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Benchmarking the Reproducibility of Brain MRI Segmentation Across
Scanners and Time
Ekaterina Kondrateva Sandzhi Barg Mikhail Vasiliev

Abstract
Accurate and reproducible brain morphometry from structural MRI is critical for monitoring neuroanatomical changes
across time and imaging domains. Although deep learning has accelerated segmentation workflows, scanner-induced
variability and reproducibility limitations remain—particularly in longitudinal and multi-site settings. In this study, we
benchmark two state-of-the-art pipelines—FastSurfer and SynthSeg—both integrated into FreeSurfer, one of the most
widely adopted tools in neuroimaging. Using two complementary datasets—a 17-year single-subject longitudinal cohort
(SIMON) and a 9-site test-retest cohort (SRPBS)—we quantify inter-scan segmentation variability using Dice, Surface
Dice, Hausdorff Distance (HD95), and Mean Absolute Percentage Error (MAPE). Our results reveal up to 7–8% volume
variation in small subcortical structures such as the amygdala and ventral diencephalon, even under controlled test-retest
conditions. This raises a critical question: is it feasible to detect subtle longitudinal changes—on the order of 5–10%—in
pea-sized brain regions, given the magnitude of domain-induced morphometric noise? We further analyze the effects of
registration choices and interpolation modes, and propose surface-based quality filtering to improve reliability. This work
provides a reproducible benchmark and calls for harmonization strategies to enable robust morphometry in real-world
neuroimaging studies. Our code is available at https://github.com/kondratevakate/brain-mri-segmentation.
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1. Introduction

A dvances in AI-driven medical imaging have rev-
olutionized pathology detection, yet reproducible
morphometric analysis of healthy brains—especially

across scanners and over time—remains a challenge. This
gap limits our ability to monitor individual brain health
trajectories and detect early pathological changes. While
artificial intelligence (AI) has significantly advanced medi-
cal imaging—particularly in pathology segmentation tasks
such as tumor identification in the BraTS challenge—there
remains a notable gap in applying these advancements
to morphometric analyses of healthy brains across varied
domains. This underexplored area presents opportunities
for developing robust, generalizable AI models that can
accurately capture subtle anatomical variations, thereby
deepening insight into brain aging and development.

Traditional tools like FreeSurfer (Fischl, 2012) have been
instrumental in providing detailed morphometric analyses.
Recent integrations, such as SynthSeg (Billot et al., 2023),
offer contrast-agnostic segmentation capabilities trained on
synthetic data, aiming to improve generalizability across

different imaging protocols. Despite these advancements,
challenges persist in ensuring reproducibility of volumetric
estimates under real-world conditions, particularly when
dealing with data from multiple scanners and protocols.

This study aims to assess the consistency of brain vol-
ume measurements using FastSurefer and FreeSurfer 8 with
integrated SynthSeg across longitudinal MRI scans from a
single individual. By quantifying inter-scan variability using
metrics like absolute volume difference, Dice, and Surface
Dice, we seek to highlight the limitations of current seg-
mentation pipelines in personalized brain health monitoring
and early detection of neurodegenerative conditions.

2. Related Works

Related Work

2.1 Segmentation Pipelines for Morphometry Extraction

Deep learning has significantly advanced individual-level
brain morphometry from structural MRI. Traditional pipelines
such as FreeSurfer (Fischl, 2012) have long served as a gold
standard, producing cortical and subcortical morphometric
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features (e.g., thickness, volume, surface area). However,
these methods are computationally intensive and sensitive
to scanner variability, limiting their scalability in large-scale
or multisite studies.

Recent versions of FreeSurfer integrate SynthSeg (Bil-
lot et al., 2023), a contrast-agnostic segmentation model
trained on synthetic data. SynthSeg+ provides robust
volumetric estimates across diverse contrasts, resolutions,
and scanners. Its compatibility with standard atlases (e.g.,
Desikan-Killiany, MUSE) makes it suitable for harmonized
morphometry across heterogeneous datasets.

To address runtime bottlenecks, FastSurferVINN (Hen-
schel et al., 2023) replaces FreeSurfer’s anatomical stream
with a vision transformer-based model, enabling accurate
surface-based cortical thickness estimation within minutes.
Tools such as Brainchop prioritize clinical scalability, though
often at the cost of generalization to unseen protocols.

Other high-performing segmentation models include
nnU-Net (Isensee et al., 2021) and nnFormer ((Zhou et al.,
2023)), which yield excellent accuracy in controlled bench-
marks but often require dataset-specific finetuning to gen-
eralize effectively in clinical or real-world settings.

Recent segmentation advances also include multi-atlas
deep learning pipelines (Wang et al., 2025), which inte-
grate lifespan-spanning templates to enhance anatomical
precision, particularly in pediatric and geriatric cohorts.

2.2 Longitudinal Modeling and Individualized
Morphometry

Beyond segmentation, recent work has focused on modeling
spatiotemporal brain changes at the individual level. Latent
diffusion-based progression modeling, such as Brain Latent
Progression (BLP) (Puglisi et al., 2025), uses temporally
conditioned diffusion models to infer personalized disease
trajectories from serial MRI scans.

Learning-based Inference of Brain Change (LIBC) (Kim
et al., 2025) models smooth morphometric changes over
time using neural timeline embeddings, capturing subtle age-
and disease-related progression in cortical and subcortical
structures.

Normative modeling frameworks (Allen et al., 2024)
enable the estimation of z-score deviations from large-scale
population references. This approach is particularly effective
in identifying early deviations in psychiatric populations and
supports both clinical and subclinical applications.

Another widely adopted line of work focuses on brain
age prediction. BrainAGE (Franke and Gaser, 2012) models
estimate biological aging based on MRI-derived morphome-
tric features, frequently using FreeSurfer outputs. These
models have demonstrated strong longitudinal reliability
and clinical interpretability.

Emerging tools like Neurofind (Vieira et al., 2025) offer

user-friendly platforms that integrate normative modeling
and brain age estimation, providing individualized reports
based on high-resolution structural MRI images.

Despite these advances, challenges remain in achieving
sulcal-level surface precision, quantifying uncertainty, and
ensuring reproducibility in real-world multisite studies. Al-
though morphometry has clear clinical applications (e.g., in
epilepsy and dementia1), rigorous longitudinal reproducibil-
ity benchmarks remain scarce.

2.3 Brain morpometry as a biomarker
Longitudinal MRI studies have greatly expanded our un-
derstanding of how brain morphometry changes over time,
particularly in response to aging, disease, and stress. A
growing body of work highlights structural biomarkers in
specific brain regions—especially the hippocampus, anterior
cingulate, and prefrontal cortex—that reflect vulnerability
or resilience to neuropsychiatric conditions.

In healthy populations Papagni et al. (2011) demon-
strated gray matter volume (GMV) reductions in the an-
terior cingulate cortex (ACC), hippocampus, and medial
prefrontal cortex (mPFC) in individuals exposed to stress.
Similar findings were confirmed in large-scale aging studies,
including Schaefer et al. (2018), who reported consistent
hippocampal atrophy associated with aging. MacDonald
and Pike (2021) provide a broader review of region-specific
atrophy across the lifespan. Structural biomarkers also in-
form psychiatric research. Cardoner et al. (2024) review
evidence of stress-induced degeneration in the ACC and
dorsolateral prefrontal cortex (dlPFC), while Carnevali and
Sgoifo (2018) identify preserved amygdala volumes as po-
tential resilience markers. UK Biobank analyses further
support longitudinal volume reductions in fronto-limbic cir-
cuits among individuals with high stress exposure (Statsenko
et al., 2022). Importantly, several studies have examined
structural changes within individuals undergoing therapy.
Gryglewski et al. Gryglewski et al. (2019) found hippocam-
pal and amygdalar volume increases after electroconvulsive
therapy (ECT) in treatment-resistant depression. Furtado
et al. (2012) reported volumetric growth in the dlPFC af-
ter rTMS. Frodl et al. (2008) showed that psychotherapy
attenuated gray matter loss over three years in depression.
Together, these findings suggest that MRI-based brain mor-
phometry, especially when assessed longitudinally, provides
meaningful biomarkers for brain health across both norma-
tive and pathological aging.

3. Methods

We study reproducibility of brain MRI segmentation pipelines
across longitudinal and multi-site datasets. We use two

1. https://icometrix.com/expertise#mri
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Brain MRI Segmentation Across Scanners

publicly available datasets—SIMON and SRPBS—spanning
a wide range of scanners and protocols. We compare seg-
mentation outputs from FreeSurfer 8.0.0, FastSurfer, and
SynthSeg, using FreeSurfer’s recon-all pipeline as a ref-
erence. Segmentation reproducibility is evaluated using
a targeted subset of cortical and subcortical ROIs most
relevant for neuroimaging biomarkers. For surface-based
comparisons, we apply rigid registration using ANTs and as-
sess the effect of different interpolation modes and reference
spaces. Quantitative evaluation is performed using Dice
coefficient, Surface Dice, 95th percentile Hausdorff distance
(HD95), and mean absolute percentage error (MAPE) of
regional brain volumes.

3.1 Data

We utilized two datasets for our analysis:
SIMON Dataset: This dataset comprises 73 T1-weighted

MRI scans of a single healthy male subject, collected over
17 years across multiple sites and 1.5T scanners (Duchesne
et al., 2019).

SRPBS Traveling Subject Dataset: This dataset in-
cludes 411 T1-weighted MRI scans from 9 healthy subjects,
each scanned at 9 different sites using 3T MRI scanners.
The data is organized following the BIDS format and in-
cludes accompanying metadata such as participant demo-
graphics and scanner parameters (Tanaka et al., 2021). A
detailed comparison of acquisition parameters between the
SIMON and SRPBS datasets is provided in Table 1.

3.2 Segmentation

We employed FreeSurfer 8.0.0 (released February 27, 2025)
for cortical surface reconstruction and anatomical segmen-
tation using the recon-all pipeline. To evaluate seg-
mentation performance, we compared two state-of-the-art
deep learning-based methods: FastSurfer Henschel et al.
(2020) and SynthSeg Billot et al. (2023). FastSurfer of-
fers rapid and accurate whole-brain segmentation, repli-
cating FreeSurfer’s anatomical outputs, while SynthSeg
provides robust segmentation across varying MRI contrasts
and resolutions without the need for retraining. For consis-
tency and comprehensive analysis, we selected FreeSurfer’s
recon-all outputs as the reference standard and assessed
the Desikan-Killiany-Tourville (DKT) atlas parcellations,
encompassing 100 cortical and subcortical regions.

3.3 Registration

For surface-based metrics, we applied rigid-body registration
using ANTs Avants et al. (2011), computing transforms
from the original T1-weighted images. We evaluated two
interpolation mode nearestNeighbor. Registrations were
performed either to the subject’s first session or to an

Table 1: Acquisition parameters
Acquisition parameter SIMON SRPBS TS

Age
min 29 24
max 46 32
#unique 1 9
Test-retest time, days
min 0 1
max 1154
#unique 45 143
Echo Time, ms
min 0.002 0.001
max 0.003 0.003
#unique 8 24
Repetition Time, ms
min 0.007 0.007
max 2.3 2.3
#unique 8 26
Voxel volume, x
min 0.8 0.8
max 1.1 1.2
#unique 6 35
Voxel volume, y
min 0.8 0.7
max 1.0 1.0
#unique 4 8
Voxel volume, z
min 0.8 0.7
max 1.0 1.0
#unique 4 14

asymmetric MRI atlas. This approach aimed to assess the
impact of interpolation schemes and reference spaces on
the consistency of surface-derived measurements.

3.4 ROI Analysis

We focused our analysis on 9 cortical and 8 subcortical
bilateral regions of interest (ROIs), selected based on their
relevance as biomarkers in neuroimaging studies. The com-
plete list of analyzed ROIs is provided in Table 6. Differences
observed across successive MRI sessions were interpreted
as domain variations.

3.5 Metrics

To evaluate segmentation reproducibility, we report absolute
volume differences, as well as spatial similarity metrics: Dice
coefficient, Surface Dice, and 95th percentile Hausdorff
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Distance (HD95). Each metric captures a different aspect of
agreement between two segmentations: volumetric overlap,
boundary proximity, and outlier misalignment. These are
computed for each region of interest (ROI) and aggregated
across sessions.

Dice Coefficient (DSC): Dice measures the voxel-level
overlap between two binary masks A and B (e.g., predicted
and reference segmentations):

DSC = 2|A ∩ B|
|A| + |B|

(1)

Here, |A| and |B| are the number of voxels in each mask,
and |A ∩ B| is the number of voxels they share. Dice is
widely used due to its simplicity, but can be insensitive to
boundary errors.

Surface Dice (S-DSC): Surface Dice quantifies the pro-
portion of surface points that lie within a distance τ between
the two segmentation boundaries ∂A and ∂B:

S-DSC = |{x ∈ ∂A : d(x, ∂B) ≤ τ}|
|∂A| + |∂B|

+ |{y ∈ ∂B : d(y, ∂A) ≤ τ}|
|∂A| + |∂B|

(2)

Here, d(x, ∂B) denotes the minimum Euclidean distance
from a point x on the surface of A to the surface of B, and
τ is the distance tolerance (set to 1 mm in our experiments).
This metric captures small surface deviations and is well-
suited for assessing perceptual segmentation accuracy.

95th Percentile Hausdorff Distance (HD95): HD95
captures the worst-case boundary discrepancy, ignoring
extreme outliers by focusing on the 95th percentile of all
boundary distances:

HD95(A, B) = max
{

P95 ({d(x, ∂B) : x ∈ ∂A}) ,

P95 ({d(y, ∂A) : y ∈ ∂B})
}

(3)

Where P95 denotes the 95th percentile, and d(x, ∂B) is the
shortest distance from point x to the other surface. HD95
is useful for identifying large local deviations in shape or
topology.

Mean Absolute Percentage Error (MAPE): To com-
pare volumes across repeated scans, we use the mean abso-
lute percentage error between segmentation volumes:

MAPE = 100%
n

n∑
i=1

∣∣∣∣∣V pred
i − V ref

i

V ref
i

∣∣∣∣∣ (4)

Where V pred
i and V ref

i are the predicted and reference vol-
umes for region i, and n is the number of ROIs. MAPE
is intuitive for assessing how much segmentations deviate
from expected anatomical volumes.

3.6 Computations

All experiments were conducted on a Google Cloud Platform
(GCP) instance equipped with 64 vCPUs and 512 GB of
RAM. FreeSurfer 8.0.0 was executed using a single CPU
core per subject, with an average processing time of ap-
proximately 2 hours per subject. Attempts to utilize GPU
acceleration for SynthSeg were unsuccessful due to driver
compatibility issues, resulting in all SynthSeg processing
being performed on the CPU.

4. Results

4.1 SRPBS Test-Retest: FastSurfer

We analyzed 15 sessions from the SRPBS Traveling Subject
dataset (Tanaka et al., 2021) using FastSurfer . As shown
in Figure 1, the first five sessions were acquired on the same
scanner across five consecutive days, while the remaining
sessions involved different scanners and sites.

For both hippocampus and amygdala, volume estimates
during the same-scanner phase were highly consistent. For
example, left hippocampus volumes ranged narrowly be-
tween 4.42–4.44 cm3 (SD = 0.01), and right amygdala
volumes ranged from 1.73–1.75 cm3 (SD = 0.008). In con-
trast, sessions from different scanners showed noticeable
variability: left hippocampus ranged from 4.16–4.53 cm3
(SD = 0.10), and right amygdala from 1.50–1.85 cm3 (SD
= 0.11).

This highlights that even in a highly controlled test-
retest design, inter-scanner variability introduces morpho-
metric noise of up to 10%, especially in small structures
like the amygdala. Reliable quantification in longitudinal or
multisite settings requires either harmonization or robust
outlier filtering.

4.2 SIMON Longitudinal: FastSurfer vs. SynthSeg

We evaluated segmentation reproducibility across 73 ses-
sions over 17 years using FastSurfer and SynthSeg.

FastSurfer. FastSurfer recon-all failed on 3 sessions
and 8 runs. For valid outputs, subcortical volumes were
stable: Left/Right Amygdala: 1.93±0.17 / 2.10±0.12 cm3
Left/Right Hippocampus: 4.54 ± 0.19 / 4.82 ± 0.16 cm3
Volume trajectories showed small upward trends (R2 =
0.12–0.26).3

SynthSeg. Subcortical variation averaged 3.1%, peaking
at 15–20%. Cortical parcellations varied by 5% on average,
with outliers exceeding 40–90%. Volumes were consistently
higher: Amygdala: 2.13 ± 0.07 / 2.22 ± 0.07 cm3 Hip-
pocampus: 5.10 ± 0.11 / 5.18 ± 0.12 cm3 (Figure 2)

Volume comparisons show that FastSurfer consistently
estimates larger volumes than SynthSeg. For example,
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Figure 1: Volume stability for left/right hippocampus and amygdala across Subject 1, 15 sessions in SRPBS Traveling
Subject dataset. FastSurfer results with ANTS registration. The first 5 days (shaded) were acquired on the same
scanner; subsequent sessions were acquired at different sites.

the left hippocampus volume averaged 5.12 ± 0.12 cm3 in
FastSurfer versus 4.58 ± 0.12 cm3 in SynthSeg.

Table 2 compares FreeSurfer and FastSurfer across eight
representative cortical structures. FastSurfer yielded consis-
tently higher Dice scores (e.g., 0.861 vs. 0.793 for Insula,
0.816 vs. 0.728 for Fusiform), suggesting improved anatom-
ical overlap. Surface Dice values remained comparable, with
minimal variation between methods. Volume differences
were notably smaller in FastSurfer (e.g., 2.0 mm3 for Insula,
compared to 31.6 mm3 in FreeSurfer), reflecting reduced
bias. Interestingly, FreeSurfer produced lower Hausdorff
distances in some regions (e.g., Superior Frontal Cortex:
1.21 mm vs. 1.74 mm), but at the cost of greater volume
deviation. Overall, FastSurfer offers more consistent corti-
cal segmentation while maintaining competitive boundary
accuracy.

Figure 2: SIMON dataset: Volume trajectories of Amygdala
and Hippocampus over time for 73 MRI scans in 17 years for
one healthy individual using SynthSeg. Confidence intervals
and regression trends are shown.

Figure 3: SIMON dataset: Comparison of volume distri-
butions from FastSurfer and SynthSeg for Amygdala and
Hippocampus, y-axis denotes volume in cm3.

4.3 Comparison of Distance Metrics Across Datasets

Table 4 summarizes segmentation reproducibility across
eight subcortical structures in the SRPBS and SIMON
datasets. Volume differences (in cm3) were consistently
higher in SRPBS, reflecting greater domain variability due
to inter-scanner effects. In contrast, SIMON—being a
single-subject longitudinal dataset—showed lower volume
deviations across repeated scans. Dice and Surface Dice
scores were uniformly higher in SIMON, indicating improved
overlap and surface-level agreement. For example, mean
Dice scores for the caudate and putamen reached 0.868 and
0.897 in SIMON, compared to 0.802 and 0.848 in SRPBS.
HD95 distances also decreased in SIMON (e.g., 1.234 mm
for hippocampus vs. 1.830 mm in SRPBS), highlighting
reduced boundary inconsistency. These results support
the utility of repeated intra-subject data for evaluating
segmentation consistency.

Subcortical filtering based on segmentation quality.
To assess the impact of quality-based filtering, we evalu-
ated the proportion of subcortical structures removed using
various thresholds on Dice and Surface Dice metrics. As
summarized in Table 5 in Appendix A, applying a strict
Surface Dice threshold of 0.92 filtered out only 5% of re-
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Table 2: Comparison of SynthSeg in FreeSurfer 8 (FS) and FastSurfer (Fast) segmentation performance across subcortical
structures. Volume differences are in mm3, Dice and Surface Dice are unitless, HD95 is in mm.

Metric Accumbens Amygdala Caudate Hippocampus Pallidum Putamen Thalamus Ventral DC
FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast

Volume Diff (mm3) 5.20 -0.56 0.22 -2.23 14.18 1.36 12.46 -0.17 11.99 1.94 19.99 -5.04 2.27 8.30 12.32 1.06
Dice 0.803 0.827 0.858 0.862 0.868 0.874 0.850 0.868 0.850 0.859 0.897 0.902 0.909 0.917 0.858 0.873
Surface Dice 0.965 0.955 0.961 0.944 0.972 0.957 0.964 0.963 0.958 0.927 0.969 0.956 0.947 0.948 0.959 0.950
HD95 (mm) 1.23 1.60 1.26 1.50 1.20 1.56 1.23 1.34 1.27 1.64 1.21 1.58 1.33 1.45 1.23 1.43

Table 3: Comparison of SynthSeg in FreeSurfer 8 (FS) and FastSurfer segmentation performance across selected cortical
structures. Volume difference is in mm3, Dice and Surface Dice are unitless, HD95 is in mm.

Metric Caudal Ant. Cingulate Entorhinal Cortex Fusiform Gyrus Inferior Parietal Insula Lat. Orbitofrontal Med. Orbitofrontal Superior Frontal Superior Temporal

FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast

Volume Diff 21.62 2.90 7.75 -4.78 58.67 -2.95 113.35 3.51 31.60 2.00 64.48 7.46 35.29 5.04 216.32 42.99 115.34 15.80
Dice 0.746 0.820 0.709 0.794 0.728 0.816 0.726 0.807 0.793 0.861 0.712 0.796 0.663 0.780 0.733 0.807 0.759 0.817
Surface Dice 0.965 0.958 0.922 0.922 0.959 0.964 0.973 0.963 0.970 0.971 0.952 0.948 0.938 0.949 0.970 0.966 0.964 0.958
HD95 1.24 1.64 1.72 1.72 1.28 1.35 1.19 1.47 1.35 1.51 1.34 1.85 1.46 1.84 1.21 1.74 1.26 1.47

gions, while retaining a low mean absolute percentage error
(MAPE) across the remaining structures (2.8% at 75th
percentile, 8.6% at 95th). Relaxing the threshold to 0.90
slightly reduced filtering (3.8%) without degrading MAPE.
In contrast, filtering with a traditional Dice threshold of 0.80
excluded more than half of all structures (52.8%), yet re-
tained comparable or worse error profiles. This supports the
use of Surface Dice as a more efficient and precise filtering
criterion for detecting outliers in automated segmentation
pipelines.

4.4 Registration

To compare surface-based metrics, rigid-body registration
was applied using ANTs Avants et al. (2011). We tested
two interpolation strategies: nearestNeighbor and
genericLabel; and two reference spaces: subject-native
(first session) and standard MNI atlas. Interpolation mode
affected mean volume estimates by up to 1.72%, while
template choice accounted for a smaller 0.07% deviation.

5. Conclusion

This study demonstrates that even state-of-the-art seg-
mentation tools such as FastSurfer and SynthSeg remain
sensitive to scanner and protocol variability, particularly in
multi-site and longitudinal settings. Despite widespread
use and high reported accuracy, reproducibility across ses-
sions and scanners remains a challenge—especially for small
subcortical structures such as the amygdala and pallidum.

Our test-retest analysis on the SRPBS Traveling Subject
dataset revealed excellent within-scanner consistency over
five consecutive days, with volume deviations below 1%.
However, cross-site sessions introduced fluctuations up to
10%, even when using the same individual and protocol.
Similarly, in the longitudinal SIMON dataset spanning 17
years, both FastSurfer and SynthSeg showed increasing

volume trends over time, but differed in magnitude and
stability of outputs.

Notably, SynthSeg produced consistently larger sub-
cortical volumes than FastSurfer (e.g., left hippocampus:
5.10 cm3 vs. 4.58 cm3), and greater inter-scan variation in
cortical structures. These findings emphasize the impor-
tance of harmonization strategies or quality control filters
in real-world neuroimaging pipelines.

In this study, we attempted to estimate the reliabil-
ity of segmentation using various distance metrics. This
approach provided a comprehensive assessment of segmen-
tation performance beyond traditional evaluation methods.
Our findings highlight the importance of employing multiple
metrics to capture different aspects of segmentation quality.

While recent research focuses on speed and automation,
robustness remains a bottleneck. We hope this lightweight,
fully reproducible evaluation encourages more transparent
benchmarking of segmentation tools on longitudinal and
multi-scanner datasets.

5.1 Work Limitations

5.1.1 Post-Segmentation Registration

This study registered segmentation maps after prediction
to enable geometric comparisons. However, the choice
of template and interpolation method can meaningfully
influence surface metrics. For instance, switching from MNI
to subject-native space changed average volumes by 0.07%,
while using a non-label-preserving interpolator led to up to
1.72% error. Future work should investigate registration-
before-segmentation pipelines for robust evaluation.

5.1.2 Lack of Preprocessing and Augmentation

We processed raw data without denoising, intensity normal-
ization, or augmentation to isolate the effect of domain
shift. Although this reflects practical variability, it limits
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Figure 4: Inter-scanner variability of cortical volumes in the SIMON dataset. Boxplots show DICE and Surface DICE
metrics between consecutive scans, grouped by hemisphere.

Metric Accumbens Amygdala Caudate Hippocampus Pallidum Putamen Thalamus Ventral DC
SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON

Volume diff (cm3) 0.046 0.030 0.102 0.076 0.119 0.098 0.207 0.125 0.102 0.095 0.206 0.136 0.450 0.374 0.219 0.141
Dice 0.677 0.803 0.790 0.858 0.802 0.868 0.782 0.850 0.789 0.850 0.848 0.897 0.868 0.909 0.806 0.858
Surface Dice 0.849 0.965 0.840 0.961 0.868 0.972 0.845 0.964 0.843 0.958 0.870 0.969 0.820 0.947 0.873 0.959
HD95 (mm) 1.735 1.228 1.697 1.263 1.584 1.200 1.830 1.234 1.675 1.271 1.582 1.210 1.828 1.327 1.620 1.233

Table 4: Comparison of segmentation metrics between the SRPBS and SIMON datasets across subcortical structures.
Volume difference is shown in cm3, Dice and Surface Dice are unitless similarity scores, and HD95 represents the 95th
percentile Hausdorff distance in millimeters.

reproducibility.
It has been shown that classical preprocessing tech-

niques, such as intensity normalization and histogram match-
ing, do not consistently improve brain tumor segmentation
performance across different domains. This limitation un-
derscores the challenges posed by domain shifts in medical
imaging. However, recent advancements in generative meth-
ods, including those utilizing generative adversarial networks
(GANs), offer promising avenues to address these chal-
lenges. For instance, methods like M-GenSeg employ semi-
supervised generative training strategies for cross-modality
tumor segmentation, demonstrating improved generaliza-
tion across diverse imaging modalities Alefsen de Boisre-
don d’Assier et al. (2022). Additionally, approaches that
integrate GANs for synthesizing multi-modal images have
been explored to enhance training data diversity and robust-
ness Author and Author (2023).

5.1.3 No Ground Truth Labels

Both SRPBS and SIMON datasets lack manual annotations,
preventing true accuracy assessment. We evaluated repro-
ducibility under the assumption that anatomical structures
remain stable in healthy subjects, but future work should
include expert-labeled benchmarks for validation.
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Figure 5: Inter-scanner variability of cortical volumes in the SIMON dataset. Boxplots show the percentage difference
from the structure-specific mean across repeated sessions, grouped by hemisphere.

Table 5: Percentage of subcortical regions filtered out using Dice and Surface Dice thresholds, with 75th and 95th
percentile MAPE values across retained regions.

Filtering Metric Threshold Structures % Filtered 75th (% MAPE) 95th (%)
Surface Dice 0.92 Subcortical 5.0 2.8 8.6
Surface Dice 0.90 Subcortical 3.8 2.8 8.8
Dice 0.80 Subcortical 52.8 2.2 5.8
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Appendix A. ROI descripton

Table 6: List of evaluated ROIs: 9 bilateral cortical and 8
bilateral subcortical regions. FreeSurfer segmentation IDs
are provided, cortical regions go for DKT atlas parcellation
(Left, Right).

Region FreeSurfer IDs
Entorhinal Cortex 1006, 2006
Caudal Anterior Cingulate Cortex 1002, 2002
Inferior Parietal Cortex 1008, 2008
Fusiform Gyrus 1007, 2007
Medial Orbitofrontal Cortex 1014, 2014
Lateral Orbitofrontal Cortex 1012, 2012
Superior Temporal Cortex 1030, 2030
Insula 1035, 2035
Superior Frontal Cortex 1028, 2028
Hippocampus 17, 53
Amygdala 18, 54
Thalamus 10, 49
Caudate 11, 50
Putamen 12, 51
Pallidum 13, 52
Accumbens 26, 58
Ventral Diencephalon (VentralDC) 28, 60
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