, and time, offering a theoretical foundation for the con-
struction of multi-level and comprehensive memory systems. Furthermore, we review the current
state of memory development in AI from both personal memory and system memory perspectives.
Finally, we identify key open challenges in contemporary AI memory design and outline promis-
ing directions for future research in the LLM era. We believe that, with continued technological
progress, AI systems will increasingly adopt more dynamic, adaptive, and intelligent memory archi-
tectures, thereby enabling more robust applications across complex, real-world tasks.

References
[1] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,

Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[2] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng
Liu, Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about
the capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.

[3] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models.
arXiv preprint arXiv:2303.18223, 1(2), 2023.

[4] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen,
Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language
models. ACM transactions on intelligent systems and technology, 15(3):1–45, 2024.

[5] Bo Chen, Xinyi Dai, Huifeng Guo, Wei Guo, Weiwen Liu, Yong Liu, Jiarui Qin, Ruiming
Tang, Yichao Wang, Chuhan Wu, et al. All roads lead to rome: Unveiling the trajectory of
recommender systems across the llm era. arXiv preprint arXiv:2407.10081, 2024.

[6] Chen Zhang, Xinyi Dai, Yaxiong Wu, Qu Yang, Yasheng Wang, Ruiming Tang, and Yong
Liu. A survey on multi-turn interaction capabilities of large language models. arXiv preprint
arXiv:2501.09959, 2025.

[7] Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua
Dong, and Ji-Rong Wen. A survey on the memory mechanism of large language model based
agents. arXiv preprint arXiv:2404.13501, 2024.

[8] Xun Jiang, Feng Li, Han Zhao, Jiaying Wang, Jun Shao, Shihao Xu, Shu Zhang, Weiling
Chen, Xavier Tang, Yize Chen, et al. Long term memory: The foundation of ai self-evolution.
arXiv preprint arXiv:2410.15665, 2024.

[9] Lauralee Sherwood, Robert Thomas Kell, and Christopher Ward. Human physiology: from
cells to systems. Thomson/Brooks/Cole, 2004.

[10] Lilian Weng. Llm-powered autonomous agents. lilianweng.github.io, Jun 2023.

[11] Andrew E Budson and Elizabeth A Kensinger. Why we forget and how to remember better:
the science behind memory. Oxford University Press, 2023.

[12] Alan Baddeley. Working memory, thought, and action, volume 45. OuP Oxford, 2007.

17



[13] Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
Neurobiologically inspired long-term memory for large language models. arXiv preprint
arXiv:2405.14831, 2024.

[14] George Applegarth, Christian Weatherstone, Maximilian Hollingsworth, Henry Middlebrook,
and Marcus Irvin. Exploring synaptic resonance in large language models: A novel approach
to contextual memory integration. arXiv preprint arXiv:2502.10699, 2025.

[15] Samuel J Gershman, Ila Fiete, and Kazuki Irie. Key-value memory in the brain. arXiv preprint
arXiv:2501.02950, 2025.

[16] Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu,
Shaokun Zhang, Kaitao Song, Kunlun Zhu, Yuheng Cheng, Suyuchen Wang, Xiaoqiang
Wang, Yuyu Luo, Haibo Jin, Peiyan Zhang, Ollie Liu, Jiaqi Chen, Huan Zhang, Zhaoyang
Yu, Haochen Shi, Boyan Li, Dekun Wu, Fengwei Teng, Xiaojun Jia, Jiawei Xu, Jinyu Xi-
ang, Yizhang Lin, Tianming Liu, Tongliang Liu, Yu Su, Huan Sun, Glen Berseth, Jianyun
Nie, Ian Foster, Logan Ward, Qingyun Wu, Yu Gu, Mingchen Zhuge, Xiangru Tang, Haohan
Wang, Jiaxuan You, Chi Wang, Jian Pei, Qiang Yang, Xiaoliang Qi, and Chenglin Wu. Ad-
vances and challenges in foundation agents: From brain-inspired intelligence to evolutionary,
collaborative, and safe systems, 2025.

[17] Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhanc-
ing large language models with long-term memory. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 19724–19731, 2024.

[18] OpenAI. Memory and new controls for chatgpt. openai.com, February 2024.

[19] Apple. Introducing apple intelligence, the personal intelligence system that puts powerful
generative models at the core of iphone, ipad, and mac. apple.com, June 2024.

[20] mem0ai. mem0: The memory layer for personalized ai. mem0.ai, July 2024.

[21] ModelScope. Memoryscope: Equip your llm chatbot with a powerful and flexible long term
memory system. github.com, September 2024.

[22] Richard C Atkinson and Richard M Shiffrin. Human memory: A proposed system and its
control processes. In Psychology of learning and motivation, volume 2, pages 89–195. Else-
vier, 1968.

[23] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[24] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2022.

[25] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Advances in neural information
processing systems, 33:9459–9474, 2020.

[26] OpenAI. Introducing chatgpt. openai.com, November 2022.

[27] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024.

[28] Anthropic. Introducing claude. anthropic.com, March 2023.

[29] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

18



[30] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[31] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Sori-
cut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[32] Fei Mi, Yitong Li, Yulong Zeng, Jingyan Zhou, Yasheng Wang, Chuanfei Xu, Lifeng Shang,
Xin Jiang, Shiqi Zhao, and Qun Liu. Pangu-bot: Efficient generative dialogue pre-training
from pre-trained language model. arXiv preprint arXiv:2203.17090, 2022.

[33] Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
Rojas, Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from
glm-130b to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

[34] Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openas-
sistant conversations-democratizing large language model alignment. Advances in Neural
Information Processing Systems, 36:47669–47681, 2023.

[35] Microsoft. Recall overview. microsoft.com, February 2025.

[36] Jingbo Shang, Zai Zheng, Jiale Wei, Xiang Ying, Felix Tao, and Mindverse Team. Ai-native
memory: A pathway from llms towards agi. arXiv preprint arXiv:2406.18312, 2024.

[37] Memary. Beyond short-term memory: How memary makes chatbots remember. github.com,
April 2024.

[38] langchain ai. Langgraph memory service. github.com, October 2024.

[39] GoodAI. Charlie mnemonic. github.com, March 2024.

[40] memodb io. Memobase: User profile-based memory for genai apps. memobase.io, January
2025.

[41] Letta-AI. Letta. github.com, September 2024.

[42] Cognee.ai. Cognee. github.com, October 2024.

[43] Gibbeum Lee, Volker Hartmann, Jongho Park, Dimitris Papailiopoulos, and Kangwook
Lee. Prompted llms as chatbot modules for long open-domain conversation. arXiv preprint
arXiv:2305.04533, 2023.

[44] Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schütze. Ret-llm: Towards
a general read-write memory for large language models. arXiv preprint arXiv:2305.14322,
2023.

[45] Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica,
and Joseph E Gonzalez. Memgpt: Towards llms as operating systems. arXiv preprint
arXiv:2310.08560, 2023.

[46] Jingwei Sun, Zhixu Du, and Yiran Chen. Knowledge graph tuning: Real-time large language
model personalization based on human feedback. arXiv preprint arXiv:2405.19686, 2024.

[47] Ruifeng Yuan, Shichao Sun, Yongqi Li, Zili Wang, Ziqiang Cao, and Wenjie Li. Person-
alized large language model assistant with evolving conditional memory. arXiv preprint
arXiv:2312.17257, 2023.

[48] Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing
Yang, Chin-Yew Lin, H Vicky Zhao, Lili Qiu, et al. On memory construction and retrieval
for personalized conversational agents. arXiv preprint arXiv:2502.05589, 2025.

19



[49] Hongkang Yang, Zehao Lin, Wenjin Wang, Hao Wu, Zhiyu Li, Bo Tang, Wenqiang Wei,
Jinbo Wang, Zeyun Tang, Shichao Song, et al. Memory3: Language modeling with explicit
memory. arXiv preprint arXiv:2407.01178, 2024.

[50] Rana Salama, Jason Cai, Michelle Yuan, Anna Currey, Monica Sunkara, Yi Zhang, and
Yassine Benajiba. Meminsight: Autonomous memory augmentation for llm agents. arXiv
preprint arXiv:2503.21760, 2025.

[51] Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yun-
sheng Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain
conversation. arXiv preprint arXiv:2308.08239, 2023.

[52] Zhen Tan, Jun Yan, I Hsu, Rujun Han, Zifeng Wang, Long T Le, Yiwen Song, Yanfei Chen,
Hamid Palangi, George Lee, et al. In prospect and retrospect: Reflective memory manage-
ment for long-term personalized dialogue agents. arXiv preprint arXiv:2503.08026, 2025.

[53] Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua.
Hello again! llm-powered personalized agent for long-term dialogue. arXiv preprint
arXiv:2406.05925, 2024.

[54] Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem:
Agentic memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

[55] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Pro-
ceedings of the 36th annual acm symposium on user interface software and technology, pages
1–22, 2023.

[56] Zheng Wang, Zhongyang Li, Zeren Jiang, Dandan Tu, and Wei Shi. Crafting personalized
agents through retrieval-augmented generation on editable memory graphs. arXiv preprint
arXiv:2409.19401, 2024.

[57] Qingyue Wang, Liang Ding, Yanan Cao, Zhiliang Tian, Shi Wang, Dacheng Tao, and Li Guo.
Recursively summarizing enables long-term dialogue memory in large language models.
arXiv preprint arXiv:2308.15022, 2023.

[58] Nuo Chen, Hongguang Li, Juhua Huang, Baoyuan Wang, and Jia Li. Compress to im-
press: Unleashing the potential of compressive memory in real-world long-term conversa-
tions. arXiv preprint arXiv:2402.11975, 2024.

[59] Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. Chatdb: Aug-
menting llms with databases as their symbolic memory. arXiv preprint arXiv:2306.03901,
2023.

[60] Yuki Hou, Haruki Tamoto, and Homei Miyashita. " my agent understands me better": In-
tegrating dynamic human-like memory recall and consolidation in llm-based agents. In Ex-
tended Abstracts of the CHI Conference on Human Factors in Computing Systems, pages 1–7,
2024.

[61] Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag
to memory: Non-parametric continual learning for large language models. arXiv preprint
arXiv:2502.14802, 2025.

[62] Jingkang Yang, Shuai Liu, Hongming Guo, Yuhao Dong, Xiamengwei Zhang, Sicheng
Zhang, Pengyun Wang, Zitang Zhou, Binzhu Xie, Ziyue Wang, et al. Egolife: Towards
egocentric life assistant. arXiv preprint arXiv:2503.03803, 2025.

[63] Yunjia Xi, Weiwen Liu, Jianghao Lin, Bo Chen, Ruiming Tang, Weinan Zhang, and Yong
Yu. Memocrs: Memory-enhanced sequential conversational recommender systems with large
language models. In Proceedings of the 33rd ACM International Conference on Information
and Knowledge Management, pages 2585–2595, 2024.

20



[64] Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan,
Xiaojiang Huang, Yanbin Lu, and Yingzhen Yang. Recmind: Large language model powered
agent for recommendation. arXiv preprint arXiv:2308.14296, 2023.

[65] Lei Wang, Jingsen Zhang, Xu Chen, Yankai Lin, Ruihua Song, Wayne Xin Zhao, and Ji-Rong
Wen. Recagent: A novel simulation paradigm for recommender systems. arXiv preprint
arXiv:2306.02552, 2023.

[66] Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu Lian, and Xing Xie. Recommender
ai agent: Integrating large language models for interactive recommendations. arXiv preprint
arXiv:2308.16505, 2023.

[67] Bing Wang, Xinnian Liang, Jian Yang, Hui Huang, Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun
Ma, and Zhoujun Li. Enhancing large language model with self-controlled memory frame-
work. arXiv preprint arXiv:2304.13343, 2023.

[68] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software develop-
ment, 2024. URL https://arxiv. org/abs/2307, 7924, 2024.

[69] Yuan Li, Yixuan Zhang, and Lichao Sun. Metaagents: Simulating interactions of human
behaviors for llm-based task-oriented coordination via collaborative generative agents. arXiv
preprint arXiv:2310.06500, 2023.

[70] Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao, Jinghua Piao, Huandong Wang, De-
peng Jin, and Yong Li. S3: Social-network simulation system with large language model-
empowered agents. arXiv preprint arXiv:2307.14984, 2023.

[71] Yang Li, Yangyang Yu, Haohang Li, Zhi Chen, and Khaldoun Khashanah. Tradinggpt: Multi-
agent system with layered memory and distinct characters for enhanced financial trading per-
formance. arXiv preprint arXiv:2309.03736, 2023.

[72] Ryan Yen and Jian Zhao. Memolet: Reifying the reuse of user-ai conversational memories. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology,
pages 1–22, 2024.

[73] Ching-Yun Ko, Sihui Dai, Payel Das, Georgios Kollias, Subhajit Chaudhury, and Aurelie
Lozano. Memreasoner: A memory-augmented llm architecture for multi-hop reasoning. In
The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024.

[74] Junqing He, Liang Zhu, Rui Wang, Xi Wang, Reza Haffari, and Jiaxing Zhang. Madial-
bench: Towards real-world evaluation of memory-augmented dialogue generation. arXiv
preprint arXiv:2409.15240, 2024.

[75] Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and
Yuwei Fang. Evaluating very long-term conversational memory of llm agents. arXiv preprint
arXiv:2402.17753, 2024.

[76] Zeyu Zhang, Quanyu Dai, Luyu Chen, Zeren Jiang, Rui Li, Jieming Zhu, Xu Chen, Yi Xie,
Zhenhua Dong, and Ji-Rong Wen. Memsim: A bayesian simulator for evaluating memory of
llm-based personal assistants. arXiv preprint arXiv:2409.20163, 2024.

[77] Bowen Wu, Wenqing Wang, Haoran Li, Ying Li, Jingsong Yu, and Baoxun Wang. Inter-
personal memory matters: A new task for proactive dialogue utilizing conversational history.
arXiv preprint arXiv:2503.05150, 2025.

[78] Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-
domain conversation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, edi-
tors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 5180–5197, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

21



[79] Haochen Xue, Feilong Tang, Ming Hu, Yexin Liu, Qidong Huang, Yulong Li, Chengzhi Liu,
Zhongxing Xu, Chong Zhang, Chun-Mei Feng, et al. Mmrc: A large-scale benchmark for
understanding multimodal large language model in real-world conversation. arXiv preprint
arXiv:2502.11903, 2025.

[80] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Ro-
hit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around
the world in 3,000 hours of egocentric video. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 18995–19012, 2022.

[81] Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin,
and Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-
haystack, 2024.

[82] Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Dmitry Sorokin, Artyom Sorokin, and Mikhail
Burtsev. In search of needles in a 10m haystack: Recurrent memory finds what llms miss,
2024.

[83] In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong.
Prompt cache: Modular attention reuse for low-latency inference. Proceedings of Machine
Learning and Systems, 6:325–338, 2024.

[84] Anthropic. Introducing contextual retrieval. anthropic.com, September 2024.

[85] Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for
role-playing. arXiv preprint arXiv:2310.10158, 2023.

[86] Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao, and Zhicheng Dou. Memorag:
Moving towards next-gen rag via memory-inspired knowledge discovery. arXiv preprint
arXiv:2409.05591, 2024.

[87] WenTao Liu, Ruohua Zhang, Aimin Zhou, Feng Gao, and JiaLi Liu. Echo: A large language
model with temporal episodic memory. arXiv preprint arXiv:2502.16090, 2025.

[88] David Kadavy. Digital Zettelkasten: Principles, Methods, & Examples. Kadavy, Inc., 2021.

[89] Jaap MJ Murre and Joeri Dros. Replication and analysis of ebbinghaus’ forgetting curve.
PloS one, 10(7):e0120644, 2015.

[90] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
In EMNLP (1), pages 6769–6781, 2020.

[91] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

[92] Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowl-
edge editing for large language models: A survey. ACM Computing Surveys, 57(3):1–37,
2024.

[93] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient
fine-tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608,
2024.

[94] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhit-
ing Hu. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023.

[95] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

[96] Konstantina Christakopoulou, Shibl Mourad, and Maja Matarić. Agents thinking fast and
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